Merge tag 'media/v5.3-2' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[sfrench/cifs-2.6.git] / fs / userfaultfd.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  fs/userfaultfd.c
4  *
5  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
6  *  Copyright (C) 2008-2009 Red Hat, Inc.
7  *  Copyright (C) 2015  Red Hat, Inc.
8  *
9  *  Some part derived from fs/eventfd.c (anon inode setup) and
10  *  mm/ksm.c (mm hashing).
11  */
12
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
17 #include <linux/mm.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/seq_file.h>
21 #include <linux/file.h>
22 #include <linux/bug.h>
23 #include <linux/anon_inodes.h>
24 #include <linux/syscalls.h>
25 #include <linux/userfaultfd_k.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ioctl.h>
28 #include <linux/security.h>
29 #include <linux/hugetlb.h>
30
31 int sysctl_unprivileged_userfaultfd __read_mostly = 1;
32
33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34
35 enum userfaultfd_state {
36         UFFD_STATE_WAIT_API,
37         UFFD_STATE_RUNNING,
38 };
39
40 /*
41  * Start with fault_pending_wqh and fault_wqh so they're more likely
42  * to be in the same cacheline.
43  *
44  * Locking order:
45  *      fd_wqh.lock
46  *              fault_pending_wqh.lock
47  *                      fault_wqh.lock
48  *              event_wqh.lock
49  *
50  * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
51  * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
52  * also taken in IRQ context.
53  */
54 struct userfaultfd_ctx {
55         /* waitqueue head for the pending (i.e. not read) userfaults */
56         wait_queue_head_t fault_pending_wqh;
57         /* waitqueue head for the userfaults */
58         wait_queue_head_t fault_wqh;
59         /* waitqueue head for the pseudo fd to wakeup poll/read */
60         wait_queue_head_t fd_wqh;
61         /* waitqueue head for events */
62         wait_queue_head_t event_wqh;
63         /* a refile sequence protected by fault_pending_wqh lock */
64         struct seqcount refile_seq;
65         /* pseudo fd refcounting */
66         refcount_t refcount;
67         /* userfaultfd syscall flags */
68         unsigned int flags;
69         /* features requested from the userspace */
70         unsigned int features;
71         /* state machine */
72         enum userfaultfd_state state;
73         /* released */
74         bool released;
75         /* memory mappings are changing because of non-cooperative event */
76         bool mmap_changing;
77         /* mm with one ore more vmas attached to this userfaultfd_ctx */
78         struct mm_struct *mm;
79 };
80
81 struct userfaultfd_fork_ctx {
82         struct userfaultfd_ctx *orig;
83         struct userfaultfd_ctx *new;
84         struct list_head list;
85 };
86
87 struct userfaultfd_unmap_ctx {
88         struct userfaultfd_ctx *ctx;
89         unsigned long start;
90         unsigned long end;
91         struct list_head list;
92 };
93
94 struct userfaultfd_wait_queue {
95         struct uffd_msg msg;
96         wait_queue_entry_t wq;
97         struct userfaultfd_ctx *ctx;
98         bool waken;
99 };
100
101 struct userfaultfd_wake_range {
102         unsigned long start;
103         unsigned long len;
104 };
105
106 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
107                                      int wake_flags, void *key)
108 {
109         struct userfaultfd_wake_range *range = key;
110         int ret;
111         struct userfaultfd_wait_queue *uwq;
112         unsigned long start, len;
113
114         uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
115         ret = 0;
116         /* len == 0 means wake all */
117         start = range->start;
118         len = range->len;
119         if (len && (start > uwq->msg.arg.pagefault.address ||
120                     start + len <= uwq->msg.arg.pagefault.address))
121                 goto out;
122         WRITE_ONCE(uwq->waken, true);
123         /*
124          * The Program-Order guarantees provided by the scheduler
125          * ensure uwq->waken is visible before the task is woken.
126          */
127         ret = wake_up_state(wq->private, mode);
128         if (ret) {
129                 /*
130                  * Wake only once, autoremove behavior.
131                  *
132                  * After the effect of list_del_init is visible to the other
133                  * CPUs, the waitqueue may disappear from under us, see the
134                  * !list_empty_careful() in handle_userfault().
135                  *
136                  * try_to_wake_up() has an implicit smp_mb(), and the
137                  * wq->private is read before calling the extern function
138                  * "wake_up_state" (which in turns calls try_to_wake_up).
139                  */
140                 list_del_init(&wq->entry);
141         }
142 out:
143         return ret;
144 }
145
146 /**
147  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
148  * context.
149  * @ctx: [in] Pointer to the userfaultfd context.
150  */
151 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
152 {
153         refcount_inc(&ctx->refcount);
154 }
155
156 /**
157  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
158  * context.
159  * @ctx: [in] Pointer to userfaultfd context.
160  *
161  * The userfaultfd context reference must have been previously acquired either
162  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
163  */
164 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
165 {
166         if (refcount_dec_and_test(&ctx->refcount)) {
167                 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
168                 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
169                 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
170                 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
171                 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
172                 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
173                 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
174                 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
175                 mmdrop(ctx->mm);
176                 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
177         }
178 }
179
180 static inline void msg_init(struct uffd_msg *msg)
181 {
182         BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
183         /*
184          * Must use memset to zero out the paddings or kernel data is
185          * leaked to userland.
186          */
187         memset(msg, 0, sizeof(struct uffd_msg));
188 }
189
190 static inline struct uffd_msg userfault_msg(unsigned long address,
191                                             unsigned int flags,
192                                             unsigned long reason,
193                                             unsigned int features)
194 {
195         struct uffd_msg msg;
196         msg_init(&msg);
197         msg.event = UFFD_EVENT_PAGEFAULT;
198         msg.arg.pagefault.address = address;
199         if (flags & FAULT_FLAG_WRITE)
200                 /*
201                  * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
202                  * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
203                  * was not set in a UFFD_EVENT_PAGEFAULT, it means it
204                  * was a read fault, otherwise if set it means it's
205                  * a write fault.
206                  */
207                 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
208         if (reason & VM_UFFD_WP)
209                 /*
210                  * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
211                  * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
212                  * not set in a UFFD_EVENT_PAGEFAULT, it means it was
213                  * a missing fault, otherwise if set it means it's a
214                  * write protect fault.
215                  */
216                 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
217         if (features & UFFD_FEATURE_THREAD_ID)
218                 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
219         return msg;
220 }
221
222 #ifdef CONFIG_HUGETLB_PAGE
223 /*
224  * Same functionality as userfaultfd_must_wait below with modifications for
225  * hugepmd ranges.
226  */
227 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
228                                          struct vm_area_struct *vma,
229                                          unsigned long address,
230                                          unsigned long flags,
231                                          unsigned long reason)
232 {
233         struct mm_struct *mm = ctx->mm;
234         pte_t *ptep, pte;
235         bool ret = true;
236
237         VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
238
239         ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
240
241         if (!ptep)
242                 goto out;
243
244         ret = false;
245         pte = huge_ptep_get(ptep);
246
247         /*
248          * Lockless access: we're in a wait_event so it's ok if it
249          * changes under us.
250          */
251         if (huge_pte_none(pte))
252                 ret = true;
253         if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
254                 ret = true;
255 out:
256         return ret;
257 }
258 #else
259 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
260                                          struct vm_area_struct *vma,
261                                          unsigned long address,
262                                          unsigned long flags,
263                                          unsigned long reason)
264 {
265         return false;   /* should never get here */
266 }
267 #endif /* CONFIG_HUGETLB_PAGE */
268
269 /*
270  * Verify the pagetables are still not ok after having reigstered into
271  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
272  * userfault that has already been resolved, if userfaultfd_read and
273  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
274  * threads.
275  */
276 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
277                                          unsigned long address,
278                                          unsigned long flags,
279                                          unsigned long reason)
280 {
281         struct mm_struct *mm = ctx->mm;
282         pgd_t *pgd;
283         p4d_t *p4d;
284         pud_t *pud;
285         pmd_t *pmd, _pmd;
286         pte_t *pte;
287         bool ret = true;
288
289         VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
290
291         pgd = pgd_offset(mm, address);
292         if (!pgd_present(*pgd))
293                 goto out;
294         p4d = p4d_offset(pgd, address);
295         if (!p4d_present(*p4d))
296                 goto out;
297         pud = pud_offset(p4d, address);
298         if (!pud_present(*pud))
299                 goto out;
300         pmd = pmd_offset(pud, address);
301         /*
302          * READ_ONCE must function as a barrier with narrower scope
303          * and it must be equivalent to:
304          *      _pmd = *pmd; barrier();
305          *
306          * This is to deal with the instability (as in
307          * pmd_trans_unstable) of the pmd.
308          */
309         _pmd = READ_ONCE(*pmd);
310         if (pmd_none(_pmd))
311                 goto out;
312
313         ret = false;
314         if (!pmd_present(_pmd))
315                 goto out;
316
317         if (pmd_trans_huge(_pmd))
318                 goto out;
319
320         /*
321          * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
322          * and use the standard pte_offset_map() instead of parsing _pmd.
323          */
324         pte = pte_offset_map(pmd, address);
325         /*
326          * Lockless access: we're in a wait_event so it's ok if it
327          * changes under us.
328          */
329         if (pte_none(*pte))
330                 ret = true;
331         pte_unmap(pte);
332
333 out:
334         return ret;
335 }
336
337 /*
338  * The locking rules involved in returning VM_FAULT_RETRY depending on
339  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
340  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
341  * recommendation in __lock_page_or_retry is not an understatement.
342  *
343  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
344  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
345  * not set.
346  *
347  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
348  * set, VM_FAULT_RETRY can still be returned if and only if there are
349  * fatal_signal_pending()s, and the mmap_sem must be released before
350  * returning it.
351  */
352 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
353 {
354         struct mm_struct *mm = vmf->vma->vm_mm;
355         struct userfaultfd_ctx *ctx;
356         struct userfaultfd_wait_queue uwq;
357         vm_fault_t ret = VM_FAULT_SIGBUS;
358         bool must_wait, return_to_userland;
359         long blocking_state;
360
361         /*
362          * We don't do userfault handling for the final child pid update.
363          *
364          * We also don't do userfault handling during
365          * coredumping. hugetlbfs has the special
366          * follow_hugetlb_page() to skip missing pages in the
367          * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
368          * the no_page_table() helper in follow_page_mask(), but the
369          * shmem_vm_ops->fault method is invoked even during
370          * coredumping without mmap_sem and it ends up here.
371          */
372         if (current->flags & (PF_EXITING|PF_DUMPCORE))
373                 goto out;
374
375         /*
376          * Coredumping runs without mmap_sem so we can only check that
377          * the mmap_sem is held, if PF_DUMPCORE was not set.
378          */
379         WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem));
380
381         ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
382         if (!ctx)
383                 goto out;
384
385         BUG_ON(ctx->mm != mm);
386
387         VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
388         VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
389
390         if (ctx->features & UFFD_FEATURE_SIGBUS)
391                 goto out;
392
393         /*
394          * If it's already released don't get it. This avoids to loop
395          * in __get_user_pages if userfaultfd_release waits on the
396          * caller of handle_userfault to release the mmap_sem.
397          */
398         if (unlikely(READ_ONCE(ctx->released))) {
399                 /*
400                  * Don't return VM_FAULT_SIGBUS in this case, so a non
401                  * cooperative manager can close the uffd after the
402                  * last UFFDIO_COPY, without risking to trigger an
403                  * involuntary SIGBUS if the process was starting the
404                  * userfaultfd while the userfaultfd was still armed
405                  * (but after the last UFFDIO_COPY). If the uffd
406                  * wasn't already closed when the userfault reached
407                  * this point, that would normally be solved by
408                  * userfaultfd_must_wait returning 'false'.
409                  *
410                  * If we were to return VM_FAULT_SIGBUS here, the non
411                  * cooperative manager would be instead forced to
412                  * always call UFFDIO_UNREGISTER before it can safely
413                  * close the uffd.
414                  */
415                 ret = VM_FAULT_NOPAGE;
416                 goto out;
417         }
418
419         /*
420          * Check that we can return VM_FAULT_RETRY.
421          *
422          * NOTE: it should become possible to return VM_FAULT_RETRY
423          * even if FAULT_FLAG_TRIED is set without leading to gup()
424          * -EBUSY failures, if the userfaultfd is to be extended for
425          * VM_UFFD_WP tracking and we intend to arm the userfault
426          * without first stopping userland access to the memory. For
427          * VM_UFFD_MISSING userfaults this is enough for now.
428          */
429         if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
430                 /*
431                  * Validate the invariant that nowait must allow retry
432                  * to be sure not to return SIGBUS erroneously on
433                  * nowait invocations.
434                  */
435                 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
436 #ifdef CONFIG_DEBUG_VM
437                 if (printk_ratelimit()) {
438                         printk(KERN_WARNING
439                                "FAULT_FLAG_ALLOW_RETRY missing %x\n",
440                                vmf->flags);
441                         dump_stack();
442                 }
443 #endif
444                 goto out;
445         }
446
447         /*
448          * Handle nowait, not much to do other than tell it to retry
449          * and wait.
450          */
451         ret = VM_FAULT_RETRY;
452         if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
453                 goto out;
454
455         /* take the reference before dropping the mmap_sem */
456         userfaultfd_ctx_get(ctx);
457
458         init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
459         uwq.wq.private = current;
460         uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
461                         ctx->features);
462         uwq.ctx = ctx;
463         uwq.waken = false;
464
465         return_to_userland =
466                 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
467                 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
468         blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
469                          TASK_KILLABLE;
470
471         spin_lock_irq(&ctx->fault_pending_wqh.lock);
472         /*
473          * After the __add_wait_queue the uwq is visible to userland
474          * through poll/read().
475          */
476         __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
477         /*
478          * The smp_mb() after __set_current_state prevents the reads
479          * following the spin_unlock to happen before the list_add in
480          * __add_wait_queue.
481          */
482         set_current_state(blocking_state);
483         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
484
485         if (!is_vm_hugetlb_page(vmf->vma))
486                 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
487                                                   reason);
488         else
489                 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
490                                                        vmf->address,
491                                                        vmf->flags, reason);
492         up_read(&mm->mmap_sem);
493
494         if (likely(must_wait && !READ_ONCE(ctx->released) &&
495                    (return_to_userland ? !signal_pending(current) :
496                     !fatal_signal_pending(current)))) {
497                 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
498                 schedule();
499                 ret |= VM_FAULT_MAJOR;
500
501                 /*
502                  * False wakeups can orginate even from rwsem before
503                  * up_read() however userfaults will wait either for a
504                  * targeted wakeup on the specific uwq waitqueue from
505                  * wake_userfault() or for signals or for uffd
506                  * release.
507                  */
508                 while (!READ_ONCE(uwq.waken)) {
509                         /*
510                          * This needs the full smp_store_mb()
511                          * guarantee as the state write must be
512                          * visible to other CPUs before reading
513                          * uwq.waken from other CPUs.
514                          */
515                         set_current_state(blocking_state);
516                         if (READ_ONCE(uwq.waken) ||
517                             READ_ONCE(ctx->released) ||
518                             (return_to_userland ? signal_pending(current) :
519                              fatal_signal_pending(current)))
520                                 break;
521                         schedule();
522                 }
523         }
524
525         __set_current_state(TASK_RUNNING);
526
527         if (return_to_userland) {
528                 if (signal_pending(current) &&
529                     !fatal_signal_pending(current)) {
530                         /*
531                          * If we got a SIGSTOP or SIGCONT and this is
532                          * a normal userland page fault, just let
533                          * userland return so the signal will be
534                          * handled and gdb debugging works.  The page
535                          * fault code immediately after we return from
536                          * this function is going to release the
537                          * mmap_sem and it's not depending on it
538                          * (unlike gup would if we were not to return
539                          * VM_FAULT_RETRY).
540                          *
541                          * If a fatal signal is pending we still take
542                          * the streamlined VM_FAULT_RETRY failure path
543                          * and there's no need to retake the mmap_sem
544                          * in such case.
545                          */
546                         down_read(&mm->mmap_sem);
547                         ret = VM_FAULT_NOPAGE;
548                 }
549         }
550
551         /*
552          * Here we race with the list_del; list_add in
553          * userfaultfd_ctx_read(), however because we don't ever run
554          * list_del_init() to refile across the two lists, the prev
555          * and next pointers will never point to self. list_add also
556          * would never let any of the two pointers to point to
557          * self. So list_empty_careful won't risk to see both pointers
558          * pointing to self at any time during the list refile. The
559          * only case where list_del_init() is called is the full
560          * removal in the wake function and there we don't re-list_add
561          * and it's fine not to block on the spinlock. The uwq on this
562          * kernel stack can be released after the list_del_init.
563          */
564         if (!list_empty_careful(&uwq.wq.entry)) {
565                 spin_lock_irq(&ctx->fault_pending_wqh.lock);
566                 /*
567                  * No need of list_del_init(), the uwq on the stack
568                  * will be freed shortly anyway.
569                  */
570                 list_del(&uwq.wq.entry);
571                 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
572         }
573
574         /*
575          * ctx may go away after this if the userfault pseudo fd is
576          * already released.
577          */
578         userfaultfd_ctx_put(ctx);
579
580 out:
581         return ret;
582 }
583
584 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
585                                               struct userfaultfd_wait_queue *ewq)
586 {
587         struct userfaultfd_ctx *release_new_ctx;
588
589         if (WARN_ON_ONCE(current->flags & PF_EXITING))
590                 goto out;
591
592         ewq->ctx = ctx;
593         init_waitqueue_entry(&ewq->wq, current);
594         release_new_ctx = NULL;
595
596         spin_lock_irq(&ctx->event_wqh.lock);
597         /*
598          * After the __add_wait_queue the uwq is visible to userland
599          * through poll/read().
600          */
601         __add_wait_queue(&ctx->event_wqh, &ewq->wq);
602         for (;;) {
603                 set_current_state(TASK_KILLABLE);
604                 if (ewq->msg.event == 0)
605                         break;
606                 if (READ_ONCE(ctx->released) ||
607                     fatal_signal_pending(current)) {
608                         /*
609                          * &ewq->wq may be queued in fork_event, but
610                          * __remove_wait_queue ignores the head
611                          * parameter. It would be a problem if it
612                          * didn't.
613                          */
614                         __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
615                         if (ewq->msg.event == UFFD_EVENT_FORK) {
616                                 struct userfaultfd_ctx *new;
617
618                                 new = (struct userfaultfd_ctx *)
619                                         (unsigned long)
620                                         ewq->msg.arg.reserved.reserved1;
621                                 release_new_ctx = new;
622                         }
623                         break;
624                 }
625
626                 spin_unlock_irq(&ctx->event_wqh.lock);
627
628                 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
629                 schedule();
630
631                 spin_lock_irq(&ctx->event_wqh.lock);
632         }
633         __set_current_state(TASK_RUNNING);
634         spin_unlock_irq(&ctx->event_wqh.lock);
635
636         if (release_new_ctx) {
637                 struct vm_area_struct *vma;
638                 struct mm_struct *mm = release_new_ctx->mm;
639
640                 /* the various vma->vm_userfaultfd_ctx still points to it */
641                 down_write(&mm->mmap_sem);
642                 /* no task can run (and in turn coredump) yet */
643                 VM_WARN_ON(!mmget_still_valid(mm));
644                 for (vma = mm->mmap; vma; vma = vma->vm_next)
645                         if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
646                                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
647                                 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
648                         }
649                 up_write(&mm->mmap_sem);
650
651                 userfaultfd_ctx_put(release_new_ctx);
652         }
653
654         /*
655          * ctx may go away after this if the userfault pseudo fd is
656          * already released.
657          */
658 out:
659         WRITE_ONCE(ctx->mmap_changing, false);
660         userfaultfd_ctx_put(ctx);
661 }
662
663 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
664                                        struct userfaultfd_wait_queue *ewq)
665 {
666         ewq->msg.event = 0;
667         wake_up_locked(&ctx->event_wqh);
668         __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
669 }
670
671 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
672 {
673         struct userfaultfd_ctx *ctx = NULL, *octx;
674         struct userfaultfd_fork_ctx *fctx;
675
676         octx = vma->vm_userfaultfd_ctx.ctx;
677         if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
678                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
679                 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
680                 return 0;
681         }
682
683         list_for_each_entry(fctx, fcs, list)
684                 if (fctx->orig == octx) {
685                         ctx = fctx->new;
686                         break;
687                 }
688
689         if (!ctx) {
690                 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
691                 if (!fctx)
692                         return -ENOMEM;
693
694                 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
695                 if (!ctx) {
696                         kfree(fctx);
697                         return -ENOMEM;
698                 }
699
700                 refcount_set(&ctx->refcount, 1);
701                 ctx->flags = octx->flags;
702                 ctx->state = UFFD_STATE_RUNNING;
703                 ctx->features = octx->features;
704                 ctx->released = false;
705                 ctx->mmap_changing = false;
706                 ctx->mm = vma->vm_mm;
707                 mmgrab(ctx->mm);
708
709                 userfaultfd_ctx_get(octx);
710                 WRITE_ONCE(octx->mmap_changing, true);
711                 fctx->orig = octx;
712                 fctx->new = ctx;
713                 list_add_tail(&fctx->list, fcs);
714         }
715
716         vma->vm_userfaultfd_ctx.ctx = ctx;
717         return 0;
718 }
719
720 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
721 {
722         struct userfaultfd_ctx *ctx = fctx->orig;
723         struct userfaultfd_wait_queue ewq;
724
725         msg_init(&ewq.msg);
726
727         ewq.msg.event = UFFD_EVENT_FORK;
728         ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
729
730         userfaultfd_event_wait_completion(ctx, &ewq);
731 }
732
733 void dup_userfaultfd_complete(struct list_head *fcs)
734 {
735         struct userfaultfd_fork_ctx *fctx, *n;
736
737         list_for_each_entry_safe(fctx, n, fcs, list) {
738                 dup_fctx(fctx);
739                 list_del(&fctx->list);
740                 kfree(fctx);
741         }
742 }
743
744 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
745                              struct vm_userfaultfd_ctx *vm_ctx)
746 {
747         struct userfaultfd_ctx *ctx;
748
749         ctx = vma->vm_userfaultfd_ctx.ctx;
750
751         if (!ctx)
752                 return;
753
754         if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
755                 vm_ctx->ctx = ctx;
756                 userfaultfd_ctx_get(ctx);
757                 WRITE_ONCE(ctx->mmap_changing, true);
758         } else {
759                 /* Drop uffd context if remap feature not enabled */
760                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
761                 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
762         }
763 }
764
765 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
766                                  unsigned long from, unsigned long to,
767                                  unsigned long len)
768 {
769         struct userfaultfd_ctx *ctx = vm_ctx->ctx;
770         struct userfaultfd_wait_queue ewq;
771
772         if (!ctx)
773                 return;
774
775         if (to & ~PAGE_MASK) {
776                 userfaultfd_ctx_put(ctx);
777                 return;
778         }
779
780         msg_init(&ewq.msg);
781
782         ewq.msg.event = UFFD_EVENT_REMAP;
783         ewq.msg.arg.remap.from = from;
784         ewq.msg.arg.remap.to = to;
785         ewq.msg.arg.remap.len = len;
786
787         userfaultfd_event_wait_completion(ctx, &ewq);
788 }
789
790 bool userfaultfd_remove(struct vm_area_struct *vma,
791                         unsigned long start, unsigned long end)
792 {
793         struct mm_struct *mm = vma->vm_mm;
794         struct userfaultfd_ctx *ctx;
795         struct userfaultfd_wait_queue ewq;
796
797         ctx = vma->vm_userfaultfd_ctx.ctx;
798         if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
799                 return true;
800
801         userfaultfd_ctx_get(ctx);
802         WRITE_ONCE(ctx->mmap_changing, true);
803         up_read(&mm->mmap_sem);
804
805         msg_init(&ewq.msg);
806
807         ewq.msg.event = UFFD_EVENT_REMOVE;
808         ewq.msg.arg.remove.start = start;
809         ewq.msg.arg.remove.end = end;
810
811         userfaultfd_event_wait_completion(ctx, &ewq);
812
813         return false;
814 }
815
816 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
817                           unsigned long start, unsigned long end)
818 {
819         struct userfaultfd_unmap_ctx *unmap_ctx;
820
821         list_for_each_entry(unmap_ctx, unmaps, list)
822                 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
823                     unmap_ctx->end == end)
824                         return true;
825
826         return false;
827 }
828
829 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
830                            unsigned long start, unsigned long end,
831                            struct list_head *unmaps)
832 {
833         for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
834                 struct userfaultfd_unmap_ctx *unmap_ctx;
835                 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
836
837                 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
838                     has_unmap_ctx(ctx, unmaps, start, end))
839                         continue;
840
841                 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
842                 if (!unmap_ctx)
843                         return -ENOMEM;
844
845                 userfaultfd_ctx_get(ctx);
846                 WRITE_ONCE(ctx->mmap_changing, true);
847                 unmap_ctx->ctx = ctx;
848                 unmap_ctx->start = start;
849                 unmap_ctx->end = end;
850                 list_add_tail(&unmap_ctx->list, unmaps);
851         }
852
853         return 0;
854 }
855
856 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
857 {
858         struct userfaultfd_unmap_ctx *ctx, *n;
859         struct userfaultfd_wait_queue ewq;
860
861         list_for_each_entry_safe(ctx, n, uf, list) {
862                 msg_init(&ewq.msg);
863
864                 ewq.msg.event = UFFD_EVENT_UNMAP;
865                 ewq.msg.arg.remove.start = ctx->start;
866                 ewq.msg.arg.remove.end = ctx->end;
867
868                 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
869
870                 list_del(&ctx->list);
871                 kfree(ctx);
872         }
873 }
874
875 static int userfaultfd_release(struct inode *inode, struct file *file)
876 {
877         struct userfaultfd_ctx *ctx = file->private_data;
878         struct mm_struct *mm = ctx->mm;
879         struct vm_area_struct *vma, *prev;
880         /* len == 0 means wake all */
881         struct userfaultfd_wake_range range = { .len = 0, };
882         unsigned long new_flags;
883
884         WRITE_ONCE(ctx->released, true);
885
886         if (!mmget_not_zero(mm))
887                 goto wakeup;
888
889         /*
890          * Flush page faults out of all CPUs. NOTE: all page faults
891          * must be retried without returning VM_FAULT_SIGBUS if
892          * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
893          * changes while handle_userfault released the mmap_sem. So
894          * it's critical that released is set to true (above), before
895          * taking the mmap_sem for writing.
896          */
897         down_write(&mm->mmap_sem);
898         if (!mmget_still_valid(mm))
899                 goto skip_mm;
900         prev = NULL;
901         for (vma = mm->mmap; vma; vma = vma->vm_next) {
902                 cond_resched();
903                 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
904                        !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
905                 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
906                         prev = vma;
907                         continue;
908                 }
909                 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
910                 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
911                                  new_flags, vma->anon_vma,
912                                  vma->vm_file, vma->vm_pgoff,
913                                  vma_policy(vma),
914                                  NULL_VM_UFFD_CTX);
915                 if (prev)
916                         vma = prev;
917                 else
918                         prev = vma;
919                 vma->vm_flags = new_flags;
920                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
921         }
922 skip_mm:
923         up_write(&mm->mmap_sem);
924         mmput(mm);
925 wakeup:
926         /*
927          * After no new page faults can wait on this fault_*wqh, flush
928          * the last page faults that may have been already waiting on
929          * the fault_*wqh.
930          */
931         spin_lock_irq(&ctx->fault_pending_wqh.lock);
932         __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
933         __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
934         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
935
936         /* Flush pending events that may still wait on event_wqh */
937         wake_up_all(&ctx->event_wqh);
938
939         wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
940         userfaultfd_ctx_put(ctx);
941         return 0;
942 }
943
944 /* fault_pending_wqh.lock must be hold by the caller */
945 static inline struct userfaultfd_wait_queue *find_userfault_in(
946                 wait_queue_head_t *wqh)
947 {
948         wait_queue_entry_t *wq;
949         struct userfaultfd_wait_queue *uwq;
950
951         lockdep_assert_held(&wqh->lock);
952
953         uwq = NULL;
954         if (!waitqueue_active(wqh))
955                 goto out;
956         /* walk in reverse to provide FIFO behavior to read userfaults */
957         wq = list_last_entry(&wqh->head, typeof(*wq), entry);
958         uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
959 out:
960         return uwq;
961 }
962
963 static inline struct userfaultfd_wait_queue *find_userfault(
964                 struct userfaultfd_ctx *ctx)
965 {
966         return find_userfault_in(&ctx->fault_pending_wqh);
967 }
968
969 static inline struct userfaultfd_wait_queue *find_userfault_evt(
970                 struct userfaultfd_ctx *ctx)
971 {
972         return find_userfault_in(&ctx->event_wqh);
973 }
974
975 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
976 {
977         struct userfaultfd_ctx *ctx = file->private_data;
978         __poll_t ret;
979
980         poll_wait(file, &ctx->fd_wqh, wait);
981
982         switch (ctx->state) {
983         case UFFD_STATE_WAIT_API:
984                 return EPOLLERR;
985         case UFFD_STATE_RUNNING:
986                 /*
987                  * poll() never guarantees that read won't block.
988                  * userfaults can be waken before they're read().
989                  */
990                 if (unlikely(!(file->f_flags & O_NONBLOCK)))
991                         return EPOLLERR;
992                 /*
993                  * lockless access to see if there are pending faults
994                  * __pollwait last action is the add_wait_queue but
995                  * the spin_unlock would allow the waitqueue_active to
996                  * pass above the actual list_add inside
997                  * add_wait_queue critical section. So use a full
998                  * memory barrier to serialize the list_add write of
999                  * add_wait_queue() with the waitqueue_active read
1000                  * below.
1001                  */
1002                 ret = 0;
1003                 smp_mb();
1004                 if (waitqueue_active(&ctx->fault_pending_wqh))
1005                         ret = EPOLLIN;
1006                 else if (waitqueue_active(&ctx->event_wqh))
1007                         ret = EPOLLIN;
1008
1009                 return ret;
1010         default:
1011                 WARN_ON_ONCE(1);
1012                 return EPOLLERR;
1013         }
1014 }
1015
1016 static const struct file_operations userfaultfd_fops;
1017
1018 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
1019                                   struct userfaultfd_ctx *new,
1020                                   struct uffd_msg *msg)
1021 {
1022         int fd;
1023
1024         fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new,
1025                               O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS));
1026         if (fd < 0)
1027                 return fd;
1028
1029         msg->arg.reserved.reserved1 = 0;
1030         msg->arg.fork.ufd = fd;
1031         return 0;
1032 }
1033
1034 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1035                                     struct uffd_msg *msg)
1036 {
1037         ssize_t ret;
1038         DECLARE_WAITQUEUE(wait, current);
1039         struct userfaultfd_wait_queue *uwq;
1040         /*
1041          * Handling fork event requires sleeping operations, so
1042          * we drop the event_wqh lock, then do these ops, then
1043          * lock it back and wake up the waiter. While the lock is
1044          * dropped the ewq may go away so we keep track of it
1045          * carefully.
1046          */
1047         LIST_HEAD(fork_event);
1048         struct userfaultfd_ctx *fork_nctx = NULL;
1049
1050         /* always take the fd_wqh lock before the fault_pending_wqh lock */
1051         spin_lock_irq(&ctx->fd_wqh.lock);
1052         __add_wait_queue(&ctx->fd_wqh, &wait);
1053         for (;;) {
1054                 set_current_state(TASK_INTERRUPTIBLE);
1055                 spin_lock(&ctx->fault_pending_wqh.lock);
1056                 uwq = find_userfault(ctx);
1057                 if (uwq) {
1058                         /*
1059                          * Use a seqcount to repeat the lockless check
1060                          * in wake_userfault() to avoid missing
1061                          * wakeups because during the refile both
1062                          * waitqueue could become empty if this is the
1063                          * only userfault.
1064                          */
1065                         write_seqcount_begin(&ctx->refile_seq);
1066
1067                         /*
1068                          * The fault_pending_wqh.lock prevents the uwq
1069                          * to disappear from under us.
1070                          *
1071                          * Refile this userfault from
1072                          * fault_pending_wqh to fault_wqh, it's not
1073                          * pending anymore after we read it.
1074                          *
1075                          * Use list_del() by hand (as
1076                          * userfaultfd_wake_function also uses
1077                          * list_del_init() by hand) to be sure nobody
1078                          * changes __remove_wait_queue() to use
1079                          * list_del_init() in turn breaking the
1080                          * !list_empty_careful() check in
1081                          * handle_userfault(). The uwq->wq.head list
1082                          * must never be empty at any time during the
1083                          * refile, or the waitqueue could disappear
1084                          * from under us. The "wait_queue_head_t"
1085                          * parameter of __remove_wait_queue() is unused
1086                          * anyway.
1087                          */
1088                         list_del(&uwq->wq.entry);
1089                         add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1090
1091                         write_seqcount_end(&ctx->refile_seq);
1092
1093                         /* careful to always initialize msg if ret == 0 */
1094                         *msg = uwq->msg;
1095                         spin_unlock(&ctx->fault_pending_wqh.lock);
1096                         ret = 0;
1097                         break;
1098                 }
1099                 spin_unlock(&ctx->fault_pending_wqh.lock);
1100
1101                 spin_lock(&ctx->event_wqh.lock);
1102                 uwq = find_userfault_evt(ctx);
1103                 if (uwq) {
1104                         *msg = uwq->msg;
1105
1106                         if (uwq->msg.event == UFFD_EVENT_FORK) {
1107                                 fork_nctx = (struct userfaultfd_ctx *)
1108                                         (unsigned long)
1109                                         uwq->msg.arg.reserved.reserved1;
1110                                 list_move(&uwq->wq.entry, &fork_event);
1111                                 /*
1112                                  * fork_nctx can be freed as soon as
1113                                  * we drop the lock, unless we take a
1114                                  * reference on it.
1115                                  */
1116                                 userfaultfd_ctx_get(fork_nctx);
1117                                 spin_unlock(&ctx->event_wqh.lock);
1118                                 ret = 0;
1119                                 break;
1120                         }
1121
1122                         userfaultfd_event_complete(ctx, uwq);
1123                         spin_unlock(&ctx->event_wqh.lock);
1124                         ret = 0;
1125                         break;
1126                 }
1127                 spin_unlock(&ctx->event_wqh.lock);
1128
1129                 if (signal_pending(current)) {
1130                         ret = -ERESTARTSYS;
1131                         break;
1132                 }
1133                 if (no_wait) {
1134                         ret = -EAGAIN;
1135                         break;
1136                 }
1137                 spin_unlock_irq(&ctx->fd_wqh.lock);
1138                 schedule();
1139                 spin_lock_irq(&ctx->fd_wqh.lock);
1140         }
1141         __remove_wait_queue(&ctx->fd_wqh, &wait);
1142         __set_current_state(TASK_RUNNING);
1143         spin_unlock_irq(&ctx->fd_wqh.lock);
1144
1145         if (!ret && msg->event == UFFD_EVENT_FORK) {
1146                 ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1147                 spin_lock_irq(&ctx->event_wqh.lock);
1148                 if (!list_empty(&fork_event)) {
1149                         /*
1150                          * The fork thread didn't abort, so we can
1151                          * drop the temporary refcount.
1152                          */
1153                         userfaultfd_ctx_put(fork_nctx);
1154
1155                         uwq = list_first_entry(&fork_event,
1156                                                typeof(*uwq),
1157                                                wq.entry);
1158                         /*
1159                          * If fork_event list wasn't empty and in turn
1160                          * the event wasn't already released by fork
1161                          * (the event is allocated on fork kernel
1162                          * stack), put the event back to its place in
1163                          * the event_wq. fork_event head will be freed
1164                          * as soon as we return so the event cannot
1165                          * stay queued there no matter the current
1166                          * "ret" value.
1167                          */
1168                         list_del(&uwq->wq.entry);
1169                         __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1170
1171                         /*
1172                          * Leave the event in the waitqueue and report
1173                          * error to userland if we failed to resolve
1174                          * the userfault fork.
1175                          */
1176                         if (likely(!ret))
1177                                 userfaultfd_event_complete(ctx, uwq);
1178                 } else {
1179                         /*
1180                          * Here the fork thread aborted and the
1181                          * refcount from the fork thread on fork_nctx
1182                          * has already been released. We still hold
1183                          * the reference we took before releasing the
1184                          * lock above. If resolve_userfault_fork
1185                          * failed we've to drop it because the
1186                          * fork_nctx has to be freed in such case. If
1187                          * it succeeded we'll hold it because the new
1188                          * uffd references it.
1189                          */
1190                         if (ret)
1191                                 userfaultfd_ctx_put(fork_nctx);
1192                 }
1193                 spin_unlock_irq(&ctx->event_wqh.lock);
1194         }
1195
1196         return ret;
1197 }
1198
1199 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1200                                 size_t count, loff_t *ppos)
1201 {
1202         struct userfaultfd_ctx *ctx = file->private_data;
1203         ssize_t _ret, ret = 0;
1204         struct uffd_msg msg;
1205         int no_wait = file->f_flags & O_NONBLOCK;
1206
1207         if (ctx->state == UFFD_STATE_WAIT_API)
1208                 return -EINVAL;
1209
1210         for (;;) {
1211                 if (count < sizeof(msg))
1212                         return ret ? ret : -EINVAL;
1213                 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1214                 if (_ret < 0)
1215                         return ret ? ret : _ret;
1216                 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1217                         return ret ? ret : -EFAULT;
1218                 ret += sizeof(msg);
1219                 buf += sizeof(msg);
1220                 count -= sizeof(msg);
1221                 /*
1222                  * Allow to read more than one fault at time but only
1223                  * block if waiting for the very first one.
1224                  */
1225                 no_wait = O_NONBLOCK;
1226         }
1227 }
1228
1229 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1230                              struct userfaultfd_wake_range *range)
1231 {
1232         spin_lock_irq(&ctx->fault_pending_wqh.lock);
1233         /* wake all in the range and autoremove */
1234         if (waitqueue_active(&ctx->fault_pending_wqh))
1235                 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1236                                      range);
1237         if (waitqueue_active(&ctx->fault_wqh))
1238                 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1239         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1240 }
1241
1242 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1243                                            struct userfaultfd_wake_range *range)
1244 {
1245         unsigned seq;
1246         bool need_wakeup;
1247
1248         /*
1249          * To be sure waitqueue_active() is not reordered by the CPU
1250          * before the pagetable update, use an explicit SMP memory
1251          * barrier here. PT lock release or up_read(mmap_sem) still
1252          * have release semantics that can allow the
1253          * waitqueue_active() to be reordered before the pte update.
1254          */
1255         smp_mb();
1256
1257         /*
1258          * Use waitqueue_active because it's very frequent to
1259          * change the address space atomically even if there are no
1260          * userfaults yet. So we take the spinlock only when we're
1261          * sure we've userfaults to wake.
1262          */
1263         do {
1264                 seq = read_seqcount_begin(&ctx->refile_seq);
1265                 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1266                         waitqueue_active(&ctx->fault_wqh);
1267                 cond_resched();
1268         } while (read_seqcount_retry(&ctx->refile_seq, seq));
1269         if (need_wakeup)
1270                 __wake_userfault(ctx, range);
1271 }
1272
1273 static __always_inline int validate_range(struct mm_struct *mm,
1274                                           __u64 start, __u64 len)
1275 {
1276         __u64 task_size = mm->task_size;
1277
1278         if (start & ~PAGE_MASK)
1279                 return -EINVAL;
1280         if (len & ~PAGE_MASK)
1281                 return -EINVAL;
1282         if (!len)
1283                 return -EINVAL;
1284         if (start < mmap_min_addr)
1285                 return -EINVAL;
1286         if (start >= task_size)
1287                 return -EINVAL;
1288         if (len > task_size - start)
1289                 return -EINVAL;
1290         return 0;
1291 }
1292
1293 static inline bool vma_can_userfault(struct vm_area_struct *vma)
1294 {
1295         return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1296                 vma_is_shmem(vma);
1297 }
1298
1299 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1300                                 unsigned long arg)
1301 {
1302         struct mm_struct *mm = ctx->mm;
1303         struct vm_area_struct *vma, *prev, *cur;
1304         int ret;
1305         struct uffdio_register uffdio_register;
1306         struct uffdio_register __user *user_uffdio_register;
1307         unsigned long vm_flags, new_flags;
1308         bool found;
1309         bool basic_ioctls;
1310         unsigned long start, end, vma_end;
1311
1312         user_uffdio_register = (struct uffdio_register __user *) arg;
1313
1314         ret = -EFAULT;
1315         if (copy_from_user(&uffdio_register, user_uffdio_register,
1316                            sizeof(uffdio_register)-sizeof(__u64)))
1317                 goto out;
1318
1319         ret = -EINVAL;
1320         if (!uffdio_register.mode)
1321                 goto out;
1322         if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1323                                      UFFDIO_REGISTER_MODE_WP))
1324                 goto out;
1325         vm_flags = 0;
1326         if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1327                 vm_flags |= VM_UFFD_MISSING;
1328         if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1329                 vm_flags |= VM_UFFD_WP;
1330                 /*
1331                  * FIXME: remove the below error constraint by
1332                  * implementing the wprotect tracking mode.
1333                  */
1334                 ret = -EINVAL;
1335                 goto out;
1336         }
1337
1338         ret = validate_range(mm, uffdio_register.range.start,
1339                              uffdio_register.range.len);
1340         if (ret)
1341                 goto out;
1342
1343         start = uffdio_register.range.start;
1344         end = start + uffdio_register.range.len;
1345
1346         ret = -ENOMEM;
1347         if (!mmget_not_zero(mm))
1348                 goto out;
1349
1350         down_write(&mm->mmap_sem);
1351         if (!mmget_still_valid(mm))
1352                 goto out_unlock;
1353         vma = find_vma_prev(mm, start, &prev);
1354         if (!vma)
1355                 goto out_unlock;
1356
1357         /* check that there's at least one vma in the range */
1358         ret = -EINVAL;
1359         if (vma->vm_start >= end)
1360                 goto out_unlock;
1361
1362         /*
1363          * If the first vma contains huge pages, make sure start address
1364          * is aligned to huge page size.
1365          */
1366         if (is_vm_hugetlb_page(vma)) {
1367                 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1368
1369                 if (start & (vma_hpagesize - 1))
1370                         goto out_unlock;
1371         }
1372
1373         /*
1374          * Search for not compatible vmas.
1375          */
1376         found = false;
1377         basic_ioctls = false;
1378         for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1379                 cond_resched();
1380
1381                 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1382                        !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1383
1384                 /* check not compatible vmas */
1385                 ret = -EINVAL;
1386                 if (!vma_can_userfault(cur))
1387                         goto out_unlock;
1388
1389                 /*
1390                  * UFFDIO_COPY will fill file holes even without
1391                  * PROT_WRITE. This check enforces that if this is a
1392                  * MAP_SHARED, the process has write permission to the backing
1393                  * file. If VM_MAYWRITE is set it also enforces that on a
1394                  * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1395                  * F_WRITE_SEAL can be taken until the vma is destroyed.
1396                  */
1397                 ret = -EPERM;
1398                 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1399                         goto out_unlock;
1400
1401                 /*
1402                  * If this vma contains ending address, and huge pages
1403                  * check alignment.
1404                  */
1405                 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1406                     end > cur->vm_start) {
1407                         unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1408
1409                         ret = -EINVAL;
1410
1411                         if (end & (vma_hpagesize - 1))
1412                                 goto out_unlock;
1413                 }
1414
1415                 /*
1416                  * Check that this vma isn't already owned by a
1417                  * different userfaultfd. We can't allow more than one
1418                  * userfaultfd to own a single vma simultaneously or we
1419                  * wouldn't know which one to deliver the userfaults to.
1420                  */
1421                 ret = -EBUSY;
1422                 if (cur->vm_userfaultfd_ctx.ctx &&
1423                     cur->vm_userfaultfd_ctx.ctx != ctx)
1424                         goto out_unlock;
1425
1426                 /*
1427                  * Note vmas containing huge pages
1428                  */
1429                 if (is_vm_hugetlb_page(cur))
1430                         basic_ioctls = true;
1431
1432                 found = true;
1433         }
1434         BUG_ON(!found);
1435
1436         if (vma->vm_start < start)
1437                 prev = vma;
1438
1439         ret = 0;
1440         do {
1441                 cond_resched();
1442
1443                 BUG_ON(!vma_can_userfault(vma));
1444                 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1445                        vma->vm_userfaultfd_ctx.ctx != ctx);
1446                 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1447
1448                 /*
1449                  * Nothing to do: this vma is already registered into this
1450                  * userfaultfd and with the right tracking mode too.
1451                  */
1452                 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1453                     (vma->vm_flags & vm_flags) == vm_flags)
1454                         goto skip;
1455
1456                 if (vma->vm_start > start)
1457                         start = vma->vm_start;
1458                 vma_end = min(end, vma->vm_end);
1459
1460                 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1461                 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1462                                  vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1463                                  vma_policy(vma),
1464                                  ((struct vm_userfaultfd_ctx){ ctx }));
1465                 if (prev) {
1466                         vma = prev;
1467                         goto next;
1468                 }
1469                 if (vma->vm_start < start) {
1470                         ret = split_vma(mm, vma, start, 1);
1471                         if (ret)
1472                                 break;
1473                 }
1474                 if (vma->vm_end > end) {
1475                         ret = split_vma(mm, vma, end, 0);
1476                         if (ret)
1477                                 break;
1478                 }
1479         next:
1480                 /*
1481                  * In the vma_merge() successful mprotect-like case 8:
1482                  * the next vma was merged into the current one and
1483                  * the current one has not been updated yet.
1484                  */
1485                 vma->vm_flags = new_flags;
1486                 vma->vm_userfaultfd_ctx.ctx = ctx;
1487
1488         skip:
1489                 prev = vma;
1490                 start = vma->vm_end;
1491                 vma = vma->vm_next;
1492         } while (vma && vma->vm_start < end);
1493 out_unlock:
1494         up_write(&mm->mmap_sem);
1495         mmput(mm);
1496         if (!ret) {
1497                 /*
1498                  * Now that we scanned all vmas we can already tell
1499                  * userland which ioctls methods are guaranteed to
1500                  * succeed on this range.
1501                  */
1502                 if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1503                              UFFD_API_RANGE_IOCTLS,
1504                              &user_uffdio_register->ioctls))
1505                         ret = -EFAULT;
1506         }
1507 out:
1508         return ret;
1509 }
1510
1511 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1512                                   unsigned long arg)
1513 {
1514         struct mm_struct *mm = ctx->mm;
1515         struct vm_area_struct *vma, *prev, *cur;
1516         int ret;
1517         struct uffdio_range uffdio_unregister;
1518         unsigned long new_flags;
1519         bool found;
1520         unsigned long start, end, vma_end;
1521         const void __user *buf = (void __user *)arg;
1522
1523         ret = -EFAULT;
1524         if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1525                 goto out;
1526
1527         ret = validate_range(mm, uffdio_unregister.start,
1528                              uffdio_unregister.len);
1529         if (ret)
1530                 goto out;
1531
1532         start = uffdio_unregister.start;
1533         end = start + uffdio_unregister.len;
1534
1535         ret = -ENOMEM;
1536         if (!mmget_not_zero(mm))
1537                 goto out;
1538
1539         down_write(&mm->mmap_sem);
1540         if (!mmget_still_valid(mm))
1541                 goto out_unlock;
1542         vma = find_vma_prev(mm, start, &prev);
1543         if (!vma)
1544                 goto out_unlock;
1545
1546         /* check that there's at least one vma in the range */
1547         ret = -EINVAL;
1548         if (vma->vm_start >= end)
1549                 goto out_unlock;
1550
1551         /*
1552          * If the first vma contains huge pages, make sure start address
1553          * is aligned to huge page size.
1554          */
1555         if (is_vm_hugetlb_page(vma)) {
1556                 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1557
1558                 if (start & (vma_hpagesize - 1))
1559                         goto out_unlock;
1560         }
1561
1562         /*
1563          * Search for not compatible vmas.
1564          */
1565         found = false;
1566         ret = -EINVAL;
1567         for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1568                 cond_resched();
1569
1570                 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1571                        !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1572
1573                 /*
1574                  * Check not compatible vmas, not strictly required
1575                  * here as not compatible vmas cannot have an
1576                  * userfaultfd_ctx registered on them, but this
1577                  * provides for more strict behavior to notice
1578                  * unregistration errors.
1579                  */
1580                 if (!vma_can_userfault(cur))
1581                         goto out_unlock;
1582
1583                 found = true;
1584         }
1585         BUG_ON(!found);
1586
1587         if (vma->vm_start < start)
1588                 prev = vma;
1589
1590         ret = 0;
1591         do {
1592                 cond_resched();
1593
1594                 BUG_ON(!vma_can_userfault(vma));
1595
1596                 /*
1597                  * Nothing to do: this vma is already registered into this
1598                  * userfaultfd and with the right tracking mode too.
1599                  */
1600                 if (!vma->vm_userfaultfd_ctx.ctx)
1601                         goto skip;
1602
1603                 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1604
1605                 if (vma->vm_start > start)
1606                         start = vma->vm_start;
1607                 vma_end = min(end, vma->vm_end);
1608
1609                 if (userfaultfd_missing(vma)) {
1610                         /*
1611                          * Wake any concurrent pending userfault while
1612                          * we unregister, so they will not hang
1613                          * permanently and it avoids userland to call
1614                          * UFFDIO_WAKE explicitly.
1615                          */
1616                         struct userfaultfd_wake_range range;
1617                         range.start = start;
1618                         range.len = vma_end - start;
1619                         wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1620                 }
1621
1622                 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1623                 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1624                                  vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1625                                  vma_policy(vma),
1626                                  NULL_VM_UFFD_CTX);
1627                 if (prev) {
1628                         vma = prev;
1629                         goto next;
1630                 }
1631                 if (vma->vm_start < start) {
1632                         ret = split_vma(mm, vma, start, 1);
1633                         if (ret)
1634                                 break;
1635                 }
1636                 if (vma->vm_end > end) {
1637                         ret = split_vma(mm, vma, end, 0);
1638                         if (ret)
1639                                 break;
1640                 }
1641         next:
1642                 /*
1643                  * In the vma_merge() successful mprotect-like case 8:
1644                  * the next vma was merged into the current one and
1645                  * the current one has not been updated yet.
1646                  */
1647                 vma->vm_flags = new_flags;
1648                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1649
1650         skip:
1651                 prev = vma;
1652                 start = vma->vm_end;
1653                 vma = vma->vm_next;
1654         } while (vma && vma->vm_start < end);
1655 out_unlock:
1656         up_write(&mm->mmap_sem);
1657         mmput(mm);
1658 out:
1659         return ret;
1660 }
1661
1662 /*
1663  * userfaultfd_wake may be used in combination with the
1664  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1665  */
1666 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1667                             unsigned long arg)
1668 {
1669         int ret;
1670         struct uffdio_range uffdio_wake;
1671         struct userfaultfd_wake_range range;
1672         const void __user *buf = (void __user *)arg;
1673
1674         ret = -EFAULT;
1675         if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1676                 goto out;
1677
1678         ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1679         if (ret)
1680                 goto out;
1681
1682         range.start = uffdio_wake.start;
1683         range.len = uffdio_wake.len;
1684
1685         /*
1686          * len == 0 means wake all and we don't want to wake all here,
1687          * so check it again to be sure.
1688          */
1689         VM_BUG_ON(!range.len);
1690
1691         wake_userfault(ctx, &range);
1692         ret = 0;
1693
1694 out:
1695         return ret;
1696 }
1697
1698 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1699                             unsigned long arg)
1700 {
1701         __s64 ret;
1702         struct uffdio_copy uffdio_copy;
1703         struct uffdio_copy __user *user_uffdio_copy;
1704         struct userfaultfd_wake_range range;
1705
1706         user_uffdio_copy = (struct uffdio_copy __user *) arg;
1707
1708         ret = -EAGAIN;
1709         if (READ_ONCE(ctx->mmap_changing))
1710                 goto out;
1711
1712         ret = -EFAULT;
1713         if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1714                            /* don't copy "copy" last field */
1715                            sizeof(uffdio_copy)-sizeof(__s64)))
1716                 goto out;
1717
1718         ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1719         if (ret)
1720                 goto out;
1721         /*
1722          * double check for wraparound just in case. copy_from_user()
1723          * will later check uffdio_copy.src + uffdio_copy.len to fit
1724          * in the userland range.
1725          */
1726         ret = -EINVAL;
1727         if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1728                 goto out;
1729         if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1730                 goto out;
1731         if (mmget_not_zero(ctx->mm)) {
1732                 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1733                                    uffdio_copy.len, &ctx->mmap_changing);
1734                 mmput(ctx->mm);
1735         } else {
1736                 return -ESRCH;
1737         }
1738         if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1739                 return -EFAULT;
1740         if (ret < 0)
1741                 goto out;
1742         BUG_ON(!ret);
1743         /* len == 0 would wake all */
1744         range.len = ret;
1745         if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1746                 range.start = uffdio_copy.dst;
1747                 wake_userfault(ctx, &range);
1748         }
1749         ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1750 out:
1751         return ret;
1752 }
1753
1754 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1755                                 unsigned long arg)
1756 {
1757         __s64 ret;
1758         struct uffdio_zeropage uffdio_zeropage;
1759         struct uffdio_zeropage __user *user_uffdio_zeropage;
1760         struct userfaultfd_wake_range range;
1761
1762         user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1763
1764         ret = -EAGAIN;
1765         if (READ_ONCE(ctx->mmap_changing))
1766                 goto out;
1767
1768         ret = -EFAULT;
1769         if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1770                            /* don't copy "zeropage" last field */
1771                            sizeof(uffdio_zeropage)-sizeof(__s64)))
1772                 goto out;
1773
1774         ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1775                              uffdio_zeropage.range.len);
1776         if (ret)
1777                 goto out;
1778         ret = -EINVAL;
1779         if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1780                 goto out;
1781
1782         if (mmget_not_zero(ctx->mm)) {
1783                 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1784                                      uffdio_zeropage.range.len,
1785                                      &ctx->mmap_changing);
1786                 mmput(ctx->mm);
1787         } else {
1788                 return -ESRCH;
1789         }
1790         if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1791                 return -EFAULT;
1792         if (ret < 0)
1793                 goto out;
1794         /* len == 0 would wake all */
1795         BUG_ON(!ret);
1796         range.len = ret;
1797         if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1798                 range.start = uffdio_zeropage.range.start;
1799                 wake_userfault(ctx, &range);
1800         }
1801         ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1802 out:
1803         return ret;
1804 }
1805
1806 static inline unsigned int uffd_ctx_features(__u64 user_features)
1807 {
1808         /*
1809          * For the current set of features the bits just coincide
1810          */
1811         return (unsigned int)user_features;
1812 }
1813
1814 /*
1815  * userland asks for a certain API version and we return which bits
1816  * and ioctl commands are implemented in this kernel for such API
1817  * version or -EINVAL if unknown.
1818  */
1819 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1820                            unsigned long arg)
1821 {
1822         struct uffdio_api uffdio_api;
1823         void __user *buf = (void __user *)arg;
1824         int ret;
1825         __u64 features;
1826
1827         ret = -EINVAL;
1828         if (ctx->state != UFFD_STATE_WAIT_API)
1829                 goto out;
1830         ret = -EFAULT;
1831         if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1832                 goto out;
1833         features = uffdio_api.features;
1834         if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) {
1835                 memset(&uffdio_api, 0, sizeof(uffdio_api));
1836                 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1837                         goto out;
1838                 ret = -EINVAL;
1839                 goto out;
1840         }
1841         /* report all available features and ioctls to userland */
1842         uffdio_api.features = UFFD_API_FEATURES;
1843         uffdio_api.ioctls = UFFD_API_IOCTLS;
1844         ret = -EFAULT;
1845         if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1846                 goto out;
1847         ctx->state = UFFD_STATE_RUNNING;
1848         /* only enable the requested features for this uffd context */
1849         ctx->features = uffd_ctx_features(features);
1850         ret = 0;
1851 out:
1852         return ret;
1853 }
1854
1855 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1856                               unsigned long arg)
1857 {
1858         int ret = -EINVAL;
1859         struct userfaultfd_ctx *ctx = file->private_data;
1860
1861         if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1862                 return -EINVAL;
1863
1864         switch(cmd) {
1865         case UFFDIO_API:
1866                 ret = userfaultfd_api(ctx, arg);
1867                 break;
1868         case UFFDIO_REGISTER:
1869                 ret = userfaultfd_register(ctx, arg);
1870                 break;
1871         case UFFDIO_UNREGISTER:
1872                 ret = userfaultfd_unregister(ctx, arg);
1873                 break;
1874         case UFFDIO_WAKE:
1875                 ret = userfaultfd_wake(ctx, arg);
1876                 break;
1877         case UFFDIO_COPY:
1878                 ret = userfaultfd_copy(ctx, arg);
1879                 break;
1880         case UFFDIO_ZEROPAGE:
1881                 ret = userfaultfd_zeropage(ctx, arg);
1882                 break;
1883         }
1884         return ret;
1885 }
1886
1887 #ifdef CONFIG_PROC_FS
1888 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1889 {
1890         struct userfaultfd_ctx *ctx = f->private_data;
1891         wait_queue_entry_t *wq;
1892         unsigned long pending = 0, total = 0;
1893
1894         spin_lock_irq(&ctx->fault_pending_wqh.lock);
1895         list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
1896                 pending++;
1897                 total++;
1898         }
1899         list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
1900                 total++;
1901         }
1902         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1903
1904         /*
1905          * If more protocols will be added, there will be all shown
1906          * separated by a space. Like this:
1907          *      protocols: aa:... bb:...
1908          */
1909         seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1910                    pending, total, UFFD_API, ctx->features,
1911                    UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1912 }
1913 #endif
1914
1915 static const struct file_operations userfaultfd_fops = {
1916 #ifdef CONFIG_PROC_FS
1917         .show_fdinfo    = userfaultfd_show_fdinfo,
1918 #endif
1919         .release        = userfaultfd_release,
1920         .poll           = userfaultfd_poll,
1921         .read           = userfaultfd_read,
1922         .unlocked_ioctl = userfaultfd_ioctl,
1923         .compat_ioctl   = userfaultfd_ioctl,
1924         .llseek         = noop_llseek,
1925 };
1926
1927 static void init_once_userfaultfd_ctx(void *mem)
1928 {
1929         struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1930
1931         init_waitqueue_head(&ctx->fault_pending_wqh);
1932         init_waitqueue_head(&ctx->fault_wqh);
1933         init_waitqueue_head(&ctx->event_wqh);
1934         init_waitqueue_head(&ctx->fd_wqh);
1935         seqcount_init(&ctx->refile_seq);
1936 }
1937
1938 SYSCALL_DEFINE1(userfaultfd, int, flags)
1939 {
1940         struct userfaultfd_ctx *ctx;
1941         int fd;
1942
1943         if (!sysctl_unprivileged_userfaultfd && !capable(CAP_SYS_PTRACE))
1944                 return -EPERM;
1945
1946         BUG_ON(!current->mm);
1947
1948         /* Check the UFFD_* constants for consistency.  */
1949         BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1950         BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1951
1952         if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1953                 return -EINVAL;
1954
1955         ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1956         if (!ctx)
1957                 return -ENOMEM;
1958
1959         refcount_set(&ctx->refcount, 1);
1960         ctx->flags = flags;
1961         ctx->features = 0;
1962         ctx->state = UFFD_STATE_WAIT_API;
1963         ctx->released = false;
1964         ctx->mmap_changing = false;
1965         ctx->mm = current->mm;
1966         /* prevent the mm struct to be freed */
1967         mmgrab(ctx->mm);
1968
1969         fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx,
1970                               O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1971         if (fd < 0) {
1972                 mmdrop(ctx->mm);
1973                 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1974         }
1975         return fd;
1976 }
1977
1978 static int __init userfaultfd_init(void)
1979 {
1980         userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1981                                                 sizeof(struct userfaultfd_ctx),
1982                                                 0,
1983                                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1984                                                 init_once_userfaultfd_ctx);
1985         return 0;
1986 }
1987 __initcall(userfaultfd_init);