failover: allow name change on IFF_UP slave interfaces
[sfrench/cifs-2.6.git] / include / linux / hmm.h
1 /*
2  * Copyright 2013 Red Hat Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * Authors: Jérôme Glisse <jglisse@redhat.com>
15  */
16 /*
17  * Heterogeneous Memory Management (HMM)
18  *
19  * See Documentation/vm/hmm.rst for reasons and overview of what HMM is and it
20  * is for. Here we focus on the HMM API description, with some explanation of
21  * the underlying implementation.
22  *
23  * Short description: HMM provides a set of helpers to share a virtual address
24  * space between CPU and a device, so that the device can access any valid
25  * address of the process (while still obeying memory protection). HMM also
26  * provides helpers to migrate process memory to device memory, and back. Each
27  * set of functionality (address space mirroring, and migration to and from
28  * device memory) can be used independently of the other.
29  *
30  *
31  * HMM address space mirroring API:
32  *
33  * Use HMM address space mirroring if you want to mirror range of the CPU page
34  * table of a process into a device page table. Here, "mirror" means "keep
35  * synchronized". Prerequisites: the device must provide the ability to write-
36  * protect its page tables (at PAGE_SIZE granularity), and must be able to
37  * recover from the resulting potential page faults.
38  *
39  * HMM guarantees that at any point in time, a given virtual address points to
40  * either the same memory in both CPU and device page tables (that is: CPU and
41  * device page tables each point to the same pages), or that one page table (CPU
42  * or device) points to no entry, while the other still points to the old page
43  * for the address. The latter case happens when the CPU page table update
44  * happens first, and then the update is mirrored over to the device page table.
45  * This does not cause any issue, because the CPU page table cannot start
46  * pointing to a new page until the device page table is invalidated.
47  *
48  * HMM uses mmu_notifiers to monitor the CPU page tables, and forwards any
49  * updates to each device driver that has registered a mirror. It also provides
50  * some API calls to help with taking a snapshot of the CPU page table, and to
51  * synchronize with any updates that might happen concurrently.
52  *
53  *
54  * HMM migration to and from device memory:
55  *
56  * HMM provides a set of helpers to hotplug device memory as ZONE_DEVICE, with
57  * a new MEMORY_DEVICE_PRIVATE type. This provides a struct page for each page
58  * of the device memory, and allows the device driver to manage its memory
59  * using those struct pages. Having struct pages for device memory makes
60  * migration easier. Because that memory is not addressable by the CPU it must
61  * never be pinned to the device; in other words, any CPU page fault can always
62  * cause the device memory to be migrated (copied/moved) back to regular memory.
63  *
64  * A new migrate helper (migrate_vma()) has been added (see mm/migrate.c) that
65  * allows use of a device DMA engine to perform the copy operation between
66  * regular system memory and device memory.
67  */
68 #ifndef LINUX_HMM_H
69 #define LINUX_HMM_H
70
71 #include <linux/kconfig.h>
72 #include <asm/pgtable.h>
73
74 #if IS_ENABLED(CONFIG_HMM)
75
76 #include <linux/device.h>
77 #include <linux/migrate.h>
78 #include <linux/memremap.h>
79 #include <linux/completion.h>
80
81 struct hmm;
82
83 /*
84  * hmm_pfn_flag_e - HMM flag enums
85  *
86  * Flags:
87  * HMM_PFN_VALID: pfn is valid. It has, at least, read permission.
88  * HMM_PFN_WRITE: CPU page table has write permission set
89  * HMM_PFN_DEVICE_PRIVATE: private device memory (ZONE_DEVICE)
90  *
91  * The driver provide a flags array, if driver valid bit for an entry is bit
92  * 3 ie (entry & (1 << 3)) is true if entry is valid then driver must provide
93  * an array in hmm_range.flags with hmm_range.flags[HMM_PFN_VALID] == 1 << 3.
94  * Same logic apply to all flags. This is same idea as vm_page_prot in vma
95  * except that this is per device driver rather than per architecture.
96  */
97 enum hmm_pfn_flag_e {
98         HMM_PFN_VALID = 0,
99         HMM_PFN_WRITE,
100         HMM_PFN_DEVICE_PRIVATE,
101         HMM_PFN_FLAG_MAX
102 };
103
104 /*
105  * hmm_pfn_value_e - HMM pfn special value
106  *
107  * Flags:
108  * HMM_PFN_ERROR: corresponding CPU page table entry points to poisoned memory
109  * HMM_PFN_NONE: corresponding CPU page table entry is pte_none()
110  * HMM_PFN_SPECIAL: corresponding CPU page table entry is special; i.e., the
111  *      result of vmf_insert_pfn() or vm_insert_page(). Therefore, it should not
112  *      be mirrored by a device, because the entry will never have HMM_PFN_VALID
113  *      set and the pfn value is undefined.
114  *
115  * Driver provide entry value for none entry, error entry and special entry,
116  * driver can alias (ie use same value for error and special for instance). It
117  * should not alias none and error or special.
118  *
119  * HMM pfn value returned by hmm_vma_get_pfns() or hmm_vma_fault() will be:
120  * hmm_range.values[HMM_PFN_ERROR] if CPU page table entry is poisonous,
121  * hmm_range.values[HMM_PFN_NONE] if there is no CPU page table
122  * hmm_range.values[HMM_PFN_SPECIAL] if CPU page table entry is a special one
123  */
124 enum hmm_pfn_value_e {
125         HMM_PFN_ERROR,
126         HMM_PFN_NONE,
127         HMM_PFN_SPECIAL,
128         HMM_PFN_VALUE_MAX
129 };
130
131 /*
132  * struct hmm_range - track invalidation lock on virtual address range
133  *
134  * @vma: the vm area struct for the range
135  * @list: all range lock are on a list
136  * @start: range virtual start address (inclusive)
137  * @end: range virtual end address (exclusive)
138  * @pfns: array of pfns (big enough for the range)
139  * @flags: pfn flags to match device driver page table
140  * @values: pfn value for some special case (none, special, error, ...)
141  * @pfn_shifts: pfn shift value (should be <= PAGE_SHIFT)
142  * @valid: pfns array did not change since it has been fill by an HMM function
143  */
144 struct hmm_range {
145         struct vm_area_struct   *vma;
146         struct list_head        list;
147         unsigned long           start;
148         unsigned long           end;
149         uint64_t                *pfns;
150         const uint64_t          *flags;
151         const uint64_t          *values;
152         uint8_t                 pfn_shift;
153         bool                    valid;
154 };
155
156 /*
157  * hmm_pfn_to_page() - return struct page pointed to by a valid HMM pfn
158  * @range: range use to decode HMM pfn value
159  * @pfn: HMM pfn value to get corresponding struct page from
160  * Returns: struct page pointer if pfn is a valid HMM pfn, NULL otherwise
161  *
162  * If the HMM pfn is valid (ie valid flag set) then return the struct page
163  * matching the pfn value stored in the HMM pfn. Otherwise return NULL.
164  */
165 static inline struct page *hmm_pfn_to_page(const struct hmm_range *range,
166                                            uint64_t pfn)
167 {
168         if (pfn == range->values[HMM_PFN_NONE])
169                 return NULL;
170         if (pfn == range->values[HMM_PFN_ERROR])
171                 return NULL;
172         if (pfn == range->values[HMM_PFN_SPECIAL])
173                 return NULL;
174         if (!(pfn & range->flags[HMM_PFN_VALID]))
175                 return NULL;
176         return pfn_to_page(pfn >> range->pfn_shift);
177 }
178
179 /*
180  * hmm_pfn_to_pfn() - return pfn value store in a HMM pfn
181  * @range: range use to decode HMM pfn value
182  * @pfn: HMM pfn value to extract pfn from
183  * Returns: pfn value if HMM pfn is valid, -1UL otherwise
184  */
185 static inline unsigned long hmm_pfn_to_pfn(const struct hmm_range *range,
186                                            uint64_t pfn)
187 {
188         if (pfn == range->values[HMM_PFN_NONE])
189                 return -1UL;
190         if (pfn == range->values[HMM_PFN_ERROR])
191                 return -1UL;
192         if (pfn == range->values[HMM_PFN_SPECIAL])
193                 return -1UL;
194         if (!(pfn & range->flags[HMM_PFN_VALID]))
195                 return -1UL;
196         return (pfn >> range->pfn_shift);
197 }
198
199 /*
200  * hmm_pfn_from_page() - create a valid HMM pfn value from struct page
201  * @range: range use to encode HMM pfn value
202  * @page: struct page pointer for which to create the HMM pfn
203  * Returns: valid HMM pfn for the page
204  */
205 static inline uint64_t hmm_pfn_from_page(const struct hmm_range *range,
206                                          struct page *page)
207 {
208         return (page_to_pfn(page) << range->pfn_shift) |
209                 range->flags[HMM_PFN_VALID];
210 }
211
212 /*
213  * hmm_pfn_from_pfn() - create a valid HMM pfn value from pfn
214  * @range: range use to encode HMM pfn value
215  * @pfn: pfn value for which to create the HMM pfn
216  * Returns: valid HMM pfn for the pfn
217  */
218 static inline uint64_t hmm_pfn_from_pfn(const struct hmm_range *range,
219                                         unsigned long pfn)
220 {
221         return (pfn << range->pfn_shift) |
222                 range->flags[HMM_PFN_VALID];
223 }
224
225
226 #if IS_ENABLED(CONFIG_HMM_MIRROR)
227 /*
228  * Mirroring: how to synchronize device page table with CPU page table.
229  *
230  * A device driver that is participating in HMM mirroring must always
231  * synchronize with CPU page table updates. For this, device drivers can either
232  * directly use mmu_notifier APIs or they can use the hmm_mirror API. Device
233  * drivers can decide to register one mirror per device per process, or just
234  * one mirror per process for a group of devices. The pattern is:
235  *
236  *      int device_bind_address_space(..., struct mm_struct *mm, ...)
237  *      {
238  *          struct device_address_space *das;
239  *
240  *          // Device driver specific initialization, and allocation of das
241  *          // which contains an hmm_mirror struct as one of its fields.
242  *          ...
243  *
244  *          ret = hmm_mirror_register(&das->mirror, mm, &device_mirror_ops);
245  *          if (ret) {
246  *              // Cleanup on error
247  *              return ret;
248  *          }
249  *
250  *          // Other device driver specific initialization
251  *          ...
252  *      }
253  *
254  * Once an hmm_mirror is registered for an address space, the device driver
255  * will get callbacks through sync_cpu_device_pagetables() operation (see
256  * hmm_mirror_ops struct).
257  *
258  * Device driver must not free the struct containing the hmm_mirror struct
259  * before calling hmm_mirror_unregister(). The expected usage is to do that when
260  * the device driver is unbinding from an address space.
261  *
262  *
263  *      void device_unbind_address_space(struct device_address_space *das)
264  *      {
265  *          // Device driver specific cleanup
266  *          ...
267  *
268  *          hmm_mirror_unregister(&das->mirror);
269  *
270  *          // Other device driver specific cleanup, and now das can be freed
271  *          ...
272  *      }
273  */
274
275 struct hmm_mirror;
276
277 /*
278  * enum hmm_update_event - type of update
279  * @HMM_UPDATE_INVALIDATE: invalidate range (no indication as to why)
280  */
281 enum hmm_update_event {
282         HMM_UPDATE_INVALIDATE,
283 };
284
285 /*
286  * struct hmm_update - HMM update informations for callback
287  *
288  * @start: virtual start address of the range to update
289  * @end: virtual end address of the range to update
290  * @event: event triggering the update (what is happening)
291  * @blockable: can the callback block/sleep ?
292  */
293 struct hmm_update {
294         unsigned long start;
295         unsigned long end;
296         enum hmm_update_event event;
297         bool blockable;
298 };
299
300 /*
301  * struct hmm_mirror_ops - HMM mirror device operations callback
302  *
303  * @update: callback to update range on a device
304  */
305 struct hmm_mirror_ops {
306         /* release() - release hmm_mirror
307          *
308          * @mirror: pointer to struct hmm_mirror
309          *
310          * This is called when the mm_struct is being released.
311          * The callback should make sure no references to the mirror occur
312          * after the callback returns.
313          */
314         void (*release)(struct hmm_mirror *mirror);
315
316         /* sync_cpu_device_pagetables() - synchronize page tables
317          *
318          * @mirror: pointer to struct hmm_mirror
319          * @update: update informations (see struct hmm_update)
320          * Returns: -EAGAIN if update.blockable false and callback need to
321          *          block, 0 otherwise.
322          *
323          * This callback ultimately originates from mmu_notifiers when the CPU
324          * page table is updated. The device driver must update its page table
325          * in response to this callback. The update argument tells what action
326          * to perform.
327          *
328          * The device driver must not return from this callback until the device
329          * page tables are completely updated (TLBs flushed, etc); this is a
330          * synchronous call.
331          */
332         int (*sync_cpu_device_pagetables)(struct hmm_mirror *mirror,
333                                           const struct hmm_update *update);
334 };
335
336 /*
337  * struct hmm_mirror - mirror struct for a device driver
338  *
339  * @hmm: pointer to struct hmm (which is unique per mm_struct)
340  * @ops: device driver callback for HMM mirror operations
341  * @list: for list of mirrors of a given mm
342  *
343  * Each address space (mm_struct) being mirrored by a device must register one
344  * instance of an hmm_mirror struct with HMM. HMM will track the list of all
345  * mirrors for each mm_struct.
346  */
347 struct hmm_mirror {
348         struct hmm                      *hmm;
349         const struct hmm_mirror_ops     *ops;
350         struct list_head                list;
351 };
352
353 int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm);
354 void hmm_mirror_unregister(struct hmm_mirror *mirror);
355
356
357 /*
358  * To snapshot the CPU page table, call hmm_vma_get_pfns(), then take a device
359  * driver lock that serializes device page table updates, then call
360  * hmm_vma_range_done(), to check if the snapshot is still valid. The same
361  * device driver page table update lock must also be used in the
362  * hmm_mirror_ops.sync_cpu_device_pagetables() callback, so that CPU page
363  * table invalidation serializes on it.
364  *
365  * YOU MUST CALL hmm_vma_range_done() ONCE AND ONLY ONCE EACH TIME YOU CALL
366  * hmm_vma_get_pfns() WITHOUT ERROR !
367  *
368  * IF YOU DO NOT FOLLOW THE ABOVE RULE THE SNAPSHOT CONTENT MIGHT BE INVALID !
369  */
370 int hmm_vma_get_pfns(struct hmm_range *range);
371 bool hmm_vma_range_done(struct hmm_range *range);
372
373
374 /*
375  * Fault memory on behalf of device driver. Unlike handle_mm_fault(), this will
376  * not migrate any device memory back to system memory. The HMM pfn array will
377  * be updated with the fault result and current snapshot of the CPU page table
378  * for the range.
379  *
380  * The mmap_sem must be taken in read mode before entering and it might be
381  * dropped by the function if the block argument is false. In that case, the
382  * function returns -EAGAIN.
383  *
384  * Return value does not reflect if the fault was successful for every single
385  * address or not. Therefore, the caller must to inspect the HMM pfn array to
386  * determine fault status for each address.
387  *
388  * Trying to fault inside an invalid vma will result in -EINVAL.
389  *
390  * See the function description in mm/hmm.c for further documentation.
391  */
392 int hmm_vma_fault(struct hmm_range *range, bool block);
393
394 /* Below are for HMM internal use only! Not to be used by device driver! */
395 void hmm_mm_destroy(struct mm_struct *mm);
396
397 static inline void hmm_mm_init(struct mm_struct *mm)
398 {
399         mm->hmm = NULL;
400 }
401 #else /* IS_ENABLED(CONFIG_HMM_MIRROR) */
402 static inline void hmm_mm_destroy(struct mm_struct *mm) {}
403 static inline void hmm_mm_init(struct mm_struct *mm) {}
404 #endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */
405
406 #if IS_ENABLED(CONFIG_DEVICE_PRIVATE) ||  IS_ENABLED(CONFIG_DEVICE_PUBLIC)
407 struct hmm_devmem;
408
409 struct page *hmm_vma_alloc_locked_page(struct vm_area_struct *vma,
410                                        unsigned long addr);
411
412 /*
413  * struct hmm_devmem_ops - callback for ZONE_DEVICE memory events
414  *
415  * @free: call when refcount on page reach 1 and thus is no longer use
416  * @fault: call when there is a page fault to unaddressable memory
417  *
418  * Both callback happens from page_free() and page_fault() callback of struct
419  * dev_pagemap respectively. See include/linux/memremap.h for more details on
420  * those.
421  *
422  * The hmm_devmem_ops callback are just here to provide a coherent and
423  * uniq API to device driver and device driver should not register their
424  * own page_free() or page_fault() but rely on the hmm_devmem_ops call-
425  * back.
426  */
427 struct hmm_devmem_ops {
428         /*
429          * free() - free a device page
430          * @devmem: device memory structure (see struct hmm_devmem)
431          * @page: pointer to struct page being freed
432          *
433          * Call back occurs whenever a device page refcount reach 1 which
434          * means that no one is holding any reference on the page anymore
435          * (ZONE_DEVICE page have an elevated refcount of 1 as default so
436          * that they are not release to the general page allocator).
437          *
438          * Note that callback has exclusive ownership of the page (as no
439          * one is holding any reference).
440          */
441         void (*free)(struct hmm_devmem *devmem, struct page *page);
442         /*
443          * fault() - CPU page fault or get user page (GUP)
444          * @devmem: device memory structure (see struct hmm_devmem)
445          * @vma: virtual memory area containing the virtual address
446          * @addr: virtual address that faulted or for which there is a GUP
447          * @page: pointer to struct page backing virtual address (unreliable)
448          * @flags: FAULT_FLAG_* (see include/linux/mm.h)
449          * @pmdp: page middle directory
450          * Returns: VM_FAULT_MINOR/MAJOR on success or one of VM_FAULT_ERROR
451          *   on error
452          *
453          * The callback occurs whenever there is a CPU page fault or GUP on a
454          * virtual address. This means that the device driver must migrate the
455          * page back to regular memory (CPU accessible).
456          *
457          * The device driver is free to migrate more than one page from the
458          * fault() callback as an optimization. However if device decide to
459          * migrate more than one page it must always priotirize the faulting
460          * address over the others.
461          *
462          * The struct page pointer is only given as an hint to allow quick
463          * lookup of internal device driver data. A concurrent migration
464          * might have already free that page and the virtual address might
465          * not longer be back by it. So it should not be modified by the
466          * callback.
467          *
468          * Note that mmap semaphore is held in read mode at least when this
469          * callback occurs, hence the vma is valid upon callback entry.
470          */
471         vm_fault_t (*fault)(struct hmm_devmem *devmem,
472                      struct vm_area_struct *vma,
473                      unsigned long addr,
474                      const struct page *page,
475                      unsigned int flags,
476                      pmd_t *pmdp);
477 };
478
479 /*
480  * struct hmm_devmem - track device memory
481  *
482  * @completion: completion object for device memory
483  * @pfn_first: first pfn for this resource (set by hmm_devmem_add())
484  * @pfn_last: last pfn for this resource (set by hmm_devmem_add())
485  * @resource: IO resource reserved for this chunk of memory
486  * @pagemap: device page map for that chunk
487  * @device: device to bind resource to
488  * @ops: memory operations callback
489  * @ref: per CPU refcount
490  * @page_fault: callback when CPU fault on an unaddressable device page
491  *
492  * This an helper structure for device drivers that do not wish to implement
493  * the gory details related to hotplugging new memoy and allocating struct
494  * pages.
495  *
496  * Device drivers can directly use ZONE_DEVICE memory on their own if they
497  * wish to do so.
498  *
499  * The page_fault() callback must migrate page back, from device memory to
500  * system memory, so that the CPU can access it. This might fail for various
501  * reasons (device issues,  device have been unplugged, ...). When such error
502  * conditions happen, the page_fault() callback must return VM_FAULT_SIGBUS and
503  * set the CPU page table entry to "poisoned".
504  *
505  * Note that because memory cgroup charges are transferred to the device memory,
506  * this should never fail due to memory restrictions. However, allocation
507  * of a regular system page might still fail because we are out of memory. If
508  * that happens, the page_fault() callback must return VM_FAULT_OOM.
509  *
510  * The page_fault() callback can also try to migrate back multiple pages in one
511  * chunk, as an optimization. It must, however, prioritize the faulting address
512  * over all the others.
513  */
514 typedef vm_fault_t (*dev_page_fault_t)(struct vm_area_struct *vma,
515                                 unsigned long addr,
516                                 const struct page *page,
517                                 unsigned int flags,
518                                 pmd_t *pmdp);
519
520 struct hmm_devmem {
521         struct completion               completion;
522         unsigned long                   pfn_first;
523         unsigned long                   pfn_last;
524         struct resource                 *resource;
525         struct device                   *device;
526         struct dev_pagemap              pagemap;
527         const struct hmm_devmem_ops     *ops;
528         struct percpu_ref               ref;
529         dev_page_fault_t                page_fault;
530 };
531
532 /*
533  * To add (hotplug) device memory, HMM assumes that there is no real resource
534  * that reserves a range in the physical address space (this is intended to be
535  * use by unaddressable device memory). It will reserve a physical range big
536  * enough and allocate struct page for it.
537  *
538  * The device driver can wrap the hmm_devmem struct inside a private device
539  * driver struct.
540  */
541 struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops,
542                                   struct device *device,
543                                   unsigned long size);
544 struct hmm_devmem *hmm_devmem_add_resource(const struct hmm_devmem_ops *ops,
545                                            struct device *device,
546                                            struct resource *res);
547
548 /*
549  * hmm_devmem_page_set_drvdata - set per-page driver data field
550  *
551  * @page: pointer to struct page
552  * @data: driver data value to set
553  *
554  * Because page can not be on lru we have an unsigned long that driver can use
555  * to store a per page field. This just a simple helper to do that.
556  */
557 static inline void hmm_devmem_page_set_drvdata(struct page *page,
558                                                unsigned long data)
559 {
560         page->hmm_data = data;
561 }
562
563 /*
564  * hmm_devmem_page_get_drvdata - get per page driver data field
565  *
566  * @page: pointer to struct page
567  * Return: driver data value
568  */
569 static inline unsigned long hmm_devmem_page_get_drvdata(const struct page *page)
570 {
571         return page->hmm_data;
572 }
573
574
575 /*
576  * struct hmm_device - fake device to hang device memory onto
577  *
578  * @device: device struct
579  * @minor: device minor number
580  */
581 struct hmm_device {
582         struct device           device;
583         unsigned int            minor;
584 };
585
586 /*
587  * A device driver that wants to handle multiple devices memory through a
588  * single fake device can use hmm_device to do so. This is purely a helper and
589  * it is not strictly needed, in order to make use of any HMM functionality.
590  */
591 struct hmm_device *hmm_device_new(void *drvdata);
592 void hmm_device_put(struct hmm_device *hmm_device);
593 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
594 #else /* IS_ENABLED(CONFIG_HMM) */
595 static inline void hmm_mm_destroy(struct mm_struct *mm) {}
596 static inline void hmm_mm_init(struct mm_struct *mm) {}
597 #endif /* IS_ENABLED(CONFIG_HMM) */
598
599 #endif /* LINUX_HMM_H */