Merge branch 'for-linus' of git://oss.sgi.com/xfs/xfs
[sfrench/cifs-2.6.git] / fs / xfs / xfs_log_recover.c
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_error.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_dinode.h"
33 #include "xfs_inode.h"
34 #include "xfs_inode_item.h"
35 #include "xfs_alloc.h"
36 #include "xfs_ialloc.h"
37 #include "xfs_log_priv.h"
38 #include "xfs_buf_item.h"
39 #include "xfs_log_recover.h"
40 #include "xfs_extfree_item.h"
41 #include "xfs_trans_priv.h"
42 #include "xfs_quota.h"
43 #include "xfs_rw.h"
44 #include "xfs_utils.h"
45 #include "xfs_trace.h"
46
47 STATIC int      xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
48 STATIC int      xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
49 #if defined(DEBUG)
50 STATIC void     xlog_recover_check_summary(xlog_t *);
51 #else
52 #define xlog_recover_check_summary(log)
53 #endif
54
55 /*
56  * Sector aligned buffer routines for buffer create/read/write/access
57  */
58
59 /*
60  * Verify the given count of basic blocks is valid number of blocks
61  * to specify for an operation involving the given XFS log buffer.
62  * Returns nonzero if the count is valid, 0 otherwise.
63  */
64
65 static inline int
66 xlog_buf_bbcount_valid(
67         xlog_t          *log,
68         int             bbcount)
69 {
70         return bbcount > 0 && bbcount <= log->l_logBBsize;
71 }
72
73 /*
74  * Allocate a buffer to hold log data.  The buffer needs to be able
75  * to map to a range of nbblks basic blocks at any valid (basic
76  * block) offset within the log.
77  */
78 STATIC xfs_buf_t *
79 xlog_get_bp(
80         xlog_t          *log,
81         int             nbblks)
82 {
83         if (!xlog_buf_bbcount_valid(log, nbblks)) {
84                 xlog_warn("XFS: Invalid block length (0x%x) given for buffer",
85                         nbblks);
86                 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
87                 return NULL;
88         }
89
90         /*
91          * We do log I/O in units of log sectors (a power-of-2
92          * multiple of the basic block size), so we round up the
93          * requested size to acommodate the basic blocks required
94          * for complete log sectors.
95          *
96          * In addition, the buffer may be used for a non-sector-
97          * aligned block offset, in which case an I/O of the
98          * requested size could extend beyond the end of the
99          * buffer.  If the requested size is only 1 basic block it
100          * will never straddle a sector boundary, so this won't be
101          * an issue.  Nor will this be a problem if the log I/O is
102          * done in basic blocks (sector size 1).  But otherwise we
103          * extend the buffer by one extra log sector to ensure
104          * there's space to accomodate this possiblility.
105          */
106         if (nbblks > 1 && log->l_sectBBsize > 1)
107                 nbblks += log->l_sectBBsize;
108         nbblks = round_up(nbblks, log->l_sectBBsize);
109
110         return xfs_buf_get_noaddr(BBTOB(nbblks), log->l_mp->m_logdev_targp);
111 }
112
113 STATIC void
114 xlog_put_bp(
115         xfs_buf_t       *bp)
116 {
117         xfs_buf_free(bp);
118 }
119
120 /*
121  * Return the address of the start of the given block number's data
122  * in a log buffer.  The buffer covers a log sector-aligned region.
123  */
124 STATIC xfs_caddr_t
125 xlog_align(
126         xlog_t          *log,
127         xfs_daddr_t     blk_no,
128         int             nbblks,
129         xfs_buf_t       *bp)
130 {
131         xfs_daddr_t     offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
132
133         ASSERT(BBTOB(offset + nbblks) <= XFS_BUF_SIZE(bp));
134         return XFS_BUF_PTR(bp) + BBTOB(offset);
135 }
136
137
138 /*
139  * nbblks should be uint, but oh well.  Just want to catch that 32-bit length.
140  */
141 STATIC int
142 xlog_bread_noalign(
143         xlog_t          *log,
144         xfs_daddr_t     blk_no,
145         int             nbblks,
146         xfs_buf_t       *bp)
147 {
148         int             error;
149
150         if (!xlog_buf_bbcount_valid(log, nbblks)) {
151                 xlog_warn("XFS: Invalid block length (0x%x) given for buffer",
152                         nbblks);
153                 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
154                 return EFSCORRUPTED;
155         }
156
157         blk_no = round_down(blk_no, log->l_sectBBsize);
158         nbblks = round_up(nbblks, log->l_sectBBsize);
159
160         ASSERT(nbblks > 0);
161         ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
162
163         XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
164         XFS_BUF_READ(bp);
165         XFS_BUF_BUSY(bp);
166         XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
167         XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
168
169         xfsbdstrat(log->l_mp, bp);
170         error = xfs_iowait(bp);
171         if (error)
172                 xfs_ioerror_alert("xlog_bread", log->l_mp,
173                                   bp, XFS_BUF_ADDR(bp));
174         return error;
175 }
176
177 STATIC int
178 xlog_bread(
179         xlog_t          *log,
180         xfs_daddr_t     blk_no,
181         int             nbblks,
182         xfs_buf_t       *bp,
183         xfs_caddr_t     *offset)
184 {
185         int             error;
186
187         error = xlog_bread_noalign(log, blk_no, nbblks, bp);
188         if (error)
189                 return error;
190
191         *offset = xlog_align(log, blk_no, nbblks, bp);
192         return 0;
193 }
194
195 /*
196  * Write out the buffer at the given block for the given number of blocks.
197  * The buffer is kept locked across the write and is returned locked.
198  * This can only be used for synchronous log writes.
199  */
200 STATIC int
201 xlog_bwrite(
202         xlog_t          *log,
203         xfs_daddr_t     blk_no,
204         int             nbblks,
205         xfs_buf_t       *bp)
206 {
207         int             error;
208
209         if (!xlog_buf_bbcount_valid(log, nbblks)) {
210                 xlog_warn("XFS: Invalid block length (0x%x) given for buffer",
211                         nbblks);
212                 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
213                 return EFSCORRUPTED;
214         }
215
216         blk_no = round_down(blk_no, log->l_sectBBsize);
217         nbblks = round_up(nbblks, log->l_sectBBsize);
218
219         ASSERT(nbblks > 0);
220         ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
221
222         XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
223         XFS_BUF_ZEROFLAGS(bp);
224         XFS_BUF_BUSY(bp);
225         XFS_BUF_HOLD(bp);
226         XFS_BUF_PSEMA(bp, PRIBIO);
227         XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
228         XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
229
230         if ((error = xfs_bwrite(log->l_mp, bp)))
231                 xfs_ioerror_alert("xlog_bwrite", log->l_mp,
232                                   bp, XFS_BUF_ADDR(bp));
233         return error;
234 }
235
236 #ifdef DEBUG
237 /*
238  * dump debug superblock and log record information
239  */
240 STATIC void
241 xlog_header_check_dump(
242         xfs_mount_t             *mp,
243         xlog_rec_header_t       *head)
244 {
245         cmn_err(CE_DEBUG, "%s:  SB : uuid = %pU, fmt = %d\n",
246                 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
247         cmn_err(CE_DEBUG, "    log : uuid = %pU, fmt = %d\n",
248                 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
249 }
250 #else
251 #define xlog_header_check_dump(mp, head)
252 #endif
253
254 /*
255  * check log record header for recovery
256  */
257 STATIC int
258 xlog_header_check_recover(
259         xfs_mount_t             *mp,
260         xlog_rec_header_t       *head)
261 {
262         ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
263
264         /*
265          * IRIX doesn't write the h_fmt field and leaves it zeroed
266          * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
267          * a dirty log created in IRIX.
268          */
269         if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) {
270                 xlog_warn(
271         "XFS: dirty log written in incompatible format - can't recover");
272                 xlog_header_check_dump(mp, head);
273                 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
274                                  XFS_ERRLEVEL_HIGH, mp);
275                 return XFS_ERROR(EFSCORRUPTED);
276         } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
277                 xlog_warn(
278         "XFS: dirty log entry has mismatched uuid - can't recover");
279                 xlog_header_check_dump(mp, head);
280                 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
281                                  XFS_ERRLEVEL_HIGH, mp);
282                 return XFS_ERROR(EFSCORRUPTED);
283         }
284         return 0;
285 }
286
287 /*
288  * read the head block of the log and check the header
289  */
290 STATIC int
291 xlog_header_check_mount(
292         xfs_mount_t             *mp,
293         xlog_rec_header_t       *head)
294 {
295         ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
296
297         if (uuid_is_nil(&head->h_fs_uuid)) {
298                 /*
299                  * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
300                  * h_fs_uuid is nil, we assume this log was last mounted
301                  * by IRIX and continue.
302                  */
303                 xlog_warn("XFS: nil uuid in log - IRIX style log");
304         } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
305                 xlog_warn("XFS: log has mismatched uuid - can't recover");
306                 xlog_header_check_dump(mp, head);
307                 XFS_ERROR_REPORT("xlog_header_check_mount",
308                                  XFS_ERRLEVEL_HIGH, mp);
309                 return XFS_ERROR(EFSCORRUPTED);
310         }
311         return 0;
312 }
313
314 STATIC void
315 xlog_recover_iodone(
316         struct xfs_buf  *bp)
317 {
318         if (XFS_BUF_GETERROR(bp)) {
319                 /*
320                  * We're not going to bother about retrying
321                  * this during recovery. One strike!
322                  */
323                 xfs_ioerror_alert("xlog_recover_iodone",
324                                   bp->b_mount, bp, XFS_BUF_ADDR(bp));
325                 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
326         }
327         bp->b_mount = NULL;
328         XFS_BUF_CLR_IODONE_FUNC(bp);
329         xfs_biodone(bp);
330 }
331
332 /*
333  * This routine finds (to an approximation) the first block in the physical
334  * log which contains the given cycle.  It uses a binary search algorithm.
335  * Note that the algorithm can not be perfect because the disk will not
336  * necessarily be perfect.
337  */
338 STATIC int
339 xlog_find_cycle_start(
340         xlog_t          *log,
341         xfs_buf_t       *bp,
342         xfs_daddr_t     first_blk,
343         xfs_daddr_t     *last_blk,
344         uint            cycle)
345 {
346         xfs_caddr_t     offset;
347         xfs_daddr_t     mid_blk;
348         xfs_daddr_t     end_blk;
349         uint            mid_cycle;
350         int             error;
351
352         end_blk = *last_blk;
353         mid_blk = BLK_AVG(first_blk, end_blk);
354         while (mid_blk != first_blk && mid_blk != end_blk) {
355                 error = xlog_bread(log, mid_blk, 1, bp, &offset);
356                 if (error)
357                         return error;
358                 mid_cycle = xlog_get_cycle(offset);
359                 if (mid_cycle == cycle)
360                         end_blk = mid_blk;   /* last_half_cycle == mid_cycle */
361                 else
362                         first_blk = mid_blk; /* first_half_cycle == mid_cycle */
363                 mid_blk = BLK_AVG(first_blk, end_blk);
364         }
365         ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
366                (mid_blk == end_blk && mid_blk-1 == first_blk));
367
368         *last_blk = end_blk;
369
370         return 0;
371 }
372
373 /*
374  * Check that a range of blocks does not contain stop_on_cycle_no.
375  * Fill in *new_blk with the block offset where such a block is
376  * found, or with -1 (an invalid block number) if there is no such
377  * block in the range.  The scan needs to occur from front to back
378  * and the pointer into the region must be updated since a later
379  * routine will need to perform another test.
380  */
381 STATIC int
382 xlog_find_verify_cycle(
383         xlog_t          *log,
384         xfs_daddr_t     start_blk,
385         int             nbblks,
386         uint            stop_on_cycle_no,
387         xfs_daddr_t     *new_blk)
388 {
389         xfs_daddr_t     i, j;
390         uint            cycle;
391         xfs_buf_t       *bp;
392         xfs_daddr_t     bufblks;
393         xfs_caddr_t     buf = NULL;
394         int             error = 0;
395
396         /*
397          * Greedily allocate a buffer big enough to handle the full
398          * range of basic blocks we'll be examining.  If that fails,
399          * try a smaller size.  We need to be able to read at least
400          * a log sector, or we're out of luck.
401          */
402         bufblks = 1 << ffs(nbblks);
403         while (!(bp = xlog_get_bp(log, bufblks))) {
404                 bufblks >>= 1;
405                 if (bufblks < log->l_sectBBsize)
406                         return ENOMEM;
407         }
408
409         for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
410                 int     bcount;
411
412                 bcount = min(bufblks, (start_blk + nbblks - i));
413
414                 error = xlog_bread(log, i, bcount, bp, &buf);
415                 if (error)
416                         goto out;
417
418                 for (j = 0; j < bcount; j++) {
419                         cycle = xlog_get_cycle(buf);
420                         if (cycle == stop_on_cycle_no) {
421                                 *new_blk = i+j;
422                                 goto out;
423                         }
424
425                         buf += BBSIZE;
426                 }
427         }
428
429         *new_blk = -1;
430
431 out:
432         xlog_put_bp(bp);
433         return error;
434 }
435
436 /*
437  * Potentially backup over partial log record write.
438  *
439  * In the typical case, last_blk is the number of the block directly after
440  * a good log record.  Therefore, we subtract one to get the block number
441  * of the last block in the given buffer.  extra_bblks contains the number
442  * of blocks we would have read on a previous read.  This happens when the
443  * last log record is split over the end of the physical log.
444  *
445  * extra_bblks is the number of blocks potentially verified on a previous
446  * call to this routine.
447  */
448 STATIC int
449 xlog_find_verify_log_record(
450         xlog_t                  *log,
451         xfs_daddr_t             start_blk,
452         xfs_daddr_t             *last_blk,
453         int                     extra_bblks)
454 {
455         xfs_daddr_t             i;
456         xfs_buf_t               *bp;
457         xfs_caddr_t             offset = NULL;
458         xlog_rec_header_t       *head = NULL;
459         int                     error = 0;
460         int                     smallmem = 0;
461         int                     num_blks = *last_blk - start_blk;
462         int                     xhdrs;
463
464         ASSERT(start_blk != 0 || *last_blk != start_blk);
465
466         if (!(bp = xlog_get_bp(log, num_blks))) {
467                 if (!(bp = xlog_get_bp(log, 1)))
468                         return ENOMEM;
469                 smallmem = 1;
470         } else {
471                 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
472                 if (error)
473                         goto out;
474                 offset += ((num_blks - 1) << BBSHIFT);
475         }
476
477         for (i = (*last_blk) - 1; i >= 0; i--) {
478                 if (i < start_blk) {
479                         /* valid log record not found */
480                         xlog_warn(
481                 "XFS: Log inconsistent (didn't find previous header)");
482                         ASSERT(0);
483                         error = XFS_ERROR(EIO);
484                         goto out;
485                 }
486
487                 if (smallmem) {
488                         error = xlog_bread(log, i, 1, bp, &offset);
489                         if (error)
490                                 goto out;
491                 }
492
493                 head = (xlog_rec_header_t *)offset;
494
495                 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno))
496                         break;
497
498                 if (!smallmem)
499                         offset -= BBSIZE;
500         }
501
502         /*
503          * We hit the beginning of the physical log & still no header.  Return
504          * to caller.  If caller can handle a return of -1, then this routine
505          * will be called again for the end of the physical log.
506          */
507         if (i == -1) {
508                 error = -1;
509                 goto out;
510         }
511
512         /*
513          * We have the final block of the good log (the first block
514          * of the log record _before_ the head. So we check the uuid.
515          */
516         if ((error = xlog_header_check_mount(log->l_mp, head)))
517                 goto out;
518
519         /*
520          * We may have found a log record header before we expected one.
521          * last_blk will be the 1st block # with a given cycle #.  We may end
522          * up reading an entire log record.  In this case, we don't want to
523          * reset last_blk.  Only when last_blk points in the middle of a log
524          * record do we update last_blk.
525          */
526         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
527                 uint    h_size = be32_to_cpu(head->h_size);
528
529                 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
530                 if (h_size % XLOG_HEADER_CYCLE_SIZE)
531                         xhdrs++;
532         } else {
533                 xhdrs = 1;
534         }
535
536         if (*last_blk - i + extra_bblks !=
537             BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
538                 *last_blk = i;
539
540 out:
541         xlog_put_bp(bp);
542         return error;
543 }
544
545 /*
546  * Head is defined to be the point of the log where the next log write
547  * write could go.  This means that incomplete LR writes at the end are
548  * eliminated when calculating the head.  We aren't guaranteed that previous
549  * LR have complete transactions.  We only know that a cycle number of
550  * current cycle number -1 won't be present in the log if we start writing
551  * from our current block number.
552  *
553  * last_blk contains the block number of the first block with a given
554  * cycle number.
555  *
556  * Return: zero if normal, non-zero if error.
557  */
558 STATIC int
559 xlog_find_head(
560         xlog_t          *log,
561         xfs_daddr_t     *return_head_blk)
562 {
563         xfs_buf_t       *bp;
564         xfs_caddr_t     offset;
565         xfs_daddr_t     new_blk, first_blk, start_blk, last_blk, head_blk;
566         int             num_scan_bblks;
567         uint            first_half_cycle, last_half_cycle;
568         uint            stop_on_cycle;
569         int             error, log_bbnum = log->l_logBBsize;
570
571         /* Is the end of the log device zeroed? */
572         if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
573                 *return_head_blk = first_blk;
574
575                 /* Is the whole lot zeroed? */
576                 if (!first_blk) {
577                         /* Linux XFS shouldn't generate totally zeroed logs -
578                          * mkfs etc write a dummy unmount record to a fresh
579                          * log so we can store the uuid in there
580                          */
581                         xlog_warn("XFS: totally zeroed log");
582                 }
583
584                 return 0;
585         } else if (error) {
586                 xlog_warn("XFS: empty log check failed");
587                 return error;
588         }
589
590         first_blk = 0;                  /* get cycle # of 1st block */
591         bp = xlog_get_bp(log, 1);
592         if (!bp)
593                 return ENOMEM;
594
595         error = xlog_bread(log, 0, 1, bp, &offset);
596         if (error)
597                 goto bp_err;
598
599         first_half_cycle = xlog_get_cycle(offset);
600
601         last_blk = head_blk = log_bbnum - 1;    /* get cycle # of last block */
602         error = xlog_bread(log, last_blk, 1, bp, &offset);
603         if (error)
604                 goto bp_err;
605
606         last_half_cycle = xlog_get_cycle(offset);
607         ASSERT(last_half_cycle != 0);
608
609         /*
610          * If the 1st half cycle number is equal to the last half cycle number,
611          * then the entire log is stamped with the same cycle number.  In this
612          * case, head_blk can't be set to zero (which makes sense).  The below
613          * math doesn't work out properly with head_blk equal to zero.  Instead,
614          * we set it to log_bbnum which is an invalid block number, but this
615          * value makes the math correct.  If head_blk doesn't changed through
616          * all the tests below, *head_blk is set to zero at the very end rather
617          * than log_bbnum.  In a sense, log_bbnum and zero are the same block
618          * in a circular file.
619          */
620         if (first_half_cycle == last_half_cycle) {
621                 /*
622                  * In this case we believe that the entire log should have
623                  * cycle number last_half_cycle.  We need to scan backwards
624                  * from the end verifying that there are no holes still
625                  * containing last_half_cycle - 1.  If we find such a hole,
626                  * then the start of that hole will be the new head.  The
627                  * simple case looks like
628                  *        x | x ... | x - 1 | x
629                  * Another case that fits this picture would be
630                  *        x | x + 1 | x ... | x
631                  * In this case the head really is somewhere at the end of the
632                  * log, as one of the latest writes at the beginning was
633                  * incomplete.
634                  * One more case is
635                  *        x | x + 1 | x ... | x - 1 | x
636                  * This is really the combination of the above two cases, and
637                  * the head has to end up at the start of the x-1 hole at the
638                  * end of the log.
639                  *
640                  * In the 256k log case, we will read from the beginning to the
641                  * end of the log and search for cycle numbers equal to x-1.
642                  * We don't worry about the x+1 blocks that we encounter,
643                  * because we know that they cannot be the head since the log
644                  * started with x.
645                  */
646                 head_blk = log_bbnum;
647                 stop_on_cycle = last_half_cycle - 1;
648         } else {
649                 /*
650                  * In this case we want to find the first block with cycle
651                  * number matching last_half_cycle.  We expect the log to be
652                  * some variation on
653                  *        x + 1 ... | x ... | x
654                  * The first block with cycle number x (last_half_cycle) will
655                  * be where the new head belongs.  First we do a binary search
656                  * for the first occurrence of last_half_cycle.  The binary
657                  * search may not be totally accurate, so then we scan back
658                  * from there looking for occurrences of last_half_cycle before
659                  * us.  If that backwards scan wraps around the beginning of
660                  * the log, then we look for occurrences of last_half_cycle - 1
661                  * at the end of the log.  The cases we're looking for look
662                  * like
663                  *                               v binary search stopped here
664                  *        x + 1 ... | x | x + 1 | x ... | x
665                  *                   ^ but we want to locate this spot
666                  * or
667                  *        <---------> less than scan distance
668                  *        x + 1 ... | x ... | x - 1 | x
669                  *                           ^ we want to locate this spot
670                  */
671                 stop_on_cycle = last_half_cycle;
672                 if ((error = xlog_find_cycle_start(log, bp, first_blk,
673                                                 &head_blk, last_half_cycle)))
674                         goto bp_err;
675         }
676
677         /*
678          * Now validate the answer.  Scan back some number of maximum possible
679          * blocks and make sure each one has the expected cycle number.  The
680          * maximum is determined by the total possible amount of buffering
681          * in the in-core log.  The following number can be made tighter if
682          * we actually look at the block size of the filesystem.
683          */
684         num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
685         if (head_blk >= num_scan_bblks) {
686                 /*
687                  * We are guaranteed that the entire check can be performed
688                  * in one buffer.
689                  */
690                 start_blk = head_blk - num_scan_bblks;
691                 if ((error = xlog_find_verify_cycle(log,
692                                                 start_blk, num_scan_bblks,
693                                                 stop_on_cycle, &new_blk)))
694                         goto bp_err;
695                 if (new_blk != -1)
696                         head_blk = new_blk;
697         } else {                /* need to read 2 parts of log */
698                 /*
699                  * We are going to scan backwards in the log in two parts.
700                  * First we scan the physical end of the log.  In this part
701                  * of the log, we are looking for blocks with cycle number
702                  * last_half_cycle - 1.
703                  * If we find one, then we know that the log starts there, as
704                  * we've found a hole that didn't get written in going around
705                  * the end of the physical log.  The simple case for this is
706                  *        x + 1 ... | x ... | x - 1 | x
707                  *        <---------> less than scan distance
708                  * If all of the blocks at the end of the log have cycle number
709                  * last_half_cycle, then we check the blocks at the start of
710                  * the log looking for occurrences of last_half_cycle.  If we
711                  * find one, then our current estimate for the location of the
712                  * first occurrence of last_half_cycle is wrong and we move
713                  * back to the hole we've found.  This case looks like
714                  *        x + 1 ... | x | x + 1 | x ...
715                  *                               ^ binary search stopped here
716                  * Another case we need to handle that only occurs in 256k
717                  * logs is
718                  *        x + 1 ... | x ... | x+1 | x ...
719                  *                   ^ binary search stops here
720                  * In a 256k log, the scan at the end of the log will see the
721                  * x + 1 blocks.  We need to skip past those since that is
722                  * certainly not the head of the log.  By searching for
723                  * last_half_cycle-1 we accomplish that.
724                  */
725                 ASSERT(head_blk <= INT_MAX &&
726                         (xfs_daddr_t) num_scan_bblks >= head_blk);
727                 start_blk = log_bbnum - (num_scan_bblks - head_blk);
728                 if ((error = xlog_find_verify_cycle(log, start_blk,
729                                         num_scan_bblks - (int)head_blk,
730                                         (stop_on_cycle - 1), &new_blk)))
731                         goto bp_err;
732                 if (new_blk != -1) {
733                         head_blk = new_blk;
734                         goto validate_head;
735                 }
736
737                 /*
738                  * Scan beginning of log now.  The last part of the physical
739                  * log is good.  This scan needs to verify that it doesn't find
740                  * the last_half_cycle.
741                  */
742                 start_blk = 0;
743                 ASSERT(head_blk <= INT_MAX);
744                 if ((error = xlog_find_verify_cycle(log,
745                                         start_blk, (int)head_blk,
746                                         stop_on_cycle, &new_blk)))
747                         goto bp_err;
748                 if (new_blk != -1)
749                         head_blk = new_blk;
750         }
751
752 validate_head:
753         /*
754          * Now we need to make sure head_blk is not pointing to a block in
755          * the middle of a log record.
756          */
757         num_scan_bblks = XLOG_REC_SHIFT(log);
758         if (head_blk >= num_scan_bblks) {
759                 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
760
761                 /* start ptr at last block ptr before head_blk */
762                 if ((error = xlog_find_verify_log_record(log, start_blk,
763                                                         &head_blk, 0)) == -1) {
764                         error = XFS_ERROR(EIO);
765                         goto bp_err;
766                 } else if (error)
767                         goto bp_err;
768         } else {
769                 start_blk = 0;
770                 ASSERT(head_blk <= INT_MAX);
771                 if ((error = xlog_find_verify_log_record(log, start_blk,
772                                                         &head_blk, 0)) == -1) {
773                         /* We hit the beginning of the log during our search */
774                         start_blk = log_bbnum - (num_scan_bblks - head_blk);
775                         new_blk = log_bbnum;
776                         ASSERT(start_blk <= INT_MAX &&
777                                 (xfs_daddr_t) log_bbnum-start_blk >= 0);
778                         ASSERT(head_blk <= INT_MAX);
779                         if ((error = xlog_find_verify_log_record(log,
780                                                         start_blk, &new_blk,
781                                                         (int)head_blk)) == -1) {
782                                 error = XFS_ERROR(EIO);
783                                 goto bp_err;
784                         } else if (error)
785                                 goto bp_err;
786                         if (new_blk != log_bbnum)
787                                 head_blk = new_blk;
788                 } else if (error)
789                         goto bp_err;
790         }
791
792         xlog_put_bp(bp);
793         if (head_blk == log_bbnum)
794                 *return_head_blk = 0;
795         else
796                 *return_head_blk = head_blk;
797         /*
798          * When returning here, we have a good block number.  Bad block
799          * means that during a previous crash, we didn't have a clean break
800          * from cycle number N to cycle number N-1.  In this case, we need
801          * to find the first block with cycle number N-1.
802          */
803         return 0;
804
805  bp_err:
806         xlog_put_bp(bp);
807
808         if (error)
809             xlog_warn("XFS: failed to find log head");
810         return error;
811 }
812
813 /*
814  * Find the sync block number or the tail of the log.
815  *
816  * This will be the block number of the last record to have its
817  * associated buffers synced to disk.  Every log record header has
818  * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
819  * to get a sync block number.  The only concern is to figure out which
820  * log record header to believe.
821  *
822  * The following algorithm uses the log record header with the largest
823  * lsn.  The entire log record does not need to be valid.  We only care
824  * that the header is valid.
825  *
826  * We could speed up search by using current head_blk buffer, but it is not
827  * available.
828  */
829 STATIC int
830 xlog_find_tail(
831         xlog_t                  *log,
832         xfs_daddr_t             *head_blk,
833         xfs_daddr_t             *tail_blk)
834 {
835         xlog_rec_header_t       *rhead;
836         xlog_op_header_t        *op_head;
837         xfs_caddr_t             offset = NULL;
838         xfs_buf_t               *bp;
839         int                     error, i, found;
840         xfs_daddr_t             umount_data_blk;
841         xfs_daddr_t             after_umount_blk;
842         xfs_lsn_t               tail_lsn;
843         int                     hblks;
844
845         found = 0;
846
847         /*
848          * Find previous log record
849          */
850         if ((error = xlog_find_head(log, head_blk)))
851                 return error;
852
853         bp = xlog_get_bp(log, 1);
854         if (!bp)
855                 return ENOMEM;
856         if (*head_blk == 0) {                           /* special case */
857                 error = xlog_bread(log, 0, 1, bp, &offset);
858                 if (error)
859                         goto done;
860
861                 if (xlog_get_cycle(offset) == 0) {
862                         *tail_blk = 0;
863                         /* leave all other log inited values alone */
864                         goto done;
865                 }
866         }
867
868         /*
869          * Search backwards looking for log record header block
870          */
871         ASSERT(*head_blk < INT_MAX);
872         for (i = (int)(*head_blk) - 1; i >= 0; i--) {
873                 error = xlog_bread(log, i, 1, bp, &offset);
874                 if (error)
875                         goto done;
876
877                 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) {
878                         found = 1;
879                         break;
880                 }
881         }
882         /*
883          * If we haven't found the log record header block, start looking
884          * again from the end of the physical log.  XXXmiken: There should be
885          * a check here to make sure we didn't search more than N blocks in
886          * the previous code.
887          */
888         if (!found) {
889                 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
890                         error = xlog_bread(log, i, 1, bp, &offset);
891                         if (error)
892                                 goto done;
893
894                         if (XLOG_HEADER_MAGIC_NUM ==
895                             be32_to_cpu(*(__be32 *)offset)) {
896                                 found = 2;
897                                 break;
898                         }
899                 }
900         }
901         if (!found) {
902                 xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
903                 ASSERT(0);
904                 return XFS_ERROR(EIO);
905         }
906
907         /* find blk_no of tail of log */
908         rhead = (xlog_rec_header_t *)offset;
909         *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
910
911         /*
912          * Reset log values according to the state of the log when we
913          * crashed.  In the case where head_blk == 0, we bump curr_cycle
914          * one because the next write starts a new cycle rather than
915          * continuing the cycle of the last good log record.  At this
916          * point we have guaranteed that all partial log records have been
917          * accounted for.  Therefore, we know that the last good log record
918          * written was complete and ended exactly on the end boundary
919          * of the physical log.
920          */
921         log->l_prev_block = i;
922         log->l_curr_block = (int)*head_blk;
923         log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
924         if (found == 2)
925                 log->l_curr_cycle++;
926         log->l_tail_lsn = be64_to_cpu(rhead->h_tail_lsn);
927         log->l_last_sync_lsn = be64_to_cpu(rhead->h_lsn);
928         log->l_grant_reserve_cycle = log->l_curr_cycle;
929         log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
930         log->l_grant_write_cycle = log->l_curr_cycle;
931         log->l_grant_write_bytes = BBTOB(log->l_curr_block);
932
933         /*
934          * Look for unmount record.  If we find it, then we know there
935          * was a clean unmount.  Since 'i' could be the last block in
936          * the physical log, we convert to a log block before comparing
937          * to the head_blk.
938          *
939          * Save the current tail lsn to use to pass to
940          * xlog_clear_stale_blocks() below.  We won't want to clear the
941          * unmount record if there is one, so we pass the lsn of the
942          * unmount record rather than the block after it.
943          */
944         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
945                 int     h_size = be32_to_cpu(rhead->h_size);
946                 int     h_version = be32_to_cpu(rhead->h_version);
947
948                 if ((h_version & XLOG_VERSION_2) &&
949                     (h_size > XLOG_HEADER_CYCLE_SIZE)) {
950                         hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
951                         if (h_size % XLOG_HEADER_CYCLE_SIZE)
952                                 hblks++;
953                 } else {
954                         hblks = 1;
955                 }
956         } else {
957                 hblks = 1;
958         }
959         after_umount_blk = (i + hblks + (int)
960                 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
961         tail_lsn = log->l_tail_lsn;
962         if (*head_blk == after_umount_blk &&
963             be32_to_cpu(rhead->h_num_logops) == 1) {
964                 umount_data_blk = (i + hblks) % log->l_logBBsize;
965                 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
966                 if (error)
967                         goto done;
968
969                 op_head = (xlog_op_header_t *)offset;
970                 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
971                         /*
972                          * Set tail and last sync so that newly written
973                          * log records will point recovery to after the
974                          * current unmount record.
975                          */
976                         log->l_tail_lsn =
977                                 xlog_assign_lsn(log->l_curr_cycle,
978                                                 after_umount_blk);
979                         log->l_last_sync_lsn =
980                                 xlog_assign_lsn(log->l_curr_cycle,
981                                                 after_umount_blk);
982                         *tail_blk = after_umount_blk;
983
984                         /*
985                          * Note that the unmount was clean. If the unmount
986                          * was not clean, we need to know this to rebuild the
987                          * superblock counters from the perag headers if we
988                          * have a filesystem using non-persistent counters.
989                          */
990                         log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
991                 }
992         }
993
994         /*
995          * Make sure that there are no blocks in front of the head
996          * with the same cycle number as the head.  This can happen
997          * because we allow multiple outstanding log writes concurrently,
998          * and the later writes might make it out before earlier ones.
999          *
1000          * We use the lsn from before modifying it so that we'll never
1001          * overwrite the unmount record after a clean unmount.
1002          *
1003          * Do this only if we are going to recover the filesystem
1004          *
1005          * NOTE: This used to say "if (!readonly)"
1006          * However on Linux, we can & do recover a read-only filesystem.
1007          * We only skip recovery if NORECOVERY is specified on mount,
1008          * in which case we would not be here.
1009          *
1010          * But... if the -device- itself is readonly, just skip this.
1011          * We can't recover this device anyway, so it won't matter.
1012          */
1013         if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1014                 error = xlog_clear_stale_blocks(log, tail_lsn);
1015
1016 done:
1017         xlog_put_bp(bp);
1018
1019         if (error)
1020                 xlog_warn("XFS: failed to locate log tail");
1021         return error;
1022 }
1023
1024 /*
1025  * Is the log zeroed at all?
1026  *
1027  * The last binary search should be changed to perform an X block read
1028  * once X becomes small enough.  You can then search linearly through
1029  * the X blocks.  This will cut down on the number of reads we need to do.
1030  *
1031  * If the log is partially zeroed, this routine will pass back the blkno
1032  * of the first block with cycle number 0.  It won't have a complete LR
1033  * preceding it.
1034  *
1035  * Return:
1036  *      0  => the log is completely written to
1037  *      -1 => use *blk_no as the first block of the log
1038  *      >0 => error has occurred
1039  */
1040 STATIC int
1041 xlog_find_zeroed(
1042         xlog_t          *log,
1043         xfs_daddr_t     *blk_no)
1044 {
1045         xfs_buf_t       *bp;
1046         xfs_caddr_t     offset;
1047         uint            first_cycle, last_cycle;
1048         xfs_daddr_t     new_blk, last_blk, start_blk;
1049         xfs_daddr_t     num_scan_bblks;
1050         int             error, log_bbnum = log->l_logBBsize;
1051
1052         *blk_no = 0;
1053
1054         /* check totally zeroed log */
1055         bp = xlog_get_bp(log, 1);
1056         if (!bp)
1057                 return ENOMEM;
1058         error = xlog_bread(log, 0, 1, bp, &offset);
1059         if (error)
1060                 goto bp_err;
1061
1062         first_cycle = xlog_get_cycle(offset);
1063         if (first_cycle == 0) {         /* completely zeroed log */
1064                 *blk_no = 0;
1065                 xlog_put_bp(bp);
1066                 return -1;
1067         }
1068
1069         /* check partially zeroed log */
1070         error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1071         if (error)
1072                 goto bp_err;
1073
1074         last_cycle = xlog_get_cycle(offset);
1075         if (last_cycle != 0) {          /* log completely written to */
1076                 xlog_put_bp(bp);
1077                 return 0;
1078         } else if (first_cycle != 1) {
1079                 /*
1080                  * If the cycle of the last block is zero, the cycle of
1081                  * the first block must be 1. If it's not, maybe we're
1082                  * not looking at a log... Bail out.
1083                  */
1084                 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1085                 return XFS_ERROR(EINVAL);
1086         }
1087
1088         /* we have a partially zeroed log */
1089         last_blk = log_bbnum-1;
1090         if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1091                 goto bp_err;
1092
1093         /*
1094          * Validate the answer.  Because there is no way to guarantee that
1095          * the entire log is made up of log records which are the same size,
1096          * we scan over the defined maximum blocks.  At this point, the maximum
1097          * is not chosen to mean anything special.   XXXmiken
1098          */
1099         num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1100         ASSERT(num_scan_bblks <= INT_MAX);
1101
1102         if (last_blk < num_scan_bblks)
1103                 num_scan_bblks = last_blk;
1104         start_blk = last_blk - num_scan_bblks;
1105
1106         /*
1107          * We search for any instances of cycle number 0 that occur before
1108          * our current estimate of the head.  What we're trying to detect is
1109          *        1 ... | 0 | 1 | 0...
1110          *                       ^ binary search ends here
1111          */
1112         if ((error = xlog_find_verify_cycle(log, start_blk,
1113                                          (int)num_scan_bblks, 0, &new_blk)))
1114                 goto bp_err;
1115         if (new_blk != -1)
1116                 last_blk = new_blk;
1117
1118         /*
1119          * Potentially backup over partial log record write.  We don't need
1120          * to search the end of the log because we know it is zero.
1121          */
1122         if ((error = xlog_find_verify_log_record(log, start_blk,
1123                                 &last_blk, 0)) == -1) {
1124             error = XFS_ERROR(EIO);
1125             goto bp_err;
1126         } else if (error)
1127             goto bp_err;
1128
1129         *blk_no = last_blk;
1130 bp_err:
1131         xlog_put_bp(bp);
1132         if (error)
1133                 return error;
1134         return -1;
1135 }
1136
1137 /*
1138  * These are simple subroutines used by xlog_clear_stale_blocks() below
1139  * to initialize a buffer full of empty log record headers and write
1140  * them into the log.
1141  */
1142 STATIC void
1143 xlog_add_record(
1144         xlog_t                  *log,
1145         xfs_caddr_t             buf,
1146         int                     cycle,
1147         int                     block,
1148         int                     tail_cycle,
1149         int                     tail_block)
1150 {
1151         xlog_rec_header_t       *recp = (xlog_rec_header_t *)buf;
1152
1153         memset(buf, 0, BBSIZE);
1154         recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1155         recp->h_cycle = cpu_to_be32(cycle);
1156         recp->h_version = cpu_to_be32(
1157                         xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1158         recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1159         recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1160         recp->h_fmt = cpu_to_be32(XLOG_FMT);
1161         memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1162 }
1163
1164 STATIC int
1165 xlog_write_log_records(
1166         xlog_t          *log,
1167         int             cycle,
1168         int             start_block,
1169         int             blocks,
1170         int             tail_cycle,
1171         int             tail_block)
1172 {
1173         xfs_caddr_t     offset;
1174         xfs_buf_t       *bp;
1175         int             balign, ealign;
1176         int             sectbb = log->l_sectBBsize;
1177         int             end_block = start_block + blocks;
1178         int             bufblks;
1179         int             error = 0;
1180         int             i, j = 0;
1181
1182         /*
1183          * Greedily allocate a buffer big enough to handle the full
1184          * range of basic blocks to be written.  If that fails, try
1185          * a smaller size.  We need to be able to write at least a
1186          * log sector, or we're out of luck.
1187          */
1188         bufblks = 1 << ffs(blocks);
1189         while (!(bp = xlog_get_bp(log, bufblks))) {
1190                 bufblks >>= 1;
1191                 if (bufblks < sectbb)
1192                         return ENOMEM;
1193         }
1194
1195         /* We may need to do a read at the start to fill in part of
1196          * the buffer in the starting sector not covered by the first
1197          * write below.
1198          */
1199         balign = round_down(start_block, sectbb);
1200         if (balign != start_block) {
1201                 error = xlog_bread_noalign(log, start_block, 1, bp);
1202                 if (error)
1203                         goto out_put_bp;
1204
1205                 j = start_block - balign;
1206         }
1207
1208         for (i = start_block; i < end_block; i += bufblks) {
1209                 int             bcount, endcount;
1210
1211                 bcount = min(bufblks, end_block - start_block);
1212                 endcount = bcount - j;
1213
1214                 /* We may need to do a read at the end to fill in part of
1215                  * the buffer in the final sector not covered by the write.
1216                  * If this is the same sector as the above read, skip it.
1217                  */
1218                 ealign = round_down(end_block, sectbb);
1219                 if (j == 0 && (start_block + endcount > ealign)) {
1220                         offset = XFS_BUF_PTR(bp);
1221                         balign = BBTOB(ealign - start_block);
1222                         error = XFS_BUF_SET_PTR(bp, offset + balign,
1223                                                 BBTOB(sectbb));
1224                         if (error)
1225                                 break;
1226
1227                         error = xlog_bread_noalign(log, ealign, sectbb, bp);
1228                         if (error)
1229                                 break;
1230
1231                         error = XFS_BUF_SET_PTR(bp, offset, bufblks);
1232                         if (error)
1233                                 break;
1234                 }
1235
1236                 offset = xlog_align(log, start_block, endcount, bp);
1237                 for (; j < endcount; j++) {
1238                         xlog_add_record(log, offset, cycle, i+j,
1239                                         tail_cycle, tail_block);
1240                         offset += BBSIZE;
1241                 }
1242                 error = xlog_bwrite(log, start_block, endcount, bp);
1243                 if (error)
1244                         break;
1245                 start_block += endcount;
1246                 j = 0;
1247         }
1248
1249  out_put_bp:
1250         xlog_put_bp(bp);
1251         return error;
1252 }
1253
1254 /*
1255  * This routine is called to blow away any incomplete log writes out
1256  * in front of the log head.  We do this so that we won't become confused
1257  * if we come up, write only a little bit more, and then crash again.
1258  * If we leave the partial log records out there, this situation could
1259  * cause us to think those partial writes are valid blocks since they
1260  * have the current cycle number.  We get rid of them by overwriting them
1261  * with empty log records with the old cycle number rather than the
1262  * current one.
1263  *
1264  * The tail lsn is passed in rather than taken from
1265  * the log so that we will not write over the unmount record after a
1266  * clean unmount in a 512 block log.  Doing so would leave the log without
1267  * any valid log records in it until a new one was written.  If we crashed
1268  * during that time we would not be able to recover.
1269  */
1270 STATIC int
1271 xlog_clear_stale_blocks(
1272         xlog_t          *log,
1273         xfs_lsn_t       tail_lsn)
1274 {
1275         int             tail_cycle, head_cycle;
1276         int             tail_block, head_block;
1277         int             tail_distance, max_distance;
1278         int             distance;
1279         int             error;
1280
1281         tail_cycle = CYCLE_LSN(tail_lsn);
1282         tail_block = BLOCK_LSN(tail_lsn);
1283         head_cycle = log->l_curr_cycle;
1284         head_block = log->l_curr_block;
1285
1286         /*
1287          * Figure out the distance between the new head of the log
1288          * and the tail.  We want to write over any blocks beyond the
1289          * head that we may have written just before the crash, but
1290          * we don't want to overwrite the tail of the log.
1291          */
1292         if (head_cycle == tail_cycle) {
1293                 /*
1294                  * The tail is behind the head in the physical log,
1295                  * so the distance from the head to the tail is the
1296                  * distance from the head to the end of the log plus
1297                  * the distance from the beginning of the log to the
1298                  * tail.
1299                  */
1300                 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1301                         XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1302                                          XFS_ERRLEVEL_LOW, log->l_mp);
1303                         return XFS_ERROR(EFSCORRUPTED);
1304                 }
1305                 tail_distance = tail_block + (log->l_logBBsize - head_block);
1306         } else {
1307                 /*
1308                  * The head is behind the tail in the physical log,
1309                  * so the distance from the head to the tail is just
1310                  * the tail block minus the head block.
1311                  */
1312                 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1313                         XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1314                                          XFS_ERRLEVEL_LOW, log->l_mp);
1315                         return XFS_ERROR(EFSCORRUPTED);
1316                 }
1317                 tail_distance = tail_block - head_block;
1318         }
1319
1320         /*
1321          * If the head is right up against the tail, we can't clear
1322          * anything.
1323          */
1324         if (tail_distance <= 0) {
1325                 ASSERT(tail_distance == 0);
1326                 return 0;
1327         }
1328
1329         max_distance = XLOG_TOTAL_REC_SHIFT(log);
1330         /*
1331          * Take the smaller of the maximum amount of outstanding I/O
1332          * we could have and the distance to the tail to clear out.
1333          * We take the smaller so that we don't overwrite the tail and
1334          * we don't waste all day writing from the head to the tail
1335          * for no reason.
1336          */
1337         max_distance = MIN(max_distance, tail_distance);
1338
1339         if ((head_block + max_distance) <= log->l_logBBsize) {
1340                 /*
1341                  * We can stomp all the blocks we need to without
1342                  * wrapping around the end of the log.  Just do it
1343                  * in a single write.  Use the cycle number of the
1344                  * current cycle minus one so that the log will look like:
1345                  *     n ... | n - 1 ...
1346                  */
1347                 error = xlog_write_log_records(log, (head_cycle - 1),
1348                                 head_block, max_distance, tail_cycle,
1349                                 tail_block);
1350                 if (error)
1351                         return error;
1352         } else {
1353                 /*
1354                  * We need to wrap around the end of the physical log in
1355                  * order to clear all the blocks.  Do it in two separate
1356                  * I/Os.  The first write should be from the head to the
1357                  * end of the physical log, and it should use the current
1358                  * cycle number minus one just like above.
1359                  */
1360                 distance = log->l_logBBsize - head_block;
1361                 error = xlog_write_log_records(log, (head_cycle - 1),
1362                                 head_block, distance, tail_cycle,
1363                                 tail_block);
1364
1365                 if (error)
1366                         return error;
1367
1368                 /*
1369                  * Now write the blocks at the start of the physical log.
1370                  * This writes the remainder of the blocks we want to clear.
1371                  * It uses the current cycle number since we're now on the
1372                  * same cycle as the head so that we get:
1373                  *    n ... n ... | n - 1 ...
1374                  *    ^^^^^ blocks we're writing
1375                  */
1376                 distance = max_distance - (log->l_logBBsize - head_block);
1377                 error = xlog_write_log_records(log, head_cycle, 0, distance,
1378                                 tail_cycle, tail_block);
1379                 if (error)
1380                         return error;
1381         }
1382
1383         return 0;
1384 }
1385
1386 /******************************************************************************
1387  *
1388  *              Log recover routines
1389  *
1390  ******************************************************************************
1391  */
1392
1393 STATIC xlog_recover_t *
1394 xlog_recover_find_tid(
1395         struct hlist_head       *head,
1396         xlog_tid_t              tid)
1397 {
1398         xlog_recover_t          *trans;
1399         struct hlist_node       *n;
1400
1401         hlist_for_each_entry(trans, n, head, r_list) {
1402                 if (trans->r_log_tid == tid)
1403                         return trans;
1404         }
1405         return NULL;
1406 }
1407
1408 STATIC void
1409 xlog_recover_new_tid(
1410         struct hlist_head       *head,
1411         xlog_tid_t              tid,
1412         xfs_lsn_t               lsn)
1413 {
1414         xlog_recover_t          *trans;
1415
1416         trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1417         trans->r_log_tid   = tid;
1418         trans->r_lsn       = lsn;
1419         INIT_LIST_HEAD(&trans->r_itemq);
1420
1421         INIT_HLIST_NODE(&trans->r_list);
1422         hlist_add_head(&trans->r_list, head);
1423 }
1424
1425 STATIC void
1426 xlog_recover_add_item(
1427         struct list_head        *head)
1428 {
1429         xlog_recover_item_t     *item;
1430
1431         item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1432         INIT_LIST_HEAD(&item->ri_list);
1433         list_add_tail(&item->ri_list, head);
1434 }
1435
1436 STATIC int
1437 xlog_recover_add_to_cont_trans(
1438         struct log              *log,
1439         xlog_recover_t          *trans,
1440         xfs_caddr_t             dp,
1441         int                     len)
1442 {
1443         xlog_recover_item_t     *item;
1444         xfs_caddr_t             ptr, old_ptr;
1445         int                     old_len;
1446
1447         if (list_empty(&trans->r_itemq)) {
1448                 /* finish copying rest of trans header */
1449                 xlog_recover_add_item(&trans->r_itemq);
1450                 ptr = (xfs_caddr_t) &trans->r_theader +
1451                                 sizeof(xfs_trans_header_t) - len;
1452                 memcpy(ptr, dp, len); /* d, s, l */
1453                 return 0;
1454         }
1455         /* take the tail entry */
1456         item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1457
1458         old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1459         old_len = item->ri_buf[item->ri_cnt-1].i_len;
1460
1461         ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
1462         memcpy(&ptr[old_len], dp, len); /* d, s, l */
1463         item->ri_buf[item->ri_cnt-1].i_len += len;
1464         item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1465         trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1466         return 0;
1467 }
1468
1469 /*
1470  * The next region to add is the start of a new region.  It could be
1471  * a whole region or it could be the first part of a new region.  Because
1472  * of this, the assumption here is that the type and size fields of all
1473  * format structures fit into the first 32 bits of the structure.
1474  *
1475  * This works because all regions must be 32 bit aligned.  Therefore, we
1476  * either have both fields or we have neither field.  In the case we have
1477  * neither field, the data part of the region is zero length.  We only have
1478  * a log_op_header and can throw away the header since a new one will appear
1479  * later.  If we have at least 4 bytes, then we can determine how many regions
1480  * will appear in the current log item.
1481  */
1482 STATIC int
1483 xlog_recover_add_to_trans(
1484         struct log              *log,
1485         xlog_recover_t          *trans,
1486         xfs_caddr_t             dp,
1487         int                     len)
1488 {
1489         xfs_inode_log_format_t  *in_f;                  /* any will do */
1490         xlog_recover_item_t     *item;
1491         xfs_caddr_t             ptr;
1492
1493         if (!len)
1494                 return 0;
1495         if (list_empty(&trans->r_itemq)) {
1496                 /* we need to catch log corruptions here */
1497                 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1498                         xlog_warn("XFS: xlog_recover_add_to_trans: "
1499                                   "bad header magic number");
1500                         ASSERT(0);
1501                         return XFS_ERROR(EIO);
1502                 }
1503                 if (len == sizeof(xfs_trans_header_t))
1504                         xlog_recover_add_item(&trans->r_itemq);
1505                 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1506                 return 0;
1507         }
1508
1509         ptr = kmem_alloc(len, KM_SLEEP);
1510         memcpy(ptr, dp, len);
1511         in_f = (xfs_inode_log_format_t *)ptr;
1512
1513         /* take the tail entry */
1514         item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1515         if (item->ri_total != 0 &&
1516              item->ri_total == item->ri_cnt) {
1517                 /* tail item is in use, get a new one */
1518                 xlog_recover_add_item(&trans->r_itemq);
1519                 item = list_entry(trans->r_itemq.prev,
1520                                         xlog_recover_item_t, ri_list);
1521         }
1522
1523         if (item->ri_total == 0) {              /* first region to be added */
1524                 if (in_f->ilf_size == 0 ||
1525                     in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
1526                         xlog_warn(
1527         "XFS: bad number of regions (%d) in inode log format",
1528                                   in_f->ilf_size);
1529                         ASSERT(0);
1530                         return XFS_ERROR(EIO);
1531                 }
1532
1533                 item->ri_total = in_f->ilf_size;
1534                 item->ri_buf =
1535                         kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1536                                     KM_SLEEP);
1537         }
1538         ASSERT(item->ri_total > item->ri_cnt);
1539         /* Description region is ri_buf[0] */
1540         item->ri_buf[item->ri_cnt].i_addr = ptr;
1541         item->ri_buf[item->ri_cnt].i_len  = len;
1542         item->ri_cnt++;
1543         trace_xfs_log_recover_item_add(log, trans, item, 0);
1544         return 0;
1545 }
1546
1547 /*
1548  * Sort the log items in the transaction. Cancelled buffers need
1549  * to be put first so they are processed before any items that might
1550  * modify the buffers. If they are cancelled, then the modifications
1551  * don't need to be replayed.
1552  */
1553 STATIC int
1554 xlog_recover_reorder_trans(
1555         struct log              *log,
1556         xlog_recover_t          *trans,
1557         int                     pass)
1558 {
1559         xlog_recover_item_t     *item, *n;
1560         LIST_HEAD(sort_list);
1561
1562         list_splice_init(&trans->r_itemq, &sort_list);
1563         list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1564                 xfs_buf_log_format_t    *buf_f = item->ri_buf[0].i_addr;
1565
1566                 switch (ITEM_TYPE(item)) {
1567                 case XFS_LI_BUF:
1568                         if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1569                                 trace_xfs_log_recover_item_reorder_head(log,
1570                                                         trans, item, pass);
1571                                 list_move(&item->ri_list, &trans->r_itemq);
1572                                 break;
1573                         }
1574                 case XFS_LI_INODE:
1575                 case XFS_LI_DQUOT:
1576                 case XFS_LI_QUOTAOFF:
1577                 case XFS_LI_EFD:
1578                 case XFS_LI_EFI:
1579                         trace_xfs_log_recover_item_reorder_tail(log,
1580                                                         trans, item, pass);
1581                         list_move_tail(&item->ri_list, &trans->r_itemq);
1582                         break;
1583                 default:
1584                         xlog_warn(
1585         "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1586                         ASSERT(0);
1587                         return XFS_ERROR(EIO);
1588                 }
1589         }
1590         ASSERT(list_empty(&sort_list));
1591         return 0;
1592 }
1593
1594 /*
1595  * Build up the table of buf cancel records so that we don't replay
1596  * cancelled data in the second pass.  For buffer records that are
1597  * not cancel records, there is nothing to do here so we just return.
1598  *
1599  * If we get a cancel record which is already in the table, this indicates
1600  * that the buffer was cancelled multiple times.  In order to ensure
1601  * that during pass 2 we keep the record in the table until we reach its
1602  * last occurrence in the log, we keep a reference count in the cancel
1603  * record in the table to tell us how many times we expect to see this
1604  * record during the second pass.
1605  */
1606 STATIC void
1607 xlog_recover_do_buffer_pass1(
1608         xlog_t                  *log,
1609         xfs_buf_log_format_t    *buf_f)
1610 {
1611         xfs_buf_cancel_t        *bcp;
1612         xfs_buf_cancel_t        *nextp;
1613         xfs_buf_cancel_t        *prevp;
1614         xfs_buf_cancel_t        **bucket;
1615         xfs_daddr_t             blkno = 0;
1616         uint                    len = 0;
1617         ushort                  flags = 0;
1618
1619         switch (buf_f->blf_type) {
1620         case XFS_LI_BUF:
1621                 blkno = buf_f->blf_blkno;
1622                 len = buf_f->blf_len;
1623                 flags = buf_f->blf_flags;
1624                 break;
1625         }
1626
1627         /*
1628          * If this isn't a cancel buffer item, then just return.
1629          */
1630         if (!(flags & XFS_BLF_CANCEL)) {
1631                 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1632                 return;
1633         }
1634
1635         /*
1636          * Insert an xfs_buf_cancel record into the hash table of
1637          * them.  If there is already an identical record, bump
1638          * its reference count.
1639          */
1640         bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1641                                           XLOG_BC_TABLE_SIZE];
1642         /*
1643          * If the hash bucket is empty then just insert a new record into
1644          * the bucket.
1645          */
1646         if (*bucket == NULL) {
1647                 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1648                                                      KM_SLEEP);
1649                 bcp->bc_blkno = blkno;
1650                 bcp->bc_len = len;
1651                 bcp->bc_refcount = 1;
1652                 bcp->bc_next = NULL;
1653                 *bucket = bcp;
1654                 return;
1655         }
1656
1657         /*
1658          * The hash bucket is not empty, so search for duplicates of our
1659          * record.  If we find one them just bump its refcount.  If not
1660          * then add us at the end of the list.
1661          */
1662         prevp = NULL;
1663         nextp = *bucket;
1664         while (nextp != NULL) {
1665                 if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
1666                         nextp->bc_refcount++;
1667                         trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1668                         return;
1669                 }
1670                 prevp = nextp;
1671                 nextp = nextp->bc_next;
1672         }
1673         ASSERT(prevp != NULL);
1674         bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1675                                              KM_SLEEP);
1676         bcp->bc_blkno = blkno;
1677         bcp->bc_len = len;
1678         bcp->bc_refcount = 1;
1679         bcp->bc_next = NULL;
1680         prevp->bc_next = bcp;
1681         trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1682 }
1683
1684 /*
1685  * Check to see whether the buffer being recovered has a corresponding
1686  * entry in the buffer cancel record table.  If it does then return 1
1687  * so that it will be cancelled, otherwise return 0.  If the buffer is
1688  * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
1689  * the refcount on the entry in the table and remove it from the table
1690  * if this is the last reference.
1691  *
1692  * We remove the cancel record from the table when we encounter its
1693  * last occurrence in the log so that if the same buffer is re-used
1694  * again after its last cancellation we actually replay the changes
1695  * made at that point.
1696  */
1697 STATIC int
1698 xlog_check_buffer_cancelled(
1699         xlog_t                  *log,
1700         xfs_daddr_t             blkno,
1701         uint                    len,
1702         ushort                  flags)
1703 {
1704         xfs_buf_cancel_t        *bcp;
1705         xfs_buf_cancel_t        *prevp;
1706         xfs_buf_cancel_t        **bucket;
1707
1708         if (log->l_buf_cancel_table == NULL) {
1709                 /*
1710                  * There is nothing in the table built in pass one,
1711                  * so this buffer must not be cancelled.
1712                  */
1713                 ASSERT(!(flags & XFS_BLF_CANCEL));
1714                 return 0;
1715         }
1716
1717         bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1718                                           XLOG_BC_TABLE_SIZE];
1719         bcp = *bucket;
1720         if (bcp == NULL) {
1721                 /*
1722                  * There is no corresponding entry in the table built
1723                  * in pass one, so this buffer has not been cancelled.
1724                  */
1725                 ASSERT(!(flags & XFS_BLF_CANCEL));
1726                 return 0;
1727         }
1728
1729         /*
1730          * Search for an entry in the buffer cancel table that
1731          * matches our buffer.
1732          */
1733         prevp = NULL;
1734         while (bcp != NULL) {
1735                 if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
1736                         /*
1737                          * We've go a match, so return 1 so that the
1738                          * recovery of this buffer is cancelled.
1739                          * If this buffer is actually a buffer cancel
1740                          * log item, then decrement the refcount on the
1741                          * one in the table and remove it if this is the
1742                          * last reference.
1743                          */
1744                         if (flags & XFS_BLF_CANCEL) {
1745                                 bcp->bc_refcount--;
1746                                 if (bcp->bc_refcount == 0) {
1747                                         if (prevp == NULL) {
1748                                                 *bucket = bcp->bc_next;
1749                                         } else {
1750                                                 prevp->bc_next = bcp->bc_next;
1751                                         }
1752                                         kmem_free(bcp);
1753                                 }
1754                         }
1755                         return 1;
1756                 }
1757                 prevp = bcp;
1758                 bcp = bcp->bc_next;
1759         }
1760         /*
1761          * We didn't find a corresponding entry in the table, so
1762          * return 0 so that the buffer is NOT cancelled.
1763          */
1764         ASSERT(!(flags & XFS_BLF_CANCEL));
1765         return 0;
1766 }
1767
1768 STATIC int
1769 xlog_recover_do_buffer_pass2(
1770         xlog_t                  *log,
1771         xfs_buf_log_format_t    *buf_f)
1772 {
1773         xfs_daddr_t             blkno = 0;
1774         ushort                  flags = 0;
1775         uint                    len = 0;
1776
1777         switch (buf_f->blf_type) {
1778         case XFS_LI_BUF:
1779                 blkno = buf_f->blf_blkno;
1780                 flags = buf_f->blf_flags;
1781                 len = buf_f->blf_len;
1782                 break;
1783         }
1784
1785         return xlog_check_buffer_cancelled(log, blkno, len, flags);
1786 }
1787
1788 /*
1789  * Perform recovery for a buffer full of inodes.  In these buffers,
1790  * the only data which should be recovered is that which corresponds
1791  * to the di_next_unlinked pointers in the on disk inode structures.
1792  * The rest of the data for the inodes is always logged through the
1793  * inodes themselves rather than the inode buffer and is recovered
1794  * in xlog_recover_do_inode_trans().
1795  *
1796  * The only time when buffers full of inodes are fully recovered is
1797  * when the buffer is full of newly allocated inodes.  In this case
1798  * the buffer will not be marked as an inode buffer and so will be
1799  * sent to xlog_recover_do_reg_buffer() below during recovery.
1800  */
1801 STATIC int
1802 xlog_recover_do_inode_buffer(
1803         xfs_mount_t             *mp,
1804         xlog_recover_item_t     *item,
1805         xfs_buf_t               *bp,
1806         xfs_buf_log_format_t    *buf_f)
1807 {
1808         int                     i;
1809         int                     item_index;
1810         int                     bit;
1811         int                     nbits;
1812         int                     reg_buf_offset;
1813         int                     reg_buf_bytes;
1814         int                     next_unlinked_offset;
1815         int                     inodes_per_buf;
1816         xfs_agino_t             *logged_nextp;
1817         xfs_agino_t             *buffer_nextp;
1818         unsigned int            *data_map = NULL;
1819         unsigned int            map_size = 0;
1820
1821         trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1822
1823         switch (buf_f->blf_type) {
1824         case XFS_LI_BUF:
1825                 data_map = buf_f->blf_data_map;
1826                 map_size = buf_f->blf_map_size;
1827                 break;
1828         }
1829         /*
1830          * Set the variables corresponding to the current region to
1831          * 0 so that we'll initialize them on the first pass through
1832          * the loop.
1833          */
1834         reg_buf_offset = 0;
1835         reg_buf_bytes = 0;
1836         bit = 0;
1837         nbits = 0;
1838         item_index = 0;
1839         inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1840         for (i = 0; i < inodes_per_buf; i++) {
1841                 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1842                         offsetof(xfs_dinode_t, di_next_unlinked);
1843
1844                 while (next_unlinked_offset >=
1845                        (reg_buf_offset + reg_buf_bytes)) {
1846                         /*
1847                          * The next di_next_unlinked field is beyond
1848                          * the current logged region.  Find the next
1849                          * logged region that contains or is beyond
1850                          * the current di_next_unlinked field.
1851                          */
1852                         bit += nbits;
1853                         bit = xfs_next_bit(data_map, map_size, bit);
1854
1855                         /*
1856                          * If there are no more logged regions in the
1857                          * buffer, then we're done.
1858                          */
1859                         if (bit == -1) {
1860                                 return 0;
1861                         }
1862
1863                         nbits = xfs_contig_bits(data_map, map_size,
1864                                                          bit);
1865                         ASSERT(nbits > 0);
1866                         reg_buf_offset = bit << XFS_BLF_SHIFT;
1867                         reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1868                         item_index++;
1869                 }
1870
1871                 /*
1872                  * If the current logged region starts after the current
1873                  * di_next_unlinked field, then move on to the next
1874                  * di_next_unlinked field.
1875                  */
1876                 if (next_unlinked_offset < reg_buf_offset) {
1877                         continue;
1878                 }
1879
1880                 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1881                 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
1882                 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1883
1884                 /*
1885                  * The current logged region contains a copy of the
1886                  * current di_next_unlinked field.  Extract its value
1887                  * and copy it to the buffer copy.
1888                  */
1889                 logged_nextp = item->ri_buf[item_index].i_addr +
1890                                 next_unlinked_offset - reg_buf_offset;
1891                 if (unlikely(*logged_nextp == 0)) {
1892                         xfs_fs_cmn_err(CE_ALERT, mp,
1893                                 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p).  XFS trying to replay bad (0) inode di_next_unlinked field",
1894                                 item, bp);
1895                         XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1896                                          XFS_ERRLEVEL_LOW, mp);
1897                         return XFS_ERROR(EFSCORRUPTED);
1898                 }
1899
1900                 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1901                                               next_unlinked_offset);
1902                 *buffer_nextp = *logged_nextp;
1903         }
1904
1905         return 0;
1906 }
1907
1908 /*
1909  * Perform a 'normal' buffer recovery.  Each logged region of the
1910  * buffer should be copied over the corresponding region in the
1911  * given buffer.  The bitmap in the buf log format structure indicates
1912  * where to place the logged data.
1913  */
1914 /*ARGSUSED*/
1915 STATIC void
1916 xlog_recover_do_reg_buffer(
1917         struct xfs_mount        *mp,
1918         xlog_recover_item_t     *item,
1919         xfs_buf_t               *bp,
1920         xfs_buf_log_format_t    *buf_f)
1921 {
1922         int                     i;
1923         int                     bit;
1924         int                     nbits;
1925         unsigned int            *data_map = NULL;
1926         unsigned int            map_size = 0;
1927         int                     error;
1928
1929         trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
1930
1931         switch (buf_f->blf_type) {
1932         case XFS_LI_BUF:
1933                 data_map = buf_f->blf_data_map;
1934                 map_size = buf_f->blf_map_size;
1935                 break;
1936         }
1937         bit = 0;
1938         i = 1;  /* 0 is the buf format structure */
1939         while (1) {
1940                 bit = xfs_next_bit(data_map, map_size, bit);
1941                 if (bit == -1)
1942                         break;
1943                 nbits = xfs_contig_bits(data_map, map_size, bit);
1944                 ASSERT(nbits > 0);
1945                 ASSERT(item->ri_buf[i].i_addr != NULL);
1946                 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
1947                 ASSERT(XFS_BUF_COUNT(bp) >=
1948                        ((uint)bit << XFS_BLF_SHIFT)+(nbits<<XFS_BLF_SHIFT));
1949
1950                 /*
1951                  * Do a sanity check if this is a dquot buffer. Just checking
1952                  * the first dquot in the buffer should do. XXXThis is
1953                  * probably a good thing to do for other buf types also.
1954                  */
1955                 error = 0;
1956                 if (buf_f->blf_flags &
1957                    (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
1958                         if (item->ri_buf[i].i_addr == NULL) {
1959                                 cmn_err(CE_ALERT,
1960                                         "XFS: NULL dquot in %s.", __func__);
1961                                 goto next;
1962                         }
1963                         if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
1964                                 cmn_err(CE_ALERT,
1965                                         "XFS: dquot too small (%d) in %s.",
1966                                         item->ri_buf[i].i_len, __func__);
1967                                 goto next;
1968                         }
1969                         error = xfs_qm_dqcheck(item->ri_buf[i].i_addr,
1970                                                -1, 0, XFS_QMOPT_DOWARN,
1971                                                "dquot_buf_recover");
1972                         if (error)
1973                                 goto next;
1974                 }
1975
1976                 memcpy(xfs_buf_offset(bp,
1977                         (uint)bit << XFS_BLF_SHIFT),    /* dest */
1978                         item->ri_buf[i].i_addr,         /* source */
1979                         nbits<<XFS_BLF_SHIFT);          /* length */
1980  next:
1981                 i++;
1982                 bit += nbits;
1983         }
1984
1985         /* Shouldn't be any more regions */
1986         ASSERT(i == item->ri_total);
1987 }
1988
1989 /*
1990  * Do some primitive error checking on ondisk dquot data structures.
1991  */
1992 int
1993 xfs_qm_dqcheck(
1994         xfs_disk_dquot_t *ddq,
1995         xfs_dqid_t       id,
1996         uint             type,    /* used only when IO_dorepair is true */
1997         uint             flags,
1998         char             *str)
1999 {
2000         xfs_dqblk_t      *d = (xfs_dqblk_t *)ddq;
2001         int             errs = 0;
2002
2003         /*
2004          * We can encounter an uninitialized dquot buffer for 2 reasons:
2005          * 1. If we crash while deleting the quotainode(s), and those blks got
2006          *    used for user data. This is because we take the path of regular
2007          *    file deletion; however, the size field of quotainodes is never
2008          *    updated, so all the tricks that we play in itruncate_finish
2009          *    don't quite matter.
2010          *
2011          * 2. We don't play the quota buffers when there's a quotaoff logitem.
2012          *    But the allocation will be replayed so we'll end up with an
2013          *    uninitialized quota block.
2014          *
2015          * This is all fine; things are still consistent, and we haven't lost
2016          * any quota information. Just don't complain about bad dquot blks.
2017          */
2018         if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
2019                 if (flags & XFS_QMOPT_DOWARN)
2020                         cmn_err(CE_ALERT,
2021                         "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
2022                         str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
2023                 errs++;
2024         }
2025         if (ddq->d_version != XFS_DQUOT_VERSION) {
2026                 if (flags & XFS_QMOPT_DOWARN)
2027                         cmn_err(CE_ALERT,
2028                         "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
2029                         str, id, ddq->d_version, XFS_DQUOT_VERSION);
2030                 errs++;
2031         }
2032
2033         if (ddq->d_flags != XFS_DQ_USER &&
2034             ddq->d_flags != XFS_DQ_PROJ &&
2035             ddq->d_flags != XFS_DQ_GROUP) {
2036                 if (flags & XFS_QMOPT_DOWARN)
2037                         cmn_err(CE_ALERT,
2038                         "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
2039                         str, id, ddq->d_flags);
2040                 errs++;
2041         }
2042
2043         if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
2044                 if (flags & XFS_QMOPT_DOWARN)
2045                         cmn_err(CE_ALERT,
2046                         "%s : ondisk-dquot 0x%p, ID mismatch: "
2047                         "0x%x expected, found id 0x%x",
2048                         str, ddq, id, be32_to_cpu(ddq->d_id));
2049                 errs++;
2050         }
2051
2052         if (!errs && ddq->d_id) {
2053                 if (ddq->d_blk_softlimit &&
2054                     be64_to_cpu(ddq->d_bcount) >=
2055                                 be64_to_cpu(ddq->d_blk_softlimit)) {
2056                         if (!ddq->d_btimer) {
2057                                 if (flags & XFS_QMOPT_DOWARN)
2058                                         cmn_err(CE_ALERT,
2059                                         "%s : Dquot ID 0x%x (0x%p) "
2060                                         "BLK TIMER NOT STARTED",
2061                                         str, (int)be32_to_cpu(ddq->d_id), ddq);
2062                                 errs++;
2063                         }
2064                 }
2065                 if (ddq->d_ino_softlimit &&
2066                     be64_to_cpu(ddq->d_icount) >=
2067                                 be64_to_cpu(ddq->d_ino_softlimit)) {
2068                         if (!ddq->d_itimer) {
2069                                 if (flags & XFS_QMOPT_DOWARN)
2070                                         cmn_err(CE_ALERT,
2071                                         "%s : Dquot ID 0x%x (0x%p) "
2072                                         "INODE TIMER NOT STARTED",
2073                                         str, (int)be32_to_cpu(ddq->d_id), ddq);
2074                                 errs++;
2075                         }
2076                 }
2077                 if (ddq->d_rtb_softlimit &&
2078                     be64_to_cpu(ddq->d_rtbcount) >=
2079                                 be64_to_cpu(ddq->d_rtb_softlimit)) {
2080                         if (!ddq->d_rtbtimer) {
2081                                 if (flags & XFS_QMOPT_DOWARN)
2082                                         cmn_err(CE_ALERT,
2083                                         "%s : Dquot ID 0x%x (0x%p) "
2084                                         "RTBLK TIMER NOT STARTED",
2085                                         str, (int)be32_to_cpu(ddq->d_id), ddq);
2086                                 errs++;
2087                         }
2088                 }
2089         }
2090
2091         if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2092                 return errs;
2093
2094         if (flags & XFS_QMOPT_DOWARN)
2095                 cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
2096
2097         /*
2098          * Typically, a repair is only requested by quotacheck.
2099          */
2100         ASSERT(id != -1);
2101         ASSERT(flags & XFS_QMOPT_DQREPAIR);
2102         memset(d, 0, sizeof(xfs_dqblk_t));
2103
2104         d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2105         d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2106         d->dd_diskdq.d_flags = type;
2107         d->dd_diskdq.d_id = cpu_to_be32(id);
2108
2109         return errs;
2110 }
2111
2112 /*
2113  * Perform a dquot buffer recovery.
2114  * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2115  * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2116  * Else, treat it as a regular buffer and do recovery.
2117  */
2118 STATIC void
2119 xlog_recover_do_dquot_buffer(
2120         xfs_mount_t             *mp,
2121         xlog_t                  *log,
2122         xlog_recover_item_t     *item,
2123         xfs_buf_t               *bp,
2124         xfs_buf_log_format_t    *buf_f)
2125 {
2126         uint                    type;
2127
2128         trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2129
2130         /*
2131          * Filesystems are required to send in quota flags at mount time.
2132          */
2133         if (mp->m_qflags == 0) {
2134                 return;
2135         }
2136
2137         type = 0;
2138         if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2139                 type |= XFS_DQ_USER;
2140         if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2141                 type |= XFS_DQ_PROJ;
2142         if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2143                 type |= XFS_DQ_GROUP;
2144         /*
2145          * This type of quotas was turned off, so ignore this buffer
2146          */
2147         if (log->l_quotaoffs_flag & type)
2148                 return;
2149
2150         xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2151 }
2152
2153 /*
2154  * This routine replays a modification made to a buffer at runtime.
2155  * There are actually two types of buffer, regular and inode, which
2156  * are handled differently.  Inode buffers are handled differently
2157  * in that we only recover a specific set of data from them, namely
2158  * the inode di_next_unlinked fields.  This is because all other inode
2159  * data is actually logged via inode records and any data we replay
2160  * here which overlaps that may be stale.
2161  *
2162  * When meta-data buffers are freed at run time we log a buffer item
2163  * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2164  * of the buffer in the log should not be replayed at recovery time.
2165  * This is so that if the blocks covered by the buffer are reused for
2166  * file data before we crash we don't end up replaying old, freed
2167  * meta-data into a user's file.
2168  *
2169  * To handle the cancellation of buffer log items, we make two passes
2170  * over the log during recovery.  During the first we build a table of
2171  * those buffers which have been cancelled, and during the second we
2172  * only replay those buffers which do not have corresponding cancel
2173  * records in the table.  See xlog_recover_do_buffer_pass[1,2] above
2174  * for more details on the implementation of the table of cancel records.
2175  */
2176 STATIC int
2177 xlog_recover_do_buffer_trans(
2178         xlog_t                  *log,
2179         xlog_recover_item_t     *item,
2180         int                     pass)
2181 {
2182         xfs_buf_log_format_t    *buf_f = item->ri_buf[0].i_addr;
2183         xfs_mount_t             *mp;
2184         xfs_buf_t               *bp;
2185         int                     error;
2186         int                     cancel;
2187         xfs_daddr_t             blkno;
2188         int                     len;
2189         ushort                  flags;
2190         uint                    buf_flags;
2191
2192         if (pass == XLOG_RECOVER_PASS1) {
2193                 /*
2194                  * In this pass we're only looking for buf items
2195                  * with the XFS_BLF_CANCEL bit set.
2196                  */
2197                 xlog_recover_do_buffer_pass1(log, buf_f);
2198                 return 0;
2199         } else {
2200                 /*
2201                  * In this pass we want to recover all the buffers
2202                  * which have not been cancelled and are not
2203                  * cancellation buffers themselves.  The routine
2204                  * we call here will tell us whether or not to
2205                  * continue with the replay of this buffer.
2206                  */
2207                 cancel = xlog_recover_do_buffer_pass2(log, buf_f);
2208                 if (cancel) {
2209                         trace_xfs_log_recover_buf_cancel(log, buf_f);
2210                         return 0;
2211                 }
2212         }
2213         trace_xfs_log_recover_buf_recover(log, buf_f);
2214         switch (buf_f->blf_type) {
2215         case XFS_LI_BUF:
2216                 blkno = buf_f->blf_blkno;
2217                 len = buf_f->blf_len;
2218                 flags = buf_f->blf_flags;
2219                 break;
2220         default:
2221                 xfs_fs_cmn_err(CE_ALERT, log->l_mp,
2222                         "xfs_log_recover: unknown buffer type 0x%x, logdev %s",
2223                         buf_f->blf_type, log->l_mp->m_logname ?
2224                         log->l_mp->m_logname : "internal");
2225                 XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
2226                                  XFS_ERRLEVEL_LOW, log->l_mp);
2227                 return XFS_ERROR(EFSCORRUPTED);
2228         }
2229
2230         mp = log->l_mp;
2231         buf_flags = XBF_LOCK;
2232         if (!(flags & XFS_BLF_INODE_BUF))
2233                 buf_flags |= XBF_MAPPED;
2234
2235         bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, buf_flags);
2236         if (XFS_BUF_ISERROR(bp)) {
2237                 xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
2238                                   bp, blkno);
2239                 error = XFS_BUF_GETERROR(bp);
2240                 xfs_buf_relse(bp);
2241                 return error;
2242         }
2243
2244         error = 0;
2245         if (flags & XFS_BLF_INODE_BUF) {
2246                 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2247         } else if (flags &
2248                   (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2249                 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2250         } else {
2251                 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2252         }
2253         if (error)
2254                 return XFS_ERROR(error);
2255
2256         /*
2257          * Perform delayed write on the buffer.  Asynchronous writes will be
2258          * slower when taking into account all the buffers to be flushed.
2259          *
2260          * Also make sure that only inode buffers with good sizes stay in
2261          * the buffer cache.  The kernel moves inodes in buffers of 1 block
2262          * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger.  The inode
2263          * buffers in the log can be a different size if the log was generated
2264          * by an older kernel using unclustered inode buffers or a newer kernel
2265          * running with a different inode cluster size.  Regardless, if the
2266          * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2267          * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2268          * the buffer out of the buffer cache so that the buffer won't
2269          * overlap with future reads of those inodes.
2270          */
2271         if (XFS_DINODE_MAGIC ==
2272             be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2273             (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2274                         (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2275                 XFS_BUF_STALE(bp);
2276                 error = xfs_bwrite(mp, bp);
2277         } else {
2278                 ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2279                 bp->b_mount = mp;
2280                 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2281                 xfs_bdwrite(mp, bp);
2282         }
2283
2284         return (error);
2285 }
2286
2287 STATIC int
2288 xlog_recover_do_inode_trans(
2289         xlog_t                  *log,
2290         xlog_recover_item_t     *item,
2291         int                     pass)
2292 {
2293         xfs_inode_log_format_t  *in_f;
2294         xfs_mount_t             *mp;
2295         xfs_buf_t               *bp;
2296         xfs_dinode_t            *dip;
2297         xfs_ino_t               ino;
2298         int                     len;
2299         xfs_caddr_t             src;
2300         xfs_caddr_t             dest;
2301         int                     error;
2302         int                     attr_index;
2303         uint                    fields;
2304         xfs_icdinode_t          *dicp;
2305         int                     need_free = 0;
2306
2307         if (pass == XLOG_RECOVER_PASS1) {
2308                 return 0;
2309         }
2310
2311         if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2312                 in_f = item->ri_buf[0].i_addr;
2313         } else {
2314                 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2315                 need_free = 1;
2316                 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2317                 if (error)
2318                         goto error;
2319         }
2320         ino = in_f->ilf_ino;
2321         mp = log->l_mp;
2322
2323         /*
2324          * Inode buffers can be freed, look out for it,
2325          * and do not replay the inode.
2326          */
2327         if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2328                                         in_f->ilf_len, 0)) {
2329                 error = 0;
2330                 trace_xfs_log_recover_inode_cancel(log, in_f);
2331                 goto error;
2332         }
2333         trace_xfs_log_recover_inode_recover(log, in_f);
2334
2335         bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len,
2336                           XBF_LOCK);
2337         if (XFS_BUF_ISERROR(bp)) {
2338                 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
2339                                   bp, in_f->ilf_blkno);
2340                 error = XFS_BUF_GETERROR(bp);
2341                 xfs_buf_relse(bp);
2342                 goto error;
2343         }
2344         error = 0;
2345         ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2346         dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
2347
2348         /*
2349          * Make sure the place we're flushing out to really looks
2350          * like an inode!
2351          */
2352         if (unlikely(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC)) {
2353                 xfs_buf_relse(bp);
2354                 xfs_fs_cmn_err(CE_ALERT, mp,
2355                         "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2356                         dip, bp, ino);
2357                 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
2358                                  XFS_ERRLEVEL_LOW, mp);
2359                 error = EFSCORRUPTED;
2360                 goto error;
2361         }
2362         dicp = item->ri_buf[1].i_addr;
2363         if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2364                 xfs_buf_relse(bp);
2365                 xfs_fs_cmn_err(CE_ALERT, mp,
2366                         "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2367                         item, ino);
2368                 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
2369                                  XFS_ERRLEVEL_LOW, mp);
2370                 error = EFSCORRUPTED;
2371                 goto error;
2372         }
2373
2374         /* Skip replay when the on disk inode is newer than the log one */
2375         if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2376                 /*
2377                  * Deal with the wrap case, DI_MAX_FLUSH is less
2378                  * than smaller numbers
2379                  */
2380                 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2381                     dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2382                         /* do nothing */
2383                 } else {
2384                         xfs_buf_relse(bp);
2385                         trace_xfs_log_recover_inode_skip(log, in_f);
2386                         error = 0;
2387                         goto error;
2388                 }
2389         }
2390         /* Take the opportunity to reset the flush iteration count */
2391         dicp->di_flushiter = 0;
2392
2393         if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
2394                 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2395                     (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2396                         XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
2397                                          XFS_ERRLEVEL_LOW, mp, dicp);
2398                         xfs_buf_relse(bp);
2399                         xfs_fs_cmn_err(CE_ALERT, mp,
2400                                 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2401                                 item, dip, bp, ino);
2402                         error = EFSCORRUPTED;
2403                         goto error;
2404                 }
2405         } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
2406                 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2407                     (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2408                     (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2409                         XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
2410                                              XFS_ERRLEVEL_LOW, mp, dicp);
2411                         xfs_buf_relse(bp);
2412                         xfs_fs_cmn_err(CE_ALERT, mp,
2413                                 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2414                                 item, dip, bp, ino);
2415                         error = EFSCORRUPTED;
2416                         goto error;
2417                 }
2418         }
2419         if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2420                 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
2421                                      XFS_ERRLEVEL_LOW, mp, dicp);
2422                 xfs_buf_relse(bp);
2423                 xfs_fs_cmn_err(CE_ALERT, mp,
2424                         "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2425                         item, dip, bp, ino,
2426                         dicp->di_nextents + dicp->di_anextents,
2427                         dicp->di_nblocks);
2428                 error = EFSCORRUPTED;
2429                 goto error;
2430         }
2431         if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2432                 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
2433                                      XFS_ERRLEVEL_LOW, mp, dicp);
2434                 xfs_buf_relse(bp);
2435                 xfs_fs_cmn_err(CE_ALERT, mp,
2436                         "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2437                         item, dip, bp, ino, dicp->di_forkoff);
2438                 error = EFSCORRUPTED;
2439                 goto error;
2440         }
2441         if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
2442                 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
2443                                      XFS_ERRLEVEL_LOW, mp, dicp);
2444                 xfs_buf_relse(bp);
2445                 xfs_fs_cmn_err(CE_ALERT, mp,
2446                         "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2447                         item->ri_buf[1].i_len, item);
2448                 error = EFSCORRUPTED;
2449                 goto error;
2450         }
2451
2452         /* The core is in in-core format */
2453         xfs_dinode_to_disk(dip, item->ri_buf[1].i_addr);
2454
2455         /* the rest is in on-disk format */
2456         if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
2457                 memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
2458                         item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
2459                         item->ri_buf[1].i_len  - sizeof(struct xfs_icdinode));
2460         }
2461
2462         fields = in_f->ilf_fields;
2463         switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2464         case XFS_ILOG_DEV:
2465                 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2466                 break;
2467         case XFS_ILOG_UUID:
2468                 memcpy(XFS_DFORK_DPTR(dip),
2469                        &in_f->ilf_u.ilfu_uuid,
2470                        sizeof(uuid_t));
2471                 break;
2472         }
2473
2474         if (in_f->ilf_size == 2)
2475                 goto write_inode_buffer;
2476         len = item->ri_buf[2].i_len;
2477         src = item->ri_buf[2].i_addr;
2478         ASSERT(in_f->ilf_size <= 4);
2479         ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2480         ASSERT(!(fields & XFS_ILOG_DFORK) ||
2481                (len == in_f->ilf_dsize));
2482
2483         switch (fields & XFS_ILOG_DFORK) {
2484         case XFS_ILOG_DDATA:
2485         case XFS_ILOG_DEXT:
2486                 memcpy(XFS_DFORK_DPTR(dip), src, len);
2487                 break;
2488
2489         case XFS_ILOG_DBROOT:
2490                 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2491                                  (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2492                                  XFS_DFORK_DSIZE(dip, mp));
2493                 break;
2494
2495         default:
2496                 /*
2497                  * There are no data fork flags set.
2498                  */
2499                 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2500                 break;
2501         }
2502
2503         /*
2504          * If we logged any attribute data, recover it.  There may or
2505          * may not have been any other non-core data logged in this
2506          * transaction.
2507          */
2508         if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2509                 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2510                         attr_index = 3;
2511                 } else {
2512                         attr_index = 2;
2513                 }
2514                 len = item->ri_buf[attr_index].i_len;
2515                 src = item->ri_buf[attr_index].i_addr;
2516                 ASSERT(len == in_f->ilf_asize);
2517
2518                 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2519                 case XFS_ILOG_ADATA:
2520                 case XFS_ILOG_AEXT:
2521                         dest = XFS_DFORK_APTR(dip);
2522                         ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2523                         memcpy(dest, src, len);
2524                         break;
2525
2526                 case XFS_ILOG_ABROOT:
2527                         dest = XFS_DFORK_APTR(dip);
2528                         xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2529                                          len, (xfs_bmdr_block_t*)dest,
2530                                          XFS_DFORK_ASIZE(dip, mp));
2531                         break;
2532
2533                 default:
2534                         xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
2535                         ASSERT(0);
2536                         xfs_buf_relse(bp);
2537                         error = EIO;
2538                         goto error;
2539                 }
2540         }
2541
2542 write_inode_buffer:
2543         ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2544         bp->b_mount = mp;
2545         XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2546         xfs_bdwrite(mp, bp);
2547 error:
2548         if (need_free)
2549                 kmem_free(in_f);
2550         return XFS_ERROR(error);
2551 }
2552
2553 /*
2554  * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2555  * structure, so that we know not to do any dquot item or dquot buffer recovery,
2556  * of that type.
2557  */
2558 STATIC int
2559 xlog_recover_do_quotaoff_trans(
2560         xlog_t                  *log,
2561         xlog_recover_item_t     *item,
2562         int                     pass)
2563 {
2564         xfs_qoff_logformat_t    *qoff_f;
2565
2566         if (pass == XLOG_RECOVER_PASS2) {
2567                 return (0);
2568         }
2569
2570         qoff_f = item->ri_buf[0].i_addr;
2571         ASSERT(qoff_f);
2572
2573         /*
2574          * The logitem format's flag tells us if this was user quotaoff,
2575          * group/project quotaoff or both.
2576          */
2577         if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2578                 log->l_quotaoffs_flag |= XFS_DQ_USER;
2579         if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2580                 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2581         if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2582                 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2583
2584         return (0);
2585 }
2586
2587 /*
2588  * Recover a dquot record
2589  */
2590 STATIC int
2591 xlog_recover_do_dquot_trans(
2592         xlog_t                  *log,
2593         xlog_recover_item_t     *item,
2594         int                     pass)
2595 {
2596         xfs_mount_t             *mp;
2597         xfs_buf_t               *bp;
2598         struct xfs_disk_dquot   *ddq, *recddq;
2599         int                     error;
2600         xfs_dq_logformat_t      *dq_f;
2601         uint                    type;
2602
2603         if (pass == XLOG_RECOVER_PASS1) {
2604                 return 0;
2605         }
2606         mp = log->l_mp;
2607
2608         /*
2609          * Filesystems are required to send in quota flags at mount time.
2610          */
2611         if (mp->m_qflags == 0)
2612                 return (0);
2613
2614         recddq = item->ri_buf[1].i_addr;
2615         if (recddq == NULL) {
2616                 cmn_err(CE_ALERT,
2617                         "XFS: NULL dquot in %s.", __func__);
2618                 return XFS_ERROR(EIO);
2619         }
2620         if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
2621                 cmn_err(CE_ALERT,
2622                         "XFS: dquot too small (%d) in %s.",
2623                         item->ri_buf[1].i_len, __func__);
2624                 return XFS_ERROR(EIO);
2625         }
2626
2627         /*
2628          * This type of quotas was turned off, so ignore this record.
2629          */
2630         type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2631         ASSERT(type);
2632         if (log->l_quotaoffs_flag & type)
2633                 return (0);
2634
2635         /*
2636          * At this point we know that quota was _not_ turned off.
2637          * Since the mount flags are not indicating to us otherwise, this
2638          * must mean that quota is on, and the dquot needs to be replayed.
2639          * Remember that we may not have fully recovered the superblock yet,
2640          * so we can't do the usual trick of looking at the SB quota bits.
2641          *
2642          * The other possibility, of course, is that the quota subsystem was
2643          * removed since the last mount - ENOSYS.
2644          */
2645         dq_f = item->ri_buf[0].i_addr;
2646         ASSERT(dq_f);
2647         if ((error = xfs_qm_dqcheck(recddq,
2648                            dq_f->qlf_id,
2649                            0, XFS_QMOPT_DOWARN,
2650                            "xlog_recover_do_dquot_trans (log copy)"))) {
2651                 return XFS_ERROR(EIO);
2652         }
2653         ASSERT(dq_f->qlf_len == 1);
2654
2655         error = xfs_read_buf(mp, mp->m_ddev_targp,
2656                              dq_f->qlf_blkno,
2657                              XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2658                              0, &bp);
2659         if (error) {
2660                 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2661                                   bp, dq_f->qlf_blkno);
2662                 return error;
2663         }
2664         ASSERT(bp);
2665         ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2666
2667         /*
2668          * At least the magic num portion should be on disk because this
2669          * was among a chunk of dquots created earlier, and we did some
2670          * minimal initialization then.
2671          */
2672         if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2673                            "xlog_recover_do_dquot_trans")) {
2674                 xfs_buf_relse(bp);
2675                 return XFS_ERROR(EIO);
2676         }
2677
2678         memcpy(ddq, recddq, item->ri_buf[1].i_len);
2679
2680         ASSERT(dq_f->qlf_size == 2);
2681         ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2682         bp->b_mount = mp;
2683         XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2684         xfs_bdwrite(mp, bp);
2685
2686         return (0);
2687 }
2688
2689 /*
2690  * This routine is called to create an in-core extent free intent
2691  * item from the efi format structure which was logged on disk.
2692  * It allocates an in-core efi, copies the extents from the format
2693  * structure into it, and adds the efi to the AIL with the given
2694  * LSN.
2695  */
2696 STATIC int
2697 xlog_recover_do_efi_trans(
2698         xlog_t                  *log,
2699         xlog_recover_item_t     *item,
2700         xfs_lsn_t               lsn,
2701         int                     pass)
2702 {
2703         int                     error;
2704         xfs_mount_t             *mp;
2705         xfs_efi_log_item_t      *efip;
2706         xfs_efi_log_format_t    *efi_formatp;
2707
2708         if (pass == XLOG_RECOVER_PASS1) {
2709                 return 0;
2710         }
2711
2712         efi_formatp = item->ri_buf[0].i_addr;
2713
2714         mp = log->l_mp;
2715         efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2716         if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2717                                          &(efip->efi_format)))) {
2718                 xfs_efi_item_free(efip);
2719                 return error;
2720         }
2721         efip->efi_next_extent = efi_formatp->efi_nextents;
2722         efip->efi_flags |= XFS_EFI_COMMITTED;
2723
2724         spin_lock(&log->l_ailp->xa_lock);
2725         /*
2726          * xfs_trans_ail_update() drops the AIL lock.
2727          */
2728         xfs_trans_ail_update(log->l_ailp, (xfs_log_item_t *)efip, lsn);
2729         return 0;
2730 }
2731
2732
2733 /*
2734  * This routine is called when an efd format structure is found in
2735  * a committed transaction in the log.  It's purpose is to cancel
2736  * the corresponding efi if it was still in the log.  To do this
2737  * it searches the AIL for the efi with an id equal to that in the
2738  * efd format structure.  If we find it, we remove the efi from the
2739  * AIL and free it.
2740  */
2741 STATIC void
2742 xlog_recover_do_efd_trans(
2743         xlog_t                  *log,
2744         xlog_recover_item_t     *item,
2745         int                     pass)
2746 {
2747         xfs_efd_log_format_t    *efd_formatp;
2748         xfs_efi_log_item_t      *efip = NULL;
2749         xfs_log_item_t          *lip;
2750         __uint64_t              efi_id;
2751         struct xfs_ail_cursor   cur;
2752         struct xfs_ail          *ailp = log->l_ailp;
2753
2754         if (pass == XLOG_RECOVER_PASS1) {
2755                 return;
2756         }
2757
2758         efd_formatp = item->ri_buf[0].i_addr;
2759         ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2760                 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2761                (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2762                 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2763         efi_id = efd_formatp->efd_efi_id;
2764
2765         /*
2766          * Search for the efi with the id in the efd format structure
2767          * in the AIL.
2768          */
2769         spin_lock(&ailp->xa_lock);
2770         lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2771         while (lip != NULL) {
2772                 if (lip->li_type == XFS_LI_EFI) {
2773                         efip = (xfs_efi_log_item_t *)lip;
2774                         if (efip->efi_format.efi_id == efi_id) {
2775                                 /*
2776                                  * xfs_trans_ail_delete() drops the
2777                                  * AIL lock.
2778                                  */
2779                                 xfs_trans_ail_delete(ailp, lip);
2780                                 xfs_efi_item_free(efip);
2781                                 spin_lock(&ailp->xa_lock);
2782                                 break;
2783                         }
2784                 }
2785                 lip = xfs_trans_ail_cursor_next(ailp, &cur);
2786         }
2787         xfs_trans_ail_cursor_done(ailp, &cur);
2788         spin_unlock(&ailp->xa_lock);
2789 }
2790
2791 /*
2792  * Perform the transaction
2793  *
2794  * If the transaction modifies a buffer or inode, do it now.  Otherwise,
2795  * EFIs and EFDs get queued up by adding entries into the AIL for them.
2796  */
2797 STATIC int
2798 xlog_recover_do_trans(
2799         xlog_t                  *log,
2800         xlog_recover_t          *trans,
2801         int                     pass)
2802 {
2803         int                     error = 0;
2804         xlog_recover_item_t     *item;
2805
2806         error = xlog_recover_reorder_trans(log, trans, pass);
2807         if (error)
2808                 return error;
2809
2810         list_for_each_entry(item, &trans->r_itemq, ri_list) {
2811                 trace_xfs_log_recover_item_recover(log, trans, item, pass);
2812                 switch (ITEM_TYPE(item)) {
2813                 case XFS_LI_BUF:
2814                         error = xlog_recover_do_buffer_trans(log, item, pass);
2815                         break;
2816                 case XFS_LI_INODE:
2817                         error = xlog_recover_do_inode_trans(log, item, pass);
2818                         break;
2819                 case XFS_LI_EFI:
2820                         error = xlog_recover_do_efi_trans(log, item,
2821                                                           trans->r_lsn, pass);
2822                         break;
2823                 case XFS_LI_EFD:
2824                         xlog_recover_do_efd_trans(log, item, pass);
2825                         error = 0;
2826                         break;
2827                 case XFS_LI_DQUOT:
2828                         error = xlog_recover_do_dquot_trans(log, item, pass);
2829                         break;
2830                 case XFS_LI_QUOTAOFF:
2831                         error = xlog_recover_do_quotaoff_trans(log, item,
2832                                                                pass);
2833                         break;
2834                 default:
2835                         xlog_warn(
2836         "XFS: invalid item type (%d) xlog_recover_do_trans", ITEM_TYPE(item));
2837                         ASSERT(0);
2838                         error = XFS_ERROR(EIO);
2839                         break;
2840                 }
2841
2842                 if (error)
2843                         return error;
2844         }
2845
2846         return 0;
2847 }
2848
2849 /*
2850  * Free up any resources allocated by the transaction
2851  *
2852  * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2853  */
2854 STATIC void
2855 xlog_recover_free_trans(
2856         xlog_recover_t          *trans)
2857 {
2858         xlog_recover_item_t     *item, *n;
2859         int                     i;
2860
2861         list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2862                 /* Free the regions in the item. */
2863                 list_del(&item->ri_list);
2864                 for (i = 0; i < item->ri_cnt; i++)
2865                         kmem_free(item->ri_buf[i].i_addr);
2866                 /* Free the item itself */
2867                 kmem_free(item->ri_buf);
2868                 kmem_free(item);
2869         }
2870         /* Free the transaction recover structure */
2871         kmem_free(trans);
2872 }
2873
2874 STATIC int
2875 xlog_recover_commit_trans(
2876         xlog_t                  *log,
2877         xlog_recover_t          *trans,
2878         int                     pass)
2879 {
2880         int                     error;
2881
2882         hlist_del(&trans->r_list);
2883         if ((error = xlog_recover_do_trans(log, trans, pass)))
2884                 return error;
2885         xlog_recover_free_trans(trans);                 /* no error */
2886         return 0;
2887 }
2888
2889 STATIC int
2890 xlog_recover_unmount_trans(
2891         xlog_recover_t          *trans)
2892 {
2893         /* Do nothing now */
2894         xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2895         return 0;
2896 }
2897
2898 /*
2899  * There are two valid states of the r_state field.  0 indicates that the
2900  * transaction structure is in a normal state.  We have either seen the
2901  * start of the transaction or the last operation we added was not a partial
2902  * operation.  If the last operation we added to the transaction was a
2903  * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2904  *
2905  * NOTE: skip LRs with 0 data length.
2906  */
2907 STATIC int
2908 xlog_recover_process_data(
2909         xlog_t                  *log,
2910         struct hlist_head       rhash[],
2911         xlog_rec_header_t       *rhead,
2912         xfs_caddr_t             dp,
2913         int                     pass)
2914 {
2915         xfs_caddr_t             lp;
2916         int                     num_logops;
2917         xlog_op_header_t        *ohead;
2918         xlog_recover_t          *trans;
2919         xlog_tid_t              tid;
2920         int                     error;
2921         unsigned long           hash;
2922         uint                    flags;
2923
2924         lp = dp + be32_to_cpu(rhead->h_len);
2925         num_logops = be32_to_cpu(rhead->h_num_logops);
2926
2927         /* check the log format matches our own - else we can't recover */
2928         if (xlog_header_check_recover(log->l_mp, rhead))
2929                 return (XFS_ERROR(EIO));
2930
2931         while ((dp < lp) && num_logops) {
2932                 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2933                 ohead = (xlog_op_header_t *)dp;
2934                 dp += sizeof(xlog_op_header_t);
2935                 if (ohead->oh_clientid != XFS_TRANSACTION &&
2936                     ohead->oh_clientid != XFS_LOG) {
2937                         xlog_warn(
2938                 "XFS: xlog_recover_process_data: bad clientid");
2939                         ASSERT(0);
2940                         return (XFS_ERROR(EIO));
2941                 }
2942                 tid = be32_to_cpu(ohead->oh_tid);
2943                 hash = XLOG_RHASH(tid);
2944                 trans = xlog_recover_find_tid(&rhash[hash], tid);
2945                 if (trans == NULL) {               /* not found; add new tid */
2946                         if (ohead->oh_flags & XLOG_START_TRANS)
2947                                 xlog_recover_new_tid(&rhash[hash], tid,
2948                                         be64_to_cpu(rhead->h_lsn));
2949                 } else {
2950                         if (dp + be32_to_cpu(ohead->oh_len) > lp) {
2951                                 xlog_warn(
2952                         "XFS: xlog_recover_process_data: bad length");
2953                                 WARN_ON(1);
2954                                 return (XFS_ERROR(EIO));
2955                         }
2956                         flags = ohead->oh_flags & ~XLOG_END_TRANS;
2957                         if (flags & XLOG_WAS_CONT_TRANS)
2958                                 flags &= ~XLOG_CONTINUE_TRANS;
2959                         switch (flags) {
2960                         case XLOG_COMMIT_TRANS:
2961                                 error = xlog_recover_commit_trans(log,
2962                                                                 trans, pass);
2963                                 break;
2964                         case XLOG_UNMOUNT_TRANS:
2965                                 error = xlog_recover_unmount_trans(trans);
2966                                 break;
2967                         case XLOG_WAS_CONT_TRANS:
2968                                 error = xlog_recover_add_to_cont_trans(log,
2969                                                 trans, dp,
2970                                                 be32_to_cpu(ohead->oh_len));
2971                                 break;
2972                         case XLOG_START_TRANS:
2973                                 xlog_warn(
2974                         "XFS: xlog_recover_process_data: bad transaction");
2975                                 ASSERT(0);
2976                                 error = XFS_ERROR(EIO);
2977                                 break;
2978                         case 0:
2979                         case XLOG_CONTINUE_TRANS:
2980                                 error = xlog_recover_add_to_trans(log, trans,
2981                                                 dp, be32_to_cpu(ohead->oh_len));
2982                                 break;
2983                         default:
2984                                 xlog_warn(
2985                         "XFS: xlog_recover_process_data: bad flag");
2986                                 ASSERT(0);
2987                                 error = XFS_ERROR(EIO);
2988                                 break;
2989                         }
2990                         if (error)
2991                                 return error;
2992                 }
2993                 dp += be32_to_cpu(ohead->oh_len);
2994                 num_logops--;
2995         }
2996         return 0;
2997 }
2998
2999 /*
3000  * Process an extent free intent item that was recovered from
3001  * the log.  We need to free the extents that it describes.
3002  */
3003 STATIC int
3004 xlog_recover_process_efi(
3005         xfs_mount_t             *mp,
3006         xfs_efi_log_item_t      *efip)
3007 {
3008         xfs_efd_log_item_t      *efdp;
3009         xfs_trans_t             *tp;
3010         int                     i;
3011         int                     error = 0;
3012         xfs_extent_t            *extp;
3013         xfs_fsblock_t           startblock_fsb;
3014
3015         ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
3016
3017         /*
3018          * First check the validity of the extents described by the
3019          * EFI.  If any are bad, then assume that all are bad and
3020          * just toss the EFI.
3021          */
3022         for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3023                 extp = &(efip->efi_format.efi_extents[i]);
3024                 startblock_fsb = XFS_BB_TO_FSB(mp,
3025                                    XFS_FSB_TO_DADDR(mp, extp->ext_start));
3026                 if ((startblock_fsb == 0) ||
3027                     (extp->ext_len == 0) ||
3028                     (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3029                     (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3030                         /*
3031                          * This will pull the EFI from the AIL and
3032                          * free the memory associated with it.
3033                          */
3034                         xfs_efi_release(efip, efip->efi_format.efi_nextents);
3035                         return XFS_ERROR(EIO);
3036                 }
3037         }
3038
3039         tp = xfs_trans_alloc(mp, 0);
3040         error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
3041         if (error)
3042                 goto abort_error;
3043         efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3044
3045         for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3046                 extp = &(efip->efi_format.efi_extents[i]);
3047                 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3048                 if (error)
3049                         goto abort_error;
3050                 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3051                                          extp->ext_len);
3052         }
3053
3054         efip->efi_flags |= XFS_EFI_RECOVERED;
3055         error = xfs_trans_commit(tp, 0);
3056         return error;
3057
3058 abort_error:
3059         xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3060         return error;
3061 }
3062
3063 /*
3064  * When this is called, all of the EFIs which did not have
3065  * corresponding EFDs should be in the AIL.  What we do now
3066  * is free the extents associated with each one.
3067  *
3068  * Since we process the EFIs in normal transactions, they
3069  * will be removed at some point after the commit.  This prevents
3070  * us from just walking down the list processing each one.
3071  * We'll use a flag in the EFI to skip those that we've already
3072  * processed and use the AIL iteration mechanism's generation
3073  * count to try to speed this up at least a bit.
3074  *
3075  * When we start, we know that the EFIs are the only things in
3076  * the AIL.  As we process them, however, other items are added
3077  * to the AIL.  Since everything added to the AIL must come after
3078  * everything already in the AIL, we stop processing as soon as
3079  * we see something other than an EFI in the AIL.
3080  */
3081 STATIC int
3082 xlog_recover_process_efis(
3083         xlog_t                  *log)
3084 {
3085         xfs_log_item_t          *lip;
3086         xfs_efi_log_item_t      *efip;
3087         int                     error = 0;
3088         struct xfs_ail_cursor   cur;
3089         struct xfs_ail          *ailp;
3090
3091         ailp = log->l_ailp;
3092         spin_lock(&ailp->xa_lock);
3093         lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3094         while (lip != NULL) {
3095                 /*
3096                  * We're done when we see something other than an EFI.
3097                  * There should be no EFIs left in the AIL now.
3098                  */
3099                 if (lip->li_type != XFS_LI_EFI) {
3100 #ifdef DEBUG
3101                         for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
3102                                 ASSERT(lip->li_type != XFS_LI_EFI);
3103 #endif
3104                         break;
3105                 }
3106
3107                 /*
3108                  * Skip EFIs that we've already processed.
3109                  */
3110                 efip = (xfs_efi_log_item_t *)lip;
3111                 if (efip->efi_flags & XFS_EFI_RECOVERED) {
3112                         lip = xfs_trans_ail_cursor_next(ailp, &cur);
3113                         continue;
3114                 }
3115
3116                 spin_unlock(&ailp->xa_lock);
3117                 error = xlog_recover_process_efi(log->l_mp, efip);
3118                 spin_lock(&ailp->xa_lock);
3119                 if (error)
3120                         goto out;
3121                 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3122         }
3123 out:
3124         xfs_trans_ail_cursor_done(ailp, &cur);
3125         spin_unlock(&ailp->xa_lock);
3126         return error;
3127 }
3128
3129 /*
3130  * This routine performs a transaction to null out a bad inode pointer
3131  * in an agi unlinked inode hash bucket.
3132  */
3133 STATIC void
3134 xlog_recover_clear_agi_bucket(
3135         xfs_mount_t     *mp,
3136         xfs_agnumber_t  agno,
3137         int             bucket)
3138 {
3139         xfs_trans_t     *tp;
3140         xfs_agi_t       *agi;
3141         xfs_buf_t       *agibp;
3142         int             offset;
3143         int             error;
3144
3145         tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3146         error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3147                                   0, 0, 0);
3148         if (error)
3149                 goto out_abort;
3150
3151         error = xfs_read_agi(mp, tp, agno, &agibp);
3152         if (error)
3153                 goto out_abort;
3154
3155         agi = XFS_BUF_TO_AGI(agibp);
3156         agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3157         offset = offsetof(xfs_agi_t, agi_unlinked) +
3158                  (sizeof(xfs_agino_t) * bucket);
3159         xfs_trans_log_buf(tp, agibp, offset,
3160                           (offset + sizeof(xfs_agino_t) - 1));
3161
3162         error = xfs_trans_commit(tp, 0);
3163         if (error)
3164                 goto out_error;
3165         return;
3166
3167 out_abort:
3168         xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3169 out_error:
3170         xfs_fs_cmn_err(CE_WARN, mp, "xlog_recover_clear_agi_bucket: "
3171                         "failed to clear agi %d. Continuing.", agno);
3172         return;
3173 }
3174
3175 STATIC xfs_agino_t
3176 xlog_recover_process_one_iunlink(
3177         struct xfs_mount                *mp,
3178         xfs_agnumber_t                  agno,
3179         xfs_agino_t                     agino,
3180         int                             bucket)
3181 {
3182         struct xfs_buf                  *ibp;
3183         struct xfs_dinode               *dip;
3184         struct xfs_inode                *ip;
3185         xfs_ino_t                       ino;
3186         int                             error;
3187
3188         ino = XFS_AGINO_TO_INO(mp, agno, agino);
3189         error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
3190         if (error)
3191                 goto fail;
3192
3193         /*
3194          * Get the on disk inode to find the next inode in the bucket.
3195          */
3196         error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XBF_LOCK);
3197         if (error)
3198                 goto fail_iput;
3199
3200         ASSERT(ip->i_d.di_nlink == 0);
3201         ASSERT(ip->i_d.di_mode != 0);
3202
3203         /* setup for the next pass */
3204         agino = be32_to_cpu(dip->di_next_unlinked);
3205         xfs_buf_relse(ibp);
3206
3207         /*
3208          * Prevent any DMAPI event from being sent when the reference on
3209          * the inode is dropped.
3210          */
3211         ip->i_d.di_dmevmask = 0;
3212
3213         IRELE(ip);
3214         return agino;
3215
3216  fail_iput:
3217         IRELE(ip);
3218  fail:
3219         /*
3220          * We can't read in the inode this bucket points to, or this inode
3221          * is messed up.  Just ditch this bucket of inodes.  We will lose
3222          * some inodes and space, but at least we won't hang.
3223          *
3224          * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3225          * clear the inode pointer in the bucket.
3226          */
3227         xlog_recover_clear_agi_bucket(mp, agno, bucket);
3228         return NULLAGINO;
3229 }
3230
3231 /*
3232  * xlog_iunlink_recover
3233  *
3234  * This is called during recovery to process any inodes which
3235  * we unlinked but not freed when the system crashed.  These
3236  * inodes will be on the lists in the AGI blocks.  What we do
3237  * here is scan all the AGIs and fully truncate and free any
3238  * inodes found on the lists.  Each inode is removed from the
3239  * lists when it has been fully truncated and is freed.  The
3240  * freeing of the inode and its removal from the list must be
3241  * atomic.
3242  */
3243 STATIC void
3244 xlog_recover_process_iunlinks(
3245         xlog_t          *log)
3246 {
3247         xfs_mount_t     *mp;
3248         xfs_agnumber_t  agno;
3249         xfs_agi_t       *agi;
3250         xfs_buf_t       *agibp;
3251         xfs_agino_t     agino;
3252         int             bucket;
3253         int             error;
3254         uint            mp_dmevmask;
3255
3256         mp = log->l_mp;
3257
3258         /*
3259          * Prevent any DMAPI event from being sent while in this function.
3260          */
3261         mp_dmevmask = mp->m_dmevmask;
3262         mp->m_dmevmask = 0;
3263
3264         for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3265                 /*
3266                  * Find the agi for this ag.
3267                  */
3268                 error = xfs_read_agi(mp, NULL, agno, &agibp);
3269                 if (error) {
3270                         /*
3271                          * AGI is b0rked. Don't process it.
3272                          *
3273                          * We should probably mark the filesystem as corrupt
3274                          * after we've recovered all the ag's we can....
3275                          */
3276                         continue;
3277                 }
3278                 agi = XFS_BUF_TO_AGI(agibp);
3279
3280                 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3281                         agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3282                         while (agino != NULLAGINO) {
3283                                 /*
3284                                  * Release the agi buffer so that it can
3285                                  * be acquired in the normal course of the
3286                                  * transaction to truncate and free the inode.
3287                                  */
3288                                 xfs_buf_relse(agibp);
3289
3290                                 agino = xlog_recover_process_one_iunlink(mp,
3291                                                         agno, agino, bucket);
3292
3293                                 /*
3294                                  * Reacquire the agibuffer and continue around
3295                                  * the loop. This should never fail as we know
3296                                  * the buffer was good earlier on.
3297                                  */
3298                                 error = xfs_read_agi(mp, NULL, agno, &agibp);
3299                                 ASSERT(error == 0);
3300                                 agi = XFS_BUF_TO_AGI(agibp);
3301                         }
3302                 }
3303
3304                 /*
3305                  * Release the buffer for the current agi so we can
3306                  * go on to the next one.
3307                  */
3308                 xfs_buf_relse(agibp);
3309         }
3310
3311         mp->m_dmevmask = mp_dmevmask;
3312 }
3313
3314
3315 #ifdef DEBUG
3316 STATIC void
3317 xlog_pack_data_checksum(
3318         xlog_t          *log,
3319         xlog_in_core_t  *iclog,
3320         int             size)
3321 {
3322         int             i;
3323         __be32          *up;
3324         uint            chksum = 0;
3325
3326         up = (__be32 *)iclog->ic_datap;
3327         /* divide length by 4 to get # words */
3328         for (i = 0; i < (size >> 2); i++) {
3329                 chksum ^= be32_to_cpu(*up);
3330                 up++;
3331         }
3332         iclog->ic_header.h_chksum = cpu_to_be32(chksum);
3333 }
3334 #else
3335 #define xlog_pack_data_checksum(log, iclog, size)
3336 #endif
3337
3338 /*
3339  * Stamp cycle number in every block
3340  */
3341 void
3342 xlog_pack_data(
3343         xlog_t                  *log,
3344         xlog_in_core_t          *iclog,
3345         int                     roundoff)
3346 {
3347         int                     i, j, k;
3348         int                     size = iclog->ic_offset + roundoff;
3349         __be32                  cycle_lsn;
3350         xfs_caddr_t             dp;
3351
3352         xlog_pack_data_checksum(log, iclog, size);
3353
3354         cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3355
3356         dp = iclog->ic_datap;
3357         for (i = 0; i < BTOBB(size) &&
3358                 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3359                 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
3360                 *(__be32 *)dp = cycle_lsn;
3361                 dp += BBSIZE;
3362         }
3363
3364         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3365                 xlog_in_core_2_t *xhdr = iclog->ic_data;
3366
3367                 for ( ; i < BTOBB(size); i++) {
3368                         j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3369                         k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3370                         xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
3371                         *(__be32 *)dp = cycle_lsn;
3372                         dp += BBSIZE;
3373                 }
3374
3375                 for (i = 1; i < log->l_iclog_heads; i++) {
3376                         xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3377                 }
3378         }
3379 }
3380
3381 STATIC void
3382 xlog_unpack_data(
3383         xlog_rec_header_t       *rhead,
3384         xfs_caddr_t             dp,
3385         xlog_t                  *log)
3386 {
3387         int                     i, j, k;
3388
3389         for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3390                   i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3391                 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3392                 dp += BBSIZE;
3393         }
3394
3395         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3396                 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
3397                 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
3398                         j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3399                         k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3400                         *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3401                         dp += BBSIZE;
3402                 }
3403         }
3404 }
3405
3406 STATIC int
3407 xlog_valid_rec_header(
3408         xlog_t                  *log,
3409         xlog_rec_header_t       *rhead,
3410         xfs_daddr_t             blkno)
3411 {
3412         int                     hlen;
3413
3414         if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) {
3415                 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3416                                 XFS_ERRLEVEL_LOW, log->l_mp);
3417                 return XFS_ERROR(EFSCORRUPTED);
3418         }
3419         if (unlikely(
3420             (!rhead->h_version ||
3421             (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
3422                 xlog_warn("XFS: %s: unrecognised log version (%d).",
3423                         __func__, be32_to_cpu(rhead->h_version));
3424                 return XFS_ERROR(EIO);
3425         }
3426
3427         /* LR body must have data or it wouldn't have been written */
3428         hlen = be32_to_cpu(rhead->h_len);
3429         if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3430                 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3431                                 XFS_ERRLEVEL_LOW, log->l_mp);
3432                 return XFS_ERROR(EFSCORRUPTED);
3433         }
3434         if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3435                 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3436                                 XFS_ERRLEVEL_LOW, log->l_mp);
3437                 return XFS_ERROR(EFSCORRUPTED);
3438         }
3439         return 0;
3440 }
3441
3442 /*
3443  * Read the log from tail to head and process the log records found.
3444  * Handle the two cases where the tail and head are in the same cycle
3445  * and where the active portion of the log wraps around the end of
3446  * the physical log separately.  The pass parameter is passed through
3447  * to the routines called to process the data and is not looked at
3448  * here.
3449  */
3450 STATIC int
3451 xlog_do_recovery_pass(
3452         xlog_t                  *log,
3453         xfs_daddr_t             head_blk,
3454         xfs_daddr_t             tail_blk,
3455         int                     pass)
3456 {
3457         xlog_rec_header_t       *rhead;
3458         xfs_daddr_t             blk_no;
3459         xfs_caddr_t             offset;
3460         xfs_buf_t               *hbp, *dbp;
3461         int                     error = 0, h_size;
3462         int                     bblks, split_bblks;
3463         int                     hblks, split_hblks, wrapped_hblks;
3464         struct hlist_head       rhash[XLOG_RHASH_SIZE];
3465
3466         ASSERT(head_blk != tail_blk);
3467
3468         /*
3469          * Read the header of the tail block and get the iclog buffer size from
3470          * h_size.  Use this to tell how many sectors make up the log header.
3471          */
3472         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3473                 /*
3474                  * When using variable length iclogs, read first sector of
3475                  * iclog header and extract the header size from it.  Get a
3476                  * new hbp that is the correct size.
3477                  */
3478                 hbp = xlog_get_bp(log, 1);
3479                 if (!hbp)
3480                         return ENOMEM;
3481
3482                 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3483                 if (error)
3484                         goto bread_err1;
3485
3486                 rhead = (xlog_rec_header_t *)offset;
3487                 error = xlog_valid_rec_header(log, rhead, tail_blk);
3488                 if (error)
3489                         goto bread_err1;
3490                 h_size = be32_to_cpu(rhead->h_size);
3491                 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
3492                     (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3493                         hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3494                         if (h_size % XLOG_HEADER_CYCLE_SIZE)
3495                                 hblks++;
3496                         xlog_put_bp(hbp);
3497                         hbp = xlog_get_bp(log, hblks);
3498                 } else {
3499                         hblks = 1;
3500                 }
3501         } else {
3502                 ASSERT(log->l_sectBBsize == 1);
3503                 hblks = 1;
3504                 hbp = xlog_get_bp(log, 1);
3505                 h_size = XLOG_BIG_RECORD_BSIZE;
3506         }
3507
3508         if (!hbp)
3509                 return ENOMEM;
3510         dbp = xlog_get_bp(log, BTOBB(h_size));
3511         if (!dbp) {
3512                 xlog_put_bp(hbp);
3513                 return ENOMEM;
3514         }
3515
3516         memset(rhash, 0, sizeof(rhash));
3517         if (tail_blk <= head_blk) {
3518                 for (blk_no = tail_blk; blk_no < head_blk; ) {
3519                         error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3520                         if (error)
3521                                 goto bread_err2;
3522
3523                         rhead = (xlog_rec_header_t *)offset;
3524                         error = xlog_valid_rec_header(log, rhead, blk_no);
3525                         if (error)
3526                                 goto bread_err2;
3527
3528                         /* blocks in data section */
3529                         bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3530                         error = xlog_bread(log, blk_no + hblks, bblks, dbp,
3531                                            &offset);
3532                         if (error)
3533                                 goto bread_err2;
3534
3535                         xlog_unpack_data(rhead, offset, log);
3536                         if ((error = xlog_recover_process_data(log,
3537                                                 rhash, rhead, offset, pass)))
3538                                 goto bread_err2;
3539                         blk_no += bblks + hblks;
3540                 }
3541         } else {
3542                 /*
3543                  * Perform recovery around the end of the physical log.
3544                  * When the head is not on the same cycle number as the tail,
3545                  * we can't do a sequential recovery as above.
3546                  */
3547                 blk_no = tail_blk;
3548                 while (blk_no < log->l_logBBsize) {
3549                         /*
3550                          * Check for header wrapping around physical end-of-log
3551                          */
3552                         offset = XFS_BUF_PTR(hbp);
3553                         split_hblks = 0;
3554                         wrapped_hblks = 0;
3555                         if (blk_no + hblks <= log->l_logBBsize) {
3556                                 /* Read header in one read */
3557                                 error = xlog_bread(log, blk_no, hblks, hbp,
3558                                                    &offset);
3559                                 if (error)
3560                                         goto bread_err2;
3561                         } else {
3562                                 /* This LR is split across physical log end */
3563                                 if (blk_no != log->l_logBBsize) {
3564                                         /* some data before physical log end */
3565                                         ASSERT(blk_no <= INT_MAX);
3566                                         split_hblks = log->l_logBBsize - (int)blk_no;
3567                                         ASSERT(split_hblks > 0);
3568                                         error = xlog_bread(log, blk_no,
3569                                                            split_hblks, hbp,
3570                                                            &offset);
3571                                         if (error)
3572                                                 goto bread_err2;
3573                                 }
3574
3575                                 /*
3576                                  * Note: this black magic still works with
3577                                  * large sector sizes (non-512) only because:
3578                                  * - we increased the buffer size originally
3579                                  *   by 1 sector giving us enough extra space
3580                                  *   for the second read;
3581                                  * - the log start is guaranteed to be sector
3582                                  *   aligned;
3583                                  * - we read the log end (LR header start)
3584                                  *   _first_, then the log start (LR header end)
3585                                  *   - order is important.
3586                                  */
3587                                 wrapped_hblks = hblks - split_hblks;
3588                                 error = XFS_BUF_SET_PTR(hbp,
3589                                                 offset + BBTOB(split_hblks),
3590                                                 BBTOB(hblks - split_hblks));
3591                                 if (error)
3592                                         goto bread_err2;
3593
3594                                 error = xlog_bread_noalign(log, 0,
3595                                                            wrapped_hblks, hbp);
3596                                 if (error)
3597                                         goto bread_err2;
3598
3599                                 error = XFS_BUF_SET_PTR(hbp, offset,
3600                                                         BBTOB(hblks));
3601                                 if (error)
3602                                         goto bread_err2;
3603                         }
3604                         rhead = (xlog_rec_header_t *)offset;
3605                         error = xlog_valid_rec_header(log, rhead,
3606                                                 split_hblks ? blk_no : 0);
3607                         if (error)
3608                                 goto bread_err2;
3609
3610                         bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3611                         blk_no += hblks;
3612
3613                         /* Read in data for log record */
3614                         if (blk_no + bblks <= log->l_logBBsize) {
3615                                 error = xlog_bread(log, blk_no, bblks, dbp,
3616                                                    &offset);
3617                                 if (error)
3618                                         goto bread_err2;
3619                         } else {
3620                                 /* This log record is split across the
3621                                  * physical end of log */
3622                                 offset = XFS_BUF_PTR(dbp);
3623                                 split_bblks = 0;
3624                                 if (blk_no != log->l_logBBsize) {
3625                                         /* some data is before the physical
3626                                          * end of log */
3627                                         ASSERT(!wrapped_hblks);
3628                                         ASSERT(blk_no <= INT_MAX);
3629                                         split_bblks =
3630                                                 log->l_logBBsize - (int)blk_no;
3631                                         ASSERT(split_bblks > 0);
3632                                         error = xlog_bread(log, blk_no,
3633                                                         split_bblks, dbp,
3634                                                         &offset);
3635                                         if (error)
3636                                                 goto bread_err2;
3637                                 }
3638
3639                                 /*
3640                                  * Note: this black magic still works with
3641                                  * large sector sizes (non-512) only because:
3642                                  * - we increased the buffer size originally
3643                                  *   by 1 sector giving us enough extra space
3644                                  *   for the second read;
3645                                  * - the log start is guaranteed to be sector
3646                                  *   aligned;
3647                                  * - we read the log end (LR header start)
3648                                  *   _first_, then the log start (LR header end)
3649                                  *   - order is important.
3650                                  */
3651                                 error = XFS_BUF_SET_PTR(dbp,
3652                                                 offset + BBTOB(split_bblks),
3653                                                 BBTOB(bblks - split_bblks));
3654                                 if (error)
3655                                         goto bread_err2;
3656
3657                                 error = xlog_bread_noalign(log, wrapped_hblks,
3658                                                 bblks - split_bblks,
3659                                                 dbp);
3660                                 if (error)
3661                                         goto bread_err2;
3662
3663                                 error = XFS_BUF_SET_PTR(dbp, offset, h_size);
3664                                 if (error)
3665                                         goto bread_err2;
3666                         }
3667                         xlog_unpack_data(rhead, offset, log);
3668                         if ((error = xlog_recover_process_data(log, rhash,
3669                                                         rhead, offset, pass)))
3670                                 goto bread_err2;
3671                         blk_no += bblks;
3672                 }
3673
3674                 ASSERT(blk_no >= log->l_logBBsize);
3675                 blk_no -= log->l_logBBsize;
3676
3677                 /* read first part of physical log */
3678                 while (blk_no < head_blk) {
3679                         error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3680                         if (error)
3681                                 goto bread_err2;
3682
3683                         rhead = (xlog_rec_header_t *)offset;
3684                         error = xlog_valid_rec_header(log, rhead, blk_no);
3685                         if (error)
3686                                 goto bread_err2;
3687
3688                         bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3689                         error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3690                                            &offset);
3691                         if (error)
3692                                 goto bread_err2;
3693
3694                         xlog_unpack_data(rhead, offset, log);
3695                         if ((error = xlog_recover_process_data(log, rhash,
3696                                                         rhead, offset, pass)))
3697                                 goto bread_err2;
3698                         blk_no += bblks + hblks;
3699                 }
3700         }
3701
3702  bread_err2:
3703         xlog_put_bp(dbp);
3704  bread_err1:
3705         xlog_put_bp(hbp);
3706         return error;
3707 }
3708
3709 /*
3710  * Do the recovery of the log.  We actually do this in two phases.
3711  * The two passes are necessary in order to implement the function
3712  * of cancelling a record written into the log.  The first pass
3713  * determines those things which have been cancelled, and the
3714  * second pass replays log items normally except for those which
3715  * have been cancelled.  The handling of the replay and cancellations
3716  * takes place in the log item type specific routines.
3717  *
3718  * The table of items which have cancel records in the log is allocated
3719  * and freed at this level, since only here do we know when all of
3720  * the log recovery has been completed.
3721  */
3722 STATIC int
3723 xlog_do_log_recovery(
3724         xlog_t          *log,
3725         xfs_daddr_t     head_blk,
3726         xfs_daddr_t     tail_blk)
3727 {
3728         int             error;
3729
3730         ASSERT(head_blk != tail_blk);
3731
3732         /*
3733          * First do a pass to find all of the cancelled buf log items.
3734          * Store them in the buf_cancel_table for use in the second pass.
3735          */
3736         log->l_buf_cancel_table =
3737                 (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
3738                                                  sizeof(xfs_buf_cancel_t*),
3739                                                  KM_SLEEP);
3740         error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3741                                       XLOG_RECOVER_PASS1);
3742         if (error != 0) {
3743                 kmem_free(log->l_buf_cancel_table);
3744                 log->l_buf_cancel_table = NULL;
3745                 return error;
3746         }
3747         /*
3748          * Then do a second pass to actually recover the items in the log.
3749          * When it is complete free the table of buf cancel items.
3750          */
3751         error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3752                                       XLOG_RECOVER_PASS2);
3753 #ifdef DEBUG
3754         if (!error) {
3755                 int     i;
3756
3757                 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3758                         ASSERT(log->l_buf_cancel_table[i] == NULL);
3759         }
3760 #endif  /* DEBUG */
3761
3762         kmem_free(log->l_buf_cancel_table);
3763         log->l_buf_cancel_table = NULL;
3764
3765         return error;
3766 }
3767
3768 /*
3769  * Do the actual recovery
3770  */
3771 STATIC int
3772 xlog_do_recover(
3773         xlog_t          *log,
3774         xfs_daddr_t     head_blk,
3775         xfs_daddr_t     tail_blk)
3776 {
3777         int             error;
3778         xfs_buf_t       *bp;
3779         xfs_sb_t        *sbp;
3780
3781         /*
3782          * First replay the images in the log.
3783          */
3784         error = xlog_do_log_recovery(log, head_blk, tail_blk);
3785         if (error) {
3786                 return error;
3787         }
3788
3789         XFS_bflush(log->l_mp->m_ddev_targp);
3790
3791         /*
3792          * If IO errors happened during recovery, bail out.
3793          */
3794         if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3795                 return (EIO);
3796         }
3797
3798         /*
3799          * We now update the tail_lsn since much of the recovery has completed
3800          * and there may be space available to use.  If there were no extent
3801          * or iunlinks, we can free up the entire log and set the tail_lsn to
3802          * be the last_sync_lsn.  This was set in xlog_find_tail to be the
3803          * lsn of the last known good LR on disk.  If there are extent frees
3804          * or iunlinks they will have some entries in the AIL; so we look at
3805          * the AIL to determine how to set the tail_lsn.
3806          */
3807         xlog_assign_tail_lsn(log->l_mp);
3808
3809         /*
3810          * Now that we've finished replaying all buffer and inode
3811          * updates, re-read in the superblock.
3812          */
3813         bp = xfs_getsb(log->l_mp, 0);
3814         XFS_BUF_UNDONE(bp);
3815         ASSERT(!(XFS_BUF_ISWRITE(bp)));
3816         ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
3817         XFS_BUF_READ(bp);
3818         XFS_BUF_UNASYNC(bp);
3819         xfsbdstrat(log->l_mp, bp);
3820         error = xfs_iowait(bp);
3821         if (error) {
3822                 xfs_ioerror_alert("xlog_do_recover",
3823                                   log->l_mp, bp, XFS_BUF_ADDR(bp));
3824                 ASSERT(0);
3825                 xfs_buf_relse(bp);
3826                 return error;
3827         }
3828
3829         /* Convert superblock from on-disk format */
3830         sbp = &log->l_mp->m_sb;
3831         xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
3832         ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3833         ASSERT(xfs_sb_good_version(sbp));
3834         xfs_buf_relse(bp);
3835
3836         /* We've re-read the superblock so re-initialize per-cpu counters */
3837         xfs_icsb_reinit_counters(log->l_mp);
3838
3839         xlog_recover_check_summary(log);
3840
3841         /* Normal transactions can now occur */
3842         log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3843         return 0;
3844 }
3845
3846 /*
3847  * Perform recovery and re-initialize some log variables in xlog_find_tail.
3848  *
3849  * Return error or zero.
3850  */
3851 int
3852 xlog_recover(
3853         xlog_t          *log)
3854 {
3855         xfs_daddr_t     head_blk, tail_blk;
3856         int             error;
3857
3858         /* find the tail of the log */
3859         if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
3860                 return error;
3861
3862         if (tail_blk != head_blk) {
3863                 /* There used to be a comment here:
3864                  *
3865                  * disallow recovery on read-only mounts.  note -- mount
3866                  * checks for ENOSPC and turns it into an intelligent
3867                  * error message.
3868                  * ...but this is no longer true.  Now, unless you specify
3869                  * NORECOVERY (in which case this function would never be
3870                  * called), we just go ahead and recover.  We do this all
3871                  * under the vfs layer, so we can get away with it unless
3872                  * the device itself is read-only, in which case we fail.
3873                  */
3874                 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3875                         return error;
3876                 }
3877
3878                 cmn_err(CE_NOTE,
3879                         "Starting XFS recovery on filesystem: %s (logdev: %s)",
3880                         log->l_mp->m_fsname, log->l_mp->m_logname ?
3881                         log->l_mp->m_logname : "internal");
3882
3883                 error = xlog_do_recover(log, head_blk, tail_blk);
3884                 log->l_flags |= XLOG_RECOVERY_NEEDED;
3885         }
3886         return error;
3887 }
3888
3889 /*
3890  * In the first part of recovery we replay inodes and buffers and build
3891  * up the list of extent free items which need to be processed.  Here
3892  * we process the extent free items and clean up the on disk unlinked
3893  * inode lists.  This is separated from the first part of recovery so
3894  * that the root and real-time bitmap inodes can be read in from disk in
3895  * between the two stages.  This is necessary so that we can free space
3896  * in the real-time portion of the file system.
3897  */
3898 int
3899 xlog_recover_finish(
3900         xlog_t          *log)
3901 {
3902         /*
3903          * Now we're ready to do the transactions needed for the
3904          * rest of recovery.  Start with completing all the extent
3905          * free intent records and then process the unlinked inode
3906          * lists.  At this point, we essentially run in normal mode
3907          * except that we're still performing recovery actions
3908          * rather than accepting new requests.
3909          */
3910         if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3911                 int     error;
3912                 error = xlog_recover_process_efis(log);
3913                 if (error) {
3914                         cmn_err(CE_ALERT,
3915                                 "Failed to recover EFIs on filesystem: %s",
3916                                 log->l_mp->m_fsname);
3917                         return error;
3918                 }
3919                 /*
3920                  * Sync the log to get all the EFIs out of the AIL.
3921                  * This isn't absolutely necessary, but it helps in
3922                  * case the unlink transactions would have problems
3923                  * pushing the EFIs out of the way.
3924                  */
3925                 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3926
3927                 xlog_recover_process_iunlinks(log);
3928
3929                 xlog_recover_check_summary(log);
3930
3931                 cmn_err(CE_NOTE,
3932                         "Ending XFS recovery on filesystem: %s (logdev: %s)",
3933                         log->l_mp->m_fsname, log->l_mp->m_logname ?
3934                         log->l_mp->m_logname : "internal");
3935                 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3936         } else {
3937                 cmn_err(CE_DEBUG,
3938                         "!Ending clean XFS mount for filesystem: %s\n",
3939                         log->l_mp->m_fsname);
3940         }
3941         return 0;
3942 }
3943
3944
3945 #if defined(DEBUG)
3946 /*
3947  * Read all of the agf and agi counters and check that they
3948  * are consistent with the superblock counters.
3949  */
3950 void
3951 xlog_recover_check_summary(
3952         xlog_t          *log)
3953 {
3954         xfs_mount_t     *mp;
3955         xfs_agf_t       *agfp;
3956         xfs_buf_t       *agfbp;
3957         xfs_buf_t       *agibp;
3958         xfs_agnumber_t  agno;
3959         __uint64_t      freeblks;
3960         __uint64_t      itotal;
3961         __uint64_t      ifree;
3962         int             error;
3963
3964         mp = log->l_mp;
3965
3966         freeblks = 0LL;
3967         itotal = 0LL;
3968         ifree = 0LL;
3969         for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3970                 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
3971                 if (error) {
3972                         xfs_fs_cmn_err(CE_ALERT, mp,
3973                                         "xlog_recover_check_summary(agf)"
3974                                         "agf read failed agno %d error %d",
3975                                                         agno, error);
3976                 } else {
3977                         agfp = XFS_BUF_TO_AGF(agfbp);
3978                         freeblks += be32_to_cpu(agfp->agf_freeblks) +
3979                                     be32_to_cpu(agfp->agf_flcount);
3980                         xfs_buf_relse(agfbp);
3981                 }
3982
3983                 error = xfs_read_agi(mp, NULL, agno, &agibp);
3984                 if (!error) {
3985                         struct xfs_agi  *agi = XFS_BUF_TO_AGI(agibp);
3986
3987                         itotal += be32_to_cpu(agi->agi_count);
3988                         ifree += be32_to_cpu(agi->agi_freecount);
3989                         xfs_buf_relse(agibp);
3990                 }
3991         }
3992 }
3993 #endif /* DEBUG */