btrfs: Make flush bios explicitely sync
[sfrench/cifs-2.6.git] / fs / userfaultfd.c
1 /*
2  *  fs/userfaultfd.c
3  *
4  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
5  *  Copyright (C) 2008-2009 Red Hat, Inc.
6  *  Copyright (C) 2015  Red Hat, Inc.
7  *
8  *  This work is licensed under the terms of the GNU GPL, version 2. See
9  *  the COPYING file in the top-level directory.
10  *
11  *  Some part derived from fs/eventfd.c (anon inode setup) and
12  *  mm/ksm.c (mm hashing).
13  */
14
15 #include <linux/list.h>
16 #include <linux/hashtable.h>
17 #include <linux/sched/signal.h>
18 #include <linux/sched/mm.h>
19 #include <linux/mm.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32
33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34
35 enum userfaultfd_state {
36         UFFD_STATE_WAIT_API,
37         UFFD_STATE_RUNNING,
38 };
39
40 /*
41  * Start with fault_pending_wqh and fault_wqh so they're more likely
42  * to be in the same cacheline.
43  */
44 struct userfaultfd_ctx {
45         /* waitqueue head for the pending (i.e. not read) userfaults */
46         wait_queue_head_t fault_pending_wqh;
47         /* waitqueue head for the userfaults */
48         wait_queue_head_t fault_wqh;
49         /* waitqueue head for the pseudo fd to wakeup poll/read */
50         wait_queue_head_t fd_wqh;
51         /* waitqueue head for events */
52         wait_queue_head_t event_wqh;
53         /* a refile sequence protected by fault_pending_wqh lock */
54         struct seqcount refile_seq;
55         /* pseudo fd refcounting */
56         atomic_t refcount;
57         /* userfaultfd syscall flags */
58         unsigned int flags;
59         /* features requested from the userspace */
60         unsigned int features;
61         /* state machine */
62         enum userfaultfd_state state;
63         /* released */
64         bool released;
65         /* mm with one ore more vmas attached to this userfaultfd_ctx */
66         struct mm_struct *mm;
67 };
68
69 struct userfaultfd_fork_ctx {
70         struct userfaultfd_ctx *orig;
71         struct userfaultfd_ctx *new;
72         struct list_head list;
73 };
74
75 struct userfaultfd_unmap_ctx {
76         struct userfaultfd_ctx *ctx;
77         unsigned long start;
78         unsigned long end;
79         struct list_head list;
80 };
81
82 struct userfaultfd_wait_queue {
83         struct uffd_msg msg;
84         wait_queue_t wq;
85         struct userfaultfd_ctx *ctx;
86         bool waken;
87 };
88
89 struct userfaultfd_wake_range {
90         unsigned long start;
91         unsigned long len;
92 };
93
94 static int userfaultfd_wake_function(wait_queue_t *wq, unsigned mode,
95                                      int wake_flags, void *key)
96 {
97         struct userfaultfd_wake_range *range = key;
98         int ret;
99         struct userfaultfd_wait_queue *uwq;
100         unsigned long start, len;
101
102         uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
103         ret = 0;
104         /* len == 0 means wake all */
105         start = range->start;
106         len = range->len;
107         if (len && (start > uwq->msg.arg.pagefault.address ||
108                     start + len <= uwq->msg.arg.pagefault.address))
109                 goto out;
110         WRITE_ONCE(uwq->waken, true);
111         /*
112          * The implicit smp_mb__before_spinlock in try_to_wake_up()
113          * renders uwq->waken visible to other CPUs before the task is
114          * waken.
115          */
116         ret = wake_up_state(wq->private, mode);
117         if (ret)
118                 /*
119                  * Wake only once, autoremove behavior.
120                  *
121                  * After the effect of list_del_init is visible to the
122                  * other CPUs, the waitqueue may disappear from under
123                  * us, see the !list_empty_careful() in
124                  * handle_userfault(). try_to_wake_up() has an
125                  * implicit smp_mb__before_spinlock, and the
126                  * wq->private is read before calling the extern
127                  * function "wake_up_state" (which in turns calls
128                  * try_to_wake_up). While the spin_lock;spin_unlock;
129                  * wouldn't be enough, the smp_mb__before_spinlock is
130                  * enough to avoid an explicit smp_mb() here.
131                  */
132                 list_del_init(&wq->task_list);
133 out:
134         return ret;
135 }
136
137 /**
138  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
139  * context.
140  * @ctx: [in] Pointer to the userfaultfd context.
141  */
142 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
143 {
144         if (!atomic_inc_not_zero(&ctx->refcount))
145                 BUG();
146 }
147
148 /**
149  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
150  * context.
151  * @ctx: [in] Pointer to userfaultfd context.
152  *
153  * The userfaultfd context reference must have been previously acquired either
154  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
155  */
156 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
157 {
158         if (atomic_dec_and_test(&ctx->refcount)) {
159                 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
160                 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
161                 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
162                 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
163                 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
164                 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
165                 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
166                 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
167                 mmdrop(ctx->mm);
168                 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
169         }
170 }
171
172 static inline void msg_init(struct uffd_msg *msg)
173 {
174         BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
175         /*
176          * Must use memset to zero out the paddings or kernel data is
177          * leaked to userland.
178          */
179         memset(msg, 0, sizeof(struct uffd_msg));
180 }
181
182 static inline struct uffd_msg userfault_msg(unsigned long address,
183                                             unsigned int flags,
184                                             unsigned long reason)
185 {
186         struct uffd_msg msg;
187         msg_init(&msg);
188         msg.event = UFFD_EVENT_PAGEFAULT;
189         msg.arg.pagefault.address = address;
190         if (flags & FAULT_FLAG_WRITE)
191                 /*
192                  * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
193                  * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
194                  * was not set in a UFFD_EVENT_PAGEFAULT, it means it
195                  * was a read fault, otherwise if set it means it's
196                  * a write fault.
197                  */
198                 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
199         if (reason & VM_UFFD_WP)
200                 /*
201                  * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
202                  * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
203                  * not set in a UFFD_EVENT_PAGEFAULT, it means it was
204                  * a missing fault, otherwise if set it means it's a
205                  * write protect fault.
206                  */
207                 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
208         return msg;
209 }
210
211 #ifdef CONFIG_HUGETLB_PAGE
212 /*
213  * Same functionality as userfaultfd_must_wait below with modifications for
214  * hugepmd ranges.
215  */
216 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
217                                          unsigned long address,
218                                          unsigned long flags,
219                                          unsigned long reason)
220 {
221         struct mm_struct *mm = ctx->mm;
222         pte_t *pte;
223         bool ret = true;
224
225         VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
226
227         pte = huge_pte_offset(mm, address);
228         if (!pte)
229                 goto out;
230
231         ret = false;
232
233         /*
234          * Lockless access: we're in a wait_event so it's ok if it
235          * changes under us.
236          */
237         if (huge_pte_none(*pte))
238                 ret = true;
239         if (!huge_pte_write(*pte) && (reason & VM_UFFD_WP))
240                 ret = true;
241 out:
242         return ret;
243 }
244 #else
245 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
246                                          unsigned long address,
247                                          unsigned long flags,
248                                          unsigned long reason)
249 {
250         return false;   /* should never get here */
251 }
252 #endif /* CONFIG_HUGETLB_PAGE */
253
254 /*
255  * Verify the pagetables are still not ok after having reigstered into
256  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
257  * userfault that has already been resolved, if userfaultfd_read and
258  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
259  * threads.
260  */
261 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
262                                          unsigned long address,
263                                          unsigned long flags,
264                                          unsigned long reason)
265 {
266         struct mm_struct *mm = ctx->mm;
267         pgd_t *pgd;
268         p4d_t *p4d;
269         pud_t *pud;
270         pmd_t *pmd, _pmd;
271         pte_t *pte;
272         bool ret = true;
273
274         VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
275
276         pgd = pgd_offset(mm, address);
277         if (!pgd_present(*pgd))
278                 goto out;
279         p4d = p4d_offset(pgd, address);
280         if (!p4d_present(*p4d))
281                 goto out;
282         pud = pud_offset(p4d, address);
283         if (!pud_present(*pud))
284                 goto out;
285         pmd = pmd_offset(pud, address);
286         /*
287          * READ_ONCE must function as a barrier with narrower scope
288          * and it must be equivalent to:
289          *      _pmd = *pmd; barrier();
290          *
291          * This is to deal with the instability (as in
292          * pmd_trans_unstable) of the pmd.
293          */
294         _pmd = READ_ONCE(*pmd);
295         if (!pmd_present(_pmd))
296                 goto out;
297
298         ret = false;
299         if (pmd_trans_huge(_pmd))
300                 goto out;
301
302         /*
303          * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
304          * and use the standard pte_offset_map() instead of parsing _pmd.
305          */
306         pte = pte_offset_map(pmd, address);
307         /*
308          * Lockless access: we're in a wait_event so it's ok if it
309          * changes under us.
310          */
311         if (pte_none(*pte))
312                 ret = true;
313         pte_unmap(pte);
314
315 out:
316         return ret;
317 }
318
319 /*
320  * The locking rules involved in returning VM_FAULT_RETRY depending on
321  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
322  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
323  * recommendation in __lock_page_or_retry is not an understatement.
324  *
325  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
326  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
327  * not set.
328  *
329  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
330  * set, VM_FAULT_RETRY can still be returned if and only if there are
331  * fatal_signal_pending()s, and the mmap_sem must be released before
332  * returning it.
333  */
334 int handle_userfault(struct vm_fault *vmf, unsigned long reason)
335 {
336         struct mm_struct *mm = vmf->vma->vm_mm;
337         struct userfaultfd_ctx *ctx;
338         struct userfaultfd_wait_queue uwq;
339         int ret;
340         bool must_wait, return_to_userland;
341         long blocking_state;
342
343         BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
344
345         ret = VM_FAULT_SIGBUS;
346         ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
347         if (!ctx)
348                 goto out;
349
350         BUG_ON(ctx->mm != mm);
351
352         VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
353         VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
354
355         /*
356          * If it's already released don't get it. This avoids to loop
357          * in __get_user_pages if userfaultfd_release waits on the
358          * caller of handle_userfault to release the mmap_sem.
359          */
360         if (unlikely(ACCESS_ONCE(ctx->released)))
361                 goto out;
362
363         /*
364          * We don't do userfault handling for the final child pid update.
365          */
366         if (current->flags & PF_EXITING)
367                 goto out;
368
369         /*
370          * Check that we can return VM_FAULT_RETRY.
371          *
372          * NOTE: it should become possible to return VM_FAULT_RETRY
373          * even if FAULT_FLAG_TRIED is set without leading to gup()
374          * -EBUSY failures, if the userfaultfd is to be extended for
375          * VM_UFFD_WP tracking and we intend to arm the userfault
376          * without first stopping userland access to the memory. For
377          * VM_UFFD_MISSING userfaults this is enough for now.
378          */
379         if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
380                 /*
381                  * Validate the invariant that nowait must allow retry
382                  * to be sure not to return SIGBUS erroneously on
383                  * nowait invocations.
384                  */
385                 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
386 #ifdef CONFIG_DEBUG_VM
387                 if (printk_ratelimit()) {
388                         printk(KERN_WARNING
389                                "FAULT_FLAG_ALLOW_RETRY missing %x\n",
390                                vmf->flags);
391                         dump_stack();
392                 }
393 #endif
394                 goto out;
395         }
396
397         /*
398          * Handle nowait, not much to do other than tell it to retry
399          * and wait.
400          */
401         ret = VM_FAULT_RETRY;
402         if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
403                 goto out;
404
405         /* take the reference before dropping the mmap_sem */
406         userfaultfd_ctx_get(ctx);
407
408         init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
409         uwq.wq.private = current;
410         uwq.msg = userfault_msg(vmf->address, vmf->flags, reason);
411         uwq.ctx = ctx;
412         uwq.waken = false;
413
414         return_to_userland =
415                 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
416                 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
417         blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
418                          TASK_KILLABLE;
419
420         spin_lock(&ctx->fault_pending_wqh.lock);
421         /*
422          * After the __add_wait_queue the uwq is visible to userland
423          * through poll/read().
424          */
425         __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
426         /*
427          * The smp_mb() after __set_current_state prevents the reads
428          * following the spin_unlock to happen before the list_add in
429          * __add_wait_queue.
430          */
431         set_current_state(blocking_state);
432         spin_unlock(&ctx->fault_pending_wqh.lock);
433
434         if (!is_vm_hugetlb_page(vmf->vma))
435                 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
436                                                   reason);
437         else
438                 must_wait = userfaultfd_huge_must_wait(ctx, vmf->address,
439                                                        vmf->flags, reason);
440         up_read(&mm->mmap_sem);
441
442         if (likely(must_wait && !ACCESS_ONCE(ctx->released) &&
443                    (return_to_userland ? !signal_pending(current) :
444                     !fatal_signal_pending(current)))) {
445                 wake_up_poll(&ctx->fd_wqh, POLLIN);
446                 schedule();
447                 ret |= VM_FAULT_MAJOR;
448
449                 /*
450                  * False wakeups can orginate even from rwsem before
451                  * up_read() however userfaults will wait either for a
452                  * targeted wakeup on the specific uwq waitqueue from
453                  * wake_userfault() or for signals or for uffd
454                  * release.
455                  */
456                 while (!READ_ONCE(uwq.waken)) {
457                         /*
458                          * This needs the full smp_store_mb()
459                          * guarantee as the state write must be
460                          * visible to other CPUs before reading
461                          * uwq.waken from other CPUs.
462                          */
463                         set_current_state(blocking_state);
464                         if (READ_ONCE(uwq.waken) ||
465                             READ_ONCE(ctx->released) ||
466                             (return_to_userland ? signal_pending(current) :
467                              fatal_signal_pending(current)))
468                                 break;
469                         schedule();
470                 }
471         }
472
473         __set_current_state(TASK_RUNNING);
474
475         if (return_to_userland) {
476                 if (signal_pending(current) &&
477                     !fatal_signal_pending(current)) {
478                         /*
479                          * If we got a SIGSTOP or SIGCONT and this is
480                          * a normal userland page fault, just let
481                          * userland return so the signal will be
482                          * handled and gdb debugging works.  The page
483                          * fault code immediately after we return from
484                          * this function is going to release the
485                          * mmap_sem and it's not depending on it
486                          * (unlike gup would if we were not to return
487                          * VM_FAULT_RETRY).
488                          *
489                          * If a fatal signal is pending we still take
490                          * the streamlined VM_FAULT_RETRY failure path
491                          * and there's no need to retake the mmap_sem
492                          * in such case.
493                          */
494                         down_read(&mm->mmap_sem);
495                         ret = VM_FAULT_NOPAGE;
496                 }
497         }
498
499         /*
500          * Here we race with the list_del; list_add in
501          * userfaultfd_ctx_read(), however because we don't ever run
502          * list_del_init() to refile across the two lists, the prev
503          * and next pointers will never point to self. list_add also
504          * would never let any of the two pointers to point to
505          * self. So list_empty_careful won't risk to see both pointers
506          * pointing to self at any time during the list refile. The
507          * only case where list_del_init() is called is the full
508          * removal in the wake function and there we don't re-list_add
509          * and it's fine not to block on the spinlock. The uwq on this
510          * kernel stack can be released after the list_del_init.
511          */
512         if (!list_empty_careful(&uwq.wq.task_list)) {
513                 spin_lock(&ctx->fault_pending_wqh.lock);
514                 /*
515                  * No need of list_del_init(), the uwq on the stack
516                  * will be freed shortly anyway.
517                  */
518                 list_del(&uwq.wq.task_list);
519                 spin_unlock(&ctx->fault_pending_wqh.lock);
520         }
521
522         /*
523          * ctx may go away after this if the userfault pseudo fd is
524          * already released.
525          */
526         userfaultfd_ctx_put(ctx);
527
528 out:
529         return ret;
530 }
531
532 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
533                                               struct userfaultfd_wait_queue *ewq)
534 {
535         if (WARN_ON_ONCE(current->flags & PF_EXITING))
536                 goto out;
537
538         ewq->ctx = ctx;
539         init_waitqueue_entry(&ewq->wq, current);
540
541         spin_lock(&ctx->event_wqh.lock);
542         /*
543          * After the __add_wait_queue the uwq is visible to userland
544          * through poll/read().
545          */
546         __add_wait_queue(&ctx->event_wqh, &ewq->wq);
547         for (;;) {
548                 set_current_state(TASK_KILLABLE);
549                 if (ewq->msg.event == 0)
550                         break;
551                 if (ACCESS_ONCE(ctx->released) ||
552                     fatal_signal_pending(current)) {
553                         __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
554                         if (ewq->msg.event == UFFD_EVENT_FORK) {
555                                 struct userfaultfd_ctx *new;
556
557                                 new = (struct userfaultfd_ctx *)
558                                         (unsigned long)
559                                         ewq->msg.arg.reserved.reserved1;
560
561                                 userfaultfd_ctx_put(new);
562                         }
563                         break;
564                 }
565
566                 spin_unlock(&ctx->event_wqh.lock);
567
568                 wake_up_poll(&ctx->fd_wqh, POLLIN);
569                 schedule();
570
571                 spin_lock(&ctx->event_wqh.lock);
572         }
573         __set_current_state(TASK_RUNNING);
574         spin_unlock(&ctx->event_wqh.lock);
575
576         /*
577          * ctx may go away after this if the userfault pseudo fd is
578          * already released.
579          */
580 out:
581         userfaultfd_ctx_put(ctx);
582 }
583
584 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
585                                        struct userfaultfd_wait_queue *ewq)
586 {
587         ewq->msg.event = 0;
588         wake_up_locked(&ctx->event_wqh);
589         __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
590 }
591
592 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
593 {
594         struct userfaultfd_ctx *ctx = NULL, *octx;
595         struct userfaultfd_fork_ctx *fctx;
596
597         octx = vma->vm_userfaultfd_ctx.ctx;
598         if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
599                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
600                 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
601                 return 0;
602         }
603
604         list_for_each_entry(fctx, fcs, list)
605                 if (fctx->orig == octx) {
606                         ctx = fctx->new;
607                         break;
608                 }
609
610         if (!ctx) {
611                 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
612                 if (!fctx)
613                         return -ENOMEM;
614
615                 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
616                 if (!ctx) {
617                         kfree(fctx);
618                         return -ENOMEM;
619                 }
620
621                 atomic_set(&ctx->refcount, 1);
622                 ctx->flags = octx->flags;
623                 ctx->state = UFFD_STATE_RUNNING;
624                 ctx->features = octx->features;
625                 ctx->released = false;
626                 ctx->mm = vma->vm_mm;
627                 atomic_inc(&ctx->mm->mm_count);
628
629                 userfaultfd_ctx_get(octx);
630                 fctx->orig = octx;
631                 fctx->new = ctx;
632                 list_add_tail(&fctx->list, fcs);
633         }
634
635         vma->vm_userfaultfd_ctx.ctx = ctx;
636         return 0;
637 }
638
639 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
640 {
641         struct userfaultfd_ctx *ctx = fctx->orig;
642         struct userfaultfd_wait_queue ewq;
643
644         msg_init(&ewq.msg);
645
646         ewq.msg.event = UFFD_EVENT_FORK;
647         ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
648
649         userfaultfd_event_wait_completion(ctx, &ewq);
650 }
651
652 void dup_userfaultfd_complete(struct list_head *fcs)
653 {
654         struct userfaultfd_fork_ctx *fctx, *n;
655
656         list_for_each_entry_safe(fctx, n, fcs, list) {
657                 dup_fctx(fctx);
658                 list_del(&fctx->list);
659                 kfree(fctx);
660         }
661 }
662
663 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
664                              struct vm_userfaultfd_ctx *vm_ctx)
665 {
666         struct userfaultfd_ctx *ctx;
667
668         ctx = vma->vm_userfaultfd_ctx.ctx;
669         if (ctx && (ctx->features & UFFD_FEATURE_EVENT_REMAP)) {
670                 vm_ctx->ctx = ctx;
671                 userfaultfd_ctx_get(ctx);
672         }
673 }
674
675 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
676                                  unsigned long from, unsigned long to,
677                                  unsigned long len)
678 {
679         struct userfaultfd_ctx *ctx = vm_ctx->ctx;
680         struct userfaultfd_wait_queue ewq;
681
682         if (!ctx)
683                 return;
684
685         if (to & ~PAGE_MASK) {
686                 userfaultfd_ctx_put(ctx);
687                 return;
688         }
689
690         msg_init(&ewq.msg);
691
692         ewq.msg.event = UFFD_EVENT_REMAP;
693         ewq.msg.arg.remap.from = from;
694         ewq.msg.arg.remap.to = to;
695         ewq.msg.arg.remap.len = len;
696
697         userfaultfd_event_wait_completion(ctx, &ewq);
698 }
699
700 bool userfaultfd_remove(struct vm_area_struct *vma,
701                         unsigned long start, unsigned long end)
702 {
703         struct mm_struct *mm = vma->vm_mm;
704         struct userfaultfd_ctx *ctx;
705         struct userfaultfd_wait_queue ewq;
706
707         ctx = vma->vm_userfaultfd_ctx.ctx;
708         if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
709                 return true;
710
711         userfaultfd_ctx_get(ctx);
712         up_read(&mm->mmap_sem);
713
714         msg_init(&ewq.msg);
715
716         ewq.msg.event = UFFD_EVENT_REMOVE;
717         ewq.msg.arg.remove.start = start;
718         ewq.msg.arg.remove.end = end;
719
720         userfaultfd_event_wait_completion(ctx, &ewq);
721
722         return false;
723 }
724
725 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
726                           unsigned long start, unsigned long end)
727 {
728         struct userfaultfd_unmap_ctx *unmap_ctx;
729
730         list_for_each_entry(unmap_ctx, unmaps, list)
731                 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
732                     unmap_ctx->end == end)
733                         return true;
734
735         return false;
736 }
737
738 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
739                            unsigned long start, unsigned long end,
740                            struct list_head *unmaps)
741 {
742         for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
743                 struct userfaultfd_unmap_ctx *unmap_ctx;
744                 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
745
746                 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
747                     has_unmap_ctx(ctx, unmaps, start, end))
748                         continue;
749
750                 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
751                 if (!unmap_ctx)
752                         return -ENOMEM;
753
754                 userfaultfd_ctx_get(ctx);
755                 unmap_ctx->ctx = ctx;
756                 unmap_ctx->start = start;
757                 unmap_ctx->end = end;
758                 list_add_tail(&unmap_ctx->list, unmaps);
759         }
760
761         return 0;
762 }
763
764 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
765 {
766         struct userfaultfd_unmap_ctx *ctx, *n;
767         struct userfaultfd_wait_queue ewq;
768
769         list_for_each_entry_safe(ctx, n, uf, list) {
770                 msg_init(&ewq.msg);
771
772                 ewq.msg.event = UFFD_EVENT_UNMAP;
773                 ewq.msg.arg.remove.start = ctx->start;
774                 ewq.msg.arg.remove.end = ctx->end;
775
776                 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
777
778                 list_del(&ctx->list);
779                 kfree(ctx);
780         }
781 }
782
783 static int userfaultfd_release(struct inode *inode, struct file *file)
784 {
785         struct userfaultfd_ctx *ctx = file->private_data;
786         struct mm_struct *mm = ctx->mm;
787         struct vm_area_struct *vma, *prev;
788         /* len == 0 means wake all */
789         struct userfaultfd_wake_range range = { .len = 0, };
790         unsigned long new_flags;
791
792         ACCESS_ONCE(ctx->released) = true;
793
794         if (!mmget_not_zero(mm))
795                 goto wakeup;
796
797         /*
798          * Flush page faults out of all CPUs. NOTE: all page faults
799          * must be retried without returning VM_FAULT_SIGBUS if
800          * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
801          * changes while handle_userfault released the mmap_sem. So
802          * it's critical that released is set to true (above), before
803          * taking the mmap_sem for writing.
804          */
805         down_write(&mm->mmap_sem);
806         prev = NULL;
807         for (vma = mm->mmap; vma; vma = vma->vm_next) {
808                 cond_resched();
809                 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
810                        !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
811                 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
812                         prev = vma;
813                         continue;
814                 }
815                 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
816                 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
817                                  new_flags, vma->anon_vma,
818                                  vma->vm_file, vma->vm_pgoff,
819                                  vma_policy(vma),
820                                  NULL_VM_UFFD_CTX);
821                 if (prev)
822                         vma = prev;
823                 else
824                         prev = vma;
825                 vma->vm_flags = new_flags;
826                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
827         }
828         up_write(&mm->mmap_sem);
829         mmput(mm);
830 wakeup:
831         /*
832          * After no new page faults can wait on this fault_*wqh, flush
833          * the last page faults that may have been already waiting on
834          * the fault_*wqh.
835          */
836         spin_lock(&ctx->fault_pending_wqh.lock);
837         __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
838         __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
839         spin_unlock(&ctx->fault_pending_wqh.lock);
840
841         wake_up_poll(&ctx->fd_wqh, POLLHUP);
842         userfaultfd_ctx_put(ctx);
843         return 0;
844 }
845
846 /* fault_pending_wqh.lock must be hold by the caller */
847 static inline struct userfaultfd_wait_queue *find_userfault_in(
848                 wait_queue_head_t *wqh)
849 {
850         wait_queue_t *wq;
851         struct userfaultfd_wait_queue *uwq;
852
853         VM_BUG_ON(!spin_is_locked(&wqh->lock));
854
855         uwq = NULL;
856         if (!waitqueue_active(wqh))
857                 goto out;
858         /* walk in reverse to provide FIFO behavior to read userfaults */
859         wq = list_last_entry(&wqh->task_list, typeof(*wq), task_list);
860         uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
861 out:
862         return uwq;
863 }
864
865 static inline struct userfaultfd_wait_queue *find_userfault(
866                 struct userfaultfd_ctx *ctx)
867 {
868         return find_userfault_in(&ctx->fault_pending_wqh);
869 }
870
871 static inline struct userfaultfd_wait_queue *find_userfault_evt(
872                 struct userfaultfd_ctx *ctx)
873 {
874         return find_userfault_in(&ctx->event_wqh);
875 }
876
877 static unsigned int userfaultfd_poll(struct file *file, poll_table *wait)
878 {
879         struct userfaultfd_ctx *ctx = file->private_data;
880         unsigned int ret;
881
882         poll_wait(file, &ctx->fd_wqh, wait);
883
884         switch (ctx->state) {
885         case UFFD_STATE_WAIT_API:
886                 return POLLERR;
887         case UFFD_STATE_RUNNING:
888                 /*
889                  * poll() never guarantees that read won't block.
890                  * userfaults can be waken before they're read().
891                  */
892                 if (unlikely(!(file->f_flags & O_NONBLOCK)))
893                         return POLLERR;
894                 /*
895                  * lockless access to see if there are pending faults
896                  * __pollwait last action is the add_wait_queue but
897                  * the spin_unlock would allow the waitqueue_active to
898                  * pass above the actual list_add inside
899                  * add_wait_queue critical section. So use a full
900                  * memory barrier to serialize the list_add write of
901                  * add_wait_queue() with the waitqueue_active read
902                  * below.
903                  */
904                 ret = 0;
905                 smp_mb();
906                 if (waitqueue_active(&ctx->fault_pending_wqh))
907                         ret = POLLIN;
908                 else if (waitqueue_active(&ctx->event_wqh))
909                         ret = POLLIN;
910
911                 return ret;
912         default:
913                 WARN_ON_ONCE(1);
914                 return POLLERR;
915         }
916 }
917
918 static const struct file_operations userfaultfd_fops;
919
920 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
921                                   struct userfaultfd_ctx *new,
922                                   struct uffd_msg *msg)
923 {
924         int fd;
925         struct file *file;
926         unsigned int flags = new->flags & UFFD_SHARED_FCNTL_FLAGS;
927
928         fd = get_unused_fd_flags(flags);
929         if (fd < 0)
930                 return fd;
931
932         file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, new,
933                                   O_RDWR | flags);
934         if (IS_ERR(file)) {
935                 put_unused_fd(fd);
936                 return PTR_ERR(file);
937         }
938
939         fd_install(fd, file);
940         msg->arg.reserved.reserved1 = 0;
941         msg->arg.fork.ufd = fd;
942
943         return 0;
944 }
945
946 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
947                                     struct uffd_msg *msg)
948 {
949         ssize_t ret;
950         DECLARE_WAITQUEUE(wait, current);
951         struct userfaultfd_wait_queue *uwq;
952         /*
953          * Handling fork event requires sleeping operations, so
954          * we drop the event_wqh lock, then do these ops, then
955          * lock it back and wake up the waiter. While the lock is
956          * dropped the ewq may go away so we keep track of it
957          * carefully.
958          */
959         LIST_HEAD(fork_event);
960         struct userfaultfd_ctx *fork_nctx = NULL;
961
962         /* always take the fd_wqh lock before the fault_pending_wqh lock */
963         spin_lock(&ctx->fd_wqh.lock);
964         __add_wait_queue(&ctx->fd_wqh, &wait);
965         for (;;) {
966                 set_current_state(TASK_INTERRUPTIBLE);
967                 spin_lock(&ctx->fault_pending_wqh.lock);
968                 uwq = find_userfault(ctx);
969                 if (uwq) {
970                         /*
971                          * Use a seqcount to repeat the lockless check
972                          * in wake_userfault() to avoid missing
973                          * wakeups because during the refile both
974                          * waitqueue could become empty if this is the
975                          * only userfault.
976                          */
977                         write_seqcount_begin(&ctx->refile_seq);
978
979                         /*
980                          * The fault_pending_wqh.lock prevents the uwq
981                          * to disappear from under us.
982                          *
983                          * Refile this userfault from
984                          * fault_pending_wqh to fault_wqh, it's not
985                          * pending anymore after we read it.
986                          *
987                          * Use list_del() by hand (as
988                          * userfaultfd_wake_function also uses
989                          * list_del_init() by hand) to be sure nobody
990                          * changes __remove_wait_queue() to use
991                          * list_del_init() in turn breaking the
992                          * !list_empty_careful() check in
993                          * handle_userfault(). The uwq->wq.task_list
994                          * must never be empty at any time during the
995                          * refile, or the waitqueue could disappear
996                          * from under us. The "wait_queue_head_t"
997                          * parameter of __remove_wait_queue() is unused
998                          * anyway.
999                          */
1000                         list_del(&uwq->wq.task_list);
1001                         __add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1002
1003                         write_seqcount_end(&ctx->refile_seq);
1004
1005                         /* careful to always initialize msg if ret == 0 */
1006                         *msg = uwq->msg;
1007                         spin_unlock(&ctx->fault_pending_wqh.lock);
1008                         ret = 0;
1009                         break;
1010                 }
1011                 spin_unlock(&ctx->fault_pending_wqh.lock);
1012
1013                 spin_lock(&ctx->event_wqh.lock);
1014                 uwq = find_userfault_evt(ctx);
1015                 if (uwq) {
1016                         *msg = uwq->msg;
1017
1018                         if (uwq->msg.event == UFFD_EVENT_FORK) {
1019                                 fork_nctx = (struct userfaultfd_ctx *)
1020                                         (unsigned long)
1021                                         uwq->msg.arg.reserved.reserved1;
1022                                 list_move(&uwq->wq.task_list, &fork_event);
1023                                 spin_unlock(&ctx->event_wqh.lock);
1024                                 ret = 0;
1025                                 break;
1026                         }
1027
1028                         userfaultfd_event_complete(ctx, uwq);
1029                         spin_unlock(&ctx->event_wqh.lock);
1030                         ret = 0;
1031                         break;
1032                 }
1033                 spin_unlock(&ctx->event_wqh.lock);
1034
1035                 if (signal_pending(current)) {
1036                         ret = -ERESTARTSYS;
1037                         break;
1038                 }
1039                 if (no_wait) {
1040                         ret = -EAGAIN;
1041                         break;
1042                 }
1043                 spin_unlock(&ctx->fd_wqh.lock);
1044                 schedule();
1045                 spin_lock(&ctx->fd_wqh.lock);
1046         }
1047         __remove_wait_queue(&ctx->fd_wqh, &wait);
1048         __set_current_state(TASK_RUNNING);
1049         spin_unlock(&ctx->fd_wqh.lock);
1050
1051         if (!ret && msg->event == UFFD_EVENT_FORK) {
1052                 ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1053
1054                 if (!ret) {
1055                         spin_lock(&ctx->event_wqh.lock);
1056                         if (!list_empty(&fork_event)) {
1057                                 uwq = list_first_entry(&fork_event,
1058                                                        typeof(*uwq),
1059                                                        wq.task_list);
1060                                 list_del(&uwq->wq.task_list);
1061                                 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1062                                 userfaultfd_event_complete(ctx, uwq);
1063                         }
1064                         spin_unlock(&ctx->event_wqh.lock);
1065                 }
1066         }
1067
1068         return ret;
1069 }
1070
1071 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1072                                 size_t count, loff_t *ppos)
1073 {
1074         struct userfaultfd_ctx *ctx = file->private_data;
1075         ssize_t _ret, ret = 0;
1076         struct uffd_msg msg;
1077         int no_wait = file->f_flags & O_NONBLOCK;
1078
1079         if (ctx->state == UFFD_STATE_WAIT_API)
1080                 return -EINVAL;
1081
1082         for (;;) {
1083                 if (count < sizeof(msg))
1084                         return ret ? ret : -EINVAL;
1085                 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1086                 if (_ret < 0)
1087                         return ret ? ret : _ret;
1088                 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1089                         return ret ? ret : -EFAULT;
1090                 ret += sizeof(msg);
1091                 buf += sizeof(msg);
1092                 count -= sizeof(msg);
1093                 /*
1094                  * Allow to read more than one fault at time but only
1095                  * block if waiting for the very first one.
1096                  */
1097                 no_wait = O_NONBLOCK;
1098         }
1099 }
1100
1101 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1102                              struct userfaultfd_wake_range *range)
1103 {
1104         unsigned long start, end;
1105
1106         start = range->start;
1107         end = range->start + range->len;
1108
1109         spin_lock(&ctx->fault_pending_wqh.lock);
1110         /* wake all in the range and autoremove */
1111         if (waitqueue_active(&ctx->fault_pending_wqh))
1112                 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1113                                      range);
1114         if (waitqueue_active(&ctx->fault_wqh))
1115                 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
1116         spin_unlock(&ctx->fault_pending_wqh.lock);
1117 }
1118
1119 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1120                                            struct userfaultfd_wake_range *range)
1121 {
1122         unsigned seq;
1123         bool need_wakeup;
1124
1125         /*
1126          * To be sure waitqueue_active() is not reordered by the CPU
1127          * before the pagetable update, use an explicit SMP memory
1128          * barrier here. PT lock release or up_read(mmap_sem) still
1129          * have release semantics that can allow the
1130          * waitqueue_active() to be reordered before the pte update.
1131          */
1132         smp_mb();
1133
1134         /*
1135          * Use waitqueue_active because it's very frequent to
1136          * change the address space atomically even if there are no
1137          * userfaults yet. So we take the spinlock only when we're
1138          * sure we've userfaults to wake.
1139          */
1140         do {
1141                 seq = read_seqcount_begin(&ctx->refile_seq);
1142                 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1143                         waitqueue_active(&ctx->fault_wqh);
1144                 cond_resched();
1145         } while (read_seqcount_retry(&ctx->refile_seq, seq));
1146         if (need_wakeup)
1147                 __wake_userfault(ctx, range);
1148 }
1149
1150 static __always_inline int validate_range(struct mm_struct *mm,
1151                                           __u64 start, __u64 len)
1152 {
1153         __u64 task_size = mm->task_size;
1154
1155         if (start & ~PAGE_MASK)
1156                 return -EINVAL;
1157         if (len & ~PAGE_MASK)
1158                 return -EINVAL;
1159         if (!len)
1160                 return -EINVAL;
1161         if (start < mmap_min_addr)
1162                 return -EINVAL;
1163         if (start >= task_size)
1164                 return -EINVAL;
1165         if (len > task_size - start)
1166                 return -EINVAL;
1167         return 0;
1168 }
1169
1170 static inline bool vma_can_userfault(struct vm_area_struct *vma)
1171 {
1172         return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1173                 vma_is_shmem(vma);
1174 }
1175
1176 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1177                                 unsigned long arg)
1178 {
1179         struct mm_struct *mm = ctx->mm;
1180         struct vm_area_struct *vma, *prev, *cur;
1181         int ret;
1182         struct uffdio_register uffdio_register;
1183         struct uffdio_register __user *user_uffdio_register;
1184         unsigned long vm_flags, new_flags;
1185         bool found;
1186         bool non_anon_pages;
1187         unsigned long start, end, vma_end;
1188
1189         user_uffdio_register = (struct uffdio_register __user *) arg;
1190
1191         ret = -EFAULT;
1192         if (copy_from_user(&uffdio_register, user_uffdio_register,
1193                            sizeof(uffdio_register)-sizeof(__u64)))
1194                 goto out;
1195
1196         ret = -EINVAL;
1197         if (!uffdio_register.mode)
1198                 goto out;
1199         if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1200                                      UFFDIO_REGISTER_MODE_WP))
1201                 goto out;
1202         vm_flags = 0;
1203         if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1204                 vm_flags |= VM_UFFD_MISSING;
1205         if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1206                 vm_flags |= VM_UFFD_WP;
1207                 /*
1208                  * FIXME: remove the below error constraint by
1209                  * implementing the wprotect tracking mode.
1210                  */
1211                 ret = -EINVAL;
1212                 goto out;
1213         }
1214
1215         ret = validate_range(mm, uffdio_register.range.start,
1216                              uffdio_register.range.len);
1217         if (ret)
1218                 goto out;
1219
1220         start = uffdio_register.range.start;
1221         end = start + uffdio_register.range.len;
1222
1223         ret = -ENOMEM;
1224         if (!mmget_not_zero(mm))
1225                 goto out;
1226
1227         down_write(&mm->mmap_sem);
1228         vma = find_vma_prev(mm, start, &prev);
1229         if (!vma)
1230                 goto out_unlock;
1231
1232         /* check that there's at least one vma in the range */
1233         ret = -EINVAL;
1234         if (vma->vm_start >= end)
1235                 goto out_unlock;
1236
1237         /*
1238          * If the first vma contains huge pages, make sure start address
1239          * is aligned to huge page size.
1240          */
1241         if (is_vm_hugetlb_page(vma)) {
1242                 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1243
1244                 if (start & (vma_hpagesize - 1))
1245                         goto out_unlock;
1246         }
1247
1248         /*
1249          * Search for not compatible vmas.
1250          */
1251         found = false;
1252         non_anon_pages = false;
1253         for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1254                 cond_resched();
1255
1256                 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1257                        !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1258
1259                 /* check not compatible vmas */
1260                 ret = -EINVAL;
1261                 if (!vma_can_userfault(cur))
1262                         goto out_unlock;
1263                 /*
1264                  * If this vma contains ending address, and huge pages
1265                  * check alignment.
1266                  */
1267                 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1268                     end > cur->vm_start) {
1269                         unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1270
1271                         ret = -EINVAL;
1272
1273                         if (end & (vma_hpagesize - 1))
1274                                 goto out_unlock;
1275                 }
1276
1277                 /*
1278                  * Check that this vma isn't already owned by a
1279                  * different userfaultfd. We can't allow more than one
1280                  * userfaultfd to own a single vma simultaneously or we
1281                  * wouldn't know which one to deliver the userfaults to.
1282                  */
1283                 ret = -EBUSY;
1284                 if (cur->vm_userfaultfd_ctx.ctx &&
1285                     cur->vm_userfaultfd_ctx.ctx != ctx)
1286                         goto out_unlock;
1287
1288                 /*
1289                  * Note vmas containing huge pages
1290                  */
1291                 if (is_vm_hugetlb_page(cur) || vma_is_shmem(cur))
1292                         non_anon_pages = true;
1293
1294                 found = true;
1295         }
1296         BUG_ON(!found);
1297
1298         if (vma->vm_start < start)
1299                 prev = vma;
1300
1301         ret = 0;
1302         do {
1303                 cond_resched();
1304
1305                 BUG_ON(!vma_can_userfault(vma));
1306                 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1307                        vma->vm_userfaultfd_ctx.ctx != ctx);
1308
1309                 /*
1310                  * Nothing to do: this vma is already registered into this
1311                  * userfaultfd and with the right tracking mode too.
1312                  */
1313                 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1314                     (vma->vm_flags & vm_flags) == vm_flags)
1315                         goto skip;
1316
1317                 if (vma->vm_start > start)
1318                         start = vma->vm_start;
1319                 vma_end = min(end, vma->vm_end);
1320
1321                 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1322                 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1323                                  vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1324                                  vma_policy(vma),
1325                                  ((struct vm_userfaultfd_ctx){ ctx }));
1326                 if (prev) {
1327                         vma = prev;
1328                         goto next;
1329                 }
1330                 if (vma->vm_start < start) {
1331                         ret = split_vma(mm, vma, start, 1);
1332                         if (ret)
1333                                 break;
1334                 }
1335                 if (vma->vm_end > end) {
1336                         ret = split_vma(mm, vma, end, 0);
1337                         if (ret)
1338                                 break;
1339                 }
1340         next:
1341                 /*
1342                  * In the vma_merge() successful mprotect-like case 8:
1343                  * the next vma was merged into the current one and
1344                  * the current one has not been updated yet.
1345                  */
1346                 vma->vm_flags = new_flags;
1347                 vma->vm_userfaultfd_ctx.ctx = ctx;
1348
1349         skip:
1350                 prev = vma;
1351                 start = vma->vm_end;
1352                 vma = vma->vm_next;
1353         } while (vma && vma->vm_start < end);
1354 out_unlock:
1355         up_write(&mm->mmap_sem);
1356         mmput(mm);
1357         if (!ret) {
1358                 /*
1359                  * Now that we scanned all vmas we can already tell
1360                  * userland which ioctls methods are guaranteed to
1361                  * succeed on this range.
1362                  */
1363                 if (put_user(non_anon_pages ? UFFD_API_RANGE_IOCTLS_BASIC :
1364                              UFFD_API_RANGE_IOCTLS,
1365                              &user_uffdio_register->ioctls))
1366                         ret = -EFAULT;
1367         }
1368 out:
1369         return ret;
1370 }
1371
1372 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1373                                   unsigned long arg)
1374 {
1375         struct mm_struct *mm = ctx->mm;
1376         struct vm_area_struct *vma, *prev, *cur;
1377         int ret;
1378         struct uffdio_range uffdio_unregister;
1379         unsigned long new_flags;
1380         bool found;
1381         unsigned long start, end, vma_end;
1382         const void __user *buf = (void __user *)arg;
1383
1384         ret = -EFAULT;
1385         if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1386                 goto out;
1387
1388         ret = validate_range(mm, uffdio_unregister.start,
1389                              uffdio_unregister.len);
1390         if (ret)
1391                 goto out;
1392
1393         start = uffdio_unregister.start;
1394         end = start + uffdio_unregister.len;
1395
1396         ret = -ENOMEM;
1397         if (!mmget_not_zero(mm))
1398                 goto out;
1399
1400         down_write(&mm->mmap_sem);
1401         vma = find_vma_prev(mm, start, &prev);
1402         if (!vma)
1403                 goto out_unlock;
1404
1405         /* check that there's at least one vma in the range */
1406         ret = -EINVAL;
1407         if (vma->vm_start >= end)
1408                 goto out_unlock;
1409
1410         /*
1411          * If the first vma contains huge pages, make sure start address
1412          * is aligned to huge page size.
1413          */
1414         if (is_vm_hugetlb_page(vma)) {
1415                 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1416
1417                 if (start & (vma_hpagesize - 1))
1418                         goto out_unlock;
1419         }
1420
1421         /*
1422          * Search for not compatible vmas.
1423          */
1424         found = false;
1425         ret = -EINVAL;
1426         for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1427                 cond_resched();
1428
1429                 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1430                        !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1431
1432                 /*
1433                  * Check not compatible vmas, not strictly required
1434                  * here as not compatible vmas cannot have an
1435                  * userfaultfd_ctx registered on them, but this
1436                  * provides for more strict behavior to notice
1437                  * unregistration errors.
1438                  */
1439                 if (!vma_can_userfault(cur))
1440                         goto out_unlock;
1441
1442                 found = true;
1443         }
1444         BUG_ON(!found);
1445
1446         if (vma->vm_start < start)
1447                 prev = vma;
1448
1449         ret = 0;
1450         do {
1451                 cond_resched();
1452
1453                 BUG_ON(!vma_can_userfault(vma));
1454
1455                 /*
1456                  * Nothing to do: this vma is already registered into this
1457                  * userfaultfd and with the right tracking mode too.
1458                  */
1459                 if (!vma->vm_userfaultfd_ctx.ctx)
1460                         goto skip;
1461
1462                 if (vma->vm_start > start)
1463                         start = vma->vm_start;
1464                 vma_end = min(end, vma->vm_end);
1465
1466                 if (userfaultfd_missing(vma)) {
1467                         /*
1468                          * Wake any concurrent pending userfault while
1469                          * we unregister, so they will not hang
1470                          * permanently and it avoids userland to call
1471                          * UFFDIO_WAKE explicitly.
1472                          */
1473                         struct userfaultfd_wake_range range;
1474                         range.start = start;
1475                         range.len = vma_end - start;
1476                         wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1477                 }
1478
1479                 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1480                 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1481                                  vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1482                                  vma_policy(vma),
1483                                  NULL_VM_UFFD_CTX);
1484                 if (prev) {
1485                         vma = prev;
1486                         goto next;
1487                 }
1488                 if (vma->vm_start < start) {
1489                         ret = split_vma(mm, vma, start, 1);
1490                         if (ret)
1491                                 break;
1492                 }
1493                 if (vma->vm_end > end) {
1494                         ret = split_vma(mm, vma, end, 0);
1495                         if (ret)
1496                                 break;
1497                 }
1498         next:
1499                 /*
1500                  * In the vma_merge() successful mprotect-like case 8:
1501                  * the next vma was merged into the current one and
1502                  * the current one has not been updated yet.
1503                  */
1504                 vma->vm_flags = new_flags;
1505                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1506
1507         skip:
1508                 prev = vma;
1509                 start = vma->vm_end;
1510                 vma = vma->vm_next;
1511         } while (vma && vma->vm_start < end);
1512 out_unlock:
1513         up_write(&mm->mmap_sem);
1514         mmput(mm);
1515 out:
1516         return ret;
1517 }
1518
1519 /*
1520  * userfaultfd_wake may be used in combination with the
1521  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1522  */
1523 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1524                             unsigned long arg)
1525 {
1526         int ret;
1527         struct uffdio_range uffdio_wake;
1528         struct userfaultfd_wake_range range;
1529         const void __user *buf = (void __user *)arg;
1530
1531         ret = -EFAULT;
1532         if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1533                 goto out;
1534
1535         ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1536         if (ret)
1537                 goto out;
1538
1539         range.start = uffdio_wake.start;
1540         range.len = uffdio_wake.len;
1541
1542         /*
1543          * len == 0 means wake all and we don't want to wake all here,
1544          * so check it again to be sure.
1545          */
1546         VM_BUG_ON(!range.len);
1547
1548         wake_userfault(ctx, &range);
1549         ret = 0;
1550
1551 out:
1552         return ret;
1553 }
1554
1555 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1556                             unsigned long arg)
1557 {
1558         __s64 ret;
1559         struct uffdio_copy uffdio_copy;
1560         struct uffdio_copy __user *user_uffdio_copy;
1561         struct userfaultfd_wake_range range;
1562
1563         user_uffdio_copy = (struct uffdio_copy __user *) arg;
1564
1565         ret = -EFAULT;
1566         if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1567                            /* don't copy "copy" last field */
1568                            sizeof(uffdio_copy)-sizeof(__s64)))
1569                 goto out;
1570
1571         ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1572         if (ret)
1573                 goto out;
1574         /*
1575          * double check for wraparound just in case. copy_from_user()
1576          * will later check uffdio_copy.src + uffdio_copy.len to fit
1577          * in the userland range.
1578          */
1579         ret = -EINVAL;
1580         if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1581                 goto out;
1582         if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1583                 goto out;
1584         if (mmget_not_zero(ctx->mm)) {
1585                 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1586                                    uffdio_copy.len);
1587                 mmput(ctx->mm);
1588         } else {
1589                 return -ENOSPC;
1590         }
1591         if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1592                 return -EFAULT;
1593         if (ret < 0)
1594                 goto out;
1595         BUG_ON(!ret);
1596         /* len == 0 would wake all */
1597         range.len = ret;
1598         if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1599                 range.start = uffdio_copy.dst;
1600                 wake_userfault(ctx, &range);
1601         }
1602         ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1603 out:
1604         return ret;
1605 }
1606
1607 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1608                                 unsigned long arg)
1609 {
1610         __s64 ret;
1611         struct uffdio_zeropage uffdio_zeropage;
1612         struct uffdio_zeropage __user *user_uffdio_zeropage;
1613         struct userfaultfd_wake_range range;
1614
1615         user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1616
1617         ret = -EFAULT;
1618         if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1619                            /* don't copy "zeropage" last field */
1620                            sizeof(uffdio_zeropage)-sizeof(__s64)))
1621                 goto out;
1622
1623         ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1624                              uffdio_zeropage.range.len);
1625         if (ret)
1626                 goto out;
1627         ret = -EINVAL;
1628         if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1629                 goto out;
1630
1631         if (mmget_not_zero(ctx->mm)) {
1632                 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1633                                      uffdio_zeropage.range.len);
1634                 mmput(ctx->mm);
1635         }
1636         if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1637                 return -EFAULT;
1638         if (ret < 0)
1639                 goto out;
1640         /* len == 0 would wake all */
1641         BUG_ON(!ret);
1642         range.len = ret;
1643         if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1644                 range.start = uffdio_zeropage.range.start;
1645                 wake_userfault(ctx, &range);
1646         }
1647         ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1648 out:
1649         return ret;
1650 }
1651
1652 static inline unsigned int uffd_ctx_features(__u64 user_features)
1653 {
1654         /*
1655          * For the current set of features the bits just coincide
1656          */
1657         return (unsigned int)user_features;
1658 }
1659
1660 /*
1661  * userland asks for a certain API version and we return which bits
1662  * and ioctl commands are implemented in this kernel for such API
1663  * version or -EINVAL if unknown.
1664  */
1665 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1666                            unsigned long arg)
1667 {
1668         struct uffdio_api uffdio_api;
1669         void __user *buf = (void __user *)arg;
1670         int ret;
1671         __u64 features;
1672
1673         ret = -EINVAL;
1674         if (ctx->state != UFFD_STATE_WAIT_API)
1675                 goto out;
1676         ret = -EFAULT;
1677         if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1678                 goto out;
1679         features = uffdio_api.features;
1680         if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) {
1681                 memset(&uffdio_api, 0, sizeof(uffdio_api));
1682                 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1683                         goto out;
1684                 ret = -EINVAL;
1685                 goto out;
1686         }
1687         /* report all available features and ioctls to userland */
1688         uffdio_api.features = UFFD_API_FEATURES;
1689         uffdio_api.ioctls = UFFD_API_IOCTLS;
1690         ret = -EFAULT;
1691         if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1692                 goto out;
1693         ctx->state = UFFD_STATE_RUNNING;
1694         /* only enable the requested features for this uffd context */
1695         ctx->features = uffd_ctx_features(features);
1696         ret = 0;
1697 out:
1698         return ret;
1699 }
1700
1701 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1702                               unsigned long arg)
1703 {
1704         int ret = -EINVAL;
1705         struct userfaultfd_ctx *ctx = file->private_data;
1706
1707         if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1708                 return -EINVAL;
1709
1710         switch(cmd) {
1711         case UFFDIO_API:
1712                 ret = userfaultfd_api(ctx, arg);
1713                 break;
1714         case UFFDIO_REGISTER:
1715                 ret = userfaultfd_register(ctx, arg);
1716                 break;
1717         case UFFDIO_UNREGISTER:
1718                 ret = userfaultfd_unregister(ctx, arg);
1719                 break;
1720         case UFFDIO_WAKE:
1721                 ret = userfaultfd_wake(ctx, arg);
1722                 break;
1723         case UFFDIO_COPY:
1724                 ret = userfaultfd_copy(ctx, arg);
1725                 break;
1726         case UFFDIO_ZEROPAGE:
1727                 ret = userfaultfd_zeropage(ctx, arg);
1728                 break;
1729         }
1730         return ret;
1731 }
1732
1733 #ifdef CONFIG_PROC_FS
1734 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1735 {
1736         struct userfaultfd_ctx *ctx = f->private_data;
1737         wait_queue_t *wq;
1738         struct userfaultfd_wait_queue *uwq;
1739         unsigned long pending = 0, total = 0;
1740
1741         spin_lock(&ctx->fault_pending_wqh.lock);
1742         list_for_each_entry(wq, &ctx->fault_pending_wqh.task_list, task_list) {
1743                 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1744                 pending++;
1745                 total++;
1746         }
1747         list_for_each_entry(wq, &ctx->fault_wqh.task_list, task_list) {
1748                 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1749                 total++;
1750         }
1751         spin_unlock(&ctx->fault_pending_wqh.lock);
1752
1753         /*
1754          * If more protocols will be added, there will be all shown
1755          * separated by a space. Like this:
1756          *      protocols: aa:... bb:...
1757          */
1758         seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1759                    pending, total, UFFD_API, ctx->features,
1760                    UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1761 }
1762 #endif
1763
1764 static const struct file_operations userfaultfd_fops = {
1765 #ifdef CONFIG_PROC_FS
1766         .show_fdinfo    = userfaultfd_show_fdinfo,
1767 #endif
1768         .release        = userfaultfd_release,
1769         .poll           = userfaultfd_poll,
1770         .read           = userfaultfd_read,
1771         .unlocked_ioctl = userfaultfd_ioctl,
1772         .compat_ioctl   = userfaultfd_ioctl,
1773         .llseek         = noop_llseek,
1774 };
1775
1776 static void init_once_userfaultfd_ctx(void *mem)
1777 {
1778         struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1779
1780         init_waitqueue_head(&ctx->fault_pending_wqh);
1781         init_waitqueue_head(&ctx->fault_wqh);
1782         init_waitqueue_head(&ctx->event_wqh);
1783         init_waitqueue_head(&ctx->fd_wqh);
1784         seqcount_init(&ctx->refile_seq);
1785 }
1786
1787 /**
1788  * userfaultfd_file_create - Creates a userfaultfd file pointer.
1789  * @flags: Flags for the userfaultfd file.
1790  *
1791  * This function creates a userfaultfd file pointer, w/out installing
1792  * it into the fd table. This is useful when the userfaultfd file is
1793  * used during the initialization of data structures that require
1794  * extra setup after the userfaultfd creation. So the userfaultfd
1795  * creation is split into the file pointer creation phase, and the
1796  * file descriptor installation phase.  In this way races with
1797  * userspace closing the newly installed file descriptor can be
1798  * avoided.  Returns a userfaultfd file pointer, or a proper error
1799  * pointer.
1800  */
1801 static struct file *userfaultfd_file_create(int flags)
1802 {
1803         struct file *file;
1804         struct userfaultfd_ctx *ctx;
1805
1806         BUG_ON(!current->mm);
1807
1808         /* Check the UFFD_* constants for consistency.  */
1809         BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1810         BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1811
1812         file = ERR_PTR(-EINVAL);
1813         if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1814                 goto out;
1815
1816         file = ERR_PTR(-ENOMEM);
1817         ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1818         if (!ctx)
1819                 goto out;
1820
1821         atomic_set(&ctx->refcount, 1);
1822         ctx->flags = flags;
1823         ctx->features = 0;
1824         ctx->state = UFFD_STATE_WAIT_API;
1825         ctx->released = false;
1826         ctx->mm = current->mm;
1827         /* prevent the mm struct to be freed */
1828         mmgrab(ctx->mm);
1829
1830         file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
1831                                   O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1832         if (IS_ERR(file)) {
1833                 mmdrop(ctx->mm);
1834                 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1835         }
1836 out:
1837         return file;
1838 }
1839
1840 SYSCALL_DEFINE1(userfaultfd, int, flags)
1841 {
1842         int fd, error;
1843         struct file *file;
1844
1845         error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
1846         if (error < 0)
1847                 return error;
1848         fd = error;
1849
1850         file = userfaultfd_file_create(flags);
1851         if (IS_ERR(file)) {
1852                 error = PTR_ERR(file);
1853                 goto err_put_unused_fd;
1854         }
1855         fd_install(fd, file);
1856
1857         return fd;
1858
1859 err_put_unused_fd:
1860         put_unused_fd(fd);
1861
1862         return error;
1863 }
1864
1865 static int __init userfaultfd_init(void)
1866 {
1867         userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1868                                                 sizeof(struct userfaultfd_ctx),
1869                                                 0,
1870                                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1871                                                 init_once_userfaultfd_ctx);
1872         return 0;
1873 }
1874 __initcall(userfaultfd_init);