Merge tag 'docs-4.16' of git://git.lwn.net/linux
[sfrench/cifs-2.6.git] / fs / userfaultfd.c
1 /*
2  *  fs/userfaultfd.c
3  *
4  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
5  *  Copyright (C) 2008-2009 Red Hat, Inc.
6  *  Copyright (C) 2015  Red Hat, Inc.
7  *
8  *  This work is licensed under the terms of the GNU GPL, version 2. See
9  *  the COPYING file in the top-level directory.
10  *
11  *  Some part derived from fs/eventfd.c (anon inode setup) and
12  *  mm/ksm.c (mm hashing).
13  */
14
15 #include <linux/list.h>
16 #include <linux/hashtable.h>
17 #include <linux/sched/signal.h>
18 #include <linux/sched/mm.h>
19 #include <linux/mm.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32
33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34
35 enum userfaultfd_state {
36         UFFD_STATE_WAIT_API,
37         UFFD_STATE_RUNNING,
38 };
39
40 /*
41  * Start with fault_pending_wqh and fault_wqh so they're more likely
42  * to be in the same cacheline.
43  */
44 struct userfaultfd_ctx {
45         /* waitqueue head for the pending (i.e. not read) userfaults */
46         wait_queue_head_t fault_pending_wqh;
47         /* waitqueue head for the userfaults */
48         wait_queue_head_t fault_wqh;
49         /* waitqueue head for the pseudo fd to wakeup poll/read */
50         wait_queue_head_t fd_wqh;
51         /* waitqueue head for events */
52         wait_queue_head_t event_wqh;
53         /* a refile sequence protected by fault_pending_wqh lock */
54         struct seqcount refile_seq;
55         /* pseudo fd refcounting */
56         atomic_t refcount;
57         /* userfaultfd syscall flags */
58         unsigned int flags;
59         /* features requested from the userspace */
60         unsigned int features;
61         /* state machine */
62         enum userfaultfd_state state;
63         /* released */
64         bool released;
65         /* mm with one ore more vmas attached to this userfaultfd_ctx */
66         struct mm_struct *mm;
67 };
68
69 struct userfaultfd_fork_ctx {
70         struct userfaultfd_ctx *orig;
71         struct userfaultfd_ctx *new;
72         struct list_head list;
73 };
74
75 struct userfaultfd_unmap_ctx {
76         struct userfaultfd_ctx *ctx;
77         unsigned long start;
78         unsigned long end;
79         struct list_head list;
80 };
81
82 struct userfaultfd_wait_queue {
83         struct uffd_msg msg;
84         wait_queue_entry_t wq;
85         struct userfaultfd_ctx *ctx;
86         bool waken;
87 };
88
89 struct userfaultfd_wake_range {
90         unsigned long start;
91         unsigned long len;
92 };
93
94 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
95                                      int wake_flags, void *key)
96 {
97         struct userfaultfd_wake_range *range = key;
98         int ret;
99         struct userfaultfd_wait_queue *uwq;
100         unsigned long start, len;
101
102         uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
103         ret = 0;
104         /* len == 0 means wake all */
105         start = range->start;
106         len = range->len;
107         if (len && (start > uwq->msg.arg.pagefault.address ||
108                     start + len <= uwq->msg.arg.pagefault.address))
109                 goto out;
110         WRITE_ONCE(uwq->waken, true);
111         /*
112          * The Program-Order guarantees provided by the scheduler
113          * ensure uwq->waken is visible before the task is woken.
114          */
115         ret = wake_up_state(wq->private, mode);
116         if (ret) {
117                 /*
118                  * Wake only once, autoremove behavior.
119                  *
120                  * After the effect of list_del_init is visible to the other
121                  * CPUs, the waitqueue may disappear from under us, see the
122                  * !list_empty_careful() in handle_userfault().
123                  *
124                  * try_to_wake_up() has an implicit smp_mb(), and the
125                  * wq->private is read before calling the extern function
126                  * "wake_up_state" (which in turns calls try_to_wake_up).
127                  */
128                 list_del_init(&wq->entry);
129         }
130 out:
131         return ret;
132 }
133
134 /**
135  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
136  * context.
137  * @ctx: [in] Pointer to the userfaultfd context.
138  */
139 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
140 {
141         if (!atomic_inc_not_zero(&ctx->refcount))
142                 BUG();
143 }
144
145 /**
146  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
147  * context.
148  * @ctx: [in] Pointer to userfaultfd context.
149  *
150  * The userfaultfd context reference must have been previously acquired either
151  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
152  */
153 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
154 {
155         if (atomic_dec_and_test(&ctx->refcount)) {
156                 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
157                 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
158                 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
159                 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
160                 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
161                 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
162                 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
163                 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
164                 mmdrop(ctx->mm);
165                 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
166         }
167 }
168
169 static inline void msg_init(struct uffd_msg *msg)
170 {
171         BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
172         /*
173          * Must use memset to zero out the paddings or kernel data is
174          * leaked to userland.
175          */
176         memset(msg, 0, sizeof(struct uffd_msg));
177 }
178
179 static inline struct uffd_msg userfault_msg(unsigned long address,
180                                             unsigned int flags,
181                                             unsigned long reason,
182                                             unsigned int features)
183 {
184         struct uffd_msg msg;
185         msg_init(&msg);
186         msg.event = UFFD_EVENT_PAGEFAULT;
187         msg.arg.pagefault.address = address;
188         if (flags & FAULT_FLAG_WRITE)
189                 /*
190                  * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
191                  * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
192                  * was not set in a UFFD_EVENT_PAGEFAULT, it means it
193                  * was a read fault, otherwise if set it means it's
194                  * a write fault.
195                  */
196                 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
197         if (reason & VM_UFFD_WP)
198                 /*
199                  * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
200                  * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
201                  * not set in a UFFD_EVENT_PAGEFAULT, it means it was
202                  * a missing fault, otherwise if set it means it's a
203                  * write protect fault.
204                  */
205                 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
206         if (features & UFFD_FEATURE_THREAD_ID)
207                 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
208         return msg;
209 }
210
211 #ifdef CONFIG_HUGETLB_PAGE
212 /*
213  * Same functionality as userfaultfd_must_wait below with modifications for
214  * hugepmd ranges.
215  */
216 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
217                                          struct vm_area_struct *vma,
218                                          unsigned long address,
219                                          unsigned long flags,
220                                          unsigned long reason)
221 {
222         struct mm_struct *mm = ctx->mm;
223         pte_t *pte;
224         bool ret = true;
225
226         VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
227
228         pte = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
229         if (!pte)
230                 goto out;
231
232         ret = false;
233
234         /*
235          * Lockless access: we're in a wait_event so it's ok if it
236          * changes under us.
237          */
238         if (huge_pte_none(*pte))
239                 ret = true;
240         if (!huge_pte_write(*pte) && (reason & VM_UFFD_WP))
241                 ret = true;
242 out:
243         return ret;
244 }
245 #else
246 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
247                                          struct vm_area_struct *vma,
248                                          unsigned long address,
249                                          unsigned long flags,
250                                          unsigned long reason)
251 {
252         return false;   /* should never get here */
253 }
254 #endif /* CONFIG_HUGETLB_PAGE */
255
256 /*
257  * Verify the pagetables are still not ok after having reigstered into
258  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
259  * userfault that has already been resolved, if userfaultfd_read and
260  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
261  * threads.
262  */
263 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
264                                          unsigned long address,
265                                          unsigned long flags,
266                                          unsigned long reason)
267 {
268         struct mm_struct *mm = ctx->mm;
269         pgd_t *pgd;
270         p4d_t *p4d;
271         pud_t *pud;
272         pmd_t *pmd, _pmd;
273         pte_t *pte;
274         bool ret = true;
275
276         VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
277
278         pgd = pgd_offset(mm, address);
279         if (!pgd_present(*pgd))
280                 goto out;
281         p4d = p4d_offset(pgd, address);
282         if (!p4d_present(*p4d))
283                 goto out;
284         pud = pud_offset(p4d, address);
285         if (!pud_present(*pud))
286                 goto out;
287         pmd = pmd_offset(pud, address);
288         /*
289          * READ_ONCE must function as a barrier with narrower scope
290          * and it must be equivalent to:
291          *      _pmd = *pmd; barrier();
292          *
293          * This is to deal with the instability (as in
294          * pmd_trans_unstable) of the pmd.
295          */
296         _pmd = READ_ONCE(*pmd);
297         if (pmd_none(_pmd))
298                 goto out;
299
300         ret = false;
301         if (!pmd_present(_pmd))
302                 goto out;
303
304         if (pmd_trans_huge(_pmd))
305                 goto out;
306
307         /*
308          * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
309          * and use the standard pte_offset_map() instead of parsing _pmd.
310          */
311         pte = pte_offset_map(pmd, address);
312         /*
313          * Lockless access: we're in a wait_event so it's ok if it
314          * changes under us.
315          */
316         if (pte_none(*pte))
317                 ret = true;
318         pte_unmap(pte);
319
320 out:
321         return ret;
322 }
323
324 /*
325  * The locking rules involved in returning VM_FAULT_RETRY depending on
326  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
327  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
328  * recommendation in __lock_page_or_retry is not an understatement.
329  *
330  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
331  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
332  * not set.
333  *
334  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
335  * set, VM_FAULT_RETRY can still be returned if and only if there are
336  * fatal_signal_pending()s, and the mmap_sem must be released before
337  * returning it.
338  */
339 int handle_userfault(struct vm_fault *vmf, unsigned long reason)
340 {
341         struct mm_struct *mm = vmf->vma->vm_mm;
342         struct userfaultfd_ctx *ctx;
343         struct userfaultfd_wait_queue uwq;
344         int ret;
345         bool must_wait, return_to_userland;
346         long blocking_state;
347
348         ret = VM_FAULT_SIGBUS;
349
350         /*
351          * We don't do userfault handling for the final child pid update.
352          *
353          * We also don't do userfault handling during
354          * coredumping. hugetlbfs has the special
355          * follow_hugetlb_page() to skip missing pages in the
356          * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
357          * the no_page_table() helper in follow_page_mask(), but the
358          * shmem_vm_ops->fault method is invoked even during
359          * coredumping without mmap_sem and it ends up here.
360          */
361         if (current->flags & (PF_EXITING|PF_DUMPCORE))
362                 goto out;
363
364         /*
365          * Coredumping runs without mmap_sem so we can only check that
366          * the mmap_sem is held, if PF_DUMPCORE was not set.
367          */
368         WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem));
369
370         ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
371         if (!ctx)
372                 goto out;
373
374         BUG_ON(ctx->mm != mm);
375
376         VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
377         VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
378
379         if (ctx->features & UFFD_FEATURE_SIGBUS)
380                 goto out;
381
382         /*
383          * If it's already released don't get it. This avoids to loop
384          * in __get_user_pages if userfaultfd_release waits on the
385          * caller of handle_userfault to release the mmap_sem.
386          */
387         if (unlikely(READ_ONCE(ctx->released))) {
388                 /*
389                  * Don't return VM_FAULT_SIGBUS in this case, so a non
390                  * cooperative manager can close the uffd after the
391                  * last UFFDIO_COPY, without risking to trigger an
392                  * involuntary SIGBUS if the process was starting the
393                  * userfaultfd while the userfaultfd was still armed
394                  * (but after the last UFFDIO_COPY). If the uffd
395                  * wasn't already closed when the userfault reached
396                  * this point, that would normally be solved by
397                  * userfaultfd_must_wait returning 'false'.
398                  *
399                  * If we were to return VM_FAULT_SIGBUS here, the non
400                  * cooperative manager would be instead forced to
401                  * always call UFFDIO_UNREGISTER before it can safely
402                  * close the uffd.
403                  */
404                 ret = VM_FAULT_NOPAGE;
405                 goto out;
406         }
407
408         /*
409          * Check that we can return VM_FAULT_RETRY.
410          *
411          * NOTE: it should become possible to return VM_FAULT_RETRY
412          * even if FAULT_FLAG_TRIED is set without leading to gup()
413          * -EBUSY failures, if the userfaultfd is to be extended for
414          * VM_UFFD_WP tracking and we intend to arm the userfault
415          * without first stopping userland access to the memory. For
416          * VM_UFFD_MISSING userfaults this is enough for now.
417          */
418         if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
419                 /*
420                  * Validate the invariant that nowait must allow retry
421                  * to be sure not to return SIGBUS erroneously on
422                  * nowait invocations.
423                  */
424                 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
425 #ifdef CONFIG_DEBUG_VM
426                 if (printk_ratelimit()) {
427                         printk(KERN_WARNING
428                                "FAULT_FLAG_ALLOW_RETRY missing %x\n",
429                                vmf->flags);
430                         dump_stack();
431                 }
432 #endif
433                 goto out;
434         }
435
436         /*
437          * Handle nowait, not much to do other than tell it to retry
438          * and wait.
439          */
440         ret = VM_FAULT_RETRY;
441         if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
442                 goto out;
443
444         /* take the reference before dropping the mmap_sem */
445         userfaultfd_ctx_get(ctx);
446
447         init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
448         uwq.wq.private = current;
449         uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
450                         ctx->features);
451         uwq.ctx = ctx;
452         uwq.waken = false;
453
454         return_to_userland =
455                 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
456                 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
457         blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
458                          TASK_KILLABLE;
459
460         spin_lock(&ctx->fault_pending_wqh.lock);
461         /*
462          * After the __add_wait_queue the uwq is visible to userland
463          * through poll/read().
464          */
465         __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
466         /*
467          * The smp_mb() after __set_current_state prevents the reads
468          * following the spin_unlock to happen before the list_add in
469          * __add_wait_queue.
470          */
471         set_current_state(blocking_state);
472         spin_unlock(&ctx->fault_pending_wqh.lock);
473
474         if (!is_vm_hugetlb_page(vmf->vma))
475                 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
476                                                   reason);
477         else
478                 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
479                                                        vmf->address,
480                                                        vmf->flags, reason);
481         up_read(&mm->mmap_sem);
482
483         if (likely(must_wait && !READ_ONCE(ctx->released) &&
484                    (return_to_userland ? !signal_pending(current) :
485                     !fatal_signal_pending(current)))) {
486                 wake_up_poll(&ctx->fd_wqh, POLLIN);
487                 schedule();
488                 ret |= VM_FAULT_MAJOR;
489
490                 /*
491                  * False wakeups can orginate even from rwsem before
492                  * up_read() however userfaults will wait either for a
493                  * targeted wakeup on the specific uwq waitqueue from
494                  * wake_userfault() or for signals or for uffd
495                  * release.
496                  */
497                 while (!READ_ONCE(uwq.waken)) {
498                         /*
499                          * This needs the full smp_store_mb()
500                          * guarantee as the state write must be
501                          * visible to other CPUs before reading
502                          * uwq.waken from other CPUs.
503                          */
504                         set_current_state(blocking_state);
505                         if (READ_ONCE(uwq.waken) ||
506                             READ_ONCE(ctx->released) ||
507                             (return_to_userland ? signal_pending(current) :
508                              fatal_signal_pending(current)))
509                                 break;
510                         schedule();
511                 }
512         }
513
514         __set_current_state(TASK_RUNNING);
515
516         if (return_to_userland) {
517                 if (signal_pending(current) &&
518                     !fatal_signal_pending(current)) {
519                         /*
520                          * If we got a SIGSTOP or SIGCONT and this is
521                          * a normal userland page fault, just let
522                          * userland return so the signal will be
523                          * handled and gdb debugging works.  The page
524                          * fault code immediately after we return from
525                          * this function is going to release the
526                          * mmap_sem and it's not depending on it
527                          * (unlike gup would if we were not to return
528                          * VM_FAULT_RETRY).
529                          *
530                          * If a fatal signal is pending we still take
531                          * the streamlined VM_FAULT_RETRY failure path
532                          * and there's no need to retake the mmap_sem
533                          * in such case.
534                          */
535                         down_read(&mm->mmap_sem);
536                         ret = VM_FAULT_NOPAGE;
537                 }
538         }
539
540         /*
541          * Here we race with the list_del; list_add in
542          * userfaultfd_ctx_read(), however because we don't ever run
543          * list_del_init() to refile across the two lists, the prev
544          * and next pointers will never point to self. list_add also
545          * would never let any of the two pointers to point to
546          * self. So list_empty_careful won't risk to see both pointers
547          * pointing to self at any time during the list refile. The
548          * only case where list_del_init() is called is the full
549          * removal in the wake function and there we don't re-list_add
550          * and it's fine not to block on the spinlock. The uwq on this
551          * kernel stack can be released after the list_del_init.
552          */
553         if (!list_empty_careful(&uwq.wq.entry)) {
554                 spin_lock(&ctx->fault_pending_wqh.lock);
555                 /*
556                  * No need of list_del_init(), the uwq on the stack
557                  * will be freed shortly anyway.
558                  */
559                 list_del(&uwq.wq.entry);
560                 spin_unlock(&ctx->fault_pending_wqh.lock);
561         }
562
563         /*
564          * ctx may go away after this if the userfault pseudo fd is
565          * already released.
566          */
567         userfaultfd_ctx_put(ctx);
568
569 out:
570         return ret;
571 }
572
573 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
574                                               struct userfaultfd_wait_queue *ewq)
575 {
576         struct userfaultfd_ctx *release_new_ctx;
577
578         if (WARN_ON_ONCE(current->flags & PF_EXITING))
579                 goto out;
580
581         ewq->ctx = ctx;
582         init_waitqueue_entry(&ewq->wq, current);
583         release_new_ctx = NULL;
584
585         spin_lock(&ctx->event_wqh.lock);
586         /*
587          * After the __add_wait_queue the uwq is visible to userland
588          * through poll/read().
589          */
590         __add_wait_queue(&ctx->event_wqh, &ewq->wq);
591         for (;;) {
592                 set_current_state(TASK_KILLABLE);
593                 if (ewq->msg.event == 0)
594                         break;
595                 if (READ_ONCE(ctx->released) ||
596                     fatal_signal_pending(current)) {
597                         /*
598                          * &ewq->wq may be queued in fork_event, but
599                          * __remove_wait_queue ignores the head
600                          * parameter. It would be a problem if it
601                          * didn't.
602                          */
603                         __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
604                         if (ewq->msg.event == UFFD_EVENT_FORK) {
605                                 struct userfaultfd_ctx *new;
606
607                                 new = (struct userfaultfd_ctx *)
608                                         (unsigned long)
609                                         ewq->msg.arg.reserved.reserved1;
610                                 release_new_ctx = new;
611                         }
612                         break;
613                 }
614
615                 spin_unlock(&ctx->event_wqh.lock);
616
617                 wake_up_poll(&ctx->fd_wqh, POLLIN);
618                 schedule();
619
620                 spin_lock(&ctx->event_wqh.lock);
621         }
622         __set_current_state(TASK_RUNNING);
623         spin_unlock(&ctx->event_wqh.lock);
624
625         if (release_new_ctx) {
626                 struct vm_area_struct *vma;
627                 struct mm_struct *mm = release_new_ctx->mm;
628
629                 /* the various vma->vm_userfaultfd_ctx still points to it */
630                 down_write(&mm->mmap_sem);
631                 for (vma = mm->mmap; vma; vma = vma->vm_next)
632                         if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx)
633                                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
634                 up_write(&mm->mmap_sem);
635
636                 userfaultfd_ctx_put(release_new_ctx);
637         }
638
639         /*
640          * ctx may go away after this if the userfault pseudo fd is
641          * already released.
642          */
643 out:
644         userfaultfd_ctx_put(ctx);
645 }
646
647 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
648                                        struct userfaultfd_wait_queue *ewq)
649 {
650         ewq->msg.event = 0;
651         wake_up_locked(&ctx->event_wqh);
652         __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
653 }
654
655 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
656 {
657         struct userfaultfd_ctx *ctx = NULL, *octx;
658         struct userfaultfd_fork_ctx *fctx;
659
660         octx = vma->vm_userfaultfd_ctx.ctx;
661         if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
662                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
663                 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
664                 return 0;
665         }
666
667         list_for_each_entry(fctx, fcs, list)
668                 if (fctx->orig == octx) {
669                         ctx = fctx->new;
670                         break;
671                 }
672
673         if (!ctx) {
674                 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
675                 if (!fctx)
676                         return -ENOMEM;
677
678                 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
679                 if (!ctx) {
680                         kfree(fctx);
681                         return -ENOMEM;
682                 }
683
684                 atomic_set(&ctx->refcount, 1);
685                 ctx->flags = octx->flags;
686                 ctx->state = UFFD_STATE_RUNNING;
687                 ctx->features = octx->features;
688                 ctx->released = false;
689                 ctx->mm = vma->vm_mm;
690                 mmgrab(ctx->mm);
691
692                 userfaultfd_ctx_get(octx);
693                 fctx->orig = octx;
694                 fctx->new = ctx;
695                 list_add_tail(&fctx->list, fcs);
696         }
697
698         vma->vm_userfaultfd_ctx.ctx = ctx;
699         return 0;
700 }
701
702 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
703 {
704         struct userfaultfd_ctx *ctx = fctx->orig;
705         struct userfaultfd_wait_queue ewq;
706
707         msg_init(&ewq.msg);
708
709         ewq.msg.event = UFFD_EVENT_FORK;
710         ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
711
712         userfaultfd_event_wait_completion(ctx, &ewq);
713 }
714
715 void dup_userfaultfd_complete(struct list_head *fcs)
716 {
717         struct userfaultfd_fork_ctx *fctx, *n;
718
719         list_for_each_entry_safe(fctx, n, fcs, list) {
720                 dup_fctx(fctx);
721                 list_del(&fctx->list);
722                 kfree(fctx);
723         }
724 }
725
726 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
727                              struct vm_userfaultfd_ctx *vm_ctx)
728 {
729         struct userfaultfd_ctx *ctx;
730
731         ctx = vma->vm_userfaultfd_ctx.ctx;
732         if (ctx && (ctx->features & UFFD_FEATURE_EVENT_REMAP)) {
733                 vm_ctx->ctx = ctx;
734                 userfaultfd_ctx_get(ctx);
735         }
736 }
737
738 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
739                                  unsigned long from, unsigned long to,
740                                  unsigned long len)
741 {
742         struct userfaultfd_ctx *ctx = vm_ctx->ctx;
743         struct userfaultfd_wait_queue ewq;
744
745         if (!ctx)
746                 return;
747
748         if (to & ~PAGE_MASK) {
749                 userfaultfd_ctx_put(ctx);
750                 return;
751         }
752
753         msg_init(&ewq.msg);
754
755         ewq.msg.event = UFFD_EVENT_REMAP;
756         ewq.msg.arg.remap.from = from;
757         ewq.msg.arg.remap.to = to;
758         ewq.msg.arg.remap.len = len;
759
760         userfaultfd_event_wait_completion(ctx, &ewq);
761 }
762
763 bool userfaultfd_remove(struct vm_area_struct *vma,
764                         unsigned long start, unsigned long end)
765 {
766         struct mm_struct *mm = vma->vm_mm;
767         struct userfaultfd_ctx *ctx;
768         struct userfaultfd_wait_queue ewq;
769
770         ctx = vma->vm_userfaultfd_ctx.ctx;
771         if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
772                 return true;
773
774         userfaultfd_ctx_get(ctx);
775         up_read(&mm->mmap_sem);
776
777         msg_init(&ewq.msg);
778
779         ewq.msg.event = UFFD_EVENT_REMOVE;
780         ewq.msg.arg.remove.start = start;
781         ewq.msg.arg.remove.end = end;
782
783         userfaultfd_event_wait_completion(ctx, &ewq);
784
785         return false;
786 }
787
788 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
789                           unsigned long start, unsigned long end)
790 {
791         struct userfaultfd_unmap_ctx *unmap_ctx;
792
793         list_for_each_entry(unmap_ctx, unmaps, list)
794                 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
795                     unmap_ctx->end == end)
796                         return true;
797
798         return false;
799 }
800
801 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
802                            unsigned long start, unsigned long end,
803                            struct list_head *unmaps)
804 {
805         for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
806                 struct userfaultfd_unmap_ctx *unmap_ctx;
807                 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
808
809                 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
810                     has_unmap_ctx(ctx, unmaps, start, end))
811                         continue;
812
813                 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
814                 if (!unmap_ctx)
815                         return -ENOMEM;
816
817                 userfaultfd_ctx_get(ctx);
818                 unmap_ctx->ctx = ctx;
819                 unmap_ctx->start = start;
820                 unmap_ctx->end = end;
821                 list_add_tail(&unmap_ctx->list, unmaps);
822         }
823
824         return 0;
825 }
826
827 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
828 {
829         struct userfaultfd_unmap_ctx *ctx, *n;
830         struct userfaultfd_wait_queue ewq;
831
832         list_for_each_entry_safe(ctx, n, uf, list) {
833                 msg_init(&ewq.msg);
834
835                 ewq.msg.event = UFFD_EVENT_UNMAP;
836                 ewq.msg.arg.remove.start = ctx->start;
837                 ewq.msg.arg.remove.end = ctx->end;
838
839                 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
840
841                 list_del(&ctx->list);
842                 kfree(ctx);
843         }
844 }
845
846 static int userfaultfd_release(struct inode *inode, struct file *file)
847 {
848         struct userfaultfd_ctx *ctx = file->private_data;
849         struct mm_struct *mm = ctx->mm;
850         struct vm_area_struct *vma, *prev;
851         /* len == 0 means wake all */
852         struct userfaultfd_wake_range range = { .len = 0, };
853         unsigned long new_flags;
854
855         WRITE_ONCE(ctx->released, true);
856
857         if (!mmget_not_zero(mm))
858                 goto wakeup;
859
860         /*
861          * Flush page faults out of all CPUs. NOTE: all page faults
862          * must be retried without returning VM_FAULT_SIGBUS if
863          * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
864          * changes while handle_userfault released the mmap_sem. So
865          * it's critical that released is set to true (above), before
866          * taking the mmap_sem for writing.
867          */
868         down_write(&mm->mmap_sem);
869         prev = NULL;
870         for (vma = mm->mmap; vma; vma = vma->vm_next) {
871                 cond_resched();
872                 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
873                        !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
874                 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
875                         prev = vma;
876                         continue;
877                 }
878                 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
879                 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
880                                  new_flags, vma->anon_vma,
881                                  vma->vm_file, vma->vm_pgoff,
882                                  vma_policy(vma),
883                                  NULL_VM_UFFD_CTX);
884                 if (prev)
885                         vma = prev;
886                 else
887                         prev = vma;
888                 vma->vm_flags = new_flags;
889                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
890         }
891         up_write(&mm->mmap_sem);
892         mmput(mm);
893 wakeup:
894         /*
895          * After no new page faults can wait on this fault_*wqh, flush
896          * the last page faults that may have been already waiting on
897          * the fault_*wqh.
898          */
899         spin_lock(&ctx->fault_pending_wqh.lock);
900         __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
901         __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
902         spin_unlock(&ctx->fault_pending_wqh.lock);
903
904         /* Flush pending events that may still wait on event_wqh */
905         wake_up_all(&ctx->event_wqh);
906
907         wake_up_poll(&ctx->fd_wqh, POLLHUP);
908         userfaultfd_ctx_put(ctx);
909         return 0;
910 }
911
912 /* fault_pending_wqh.lock must be hold by the caller */
913 static inline struct userfaultfd_wait_queue *find_userfault_in(
914                 wait_queue_head_t *wqh)
915 {
916         wait_queue_entry_t *wq;
917         struct userfaultfd_wait_queue *uwq;
918
919         VM_BUG_ON(!spin_is_locked(&wqh->lock));
920
921         uwq = NULL;
922         if (!waitqueue_active(wqh))
923                 goto out;
924         /* walk in reverse to provide FIFO behavior to read userfaults */
925         wq = list_last_entry(&wqh->head, typeof(*wq), entry);
926         uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
927 out:
928         return uwq;
929 }
930
931 static inline struct userfaultfd_wait_queue *find_userfault(
932                 struct userfaultfd_ctx *ctx)
933 {
934         return find_userfault_in(&ctx->fault_pending_wqh);
935 }
936
937 static inline struct userfaultfd_wait_queue *find_userfault_evt(
938                 struct userfaultfd_ctx *ctx)
939 {
940         return find_userfault_in(&ctx->event_wqh);
941 }
942
943 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
944 {
945         struct userfaultfd_ctx *ctx = file->private_data;
946         __poll_t ret;
947
948         poll_wait(file, &ctx->fd_wqh, wait);
949
950         switch (ctx->state) {
951         case UFFD_STATE_WAIT_API:
952                 return POLLERR;
953         case UFFD_STATE_RUNNING:
954                 /*
955                  * poll() never guarantees that read won't block.
956                  * userfaults can be waken before they're read().
957                  */
958                 if (unlikely(!(file->f_flags & O_NONBLOCK)))
959                         return POLLERR;
960                 /*
961                  * lockless access to see if there are pending faults
962                  * __pollwait last action is the add_wait_queue but
963                  * the spin_unlock would allow the waitqueue_active to
964                  * pass above the actual list_add inside
965                  * add_wait_queue critical section. So use a full
966                  * memory barrier to serialize the list_add write of
967                  * add_wait_queue() with the waitqueue_active read
968                  * below.
969                  */
970                 ret = 0;
971                 smp_mb();
972                 if (waitqueue_active(&ctx->fault_pending_wqh))
973                         ret = POLLIN;
974                 else if (waitqueue_active(&ctx->event_wqh))
975                         ret = POLLIN;
976
977                 return ret;
978         default:
979                 WARN_ON_ONCE(1);
980                 return POLLERR;
981         }
982 }
983
984 static const struct file_operations userfaultfd_fops;
985
986 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
987                                   struct userfaultfd_ctx *new,
988                                   struct uffd_msg *msg)
989 {
990         int fd;
991
992         fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new,
993                               O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS));
994         if (fd < 0)
995                 return fd;
996
997         msg->arg.reserved.reserved1 = 0;
998         msg->arg.fork.ufd = fd;
999         return 0;
1000 }
1001
1002 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1003                                     struct uffd_msg *msg)
1004 {
1005         ssize_t ret;
1006         DECLARE_WAITQUEUE(wait, current);
1007         struct userfaultfd_wait_queue *uwq;
1008         /*
1009          * Handling fork event requires sleeping operations, so
1010          * we drop the event_wqh lock, then do these ops, then
1011          * lock it back and wake up the waiter. While the lock is
1012          * dropped the ewq may go away so we keep track of it
1013          * carefully.
1014          */
1015         LIST_HEAD(fork_event);
1016         struct userfaultfd_ctx *fork_nctx = NULL;
1017
1018         /* always take the fd_wqh lock before the fault_pending_wqh lock */
1019         spin_lock(&ctx->fd_wqh.lock);
1020         __add_wait_queue(&ctx->fd_wqh, &wait);
1021         for (;;) {
1022                 set_current_state(TASK_INTERRUPTIBLE);
1023                 spin_lock(&ctx->fault_pending_wqh.lock);
1024                 uwq = find_userfault(ctx);
1025                 if (uwq) {
1026                         /*
1027                          * Use a seqcount to repeat the lockless check
1028                          * in wake_userfault() to avoid missing
1029                          * wakeups because during the refile both
1030                          * waitqueue could become empty if this is the
1031                          * only userfault.
1032                          */
1033                         write_seqcount_begin(&ctx->refile_seq);
1034
1035                         /*
1036                          * The fault_pending_wqh.lock prevents the uwq
1037                          * to disappear from under us.
1038                          *
1039                          * Refile this userfault from
1040                          * fault_pending_wqh to fault_wqh, it's not
1041                          * pending anymore after we read it.
1042                          *
1043                          * Use list_del() by hand (as
1044                          * userfaultfd_wake_function also uses
1045                          * list_del_init() by hand) to be sure nobody
1046                          * changes __remove_wait_queue() to use
1047                          * list_del_init() in turn breaking the
1048                          * !list_empty_careful() check in
1049                          * handle_userfault(). The uwq->wq.head list
1050                          * must never be empty at any time during the
1051                          * refile, or the waitqueue could disappear
1052                          * from under us. The "wait_queue_head_t"
1053                          * parameter of __remove_wait_queue() is unused
1054                          * anyway.
1055                          */
1056                         list_del(&uwq->wq.entry);
1057                         __add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1058
1059                         write_seqcount_end(&ctx->refile_seq);
1060
1061                         /* careful to always initialize msg if ret == 0 */
1062                         *msg = uwq->msg;
1063                         spin_unlock(&ctx->fault_pending_wqh.lock);
1064                         ret = 0;
1065                         break;
1066                 }
1067                 spin_unlock(&ctx->fault_pending_wqh.lock);
1068
1069                 spin_lock(&ctx->event_wqh.lock);
1070                 uwq = find_userfault_evt(ctx);
1071                 if (uwq) {
1072                         *msg = uwq->msg;
1073
1074                         if (uwq->msg.event == UFFD_EVENT_FORK) {
1075                                 fork_nctx = (struct userfaultfd_ctx *)
1076                                         (unsigned long)
1077                                         uwq->msg.arg.reserved.reserved1;
1078                                 list_move(&uwq->wq.entry, &fork_event);
1079                                 /*
1080                                  * fork_nctx can be freed as soon as
1081                                  * we drop the lock, unless we take a
1082                                  * reference on it.
1083                                  */
1084                                 userfaultfd_ctx_get(fork_nctx);
1085                                 spin_unlock(&ctx->event_wqh.lock);
1086                                 ret = 0;
1087                                 break;
1088                         }
1089
1090                         userfaultfd_event_complete(ctx, uwq);
1091                         spin_unlock(&ctx->event_wqh.lock);
1092                         ret = 0;
1093                         break;
1094                 }
1095                 spin_unlock(&ctx->event_wqh.lock);
1096
1097                 if (signal_pending(current)) {
1098                         ret = -ERESTARTSYS;
1099                         break;
1100                 }
1101                 if (no_wait) {
1102                         ret = -EAGAIN;
1103                         break;
1104                 }
1105                 spin_unlock(&ctx->fd_wqh.lock);
1106                 schedule();
1107                 spin_lock(&ctx->fd_wqh.lock);
1108         }
1109         __remove_wait_queue(&ctx->fd_wqh, &wait);
1110         __set_current_state(TASK_RUNNING);
1111         spin_unlock(&ctx->fd_wqh.lock);
1112
1113         if (!ret && msg->event == UFFD_EVENT_FORK) {
1114                 ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1115                 spin_lock(&ctx->event_wqh.lock);
1116                 if (!list_empty(&fork_event)) {
1117                         /*
1118                          * The fork thread didn't abort, so we can
1119                          * drop the temporary refcount.
1120                          */
1121                         userfaultfd_ctx_put(fork_nctx);
1122
1123                         uwq = list_first_entry(&fork_event,
1124                                                typeof(*uwq),
1125                                                wq.entry);
1126                         /*
1127                          * If fork_event list wasn't empty and in turn
1128                          * the event wasn't already released by fork
1129                          * (the event is allocated on fork kernel
1130                          * stack), put the event back to its place in
1131                          * the event_wq. fork_event head will be freed
1132                          * as soon as we return so the event cannot
1133                          * stay queued there no matter the current
1134                          * "ret" value.
1135                          */
1136                         list_del(&uwq->wq.entry);
1137                         __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1138
1139                         /*
1140                          * Leave the event in the waitqueue and report
1141                          * error to userland if we failed to resolve
1142                          * the userfault fork.
1143                          */
1144                         if (likely(!ret))
1145                                 userfaultfd_event_complete(ctx, uwq);
1146                 } else {
1147                         /*
1148                          * Here the fork thread aborted and the
1149                          * refcount from the fork thread on fork_nctx
1150                          * has already been released. We still hold
1151                          * the reference we took before releasing the
1152                          * lock above. If resolve_userfault_fork
1153                          * failed we've to drop it because the
1154                          * fork_nctx has to be freed in such case. If
1155                          * it succeeded we'll hold it because the new
1156                          * uffd references it.
1157                          */
1158                         if (ret)
1159                                 userfaultfd_ctx_put(fork_nctx);
1160                 }
1161                 spin_unlock(&ctx->event_wqh.lock);
1162         }
1163
1164         return ret;
1165 }
1166
1167 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1168                                 size_t count, loff_t *ppos)
1169 {
1170         struct userfaultfd_ctx *ctx = file->private_data;
1171         ssize_t _ret, ret = 0;
1172         struct uffd_msg msg;
1173         int no_wait = file->f_flags & O_NONBLOCK;
1174
1175         if (ctx->state == UFFD_STATE_WAIT_API)
1176                 return -EINVAL;
1177
1178         for (;;) {
1179                 if (count < sizeof(msg))
1180                         return ret ? ret : -EINVAL;
1181                 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1182                 if (_ret < 0)
1183                         return ret ? ret : _ret;
1184                 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1185                         return ret ? ret : -EFAULT;
1186                 ret += sizeof(msg);
1187                 buf += sizeof(msg);
1188                 count -= sizeof(msg);
1189                 /*
1190                  * Allow to read more than one fault at time but only
1191                  * block if waiting for the very first one.
1192                  */
1193                 no_wait = O_NONBLOCK;
1194         }
1195 }
1196
1197 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1198                              struct userfaultfd_wake_range *range)
1199 {
1200         spin_lock(&ctx->fault_pending_wqh.lock);
1201         /* wake all in the range and autoremove */
1202         if (waitqueue_active(&ctx->fault_pending_wqh))
1203                 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1204                                      range);
1205         if (waitqueue_active(&ctx->fault_wqh))
1206                 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
1207         spin_unlock(&ctx->fault_pending_wqh.lock);
1208 }
1209
1210 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1211                                            struct userfaultfd_wake_range *range)
1212 {
1213         unsigned seq;
1214         bool need_wakeup;
1215
1216         /*
1217          * To be sure waitqueue_active() is not reordered by the CPU
1218          * before the pagetable update, use an explicit SMP memory
1219          * barrier here. PT lock release or up_read(mmap_sem) still
1220          * have release semantics that can allow the
1221          * waitqueue_active() to be reordered before the pte update.
1222          */
1223         smp_mb();
1224
1225         /*
1226          * Use waitqueue_active because it's very frequent to
1227          * change the address space atomically even if there are no
1228          * userfaults yet. So we take the spinlock only when we're
1229          * sure we've userfaults to wake.
1230          */
1231         do {
1232                 seq = read_seqcount_begin(&ctx->refile_seq);
1233                 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1234                         waitqueue_active(&ctx->fault_wqh);
1235                 cond_resched();
1236         } while (read_seqcount_retry(&ctx->refile_seq, seq));
1237         if (need_wakeup)
1238                 __wake_userfault(ctx, range);
1239 }
1240
1241 static __always_inline int validate_range(struct mm_struct *mm,
1242                                           __u64 start, __u64 len)
1243 {
1244         __u64 task_size = mm->task_size;
1245
1246         if (start & ~PAGE_MASK)
1247                 return -EINVAL;
1248         if (len & ~PAGE_MASK)
1249                 return -EINVAL;
1250         if (!len)
1251                 return -EINVAL;
1252         if (start < mmap_min_addr)
1253                 return -EINVAL;
1254         if (start >= task_size)
1255                 return -EINVAL;
1256         if (len > task_size - start)
1257                 return -EINVAL;
1258         return 0;
1259 }
1260
1261 static inline bool vma_can_userfault(struct vm_area_struct *vma)
1262 {
1263         return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1264                 vma_is_shmem(vma);
1265 }
1266
1267 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1268                                 unsigned long arg)
1269 {
1270         struct mm_struct *mm = ctx->mm;
1271         struct vm_area_struct *vma, *prev, *cur;
1272         int ret;
1273         struct uffdio_register uffdio_register;
1274         struct uffdio_register __user *user_uffdio_register;
1275         unsigned long vm_flags, new_flags;
1276         bool found;
1277         bool basic_ioctls;
1278         unsigned long start, end, vma_end;
1279
1280         user_uffdio_register = (struct uffdio_register __user *) arg;
1281
1282         ret = -EFAULT;
1283         if (copy_from_user(&uffdio_register, user_uffdio_register,
1284                            sizeof(uffdio_register)-sizeof(__u64)))
1285                 goto out;
1286
1287         ret = -EINVAL;
1288         if (!uffdio_register.mode)
1289                 goto out;
1290         if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1291                                      UFFDIO_REGISTER_MODE_WP))
1292                 goto out;
1293         vm_flags = 0;
1294         if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1295                 vm_flags |= VM_UFFD_MISSING;
1296         if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1297                 vm_flags |= VM_UFFD_WP;
1298                 /*
1299                  * FIXME: remove the below error constraint by
1300                  * implementing the wprotect tracking mode.
1301                  */
1302                 ret = -EINVAL;
1303                 goto out;
1304         }
1305
1306         ret = validate_range(mm, uffdio_register.range.start,
1307                              uffdio_register.range.len);
1308         if (ret)
1309                 goto out;
1310
1311         start = uffdio_register.range.start;
1312         end = start + uffdio_register.range.len;
1313
1314         ret = -ENOMEM;
1315         if (!mmget_not_zero(mm))
1316                 goto out;
1317
1318         down_write(&mm->mmap_sem);
1319         vma = find_vma_prev(mm, start, &prev);
1320         if (!vma)
1321                 goto out_unlock;
1322
1323         /* check that there's at least one vma in the range */
1324         ret = -EINVAL;
1325         if (vma->vm_start >= end)
1326                 goto out_unlock;
1327
1328         /*
1329          * If the first vma contains huge pages, make sure start address
1330          * is aligned to huge page size.
1331          */
1332         if (is_vm_hugetlb_page(vma)) {
1333                 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1334
1335                 if (start & (vma_hpagesize - 1))
1336                         goto out_unlock;
1337         }
1338
1339         /*
1340          * Search for not compatible vmas.
1341          */
1342         found = false;
1343         basic_ioctls = false;
1344         for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1345                 cond_resched();
1346
1347                 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1348                        !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1349
1350                 /* check not compatible vmas */
1351                 ret = -EINVAL;
1352                 if (!vma_can_userfault(cur))
1353                         goto out_unlock;
1354                 /*
1355                  * If this vma contains ending address, and huge pages
1356                  * check alignment.
1357                  */
1358                 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1359                     end > cur->vm_start) {
1360                         unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1361
1362                         ret = -EINVAL;
1363
1364                         if (end & (vma_hpagesize - 1))
1365                                 goto out_unlock;
1366                 }
1367
1368                 /*
1369                  * Check that this vma isn't already owned by a
1370                  * different userfaultfd. We can't allow more than one
1371                  * userfaultfd to own a single vma simultaneously or we
1372                  * wouldn't know which one to deliver the userfaults to.
1373                  */
1374                 ret = -EBUSY;
1375                 if (cur->vm_userfaultfd_ctx.ctx &&
1376                     cur->vm_userfaultfd_ctx.ctx != ctx)
1377                         goto out_unlock;
1378
1379                 /*
1380                  * Note vmas containing huge pages
1381                  */
1382                 if (is_vm_hugetlb_page(cur))
1383                         basic_ioctls = true;
1384
1385                 found = true;
1386         }
1387         BUG_ON(!found);
1388
1389         if (vma->vm_start < start)
1390                 prev = vma;
1391
1392         ret = 0;
1393         do {
1394                 cond_resched();
1395
1396                 BUG_ON(!vma_can_userfault(vma));
1397                 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1398                        vma->vm_userfaultfd_ctx.ctx != ctx);
1399
1400                 /*
1401                  * Nothing to do: this vma is already registered into this
1402                  * userfaultfd and with the right tracking mode too.
1403                  */
1404                 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1405                     (vma->vm_flags & vm_flags) == vm_flags)
1406                         goto skip;
1407
1408                 if (vma->vm_start > start)
1409                         start = vma->vm_start;
1410                 vma_end = min(end, vma->vm_end);
1411
1412                 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1413                 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1414                                  vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1415                                  vma_policy(vma),
1416                                  ((struct vm_userfaultfd_ctx){ ctx }));
1417                 if (prev) {
1418                         vma = prev;
1419                         goto next;
1420                 }
1421                 if (vma->vm_start < start) {
1422                         ret = split_vma(mm, vma, start, 1);
1423                         if (ret)
1424                                 break;
1425                 }
1426                 if (vma->vm_end > end) {
1427                         ret = split_vma(mm, vma, end, 0);
1428                         if (ret)
1429                                 break;
1430                 }
1431         next:
1432                 /*
1433                  * In the vma_merge() successful mprotect-like case 8:
1434                  * the next vma was merged into the current one and
1435                  * the current one has not been updated yet.
1436                  */
1437                 vma->vm_flags = new_flags;
1438                 vma->vm_userfaultfd_ctx.ctx = ctx;
1439
1440         skip:
1441                 prev = vma;
1442                 start = vma->vm_end;
1443                 vma = vma->vm_next;
1444         } while (vma && vma->vm_start < end);
1445 out_unlock:
1446         up_write(&mm->mmap_sem);
1447         mmput(mm);
1448         if (!ret) {
1449                 /*
1450                  * Now that we scanned all vmas we can already tell
1451                  * userland which ioctls methods are guaranteed to
1452                  * succeed on this range.
1453                  */
1454                 if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1455                              UFFD_API_RANGE_IOCTLS,
1456                              &user_uffdio_register->ioctls))
1457                         ret = -EFAULT;
1458         }
1459 out:
1460         return ret;
1461 }
1462
1463 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1464                                   unsigned long arg)
1465 {
1466         struct mm_struct *mm = ctx->mm;
1467         struct vm_area_struct *vma, *prev, *cur;
1468         int ret;
1469         struct uffdio_range uffdio_unregister;
1470         unsigned long new_flags;
1471         bool found;
1472         unsigned long start, end, vma_end;
1473         const void __user *buf = (void __user *)arg;
1474
1475         ret = -EFAULT;
1476         if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1477                 goto out;
1478
1479         ret = validate_range(mm, uffdio_unregister.start,
1480                              uffdio_unregister.len);
1481         if (ret)
1482                 goto out;
1483
1484         start = uffdio_unregister.start;
1485         end = start + uffdio_unregister.len;
1486
1487         ret = -ENOMEM;
1488         if (!mmget_not_zero(mm))
1489                 goto out;
1490
1491         down_write(&mm->mmap_sem);
1492         vma = find_vma_prev(mm, start, &prev);
1493         if (!vma)
1494                 goto out_unlock;
1495
1496         /* check that there's at least one vma in the range */
1497         ret = -EINVAL;
1498         if (vma->vm_start >= end)
1499                 goto out_unlock;
1500
1501         /*
1502          * If the first vma contains huge pages, make sure start address
1503          * is aligned to huge page size.
1504          */
1505         if (is_vm_hugetlb_page(vma)) {
1506                 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1507
1508                 if (start & (vma_hpagesize - 1))
1509                         goto out_unlock;
1510         }
1511
1512         /*
1513          * Search for not compatible vmas.
1514          */
1515         found = false;
1516         ret = -EINVAL;
1517         for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1518                 cond_resched();
1519
1520                 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1521                        !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1522
1523                 /*
1524                  * Check not compatible vmas, not strictly required
1525                  * here as not compatible vmas cannot have an
1526                  * userfaultfd_ctx registered on them, but this
1527                  * provides for more strict behavior to notice
1528                  * unregistration errors.
1529                  */
1530                 if (!vma_can_userfault(cur))
1531                         goto out_unlock;
1532
1533                 found = true;
1534         }
1535         BUG_ON(!found);
1536
1537         if (vma->vm_start < start)
1538                 prev = vma;
1539
1540         ret = 0;
1541         do {
1542                 cond_resched();
1543
1544                 BUG_ON(!vma_can_userfault(vma));
1545
1546                 /*
1547                  * Nothing to do: this vma is already registered into this
1548                  * userfaultfd and with the right tracking mode too.
1549                  */
1550                 if (!vma->vm_userfaultfd_ctx.ctx)
1551                         goto skip;
1552
1553                 if (vma->vm_start > start)
1554                         start = vma->vm_start;
1555                 vma_end = min(end, vma->vm_end);
1556
1557                 if (userfaultfd_missing(vma)) {
1558                         /*
1559                          * Wake any concurrent pending userfault while
1560                          * we unregister, so they will not hang
1561                          * permanently and it avoids userland to call
1562                          * UFFDIO_WAKE explicitly.
1563                          */
1564                         struct userfaultfd_wake_range range;
1565                         range.start = start;
1566                         range.len = vma_end - start;
1567                         wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1568                 }
1569
1570                 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1571                 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1572                                  vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1573                                  vma_policy(vma),
1574                                  NULL_VM_UFFD_CTX);
1575                 if (prev) {
1576                         vma = prev;
1577                         goto next;
1578                 }
1579                 if (vma->vm_start < start) {
1580                         ret = split_vma(mm, vma, start, 1);
1581                         if (ret)
1582                                 break;
1583                 }
1584                 if (vma->vm_end > end) {
1585                         ret = split_vma(mm, vma, end, 0);
1586                         if (ret)
1587                                 break;
1588                 }
1589         next:
1590                 /*
1591                  * In the vma_merge() successful mprotect-like case 8:
1592                  * the next vma was merged into the current one and
1593                  * the current one has not been updated yet.
1594                  */
1595                 vma->vm_flags = new_flags;
1596                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1597
1598         skip:
1599                 prev = vma;
1600                 start = vma->vm_end;
1601                 vma = vma->vm_next;
1602         } while (vma && vma->vm_start < end);
1603 out_unlock:
1604         up_write(&mm->mmap_sem);
1605         mmput(mm);
1606 out:
1607         return ret;
1608 }
1609
1610 /*
1611  * userfaultfd_wake may be used in combination with the
1612  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1613  */
1614 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1615                             unsigned long arg)
1616 {
1617         int ret;
1618         struct uffdio_range uffdio_wake;
1619         struct userfaultfd_wake_range range;
1620         const void __user *buf = (void __user *)arg;
1621
1622         ret = -EFAULT;
1623         if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1624                 goto out;
1625
1626         ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1627         if (ret)
1628                 goto out;
1629
1630         range.start = uffdio_wake.start;
1631         range.len = uffdio_wake.len;
1632
1633         /*
1634          * len == 0 means wake all and we don't want to wake all here,
1635          * so check it again to be sure.
1636          */
1637         VM_BUG_ON(!range.len);
1638
1639         wake_userfault(ctx, &range);
1640         ret = 0;
1641
1642 out:
1643         return ret;
1644 }
1645
1646 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1647                             unsigned long arg)
1648 {
1649         __s64 ret;
1650         struct uffdio_copy uffdio_copy;
1651         struct uffdio_copy __user *user_uffdio_copy;
1652         struct userfaultfd_wake_range range;
1653
1654         user_uffdio_copy = (struct uffdio_copy __user *) arg;
1655
1656         ret = -EFAULT;
1657         if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1658                            /* don't copy "copy" last field */
1659                            sizeof(uffdio_copy)-sizeof(__s64)))
1660                 goto out;
1661
1662         ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1663         if (ret)
1664                 goto out;
1665         /*
1666          * double check for wraparound just in case. copy_from_user()
1667          * will later check uffdio_copy.src + uffdio_copy.len to fit
1668          * in the userland range.
1669          */
1670         ret = -EINVAL;
1671         if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1672                 goto out;
1673         if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1674                 goto out;
1675         if (mmget_not_zero(ctx->mm)) {
1676                 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1677                                    uffdio_copy.len);
1678                 mmput(ctx->mm);
1679         } else {
1680                 return -ESRCH;
1681         }
1682         if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1683                 return -EFAULT;
1684         if (ret < 0)
1685                 goto out;
1686         BUG_ON(!ret);
1687         /* len == 0 would wake all */
1688         range.len = ret;
1689         if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1690                 range.start = uffdio_copy.dst;
1691                 wake_userfault(ctx, &range);
1692         }
1693         ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1694 out:
1695         return ret;
1696 }
1697
1698 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1699                                 unsigned long arg)
1700 {
1701         __s64 ret;
1702         struct uffdio_zeropage uffdio_zeropage;
1703         struct uffdio_zeropage __user *user_uffdio_zeropage;
1704         struct userfaultfd_wake_range range;
1705
1706         user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1707
1708         ret = -EFAULT;
1709         if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1710                            /* don't copy "zeropage" last field */
1711                            sizeof(uffdio_zeropage)-sizeof(__s64)))
1712                 goto out;
1713
1714         ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1715                              uffdio_zeropage.range.len);
1716         if (ret)
1717                 goto out;
1718         ret = -EINVAL;
1719         if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1720                 goto out;
1721
1722         if (mmget_not_zero(ctx->mm)) {
1723                 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1724                                      uffdio_zeropage.range.len);
1725                 mmput(ctx->mm);
1726         } else {
1727                 return -ESRCH;
1728         }
1729         if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1730                 return -EFAULT;
1731         if (ret < 0)
1732                 goto out;
1733         /* len == 0 would wake all */
1734         BUG_ON(!ret);
1735         range.len = ret;
1736         if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1737                 range.start = uffdio_zeropage.range.start;
1738                 wake_userfault(ctx, &range);
1739         }
1740         ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1741 out:
1742         return ret;
1743 }
1744
1745 static inline unsigned int uffd_ctx_features(__u64 user_features)
1746 {
1747         /*
1748          * For the current set of features the bits just coincide
1749          */
1750         return (unsigned int)user_features;
1751 }
1752
1753 /*
1754  * userland asks for a certain API version and we return which bits
1755  * and ioctl commands are implemented in this kernel for such API
1756  * version or -EINVAL if unknown.
1757  */
1758 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1759                            unsigned long arg)
1760 {
1761         struct uffdio_api uffdio_api;
1762         void __user *buf = (void __user *)arg;
1763         int ret;
1764         __u64 features;
1765
1766         ret = -EINVAL;
1767         if (ctx->state != UFFD_STATE_WAIT_API)
1768                 goto out;
1769         ret = -EFAULT;
1770         if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1771                 goto out;
1772         features = uffdio_api.features;
1773         if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) {
1774                 memset(&uffdio_api, 0, sizeof(uffdio_api));
1775                 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1776                         goto out;
1777                 ret = -EINVAL;
1778                 goto out;
1779         }
1780         /* report all available features and ioctls to userland */
1781         uffdio_api.features = UFFD_API_FEATURES;
1782         uffdio_api.ioctls = UFFD_API_IOCTLS;
1783         ret = -EFAULT;
1784         if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1785                 goto out;
1786         ctx->state = UFFD_STATE_RUNNING;
1787         /* only enable the requested features for this uffd context */
1788         ctx->features = uffd_ctx_features(features);
1789         ret = 0;
1790 out:
1791         return ret;
1792 }
1793
1794 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1795                               unsigned long arg)
1796 {
1797         int ret = -EINVAL;
1798         struct userfaultfd_ctx *ctx = file->private_data;
1799
1800         if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1801                 return -EINVAL;
1802
1803         switch(cmd) {
1804         case UFFDIO_API:
1805                 ret = userfaultfd_api(ctx, arg);
1806                 break;
1807         case UFFDIO_REGISTER:
1808                 ret = userfaultfd_register(ctx, arg);
1809                 break;
1810         case UFFDIO_UNREGISTER:
1811                 ret = userfaultfd_unregister(ctx, arg);
1812                 break;
1813         case UFFDIO_WAKE:
1814                 ret = userfaultfd_wake(ctx, arg);
1815                 break;
1816         case UFFDIO_COPY:
1817                 ret = userfaultfd_copy(ctx, arg);
1818                 break;
1819         case UFFDIO_ZEROPAGE:
1820                 ret = userfaultfd_zeropage(ctx, arg);
1821                 break;
1822         }
1823         return ret;
1824 }
1825
1826 #ifdef CONFIG_PROC_FS
1827 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1828 {
1829         struct userfaultfd_ctx *ctx = f->private_data;
1830         wait_queue_entry_t *wq;
1831         struct userfaultfd_wait_queue *uwq;
1832         unsigned long pending = 0, total = 0;
1833
1834         spin_lock(&ctx->fault_pending_wqh.lock);
1835         list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
1836                 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1837                 pending++;
1838                 total++;
1839         }
1840         list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
1841                 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1842                 total++;
1843         }
1844         spin_unlock(&ctx->fault_pending_wqh.lock);
1845
1846         /*
1847          * If more protocols will be added, there will be all shown
1848          * separated by a space. Like this:
1849          *      protocols: aa:... bb:...
1850          */
1851         seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1852                    pending, total, UFFD_API, ctx->features,
1853                    UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1854 }
1855 #endif
1856
1857 static const struct file_operations userfaultfd_fops = {
1858 #ifdef CONFIG_PROC_FS
1859         .show_fdinfo    = userfaultfd_show_fdinfo,
1860 #endif
1861         .release        = userfaultfd_release,
1862         .poll           = userfaultfd_poll,
1863         .read           = userfaultfd_read,
1864         .unlocked_ioctl = userfaultfd_ioctl,
1865         .compat_ioctl   = userfaultfd_ioctl,
1866         .llseek         = noop_llseek,
1867 };
1868
1869 static void init_once_userfaultfd_ctx(void *mem)
1870 {
1871         struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1872
1873         init_waitqueue_head(&ctx->fault_pending_wqh);
1874         init_waitqueue_head(&ctx->fault_wqh);
1875         init_waitqueue_head(&ctx->event_wqh);
1876         init_waitqueue_head(&ctx->fd_wqh);
1877         seqcount_init(&ctx->refile_seq);
1878 }
1879
1880 SYSCALL_DEFINE1(userfaultfd, int, flags)
1881 {
1882         struct userfaultfd_ctx *ctx;
1883         int fd;
1884
1885         BUG_ON(!current->mm);
1886
1887         /* Check the UFFD_* constants for consistency.  */
1888         BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1889         BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1890
1891         if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1892                 return -EINVAL;
1893
1894         ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1895         if (!ctx)
1896                 return -ENOMEM;
1897
1898         atomic_set(&ctx->refcount, 1);
1899         ctx->flags = flags;
1900         ctx->features = 0;
1901         ctx->state = UFFD_STATE_WAIT_API;
1902         ctx->released = false;
1903         ctx->mm = current->mm;
1904         /* prevent the mm struct to be freed */
1905         mmgrab(ctx->mm);
1906
1907         fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx,
1908                               O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1909         if (fd < 0) {
1910                 mmdrop(ctx->mm);
1911                 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1912         }
1913         return fd;
1914 }
1915
1916 static int __init userfaultfd_init(void)
1917 {
1918         userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1919                                                 sizeof(struct userfaultfd_ctx),
1920                                                 0,
1921                                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1922                                                 init_once_userfaultfd_ctx);
1923         return 0;
1924 }
1925 __initcall(userfaultfd_init);