ALSA: hda/realtek - Move some alc236 pintbls to fallback table
[sfrench/cifs-2.6.git] / include / crypto / sha256_base.h
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * sha256_base.h - core logic for SHA-256 implementations
4  *
5  * Copyright (C) 2015 Linaro Ltd <ard.biesheuvel@linaro.org>
6  */
7
8 #ifndef _CRYPTO_SHA256_BASE_H
9 #define _CRYPTO_SHA256_BASE_H
10
11 #include <crypto/internal/hash.h>
12 #include <crypto/sha.h>
13 #include <linux/crypto.h>
14 #include <linux/module.h>
15
16 #include <asm/unaligned.h>
17
18 typedef void (sha256_block_fn)(struct sha256_state *sst, u8 const *src,
19                                int blocks);
20
21 static inline int sha224_base_init(struct shash_desc *desc)
22 {
23         struct sha256_state *sctx = shash_desc_ctx(desc);
24
25         return sha224_init(sctx);
26 }
27
28 static inline int sha256_base_init(struct shash_desc *desc)
29 {
30         struct sha256_state *sctx = shash_desc_ctx(desc);
31
32         return sha256_init(sctx);
33 }
34
35 static inline int sha256_base_do_update(struct shash_desc *desc,
36                                         const u8 *data,
37                                         unsigned int len,
38                                         sha256_block_fn *block_fn)
39 {
40         struct sha256_state *sctx = shash_desc_ctx(desc);
41         unsigned int partial = sctx->count % SHA256_BLOCK_SIZE;
42
43         sctx->count += len;
44
45         if (unlikely((partial + len) >= SHA256_BLOCK_SIZE)) {
46                 int blocks;
47
48                 if (partial) {
49                         int p = SHA256_BLOCK_SIZE - partial;
50
51                         memcpy(sctx->buf + partial, data, p);
52                         data += p;
53                         len -= p;
54
55                         block_fn(sctx, sctx->buf, 1);
56                 }
57
58                 blocks = len / SHA256_BLOCK_SIZE;
59                 len %= SHA256_BLOCK_SIZE;
60
61                 if (blocks) {
62                         block_fn(sctx, data, blocks);
63                         data += blocks * SHA256_BLOCK_SIZE;
64                 }
65                 partial = 0;
66         }
67         if (len)
68                 memcpy(sctx->buf + partial, data, len);
69
70         return 0;
71 }
72
73 static inline int sha256_base_do_finalize(struct shash_desc *desc,
74                                           sha256_block_fn *block_fn)
75 {
76         const int bit_offset = SHA256_BLOCK_SIZE - sizeof(__be64);
77         struct sha256_state *sctx = shash_desc_ctx(desc);
78         __be64 *bits = (__be64 *)(sctx->buf + bit_offset);
79         unsigned int partial = sctx->count % SHA256_BLOCK_SIZE;
80
81         sctx->buf[partial++] = 0x80;
82         if (partial > bit_offset) {
83                 memset(sctx->buf + partial, 0x0, SHA256_BLOCK_SIZE - partial);
84                 partial = 0;
85
86                 block_fn(sctx, sctx->buf, 1);
87         }
88
89         memset(sctx->buf + partial, 0x0, bit_offset - partial);
90         *bits = cpu_to_be64(sctx->count << 3);
91         block_fn(sctx, sctx->buf, 1);
92
93         return 0;
94 }
95
96 static inline int sha256_base_finish(struct shash_desc *desc, u8 *out)
97 {
98         unsigned int digest_size = crypto_shash_digestsize(desc->tfm);
99         struct sha256_state *sctx = shash_desc_ctx(desc);
100         __be32 *digest = (__be32 *)out;
101         int i;
102
103         for (i = 0; digest_size > 0; i++, digest_size -= sizeof(__be32))
104                 put_unaligned_be32(sctx->state[i], digest++);
105
106         *sctx = (struct sha256_state){};
107         return 0;
108 }
109
110 #endif /* _CRYPTO_SHA256_BASE_H */