Merge tag 'ceph-for-4.18-rc1' of git://github.com/ceph/ceph-client
[sfrench/cifs-2.6.git] / fs / udf / super.c
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60
61 #include "udf_sb.h"
62 #include "udf_i.h"
63
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66
67 enum {
68         VDS_POS_PRIMARY_VOL_DESC,
69         VDS_POS_UNALLOC_SPACE_DESC,
70         VDS_POS_LOGICAL_VOL_DESC,
71         VDS_POS_IMP_USE_VOL_DESC,
72         VDS_POS_LENGTH
73 };
74
75 #define VSD_FIRST_SECTOR_OFFSET         32768
76 #define VSD_MAX_SECTOR_OFFSET           0x800000
77
78 /*
79  * Maximum number of Terminating Descriptor / Logical Volume Integrity
80  * Descriptor redirections. The chosen numbers are arbitrary - just that we
81  * hopefully don't limit any real use of rewritten inode on write-once media
82  * but avoid looping for too long on corrupted media.
83  */
84 #define UDF_MAX_TD_NESTING 64
85 #define UDF_MAX_LVID_NESTING 1000
86
87 enum { UDF_MAX_LINKS = 0xffff };
88
89 /* These are the "meat" - everything else is stuffing */
90 static int udf_fill_super(struct super_block *, void *, int);
91 static void udf_put_super(struct super_block *);
92 static int udf_sync_fs(struct super_block *, int);
93 static int udf_remount_fs(struct super_block *, int *, char *);
94 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
95 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
96                             struct kernel_lb_addr *);
97 static void udf_load_fileset(struct super_block *, struct buffer_head *,
98                              struct kernel_lb_addr *);
99 static void udf_open_lvid(struct super_block *);
100 static void udf_close_lvid(struct super_block *);
101 static unsigned int udf_count_free(struct super_block *);
102 static int udf_statfs(struct dentry *, struct kstatfs *);
103 static int udf_show_options(struct seq_file *, struct dentry *);
104
105 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
106 {
107         struct logicalVolIntegrityDesc *lvid;
108         unsigned int partnum;
109         unsigned int offset;
110
111         if (!UDF_SB(sb)->s_lvid_bh)
112                 return NULL;
113         lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
114         partnum = le32_to_cpu(lvid->numOfPartitions);
115         if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
116              offsetof(struct logicalVolIntegrityDesc, impUse)) /
117              (2 * sizeof(uint32_t)) < partnum) {
118                 udf_err(sb, "Logical volume integrity descriptor corrupted "
119                         "(numOfPartitions = %u)!\n", partnum);
120                 return NULL;
121         }
122         /* The offset is to skip freeSpaceTable and sizeTable arrays */
123         offset = partnum * 2 * sizeof(uint32_t);
124         return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
125 }
126
127 /* UDF filesystem type */
128 static struct dentry *udf_mount(struct file_system_type *fs_type,
129                       int flags, const char *dev_name, void *data)
130 {
131         return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
132 }
133
134 static struct file_system_type udf_fstype = {
135         .owner          = THIS_MODULE,
136         .name           = "udf",
137         .mount          = udf_mount,
138         .kill_sb        = kill_block_super,
139         .fs_flags       = FS_REQUIRES_DEV,
140 };
141 MODULE_ALIAS_FS("udf");
142
143 static struct kmem_cache *udf_inode_cachep;
144
145 static struct inode *udf_alloc_inode(struct super_block *sb)
146 {
147         struct udf_inode_info *ei;
148         ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
149         if (!ei)
150                 return NULL;
151
152         ei->i_unique = 0;
153         ei->i_lenExtents = 0;
154         ei->i_next_alloc_block = 0;
155         ei->i_next_alloc_goal = 0;
156         ei->i_strat4096 = 0;
157         init_rwsem(&ei->i_data_sem);
158         ei->cached_extent.lstart = -1;
159         spin_lock_init(&ei->i_extent_cache_lock);
160
161         return &ei->vfs_inode;
162 }
163
164 static void udf_i_callback(struct rcu_head *head)
165 {
166         struct inode *inode = container_of(head, struct inode, i_rcu);
167         kmem_cache_free(udf_inode_cachep, UDF_I(inode));
168 }
169
170 static void udf_destroy_inode(struct inode *inode)
171 {
172         call_rcu(&inode->i_rcu, udf_i_callback);
173 }
174
175 static void init_once(void *foo)
176 {
177         struct udf_inode_info *ei = (struct udf_inode_info *)foo;
178
179         ei->i_ext.i_data = NULL;
180         inode_init_once(&ei->vfs_inode);
181 }
182
183 static int __init init_inodecache(void)
184 {
185         udf_inode_cachep = kmem_cache_create("udf_inode_cache",
186                                              sizeof(struct udf_inode_info),
187                                              0, (SLAB_RECLAIM_ACCOUNT |
188                                                  SLAB_MEM_SPREAD |
189                                                  SLAB_ACCOUNT),
190                                              init_once);
191         if (!udf_inode_cachep)
192                 return -ENOMEM;
193         return 0;
194 }
195
196 static void destroy_inodecache(void)
197 {
198         /*
199          * Make sure all delayed rcu free inodes are flushed before we
200          * destroy cache.
201          */
202         rcu_barrier();
203         kmem_cache_destroy(udf_inode_cachep);
204 }
205
206 /* Superblock operations */
207 static const struct super_operations udf_sb_ops = {
208         .alloc_inode    = udf_alloc_inode,
209         .destroy_inode  = udf_destroy_inode,
210         .write_inode    = udf_write_inode,
211         .evict_inode    = udf_evict_inode,
212         .put_super      = udf_put_super,
213         .sync_fs        = udf_sync_fs,
214         .statfs         = udf_statfs,
215         .remount_fs     = udf_remount_fs,
216         .show_options   = udf_show_options,
217 };
218
219 struct udf_options {
220         unsigned char novrs;
221         unsigned int blocksize;
222         unsigned int session;
223         unsigned int lastblock;
224         unsigned int anchor;
225         unsigned int flags;
226         umode_t umask;
227         kgid_t gid;
228         kuid_t uid;
229         umode_t fmode;
230         umode_t dmode;
231         struct nls_table *nls_map;
232 };
233
234 static int __init init_udf_fs(void)
235 {
236         int err;
237
238         err = init_inodecache();
239         if (err)
240                 goto out1;
241         err = register_filesystem(&udf_fstype);
242         if (err)
243                 goto out;
244
245         return 0;
246
247 out:
248         destroy_inodecache();
249
250 out1:
251         return err;
252 }
253
254 static void __exit exit_udf_fs(void)
255 {
256         unregister_filesystem(&udf_fstype);
257         destroy_inodecache();
258 }
259
260 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
261 {
262         struct udf_sb_info *sbi = UDF_SB(sb);
263
264         sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
265         if (!sbi->s_partmaps) {
266                 sbi->s_partitions = 0;
267                 return -ENOMEM;
268         }
269
270         sbi->s_partitions = count;
271         return 0;
272 }
273
274 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
275 {
276         int i;
277         int nr_groups = bitmap->s_nr_groups;
278
279         for (i = 0; i < nr_groups; i++)
280                 if (bitmap->s_block_bitmap[i])
281                         brelse(bitmap->s_block_bitmap[i]);
282
283         kvfree(bitmap);
284 }
285
286 static void udf_free_partition(struct udf_part_map *map)
287 {
288         int i;
289         struct udf_meta_data *mdata;
290
291         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
292                 iput(map->s_uspace.s_table);
293         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
294                 iput(map->s_fspace.s_table);
295         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
296                 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
297         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
298                 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
299         if (map->s_partition_type == UDF_SPARABLE_MAP15)
300                 for (i = 0; i < 4; i++)
301                         brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
302         else if (map->s_partition_type == UDF_METADATA_MAP25) {
303                 mdata = &map->s_type_specific.s_metadata;
304                 iput(mdata->s_metadata_fe);
305                 mdata->s_metadata_fe = NULL;
306
307                 iput(mdata->s_mirror_fe);
308                 mdata->s_mirror_fe = NULL;
309
310                 iput(mdata->s_bitmap_fe);
311                 mdata->s_bitmap_fe = NULL;
312         }
313 }
314
315 static void udf_sb_free_partitions(struct super_block *sb)
316 {
317         struct udf_sb_info *sbi = UDF_SB(sb);
318         int i;
319
320         if (!sbi->s_partmaps)
321                 return;
322         for (i = 0; i < sbi->s_partitions; i++)
323                 udf_free_partition(&sbi->s_partmaps[i]);
324         kfree(sbi->s_partmaps);
325         sbi->s_partmaps = NULL;
326 }
327
328 static int udf_show_options(struct seq_file *seq, struct dentry *root)
329 {
330         struct super_block *sb = root->d_sb;
331         struct udf_sb_info *sbi = UDF_SB(sb);
332
333         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
334                 seq_puts(seq, ",nostrict");
335         if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
336                 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
337         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
338                 seq_puts(seq, ",unhide");
339         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
340                 seq_puts(seq, ",undelete");
341         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
342                 seq_puts(seq, ",noadinicb");
343         if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
344                 seq_puts(seq, ",shortad");
345         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
346                 seq_puts(seq, ",uid=forget");
347         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
348                 seq_puts(seq, ",gid=forget");
349         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
350                 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
351         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
352                 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
353         if (sbi->s_umask != 0)
354                 seq_printf(seq, ",umask=%ho", sbi->s_umask);
355         if (sbi->s_fmode != UDF_INVALID_MODE)
356                 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
357         if (sbi->s_dmode != UDF_INVALID_MODE)
358                 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
359         if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
360                 seq_printf(seq, ",session=%d", sbi->s_session);
361         if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
362                 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
363         if (sbi->s_anchor != 0)
364                 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
365         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
366                 seq_puts(seq, ",utf8");
367         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
368                 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
369
370         return 0;
371 }
372
373 /*
374  * udf_parse_options
375  *
376  * PURPOSE
377  *      Parse mount options.
378  *
379  * DESCRIPTION
380  *      The following mount options are supported:
381  *
382  *      gid=            Set the default group.
383  *      umask=          Set the default umask.
384  *      mode=           Set the default file permissions.
385  *      dmode=          Set the default directory permissions.
386  *      uid=            Set the default user.
387  *      bs=             Set the block size.
388  *      unhide          Show otherwise hidden files.
389  *      undelete        Show deleted files in lists.
390  *      adinicb         Embed data in the inode (default)
391  *      noadinicb       Don't embed data in the inode
392  *      shortad         Use short ad's
393  *      longad          Use long ad's (default)
394  *      nostrict        Unset strict conformance
395  *      iocharset=      Set the NLS character set
396  *
397  *      The remaining are for debugging and disaster recovery:
398  *
399  *      novrs           Skip volume sequence recognition
400  *
401  *      The following expect a offset from 0.
402  *
403  *      session=        Set the CDROM session (default= last session)
404  *      anchor=         Override standard anchor location. (default= 256)
405  *      volume=         Override the VolumeDesc location. (unused)
406  *      partition=      Override the PartitionDesc location. (unused)
407  *      lastblock=      Set the last block of the filesystem/
408  *
409  *      The following expect a offset from the partition root.
410  *
411  *      fileset=        Override the fileset block location. (unused)
412  *      rootdir=        Override the root directory location. (unused)
413  *              WARNING: overriding the rootdir to a non-directory may
414  *              yield highly unpredictable results.
415  *
416  * PRE-CONDITIONS
417  *      options         Pointer to mount options string.
418  *      uopts           Pointer to mount options variable.
419  *
420  * POST-CONDITIONS
421  *      <return>        1       Mount options parsed okay.
422  *      <return>        0       Error parsing mount options.
423  *
424  * HISTORY
425  *      July 1, 1997 - Andrew E. Mileski
426  *      Written, tested, and released.
427  */
428
429 enum {
430         Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
431         Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
432         Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
433         Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
434         Opt_rootdir, Opt_utf8, Opt_iocharset,
435         Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
436         Opt_fmode, Opt_dmode
437 };
438
439 static const match_table_t tokens = {
440         {Opt_novrs,     "novrs"},
441         {Opt_nostrict,  "nostrict"},
442         {Opt_bs,        "bs=%u"},
443         {Opt_unhide,    "unhide"},
444         {Opt_undelete,  "undelete"},
445         {Opt_noadinicb, "noadinicb"},
446         {Opt_adinicb,   "adinicb"},
447         {Opt_shortad,   "shortad"},
448         {Opt_longad,    "longad"},
449         {Opt_uforget,   "uid=forget"},
450         {Opt_uignore,   "uid=ignore"},
451         {Opt_gforget,   "gid=forget"},
452         {Opt_gignore,   "gid=ignore"},
453         {Opt_gid,       "gid=%u"},
454         {Opt_uid,       "uid=%u"},
455         {Opt_umask,     "umask=%o"},
456         {Opt_session,   "session=%u"},
457         {Opt_lastblock, "lastblock=%u"},
458         {Opt_anchor,    "anchor=%u"},
459         {Opt_volume,    "volume=%u"},
460         {Opt_partition, "partition=%u"},
461         {Opt_fileset,   "fileset=%u"},
462         {Opt_rootdir,   "rootdir=%u"},
463         {Opt_utf8,      "utf8"},
464         {Opt_iocharset, "iocharset=%s"},
465         {Opt_fmode,     "mode=%o"},
466         {Opt_dmode,     "dmode=%o"},
467         {Opt_err,       NULL}
468 };
469
470 static int udf_parse_options(char *options, struct udf_options *uopt,
471                              bool remount)
472 {
473         char *p;
474         int option;
475
476         uopt->novrs = 0;
477         uopt->session = 0xFFFFFFFF;
478         uopt->lastblock = 0;
479         uopt->anchor = 0;
480
481         if (!options)
482                 return 1;
483
484         while ((p = strsep(&options, ",")) != NULL) {
485                 substring_t args[MAX_OPT_ARGS];
486                 int token;
487                 unsigned n;
488                 if (!*p)
489                         continue;
490
491                 token = match_token(p, tokens, args);
492                 switch (token) {
493                 case Opt_novrs:
494                         uopt->novrs = 1;
495                         break;
496                 case Opt_bs:
497                         if (match_int(&args[0], &option))
498                                 return 0;
499                         n = option;
500                         if (n != 512 && n != 1024 && n != 2048 && n != 4096)
501                                 return 0;
502                         uopt->blocksize = n;
503                         uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
504                         break;
505                 case Opt_unhide:
506                         uopt->flags |= (1 << UDF_FLAG_UNHIDE);
507                         break;
508                 case Opt_undelete:
509                         uopt->flags |= (1 << UDF_FLAG_UNDELETE);
510                         break;
511                 case Opt_noadinicb:
512                         uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
513                         break;
514                 case Opt_adinicb:
515                         uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
516                         break;
517                 case Opt_shortad:
518                         uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
519                         break;
520                 case Opt_longad:
521                         uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
522                         break;
523                 case Opt_gid:
524                         if (match_int(args, &option))
525                                 return 0;
526                         uopt->gid = make_kgid(current_user_ns(), option);
527                         if (!gid_valid(uopt->gid))
528                                 return 0;
529                         uopt->flags |= (1 << UDF_FLAG_GID_SET);
530                         break;
531                 case Opt_uid:
532                         if (match_int(args, &option))
533                                 return 0;
534                         uopt->uid = make_kuid(current_user_ns(), option);
535                         if (!uid_valid(uopt->uid))
536                                 return 0;
537                         uopt->flags |= (1 << UDF_FLAG_UID_SET);
538                         break;
539                 case Opt_umask:
540                         if (match_octal(args, &option))
541                                 return 0;
542                         uopt->umask = option;
543                         break;
544                 case Opt_nostrict:
545                         uopt->flags &= ~(1 << UDF_FLAG_STRICT);
546                         break;
547                 case Opt_session:
548                         if (match_int(args, &option))
549                                 return 0;
550                         uopt->session = option;
551                         if (!remount)
552                                 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
553                         break;
554                 case Opt_lastblock:
555                         if (match_int(args, &option))
556                                 return 0;
557                         uopt->lastblock = option;
558                         if (!remount)
559                                 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
560                         break;
561                 case Opt_anchor:
562                         if (match_int(args, &option))
563                                 return 0;
564                         uopt->anchor = option;
565                         break;
566                 case Opt_volume:
567                 case Opt_partition:
568                 case Opt_fileset:
569                 case Opt_rootdir:
570                         /* Ignored (never implemented properly) */
571                         break;
572                 case Opt_utf8:
573                         uopt->flags |= (1 << UDF_FLAG_UTF8);
574                         break;
575                 case Opt_iocharset:
576                         if (!remount) {
577                                 if (uopt->nls_map)
578                                         unload_nls(uopt->nls_map);
579                                 uopt->nls_map = load_nls(args[0].from);
580                                 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
581                         }
582                         break;
583                 case Opt_uforget:
584                         uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
585                         break;
586                 case Opt_uignore:
587                 case Opt_gignore:
588                         /* These options are superseeded by uid=<number> */
589                         break;
590                 case Opt_gforget:
591                         uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
592                         break;
593                 case Opt_fmode:
594                         if (match_octal(args, &option))
595                                 return 0;
596                         uopt->fmode = option & 0777;
597                         break;
598                 case Opt_dmode:
599                         if (match_octal(args, &option))
600                                 return 0;
601                         uopt->dmode = option & 0777;
602                         break;
603                 default:
604                         pr_err("bad mount option \"%s\" or missing value\n", p);
605                         return 0;
606                 }
607         }
608         return 1;
609 }
610
611 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
612 {
613         struct udf_options uopt;
614         struct udf_sb_info *sbi = UDF_SB(sb);
615         int error = 0;
616         struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
617
618         sync_filesystem(sb);
619         if (lvidiu) {
620                 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
621                 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & SB_RDONLY))
622                         return -EACCES;
623         }
624
625         uopt.flags = sbi->s_flags;
626         uopt.uid   = sbi->s_uid;
627         uopt.gid   = sbi->s_gid;
628         uopt.umask = sbi->s_umask;
629         uopt.fmode = sbi->s_fmode;
630         uopt.dmode = sbi->s_dmode;
631         uopt.nls_map = NULL;
632
633         if (!udf_parse_options(options, &uopt, true))
634                 return -EINVAL;
635
636         write_lock(&sbi->s_cred_lock);
637         sbi->s_flags = uopt.flags;
638         sbi->s_uid   = uopt.uid;
639         sbi->s_gid   = uopt.gid;
640         sbi->s_umask = uopt.umask;
641         sbi->s_fmode = uopt.fmode;
642         sbi->s_dmode = uopt.dmode;
643         write_unlock(&sbi->s_cred_lock);
644
645         if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
646                 goto out_unlock;
647
648         if (*flags & SB_RDONLY)
649                 udf_close_lvid(sb);
650         else
651                 udf_open_lvid(sb);
652
653 out_unlock:
654         return error;
655 }
656
657 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
658 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
659 static loff_t udf_check_vsd(struct super_block *sb)
660 {
661         struct volStructDesc *vsd = NULL;
662         loff_t sector = VSD_FIRST_SECTOR_OFFSET;
663         int sectorsize;
664         struct buffer_head *bh = NULL;
665         int nsr02 = 0;
666         int nsr03 = 0;
667         struct udf_sb_info *sbi;
668
669         sbi = UDF_SB(sb);
670         if (sb->s_blocksize < sizeof(struct volStructDesc))
671                 sectorsize = sizeof(struct volStructDesc);
672         else
673                 sectorsize = sb->s_blocksize;
674
675         sector += (((loff_t)sbi->s_session) << sb->s_blocksize_bits);
676
677         udf_debug("Starting at sector %u (%lu byte sectors)\n",
678                   (unsigned int)(sector >> sb->s_blocksize_bits),
679                   sb->s_blocksize);
680         /* Process the sequence (if applicable). The hard limit on the sector
681          * offset is arbitrary, hopefully large enough so that all valid UDF
682          * filesystems will be recognised. There is no mention of an upper
683          * bound to the size of the volume recognition area in the standard.
684          *  The limit will prevent the code to read all the sectors of a
685          * specially crafted image (like a bluray disc full of CD001 sectors),
686          * potentially causing minutes or even hours of uninterruptible I/O
687          * activity. This actually happened with uninitialised SSD partitions
688          * (all 0xFF) before the check for the limit and all valid IDs were
689          * added */
690         for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
691              sector += sectorsize) {
692                 /* Read a block */
693                 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
694                 if (!bh)
695                         break;
696
697                 /* Look for ISO  descriptors */
698                 vsd = (struct volStructDesc *)(bh->b_data +
699                                               (sector & (sb->s_blocksize - 1)));
700
701                 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
702                                     VSD_STD_ID_LEN)) {
703                         switch (vsd->structType) {
704                         case 0:
705                                 udf_debug("ISO9660 Boot Record found\n");
706                                 break;
707                         case 1:
708                                 udf_debug("ISO9660 Primary Volume Descriptor found\n");
709                                 break;
710                         case 2:
711                                 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
712                                 break;
713                         case 3:
714                                 udf_debug("ISO9660 Volume Partition Descriptor found\n");
715                                 break;
716                         case 255:
717                                 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
718                                 break;
719                         default:
720                                 udf_debug("ISO9660 VRS (%u) found\n",
721                                           vsd->structType);
722                                 break;
723                         }
724                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
725                                     VSD_STD_ID_LEN))
726                         ; /* nothing */
727                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
728                                     VSD_STD_ID_LEN)) {
729                         brelse(bh);
730                         break;
731                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
732                                     VSD_STD_ID_LEN))
733                         nsr02 = sector;
734                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
735                                     VSD_STD_ID_LEN))
736                         nsr03 = sector;
737                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
738                                     VSD_STD_ID_LEN))
739                         ; /* nothing */
740                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
741                                     VSD_STD_ID_LEN))
742                         ; /* nothing */
743                 else {
744                         /* invalid id : end of volume recognition area */
745                         brelse(bh);
746                         break;
747                 }
748                 brelse(bh);
749         }
750
751         if (nsr03)
752                 return nsr03;
753         else if (nsr02)
754                 return nsr02;
755         else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
756                         VSD_FIRST_SECTOR_OFFSET)
757                 return -1;
758         else
759                 return 0;
760 }
761
762 static int udf_find_fileset(struct super_block *sb,
763                             struct kernel_lb_addr *fileset,
764                             struct kernel_lb_addr *root)
765 {
766         struct buffer_head *bh = NULL;
767         long lastblock;
768         uint16_t ident;
769         struct udf_sb_info *sbi;
770
771         if (fileset->logicalBlockNum != 0xFFFFFFFF ||
772             fileset->partitionReferenceNum != 0xFFFF) {
773                 bh = udf_read_ptagged(sb, fileset, 0, &ident);
774
775                 if (!bh) {
776                         return 1;
777                 } else if (ident != TAG_IDENT_FSD) {
778                         brelse(bh);
779                         return 1;
780                 }
781
782         }
783
784         sbi = UDF_SB(sb);
785         if (!bh) {
786                 /* Search backwards through the partitions */
787                 struct kernel_lb_addr newfileset;
788
789 /* --> cvg: FIXME - is it reasonable? */
790                 return 1;
791
792                 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
793                      (newfileset.partitionReferenceNum != 0xFFFF &&
794                       fileset->logicalBlockNum == 0xFFFFFFFF &&
795                       fileset->partitionReferenceNum == 0xFFFF);
796                      newfileset.partitionReferenceNum--) {
797                         lastblock = sbi->s_partmaps
798                                         [newfileset.partitionReferenceNum]
799                                                 .s_partition_len;
800                         newfileset.logicalBlockNum = 0;
801
802                         do {
803                                 bh = udf_read_ptagged(sb, &newfileset, 0,
804                                                       &ident);
805                                 if (!bh) {
806                                         newfileset.logicalBlockNum++;
807                                         continue;
808                                 }
809
810                                 switch (ident) {
811                                 case TAG_IDENT_SBD:
812                                 {
813                                         struct spaceBitmapDesc *sp;
814                                         sp = (struct spaceBitmapDesc *)
815                                                                 bh->b_data;
816                                         newfileset.logicalBlockNum += 1 +
817                                                 ((le32_to_cpu(sp->numOfBytes) +
818                                                   sizeof(struct spaceBitmapDesc)
819                                                   - 1) >> sb->s_blocksize_bits);
820                                         brelse(bh);
821                                         break;
822                                 }
823                                 case TAG_IDENT_FSD:
824                                         *fileset = newfileset;
825                                         break;
826                                 default:
827                                         newfileset.logicalBlockNum++;
828                                         brelse(bh);
829                                         bh = NULL;
830                                         break;
831                                 }
832                         } while (newfileset.logicalBlockNum < lastblock &&
833                                  fileset->logicalBlockNum == 0xFFFFFFFF &&
834                                  fileset->partitionReferenceNum == 0xFFFF);
835                 }
836         }
837
838         if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
839              fileset->partitionReferenceNum != 0xFFFF) && bh) {
840                 udf_debug("Fileset at block=%u, partition=%u\n",
841                           fileset->logicalBlockNum,
842                           fileset->partitionReferenceNum);
843
844                 sbi->s_partition = fileset->partitionReferenceNum;
845                 udf_load_fileset(sb, bh, root);
846                 brelse(bh);
847                 return 0;
848         }
849         return 1;
850 }
851
852 /*
853  * Load primary Volume Descriptor Sequence
854  *
855  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
856  * should be tried.
857  */
858 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
859 {
860         struct primaryVolDesc *pvoldesc;
861         uint8_t *outstr;
862         struct buffer_head *bh;
863         uint16_t ident;
864         int ret = -ENOMEM;
865
866         outstr = kmalloc(128, GFP_NOFS);
867         if (!outstr)
868                 return -ENOMEM;
869
870         bh = udf_read_tagged(sb, block, block, &ident);
871         if (!bh) {
872                 ret = -EAGAIN;
873                 goto out2;
874         }
875
876         if (ident != TAG_IDENT_PVD) {
877                 ret = -EIO;
878                 goto out_bh;
879         }
880
881         pvoldesc = (struct primaryVolDesc *)bh->b_data;
882
883         if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
884                               pvoldesc->recordingDateAndTime)) {
885 #ifdef UDFFS_DEBUG
886                 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
887                 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
888                           le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
889                           ts->minute, le16_to_cpu(ts->typeAndTimezone));
890 #endif
891         }
892
893         ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
894         if (ret < 0)
895                 goto out_bh;
896
897         strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
898         udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
899
900         ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
901         if (ret < 0)
902                 goto out_bh;
903
904         outstr[ret] = 0;
905         udf_debug("volSetIdent[] = '%s'\n", outstr);
906
907         ret = 0;
908 out_bh:
909         brelse(bh);
910 out2:
911         kfree(outstr);
912         return ret;
913 }
914
915 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
916                                         u32 meta_file_loc, u32 partition_ref)
917 {
918         struct kernel_lb_addr addr;
919         struct inode *metadata_fe;
920
921         addr.logicalBlockNum = meta_file_loc;
922         addr.partitionReferenceNum = partition_ref;
923
924         metadata_fe = udf_iget_special(sb, &addr);
925
926         if (IS_ERR(metadata_fe)) {
927                 udf_warn(sb, "metadata inode efe not found\n");
928                 return metadata_fe;
929         }
930         if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
931                 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
932                 iput(metadata_fe);
933                 return ERR_PTR(-EIO);
934         }
935
936         return metadata_fe;
937 }
938
939 static int udf_load_metadata_files(struct super_block *sb, int partition,
940                                    int type1_index)
941 {
942         struct udf_sb_info *sbi = UDF_SB(sb);
943         struct udf_part_map *map;
944         struct udf_meta_data *mdata;
945         struct kernel_lb_addr addr;
946         struct inode *fe;
947
948         map = &sbi->s_partmaps[partition];
949         mdata = &map->s_type_specific.s_metadata;
950         mdata->s_phys_partition_ref = type1_index;
951
952         /* metadata address */
953         udf_debug("Metadata file location: block = %u part = %u\n",
954                   mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
955
956         fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
957                                          mdata->s_phys_partition_ref);
958         if (IS_ERR(fe)) {
959                 /* mirror file entry */
960                 udf_debug("Mirror metadata file location: block = %u part = %u\n",
961                           mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
962
963                 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
964                                                  mdata->s_phys_partition_ref);
965
966                 if (IS_ERR(fe)) {
967                         udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
968                         return PTR_ERR(fe);
969                 }
970                 mdata->s_mirror_fe = fe;
971         } else
972                 mdata->s_metadata_fe = fe;
973
974
975         /*
976          * bitmap file entry
977          * Note:
978          * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
979         */
980         if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
981                 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
982                 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
983
984                 udf_debug("Bitmap file location: block = %u part = %u\n",
985                           addr.logicalBlockNum, addr.partitionReferenceNum);
986
987                 fe = udf_iget_special(sb, &addr);
988                 if (IS_ERR(fe)) {
989                         if (sb_rdonly(sb))
990                                 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
991                         else {
992                                 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
993                                 return PTR_ERR(fe);
994                         }
995                 } else
996                         mdata->s_bitmap_fe = fe;
997         }
998
999         udf_debug("udf_load_metadata_files Ok\n");
1000         return 0;
1001 }
1002
1003 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1004                              struct kernel_lb_addr *root)
1005 {
1006         struct fileSetDesc *fset;
1007
1008         fset = (struct fileSetDesc *)bh->b_data;
1009
1010         *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1011
1012         UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1013
1014         udf_debug("Rootdir at block=%u, partition=%u\n",
1015                   root->logicalBlockNum, root->partitionReferenceNum);
1016 }
1017
1018 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1019 {
1020         struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1021         return DIV_ROUND_UP(map->s_partition_len +
1022                             (sizeof(struct spaceBitmapDesc) << 3),
1023                             sb->s_blocksize * 8);
1024 }
1025
1026 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1027 {
1028         struct udf_bitmap *bitmap;
1029         int nr_groups;
1030         int size;
1031
1032         nr_groups = udf_compute_nr_groups(sb, index);
1033         size = sizeof(struct udf_bitmap) +
1034                 (sizeof(struct buffer_head *) * nr_groups);
1035
1036         if (size <= PAGE_SIZE)
1037                 bitmap = kzalloc(size, GFP_KERNEL);
1038         else
1039                 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1040
1041         if (!bitmap)
1042                 return NULL;
1043
1044         bitmap->s_nr_groups = nr_groups;
1045         return bitmap;
1046 }
1047
1048 static int udf_fill_partdesc_info(struct super_block *sb,
1049                 struct partitionDesc *p, int p_index)
1050 {
1051         struct udf_part_map *map;
1052         struct udf_sb_info *sbi = UDF_SB(sb);
1053         struct partitionHeaderDesc *phd;
1054
1055         map = &sbi->s_partmaps[p_index];
1056
1057         map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1058         map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1059
1060         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1061                 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1062         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1063                 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1064         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1065                 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1066         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1067                 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1068
1069         udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1070                   p_index, map->s_partition_type,
1071                   map->s_partition_root, map->s_partition_len);
1072
1073         if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1074             strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1075                 return 0;
1076
1077         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1078         if (phd->unallocSpaceTable.extLength) {
1079                 struct kernel_lb_addr loc = {
1080                         .logicalBlockNum = le32_to_cpu(
1081                                 phd->unallocSpaceTable.extPosition),
1082                         .partitionReferenceNum = p_index,
1083                 };
1084                 struct inode *inode;
1085
1086                 inode = udf_iget_special(sb, &loc);
1087                 if (IS_ERR(inode)) {
1088                         udf_debug("cannot load unallocSpaceTable (part %d)\n",
1089                                   p_index);
1090                         return PTR_ERR(inode);
1091                 }
1092                 map->s_uspace.s_table = inode;
1093                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1094                 udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1095                           p_index, map->s_uspace.s_table->i_ino);
1096         }
1097
1098         if (phd->unallocSpaceBitmap.extLength) {
1099                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1100                 if (!bitmap)
1101                         return -ENOMEM;
1102                 map->s_uspace.s_bitmap = bitmap;
1103                 bitmap->s_extPosition = le32_to_cpu(
1104                                 phd->unallocSpaceBitmap.extPosition);
1105                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1106                 udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1107                           p_index, bitmap->s_extPosition);
1108         }
1109
1110         if (phd->partitionIntegrityTable.extLength)
1111                 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1112
1113         if (phd->freedSpaceTable.extLength) {
1114                 struct kernel_lb_addr loc = {
1115                         .logicalBlockNum = le32_to_cpu(
1116                                 phd->freedSpaceTable.extPosition),
1117                         .partitionReferenceNum = p_index,
1118                 };
1119                 struct inode *inode;
1120
1121                 inode = udf_iget_special(sb, &loc);
1122                 if (IS_ERR(inode)) {
1123                         udf_debug("cannot load freedSpaceTable (part %d)\n",
1124                                   p_index);
1125                         return PTR_ERR(inode);
1126                 }
1127                 map->s_fspace.s_table = inode;
1128                 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1129                 udf_debug("freedSpaceTable (part %d) @ %lu\n",
1130                           p_index, map->s_fspace.s_table->i_ino);
1131         }
1132
1133         if (phd->freedSpaceBitmap.extLength) {
1134                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1135                 if (!bitmap)
1136                         return -ENOMEM;
1137                 map->s_fspace.s_bitmap = bitmap;
1138                 bitmap->s_extPosition = le32_to_cpu(
1139                                 phd->freedSpaceBitmap.extPosition);
1140                 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1141                 udf_debug("freedSpaceBitmap (part %d) @ %u\n",
1142                           p_index, bitmap->s_extPosition);
1143         }
1144         return 0;
1145 }
1146
1147 static void udf_find_vat_block(struct super_block *sb, int p_index,
1148                                int type1_index, sector_t start_block)
1149 {
1150         struct udf_sb_info *sbi = UDF_SB(sb);
1151         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1152         sector_t vat_block;
1153         struct kernel_lb_addr ino;
1154         struct inode *inode;
1155
1156         /*
1157          * VAT file entry is in the last recorded block. Some broken disks have
1158          * it a few blocks before so try a bit harder...
1159          */
1160         ino.partitionReferenceNum = type1_index;
1161         for (vat_block = start_block;
1162              vat_block >= map->s_partition_root &&
1163              vat_block >= start_block - 3; vat_block--) {
1164                 ino.logicalBlockNum = vat_block - map->s_partition_root;
1165                 inode = udf_iget_special(sb, &ino);
1166                 if (!IS_ERR(inode)) {
1167                         sbi->s_vat_inode = inode;
1168                         break;
1169                 }
1170         }
1171 }
1172
1173 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1174 {
1175         struct udf_sb_info *sbi = UDF_SB(sb);
1176         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1177         struct buffer_head *bh = NULL;
1178         struct udf_inode_info *vati;
1179         uint32_t pos;
1180         struct virtualAllocationTable20 *vat20;
1181         sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1182                           sb->s_blocksize_bits;
1183
1184         udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1185         if (!sbi->s_vat_inode &&
1186             sbi->s_last_block != blocks - 1) {
1187                 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1188                           (unsigned long)sbi->s_last_block,
1189                           (unsigned long)blocks - 1);
1190                 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1191         }
1192         if (!sbi->s_vat_inode)
1193                 return -EIO;
1194
1195         if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1196                 map->s_type_specific.s_virtual.s_start_offset = 0;
1197                 map->s_type_specific.s_virtual.s_num_entries =
1198                         (sbi->s_vat_inode->i_size - 36) >> 2;
1199         } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1200                 vati = UDF_I(sbi->s_vat_inode);
1201                 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1202                         pos = udf_block_map(sbi->s_vat_inode, 0);
1203                         bh = sb_bread(sb, pos);
1204                         if (!bh)
1205                                 return -EIO;
1206                         vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1207                 } else {
1208                         vat20 = (struct virtualAllocationTable20 *)
1209                                                         vati->i_ext.i_data;
1210                 }
1211
1212                 map->s_type_specific.s_virtual.s_start_offset =
1213                         le16_to_cpu(vat20->lengthHeader);
1214                 map->s_type_specific.s_virtual.s_num_entries =
1215                         (sbi->s_vat_inode->i_size -
1216                                 map->s_type_specific.s_virtual.
1217                                         s_start_offset) >> 2;
1218                 brelse(bh);
1219         }
1220         return 0;
1221 }
1222
1223 /*
1224  * Load partition descriptor block
1225  *
1226  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1227  * sequence.
1228  */
1229 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1230 {
1231         struct buffer_head *bh;
1232         struct partitionDesc *p;
1233         struct udf_part_map *map;
1234         struct udf_sb_info *sbi = UDF_SB(sb);
1235         int i, type1_idx;
1236         uint16_t partitionNumber;
1237         uint16_t ident;
1238         int ret;
1239
1240         bh = udf_read_tagged(sb, block, block, &ident);
1241         if (!bh)
1242                 return -EAGAIN;
1243         if (ident != TAG_IDENT_PD) {
1244                 ret = 0;
1245                 goto out_bh;
1246         }
1247
1248         p = (struct partitionDesc *)bh->b_data;
1249         partitionNumber = le16_to_cpu(p->partitionNumber);
1250
1251         /* First scan for TYPE1 and SPARABLE partitions */
1252         for (i = 0; i < sbi->s_partitions; i++) {
1253                 map = &sbi->s_partmaps[i];
1254                 udf_debug("Searching map: (%u == %u)\n",
1255                           map->s_partition_num, partitionNumber);
1256                 if (map->s_partition_num == partitionNumber &&
1257                     (map->s_partition_type == UDF_TYPE1_MAP15 ||
1258                      map->s_partition_type == UDF_SPARABLE_MAP15))
1259                         break;
1260         }
1261
1262         if (i >= sbi->s_partitions) {
1263                 udf_debug("Partition (%u) not found in partition map\n",
1264                           partitionNumber);
1265                 ret = 0;
1266                 goto out_bh;
1267         }
1268
1269         ret = udf_fill_partdesc_info(sb, p, i);
1270         if (ret < 0)
1271                 goto out_bh;
1272
1273         /*
1274          * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1275          * PHYSICAL partitions are already set up
1276          */
1277         type1_idx = i;
1278 #ifdef UDFFS_DEBUG
1279         map = NULL; /* supress 'maybe used uninitialized' warning */
1280 #endif
1281         for (i = 0; i < sbi->s_partitions; i++) {
1282                 map = &sbi->s_partmaps[i];
1283
1284                 if (map->s_partition_num == partitionNumber &&
1285                     (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1286                      map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1287                      map->s_partition_type == UDF_METADATA_MAP25))
1288                         break;
1289         }
1290
1291         if (i >= sbi->s_partitions) {
1292                 ret = 0;
1293                 goto out_bh;
1294         }
1295
1296         ret = udf_fill_partdesc_info(sb, p, i);
1297         if (ret < 0)
1298                 goto out_bh;
1299
1300         if (map->s_partition_type == UDF_METADATA_MAP25) {
1301                 ret = udf_load_metadata_files(sb, i, type1_idx);
1302                 if (ret < 0) {
1303                         udf_err(sb, "error loading MetaData partition map %d\n",
1304                                 i);
1305                         goto out_bh;
1306                 }
1307         } else {
1308                 /*
1309                  * If we have a partition with virtual map, we don't handle
1310                  * writing to it (we overwrite blocks instead of relocating
1311                  * them).
1312                  */
1313                 if (!sb_rdonly(sb)) {
1314                         ret = -EACCES;
1315                         goto out_bh;
1316                 }
1317                 ret = udf_load_vat(sb, i, type1_idx);
1318                 if (ret < 0)
1319                         goto out_bh;
1320         }
1321         ret = 0;
1322 out_bh:
1323         /* In case loading failed, we handle cleanup in udf_fill_super */
1324         brelse(bh);
1325         return ret;
1326 }
1327
1328 static int udf_load_sparable_map(struct super_block *sb,
1329                                  struct udf_part_map *map,
1330                                  struct sparablePartitionMap *spm)
1331 {
1332         uint32_t loc;
1333         uint16_t ident;
1334         struct sparingTable *st;
1335         struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1336         int i;
1337         struct buffer_head *bh;
1338
1339         map->s_partition_type = UDF_SPARABLE_MAP15;
1340         sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1341         if (!is_power_of_2(sdata->s_packet_len)) {
1342                 udf_err(sb, "error loading logical volume descriptor: "
1343                         "Invalid packet length %u\n",
1344                         (unsigned)sdata->s_packet_len);
1345                 return -EIO;
1346         }
1347         if (spm->numSparingTables > 4) {
1348                 udf_err(sb, "error loading logical volume descriptor: "
1349                         "Too many sparing tables (%d)\n",
1350                         (int)spm->numSparingTables);
1351                 return -EIO;
1352         }
1353
1354         for (i = 0; i < spm->numSparingTables; i++) {
1355                 loc = le32_to_cpu(spm->locSparingTable[i]);
1356                 bh = udf_read_tagged(sb, loc, loc, &ident);
1357                 if (!bh)
1358                         continue;
1359
1360                 st = (struct sparingTable *)bh->b_data;
1361                 if (ident != 0 ||
1362                     strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1363                             strlen(UDF_ID_SPARING)) ||
1364                     sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1365                                                         sb->s_blocksize) {
1366                         brelse(bh);
1367                         continue;
1368                 }
1369
1370                 sdata->s_spar_map[i] = bh;
1371         }
1372         map->s_partition_func = udf_get_pblock_spar15;
1373         return 0;
1374 }
1375
1376 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1377                                struct kernel_lb_addr *fileset)
1378 {
1379         struct logicalVolDesc *lvd;
1380         int i, offset;
1381         uint8_t type;
1382         struct udf_sb_info *sbi = UDF_SB(sb);
1383         struct genericPartitionMap *gpm;
1384         uint16_t ident;
1385         struct buffer_head *bh;
1386         unsigned int table_len;
1387         int ret;
1388
1389         bh = udf_read_tagged(sb, block, block, &ident);
1390         if (!bh)
1391                 return -EAGAIN;
1392         BUG_ON(ident != TAG_IDENT_LVD);
1393         lvd = (struct logicalVolDesc *)bh->b_data;
1394         table_len = le32_to_cpu(lvd->mapTableLength);
1395         if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1396                 udf_err(sb, "error loading logical volume descriptor: "
1397                         "Partition table too long (%u > %lu)\n", table_len,
1398                         sb->s_blocksize - sizeof(*lvd));
1399                 ret = -EIO;
1400                 goto out_bh;
1401         }
1402
1403         ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1404         if (ret)
1405                 goto out_bh;
1406
1407         for (i = 0, offset = 0;
1408              i < sbi->s_partitions && offset < table_len;
1409              i++, offset += gpm->partitionMapLength) {
1410                 struct udf_part_map *map = &sbi->s_partmaps[i];
1411                 gpm = (struct genericPartitionMap *)
1412                                 &(lvd->partitionMaps[offset]);
1413                 type = gpm->partitionMapType;
1414                 if (type == 1) {
1415                         struct genericPartitionMap1 *gpm1 =
1416                                 (struct genericPartitionMap1 *)gpm;
1417                         map->s_partition_type = UDF_TYPE1_MAP15;
1418                         map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1419                         map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1420                         map->s_partition_func = NULL;
1421                 } else if (type == 2) {
1422                         struct udfPartitionMap2 *upm2 =
1423                                                 (struct udfPartitionMap2 *)gpm;
1424                         if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1425                                                 strlen(UDF_ID_VIRTUAL))) {
1426                                 u16 suf =
1427                                         le16_to_cpu(((__le16 *)upm2->partIdent.
1428                                                         identSuffix)[0]);
1429                                 if (suf < 0x0200) {
1430                                         map->s_partition_type =
1431                                                         UDF_VIRTUAL_MAP15;
1432                                         map->s_partition_func =
1433                                                         udf_get_pblock_virt15;
1434                                 } else {
1435                                         map->s_partition_type =
1436                                                         UDF_VIRTUAL_MAP20;
1437                                         map->s_partition_func =
1438                                                         udf_get_pblock_virt20;
1439                                 }
1440                         } else if (!strncmp(upm2->partIdent.ident,
1441                                                 UDF_ID_SPARABLE,
1442                                                 strlen(UDF_ID_SPARABLE))) {
1443                                 ret = udf_load_sparable_map(sb, map,
1444                                         (struct sparablePartitionMap *)gpm);
1445                                 if (ret < 0)
1446                                         goto out_bh;
1447                         } else if (!strncmp(upm2->partIdent.ident,
1448                                                 UDF_ID_METADATA,
1449                                                 strlen(UDF_ID_METADATA))) {
1450                                 struct udf_meta_data *mdata =
1451                                         &map->s_type_specific.s_metadata;
1452                                 struct metadataPartitionMap *mdm =
1453                                                 (struct metadataPartitionMap *)
1454                                                 &(lvd->partitionMaps[offset]);
1455                                 udf_debug("Parsing Logical vol part %d type %u  id=%s\n",
1456                                           i, type, UDF_ID_METADATA);
1457
1458                                 map->s_partition_type = UDF_METADATA_MAP25;
1459                                 map->s_partition_func = udf_get_pblock_meta25;
1460
1461                                 mdata->s_meta_file_loc   =
1462                                         le32_to_cpu(mdm->metadataFileLoc);
1463                                 mdata->s_mirror_file_loc =
1464                                         le32_to_cpu(mdm->metadataMirrorFileLoc);
1465                                 mdata->s_bitmap_file_loc =
1466                                         le32_to_cpu(mdm->metadataBitmapFileLoc);
1467                                 mdata->s_alloc_unit_size =
1468                                         le32_to_cpu(mdm->allocUnitSize);
1469                                 mdata->s_align_unit_size =
1470                                         le16_to_cpu(mdm->alignUnitSize);
1471                                 if (mdm->flags & 0x01)
1472                                         mdata->s_flags |= MF_DUPLICATE_MD;
1473
1474                                 udf_debug("Metadata Ident suffix=0x%x\n",
1475                                           le16_to_cpu(*(__le16 *)
1476                                                       mdm->partIdent.identSuffix));
1477                                 udf_debug("Metadata part num=%u\n",
1478                                           le16_to_cpu(mdm->partitionNum));
1479                                 udf_debug("Metadata part alloc unit size=%u\n",
1480                                           le32_to_cpu(mdm->allocUnitSize));
1481                                 udf_debug("Metadata file loc=%u\n",
1482                                           le32_to_cpu(mdm->metadataFileLoc));
1483                                 udf_debug("Mirror file loc=%u\n",
1484                                           le32_to_cpu(mdm->metadataMirrorFileLoc));
1485                                 udf_debug("Bitmap file loc=%u\n",
1486                                           le32_to_cpu(mdm->metadataBitmapFileLoc));
1487                                 udf_debug("Flags: %d %u\n",
1488                                           mdata->s_flags, mdm->flags);
1489                         } else {
1490                                 udf_debug("Unknown ident: %s\n",
1491                                           upm2->partIdent.ident);
1492                                 continue;
1493                         }
1494                         map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1495                         map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1496                 }
1497                 udf_debug("Partition (%d:%u) type %u on volume %u\n",
1498                           i, map->s_partition_num, type, map->s_volumeseqnum);
1499         }
1500
1501         if (fileset) {
1502                 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1503
1504                 *fileset = lelb_to_cpu(la->extLocation);
1505                 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1506                           fileset->logicalBlockNum,
1507                           fileset->partitionReferenceNum);
1508         }
1509         if (lvd->integritySeqExt.extLength)
1510                 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1511         ret = 0;
1512 out_bh:
1513         brelse(bh);
1514         return ret;
1515 }
1516
1517 /*
1518  * Find the prevailing Logical Volume Integrity Descriptor.
1519  */
1520 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1521 {
1522         struct buffer_head *bh, *final_bh;
1523         uint16_t ident;
1524         struct udf_sb_info *sbi = UDF_SB(sb);
1525         struct logicalVolIntegrityDesc *lvid;
1526         int indirections = 0;
1527
1528         while (++indirections <= UDF_MAX_LVID_NESTING) {
1529                 final_bh = NULL;
1530                 while (loc.extLength > 0 &&
1531                         (bh = udf_read_tagged(sb, loc.extLocation,
1532                                         loc.extLocation, &ident))) {
1533                         if (ident != TAG_IDENT_LVID) {
1534                                 brelse(bh);
1535                                 break;
1536                         }
1537
1538                         brelse(final_bh);
1539                         final_bh = bh;
1540
1541                         loc.extLength -= sb->s_blocksize;
1542                         loc.extLocation++;
1543                 }
1544
1545                 if (!final_bh)
1546                         return;
1547
1548                 brelse(sbi->s_lvid_bh);
1549                 sbi->s_lvid_bh = final_bh;
1550
1551                 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1552                 if (lvid->nextIntegrityExt.extLength == 0)
1553                         return;
1554
1555                 loc = leea_to_cpu(lvid->nextIntegrityExt);
1556         }
1557
1558         udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1559                 UDF_MAX_LVID_NESTING);
1560         brelse(sbi->s_lvid_bh);
1561         sbi->s_lvid_bh = NULL;
1562 }
1563
1564 /*
1565  * Step for reallocation of table of partition descriptor sequence numbers.
1566  * Must be power of 2.
1567  */
1568 #define PART_DESC_ALLOC_STEP 32
1569
1570 struct desc_seq_scan_data {
1571         struct udf_vds_record vds[VDS_POS_LENGTH];
1572         unsigned int size_part_descs;
1573         struct udf_vds_record *part_descs_loc;
1574 };
1575
1576 static struct udf_vds_record *handle_partition_descriptor(
1577                                 struct buffer_head *bh,
1578                                 struct desc_seq_scan_data *data)
1579 {
1580         struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1581         int partnum;
1582
1583         partnum = le16_to_cpu(desc->partitionNumber);
1584         if (partnum >= data->size_part_descs) {
1585                 struct udf_vds_record *new_loc;
1586                 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1587
1588                 new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1589                 if (!new_loc)
1590                         return ERR_PTR(-ENOMEM);
1591                 memcpy(new_loc, data->part_descs_loc,
1592                        data->size_part_descs * sizeof(*new_loc));
1593                 kfree(data->part_descs_loc);
1594                 data->part_descs_loc = new_loc;
1595                 data->size_part_descs = new_size;
1596         }
1597         return &(data->part_descs_loc[partnum]);
1598 }
1599
1600
1601 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1602                 struct buffer_head *bh, struct desc_seq_scan_data *data)
1603 {
1604         switch (ident) {
1605         case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1606                 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1607         case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1608                 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1609         case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1610                 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1611         case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1612                 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1613         case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1614                 return handle_partition_descriptor(bh, data);
1615         }
1616         return NULL;
1617 }
1618
1619 /*
1620  * Process a main/reserve volume descriptor sequence.
1621  *   @block             First block of first extent of the sequence.
1622  *   @lastblock         Lastblock of first extent of the sequence.
1623  *   @fileset           There we store extent containing root fileset
1624  *
1625  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1626  * sequence
1627  */
1628 static noinline int udf_process_sequence(
1629                 struct super_block *sb,
1630                 sector_t block, sector_t lastblock,
1631                 struct kernel_lb_addr *fileset)
1632 {
1633         struct buffer_head *bh = NULL;
1634         struct udf_vds_record *curr;
1635         struct generic_desc *gd;
1636         struct volDescPtr *vdp;
1637         bool done = false;
1638         uint32_t vdsn;
1639         uint16_t ident;
1640         int ret;
1641         unsigned int indirections = 0;
1642         struct desc_seq_scan_data data;
1643         unsigned int i;
1644
1645         memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1646         data.size_part_descs = PART_DESC_ALLOC_STEP;
1647         data.part_descs_loc = kcalloc(data.size_part_descs,
1648                                       sizeof(*data.part_descs_loc),
1649                                       GFP_KERNEL);
1650         if (!data.part_descs_loc)
1651                 return -ENOMEM;
1652
1653         /*
1654          * Read the main descriptor sequence and find which descriptors
1655          * are in it.
1656          */
1657         for (; (!done && block <= lastblock); block++) {
1658
1659                 bh = udf_read_tagged(sb, block, block, &ident);
1660                 if (!bh)
1661                         break;
1662
1663                 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1664                 gd = (struct generic_desc *)bh->b_data;
1665                 vdsn = le32_to_cpu(gd->volDescSeqNum);
1666                 switch (ident) {
1667                 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1668                         if (++indirections > UDF_MAX_TD_NESTING) {
1669                                 udf_err(sb, "too many Volume Descriptor "
1670                                         "Pointers (max %u supported)\n",
1671                                         UDF_MAX_TD_NESTING);
1672                                 brelse(bh);
1673                                 return -EIO;
1674                         }
1675
1676                         vdp = (struct volDescPtr *)bh->b_data;
1677                         block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1678                         lastblock = le32_to_cpu(
1679                                 vdp->nextVolDescSeqExt.extLength) >>
1680                                 sb->s_blocksize_bits;
1681                         lastblock += block - 1;
1682                         /* For loop is going to increment 'block' again */
1683                         block--;
1684                         break;
1685                 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1686                 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1687                 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1688                 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1689                 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1690                         curr = get_volume_descriptor_record(ident, bh, &data);
1691                         if (IS_ERR(curr)) {
1692                                 brelse(bh);
1693                                 return PTR_ERR(curr);
1694                         }
1695                         /* Descriptor we don't care about? */
1696                         if (!curr)
1697                                 break;
1698                         if (vdsn >= curr->volDescSeqNum) {
1699                                 curr->volDescSeqNum = vdsn;
1700                                 curr->block = block;
1701                         }
1702                         break;
1703                 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1704                         done = true;
1705                         break;
1706                 }
1707                 brelse(bh);
1708         }
1709         /*
1710          * Now read interesting descriptors again and process them
1711          * in a suitable order
1712          */
1713         if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1714                 udf_err(sb, "Primary Volume Descriptor not found!\n");
1715                 return -EAGAIN;
1716         }
1717         ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1718         if (ret < 0)
1719                 return ret;
1720
1721         if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1722                 ret = udf_load_logicalvol(sb,
1723                                 data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1724                                 fileset);
1725                 if (ret < 0)
1726                         return ret;
1727         }
1728
1729         /* Now handle prevailing Partition Descriptors */
1730         for (i = 0; i < data.size_part_descs; i++) {
1731                 if (data.part_descs_loc[i].block) {
1732                         ret = udf_load_partdesc(sb,
1733                                                 data.part_descs_loc[i].block);
1734                         if (ret < 0)
1735                                 return ret;
1736                 }
1737         }
1738
1739         return 0;
1740 }
1741
1742 /*
1743  * Load Volume Descriptor Sequence described by anchor in bh
1744  *
1745  * Returns <0 on error, 0 on success
1746  */
1747 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1748                              struct kernel_lb_addr *fileset)
1749 {
1750         struct anchorVolDescPtr *anchor;
1751         sector_t main_s, main_e, reserve_s, reserve_e;
1752         int ret;
1753
1754         anchor = (struct anchorVolDescPtr *)bh->b_data;
1755
1756         /* Locate the main sequence */
1757         main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1758         main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1759         main_e = main_e >> sb->s_blocksize_bits;
1760         main_e += main_s - 1;
1761
1762         /* Locate the reserve sequence */
1763         reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1764         reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1765         reserve_e = reserve_e >> sb->s_blocksize_bits;
1766         reserve_e += reserve_s - 1;
1767
1768         /* Process the main & reserve sequences */
1769         /* responsible for finding the PartitionDesc(s) */
1770         ret = udf_process_sequence(sb, main_s, main_e, fileset);
1771         if (ret != -EAGAIN)
1772                 return ret;
1773         udf_sb_free_partitions(sb);
1774         ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1775         if (ret < 0) {
1776                 udf_sb_free_partitions(sb);
1777                 /* No sequence was OK, return -EIO */
1778                 if (ret == -EAGAIN)
1779                         ret = -EIO;
1780         }
1781         return ret;
1782 }
1783
1784 /*
1785  * Check whether there is an anchor block in the given block and
1786  * load Volume Descriptor Sequence if so.
1787  *
1788  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1789  * block
1790  */
1791 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1792                                   struct kernel_lb_addr *fileset)
1793 {
1794         struct buffer_head *bh;
1795         uint16_t ident;
1796         int ret;
1797
1798         if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1799             udf_fixed_to_variable(block) >=
1800             i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1801                 return -EAGAIN;
1802
1803         bh = udf_read_tagged(sb, block, block, &ident);
1804         if (!bh)
1805                 return -EAGAIN;
1806         if (ident != TAG_IDENT_AVDP) {
1807                 brelse(bh);
1808                 return -EAGAIN;
1809         }
1810         ret = udf_load_sequence(sb, bh, fileset);
1811         brelse(bh);
1812         return ret;
1813 }
1814
1815 /*
1816  * Search for an anchor volume descriptor pointer.
1817  *
1818  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1819  * of anchors.
1820  */
1821 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1822                             struct kernel_lb_addr *fileset)
1823 {
1824         sector_t last[6];
1825         int i;
1826         struct udf_sb_info *sbi = UDF_SB(sb);
1827         int last_count = 0;
1828         int ret;
1829
1830         /* First try user provided anchor */
1831         if (sbi->s_anchor) {
1832                 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1833                 if (ret != -EAGAIN)
1834                         return ret;
1835         }
1836         /*
1837          * according to spec, anchor is in either:
1838          *     block 256
1839          *     lastblock-256
1840          *     lastblock
1841          *  however, if the disc isn't closed, it could be 512.
1842          */
1843         ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1844         if (ret != -EAGAIN)
1845                 return ret;
1846         /*
1847          * The trouble is which block is the last one. Drives often misreport
1848          * this so we try various possibilities.
1849          */
1850         last[last_count++] = *lastblock;
1851         if (*lastblock >= 1)
1852                 last[last_count++] = *lastblock - 1;
1853         last[last_count++] = *lastblock + 1;
1854         if (*lastblock >= 2)
1855                 last[last_count++] = *lastblock - 2;
1856         if (*lastblock >= 150)
1857                 last[last_count++] = *lastblock - 150;
1858         if (*lastblock >= 152)
1859                 last[last_count++] = *lastblock - 152;
1860
1861         for (i = 0; i < last_count; i++) {
1862                 if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1863                                 sb->s_blocksize_bits)
1864                         continue;
1865                 ret = udf_check_anchor_block(sb, last[i], fileset);
1866                 if (ret != -EAGAIN) {
1867                         if (!ret)
1868                                 *lastblock = last[i];
1869                         return ret;
1870                 }
1871                 if (last[i] < 256)
1872                         continue;
1873                 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1874                 if (ret != -EAGAIN) {
1875                         if (!ret)
1876                                 *lastblock = last[i];
1877                         return ret;
1878                 }
1879         }
1880
1881         /* Finally try block 512 in case media is open */
1882         return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1883 }
1884
1885 /*
1886  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1887  * area specified by it. The function expects sbi->s_lastblock to be the last
1888  * block on the media.
1889  *
1890  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1891  * was not found.
1892  */
1893 static int udf_find_anchor(struct super_block *sb,
1894                            struct kernel_lb_addr *fileset)
1895 {
1896         struct udf_sb_info *sbi = UDF_SB(sb);
1897         sector_t lastblock = sbi->s_last_block;
1898         int ret;
1899
1900         ret = udf_scan_anchors(sb, &lastblock, fileset);
1901         if (ret != -EAGAIN)
1902                 goto out;
1903
1904         /* No anchor found? Try VARCONV conversion of block numbers */
1905         UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1906         lastblock = udf_variable_to_fixed(sbi->s_last_block);
1907         /* Firstly, we try to not convert number of the last block */
1908         ret = udf_scan_anchors(sb, &lastblock, fileset);
1909         if (ret != -EAGAIN)
1910                 goto out;
1911
1912         lastblock = sbi->s_last_block;
1913         /* Secondly, we try with converted number of the last block */
1914         ret = udf_scan_anchors(sb, &lastblock, fileset);
1915         if (ret < 0) {
1916                 /* VARCONV didn't help. Clear it. */
1917                 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1918         }
1919 out:
1920         if (ret == 0)
1921                 sbi->s_last_block = lastblock;
1922         return ret;
1923 }
1924
1925 /*
1926  * Check Volume Structure Descriptor, find Anchor block and load Volume
1927  * Descriptor Sequence.
1928  *
1929  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1930  * block was not found.
1931  */
1932 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1933                         int silent, struct kernel_lb_addr *fileset)
1934 {
1935         struct udf_sb_info *sbi = UDF_SB(sb);
1936         loff_t nsr_off;
1937         int ret;
1938
1939         if (!sb_set_blocksize(sb, uopt->blocksize)) {
1940                 if (!silent)
1941                         udf_warn(sb, "Bad block size\n");
1942                 return -EINVAL;
1943         }
1944         sbi->s_last_block = uopt->lastblock;
1945         if (!uopt->novrs) {
1946                 /* Check that it is NSR02 compliant */
1947                 nsr_off = udf_check_vsd(sb);
1948                 if (!nsr_off) {
1949                         if (!silent)
1950                                 udf_warn(sb, "No VRS found\n");
1951                         return -EINVAL;
1952                 }
1953                 if (nsr_off == -1)
1954                         udf_debug("Failed to read sector at offset %d. "
1955                                   "Assuming open disc. Skipping validity "
1956                                   "check\n", VSD_FIRST_SECTOR_OFFSET);
1957                 if (!sbi->s_last_block)
1958                         sbi->s_last_block = udf_get_last_block(sb);
1959         } else {
1960                 udf_debug("Validity check skipped because of novrs option\n");
1961         }
1962
1963         /* Look for anchor block and load Volume Descriptor Sequence */
1964         sbi->s_anchor = uopt->anchor;
1965         ret = udf_find_anchor(sb, fileset);
1966         if (ret < 0) {
1967                 if (!silent && ret == -EAGAIN)
1968                         udf_warn(sb, "No anchor found\n");
1969                 return ret;
1970         }
1971         return 0;
1972 }
1973
1974 static void udf_open_lvid(struct super_block *sb)
1975 {
1976         struct udf_sb_info *sbi = UDF_SB(sb);
1977         struct buffer_head *bh = sbi->s_lvid_bh;
1978         struct logicalVolIntegrityDesc *lvid;
1979         struct logicalVolIntegrityDescImpUse *lvidiu;
1980         struct timespec ts;
1981
1982         if (!bh)
1983                 return;
1984         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1985         lvidiu = udf_sb_lvidiu(sb);
1986         if (!lvidiu)
1987                 return;
1988
1989         mutex_lock(&sbi->s_alloc_mutex);
1990         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1991         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1992         ktime_get_real_ts(&ts);
1993         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
1994         if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
1995                 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1996         else
1997                 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
1998
1999         lvid->descTag.descCRC = cpu_to_le16(
2000                 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2001                         le16_to_cpu(lvid->descTag.descCRCLength)));
2002
2003         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2004         mark_buffer_dirty(bh);
2005         sbi->s_lvid_dirty = 0;
2006         mutex_unlock(&sbi->s_alloc_mutex);
2007         /* Make opening of filesystem visible on the media immediately */
2008         sync_dirty_buffer(bh);
2009 }
2010
2011 static void udf_close_lvid(struct super_block *sb)
2012 {
2013         struct udf_sb_info *sbi = UDF_SB(sb);
2014         struct buffer_head *bh = sbi->s_lvid_bh;
2015         struct logicalVolIntegrityDesc *lvid;
2016         struct logicalVolIntegrityDescImpUse *lvidiu;
2017         struct timespec ts;
2018
2019         if (!bh)
2020                 return;
2021         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2022         lvidiu = udf_sb_lvidiu(sb);
2023         if (!lvidiu)
2024                 return;
2025
2026         mutex_lock(&sbi->s_alloc_mutex);
2027         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2028         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2029         ktime_get_real_ts(&ts);
2030         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2031         if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2032                 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2033         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2034                 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2035         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2036                 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2037         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2038                 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2039
2040         lvid->descTag.descCRC = cpu_to_le16(
2041                         crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2042                                 le16_to_cpu(lvid->descTag.descCRCLength)));
2043
2044         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2045         /*
2046          * We set buffer uptodate unconditionally here to avoid spurious
2047          * warnings from mark_buffer_dirty() when previous EIO has marked
2048          * the buffer as !uptodate
2049          */
2050         set_buffer_uptodate(bh);
2051         mark_buffer_dirty(bh);
2052         sbi->s_lvid_dirty = 0;
2053         mutex_unlock(&sbi->s_alloc_mutex);
2054         /* Make closing of filesystem visible on the media immediately */
2055         sync_dirty_buffer(bh);
2056 }
2057
2058 u64 lvid_get_unique_id(struct super_block *sb)
2059 {
2060         struct buffer_head *bh;
2061         struct udf_sb_info *sbi = UDF_SB(sb);
2062         struct logicalVolIntegrityDesc *lvid;
2063         struct logicalVolHeaderDesc *lvhd;
2064         u64 uniqueID;
2065         u64 ret;
2066
2067         bh = sbi->s_lvid_bh;
2068         if (!bh)
2069                 return 0;
2070
2071         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2072         lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2073
2074         mutex_lock(&sbi->s_alloc_mutex);
2075         ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2076         if (!(++uniqueID & 0xFFFFFFFF))
2077                 uniqueID += 16;
2078         lvhd->uniqueID = cpu_to_le64(uniqueID);
2079         mutex_unlock(&sbi->s_alloc_mutex);
2080         mark_buffer_dirty(bh);
2081
2082         return ret;
2083 }
2084
2085 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2086 {
2087         int ret = -EINVAL;
2088         struct inode *inode = NULL;
2089         struct udf_options uopt;
2090         struct kernel_lb_addr rootdir, fileset;
2091         struct udf_sb_info *sbi;
2092         bool lvid_open = false;
2093
2094         uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2095         /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2096         uopt.uid = make_kuid(current_user_ns(), overflowuid);
2097         uopt.gid = make_kgid(current_user_ns(), overflowgid);
2098         uopt.umask = 0;
2099         uopt.fmode = UDF_INVALID_MODE;
2100         uopt.dmode = UDF_INVALID_MODE;
2101         uopt.nls_map = NULL;
2102
2103         sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2104         if (!sbi)
2105                 return -ENOMEM;
2106
2107         sb->s_fs_info = sbi;
2108
2109         mutex_init(&sbi->s_alloc_mutex);
2110
2111         if (!udf_parse_options((char *)options, &uopt, false))
2112                 goto parse_options_failure;
2113
2114         if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2115             uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2116                 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2117                 goto parse_options_failure;
2118         }
2119         if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2120                 uopt.nls_map = load_nls_default();
2121                 if (!uopt.nls_map)
2122                         uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2123                 else
2124                         udf_debug("Using default NLS map\n");
2125         }
2126         if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2127                 uopt.flags |= (1 << UDF_FLAG_UTF8);
2128
2129         fileset.logicalBlockNum = 0xFFFFFFFF;
2130         fileset.partitionReferenceNum = 0xFFFF;
2131
2132         sbi->s_flags = uopt.flags;
2133         sbi->s_uid = uopt.uid;
2134         sbi->s_gid = uopt.gid;
2135         sbi->s_umask = uopt.umask;
2136         sbi->s_fmode = uopt.fmode;
2137         sbi->s_dmode = uopt.dmode;
2138         sbi->s_nls_map = uopt.nls_map;
2139         rwlock_init(&sbi->s_cred_lock);
2140
2141         if (uopt.session == 0xFFFFFFFF)
2142                 sbi->s_session = udf_get_last_session(sb);
2143         else
2144                 sbi->s_session = uopt.session;
2145
2146         udf_debug("Multi-session=%d\n", sbi->s_session);
2147
2148         /* Fill in the rest of the superblock */
2149         sb->s_op = &udf_sb_ops;
2150         sb->s_export_op = &udf_export_ops;
2151
2152         sb->s_magic = UDF_SUPER_MAGIC;
2153         sb->s_time_gran = 1000;
2154
2155         if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2156                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2157         } else {
2158                 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2159                 while (uopt.blocksize <= 4096) {
2160                         ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2161                         if (ret < 0) {
2162                                 if (!silent && ret != -EACCES) {
2163                                         pr_notice("Scanning with blocksize %u failed\n",
2164                                                   uopt.blocksize);
2165                                 }
2166                                 brelse(sbi->s_lvid_bh);
2167                                 sbi->s_lvid_bh = NULL;
2168                                 /*
2169                                  * EACCES is special - we want to propagate to
2170                                  * upper layers that we cannot handle RW mount.
2171                                  */
2172                                 if (ret == -EACCES)
2173                                         break;
2174                         } else
2175                                 break;
2176
2177                         uopt.blocksize <<= 1;
2178                 }
2179         }
2180         if (ret < 0) {
2181                 if (ret == -EAGAIN) {
2182                         udf_warn(sb, "No partition found (1)\n");
2183                         ret = -EINVAL;
2184                 }
2185                 goto error_out;
2186         }
2187
2188         udf_debug("Lastblock=%u\n", sbi->s_last_block);
2189
2190         if (sbi->s_lvid_bh) {
2191                 struct logicalVolIntegrityDescImpUse *lvidiu =
2192                                                         udf_sb_lvidiu(sb);
2193                 uint16_t minUDFReadRev;
2194                 uint16_t minUDFWriteRev;
2195
2196                 if (!lvidiu) {
2197                         ret = -EINVAL;
2198                         goto error_out;
2199                 }
2200                 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2201                 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2202                 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2203                         udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2204                                 minUDFReadRev,
2205                                 UDF_MAX_READ_VERSION);
2206                         ret = -EINVAL;
2207                         goto error_out;
2208                 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2209                            !sb_rdonly(sb)) {
2210                         ret = -EACCES;
2211                         goto error_out;
2212                 }
2213
2214                 sbi->s_udfrev = minUDFWriteRev;
2215
2216                 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2217                         UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2218                 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2219                         UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2220         }
2221
2222         if (!sbi->s_partitions) {
2223                 udf_warn(sb, "No partition found (2)\n");
2224                 ret = -EINVAL;
2225                 goto error_out;
2226         }
2227
2228         if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2229                         UDF_PART_FLAG_READ_ONLY &&
2230             !sb_rdonly(sb)) {
2231                 ret = -EACCES;
2232                 goto error_out;
2233         }
2234
2235         if (udf_find_fileset(sb, &fileset, &rootdir)) {
2236                 udf_warn(sb, "No fileset found\n");
2237                 ret = -EINVAL;
2238                 goto error_out;
2239         }
2240
2241         if (!silent) {
2242                 struct timestamp ts;
2243                 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2244                 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2245                          sbi->s_volume_ident,
2246                          le16_to_cpu(ts.year), ts.month, ts.day,
2247                          ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2248         }
2249         if (!sb_rdonly(sb)) {
2250                 udf_open_lvid(sb);
2251                 lvid_open = true;
2252         }
2253
2254         /* Assign the root inode */
2255         /* assign inodes by physical block number */
2256         /* perhaps it's not extensible enough, but for now ... */
2257         inode = udf_iget(sb, &rootdir);
2258         if (IS_ERR(inode)) {
2259                 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2260                        rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2261                 ret = PTR_ERR(inode);
2262                 goto error_out;
2263         }
2264
2265         /* Allocate a dentry for the root inode */
2266         sb->s_root = d_make_root(inode);
2267         if (!sb->s_root) {
2268                 udf_err(sb, "Couldn't allocate root dentry\n");
2269                 ret = -ENOMEM;
2270                 goto error_out;
2271         }
2272         sb->s_maxbytes = MAX_LFS_FILESIZE;
2273         sb->s_max_links = UDF_MAX_LINKS;
2274         return 0;
2275
2276 error_out:
2277         iput(sbi->s_vat_inode);
2278 parse_options_failure:
2279         if (uopt.nls_map)
2280                 unload_nls(uopt.nls_map);
2281         if (lvid_open)
2282                 udf_close_lvid(sb);
2283         brelse(sbi->s_lvid_bh);
2284         udf_sb_free_partitions(sb);
2285         kfree(sbi);
2286         sb->s_fs_info = NULL;
2287
2288         return ret;
2289 }
2290
2291 void _udf_err(struct super_block *sb, const char *function,
2292               const char *fmt, ...)
2293 {
2294         struct va_format vaf;
2295         va_list args;
2296
2297         va_start(args, fmt);
2298
2299         vaf.fmt = fmt;
2300         vaf.va = &args;
2301
2302         pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2303
2304         va_end(args);
2305 }
2306
2307 void _udf_warn(struct super_block *sb, const char *function,
2308                const char *fmt, ...)
2309 {
2310         struct va_format vaf;
2311         va_list args;
2312
2313         va_start(args, fmt);
2314
2315         vaf.fmt = fmt;
2316         vaf.va = &args;
2317
2318         pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2319
2320         va_end(args);
2321 }
2322
2323 static void udf_put_super(struct super_block *sb)
2324 {
2325         struct udf_sb_info *sbi;
2326
2327         sbi = UDF_SB(sb);
2328
2329         iput(sbi->s_vat_inode);
2330         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2331                 unload_nls(sbi->s_nls_map);
2332         if (!sb_rdonly(sb))
2333                 udf_close_lvid(sb);
2334         brelse(sbi->s_lvid_bh);
2335         udf_sb_free_partitions(sb);
2336         mutex_destroy(&sbi->s_alloc_mutex);
2337         kfree(sb->s_fs_info);
2338         sb->s_fs_info = NULL;
2339 }
2340
2341 static int udf_sync_fs(struct super_block *sb, int wait)
2342 {
2343         struct udf_sb_info *sbi = UDF_SB(sb);
2344
2345         mutex_lock(&sbi->s_alloc_mutex);
2346         if (sbi->s_lvid_dirty) {
2347                 /*
2348                  * Blockdevice will be synced later so we don't have to submit
2349                  * the buffer for IO
2350                  */
2351                 mark_buffer_dirty(sbi->s_lvid_bh);
2352                 sbi->s_lvid_dirty = 0;
2353         }
2354         mutex_unlock(&sbi->s_alloc_mutex);
2355
2356         return 0;
2357 }
2358
2359 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2360 {
2361         struct super_block *sb = dentry->d_sb;
2362         struct udf_sb_info *sbi = UDF_SB(sb);
2363         struct logicalVolIntegrityDescImpUse *lvidiu;
2364         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2365
2366         lvidiu = udf_sb_lvidiu(sb);
2367         buf->f_type = UDF_SUPER_MAGIC;
2368         buf->f_bsize = sb->s_blocksize;
2369         buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2370         buf->f_bfree = udf_count_free(sb);
2371         buf->f_bavail = buf->f_bfree;
2372         buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2373                                           le32_to_cpu(lvidiu->numDirs)) : 0)
2374                         + buf->f_bfree;
2375         buf->f_ffree = buf->f_bfree;
2376         buf->f_namelen = UDF_NAME_LEN;
2377         buf->f_fsid.val[0] = (u32)id;
2378         buf->f_fsid.val[1] = (u32)(id >> 32);
2379
2380         return 0;
2381 }
2382
2383 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2384                                           struct udf_bitmap *bitmap)
2385 {
2386         struct buffer_head *bh = NULL;
2387         unsigned int accum = 0;
2388         int index;
2389         udf_pblk_t block = 0, newblock;
2390         struct kernel_lb_addr loc;
2391         uint32_t bytes;
2392         uint8_t *ptr;
2393         uint16_t ident;
2394         struct spaceBitmapDesc *bm;
2395
2396         loc.logicalBlockNum = bitmap->s_extPosition;
2397         loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2398         bh = udf_read_ptagged(sb, &loc, 0, &ident);
2399
2400         if (!bh) {
2401                 udf_err(sb, "udf_count_free failed\n");
2402                 goto out;
2403         } else if (ident != TAG_IDENT_SBD) {
2404                 brelse(bh);
2405                 udf_err(sb, "udf_count_free failed\n");
2406                 goto out;
2407         }
2408
2409         bm = (struct spaceBitmapDesc *)bh->b_data;
2410         bytes = le32_to_cpu(bm->numOfBytes);
2411         index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2412         ptr = (uint8_t *)bh->b_data;
2413
2414         while (bytes > 0) {
2415                 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2416                 accum += bitmap_weight((const unsigned long *)(ptr + index),
2417                                         cur_bytes * 8);
2418                 bytes -= cur_bytes;
2419                 if (bytes) {
2420                         brelse(bh);
2421                         newblock = udf_get_lb_pblock(sb, &loc, ++block);
2422                         bh = udf_tread(sb, newblock);
2423                         if (!bh) {
2424                                 udf_debug("read failed\n");
2425                                 goto out;
2426                         }
2427                         index = 0;
2428                         ptr = (uint8_t *)bh->b_data;
2429                 }
2430         }
2431         brelse(bh);
2432 out:
2433         return accum;
2434 }
2435
2436 static unsigned int udf_count_free_table(struct super_block *sb,
2437                                          struct inode *table)
2438 {
2439         unsigned int accum = 0;
2440         uint32_t elen;
2441         struct kernel_lb_addr eloc;
2442         int8_t etype;
2443         struct extent_position epos;
2444
2445         mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2446         epos.block = UDF_I(table)->i_location;
2447         epos.offset = sizeof(struct unallocSpaceEntry);
2448         epos.bh = NULL;
2449
2450         while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2451                 accum += (elen >> table->i_sb->s_blocksize_bits);
2452
2453         brelse(epos.bh);
2454         mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2455
2456         return accum;
2457 }
2458
2459 static unsigned int udf_count_free(struct super_block *sb)
2460 {
2461         unsigned int accum = 0;
2462         struct udf_sb_info *sbi;
2463         struct udf_part_map *map;
2464
2465         sbi = UDF_SB(sb);
2466         if (sbi->s_lvid_bh) {
2467                 struct logicalVolIntegrityDesc *lvid =
2468                         (struct logicalVolIntegrityDesc *)
2469                         sbi->s_lvid_bh->b_data;
2470                 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2471                         accum = le32_to_cpu(
2472                                         lvid->freeSpaceTable[sbi->s_partition]);
2473                         if (accum == 0xFFFFFFFF)
2474                                 accum = 0;
2475                 }
2476         }
2477
2478         if (accum)
2479                 return accum;
2480
2481         map = &sbi->s_partmaps[sbi->s_partition];
2482         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2483                 accum += udf_count_free_bitmap(sb,
2484                                                map->s_uspace.s_bitmap);
2485         }
2486         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2487                 accum += udf_count_free_bitmap(sb,
2488                                                map->s_fspace.s_bitmap);
2489         }
2490         if (accum)
2491                 return accum;
2492
2493         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2494                 accum += udf_count_free_table(sb,
2495                                               map->s_uspace.s_table);
2496         }
2497         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2498                 accum += udf_count_free_table(sb,
2499                                               map->s_fspace.s_table);
2500         }
2501
2502         return accum;
2503 }
2504
2505 MODULE_AUTHOR("Ben Fennema");
2506 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2507 MODULE_LICENSE("GPL");
2508 module_init(init_udf_fs)
2509 module_exit(exit_udf_fs)