Merge tag 'mac80211-for-davem-2018-05-09' of git://git.kernel.org/pub/scm/linux/kerne...
[sfrench/cifs-2.6.git] / include / linux / mfd / cros_ec_commands.h
1 /*
2  * Host communication command constants for ChromeOS EC
3  *
4  * Copyright (C) 2012 Google, Inc
5  *
6  * This software is licensed under the terms of the GNU General Public
7  * License version 2, as published by the Free Software Foundation, and
8  * may be copied, distributed, and modified under those terms.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * The ChromeOS EC multi function device is used to mux all the requests
16  * to the EC device for its multiple features: keyboard controller,
17  * battery charging and regulator control, firmware update.
18  *
19  * NOTE: This file is copied verbatim from the ChromeOS EC Open Source
20  * project in an attempt to make future updates easy to make.
21  */
22
23 #ifndef __CROS_EC_COMMANDS_H
24 #define __CROS_EC_COMMANDS_H
25
26 /*
27  * Current version of this protocol
28  *
29  * TODO(crosbug.com/p/11223): This is effectively useless; protocol is
30  * determined in other ways.  Remove this once the kernel code no longer
31  * depends on it.
32  */
33 #define EC_PROTO_VERSION          0x00000002
34
35 /* Command version mask */
36 #define EC_VER_MASK(version) (1UL << (version))
37
38 /* I/O addresses for ACPI commands */
39 #define EC_LPC_ADDR_ACPI_DATA  0x62
40 #define EC_LPC_ADDR_ACPI_CMD   0x66
41
42 /* I/O addresses for host command */
43 #define EC_LPC_ADDR_HOST_DATA  0x200
44 #define EC_LPC_ADDR_HOST_CMD   0x204
45
46 /* I/O addresses for host command args and params */
47 /* Protocol version 2 */
48 #define EC_LPC_ADDR_HOST_ARGS    0x800  /* And 0x801, 0x802, 0x803 */
49 #define EC_LPC_ADDR_HOST_PARAM   0x804  /* For version 2 params; size is
50                                          * EC_PROTO2_MAX_PARAM_SIZE */
51 /* Protocol version 3 */
52 #define EC_LPC_ADDR_HOST_PACKET  0x800  /* Offset of version 3 packet */
53 #define EC_LPC_HOST_PACKET_SIZE  0x100  /* Max size of version 3 packet */
54
55 /* The actual block is 0x800-0x8ff, but some BIOSes think it's 0x880-0x8ff
56  * and they tell the kernel that so we have to think of it as two parts. */
57 #define EC_HOST_CMD_REGION0    0x800
58 #define EC_HOST_CMD_REGION1    0x880
59 #define EC_HOST_CMD_REGION_SIZE 0x80
60
61 /* EC command register bit functions */
62 #define EC_LPC_CMDR_DATA        (1 << 0)  /* Data ready for host to read */
63 #define EC_LPC_CMDR_PENDING     (1 << 1)  /* Write pending to EC */
64 #define EC_LPC_CMDR_BUSY        (1 << 2)  /* EC is busy processing a command */
65 #define EC_LPC_CMDR_CMD         (1 << 3)  /* Last host write was a command */
66 #define EC_LPC_CMDR_ACPI_BRST   (1 << 4)  /* Burst mode (not used) */
67 #define EC_LPC_CMDR_SCI         (1 << 5)  /* SCI event is pending */
68 #define EC_LPC_CMDR_SMI         (1 << 6)  /* SMI event is pending */
69
70 #define EC_LPC_ADDR_MEMMAP       0x900
71 #define EC_MEMMAP_SIZE         255 /* ACPI IO buffer max is 255 bytes */
72 #define EC_MEMMAP_TEXT_MAX     8   /* Size of a string in the memory map */
73
74 /* The offset address of each type of data in mapped memory. */
75 #define EC_MEMMAP_TEMP_SENSOR      0x00 /* Temp sensors 0x00 - 0x0f */
76 #define EC_MEMMAP_FAN              0x10 /* Fan speeds 0x10 - 0x17 */
77 #define EC_MEMMAP_TEMP_SENSOR_B    0x18 /* More temp sensors 0x18 - 0x1f */
78 #define EC_MEMMAP_ID               0x20 /* 0x20 == 'E', 0x21 == 'C' */
79 #define EC_MEMMAP_ID_VERSION       0x22 /* Version of data in 0x20 - 0x2f */
80 #define EC_MEMMAP_THERMAL_VERSION  0x23 /* Version of data in 0x00 - 0x1f */
81 #define EC_MEMMAP_BATTERY_VERSION  0x24 /* Version of data in 0x40 - 0x7f */
82 #define EC_MEMMAP_SWITCHES_VERSION 0x25 /* Version of data in 0x30 - 0x33 */
83 #define EC_MEMMAP_EVENTS_VERSION   0x26 /* Version of data in 0x34 - 0x3f */
84 #define EC_MEMMAP_HOST_CMD_FLAGS   0x27 /* Host cmd interface flags (8 bits) */
85 /* Unused 0x28 - 0x2f */
86 #define EC_MEMMAP_SWITCHES         0x30 /* 8 bits */
87 /* Unused 0x31 - 0x33 */
88 #define EC_MEMMAP_HOST_EVENTS      0x34 /* 32 bits */
89 /* Reserve 0x38 - 0x3f for additional host event-related stuff */
90 /* Battery values are all 32 bits */
91 #define EC_MEMMAP_BATT_VOLT        0x40 /* Battery Present Voltage */
92 #define EC_MEMMAP_BATT_RATE        0x44 /* Battery Present Rate */
93 #define EC_MEMMAP_BATT_CAP         0x48 /* Battery Remaining Capacity */
94 #define EC_MEMMAP_BATT_FLAG        0x4c /* Battery State, defined below */
95 #define EC_MEMMAP_BATT_DCAP        0x50 /* Battery Design Capacity */
96 #define EC_MEMMAP_BATT_DVLT        0x54 /* Battery Design Voltage */
97 #define EC_MEMMAP_BATT_LFCC        0x58 /* Battery Last Full Charge Capacity */
98 #define EC_MEMMAP_BATT_CCNT        0x5c /* Battery Cycle Count */
99 /* Strings are all 8 bytes (EC_MEMMAP_TEXT_MAX) */
100 #define EC_MEMMAP_BATT_MFGR        0x60 /* Battery Manufacturer String */
101 #define EC_MEMMAP_BATT_MODEL       0x68 /* Battery Model Number String */
102 #define EC_MEMMAP_BATT_SERIAL      0x70 /* Battery Serial Number String */
103 #define EC_MEMMAP_BATT_TYPE        0x78 /* Battery Type String */
104 #define EC_MEMMAP_ALS              0x80 /* ALS readings in lux (2 X 16 bits) */
105 /* Unused 0x84 - 0x8f */
106 #define EC_MEMMAP_ACC_STATUS       0x90 /* Accelerometer status (8 bits )*/
107 /* Unused 0x91 */
108 #define EC_MEMMAP_ACC_DATA         0x92 /* Accelerometer data 0x92 - 0x9f */
109 #define EC_MEMMAP_GYRO_DATA        0xa0 /* Gyroscope data 0xa0 - 0xa5 */
110 /* Unused 0xa6 - 0xfe (remember, 0xff is NOT part of the memmap region) */
111
112
113 /* Define the format of the accelerometer mapped memory status byte. */
114 #define EC_MEMMAP_ACC_STATUS_SAMPLE_ID_MASK  0x0f
115 #define EC_MEMMAP_ACC_STATUS_BUSY_BIT        (1 << 4)
116 #define EC_MEMMAP_ACC_STATUS_PRESENCE_BIT    (1 << 7)
117
118 /* Number of temp sensors at EC_MEMMAP_TEMP_SENSOR */
119 #define EC_TEMP_SENSOR_ENTRIES     16
120 /*
121  * Number of temp sensors at EC_MEMMAP_TEMP_SENSOR_B.
122  *
123  * Valid only if EC_MEMMAP_THERMAL_VERSION returns >= 2.
124  */
125 #define EC_TEMP_SENSOR_B_ENTRIES      8
126
127 /* Special values for mapped temperature sensors */
128 #define EC_TEMP_SENSOR_NOT_PRESENT    0xff
129 #define EC_TEMP_SENSOR_ERROR          0xfe
130 #define EC_TEMP_SENSOR_NOT_POWERED    0xfd
131 #define EC_TEMP_SENSOR_NOT_CALIBRATED 0xfc
132 /*
133  * The offset of temperature value stored in mapped memory.  This allows
134  * reporting a temperature range of 200K to 454K = -73C to 181C.
135  */
136 #define EC_TEMP_SENSOR_OFFSET      200
137
138 /*
139  * Number of ALS readings at EC_MEMMAP_ALS
140  */
141 #define EC_ALS_ENTRIES             2
142
143 /*
144  * The default value a temperature sensor will return when it is present but
145  * has not been read this boot.  This is a reasonable number to avoid
146  * triggering alarms on the host.
147  */
148 #define EC_TEMP_SENSOR_DEFAULT     (296 - EC_TEMP_SENSOR_OFFSET)
149
150 #define EC_FAN_SPEED_ENTRIES       4       /* Number of fans at EC_MEMMAP_FAN */
151 #define EC_FAN_SPEED_NOT_PRESENT   0xffff  /* Entry not present */
152 #define EC_FAN_SPEED_STALLED       0xfffe  /* Fan stalled */
153
154 /* Battery bit flags at EC_MEMMAP_BATT_FLAG. */
155 #define EC_BATT_FLAG_AC_PRESENT   0x01
156 #define EC_BATT_FLAG_BATT_PRESENT 0x02
157 #define EC_BATT_FLAG_DISCHARGING  0x04
158 #define EC_BATT_FLAG_CHARGING     0x08
159 #define EC_BATT_FLAG_LEVEL_CRITICAL 0x10
160
161 /* Switch flags at EC_MEMMAP_SWITCHES */
162 #define EC_SWITCH_LID_OPEN               0x01
163 #define EC_SWITCH_POWER_BUTTON_PRESSED   0x02
164 #define EC_SWITCH_WRITE_PROTECT_DISABLED 0x04
165 /* Was recovery requested via keyboard; now unused. */
166 #define EC_SWITCH_IGNORE1                0x08
167 /* Recovery requested via dedicated signal (from servo board) */
168 #define EC_SWITCH_DEDICATED_RECOVERY     0x10
169 /* Was fake developer mode switch; now unused.  Remove in next refactor. */
170 #define EC_SWITCH_IGNORE0                0x20
171
172 /* Host command interface flags */
173 /* Host command interface supports LPC args (LPC interface only) */
174 #define EC_HOST_CMD_FLAG_LPC_ARGS_SUPPORTED  0x01
175 /* Host command interface supports version 3 protocol */
176 #define EC_HOST_CMD_FLAG_VERSION_3   0x02
177
178 /* Wireless switch flags */
179 #define EC_WIRELESS_SWITCH_ALL       ~0x00  /* All flags */
180 #define EC_WIRELESS_SWITCH_WLAN       0x01  /* WLAN radio */
181 #define EC_WIRELESS_SWITCH_BLUETOOTH  0x02  /* Bluetooth radio */
182 #define EC_WIRELESS_SWITCH_WWAN       0x04  /* WWAN power */
183 #define EC_WIRELESS_SWITCH_WLAN_POWER 0x08  /* WLAN power */
184
185 /*
186  * This header file is used in coreboot both in C and ACPI code.  The ACPI code
187  * is pre-processed to handle constants but the ASL compiler is unable to
188  * handle actual C code so keep it separate.
189  */
190 #ifndef __ACPI__
191
192 /*
193  * Define __packed if someone hasn't beat us to it.  Linux kernel style
194  * checking prefers __packed over __attribute__((packed)).
195  */
196 #ifndef __packed
197 #define __packed __attribute__((packed))
198 #endif
199
200 /* LPC command status byte masks */
201 /* EC has written a byte in the data register and host hasn't read it yet */
202 #define EC_LPC_STATUS_TO_HOST     0x01
203 /* Host has written a command/data byte and the EC hasn't read it yet */
204 #define EC_LPC_STATUS_FROM_HOST   0x02
205 /* EC is processing a command */
206 #define EC_LPC_STATUS_PROCESSING  0x04
207 /* Last write to EC was a command, not data */
208 #define EC_LPC_STATUS_LAST_CMD    0x08
209 /* EC is in burst mode.  Unsupported by Chrome EC, so this bit is never set */
210 #define EC_LPC_STATUS_BURST_MODE  0x10
211 /* SCI event is pending (requesting SCI query) */
212 #define EC_LPC_STATUS_SCI_PENDING 0x20
213 /* SMI event is pending (requesting SMI query) */
214 #define EC_LPC_STATUS_SMI_PENDING 0x40
215 /* (reserved) */
216 #define EC_LPC_STATUS_RESERVED    0x80
217
218 /*
219  * EC is busy.  This covers both the EC processing a command, and the host has
220  * written a new command but the EC hasn't picked it up yet.
221  */
222 #define EC_LPC_STATUS_BUSY_MASK \
223         (EC_LPC_STATUS_FROM_HOST | EC_LPC_STATUS_PROCESSING)
224
225 /* Host command response codes */
226 enum ec_status {
227         EC_RES_SUCCESS = 0,
228         EC_RES_INVALID_COMMAND = 1,
229         EC_RES_ERROR = 2,
230         EC_RES_INVALID_PARAM = 3,
231         EC_RES_ACCESS_DENIED = 4,
232         EC_RES_INVALID_RESPONSE = 5,
233         EC_RES_INVALID_VERSION = 6,
234         EC_RES_INVALID_CHECKSUM = 7,
235         EC_RES_IN_PROGRESS = 8,         /* Accepted, command in progress */
236         EC_RES_UNAVAILABLE = 9,         /* No response available */
237         EC_RES_TIMEOUT = 10,            /* We got a timeout */
238         EC_RES_OVERFLOW = 11,           /* Table / data overflow */
239         EC_RES_INVALID_HEADER = 12,     /* Header contains invalid data */
240         EC_RES_REQUEST_TRUNCATED = 13,  /* Didn't get the entire request */
241         EC_RES_RESPONSE_TOO_BIG = 14    /* Response was too big to handle */
242 };
243
244 /*
245  * Host event codes.  Note these are 1-based, not 0-based, because ACPI query
246  * EC command uses code 0 to mean "no event pending".  We explicitly specify
247  * each value in the enum listing so they won't change if we delete/insert an
248  * item or rearrange the list (it needs to be stable across platforms, not
249  * just within a single compiled instance).
250  */
251 enum host_event_code {
252         EC_HOST_EVENT_LID_CLOSED = 1,
253         EC_HOST_EVENT_LID_OPEN = 2,
254         EC_HOST_EVENT_POWER_BUTTON = 3,
255         EC_HOST_EVENT_AC_CONNECTED = 4,
256         EC_HOST_EVENT_AC_DISCONNECTED = 5,
257         EC_HOST_EVENT_BATTERY_LOW = 6,
258         EC_HOST_EVENT_BATTERY_CRITICAL = 7,
259         EC_HOST_EVENT_BATTERY = 8,
260         EC_HOST_EVENT_THERMAL_THRESHOLD = 9,
261         EC_HOST_EVENT_THERMAL_OVERLOAD = 10,
262         EC_HOST_EVENT_THERMAL = 11,
263         EC_HOST_EVENT_USB_CHARGER = 12,
264         EC_HOST_EVENT_KEY_PRESSED = 13,
265         /*
266          * EC has finished initializing the host interface.  The host can check
267          * for this event following sending a EC_CMD_REBOOT_EC command to
268          * determine when the EC is ready to accept subsequent commands.
269          */
270         EC_HOST_EVENT_INTERFACE_READY = 14,
271         /* Keyboard recovery combo has been pressed */
272         EC_HOST_EVENT_KEYBOARD_RECOVERY = 15,
273
274         /* Shutdown due to thermal overload */
275         EC_HOST_EVENT_THERMAL_SHUTDOWN = 16,
276         /* Shutdown due to battery level too low */
277         EC_HOST_EVENT_BATTERY_SHUTDOWN = 17,
278
279         /* Suggest that the AP throttle itself */
280         EC_HOST_EVENT_THROTTLE_START = 18,
281         /* Suggest that the AP resume normal speed */
282         EC_HOST_EVENT_THROTTLE_STOP = 19,
283
284         /* Hang detect logic detected a hang and host event timeout expired */
285         EC_HOST_EVENT_HANG_DETECT = 20,
286         /* Hang detect logic detected a hang and warm rebooted the AP */
287         EC_HOST_EVENT_HANG_REBOOT = 21,
288         /* PD MCU triggering host event */
289         EC_HOST_EVENT_PD_MCU = 22,
290
291         /* EC desires to change state of host-controlled USB mux */
292         EC_HOST_EVENT_USB_MUX = 28,
293
294         /* EC RTC event occurred */
295         EC_HOST_EVENT_RTC = 26,
296
297         /*
298          * The high bit of the event mask is not used as a host event code.  If
299          * it reads back as set, then the entire event mask should be
300          * considered invalid by the host.  This can happen when reading the
301          * raw event status via EC_MEMMAP_HOST_EVENTS but the LPC interface is
302          * not initialized on the EC, or improperly configured on the host.
303          */
304         EC_HOST_EVENT_INVALID = 32
305 };
306 /* Host event mask */
307 #define EC_HOST_EVENT_MASK(event_code) (1UL << ((event_code) - 1))
308
309 /* Arguments at EC_LPC_ADDR_HOST_ARGS */
310 struct ec_lpc_host_args {
311         uint8_t flags;
312         uint8_t command_version;
313         uint8_t data_size;
314         /*
315          * Checksum; sum of command + flags + command_version + data_size +
316          * all params/response data bytes.
317          */
318         uint8_t checksum;
319 } __packed;
320
321 /* Flags for ec_lpc_host_args.flags */
322 /*
323  * Args are from host.  Data area at EC_LPC_ADDR_HOST_PARAM contains command
324  * params.
325  *
326  * If EC gets a command and this flag is not set, this is an old-style command.
327  * Command version is 0 and params from host are at EC_LPC_ADDR_OLD_PARAM with
328  * unknown length.  EC must respond with an old-style response (that is,
329  * withouth setting EC_HOST_ARGS_FLAG_TO_HOST).
330  */
331 #define EC_HOST_ARGS_FLAG_FROM_HOST 0x01
332 /*
333  * Args are from EC.  Data area at EC_LPC_ADDR_HOST_PARAM contains response.
334  *
335  * If EC responds to a command and this flag is not set, this is an old-style
336  * response.  Command version is 0 and response data from EC is at
337  * EC_LPC_ADDR_OLD_PARAM with unknown length.
338  */
339 #define EC_HOST_ARGS_FLAG_TO_HOST   0x02
340
341 /*****************************************************************************/
342 /*
343  * Byte codes returned by EC over SPI interface.
344  *
345  * These can be used by the AP to debug the EC interface, and to determine
346  * when the EC is not in a state where it will ever get around to responding
347  * to the AP.
348  *
349  * Example of sequence of bytes read from EC for a current good transfer:
350  *   1. -                  - AP asserts chip select (CS#)
351  *   2. EC_SPI_OLD_READY   - AP sends first byte(s) of request
352  *   3. -                  - EC starts handling CS# interrupt
353  *   4. EC_SPI_RECEIVING   - AP sends remaining byte(s) of request
354  *   5. EC_SPI_PROCESSING  - EC starts processing request; AP is clocking in
355  *                           bytes looking for EC_SPI_FRAME_START
356  *   6. -                  - EC finishes processing and sets up response
357  *   7. EC_SPI_FRAME_START - AP reads frame byte
358  *   8. (response packet)  - AP reads response packet
359  *   9. EC_SPI_PAST_END    - Any additional bytes read by AP
360  *   10 -                  - AP deasserts chip select
361  *   11 -                  - EC processes CS# interrupt and sets up DMA for
362  *                           next request
363  *
364  * If the AP is waiting for EC_SPI_FRAME_START and sees any value other than
365  * the following byte values:
366  *   EC_SPI_OLD_READY
367  *   EC_SPI_RX_READY
368  *   EC_SPI_RECEIVING
369  *   EC_SPI_PROCESSING
370  *
371  * Then the EC found an error in the request, or was not ready for the request
372  * and lost data.  The AP should give up waiting for EC_SPI_FRAME_START,
373  * because the EC is unable to tell when the AP is done sending its request.
374  */
375
376 /*
377  * Framing byte which precedes a response packet from the EC.  After sending a
378  * request, the AP will clock in bytes until it sees the framing byte, then
379  * clock in the response packet.
380  */
381 #define EC_SPI_FRAME_START    0xec
382
383 /*
384  * Padding bytes which are clocked out after the end of a response packet.
385  */
386 #define EC_SPI_PAST_END       0xed
387
388 /*
389  * EC is ready to receive, and has ignored the byte sent by the AP.  EC expects
390  * that the AP will send a valid packet header (starting with
391  * EC_COMMAND_PROTOCOL_3) in the next 32 bytes.
392  */
393 #define EC_SPI_RX_READY       0xf8
394
395 /*
396  * EC has started receiving the request from the AP, but hasn't started
397  * processing it yet.
398  */
399 #define EC_SPI_RECEIVING      0xf9
400
401 /* EC has received the entire request from the AP and is processing it. */
402 #define EC_SPI_PROCESSING     0xfa
403
404 /*
405  * EC received bad data from the AP, such as a packet header with an invalid
406  * length.  EC will ignore all data until chip select deasserts.
407  */
408 #define EC_SPI_RX_BAD_DATA    0xfb
409
410 /*
411  * EC received data from the AP before it was ready.  That is, the AP asserted
412  * chip select and started clocking data before the EC was ready to receive it.
413  * EC will ignore all data until chip select deasserts.
414  */
415 #define EC_SPI_NOT_READY      0xfc
416
417 /*
418  * EC was ready to receive a request from the AP.  EC has treated the byte sent
419  * by the AP as part of a request packet, or (for old-style ECs) is processing
420  * a fully received packet but is not ready to respond yet.
421  */
422 #define EC_SPI_OLD_READY      0xfd
423
424 /*****************************************************************************/
425
426 /*
427  * Protocol version 2 for I2C and SPI send a request this way:
428  *
429  *      0       EC_CMD_VERSION0 + (command version)
430  *      1       Command number
431  *      2       Length of params = N
432  *      3..N+2  Params, if any
433  *      N+3     8-bit checksum of bytes 0..N+2
434  *
435  * The corresponding response is:
436  *
437  *      0       Result code (EC_RES_*)
438  *      1       Length of params = M
439  *      2..M+1  Params, if any
440  *      M+2     8-bit checksum of bytes 0..M+1
441  */
442 #define EC_PROTO2_REQUEST_HEADER_BYTES 3
443 #define EC_PROTO2_REQUEST_TRAILER_BYTES 1
444 #define EC_PROTO2_REQUEST_OVERHEAD (EC_PROTO2_REQUEST_HEADER_BYTES +    \
445                                     EC_PROTO2_REQUEST_TRAILER_BYTES)
446
447 #define EC_PROTO2_RESPONSE_HEADER_BYTES 2
448 #define EC_PROTO2_RESPONSE_TRAILER_BYTES 1
449 #define EC_PROTO2_RESPONSE_OVERHEAD (EC_PROTO2_RESPONSE_HEADER_BYTES +  \
450                                      EC_PROTO2_RESPONSE_TRAILER_BYTES)
451
452 /* Parameter length was limited by the LPC interface */
453 #define EC_PROTO2_MAX_PARAM_SIZE 0xfc
454
455 /* Maximum request and response packet sizes for protocol version 2 */
456 #define EC_PROTO2_MAX_REQUEST_SIZE (EC_PROTO2_REQUEST_OVERHEAD +        \
457                                     EC_PROTO2_MAX_PARAM_SIZE)
458 #define EC_PROTO2_MAX_RESPONSE_SIZE (EC_PROTO2_RESPONSE_OVERHEAD +      \
459                                      EC_PROTO2_MAX_PARAM_SIZE)
460
461 /*****************************************************************************/
462
463 /*
464  * Value written to legacy command port / prefix byte to indicate protocol
465  * 3+ structs are being used.  Usage is bus-dependent.
466  */
467 #define EC_COMMAND_PROTOCOL_3 0xda
468
469 #define EC_HOST_REQUEST_VERSION 3
470
471 /* Version 3 request from host */
472 struct ec_host_request {
473         /* Struct version (=3)
474          *
475          * EC will return EC_RES_INVALID_HEADER if it receives a header with a
476          * version it doesn't know how to parse.
477          */
478         uint8_t struct_version;
479
480         /*
481          * Checksum of request and data; sum of all bytes including checksum
482          * should total to 0.
483          */
484         uint8_t checksum;
485
486         /* Command code */
487         uint16_t command;
488
489         /* Command version */
490         uint8_t command_version;
491
492         /* Unused byte in current protocol version; set to 0 */
493         uint8_t reserved;
494
495         /* Length of data which follows this header */
496         uint16_t data_len;
497 } __packed;
498
499 #define EC_HOST_RESPONSE_VERSION 3
500
501 /* Version 3 response from EC */
502 struct ec_host_response {
503         /* Struct version (=3) */
504         uint8_t struct_version;
505
506         /*
507          * Checksum of response and data; sum of all bytes including checksum
508          * should total to 0.
509          */
510         uint8_t checksum;
511
512         /* Result code (EC_RES_*) */
513         uint16_t result;
514
515         /* Length of data which follows this header */
516         uint16_t data_len;
517
518         /* Unused bytes in current protocol version; set to 0 */
519         uint16_t reserved;
520 } __packed;
521
522 /*****************************************************************************/
523 /*
524  * Notes on commands:
525  *
526  * Each command is an 16-bit command value.  Commands which take params or
527  * return response data specify structs for that data.  If no struct is
528  * specified, the command does not input or output data, respectively.
529  * Parameter/response length is implicit in the structs.  Some underlying
530  * communication protocols (I2C, SPI) may add length or checksum headers, but
531  * those are implementation-dependent and not defined here.
532  */
533
534 /*****************************************************************************/
535 /* General / test commands */
536
537 /*
538  * Get protocol version, used to deal with non-backward compatible protocol
539  * changes.
540  */
541 #define EC_CMD_PROTO_VERSION 0x00
542
543 struct ec_response_proto_version {
544         uint32_t version;
545 } __packed;
546
547 /*
548  * Hello.  This is a simple command to test the EC is responsive to
549  * commands.
550  */
551 #define EC_CMD_HELLO 0x01
552
553 struct ec_params_hello {
554         uint32_t in_data;  /* Pass anything here */
555 } __packed;
556
557 struct ec_response_hello {
558         uint32_t out_data;  /* Output will be in_data + 0x01020304 */
559 } __packed;
560
561 /* Get version number */
562 #define EC_CMD_GET_VERSION 0x02
563
564 enum ec_current_image {
565         EC_IMAGE_UNKNOWN = 0,
566         EC_IMAGE_RO,
567         EC_IMAGE_RW
568 };
569
570 struct ec_response_get_version {
571         /* Null-terminated version strings for RO, RW */
572         char version_string_ro[32];
573         char version_string_rw[32];
574         char reserved[32];       /* Was previously RW-B string */
575         uint32_t current_image;  /* One of ec_current_image */
576 } __packed;
577
578 /* Read test */
579 #define EC_CMD_READ_TEST 0x03
580
581 struct ec_params_read_test {
582         uint32_t offset;   /* Starting value for read buffer */
583         uint32_t size;     /* Size to read in bytes */
584 } __packed;
585
586 struct ec_response_read_test {
587         uint32_t data[32];
588 } __packed;
589
590 /*
591  * Get build information
592  *
593  * Response is null-terminated string.
594  */
595 #define EC_CMD_GET_BUILD_INFO 0x04
596
597 /* Get chip info */
598 #define EC_CMD_GET_CHIP_INFO 0x05
599
600 struct ec_response_get_chip_info {
601         /* Null-terminated strings */
602         char vendor[32];
603         char name[32];
604         char revision[32];  /* Mask version */
605 } __packed;
606
607 /* Get board HW version */
608 #define EC_CMD_GET_BOARD_VERSION 0x06
609
610 struct ec_response_board_version {
611         uint16_t board_version;  /* A monotonously incrementing number. */
612 } __packed;
613
614 /*
615  * Read memory-mapped data.
616  *
617  * This is an alternate interface to memory-mapped data for bus protocols
618  * which don't support direct-mapped memory - I2C, SPI, etc.
619  *
620  * Response is params.size bytes of data.
621  */
622 #define EC_CMD_READ_MEMMAP 0x07
623
624 struct ec_params_read_memmap {
625         uint8_t offset;   /* Offset in memmap (EC_MEMMAP_*) */
626         uint8_t size;     /* Size to read in bytes */
627 } __packed;
628
629 /* Read versions supported for a command */
630 #define EC_CMD_GET_CMD_VERSIONS 0x08
631
632 struct ec_params_get_cmd_versions {
633         uint8_t cmd;      /* Command to check */
634 } __packed;
635
636 struct ec_params_get_cmd_versions_v1 {
637         uint16_t cmd;     /* Command to check */
638 } __packed;
639
640 struct ec_response_get_cmd_versions {
641         /*
642          * Mask of supported versions; use EC_VER_MASK() to compare with a
643          * desired version.
644          */
645         uint32_t version_mask;
646 } __packed;
647
648 /*
649  * Check EC communcations status (busy). This is needed on i2c/spi but not
650  * on lpc since it has its own out-of-band busy indicator.
651  *
652  * lpc must read the status from the command register. Attempting this on
653  * lpc will overwrite the args/parameter space and corrupt its data.
654  */
655 #define EC_CMD_GET_COMMS_STATUS         0x09
656
657 /* Avoid using ec_status which is for return values */
658 enum ec_comms_status {
659         EC_COMMS_STATUS_PROCESSING      = 1 << 0,       /* Processing cmd */
660 };
661
662 struct ec_response_get_comms_status {
663         uint32_t flags;         /* Mask of enum ec_comms_status */
664 } __packed;
665
666 /* Fake a variety of responses, purely for testing purposes. */
667 #define EC_CMD_TEST_PROTOCOL            0x0a
668
669 /* Tell the EC what to send back to us. */
670 struct ec_params_test_protocol {
671         uint32_t ec_result;
672         uint32_t ret_len;
673         uint8_t buf[32];
674 } __packed;
675
676 /* Here it comes... */
677 struct ec_response_test_protocol {
678         uint8_t buf[32];
679 } __packed;
680
681 /* Get prococol information */
682 #define EC_CMD_GET_PROTOCOL_INFO        0x0b
683
684 /* Flags for ec_response_get_protocol_info.flags */
685 /* EC_RES_IN_PROGRESS may be returned if a command is slow */
686 #define EC_PROTOCOL_INFO_IN_PROGRESS_SUPPORTED (1 << 0)
687
688 struct ec_response_get_protocol_info {
689         /* Fields which exist if at least protocol version 3 supported */
690
691         /* Bitmask of protocol versions supported (1 << n means version n)*/
692         uint32_t protocol_versions;
693
694         /* Maximum request packet size, in bytes */
695         uint16_t max_request_packet_size;
696
697         /* Maximum response packet size, in bytes */
698         uint16_t max_response_packet_size;
699
700         /* Flags; see EC_PROTOCOL_INFO_* */
701         uint32_t flags;
702 } __packed;
703
704
705 /*****************************************************************************/
706 /* Get/Set miscellaneous values */
707
708 /* The upper byte of .flags tells what to do (nothing means "get") */
709 #define EC_GSV_SET        0x80000000
710
711 /* The lower three bytes of .flags identifies the parameter, if that has
712    meaning for an individual command. */
713 #define EC_GSV_PARAM_MASK 0x00ffffff
714
715 struct ec_params_get_set_value {
716         uint32_t flags;
717         uint32_t value;
718 } __packed;
719
720 struct ec_response_get_set_value {
721         uint32_t flags;
722         uint32_t value;
723 } __packed;
724
725 /* More than one command can use these structs to get/set paramters. */
726 #define EC_CMD_GSV_PAUSE_IN_S5  0x0c
727
728 /*****************************************************************************/
729 /* List the features supported by the firmware */
730 #define EC_CMD_GET_FEATURES  0x0d
731
732 /* Supported features */
733 enum ec_feature_code {
734         /*
735          * This image contains a limited set of features. Another image
736          * in RW partition may support more features.
737          */
738         EC_FEATURE_LIMITED = 0,
739         /*
740          * Commands for probing/reading/writing/erasing the flash in the
741          * EC are present.
742          */
743         EC_FEATURE_FLASH = 1,
744         /*
745          * Can control the fan speed directly.
746          */
747         EC_FEATURE_PWM_FAN = 2,
748         /*
749          * Can control the intensity of the keyboard backlight.
750          */
751         EC_FEATURE_PWM_KEYB = 3,
752         /*
753          * Support Google lightbar, introduced on Pixel.
754          */
755         EC_FEATURE_LIGHTBAR = 4,
756         /* Control of LEDs  */
757         EC_FEATURE_LED = 5,
758         /* Exposes an interface to control gyro and sensors.
759          * The host goes through the EC to access these sensors.
760          * In addition, the EC may provide composite sensors, like lid angle.
761          */
762         EC_FEATURE_MOTION_SENSE = 6,
763         /* The keyboard is controlled by the EC */
764         EC_FEATURE_KEYB = 7,
765         /* The AP can use part of the EC flash as persistent storage. */
766         EC_FEATURE_PSTORE = 8,
767         /* The EC monitors BIOS port 80h, and can return POST codes. */
768         EC_FEATURE_PORT80 = 9,
769         /*
770          * Thermal management: include TMP specific commands.
771          * Higher level than direct fan control.
772          */
773         EC_FEATURE_THERMAL = 10,
774         /* Can switch the screen backlight on/off */
775         EC_FEATURE_BKLIGHT_SWITCH = 11,
776         /* Can switch the wifi module on/off */
777         EC_FEATURE_WIFI_SWITCH = 12,
778         /* Monitor host events, through for example SMI or SCI */
779         EC_FEATURE_HOST_EVENTS = 13,
780         /* The EC exposes GPIO commands to control/monitor connected devices. */
781         EC_FEATURE_GPIO = 14,
782         /* The EC can send i2c messages to downstream devices. */
783         EC_FEATURE_I2C = 15,
784         /* Command to control charger are included */
785         EC_FEATURE_CHARGER = 16,
786         /* Simple battery support. */
787         EC_FEATURE_BATTERY = 17,
788         /*
789          * Support Smart battery protocol
790          * (Common Smart Battery System Interface Specification)
791          */
792         EC_FEATURE_SMART_BATTERY = 18,
793         /* EC can dectect when the host hangs. */
794         EC_FEATURE_HANG_DETECT = 19,
795         /* Report power information, for pit only */
796         EC_FEATURE_PMU = 20,
797         /* Another Cros EC device is present downstream of this one */
798         EC_FEATURE_SUB_MCU = 21,
799         /* Support USB Power delivery (PD) commands */
800         EC_FEATURE_USB_PD = 22,
801         /* Control USB multiplexer, for audio through USB port for instance. */
802         EC_FEATURE_USB_MUX = 23,
803         /* Motion Sensor code has an internal software FIFO */
804         EC_FEATURE_MOTION_SENSE_FIFO = 24,
805         /* EC has RTC feature that can be controlled by host commands */
806         EC_FEATURE_RTC = 27,
807 };
808
809 #define EC_FEATURE_MASK_0(event_code) (1UL << (event_code % 32))
810 #define EC_FEATURE_MASK_1(event_code) (1UL << (event_code - 32))
811 struct ec_response_get_features {
812         uint32_t flags[2];
813 } __packed;
814
815 /*****************************************************************************/
816 /* Flash commands */
817
818 /* Get flash info */
819 #define EC_CMD_FLASH_INFO 0x10
820
821 /* Version 0 returns these fields */
822 struct ec_response_flash_info {
823         /* Usable flash size, in bytes */
824         uint32_t flash_size;
825         /*
826          * Write block size.  Write offset and size must be a multiple
827          * of this.
828          */
829         uint32_t write_block_size;
830         /*
831          * Erase block size.  Erase offset and size must be a multiple
832          * of this.
833          */
834         uint32_t erase_block_size;
835         /*
836          * Protection block size.  Protection offset and size must be a
837          * multiple of this.
838          */
839         uint32_t protect_block_size;
840 } __packed;
841
842 /* Flags for version 1+ flash info command */
843 /* EC flash erases bits to 0 instead of 1 */
844 #define EC_FLASH_INFO_ERASE_TO_0 (1 << 0)
845
846 /*
847  * Version 1 returns the same initial fields as version 0, with additional
848  * fields following.
849  *
850  * gcc anonymous structs don't seem to get along with the __packed directive;
851  * if they did we'd define the version 0 struct as a sub-struct of this one.
852  */
853 struct ec_response_flash_info_1 {
854         /* Version 0 fields; see above for description */
855         uint32_t flash_size;
856         uint32_t write_block_size;
857         uint32_t erase_block_size;
858         uint32_t protect_block_size;
859
860         /* Version 1 adds these fields: */
861         /*
862          * Ideal write size in bytes.  Writes will be fastest if size is
863          * exactly this and offset is a multiple of this.  For example, an EC
864          * may have a write buffer which can do half-page operations if data is
865          * aligned, and a slower word-at-a-time write mode.
866          */
867         uint32_t write_ideal_size;
868
869         /* Flags; see EC_FLASH_INFO_* */
870         uint32_t flags;
871 } __packed;
872
873 /*
874  * Read flash
875  *
876  * Response is params.size bytes of data.
877  */
878 #define EC_CMD_FLASH_READ 0x11
879
880 struct ec_params_flash_read {
881         uint32_t offset;   /* Byte offset to read */
882         uint32_t size;     /* Size to read in bytes */
883 } __packed;
884
885 /* Write flash */
886 #define EC_CMD_FLASH_WRITE 0x12
887 #define EC_VER_FLASH_WRITE 1
888
889 /* Version 0 of the flash command supported only 64 bytes of data */
890 #define EC_FLASH_WRITE_VER0_SIZE 64
891
892 struct ec_params_flash_write {
893         uint32_t offset;   /* Byte offset to write */
894         uint32_t size;     /* Size to write in bytes */
895         /* Followed by data to write */
896 } __packed;
897
898 /* Erase flash */
899 #define EC_CMD_FLASH_ERASE 0x13
900
901 struct ec_params_flash_erase {
902         uint32_t offset;   /* Byte offset to erase */
903         uint32_t size;     /* Size to erase in bytes */
904 } __packed;
905
906 /*
907  * Get/set flash protection.
908  *
909  * If mask!=0, sets/clear the requested bits of flags.  Depending on the
910  * firmware write protect GPIO, not all flags will take effect immediately;
911  * some flags require a subsequent hard reset to take effect.  Check the
912  * returned flags bits to see what actually happened.
913  *
914  * If mask=0, simply returns the current flags state.
915  */
916 #define EC_CMD_FLASH_PROTECT 0x15
917 #define EC_VER_FLASH_PROTECT 1  /* Command version 1 */
918
919 /* Flags for flash protection */
920 /* RO flash code protected when the EC boots */
921 #define EC_FLASH_PROTECT_RO_AT_BOOT         (1 << 0)
922 /*
923  * RO flash code protected now.  If this bit is set, at-boot status cannot
924  * be changed.
925  */
926 #define EC_FLASH_PROTECT_RO_NOW             (1 << 1)
927 /* Entire flash code protected now, until reboot. */
928 #define EC_FLASH_PROTECT_ALL_NOW            (1 << 2)
929 /* Flash write protect GPIO is asserted now */
930 #define EC_FLASH_PROTECT_GPIO_ASSERTED      (1 << 3)
931 /* Error - at least one bank of flash is stuck locked, and cannot be unlocked */
932 #define EC_FLASH_PROTECT_ERROR_STUCK        (1 << 4)
933 /*
934  * Error - flash protection is in inconsistent state.  At least one bank of
935  * flash which should be protected is not protected.  Usually fixed by
936  * re-requesting the desired flags, or by a hard reset if that fails.
937  */
938 #define EC_FLASH_PROTECT_ERROR_INCONSISTENT (1 << 5)
939 /* Entile flash code protected when the EC boots */
940 #define EC_FLASH_PROTECT_ALL_AT_BOOT        (1 << 6)
941
942 struct ec_params_flash_protect {
943         uint32_t mask;   /* Bits in flags to apply */
944         uint32_t flags;  /* New flags to apply */
945 } __packed;
946
947 struct ec_response_flash_protect {
948         /* Current value of flash protect flags */
949         uint32_t flags;
950         /*
951          * Flags which are valid on this platform.  This allows the caller
952          * to distinguish between flags which aren't set vs. flags which can't
953          * be set on this platform.
954          */
955         uint32_t valid_flags;
956         /* Flags which can be changed given the current protection state */
957         uint32_t writable_flags;
958 } __packed;
959
960 /*
961  * Note: commands 0x14 - 0x19 version 0 were old commands to get/set flash
962  * write protect.  These commands may be reused with version > 0.
963  */
964
965 /* Get the region offset/size */
966 #define EC_CMD_FLASH_REGION_INFO 0x16
967 #define EC_VER_FLASH_REGION_INFO 1
968
969 enum ec_flash_region {
970         /* Region which holds read-only EC image */
971         EC_FLASH_REGION_RO = 0,
972         /* Region which holds rewritable EC image */
973         EC_FLASH_REGION_RW,
974         /*
975          * Region which should be write-protected in the factory (a superset of
976          * EC_FLASH_REGION_RO)
977          */
978         EC_FLASH_REGION_WP_RO,
979         /* Number of regions */
980         EC_FLASH_REGION_COUNT,
981 };
982
983 struct ec_params_flash_region_info {
984         uint32_t region;  /* enum ec_flash_region */
985 } __packed;
986
987 struct ec_response_flash_region_info {
988         uint32_t offset;
989         uint32_t size;
990 } __packed;
991
992 /* Read/write VbNvContext */
993 #define EC_CMD_VBNV_CONTEXT 0x17
994 #define EC_VER_VBNV_CONTEXT 1
995 #define EC_VBNV_BLOCK_SIZE 16
996
997 enum ec_vbnvcontext_op {
998         EC_VBNV_CONTEXT_OP_READ,
999         EC_VBNV_CONTEXT_OP_WRITE,
1000 };
1001
1002 struct ec_params_vbnvcontext {
1003         uint32_t op;
1004         uint8_t block[EC_VBNV_BLOCK_SIZE];
1005 } __packed;
1006
1007 struct ec_response_vbnvcontext {
1008         uint8_t block[EC_VBNV_BLOCK_SIZE];
1009 } __packed;
1010
1011 /*****************************************************************************/
1012 /* PWM commands */
1013
1014 /* Get fan target RPM */
1015 #define EC_CMD_PWM_GET_FAN_TARGET_RPM 0x20
1016
1017 struct ec_response_pwm_get_fan_rpm {
1018         uint32_t rpm;
1019 } __packed;
1020
1021 /* Set target fan RPM */
1022 #define EC_CMD_PWM_SET_FAN_TARGET_RPM 0x21
1023
1024 struct ec_params_pwm_set_fan_target_rpm {
1025         uint32_t rpm;
1026 } __packed;
1027
1028 /* Get keyboard backlight */
1029 #define EC_CMD_PWM_GET_KEYBOARD_BACKLIGHT 0x22
1030
1031 struct ec_response_pwm_get_keyboard_backlight {
1032         uint8_t percent;
1033         uint8_t enabled;
1034 } __packed;
1035
1036 /* Set keyboard backlight */
1037 #define EC_CMD_PWM_SET_KEYBOARD_BACKLIGHT 0x23
1038
1039 struct ec_params_pwm_set_keyboard_backlight {
1040         uint8_t percent;
1041 } __packed;
1042
1043 /* Set target fan PWM duty cycle */
1044 #define EC_CMD_PWM_SET_FAN_DUTY 0x24
1045
1046 struct ec_params_pwm_set_fan_duty {
1047         uint32_t percent;
1048 } __packed;
1049
1050 #define EC_CMD_PWM_SET_DUTY 0x25
1051 /* 16 bit duty cycle, 0xffff = 100% */
1052 #define EC_PWM_MAX_DUTY 0xffff
1053
1054 enum ec_pwm_type {
1055         /* All types, indexed by board-specific enum pwm_channel */
1056         EC_PWM_TYPE_GENERIC = 0,
1057         /* Keyboard backlight */
1058         EC_PWM_TYPE_KB_LIGHT,
1059         /* Display backlight */
1060         EC_PWM_TYPE_DISPLAY_LIGHT,
1061         EC_PWM_TYPE_COUNT,
1062 };
1063
1064 struct ec_params_pwm_set_duty {
1065         uint16_t duty;     /* Duty cycle, EC_PWM_MAX_DUTY = 100% */
1066         uint8_t pwm_type;  /* ec_pwm_type */
1067         uint8_t index;     /* Type-specific index, or 0 if unique */
1068 } __packed;
1069
1070 #define EC_CMD_PWM_GET_DUTY 0x26
1071
1072 struct ec_params_pwm_get_duty {
1073         uint8_t pwm_type;  /* ec_pwm_type */
1074         uint8_t index;     /* Type-specific index, or 0 if unique */
1075 } __packed;
1076
1077 struct ec_response_pwm_get_duty {
1078         uint16_t duty;     /* Duty cycle, EC_PWM_MAX_DUTY = 100% */
1079 } __packed;
1080
1081 /*****************************************************************************/
1082 /*
1083  * Lightbar commands. This looks worse than it is. Since we only use one HOST
1084  * command to say "talk to the lightbar", we put the "and tell it to do X" part
1085  * into a subcommand. We'll make separate structs for subcommands with
1086  * different input args, so that we know how much to expect.
1087  */
1088 #define EC_CMD_LIGHTBAR_CMD 0x28
1089
1090 struct rgb_s {
1091         uint8_t r, g, b;
1092 };
1093
1094 #define LB_BATTERY_LEVELS 4
1095 /* List of tweakable parameters. NOTE: It's __packed so it can be sent in a
1096  * host command, but the alignment is the same regardless. Keep it that way.
1097  */
1098 struct lightbar_params_v0 {
1099         /* Timing */
1100         int32_t google_ramp_up;
1101         int32_t google_ramp_down;
1102         int32_t s3s0_ramp_up;
1103         int32_t s0_tick_delay[2];               /* AC=0/1 */
1104         int32_t s0a_tick_delay[2];              /* AC=0/1 */
1105         int32_t s0s3_ramp_down;
1106         int32_t s3_sleep_for;
1107         int32_t s3_ramp_up;
1108         int32_t s3_ramp_down;
1109
1110         /* Oscillation */
1111         uint8_t new_s0;
1112         uint8_t osc_min[2];                     /* AC=0/1 */
1113         uint8_t osc_max[2];                     /* AC=0/1 */
1114         uint8_t w_ofs[2];                       /* AC=0/1 */
1115
1116         /* Brightness limits based on the backlight and AC. */
1117         uint8_t bright_bl_off_fixed[2];         /* AC=0/1 */
1118         uint8_t bright_bl_on_min[2];            /* AC=0/1 */
1119         uint8_t bright_bl_on_max[2];            /* AC=0/1 */
1120
1121         /* Battery level thresholds */
1122         uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
1123
1124         /* Map [AC][battery_level] to color index */
1125         uint8_t s0_idx[2][LB_BATTERY_LEVELS];   /* AP is running */
1126         uint8_t s3_idx[2][LB_BATTERY_LEVELS];   /* AP is sleeping */
1127
1128         /* Color palette */
1129         struct rgb_s color[8];                  /* 0-3 are Google colors */
1130 } __packed;
1131
1132 struct lightbar_params_v1 {
1133         /* Timing */
1134         int32_t google_ramp_up;
1135         int32_t google_ramp_down;
1136         int32_t s3s0_ramp_up;
1137         int32_t s0_tick_delay[2];               /* AC=0/1 */
1138         int32_t s0a_tick_delay[2];              /* AC=0/1 */
1139         int32_t s0s3_ramp_down;
1140         int32_t s3_sleep_for;
1141         int32_t s3_ramp_up;
1142         int32_t s3_ramp_down;
1143         int32_t tap_tick_delay;
1144         int32_t tap_display_time;
1145
1146         /* Tap-for-battery params */
1147         uint8_t tap_pct_red;
1148         uint8_t tap_pct_green;
1149         uint8_t tap_seg_min_on;
1150         uint8_t tap_seg_max_on;
1151         uint8_t tap_seg_osc;
1152         uint8_t tap_idx[3];
1153
1154         /* Oscillation */
1155         uint8_t osc_min[2];                     /* AC=0/1 */
1156         uint8_t osc_max[2];                     /* AC=0/1 */
1157         uint8_t w_ofs[2];                       /* AC=0/1 */
1158
1159         /* Brightness limits based on the backlight and AC. */
1160         uint8_t bright_bl_off_fixed[2];         /* AC=0/1 */
1161         uint8_t bright_bl_on_min[2];            /* AC=0/1 */
1162         uint8_t bright_bl_on_max[2];            /* AC=0/1 */
1163
1164         /* Battery level thresholds */
1165         uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
1166
1167         /* Map [AC][battery_level] to color index */
1168         uint8_t s0_idx[2][LB_BATTERY_LEVELS];   /* AP is running */
1169         uint8_t s3_idx[2][LB_BATTERY_LEVELS];   /* AP is sleeping */
1170
1171         /* Color palette */
1172         struct rgb_s color[8];                  /* 0-3 are Google colors */
1173 } __packed;
1174
1175 /* Lightbar program */
1176 #define EC_LB_PROG_LEN 192
1177 struct lightbar_program {
1178         uint8_t size;
1179         uint8_t data[EC_LB_PROG_LEN];
1180 };
1181
1182 struct ec_params_lightbar {
1183         uint8_t cmd;                  /* Command (see enum lightbar_command) */
1184         union {
1185                 struct {
1186                         /* no args */
1187                 } dump, off, on, init, get_seq, get_params_v0, get_params_v1,
1188                         version, get_brightness, get_demo, suspend, resume;
1189
1190                 struct {
1191                         uint8_t num;
1192                 } set_brightness, seq, demo;
1193
1194                 struct {
1195                         uint8_t ctrl, reg, value;
1196                 } reg;
1197
1198                 struct {
1199                         uint8_t led, red, green, blue;
1200                 } set_rgb;
1201
1202                 struct {
1203                         uint8_t led;
1204                 } get_rgb;
1205
1206                 struct {
1207                         uint8_t enable;
1208                 } manual_suspend_ctrl;
1209
1210                 struct lightbar_params_v0 set_params_v0;
1211                 struct lightbar_params_v1 set_params_v1;
1212                 struct lightbar_program set_program;
1213         };
1214 } __packed;
1215
1216 struct ec_response_lightbar {
1217         union {
1218                 struct {
1219                         struct {
1220                                 uint8_t reg;
1221                                 uint8_t ic0;
1222                                 uint8_t ic1;
1223                         } vals[23];
1224                 } dump;
1225
1226                 struct  {
1227                         uint8_t num;
1228                 } get_seq, get_brightness, get_demo;
1229
1230                 struct lightbar_params_v0 get_params_v0;
1231                 struct lightbar_params_v1 get_params_v1;
1232
1233                 struct {
1234                         uint32_t num;
1235                         uint32_t flags;
1236                 } version;
1237
1238                 struct {
1239                         uint8_t red, green, blue;
1240                 } get_rgb;
1241
1242                 struct {
1243                         /* no return params */
1244                 } off, on, init, set_brightness, seq, reg, set_rgb,
1245                         demo, set_params_v0, set_params_v1,
1246                         set_program, manual_suspend_ctrl, suspend, resume;
1247         };
1248 } __packed;
1249
1250 /* Lightbar commands */
1251 enum lightbar_command {
1252         LIGHTBAR_CMD_DUMP = 0,
1253         LIGHTBAR_CMD_OFF = 1,
1254         LIGHTBAR_CMD_ON = 2,
1255         LIGHTBAR_CMD_INIT = 3,
1256         LIGHTBAR_CMD_SET_BRIGHTNESS = 4,
1257         LIGHTBAR_CMD_SEQ = 5,
1258         LIGHTBAR_CMD_REG = 6,
1259         LIGHTBAR_CMD_SET_RGB = 7,
1260         LIGHTBAR_CMD_GET_SEQ = 8,
1261         LIGHTBAR_CMD_DEMO = 9,
1262         LIGHTBAR_CMD_GET_PARAMS_V0 = 10,
1263         LIGHTBAR_CMD_SET_PARAMS_V0 = 11,
1264         LIGHTBAR_CMD_VERSION = 12,
1265         LIGHTBAR_CMD_GET_BRIGHTNESS = 13,
1266         LIGHTBAR_CMD_GET_RGB = 14,
1267         LIGHTBAR_CMD_GET_DEMO = 15,
1268         LIGHTBAR_CMD_GET_PARAMS_V1 = 16,
1269         LIGHTBAR_CMD_SET_PARAMS_V1 = 17,
1270         LIGHTBAR_CMD_SET_PROGRAM = 18,
1271         LIGHTBAR_CMD_MANUAL_SUSPEND_CTRL = 19,
1272         LIGHTBAR_CMD_SUSPEND = 20,
1273         LIGHTBAR_CMD_RESUME = 21,
1274         LIGHTBAR_NUM_CMDS
1275 };
1276
1277 /*****************************************************************************/
1278 /* LED control commands */
1279
1280 #define EC_CMD_LED_CONTROL 0x29
1281
1282 enum ec_led_id {
1283         /* LED to indicate battery state of charge */
1284         EC_LED_ID_BATTERY_LED = 0,
1285         /*
1286          * LED to indicate system power state (on or in suspend).
1287          * May be on power button or on C-panel.
1288          */
1289         EC_LED_ID_POWER_LED,
1290         /* LED on power adapter or its plug */
1291         EC_LED_ID_ADAPTER_LED,
1292
1293         EC_LED_ID_COUNT
1294 };
1295
1296 /* LED control flags */
1297 #define EC_LED_FLAGS_QUERY (1 << 0) /* Query LED capability only */
1298 #define EC_LED_FLAGS_AUTO  (1 << 1) /* Switch LED back to automatic control */
1299
1300 enum ec_led_colors {
1301         EC_LED_COLOR_RED = 0,
1302         EC_LED_COLOR_GREEN,
1303         EC_LED_COLOR_BLUE,
1304         EC_LED_COLOR_YELLOW,
1305         EC_LED_COLOR_WHITE,
1306
1307         EC_LED_COLOR_COUNT
1308 };
1309
1310 struct ec_params_led_control {
1311         uint8_t led_id;     /* Which LED to control */
1312         uint8_t flags;      /* Control flags */
1313
1314         uint8_t brightness[EC_LED_COLOR_COUNT];
1315 } __packed;
1316
1317 struct ec_response_led_control {
1318         /*
1319          * Available brightness value range.
1320          *
1321          * Range 0 means color channel not present.
1322          * Range 1 means on/off control.
1323          * Other values means the LED is control by PWM.
1324          */
1325         uint8_t brightness_range[EC_LED_COLOR_COUNT];
1326 } __packed;
1327
1328 /*****************************************************************************/
1329 /* Verified boot commands */
1330
1331 /*
1332  * Note: command code 0x29 version 0 was VBOOT_CMD in Link EVT; it may be
1333  * reused for other purposes with version > 0.
1334  */
1335
1336 /* Verified boot hash command */
1337 #define EC_CMD_VBOOT_HASH 0x2A
1338
1339 struct ec_params_vboot_hash {
1340         uint8_t cmd;             /* enum ec_vboot_hash_cmd */
1341         uint8_t hash_type;       /* enum ec_vboot_hash_type */
1342         uint8_t nonce_size;      /* Nonce size; may be 0 */
1343         uint8_t reserved0;       /* Reserved; set 0 */
1344         uint32_t offset;         /* Offset in flash to hash */
1345         uint32_t size;           /* Number of bytes to hash */
1346         uint8_t nonce_data[64];  /* Nonce data; ignored if nonce_size=0 */
1347 } __packed;
1348
1349 struct ec_response_vboot_hash {
1350         uint8_t status;          /* enum ec_vboot_hash_status */
1351         uint8_t hash_type;       /* enum ec_vboot_hash_type */
1352         uint8_t digest_size;     /* Size of hash digest in bytes */
1353         uint8_t reserved0;       /* Ignore; will be 0 */
1354         uint32_t offset;         /* Offset in flash which was hashed */
1355         uint32_t size;           /* Number of bytes hashed */
1356         uint8_t hash_digest[64]; /* Hash digest data */
1357 } __packed;
1358
1359 enum ec_vboot_hash_cmd {
1360         EC_VBOOT_HASH_GET = 0,       /* Get current hash status */
1361         EC_VBOOT_HASH_ABORT = 1,     /* Abort calculating current hash */
1362         EC_VBOOT_HASH_START = 2,     /* Start computing a new hash */
1363         EC_VBOOT_HASH_RECALC = 3,    /* Synchronously compute a new hash */
1364 };
1365
1366 enum ec_vboot_hash_type {
1367         EC_VBOOT_HASH_TYPE_SHA256 = 0, /* SHA-256 */
1368 };
1369
1370 enum ec_vboot_hash_status {
1371         EC_VBOOT_HASH_STATUS_NONE = 0, /* No hash (not started, or aborted) */
1372         EC_VBOOT_HASH_STATUS_DONE = 1, /* Finished computing a hash */
1373         EC_VBOOT_HASH_STATUS_BUSY = 2, /* Busy computing a hash */
1374 };
1375
1376 /*
1377  * Special values for offset for EC_VBOOT_HASH_START and EC_VBOOT_HASH_RECALC.
1378  * If one of these is specified, the EC will automatically update offset and
1379  * size to the correct values for the specified image (RO or RW).
1380  */
1381 #define EC_VBOOT_HASH_OFFSET_RO 0xfffffffe
1382 #define EC_VBOOT_HASH_OFFSET_RW 0xfffffffd
1383
1384 /*****************************************************************************/
1385 /*
1386  * Motion sense commands. We'll make separate structs for sub-commands with
1387  * different input args, so that we know how much to expect.
1388  */
1389 #define EC_CMD_MOTION_SENSE_CMD 0x2B
1390
1391 /* Motion sense commands */
1392 enum motionsense_command {
1393         /*
1394          * Dump command returns all motion sensor data including motion sense
1395          * module flags and individual sensor flags.
1396          */
1397         MOTIONSENSE_CMD_DUMP = 0,
1398
1399         /*
1400          * Info command returns data describing the details of a given sensor,
1401          * including enum motionsensor_type, enum motionsensor_location, and
1402          * enum motionsensor_chip.
1403          */
1404         MOTIONSENSE_CMD_INFO = 1,
1405
1406         /*
1407          * EC Rate command is a setter/getter command for the EC sampling rate
1408          * of all motion sensors in milliseconds.
1409          */
1410         MOTIONSENSE_CMD_EC_RATE = 2,
1411
1412         /*
1413          * Sensor ODR command is a setter/getter command for the output data
1414          * rate of a specific motion sensor in millihertz.
1415          */
1416         MOTIONSENSE_CMD_SENSOR_ODR = 3,
1417
1418         /*
1419          * Sensor range command is a setter/getter command for the range of
1420          * a specified motion sensor in +/-G's or +/- deg/s.
1421          */
1422         MOTIONSENSE_CMD_SENSOR_RANGE = 4,
1423
1424         /*
1425          * Setter/getter command for the keyboard wake angle. When the lid
1426          * angle is greater than this value, keyboard wake is disabled in S3,
1427          * and when the lid angle goes less than this value, keyboard wake is
1428          * enabled. Note, the lid angle measurement is an approximate,
1429          * un-calibrated value, hence the wake angle isn't exact.
1430          */
1431         MOTIONSENSE_CMD_KB_WAKE_ANGLE = 5,
1432
1433         /*
1434          * Returns a single sensor data.
1435          */
1436         MOTIONSENSE_CMD_DATA = 6,
1437
1438         /*
1439          * Perform low level calibration.. On sensors that support it, ask to
1440          * do offset calibration.
1441          */
1442         MOTIONSENSE_CMD_PERFORM_CALIB = 10,
1443
1444         /*
1445          * Sensor Offset command is a setter/getter command for the offset used
1446          * for calibration. The offsets can be calculated by the host, or via
1447          * PERFORM_CALIB command.
1448          */
1449         MOTIONSENSE_CMD_SENSOR_OFFSET = 11,
1450
1451         /* Number of motionsense sub-commands. */
1452         MOTIONSENSE_NUM_CMDS
1453 };
1454
1455 enum motionsensor_id {
1456         EC_MOTION_SENSOR_ACCEL_BASE = 0,
1457         EC_MOTION_SENSOR_ACCEL_LID = 1,
1458         EC_MOTION_SENSOR_GYRO = 2,
1459
1460         /*
1461          * Note, if more sensors are added and this count changes, the padding
1462          * in ec_response_motion_sense dump command must be modified.
1463          */
1464         EC_MOTION_SENSOR_COUNT = 3
1465 };
1466
1467 /* List of motion sensor types. */
1468 enum motionsensor_type {
1469         MOTIONSENSE_TYPE_ACCEL = 0,
1470         MOTIONSENSE_TYPE_GYRO = 1,
1471         MOTIONSENSE_TYPE_MAG = 2,
1472         MOTIONSENSE_TYPE_PROX = 3,
1473         MOTIONSENSE_TYPE_LIGHT = 4,
1474         MOTIONSENSE_TYPE_ACTIVITY = 5,
1475         MOTIONSENSE_TYPE_BARO = 6,
1476         MOTIONSENSE_TYPE_MAX,
1477 };
1478
1479 /* List of motion sensor locations. */
1480 enum motionsensor_location {
1481         MOTIONSENSE_LOC_BASE = 0,
1482         MOTIONSENSE_LOC_LID = 1,
1483         MOTIONSENSE_LOC_MAX,
1484 };
1485
1486 /* List of motion sensor chips. */
1487 enum motionsensor_chip {
1488         MOTIONSENSE_CHIP_KXCJ9 = 0,
1489 };
1490
1491 /* Module flag masks used for the dump sub-command. */
1492 #define MOTIONSENSE_MODULE_FLAG_ACTIVE (1<<0)
1493
1494 /* Sensor flag masks used for the dump sub-command. */
1495 #define MOTIONSENSE_SENSOR_FLAG_PRESENT (1<<0)
1496
1497 /*
1498  * Send this value for the data element to only perform a read. If you
1499  * send any other value, the EC will interpret it as data to set and will
1500  * return the actual value set.
1501  */
1502 #define EC_MOTION_SENSE_NO_VALUE -1
1503
1504 #define EC_MOTION_SENSE_INVALID_CALIB_TEMP 0x8000
1505
1506 /* Set Calibration information */
1507 #define MOTION_SENSE_SET_OFFSET 1
1508
1509 struct ec_response_motion_sensor_data {
1510         /* Flags for each sensor. */
1511         uint8_t flags;
1512         /* Sensor number the data comes from */
1513         uint8_t sensor_num;
1514         /* Each sensor is up to 3-axis. */
1515         union {
1516                 int16_t             data[3];
1517                 struct {
1518                         uint16_t    rsvd;
1519                         uint32_t    timestamp;
1520                 } __packed;
1521                 struct {
1522                         uint8_t     activity; /* motionsensor_activity */
1523                         uint8_t     state;
1524                         int16_t     add_info[2];
1525                 };
1526         };
1527 } __packed;
1528
1529 struct ec_params_motion_sense {
1530         uint8_t cmd;
1531         union {
1532                 /* Used for MOTIONSENSE_CMD_DUMP. */
1533                 struct {
1534                         /* no args */
1535                 } dump;
1536
1537                 /*
1538                  * Used for MOTIONSENSE_CMD_EC_RATE and
1539                  * MOTIONSENSE_CMD_KB_WAKE_ANGLE.
1540                  */
1541                 struct {
1542                         /* Data to set or EC_MOTION_SENSE_NO_VALUE to read. */
1543                         int16_t data;
1544                 } ec_rate, kb_wake_angle;
1545
1546                 /* Used for MOTIONSENSE_CMD_SENSOR_OFFSET */
1547                 struct {
1548                         uint8_t sensor_num;
1549
1550                         /*
1551                          * bit 0: If set (MOTION_SENSE_SET_OFFSET), set
1552                          * the calibration information in the EC.
1553                          * If unset, just retrieve calibration information.
1554                          */
1555                         uint16_t flags;
1556
1557                         /*
1558                          * Temperature at calibration, in units of 0.01 C
1559                          * 0x8000: invalid / unknown.
1560                          * 0x0: 0C
1561                          * 0x7fff: +327.67C
1562                          */
1563                         int16_t temp;
1564
1565                         /*
1566                          * Offset for calibration.
1567                          * Unit:
1568                          * Accelerometer: 1/1024 g
1569                          * Gyro:          1/1024 deg/s
1570                          * Compass:       1/16 uT
1571                          */
1572                         int16_t offset[3];
1573                 } __packed sensor_offset;
1574
1575                 /* Used for MOTIONSENSE_CMD_INFO. */
1576                 struct {
1577                         uint8_t sensor_num;
1578                 } info;
1579
1580                 /*
1581                  * Used for MOTIONSENSE_CMD_SENSOR_ODR and
1582                  * MOTIONSENSE_CMD_SENSOR_RANGE.
1583                  */
1584                 struct {
1585                         /* Should be element of enum motionsensor_id. */
1586                         uint8_t sensor_num;
1587
1588                         /* Rounding flag, true for round-up, false for down. */
1589                         uint8_t roundup;
1590
1591                         uint16_t reserved;
1592
1593                         /* Data to set or EC_MOTION_SENSE_NO_VALUE to read. */
1594                         int32_t data;
1595                 } sensor_odr, sensor_range;
1596         };
1597 } __packed;
1598
1599 struct ec_response_motion_sense {
1600         union {
1601                 /* Used for MOTIONSENSE_CMD_DUMP. */
1602                 struct {
1603                         /* Flags representing the motion sensor module. */
1604                         uint8_t module_flags;
1605
1606                         /* Number of sensors managed directly by the EC. */
1607                         uint8_t sensor_count;
1608
1609                         /*
1610                          * Sensor data is truncated if response_max is too small
1611                          * for holding all the data.
1612                          */
1613                         struct ec_response_motion_sensor_data sensor[0];
1614                 } dump;
1615
1616                 /* Used for MOTIONSENSE_CMD_INFO. */
1617                 struct {
1618                         /* Should be element of enum motionsensor_type. */
1619                         uint8_t type;
1620
1621                         /* Should be element of enum motionsensor_location. */
1622                         uint8_t location;
1623
1624                         /* Should be element of enum motionsensor_chip. */
1625                         uint8_t chip;
1626                 } info;
1627
1628                 /* Used for MOTIONSENSE_CMD_DATA */
1629                 struct ec_response_motion_sensor_data data;
1630
1631                 /*
1632                  * Used for MOTIONSENSE_CMD_EC_RATE, MOTIONSENSE_CMD_SENSOR_ODR,
1633                  * MOTIONSENSE_CMD_SENSOR_RANGE, and
1634                  * MOTIONSENSE_CMD_KB_WAKE_ANGLE.
1635                  */
1636                 struct {
1637                         /* Current value of the parameter queried. */
1638                         int32_t ret;
1639                 } ec_rate, sensor_odr, sensor_range, kb_wake_angle;
1640
1641                 /* Used for MOTIONSENSE_CMD_SENSOR_OFFSET */
1642                 struct {
1643                         int16_t temp;
1644                         int16_t offset[3];
1645                 } sensor_offset, perform_calib;
1646         };
1647 } __packed;
1648
1649 /*****************************************************************************/
1650 /* USB charging control commands */
1651
1652 /* Set USB port charging mode */
1653 #define EC_CMD_USB_CHARGE_SET_MODE 0x30
1654
1655 struct ec_params_usb_charge_set_mode {
1656         uint8_t usb_port_id;
1657         uint8_t mode;
1658 } __packed;
1659
1660 /*****************************************************************************/
1661 /* Persistent storage for host */
1662
1663 /* Maximum bytes that can be read/written in a single command */
1664 #define EC_PSTORE_SIZE_MAX 64
1665
1666 /* Get persistent storage info */
1667 #define EC_CMD_PSTORE_INFO 0x40
1668
1669 struct ec_response_pstore_info {
1670         /* Persistent storage size, in bytes */
1671         uint32_t pstore_size;
1672         /* Access size; read/write offset and size must be a multiple of this */
1673         uint32_t access_size;
1674 } __packed;
1675
1676 /*
1677  * Read persistent storage
1678  *
1679  * Response is params.size bytes of data.
1680  */
1681 #define EC_CMD_PSTORE_READ 0x41
1682
1683 struct ec_params_pstore_read {
1684         uint32_t offset;   /* Byte offset to read */
1685         uint32_t size;     /* Size to read in bytes */
1686 } __packed;
1687
1688 /* Write persistent storage */
1689 #define EC_CMD_PSTORE_WRITE 0x42
1690
1691 struct ec_params_pstore_write {
1692         uint32_t offset;   /* Byte offset to write */
1693         uint32_t size;     /* Size to write in bytes */
1694         uint8_t data[EC_PSTORE_SIZE_MAX];
1695 } __packed;
1696
1697 /*****************************************************************************/
1698 /* Real-time clock */
1699
1700 /* RTC params and response structures */
1701 struct ec_params_rtc {
1702         uint32_t time;
1703 } __packed;
1704
1705 struct ec_response_rtc {
1706         uint32_t time;
1707 } __packed;
1708
1709 /* These use ec_response_rtc */
1710 #define EC_CMD_RTC_GET_VALUE 0x44
1711 #define EC_CMD_RTC_GET_ALARM 0x45
1712
1713 /* These all use ec_params_rtc */
1714 #define EC_CMD_RTC_SET_VALUE 0x46
1715 #define EC_CMD_RTC_SET_ALARM 0x47
1716
1717 /* Pass as param to SET_ALARM to clear the current alarm */
1718 #define EC_RTC_ALARM_CLEAR 0
1719
1720 /*****************************************************************************/
1721 /* Port80 log access */
1722
1723 /* Maximum entries that can be read/written in a single command */
1724 #define EC_PORT80_SIZE_MAX 32
1725
1726 /* Get last port80 code from previous boot */
1727 #define EC_CMD_PORT80_LAST_BOOT 0x48
1728 #define EC_CMD_PORT80_READ 0x48
1729
1730 enum ec_port80_subcmd {
1731         EC_PORT80_GET_INFO = 0,
1732         EC_PORT80_READ_BUFFER,
1733 };
1734
1735 struct ec_params_port80_read {
1736         uint16_t subcmd;
1737         union {
1738                 struct {
1739                         uint32_t offset;
1740                         uint32_t num_entries;
1741                 } read_buffer;
1742         };
1743 } __packed;
1744
1745 struct ec_response_port80_read {
1746         union {
1747                 struct {
1748                         uint32_t writes;
1749                         uint32_t history_size;
1750                         uint32_t last_boot;
1751                 } get_info;
1752                 struct {
1753                         uint16_t codes[EC_PORT80_SIZE_MAX];
1754                 } data;
1755         };
1756 } __packed;
1757
1758 struct ec_response_port80_last_boot {
1759         uint16_t code;
1760 } __packed;
1761
1762 /*****************************************************************************/
1763 /* Thermal engine commands. Note that there are two implementations. We'll
1764  * reuse the command number, but the data and behavior is incompatible.
1765  * Version 0 is what originally shipped on Link.
1766  * Version 1 separates the CPU thermal limits from the fan control.
1767  */
1768
1769 #define EC_CMD_THERMAL_SET_THRESHOLD 0x50
1770 #define EC_CMD_THERMAL_GET_THRESHOLD 0x51
1771
1772 /* The version 0 structs are opaque. You have to know what they are for
1773  * the get/set commands to make any sense.
1774  */
1775
1776 /* Version 0 - set */
1777 struct ec_params_thermal_set_threshold {
1778         uint8_t sensor_type;
1779         uint8_t threshold_id;
1780         uint16_t value;
1781 } __packed;
1782
1783 /* Version 0 - get */
1784 struct ec_params_thermal_get_threshold {
1785         uint8_t sensor_type;
1786         uint8_t threshold_id;
1787 } __packed;
1788
1789 struct ec_response_thermal_get_threshold {
1790         uint16_t value;
1791 } __packed;
1792
1793
1794 /* The version 1 structs are visible. */
1795 enum ec_temp_thresholds {
1796         EC_TEMP_THRESH_WARN = 0,
1797         EC_TEMP_THRESH_HIGH,
1798         EC_TEMP_THRESH_HALT,
1799
1800         EC_TEMP_THRESH_COUNT
1801 };
1802
1803 /* Thermal configuration for one temperature sensor. Temps are in degrees K.
1804  * Zero values will be silently ignored by the thermal task.
1805  */
1806 struct ec_thermal_config {
1807         uint32_t temp_host[EC_TEMP_THRESH_COUNT]; /* levels of hotness */
1808         uint32_t temp_fan_off;          /* no active cooling needed */
1809         uint32_t temp_fan_max;          /* max active cooling needed */
1810 } __packed;
1811
1812 /* Version 1 - get config for one sensor. */
1813 struct ec_params_thermal_get_threshold_v1 {
1814         uint32_t sensor_num;
1815 } __packed;
1816 /* This returns a struct ec_thermal_config */
1817
1818 /* Version 1 - set config for one sensor.
1819  * Use read-modify-write for best results! */
1820 struct ec_params_thermal_set_threshold_v1 {
1821         uint32_t sensor_num;
1822         struct ec_thermal_config cfg;
1823 } __packed;
1824 /* This returns no data */
1825
1826 /****************************************************************************/
1827
1828 /* Toggle automatic fan control */
1829 #define EC_CMD_THERMAL_AUTO_FAN_CTRL 0x52
1830
1831 /* Get TMP006 calibration data */
1832 #define EC_CMD_TMP006_GET_CALIBRATION 0x53
1833
1834 struct ec_params_tmp006_get_calibration {
1835         uint8_t index;
1836 } __packed;
1837
1838 struct ec_response_tmp006_get_calibration {
1839         float s0;
1840         float b0;
1841         float b1;
1842         float b2;
1843 } __packed;
1844
1845 /* Set TMP006 calibration data */
1846 #define EC_CMD_TMP006_SET_CALIBRATION 0x54
1847
1848 struct ec_params_tmp006_set_calibration {
1849         uint8_t index;
1850         uint8_t reserved[3];  /* Reserved; set 0 */
1851         float s0;
1852         float b0;
1853         float b1;
1854         float b2;
1855 } __packed;
1856
1857 /* Read raw TMP006 data */
1858 #define EC_CMD_TMP006_GET_RAW 0x55
1859
1860 struct ec_params_tmp006_get_raw {
1861         uint8_t index;
1862 } __packed;
1863
1864 struct ec_response_tmp006_get_raw {
1865         int32_t t;  /* In 1/100 K */
1866         int32_t v;  /* In nV */
1867 };
1868
1869 /*****************************************************************************/
1870 /* MKBP - Matrix KeyBoard Protocol */
1871
1872 /*
1873  * Read key state
1874  *
1875  * Returns raw data for keyboard cols; see ec_response_mkbp_info.cols for
1876  * expected response size.
1877  *
1878  * NOTE: This has been superseded by EC_CMD_MKBP_GET_NEXT_EVENT.  If you wish
1879  * to obtain the instantaneous state, use EC_CMD_MKBP_INFO with the type
1880  * EC_MKBP_INFO_CURRENT and event EC_MKBP_EVENT_KEY_MATRIX.
1881  */
1882 #define EC_CMD_MKBP_STATE 0x60
1883
1884 /*
1885  * Provide information about various MKBP things.  See enum ec_mkbp_info_type.
1886  */
1887 #define EC_CMD_MKBP_INFO 0x61
1888
1889 struct ec_response_mkbp_info {
1890         uint32_t rows;
1891         uint32_t cols;
1892         /* Formerly "switches", which was 0. */
1893         uint8_t reserved;
1894 } __packed;
1895
1896 struct ec_params_mkbp_info {
1897         uint8_t info_type;
1898         uint8_t event_type;
1899 } __packed;
1900
1901 enum ec_mkbp_info_type {
1902         /*
1903          * Info about the keyboard matrix: number of rows and columns.
1904          *
1905          * Returns struct ec_response_mkbp_info.
1906          */
1907         EC_MKBP_INFO_KBD = 0,
1908
1909         /*
1910          * For buttons and switches, info about which specifically are
1911          * supported.  event_type must be set to one of the values in enum
1912          * ec_mkbp_event.
1913          *
1914          * For EC_MKBP_EVENT_BUTTON and EC_MKBP_EVENT_SWITCH, returns a 4 byte
1915          * bitmask indicating which buttons or switches are present.  See the
1916          * bit inidices below.
1917          */
1918         EC_MKBP_INFO_SUPPORTED = 1,
1919
1920         /*
1921          * Instantaneous state of buttons and switches.
1922          *
1923          * event_type must be set to one of the values in enum ec_mkbp_event.
1924          *
1925          * For EC_MKBP_EVENT_KEY_MATRIX, returns uint8_t key_matrix[13]
1926          * indicating the current state of the keyboard matrix.
1927          *
1928          * For EC_MKBP_EVENT_HOST_EVENT, return uint32_t host_event, the raw
1929          * event state.
1930          *
1931          * For EC_MKBP_EVENT_BUTTON, returns uint32_t buttons, indicating the
1932          * state of supported buttons.
1933          *
1934          * For EC_MKBP_EVENT_SWITCH, returns uint32_t switches, indicating the
1935          * state of supported switches.
1936          */
1937         EC_MKBP_INFO_CURRENT = 2,
1938 };
1939
1940 /* Simulate key press */
1941 #define EC_CMD_MKBP_SIMULATE_KEY 0x62
1942
1943 struct ec_params_mkbp_simulate_key {
1944         uint8_t col;
1945         uint8_t row;
1946         uint8_t pressed;
1947 } __packed;
1948
1949 /* Configure keyboard scanning */
1950 #define EC_CMD_MKBP_SET_CONFIG 0x64
1951 #define EC_CMD_MKBP_GET_CONFIG 0x65
1952
1953 /* flags */
1954 enum mkbp_config_flags {
1955         EC_MKBP_FLAGS_ENABLE = 1,       /* Enable keyboard scanning */
1956 };
1957
1958 enum mkbp_config_valid {
1959         EC_MKBP_VALID_SCAN_PERIOD               = 1 << 0,
1960         EC_MKBP_VALID_POLL_TIMEOUT              = 1 << 1,
1961         EC_MKBP_VALID_MIN_POST_SCAN_DELAY       = 1 << 3,
1962         EC_MKBP_VALID_OUTPUT_SETTLE             = 1 << 4,
1963         EC_MKBP_VALID_DEBOUNCE_DOWN             = 1 << 5,
1964         EC_MKBP_VALID_DEBOUNCE_UP               = 1 << 6,
1965         EC_MKBP_VALID_FIFO_MAX_DEPTH            = 1 << 7,
1966 };
1967
1968 /* Configuration for our key scanning algorithm */
1969 struct ec_mkbp_config {
1970         uint32_t valid_mask;            /* valid fields */
1971         uint8_t flags;          /* some flags (enum mkbp_config_flags) */
1972         uint8_t valid_flags;            /* which flags are valid */
1973         uint16_t scan_period_us;        /* period between start of scans */
1974         /* revert to interrupt mode after no activity for this long */
1975         uint32_t poll_timeout_us;
1976         /*
1977          * minimum post-scan relax time. Once we finish a scan we check
1978          * the time until we are due to start the next one. If this time is
1979          * shorter this field, we use this instead.
1980          */
1981         uint16_t min_post_scan_delay_us;
1982         /* delay between setting up output and waiting for it to settle */
1983         uint16_t output_settle_us;
1984         uint16_t debounce_down_us;      /* time for debounce on key down */
1985         uint16_t debounce_up_us;        /* time for debounce on key up */
1986         /* maximum depth to allow for fifo (0 = no keyscan output) */
1987         uint8_t fifo_max_depth;
1988 } __packed;
1989
1990 struct ec_params_mkbp_set_config {
1991         struct ec_mkbp_config config;
1992 } __packed;
1993
1994 struct ec_response_mkbp_get_config {
1995         struct ec_mkbp_config config;
1996 } __packed;
1997
1998 /* Run the key scan emulation */
1999 #define EC_CMD_KEYSCAN_SEQ_CTRL 0x66
2000
2001 enum ec_keyscan_seq_cmd {
2002         EC_KEYSCAN_SEQ_STATUS = 0,      /* Get status information */
2003         EC_KEYSCAN_SEQ_CLEAR = 1,       /* Clear sequence */
2004         EC_KEYSCAN_SEQ_ADD = 2,         /* Add item to sequence */
2005         EC_KEYSCAN_SEQ_START = 3,       /* Start running sequence */
2006         EC_KEYSCAN_SEQ_COLLECT = 4,     /* Collect sequence summary data */
2007 };
2008
2009 enum ec_collect_flags {
2010         /*
2011          * Indicates this scan was processed by the EC. Due to timing, some
2012          * scans may be skipped.
2013          */
2014         EC_KEYSCAN_SEQ_FLAG_DONE        = 1 << 0,
2015 };
2016
2017 struct ec_collect_item {
2018         uint8_t flags;          /* some flags (enum ec_collect_flags) */
2019 };
2020
2021 struct ec_params_keyscan_seq_ctrl {
2022         uint8_t cmd;    /* Command to send (enum ec_keyscan_seq_cmd) */
2023         union {
2024                 struct {
2025                         uint8_t active;         /* still active */
2026                         uint8_t num_items;      /* number of items */
2027                         /* Current item being presented */
2028                         uint8_t cur_item;
2029                 } status;
2030                 struct {
2031                         /*
2032                          * Absolute time for this scan, measured from the
2033                          * start of the sequence.
2034                          */
2035                         uint32_t time_us;
2036                         uint8_t scan[0];        /* keyscan data */
2037                 } add;
2038                 struct {
2039                         uint8_t start_item;     /* First item to return */
2040                         uint8_t num_items;      /* Number of items to return */
2041                 } collect;
2042         };
2043 } __packed;
2044
2045 struct ec_result_keyscan_seq_ctrl {
2046         union {
2047                 struct {
2048                         uint8_t num_items;      /* Number of items */
2049                         /* Data for each item */
2050                         struct ec_collect_item item[0];
2051                 } collect;
2052         };
2053 } __packed;
2054
2055 /*
2056  * Command for retrieving the next pending MKBP event from the EC device
2057  *
2058  * The device replies with UNAVAILABLE if there aren't any pending events.
2059  */
2060 #define EC_CMD_GET_NEXT_EVENT 0x67
2061
2062 enum ec_mkbp_event {
2063         /* Keyboard matrix changed. The event data is the new matrix state. */
2064         EC_MKBP_EVENT_KEY_MATRIX = 0,
2065
2066         /* New host event. The event data is 4 bytes of host event flags. */
2067         EC_MKBP_EVENT_HOST_EVENT = 1,
2068
2069         /* New Sensor FIFO data. The event data is fifo_info structure. */
2070         EC_MKBP_EVENT_SENSOR_FIFO = 2,
2071
2072         /* The state of the non-matrixed buttons have changed. */
2073         EC_MKBP_EVENT_BUTTON = 3,
2074
2075         /* The state of the switches have changed. */
2076         EC_MKBP_EVENT_SWITCH = 4,
2077
2078         /* EC sent a sysrq command */
2079         EC_MKBP_EVENT_SYSRQ = 6,
2080
2081         /* Number of MKBP events */
2082         EC_MKBP_EVENT_COUNT,
2083 };
2084
2085 union ec_response_get_next_data {
2086         uint8_t   key_matrix[13];
2087
2088         /* Unaligned */
2089         uint32_t  host_event;
2090
2091         uint32_t   buttons;
2092         uint32_t   switches;
2093         uint32_t   sysrq;
2094 } __packed;
2095
2096 struct ec_response_get_next_event {
2097         uint8_t event_type;
2098         /* Followed by event data if any */
2099         union ec_response_get_next_data data;
2100 } __packed;
2101
2102 /* Bit indices for buttons and switches.*/
2103 /* Buttons */
2104 #define EC_MKBP_POWER_BUTTON    0
2105 #define EC_MKBP_VOL_UP          1
2106 #define EC_MKBP_VOL_DOWN        2
2107
2108 /* Switches */
2109 #define EC_MKBP_LID_OPEN        0
2110 #define EC_MKBP_TABLET_MODE     1
2111
2112 /*****************************************************************************/
2113 /* Temperature sensor commands */
2114
2115 /* Read temperature sensor info */
2116 #define EC_CMD_TEMP_SENSOR_GET_INFO 0x70
2117
2118 struct ec_params_temp_sensor_get_info {
2119         uint8_t id;
2120 } __packed;
2121
2122 struct ec_response_temp_sensor_get_info {
2123         char sensor_name[32];
2124         uint8_t sensor_type;
2125 } __packed;
2126
2127 /*****************************************************************************/
2128
2129 /*
2130  * Note: host commands 0x80 - 0x87 are reserved to avoid conflict with ACPI
2131  * commands accidentally sent to the wrong interface.  See the ACPI section
2132  * below.
2133  */
2134
2135 /*****************************************************************************/
2136 /* Host event commands */
2137
2138 /*
2139  * Host event mask params and response structures, shared by all of the host
2140  * event commands below.
2141  */
2142 struct ec_params_host_event_mask {
2143         uint32_t mask;
2144 } __packed;
2145
2146 struct ec_response_host_event_mask {
2147         uint32_t mask;
2148 } __packed;
2149
2150 /* These all use ec_response_host_event_mask */
2151 #define EC_CMD_HOST_EVENT_GET_B         0x87
2152 #define EC_CMD_HOST_EVENT_GET_SMI_MASK  0x88
2153 #define EC_CMD_HOST_EVENT_GET_SCI_MASK  0x89
2154 #define EC_CMD_HOST_EVENT_GET_WAKE_MASK 0x8d
2155
2156 /* These all use ec_params_host_event_mask */
2157 #define EC_CMD_HOST_EVENT_SET_SMI_MASK  0x8a
2158 #define EC_CMD_HOST_EVENT_SET_SCI_MASK  0x8b
2159 #define EC_CMD_HOST_EVENT_CLEAR         0x8c
2160 #define EC_CMD_HOST_EVENT_SET_WAKE_MASK 0x8e
2161 #define EC_CMD_HOST_EVENT_CLEAR_B       0x8f
2162
2163 /*****************************************************************************/
2164 /* Switch commands */
2165
2166 /* Enable/disable LCD backlight */
2167 #define EC_CMD_SWITCH_ENABLE_BKLIGHT 0x90
2168
2169 struct ec_params_switch_enable_backlight {
2170         uint8_t enabled;
2171 } __packed;
2172
2173 /* Enable/disable WLAN/Bluetooth */
2174 #define EC_CMD_SWITCH_ENABLE_WIRELESS 0x91
2175 #define EC_VER_SWITCH_ENABLE_WIRELESS 1
2176
2177 /* Version 0 params; no response */
2178 struct ec_params_switch_enable_wireless_v0 {
2179         uint8_t enabled;
2180 } __packed;
2181
2182 /* Version 1 params */
2183 struct ec_params_switch_enable_wireless_v1 {
2184         /* Flags to enable now */
2185         uint8_t now_flags;
2186
2187         /* Which flags to copy from now_flags */
2188         uint8_t now_mask;
2189
2190         /*
2191          * Flags to leave enabled in S3, if they're on at the S0->S3
2192          * transition.  (Other flags will be disabled by the S0->S3
2193          * transition.)
2194          */
2195         uint8_t suspend_flags;
2196
2197         /* Which flags to copy from suspend_flags */
2198         uint8_t suspend_mask;
2199 } __packed;
2200
2201 /* Version 1 response */
2202 struct ec_response_switch_enable_wireless_v1 {
2203         /* Flags to enable now */
2204         uint8_t now_flags;
2205
2206         /* Flags to leave enabled in S3 */
2207         uint8_t suspend_flags;
2208 } __packed;
2209
2210 /*****************************************************************************/
2211 /* GPIO commands. Only available on EC if write protect has been disabled. */
2212
2213 /* Set GPIO output value */
2214 #define EC_CMD_GPIO_SET 0x92
2215
2216 struct ec_params_gpio_set {
2217         char name[32];
2218         uint8_t val;
2219 } __packed;
2220
2221 /* Get GPIO value */
2222 #define EC_CMD_GPIO_GET 0x93
2223
2224 /* Version 0 of input params and response */
2225 struct ec_params_gpio_get {
2226         char name[32];
2227 } __packed;
2228 struct ec_response_gpio_get {
2229         uint8_t val;
2230 } __packed;
2231
2232 /* Version 1 of input params and response */
2233 struct ec_params_gpio_get_v1 {
2234         uint8_t subcmd;
2235         union {
2236                 struct {
2237                         char name[32];
2238                 } get_value_by_name;
2239                 struct {
2240                         uint8_t index;
2241                 } get_info;
2242         };
2243 } __packed;
2244
2245 struct ec_response_gpio_get_v1 {
2246         union {
2247                 struct {
2248                         uint8_t val;
2249                 } get_value_by_name, get_count;
2250                 struct {
2251                         uint8_t val;
2252                         char name[32];
2253                         uint32_t flags;
2254                 } get_info;
2255         };
2256 } __packed;
2257
2258 enum gpio_get_subcmd {
2259         EC_GPIO_GET_BY_NAME = 0,
2260         EC_GPIO_GET_COUNT = 1,
2261         EC_GPIO_GET_INFO = 2,
2262 };
2263
2264 /*****************************************************************************/
2265 /* I2C commands. Only available when flash write protect is unlocked. */
2266
2267 /*
2268  * TODO(crosbug.com/p/23570): These commands are deprecated, and will be
2269  * removed soon.  Use EC_CMD_I2C_XFER instead.
2270  */
2271
2272 /* Read I2C bus */
2273 #define EC_CMD_I2C_READ 0x94
2274
2275 struct ec_params_i2c_read {
2276         uint16_t addr; /* 8-bit address (7-bit shifted << 1) */
2277         uint8_t read_size; /* Either 8 or 16. */
2278         uint8_t port;
2279         uint8_t offset;
2280 } __packed;
2281 struct ec_response_i2c_read {
2282         uint16_t data;
2283 } __packed;
2284
2285 /* Write I2C bus */
2286 #define EC_CMD_I2C_WRITE 0x95
2287
2288 struct ec_params_i2c_write {
2289         uint16_t data;
2290         uint16_t addr; /* 8-bit address (7-bit shifted << 1) */
2291         uint8_t write_size; /* Either 8 or 16. */
2292         uint8_t port;
2293         uint8_t offset;
2294 } __packed;
2295
2296 /*****************************************************************************/
2297 /* Charge state commands. Only available when flash write protect unlocked. */
2298
2299 /* Force charge state machine to stop charging the battery or force it to
2300  * discharge the battery.
2301  */
2302 #define EC_CMD_CHARGE_CONTROL 0x96
2303 #define EC_VER_CHARGE_CONTROL 1
2304
2305 enum ec_charge_control_mode {
2306         CHARGE_CONTROL_NORMAL = 0,
2307         CHARGE_CONTROL_IDLE,
2308         CHARGE_CONTROL_DISCHARGE,
2309 };
2310
2311 struct ec_params_charge_control {
2312         uint32_t mode;  /* enum charge_control_mode */
2313 } __packed;
2314
2315 /*****************************************************************************/
2316 /* Console commands. Only available when flash write protect is unlocked. */
2317
2318 /* Snapshot console output buffer for use by EC_CMD_CONSOLE_READ. */
2319 #define EC_CMD_CONSOLE_SNAPSHOT 0x97
2320
2321 /*
2322  * Read data from the saved snapshot. If the subcmd parameter is
2323  * CONSOLE_READ_NEXT, this will return data starting from the beginning of
2324  * the latest snapshot. If it is CONSOLE_READ_RECENT, it will start from the
2325  * end of the previous snapshot.
2326  *
2327  * The params are only looked at in version >= 1 of this command. Prior
2328  * versions will just default to CONSOLE_READ_NEXT behavior.
2329  *
2330  * Response is null-terminated string.  Empty string, if there is no more
2331  * remaining output.
2332  */
2333 #define EC_CMD_CONSOLE_READ 0x98
2334
2335 enum ec_console_read_subcmd {
2336         CONSOLE_READ_NEXT = 0,
2337         CONSOLE_READ_RECENT
2338 };
2339
2340 struct ec_params_console_read_v1 {
2341         uint8_t subcmd; /* enum ec_console_read_subcmd */
2342 } __packed;
2343
2344 /*****************************************************************************/
2345
2346 /*
2347  * Cut off battery power immediately or after the host has shut down.
2348  *
2349  * return EC_RES_INVALID_COMMAND if unsupported by a board/battery.
2350  *        EC_RES_SUCCESS if the command was successful.
2351  *        EC_RES_ERROR if the cut off command failed.
2352  */
2353
2354 #define EC_CMD_BATTERY_CUT_OFF 0x99
2355
2356 #define EC_BATTERY_CUTOFF_FLAG_AT_SHUTDOWN      (1 << 0)
2357
2358 struct ec_params_battery_cutoff {
2359         uint8_t flags;
2360 } __packed;
2361
2362 /*****************************************************************************/
2363 /* USB port mux control. */
2364
2365 /*
2366  * Switch USB mux or return to automatic switching.
2367  */
2368 #define EC_CMD_USB_MUX 0x9a
2369
2370 struct ec_params_usb_mux {
2371         uint8_t mux;
2372 } __packed;
2373
2374 /*****************************************************************************/
2375 /* LDOs / FETs control. */
2376
2377 enum ec_ldo_state {
2378         EC_LDO_STATE_OFF = 0,   /* the LDO / FET is shut down */
2379         EC_LDO_STATE_ON = 1,    /* the LDO / FET is ON / providing power */
2380 };
2381
2382 /*
2383  * Switch on/off a LDO.
2384  */
2385 #define EC_CMD_LDO_SET 0x9b
2386
2387 struct ec_params_ldo_set {
2388         uint8_t index;
2389         uint8_t state;
2390 } __packed;
2391
2392 /*
2393  * Get LDO state.
2394  */
2395 #define EC_CMD_LDO_GET 0x9c
2396
2397 struct ec_params_ldo_get {
2398         uint8_t index;
2399 } __packed;
2400
2401 struct ec_response_ldo_get {
2402         uint8_t state;
2403 } __packed;
2404
2405 /*****************************************************************************/
2406 /* Power info. */
2407
2408 /*
2409  * Get power info.
2410  */
2411 #define EC_CMD_POWER_INFO 0x9d
2412
2413 struct ec_response_power_info {
2414         uint32_t usb_dev_type;
2415         uint16_t voltage_ac;
2416         uint16_t voltage_system;
2417         uint16_t current_system;
2418         uint16_t usb_current_limit;
2419 } __packed;
2420
2421 /*****************************************************************************/
2422 /* I2C passthru command */
2423
2424 #define EC_CMD_I2C_PASSTHRU 0x9e
2425
2426 /* Read data; if not present, message is a write */
2427 #define EC_I2C_FLAG_READ        (1 << 15)
2428
2429 /* Mask for address */
2430 #define EC_I2C_ADDR_MASK        0x3ff
2431
2432 #define EC_I2C_STATUS_NAK       (1 << 0) /* Transfer was not acknowledged */
2433 #define EC_I2C_STATUS_TIMEOUT   (1 << 1) /* Timeout during transfer */
2434
2435 /* Any error */
2436 #define EC_I2C_STATUS_ERROR     (EC_I2C_STATUS_NAK | EC_I2C_STATUS_TIMEOUT)
2437
2438 struct ec_params_i2c_passthru_msg {
2439         uint16_t addr_flags;    /* I2C slave address (7 or 10 bits) and flags */
2440         uint16_t len;           /* Number of bytes to read or write */
2441 } __packed;
2442
2443 struct ec_params_i2c_passthru {
2444         uint8_t port;           /* I2C port number */
2445         uint8_t num_msgs;       /* Number of messages */
2446         struct ec_params_i2c_passthru_msg msg[];
2447         /* Data to write for all messages is concatenated here */
2448 } __packed;
2449
2450 struct ec_response_i2c_passthru {
2451         uint8_t i2c_status;     /* Status flags (EC_I2C_STATUS_...) */
2452         uint8_t num_msgs;       /* Number of messages processed */
2453         uint8_t data[];         /* Data read by messages concatenated here */
2454 } __packed;
2455
2456 /*****************************************************************************/
2457 /* Power button hang detect */
2458
2459 #define EC_CMD_HANG_DETECT 0x9f
2460
2461 /* Reasons to start hang detection timer */
2462 /* Power button pressed */
2463 #define EC_HANG_START_ON_POWER_PRESS  (1 << 0)
2464
2465 /* Lid closed */
2466 #define EC_HANG_START_ON_LID_CLOSE    (1 << 1)
2467
2468  /* Lid opened */
2469 #define EC_HANG_START_ON_LID_OPEN     (1 << 2)
2470
2471 /* Start of AP S3->S0 transition (booting or resuming from suspend) */
2472 #define EC_HANG_START_ON_RESUME       (1 << 3)
2473
2474 /* Reasons to cancel hang detection */
2475
2476 /* Power button released */
2477 #define EC_HANG_STOP_ON_POWER_RELEASE (1 << 8)
2478
2479 /* Any host command from AP received */
2480 #define EC_HANG_STOP_ON_HOST_COMMAND  (1 << 9)
2481
2482 /* Stop on end of AP S0->S3 transition (suspending or shutting down) */
2483 #define EC_HANG_STOP_ON_SUSPEND       (1 << 10)
2484
2485 /*
2486  * If this flag is set, all the other fields are ignored, and the hang detect
2487  * timer is started.  This provides the AP a way to start the hang timer
2488  * without reconfiguring any of the other hang detect settings.  Note that
2489  * you must previously have configured the timeouts.
2490  */
2491 #define EC_HANG_START_NOW             (1 << 30)
2492
2493 /*
2494  * If this flag is set, all the other fields are ignored (including
2495  * EC_HANG_START_NOW).  This provides the AP a way to stop the hang timer
2496  * without reconfiguring any of the other hang detect settings.
2497  */
2498 #define EC_HANG_STOP_NOW              (1 << 31)
2499
2500 struct ec_params_hang_detect {
2501         /* Flags; see EC_HANG_* */
2502         uint32_t flags;
2503
2504         /* Timeout in msec before generating host event, if enabled */
2505         uint16_t host_event_timeout_msec;
2506
2507         /* Timeout in msec before generating warm reboot, if enabled */
2508         uint16_t warm_reboot_timeout_msec;
2509 } __packed;
2510
2511 /*****************************************************************************/
2512 /* Commands for battery charging */
2513
2514 /*
2515  * This is the single catch-all host command to exchange data regarding the
2516  * charge state machine (v2 and up).
2517  */
2518 #define EC_CMD_CHARGE_STATE 0xa0
2519
2520 /* Subcommands for this host command */
2521 enum charge_state_command {
2522         CHARGE_STATE_CMD_GET_STATE,
2523         CHARGE_STATE_CMD_GET_PARAM,
2524         CHARGE_STATE_CMD_SET_PARAM,
2525         CHARGE_STATE_NUM_CMDS
2526 };
2527
2528 /*
2529  * Known param numbers are defined here. Ranges are reserved for board-specific
2530  * params, which are handled by the particular implementations.
2531  */
2532 enum charge_state_params {
2533         CS_PARAM_CHG_VOLTAGE,         /* charger voltage limit */
2534         CS_PARAM_CHG_CURRENT,         /* charger current limit */
2535         CS_PARAM_CHG_INPUT_CURRENT,   /* charger input current limit */
2536         CS_PARAM_CHG_STATUS,          /* charger-specific status */
2537         CS_PARAM_CHG_OPTION,          /* charger-specific options */
2538         /* How many so far? */
2539         CS_NUM_BASE_PARAMS,
2540
2541         /* Range for CONFIG_CHARGER_PROFILE_OVERRIDE params */
2542         CS_PARAM_CUSTOM_PROFILE_MIN = 0x10000,
2543         CS_PARAM_CUSTOM_PROFILE_MAX = 0x1ffff,
2544
2545         /* Other custom param ranges go here... */
2546 };
2547
2548 struct ec_params_charge_state {
2549         uint8_t cmd;                            /* enum charge_state_command */
2550         union {
2551                 struct {
2552                         /* no args */
2553                 } get_state;
2554
2555                 struct {
2556                         uint32_t param;         /* enum charge_state_param */
2557                 } get_param;
2558
2559                 struct {
2560                         uint32_t param;         /* param to set */
2561                         uint32_t value;         /* value to set */
2562                 } set_param;
2563         };
2564 } __packed;
2565
2566 struct ec_response_charge_state {
2567         union {
2568                 struct {
2569                         int ac;
2570                         int chg_voltage;
2571                         int chg_current;
2572                         int chg_input_current;
2573                         int batt_state_of_charge;
2574                 } get_state;
2575
2576                 struct {
2577                         uint32_t value;
2578                 } get_param;
2579                 struct {
2580                         /* no return values */
2581                 } set_param;
2582         };
2583 } __packed;
2584
2585
2586 /*
2587  * Set maximum battery charging current.
2588  */
2589 #define EC_CMD_CHARGE_CURRENT_LIMIT 0xa1
2590
2591 struct ec_params_current_limit {
2592         uint32_t limit; /* in mA */
2593 } __packed;
2594
2595 /*
2596  * Set maximum external power current.
2597  */
2598 #define EC_CMD_EXT_POWER_CURRENT_LIMIT 0xa2
2599
2600 struct ec_params_ext_power_current_limit {
2601         uint32_t limit; /* in mA */
2602 } __packed;
2603
2604 /* Inform the EC when entering a sleep state */
2605 #define EC_CMD_HOST_SLEEP_EVENT 0xa9
2606
2607 enum host_sleep_event {
2608         HOST_SLEEP_EVENT_S3_SUSPEND   = 1,
2609         HOST_SLEEP_EVENT_S3_RESUME    = 2,
2610         HOST_SLEEP_EVENT_S0IX_SUSPEND = 3,
2611         HOST_SLEEP_EVENT_S0IX_RESUME  = 4
2612 };
2613
2614 struct ec_params_host_sleep_event {
2615         uint8_t sleep_event;
2616 } __packed;
2617
2618 /*****************************************************************************/
2619 /* Smart battery pass-through */
2620
2621 /* Get / Set 16-bit smart battery registers */
2622 #define EC_CMD_SB_READ_WORD   0xb0
2623 #define EC_CMD_SB_WRITE_WORD  0xb1
2624
2625 /* Get / Set string smart battery parameters
2626  * formatted as SMBUS "block".
2627  */
2628 #define EC_CMD_SB_READ_BLOCK  0xb2
2629 #define EC_CMD_SB_WRITE_BLOCK 0xb3
2630
2631 struct ec_params_sb_rd {
2632         uint8_t reg;
2633 } __packed;
2634
2635 struct ec_response_sb_rd_word {
2636         uint16_t value;
2637 } __packed;
2638
2639 struct ec_params_sb_wr_word {
2640         uint8_t reg;
2641         uint16_t value;
2642 } __packed;
2643
2644 struct ec_response_sb_rd_block {
2645         uint8_t data[32];
2646 } __packed;
2647
2648 struct ec_params_sb_wr_block {
2649         uint8_t reg;
2650         uint16_t data[32];
2651 } __packed;
2652
2653 /*****************************************************************************/
2654 /* Battery vendor parameters
2655  *
2656  * Get or set vendor-specific parameters in the battery. Implementations may
2657  * differ between boards or batteries. On a set operation, the response
2658  * contains the actual value set, which may be rounded or clipped from the
2659  * requested value.
2660  */
2661
2662 #define EC_CMD_BATTERY_VENDOR_PARAM 0xb4
2663
2664 enum ec_battery_vendor_param_mode {
2665         BATTERY_VENDOR_PARAM_MODE_GET = 0,
2666         BATTERY_VENDOR_PARAM_MODE_SET,
2667 };
2668
2669 struct ec_params_battery_vendor_param {
2670         uint32_t param;
2671         uint32_t value;
2672         uint8_t mode;
2673 } __packed;
2674
2675 struct ec_response_battery_vendor_param {
2676         uint32_t value;
2677 } __packed;
2678
2679 /*****************************************************************************/
2680 /* System commands */
2681
2682 /*
2683  * TODO(crosbug.com/p/23747): This is a confusing name, since it doesn't
2684  * necessarily reboot the EC.  Rename to "image" or something similar?
2685  */
2686 #define EC_CMD_REBOOT_EC 0xd2
2687
2688 /* Command */
2689 enum ec_reboot_cmd {
2690         EC_REBOOT_CANCEL = 0,        /* Cancel a pending reboot */
2691         EC_REBOOT_JUMP_RO = 1,       /* Jump to RO without rebooting */
2692         EC_REBOOT_JUMP_RW = 2,       /* Jump to RW without rebooting */
2693         /* (command 3 was jump to RW-B) */
2694         EC_REBOOT_COLD = 4,          /* Cold-reboot */
2695         EC_REBOOT_DISABLE_JUMP = 5,  /* Disable jump until next reboot */
2696         EC_REBOOT_HIBERNATE = 6      /* Hibernate EC */
2697 };
2698
2699 /* Flags for ec_params_reboot_ec.reboot_flags */
2700 #define EC_REBOOT_FLAG_RESERVED0      (1 << 0)  /* Was recovery request */
2701 #define EC_REBOOT_FLAG_ON_AP_SHUTDOWN (1 << 1)  /* Reboot after AP shutdown */
2702
2703 struct ec_params_reboot_ec {
2704         uint8_t cmd;           /* enum ec_reboot_cmd */
2705         uint8_t flags;         /* See EC_REBOOT_FLAG_* */
2706 } __packed;
2707
2708 /*
2709  * Get information on last EC panic.
2710  *
2711  * Returns variable-length platform-dependent panic information.  See panic.h
2712  * for details.
2713  */
2714 #define EC_CMD_GET_PANIC_INFO 0xd3
2715
2716 /*****************************************************************************/
2717 /*
2718  * ACPI commands
2719  *
2720  * These are valid ONLY on the ACPI command/data port.
2721  */
2722
2723 /*
2724  * ACPI Read Embedded Controller
2725  *
2726  * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*).
2727  *
2728  * Use the following sequence:
2729  *
2730  *    - Write EC_CMD_ACPI_READ to EC_LPC_ADDR_ACPI_CMD
2731  *    - Wait for EC_LPC_CMDR_PENDING bit to clear
2732  *    - Write address to EC_LPC_ADDR_ACPI_DATA
2733  *    - Wait for EC_LPC_CMDR_DATA bit to set
2734  *    - Read value from EC_LPC_ADDR_ACPI_DATA
2735  */
2736 #define EC_CMD_ACPI_READ 0x80
2737
2738 /*
2739  * ACPI Write Embedded Controller
2740  *
2741  * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*).
2742  *
2743  * Use the following sequence:
2744  *
2745  *    - Write EC_CMD_ACPI_WRITE to EC_LPC_ADDR_ACPI_CMD
2746  *    - Wait for EC_LPC_CMDR_PENDING bit to clear
2747  *    - Write address to EC_LPC_ADDR_ACPI_DATA
2748  *    - Wait for EC_LPC_CMDR_PENDING bit to clear
2749  *    - Write value to EC_LPC_ADDR_ACPI_DATA
2750  */
2751 #define EC_CMD_ACPI_WRITE 0x81
2752
2753 /*
2754  * ACPI Query Embedded Controller
2755  *
2756  * This clears the lowest-order bit in the currently pending host events, and
2757  * sets the result code to the 1-based index of the bit (event 0x00000001 = 1,
2758  * event 0x80000000 = 32), or 0 if no event was pending.
2759  */
2760 #define EC_CMD_ACPI_QUERY_EVENT 0x84
2761
2762 /* Valid addresses in ACPI memory space, for read/write commands */
2763
2764 /* Memory space version; set to EC_ACPI_MEM_VERSION_CURRENT */
2765 #define EC_ACPI_MEM_VERSION            0x00
2766 /*
2767  * Test location; writing value here updates test compliment byte to (0xff -
2768  * value).
2769  */
2770 #define EC_ACPI_MEM_TEST               0x01
2771 /* Test compliment; writes here are ignored. */
2772 #define EC_ACPI_MEM_TEST_COMPLIMENT    0x02
2773
2774 /* Keyboard backlight brightness percent (0 - 100) */
2775 #define EC_ACPI_MEM_KEYBOARD_BACKLIGHT 0x03
2776 /* DPTF Target Fan Duty (0-100, 0xff for auto/none) */
2777 #define EC_ACPI_MEM_FAN_DUTY           0x04
2778
2779 /*
2780  * DPTF temp thresholds. Any of the EC's temp sensors can have up to two
2781  * independent thresholds attached to them. The current value of the ID
2782  * register determines which sensor is affected by the THRESHOLD and COMMIT
2783  * registers. The THRESHOLD register uses the same EC_TEMP_SENSOR_OFFSET scheme
2784  * as the memory-mapped sensors. The COMMIT register applies those settings.
2785  *
2786  * The spec does not mandate any way to read back the threshold settings
2787  * themselves, but when a threshold is crossed the AP needs a way to determine
2788  * which sensor(s) are responsible. Each reading of the ID register clears and
2789  * returns one sensor ID that has crossed one of its threshold (in either
2790  * direction) since the last read. A value of 0xFF means "no new thresholds
2791  * have tripped". Setting or enabling the thresholds for a sensor will clear
2792  * the unread event count for that sensor.
2793  */
2794 #define EC_ACPI_MEM_TEMP_ID            0x05
2795 #define EC_ACPI_MEM_TEMP_THRESHOLD     0x06
2796 #define EC_ACPI_MEM_TEMP_COMMIT        0x07
2797 /*
2798  * Here are the bits for the COMMIT register:
2799  *   bit 0 selects the threshold index for the chosen sensor (0/1)
2800  *   bit 1 enables/disables the selected threshold (0 = off, 1 = on)
2801  * Each write to the commit register affects one threshold.
2802  */
2803 #define EC_ACPI_MEM_TEMP_COMMIT_SELECT_MASK (1 << 0)
2804 #define EC_ACPI_MEM_TEMP_COMMIT_ENABLE_MASK (1 << 1)
2805 /*
2806  * Example:
2807  *
2808  * Set the thresholds for sensor 2 to 50 C and 60 C:
2809  *   write 2 to [0x05]      --  select temp sensor 2
2810  *   write 0x7b to [0x06]   --  C_TO_K(50) - EC_TEMP_SENSOR_OFFSET
2811  *   write 0x2 to [0x07]    --  enable threshold 0 with this value
2812  *   write 0x85 to [0x06]   --  C_TO_K(60) - EC_TEMP_SENSOR_OFFSET
2813  *   write 0x3 to [0x07]    --  enable threshold 1 with this value
2814  *
2815  * Disable the 60 C threshold, leaving the 50 C threshold unchanged:
2816  *   write 2 to [0x05]      --  select temp sensor 2
2817  *   write 0x1 to [0x07]    --  disable threshold 1
2818  */
2819
2820 /* DPTF battery charging current limit */
2821 #define EC_ACPI_MEM_CHARGING_LIMIT     0x08
2822
2823 /* Charging limit is specified in 64 mA steps */
2824 #define EC_ACPI_MEM_CHARGING_LIMIT_STEP_MA   64
2825 /* Value to disable DPTF battery charging limit */
2826 #define EC_ACPI_MEM_CHARGING_LIMIT_DISABLED  0xff
2827
2828 /* Current version of ACPI memory address space */
2829 #define EC_ACPI_MEM_VERSION_CURRENT 1
2830
2831
2832 /*****************************************************************************/
2833 /*
2834  * Special commands
2835  *
2836  * These do not follow the normal rules for commands.  See each command for
2837  * details.
2838  */
2839
2840 /*
2841  * Reboot NOW
2842  *
2843  * This command will work even when the EC LPC interface is busy, because the
2844  * reboot command is processed at interrupt level.  Note that when the EC
2845  * reboots, the host will reboot too, so there is no response to this command.
2846  *
2847  * Use EC_CMD_REBOOT_EC to reboot the EC more politely.
2848  */
2849 #define EC_CMD_REBOOT 0xd1  /* Think "die" */
2850
2851 /*
2852  * Resend last response (not supported on LPC).
2853  *
2854  * Returns EC_RES_UNAVAILABLE if there is no response available - for example,
2855  * there was no previous command, or the previous command's response was too
2856  * big to save.
2857  */
2858 #define EC_CMD_RESEND_RESPONSE 0xdb
2859
2860 /*
2861  * This header byte on a command indicate version 0. Any header byte less
2862  * than this means that we are talking to an old EC which doesn't support
2863  * versioning. In that case, we assume version 0.
2864  *
2865  * Header bytes greater than this indicate a later version. For example,
2866  * EC_CMD_VERSION0 + 1 means we are using version 1.
2867  *
2868  * The old EC interface must not use commands 0xdc or higher.
2869  */
2870 #define EC_CMD_VERSION0 0xdc
2871
2872 #endif  /* !__ACPI__ */
2873
2874 /*****************************************************************************/
2875 /*
2876  * PD commands
2877  *
2878  * These commands are for PD MCU communication.
2879  */
2880
2881 /* EC to PD MCU exchange status command */
2882 #define EC_CMD_PD_EXCHANGE_STATUS 0x100
2883
2884 /* Status of EC being sent to PD */
2885 struct ec_params_pd_status {
2886         int8_t batt_soc; /* battery state of charge */
2887 } __packed;
2888
2889 /* Status of PD being sent back to EC */
2890 struct ec_response_pd_status {
2891         int8_t status;        /* PD MCU status */
2892         uint32_t curr_lim_ma; /* input current limit */
2893 } __packed;
2894
2895 /* Set USB type-C port role and muxes */
2896 #define EC_CMD_USB_PD_CONTROL 0x101
2897
2898 enum usb_pd_control_role {
2899         USB_PD_CTRL_ROLE_NO_CHANGE = 0,
2900         USB_PD_CTRL_ROLE_TOGGLE_ON = 1, /* == AUTO */
2901         USB_PD_CTRL_ROLE_TOGGLE_OFF = 2,
2902         USB_PD_CTRL_ROLE_FORCE_SINK = 3,
2903         USB_PD_CTRL_ROLE_FORCE_SOURCE = 4,
2904 };
2905
2906 enum usb_pd_control_mux {
2907         USB_PD_CTRL_MUX_NO_CHANGE = 0,
2908         USB_PD_CTRL_MUX_NONE = 1,
2909         USB_PD_CTRL_MUX_USB = 2,
2910         USB_PD_CTRL_MUX_DP = 3,
2911         USB_PD_CTRL_MUX_DOCK = 4,
2912         USB_PD_CTRL_MUX_AUTO = 5,
2913 };
2914
2915 enum usb_pd_control_swap {
2916         USB_PD_CTRL_SWAP_NONE = 0,
2917         USB_PD_CTRL_SWAP_DATA = 1,
2918         USB_PD_CTRL_SWAP_POWER = 2,
2919         USB_PD_CTRL_SWAP_VCONN = 3,
2920         USB_PD_CTRL_SWAP_COUNT
2921 };
2922
2923 struct ec_params_usb_pd_control {
2924         uint8_t port;
2925         uint8_t role;
2926         uint8_t mux;
2927         uint8_t swap;
2928 } __packed;
2929
2930 #define PD_CTRL_RESP_ENABLED_COMMS      (1 << 0) /* Communication enabled */
2931 #define PD_CTRL_RESP_ENABLED_CONNECTED  (1 << 1) /* Device connected */
2932 #define PD_CTRL_RESP_ENABLED_PD_CAPABLE (1 << 2) /* Partner is PD capable */
2933
2934 #define PD_CTRL_RESP_ROLE_POWER         BIT(0) /* 0=SNK/1=SRC */
2935 #define PD_CTRL_RESP_ROLE_DATA          BIT(1) /* 0=UFP/1=DFP */
2936 #define PD_CTRL_RESP_ROLE_VCONN         BIT(2) /* Vconn status */
2937 #define PD_CTRL_RESP_ROLE_DR_POWER      BIT(3) /* Partner is dualrole power */
2938 #define PD_CTRL_RESP_ROLE_DR_DATA       BIT(4) /* Partner is dualrole data */
2939 #define PD_CTRL_RESP_ROLE_USB_COMM      BIT(5) /* Partner USB comm capable */
2940 #define PD_CTRL_RESP_ROLE_EXT_POWERED   BIT(6) /* Partner externally powerd */
2941
2942 struct ec_response_usb_pd_control_v1 {
2943         uint8_t enabled;
2944         uint8_t role;
2945         uint8_t polarity;
2946         char state[32];
2947 } __packed;
2948
2949 #define EC_CMD_USB_PD_PORTS 0x102
2950
2951 /* Maximum number of PD ports on a device, num_ports will be <= this */
2952 #define EC_USB_PD_MAX_PORTS 8
2953
2954 struct ec_response_usb_pd_ports {
2955         uint8_t num_ports;
2956 } __packed;
2957
2958 #define EC_CMD_USB_PD_POWER_INFO 0x103
2959
2960 #define PD_POWER_CHARGING_PORT 0xff
2961 struct ec_params_usb_pd_power_info {
2962         uint8_t port;
2963 } __packed;
2964
2965 enum usb_chg_type {
2966         USB_CHG_TYPE_NONE,
2967         USB_CHG_TYPE_PD,
2968         USB_CHG_TYPE_C,
2969         USB_CHG_TYPE_PROPRIETARY,
2970         USB_CHG_TYPE_BC12_DCP,
2971         USB_CHG_TYPE_BC12_CDP,
2972         USB_CHG_TYPE_BC12_SDP,
2973         USB_CHG_TYPE_OTHER,
2974         USB_CHG_TYPE_VBUS,
2975         USB_CHG_TYPE_UNKNOWN,
2976 };
2977
2978 struct usb_chg_measures {
2979         uint16_t voltage_max;
2980         uint16_t voltage_now;
2981         uint16_t current_max;
2982         uint16_t current_lim;
2983 } __packed;
2984
2985 struct ec_response_usb_pd_power_info {
2986         uint8_t role;
2987         uint8_t type;
2988         uint8_t dualrole;
2989         uint8_t reserved1;
2990         struct usb_chg_measures meas;
2991         uint32_t max_power;
2992 } __packed;
2993
2994 /* Get info about USB-C SS muxes */
2995 #define EC_CMD_USB_PD_MUX_INFO 0x11a
2996
2997 struct ec_params_usb_pd_mux_info {
2998         uint8_t port; /* USB-C port number */
2999 } __packed;
3000
3001 /* Flags representing mux state */
3002 #define USB_PD_MUX_USB_ENABLED       (1 << 0)
3003 #define USB_PD_MUX_DP_ENABLED        (1 << 1)
3004 #define USB_PD_MUX_POLARITY_INVERTED (1 << 2)
3005 #define USB_PD_MUX_HPD_IRQ           (1 << 3)
3006
3007 struct ec_response_usb_pd_mux_info {
3008         uint8_t flags; /* USB_PD_MUX_*-encoded USB mux state */
3009 } __packed;
3010
3011 /*****************************************************************************/
3012 /*
3013  * Passthru commands
3014  *
3015  * Some platforms have sub-processors chained to each other.  For example.
3016  *
3017  *     AP <--> EC <--> PD MCU
3018  *
3019  * The top 2 bits of the command number are used to indicate which device the
3020  * command is intended for.  Device 0 is always the device receiving the
3021  * command; other device mapping is board-specific.
3022  *
3023  * When a device receives a command to be passed to a sub-processor, it passes
3024  * it on with the device number set back to 0.  This allows the sub-processor
3025  * to remain blissfully unaware of whether the command originated on the next
3026  * device up the chain, or was passed through from the AP.
3027  *
3028  * In the above example, if the AP wants to send command 0x0002 to the PD MCU,
3029  *     AP sends command 0x4002 to the EC
3030  *     EC sends command 0x0002 to the PD MCU
3031  *     EC forwards PD MCU response back to the AP
3032  */
3033
3034 /* Offset and max command number for sub-device n */
3035 #define EC_CMD_PASSTHRU_OFFSET(n) (0x4000 * (n))
3036 #define EC_CMD_PASSTHRU_MAX(n) (EC_CMD_PASSTHRU_OFFSET(n) + 0x3fff)
3037
3038 /*****************************************************************************/
3039 /*
3040  * Deprecated constants. These constants have been renamed for clarity. The
3041  * meaning and size has not changed. Programs that use the old names should
3042  * switch to the new names soon, as the old names may not be carried forward
3043  * forever.
3044  */
3045 #define EC_HOST_PARAM_SIZE      EC_PROTO2_MAX_PARAM_SIZE
3046 #define EC_LPC_ADDR_OLD_PARAM   EC_HOST_CMD_REGION1
3047 #define EC_OLD_PARAM_SIZE       EC_HOST_CMD_REGION_SIZE
3048
3049 #endif  /* __CROS_EC_COMMANDS_H */