96e69979f84d7b7fe1edb6568097bf32cec97a92
[sfrench/cifs-2.6.git] / include / linux / hmm.h
1 /*
2  * Copyright 2013 Red Hat Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * Authors: Jérôme Glisse <jglisse@redhat.com>
15  */
16 /*
17  * Heterogeneous Memory Management (HMM)
18  *
19  * See Documentation/vm/hmm.txt for reasons and overview of what HMM is and it
20  * is for. Here we focus on the HMM API description, with some explanation of
21  * the underlying implementation.
22  *
23  * Short description: HMM provides a set of helpers to share a virtual address
24  * space between CPU and a device, so that the device can access any valid
25  * address of the process (while still obeying memory protection). HMM also
26  * provides helpers to migrate process memory to device memory, and back. Each
27  * set of functionality (address space mirroring, and migration to and from
28  * device memory) can be used independently of the other.
29  *
30  *
31  * HMM address space mirroring API:
32  *
33  * Use HMM address space mirroring if you want to mirror range of the CPU page
34  * table of a process into a device page table. Here, "mirror" means "keep
35  * synchronized". Prerequisites: the device must provide the ability to write-
36  * protect its page tables (at PAGE_SIZE granularity), and must be able to
37  * recover from the resulting potential page faults.
38  *
39  * HMM guarantees that at any point in time, a given virtual address points to
40  * either the same memory in both CPU and device page tables (that is: CPU and
41  * device page tables each point to the same pages), or that one page table (CPU
42  * or device) points to no entry, while the other still points to the old page
43  * for the address. The latter case happens when the CPU page table update
44  * happens first, and then the update is mirrored over to the device page table.
45  * This does not cause any issue, because the CPU page table cannot start
46  * pointing to a new page until the device page table is invalidated.
47  *
48  * HMM uses mmu_notifiers to monitor the CPU page tables, and forwards any
49  * updates to each device driver that has registered a mirror. It also provides
50  * some API calls to help with taking a snapshot of the CPU page table, and to
51  * synchronize with any updates that might happen concurrently.
52  *
53  *
54  * HMM migration to and from device memory:
55  *
56  * HMM provides a set of helpers to hotplug device memory as ZONE_DEVICE, with
57  * a new MEMORY_DEVICE_PRIVATE type. This provides a struct page for each page
58  * of the device memory, and allows the device driver to manage its memory
59  * using those struct pages. Having struct pages for device memory makes
60  * migration easier. Because that memory is not addressable by the CPU it must
61  * never be pinned to the device; in other words, any CPU page fault can always
62  * cause the device memory to be migrated (copied/moved) back to regular memory.
63  *
64  * A new migrate helper (migrate_vma()) has been added (see mm/migrate.c) that
65  * allows use of a device DMA engine to perform the copy operation between
66  * regular system memory and device memory.
67  */
68 #ifndef LINUX_HMM_H
69 #define LINUX_HMM_H
70
71 #include <linux/kconfig.h>
72
73 #if IS_ENABLED(CONFIG_HMM)
74
75 #include <linux/device.h>
76 #include <linux/migrate.h>
77 #include <linux/memremap.h>
78 #include <linux/completion.h>
79
80 struct hmm;
81
82 /*
83  * hmm_pfn_t - HMM uses its own pfn type to keep several flags per page
84  *
85  * Flags:
86  * HMM_PFN_VALID: pfn is valid
87  * HMM_PFN_READ:  CPU page table has read permission set
88  * HMM_PFN_WRITE: CPU page table has write permission set
89  * HMM_PFN_ERROR: corresponding CPU page table entry points to poisoned memory
90  * HMM_PFN_EMPTY: corresponding CPU page table entry is pte_none()
91  * HMM_PFN_SPECIAL: corresponding CPU page table entry is special; i.e., the
92  *      result of vm_insert_pfn() or vm_insert_page(). Therefore, it should not
93  *      be mirrored by a device, because the entry will never have HMM_PFN_VALID
94  *      set and the pfn value is undefined.
95  * HMM_PFN_DEVICE_UNADDRESSABLE: unaddressable device memory (ZONE_DEVICE)
96  */
97 typedef unsigned long hmm_pfn_t;
98
99 #define HMM_PFN_VALID (1 << 0)
100 #define HMM_PFN_READ (1 << 1)
101 #define HMM_PFN_WRITE (1 << 2)
102 #define HMM_PFN_ERROR (1 << 3)
103 #define HMM_PFN_EMPTY (1 << 4)
104 #define HMM_PFN_SPECIAL (1 << 5)
105 #define HMM_PFN_DEVICE_UNADDRESSABLE (1 << 6)
106 #define HMM_PFN_SHIFT 7
107
108 /*
109  * hmm_pfn_t_to_page() - return struct page pointed to by a valid hmm_pfn_t
110  * @pfn: hmm_pfn_t to convert to struct page
111  * Returns: struct page pointer if pfn is a valid hmm_pfn_t, NULL otherwise
112  *
113  * If the hmm_pfn_t is valid (ie valid flag set) then return the struct page
114  * matching the pfn value stored in the hmm_pfn_t. Otherwise return NULL.
115  */
116 static inline struct page *hmm_pfn_t_to_page(hmm_pfn_t pfn)
117 {
118         if (!(pfn & HMM_PFN_VALID))
119                 return NULL;
120         return pfn_to_page(pfn >> HMM_PFN_SHIFT);
121 }
122
123 /*
124  * hmm_pfn_t_to_pfn() - return pfn value store in a hmm_pfn_t
125  * @pfn: hmm_pfn_t to extract pfn from
126  * Returns: pfn value if hmm_pfn_t is valid, -1UL otherwise
127  */
128 static inline unsigned long hmm_pfn_t_to_pfn(hmm_pfn_t pfn)
129 {
130         if (!(pfn & HMM_PFN_VALID))
131                 return -1UL;
132         return (pfn >> HMM_PFN_SHIFT);
133 }
134
135 /*
136  * hmm_pfn_t_from_page() - create a valid hmm_pfn_t value from struct page
137  * @page: struct page pointer for which to create the hmm_pfn_t
138  * Returns: valid hmm_pfn_t for the page
139  */
140 static inline hmm_pfn_t hmm_pfn_t_from_page(struct page *page)
141 {
142         return (page_to_pfn(page) << HMM_PFN_SHIFT) | HMM_PFN_VALID;
143 }
144
145 /*
146  * hmm_pfn_t_from_pfn() - create a valid hmm_pfn_t value from pfn
147  * @pfn: pfn value for which to create the hmm_pfn_t
148  * Returns: valid hmm_pfn_t for the pfn
149  */
150 static inline hmm_pfn_t hmm_pfn_t_from_pfn(unsigned long pfn)
151 {
152         return (pfn << HMM_PFN_SHIFT) | HMM_PFN_VALID;
153 }
154
155
156 #if IS_ENABLED(CONFIG_HMM_MIRROR)
157 /*
158  * Mirroring: how to synchronize device page table with CPU page table.
159  *
160  * A device driver that is participating in HMM mirroring must always
161  * synchronize with CPU page table updates. For this, device drivers can either
162  * directly use mmu_notifier APIs or they can use the hmm_mirror API. Device
163  * drivers can decide to register one mirror per device per process, or just
164  * one mirror per process for a group of devices. The pattern is:
165  *
166  *      int device_bind_address_space(..., struct mm_struct *mm, ...)
167  *      {
168  *          struct device_address_space *das;
169  *
170  *          // Device driver specific initialization, and allocation of das
171  *          // which contains an hmm_mirror struct as one of its fields.
172  *          ...
173  *
174  *          ret = hmm_mirror_register(&das->mirror, mm, &device_mirror_ops);
175  *          if (ret) {
176  *              // Cleanup on error
177  *              return ret;
178  *          }
179  *
180  *          // Other device driver specific initialization
181  *          ...
182  *      }
183  *
184  * Once an hmm_mirror is registered for an address space, the device driver
185  * will get callbacks through sync_cpu_device_pagetables() operation (see
186  * hmm_mirror_ops struct).
187  *
188  * Device driver must not free the struct containing the hmm_mirror struct
189  * before calling hmm_mirror_unregister(). The expected usage is to do that when
190  * the device driver is unbinding from an address space.
191  *
192  *
193  *      void device_unbind_address_space(struct device_address_space *das)
194  *      {
195  *          // Device driver specific cleanup
196  *          ...
197  *
198  *          hmm_mirror_unregister(&das->mirror);
199  *
200  *          // Other device driver specific cleanup, and now das can be freed
201  *          ...
202  *      }
203  */
204
205 struct hmm_mirror;
206
207 /*
208  * enum hmm_update_type - type of update
209  * @HMM_UPDATE_INVALIDATE: invalidate range (no indication as to why)
210  */
211 enum hmm_update_type {
212         HMM_UPDATE_INVALIDATE,
213 };
214
215 /*
216  * struct hmm_mirror_ops - HMM mirror device operations callback
217  *
218  * @update: callback to update range on a device
219  */
220 struct hmm_mirror_ops {
221         /* sync_cpu_device_pagetables() - synchronize page tables
222          *
223          * @mirror: pointer to struct hmm_mirror
224          * @update_type: type of update that occurred to the CPU page table
225          * @start: virtual start address of the range to update
226          * @end: virtual end address of the range to update
227          *
228          * This callback ultimately originates from mmu_notifiers when the CPU
229          * page table is updated. The device driver must update its page table
230          * in response to this callback. The update argument tells what action
231          * to perform.
232          *
233          * The device driver must not return from this callback until the device
234          * page tables are completely updated (TLBs flushed, etc); this is a
235          * synchronous call.
236          */
237         void (*sync_cpu_device_pagetables)(struct hmm_mirror *mirror,
238                                            enum hmm_update_type update_type,
239                                            unsigned long start,
240                                            unsigned long end);
241 };
242
243 /*
244  * struct hmm_mirror - mirror struct for a device driver
245  *
246  * @hmm: pointer to struct hmm (which is unique per mm_struct)
247  * @ops: device driver callback for HMM mirror operations
248  * @list: for list of mirrors of a given mm
249  *
250  * Each address space (mm_struct) being mirrored by a device must register one
251  * instance of an hmm_mirror struct with HMM. HMM will track the list of all
252  * mirrors for each mm_struct.
253  */
254 struct hmm_mirror {
255         struct hmm                      *hmm;
256         const struct hmm_mirror_ops     *ops;
257         struct list_head                list;
258 };
259
260 int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm);
261 void hmm_mirror_unregister(struct hmm_mirror *mirror);
262
263
264 /*
265  * struct hmm_range - track invalidation lock on virtual address range
266  *
267  * @list: all range lock are on a list
268  * @start: range virtual start address (inclusive)
269  * @end: range virtual end address (exclusive)
270  * @pfns: array of pfns (big enough for the range)
271  * @valid: pfns array did not change since it has been fill by an HMM function
272  */
273 struct hmm_range {
274         struct list_head        list;
275         unsigned long           start;
276         unsigned long           end;
277         hmm_pfn_t               *pfns;
278         bool                    valid;
279 };
280
281 /*
282  * To snapshot the CPU page table, call hmm_vma_get_pfns(), then take a device
283  * driver lock that serializes device page table updates, then call
284  * hmm_vma_range_done(), to check if the snapshot is still valid. The same
285  * device driver page table update lock must also be used in the
286  * hmm_mirror_ops.sync_cpu_device_pagetables() callback, so that CPU page
287  * table invalidation serializes on it.
288  *
289  * YOU MUST CALL hmm_vma_range_done() ONCE AND ONLY ONCE EACH TIME YOU CALL
290  * hmm_vma_get_pfns() WITHOUT ERROR !
291  *
292  * IF YOU DO NOT FOLLOW THE ABOVE RULE THE SNAPSHOT CONTENT MIGHT BE INVALID !
293  */
294 int hmm_vma_get_pfns(struct vm_area_struct *vma,
295                      struct hmm_range *range,
296                      unsigned long start,
297                      unsigned long end,
298                      hmm_pfn_t *pfns);
299 bool hmm_vma_range_done(struct vm_area_struct *vma, struct hmm_range *range);
300
301
302 /*
303  * Fault memory on behalf of device driver. Unlike handle_mm_fault(), this will
304  * not migrate any device memory back to system memory. The hmm_pfn_t array will
305  * be updated with the fault result and current snapshot of the CPU page table
306  * for the range.
307  *
308  * The mmap_sem must be taken in read mode before entering and it might be
309  * dropped by the function if the block argument is false. In that case, the
310  * function returns -EAGAIN.
311  *
312  * Return value does not reflect if the fault was successful for every single
313  * address or not. Therefore, the caller must to inspect the hmm_pfn_t array to
314  * determine fault status for each address.
315  *
316  * Trying to fault inside an invalid vma will result in -EINVAL.
317  *
318  * See the function description in mm/hmm.c for further documentation.
319  */
320 int hmm_vma_fault(struct vm_area_struct *vma,
321                   struct hmm_range *range,
322                   unsigned long start,
323                   unsigned long end,
324                   hmm_pfn_t *pfns,
325                   bool write,
326                   bool block);
327 #endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */
328
329
330 #if IS_ENABLED(CONFIG_DEVICE_PRIVATE) ||  IS_ENABLED(CONFIG_DEVICE_PUBLIC)
331 struct hmm_devmem;
332
333 struct page *hmm_vma_alloc_locked_page(struct vm_area_struct *vma,
334                                        unsigned long addr);
335
336 /*
337  * struct hmm_devmem_ops - callback for ZONE_DEVICE memory events
338  *
339  * @free: call when refcount on page reach 1 and thus is no longer use
340  * @fault: call when there is a page fault to unaddressable memory
341  *
342  * Both callback happens from page_free() and page_fault() callback of struct
343  * dev_pagemap respectively. See include/linux/memremap.h for more details on
344  * those.
345  *
346  * The hmm_devmem_ops callback are just here to provide a coherent and
347  * uniq API to device driver and device driver should not register their
348  * own page_free() or page_fault() but rely on the hmm_devmem_ops call-
349  * back.
350  */
351 struct hmm_devmem_ops {
352         /*
353          * free() - free a device page
354          * @devmem: device memory structure (see struct hmm_devmem)
355          * @page: pointer to struct page being freed
356          *
357          * Call back occurs whenever a device page refcount reach 1 which
358          * means that no one is holding any reference on the page anymore
359          * (ZONE_DEVICE page have an elevated refcount of 1 as default so
360          * that they are not release to the general page allocator).
361          *
362          * Note that callback has exclusive ownership of the page (as no
363          * one is holding any reference).
364          */
365         void (*free)(struct hmm_devmem *devmem, struct page *page);
366         /*
367          * fault() - CPU page fault or get user page (GUP)
368          * @devmem: device memory structure (see struct hmm_devmem)
369          * @vma: virtual memory area containing the virtual address
370          * @addr: virtual address that faulted or for which there is a GUP
371          * @page: pointer to struct page backing virtual address (unreliable)
372          * @flags: FAULT_FLAG_* (see include/linux/mm.h)
373          * @pmdp: page middle directory
374          * Returns: VM_FAULT_MINOR/MAJOR on success or one of VM_FAULT_ERROR
375          *   on error
376          *
377          * The callback occurs whenever there is a CPU page fault or GUP on a
378          * virtual address. This means that the device driver must migrate the
379          * page back to regular memory (CPU accessible).
380          *
381          * The device driver is free to migrate more than one page from the
382          * fault() callback as an optimization. However if device decide to
383          * migrate more than one page it must always priotirize the faulting
384          * address over the others.
385          *
386          * The struct page pointer is only given as an hint to allow quick
387          * lookup of internal device driver data. A concurrent migration
388          * might have already free that page and the virtual address might
389          * not longer be back by it. So it should not be modified by the
390          * callback.
391          *
392          * Note that mmap semaphore is held in read mode at least when this
393          * callback occurs, hence the vma is valid upon callback entry.
394          */
395         int (*fault)(struct hmm_devmem *devmem,
396                      struct vm_area_struct *vma,
397                      unsigned long addr,
398                      const struct page *page,
399                      unsigned int flags,
400                      pmd_t *pmdp);
401 };
402
403 /*
404  * struct hmm_devmem - track device memory
405  *
406  * @completion: completion object for device memory
407  * @pfn_first: first pfn for this resource (set by hmm_devmem_add())
408  * @pfn_last: last pfn for this resource (set by hmm_devmem_add())
409  * @resource: IO resource reserved for this chunk of memory
410  * @pagemap: device page map for that chunk
411  * @device: device to bind resource to
412  * @ops: memory operations callback
413  * @ref: per CPU refcount
414  *
415  * This an helper structure for device drivers that do not wish to implement
416  * the gory details related to hotplugging new memoy and allocating struct
417  * pages.
418  *
419  * Device drivers can directly use ZONE_DEVICE memory on their own if they
420  * wish to do so.
421  */
422 struct hmm_devmem {
423         struct completion               completion;
424         unsigned long                   pfn_first;
425         unsigned long                   pfn_last;
426         struct resource                 *resource;
427         struct device                   *device;
428         struct dev_pagemap              pagemap;
429         const struct hmm_devmem_ops     *ops;
430         struct percpu_ref               ref;
431 };
432
433 /*
434  * To add (hotplug) device memory, HMM assumes that there is no real resource
435  * that reserves a range in the physical address space (this is intended to be
436  * use by unaddressable device memory). It will reserve a physical range big
437  * enough and allocate struct page for it.
438  *
439  * The device driver can wrap the hmm_devmem struct inside a private device
440  * driver struct. The device driver must call hmm_devmem_remove() before the
441  * device goes away and before freeing the hmm_devmem struct memory.
442  */
443 struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops,
444                                   struct device *device,
445                                   unsigned long size);
446 struct hmm_devmem *hmm_devmem_add_resource(const struct hmm_devmem_ops *ops,
447                                            struct device *device,
448                                            struct resource *res);
449 void hmm_devmem_remove(struct hmm_devmem *devmem);
450
451 /*
452  * hmm_devmem_page_set_drvdata - set per-page driver data field
453  *
454  * @page: pointer to struct page
455  * @data: driver data value to set
456  *
457  * Because page can not be on lru we have an unsigned long that driver can use
458  * to store a per page field. This just a simple helper to do that.
459  */
460 static inline void hmm_devmem_page_set_drvdata(struct page *page,
461                                                unsigned long data)
462 {
463         unsigned long *drvdata = (unsigned long *)&page->pgmap;
464
465         drvdata[1] = data;
466 }
467
468 /*
469  * hmm_devmem_page_get_drvdata - get per page driver data field
470  *
471  * @page: pointer to struct page
472  * Return: driver data value
473  */
474 static inline unsigned long hmm_devmem_page_get_drvdata(struct page *page)
475 {
476         unsigned long *drvdata = (unsigned long *)&page->pgmap;
477
478         return drvdata[1];
479 }
480
481
482 /*
483  * struct hmm_device - fake device to hang device memory onto
484  *
485  * @device: device struct
486  * @minor: device minor number
487  */
488 struct hmm_device {
489         struct device           device;
490         unsigned int            minor;
491 };
492
493 /*
494  * A device driver that wants to handle multiple devices memory through a
495  * single fake device can use hmm_device to do so. This is purely a helper and
496  * it is not strictly needed, in order to make use of any HMM functionality.
497  */
498 struct hmm_device *hmm_device_new(void *drvdata);
499 void hmm_device_put(struct hmm_device *hmm_device);
500 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
501 #endif /* IS_ENABLED(CONFIG_HMM) */
502
503 /* Below are for HMM internal use only! Not to be used by device driver! */
504 #if IS_ENABLED(CONFIG_HMM_MIRROR)
505 void hmm_mm_destroy(struct mm_struct *mm);
506
507 static inline void hmm_mm_init(struct mm_struct *mm)
508 {
509         mm->hmm = NULL;
510 }
511 #else /* IS_ENABLED(CONFIG_HMM_MIRROR) */
512 static inline void hmm_mm_destroy(struct mm_struct *mm) {}
513 static inline void hmm_mm_init(struct mm_struct *mm) {}
514 #endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */
515
516
517 #else /* IS_ENABLED(CONFIG_HMM) */
518 static inline void hmm_mm_destroy(struct mm_struct *mm) {}
519 static inline void hmm_mm_init(struct mm_struct *mm) {}
520 #endif /* LINUX_HMM_H */