99cb81d0077f940a2492e8ec109d5531adfcc7e6
[sfrench/cifs-2.6.git] / fs / udf / super.c
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60
61 #include "udf_sb.h"
62 #include "udf_i.h"
63
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66
67 #define VDS_POS_PRIMARY_VOL_DESC        0
68 #define VDS_POS_UNALLOC_SPACE_DESC      1
69 #define VDS_POS_LOGICAL_VOL_DESC        2
70 #define VDS_POS_PARTITION_DESC          3
71 #define VDS_POS_IMP_USE_VOL_DESC        4
72 #define VDS_POS_VOL_DESC_PTR            5
73 #define VDS_POS_TERMINATING_DESC        6
74 #define VDS_POS_LENGTH                  7
75
76 #define VSD_FIRST_SECTOR_OFFSET         32768
77 #define VSD_MAX_SECTOR_OFFSET           0x800000
78
79 /*
80  * Maximum number of Terminating Descriptor / Logical Volume Integrity
81  * Descriptor redirections. The chosen numbers are arbitrary - just that we
82  * hopefully don't limit any real use of rewritten inode on write-once media
83  * but avoid looping for too long on corrupted media.
84  */
85 #define UDF_MAX_TD_NESTING 64
86 #define UDF_MAX_LVID_NESTING 1000
87
88 enum { UDF_MAX_LINKS = 0xffff };
89
90 /* These are the "meat" - everything else is stuffing */
91 static int udf_fill_super(struct super_block *, void *, int);
92 static void udf_put_super(struct super_block *);
93 static int udf_sync_fs(struct super_block *, int);
94 static int udf_remount_fs(struct super_block *, int *, char *);
95 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
96 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
97                             struct kernel_lb_addr *);
98 static void udf_load_fileset(struct super_block *, struct buffer_head *,
99                              struct kernel_lb_addr *);
100 static void udf_open_lvid(struct super_block *);
101 static void udf_close_lvid(struct super_block *);
102 static unsigned int udf_count_free(struct super_block *);
103 static int udf_statfs(struct dentry *, struct kstatfs *);
104 static int udf_show_options(struct seq_file *, struct dentry *);
105
106 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
107 {
108         struct logicalVolIntegrityDesc *lvid;
109         unsigned int partnum;
110         unsigned int offset;
111
112         if (!UDF_SB(sb)->s_lvid_bh)
113                 return NULL;
114         lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
115         partnum = le32_to_cpu(lvid->numOfPartitions);
116         if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
117              offsetof(struct logicalVolIntegrityDesc, impUse)) /
118              (2 * sizeof(uint32_t)) < partnum) {
119                 udf_err(sb, "Logical volume integrity descriptor corrupted "
120                         "(numOfPartitions = %u)!\n", partnum);
121                 return NULL;
122         }
123         /* The offset is to skip freeSpaceTable and sizeTable arrays */
124         offset = partnum * 2 * sizeof(uint32_t);
125         return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
126 }
127
128 /* UDF filesystem type */
129 static struct dentry *udf_mount(struct file_system_type *fs_type,
130                       int flags, const char *dev_name, void *data)
131 {
132         return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
133 }
134
135 static struct file_system_type udf_fstype = {
136         .owner          = THIS_MODULE,
137         .name           = "udf",
138         .mount          = udf_mount,
139         .kill_sb        = kill_block_super,
140         .fs_flags       = FS_REQUIRES_DEV,
141 };
142 MODULE_ALIAS_FS("udf");
143
144 static struct kmem_cache *udf_inode_cachep;
145
146 static struct inode *udf_alloc_inode(struct super_block *sb)
147 {
148         struct udf_inode_info *ei;
149         ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
150         if (!ei)
151                 return NULL;
152
153         ei->i_unique = 0;
154         ei->i_lenExtents = 0;
155         ei->i_next_alloc_block = 0;
156         ei->i_next_alloc_goal = 0;
157         ei->i_strat4096 = 0;
158         init_rwsem(&ei->i_data_sem);
159         ei->cached_extent.lstart = -1;
160         spin_lock_init(&ei->i_extent_cache_lock);
161
162         return &ei->vfs_inode;
163 }
164
165 static void udf_i_callback(struct rcu_head *head)
166 {
167         struct inode *inode = container_of(head, struct inode, i_rcu);
168         kmem_cache_free(udf_inode_cachep, UDF_I(inode));
169 }
170
171 static void udf_destroy_inode(struct inode *inode)
172 {
173         call_rcu(&inode->i_rcu, udf_i_callback);
174 }
175
176 static void init_once(void *foo)
177 {
178         struct udf_inode_info *ei = (struct udf_inode_info *)foo;
179
180         ei->i_ext.i_data = NULL;
181         inode_init_once(&ei->vfs_inode);
182 }
183
184 static int __init init_inodecache(void)
185 {
186         udf_inode_cachep = kmem_cache_create("udf_inode_cache",
187                                              sizeof(struct udf_inode_info),
188                                              0, (SLAB_RECLAIM_ACCOUNT |
189                                                  SLAB_MEM_SPREAD |
190                                                  SLAB_ACCOUNT),
191                                              init_once);
192         if (!udf_inode_cachep)
193                 return -ENOMEM;
194         return 0;
195 }
196
197 static void destroy_inodecache(void)
198 {
199         /*
200          * Make sure all delayed rcu free inodes are flushed before we
201          * destroy cache.
202          */
203         rcu_barrier();
204         kmem_cache_destroy(udf_inode_cachep);
205 }
206
207 /* Superblock operations */
208 static const struct super_operations udf_sb_ops = {
209         .alloc_inode    = udf_alloc_inode,
210         .destroy_inode  = udf_destroy_inode,
211         .write_inode    = udf_write_inode,
212         .evict_inode    = udf_evict_inode,
213         .put_super      = udf_put_super,
214         .sync_fs        = udf_sync_fs,
215         .statfs         = udf_statfs,
216         .remount_fs     = udf_remount_fs,
217         .show_options   = udf_show_options,
218 };
219
220 struct udf_options {
221         unsigned char novrs;
222         unsigned int blocksize;
223         unsigned int session;
224         unsigned int lastblock;
225         unsigned int anchor;
226         unsigned int volume;
227         unsigned short partition;
228         unsigned int fileset;
229         unsigned int rootdir;
230         unsigned int flags;
231         umode_t umask;
232         kgid_t gid;
233         kuid_t uid;
234         umode_t fmode;
235         umode_t dmode;
236         struct nls_table *nls_map;
237 };
238
239 static int __init init_udf_fs(void)
240 {
241         int err;
242
243         err = init_inodecache();
244         if (err)
245                 goto out1;
246         err = register_filesystem(&udf_fstype);
247         if (err)
248                 goto out;
249
250         return 0;
251
252 out:
253         destroy_inodecache();
254
255 out1:
256         return err;
257 }
258
259 static void __exit exit_udf_fs(void)
260 {
261         unregister_filesystem(&udf_fstype);
262         destroy_inodecache();
263 }
264
265 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
266 {
267         struct udf_sb_info *sbi = UDF_SB(sb);
268
269         sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
270         if (!sbi->s_partmaps) {
271                 sbi->s_partitions = 0;
272                 return -ENOMEM;
273         }
274
275         sbi->s_partitions = count;
276         return 0;
277 }
278
279 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
280 {
281         int i;
282         int nr_groups = bitmap->s_nr_groups;
283
284         for (i = 0; i < nr_groups; i++)
285                 if (bitmap->s_block_bitmap[i])
286                         brelse(bitmap->s_block_bitmap[i]);
287
288         kvfree(bitmap);
289 }
290
291 static void udf_free_partition(struct udf_part_map *map)
292 {
293         int i;
294         struct udf_meta_data *mdata;
295
296         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
297                 iput(map->s_uspace.s_table);
298         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
299                 iput(map->s_fspace.s_table);
300         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
301                 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
302         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
303                 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
304         if (map->s_partition_type == UDF_SPARABLE_MAP15)
305                 for (i = 0; i < 4; i++)
306                         brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
307         else if (map->s_partition_type == UDF_METADATA_MAP25) {
308                 mdata = &map->s_type_specific.s_metadata;
309                 iput(mdata->s_metadata_fe);
310                 mdata->s_metadata_fe = NULL;
311
312                 iput(mdata->s_mirror_fe);
313                 mdata->s_mirror_fe = NULL;
314
315                 iput(mdata->s_bitmap_fe);
316                 mdata->s_bitmap_fe = NULL;
317         }
318 }
319
320 static void udf_sb_free_partitions(struct super_block *sb)
321 {
322         struct udf_sb_info *sbi = UDF_SB(sb);
323         int i;
324
325         if (!sbi->s_partmaps)
326                 return;
327         for (i = 0; i < sbi->s_partitions; i++)
328                 udf_free_partition(&sbi->s_partmaps[i]);
329         kfree(sbi->s_partmaps);
330         sbi->s_partmaps = NULL;
331 }
332
333 static int udf_show_options(struct seq_file *seq, struct dentry *root)
334 {
335         struct super_block *sb = root->d_sb;
336         struct udf_sb_info *sbi = UDF_SB(sb);
337
338         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
339                 seq_puts(seq, ",nostrict");
340         if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
341                 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
342         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
343                 seq_puts(seq, ",unhide");
344         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
345                 seq_puts(seq, ",undelete");
346         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
347                 seq_puts(seq, ",noadinicb");
348         if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
349                 seq_puts(seq, ",shortad");
350         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
351                 seq_puts(seq, ",uid=forget");
352         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
353                 seq_puts(seq, ",uid=ignore");
354         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
355                 seq_puts(seq, ",gid=forget");
356         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
357                 seq_puts(seq, ",gid=ignore");
358         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
359                 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
360         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
361                 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
362         if (sbi->s_umask != 0)
363                 seq_printf(seq, ",umask=%ho", sbi->s_umask);
364         if (sbi->s_fmode != UDF_INVALID_MODE)
365                 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
366         if (sbi->s_dmode != UDF_INVALID_MODE)
367                 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
368         if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
369                 seq_printf(seq, ",session=%u", sbi->s_session);
370         if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
371                 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
372         if (sbi->s_anchor != 0)
373                 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
374         /*
375          * volume, partition, fileset and rootdir seem to be ignored
376          * currently
377          */
378         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
379                 seq_puts(seq, ",utf8");
380         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
381                 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
382
383         return 0;
384 }
385
386 /*
387  * udf_parse_options
388  *
389  * PURPOSE
390  *      Parse mount options.
391  *
392  * DESCRIPTION
393  *      The following mount options are supported:
394  *
395  *      gid=            Set the default group.
396  *      umask=          Set the default umask.
397  *      mode=           Set the default file permissions.
398  *      dmode=          Set the default directory permissions.
399  *      uid=            Set the default user.
400  *      bs=             Set the block size.
401  *      unhide          Show otherwise hidden files.
402  *      undelete        Show deleted files in lists.
403  *      adinicb         Embed data in the inode (default)
404  *      noadinicb       Don't embed data in the inode
405  *      shortad         Use short ad's
406  *      longad          Use long ad's (default)
407  *      nostrict        Unset strict conformance
408  *      iocharset=      Set the NLS character set
409  *
410  *      The remaining are for debugging and disaster recovery:
411  *
412  *      novrs           Skip volume sequence recognition
413  *
414  *      The following expect a offset from 0.
415  *
416  *      session=        Set the CDROM session (default= last session)
417  *      anchor=         Override standard anchor location. (default= 256)
418  *      volume=         Override the VolumeDesc location. (unused)
419  *      partition=      Override the PartitionDesc location. (unused)
420  *      lastblock=      Set the last block of the filesystem/
421  *
422  *      The following expect a offset from the partition root.
423  *
424  *      fileset=        Override the fileset block location. (unused)
425  *      rootdir=        Override the root directory location. (unused)
426  *              WARNING: overriding the rootdir to a non-directory may
427  *              yield highly unpredictable results.
428  *
429  * PRE-CONDITIONS
430  *      options         Pointer to mount options string.
431  *      uopts           Pointer to mount options variable.
432  *
433  * POST-CONDITIONS
434  *      <return>        1       Mount options parsed okay.
435  *      <return>        0       Error parsing mount options.
436  *
437  * HISTORY
438  *      July 1, 1997 - Andrew E. Mileski
439  *      Written, tested, and released.
440  */
441
442 enum {
443         Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
444         Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
445         Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
446         Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
447         Opt_rootdir, Opt_utf8, Opt_iocharset,
448         Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
449         Opt_fmode, Opt_dmode
450 };
451
452 static const match_table_t tokens = {
453         {Opt_novrs,     "novrs"},
454         {Opt_nostrict,  "nostrict"},
455         {Opt_bs,        "bs=%u"},
456         {Opt_unhide,    "unhide"},
457         {Opt_undelete,  "undelete"},
458         {Opt_noadinicb, "noadinicb"},
459         {Opt_adinicb,   "adinicb"},
460         {Opt_shortad,   "shortad"},
461         {Opt_longad,    "longad"},
462         {Opt_uforget,   "uid=forget"},
463         {Opt_uignore,   "uid=ignore"},
464         {Opt_gforget,   "gid=forget"},
465         {Opt_gignore,   "gid=ignore"},
466         {Opt_gid,       "gid=%u"},
467         {Opt_uid,       "uid=%u"},
468         {Opt_umask,     "umask=%o"},
469         {Opt_session,   "session=%u"},
470         {Opt_lastblock, "lastblock=%u"},
471         {Opt_anchor,    "anchor=%u"},
472         {Opt_volume,    "volume=%u"},
473         {Opt_partition, "partition=%u"},
474         {Opt_fileset,   "fileset=%u"},
475         {Opt_rootdir,   "rootdir=%u"},
476         {Opt_utf8,      "utf8"},
477         {Opt_iocharset, "iocharset=%s"},
478         {Opt_fmode,     "mode=%o"},
479         {Opt_dmode,     "dmode=%o"},
480         {Opt_err,       NULL}
481 };
482
483 static int udf_parse_options(char *options, struct udf_options *uopt,
484                              bool remount)
485 {
486         char *p;
487         int option;
488
489         uopt->novrs = 0;
490         uopt->partition = 0xFFFF;
491         uopt->session = 0xFFFFFFFF;
492         uopt->lastblock = 0;
493         uopt->anchor = 0;
494         uopt->volume = 0xFFFFFFFF;
495         uopt->rootdir = 0xFFFFFFFF;
496         uopt->fileset = 0xFFFFFFFF;
497         uopt->nls_map = NULL;
498
499         if (!options)
500                 return 1;
501
502         while ((p = strsep(&options, ",")) != NULL) {
503                 substring_t args[MAX_OPT_ARGS];
504                 int token;
505                 unsigned n;
506                 if (!*p)
507                         continue;
508
509                 token = match_token(p, tokens, args);
510                 switch (token) {
511                 case Opt_novrs:
512                         uopt->novrs = 1;
513                         break;
514                 case Opt_bs:
515                         if (match_int(&args[0], &option))
516                                 return 0;
517                         n = option;
518                         if (n != 512 && n != 1024 && n != 2048 && n != 4096)
519                                 return 0;
520                         uopt->blocksize = n;
521                         uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
522                         break;
523                 case Opt_unhide:
524                         uopt->flags |= (1 << UDF_FLAG_UNHIDE);
525                         break;
526                 case Opt_undelete:
527                         uopt->flags |= (1 << UDF_FLAG_UNDELETE);
528                         break;
529                 case Opt_noadinicb:
530                         uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
531                         break;
532                 case Opt_adinicb:
533                         uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
534                         break;
535                 case Opt_shortad:
536                         uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
537                         break;
538                 case Opt_longad:
539                         uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
540                         break;
541                 case Opt_gid:
542                         if (match_int(args, &option))
543                                 return 0;
544                         uopt->gid = make_kgid(current_user_ns(), option);
545                         if (!gid_valid(uopt->gid))
546                                 return 0;
547                         uopt->flags |= (1 << UDF_FLAG_GID_SET);
548                         break;
549                 case Opt_uid:
550                         if (match_int(args, &option))
551                                 return 0;
552                         uopt->uid = make_kuid(current_user_ns(), option);
553                         if (!uid_valid(uopt->uid))
554                                 return 0;
555                         uopt->flags |= (1 << UDF_FLAG_UID_SET);
556                         break;
557                 case Opt_umask:
558                         if (match_octal(args, &option))
559                                 return 0;
560                         uopt->umask = option;
561                         break;
562                 case Opt_nostrict:
563                         uopt->flags &= ~(1 << UDF_FLAG_STRICT);
564                         break;
565                 case Opt_session:
566                         if (match_int(args, &option))
567                                 return 0;
568                         uopt->session = option;
569                         if (!remount)
570                                 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
571                         break;
572                 case Opt_lastblock:
573                         if (match_int(args, &option))
574                                 return 0;
575                         uopt->lastblock = option;
576                         if (!remount)
577                                 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
578                         break;
579                 case Opt_anchor:
580                         if (match_int(args, &option))
581                                 return 0;
582                         uopt->anchor = option;
583                         break;
584                 case Opt_volume:
585                         if (match_int(args, &option))
586                                 return 0;
587                         uopt->volume = option;
588                         break;
589                 case Opt_partition:
590                         if (match_int(args, &option))
591                                 return 0;
592                         uopt->partition = option;
593                         break;
594                 case Opt_fileset:
595                         if (match_int(args, &option))
596                                 return 0;
597                         uopt->fileset = option;
598                         break;
599                 case Opt_rootdir:
600                         if (match_int(args, &option))
601                                 return 0;
602                         uopt->rootdir = option;
603                         break;
604                 case Opt_utf8:
605                         uopt->flags |= (1 << UDF_FLAG_UTF8);
606                         break;
607 #ifdef CONFIG_UDF_NLS
608                 case Opt_iocharset:
609                         uopt->nls_map = load_nls(args[0].from);
610                         uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
611                         break;
612 #endif
613                 case Opt_uignore:
614                         uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
615                         break;
616                 case Opt_uforget:
617                         uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
618                         break;
619                 case Opt_gignore:
620                         uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
621                         break;
622                 case Opt_gforget:
623                         uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
624                         break;
625                 case Opt_fmode:
626                         if (match_octal(args, &option))
627                                 return 0;
628                         uopt->fmode = option & 0777;
629                         break;
630                 case Opt_dmode:
631                         if (match_octal(args, &option))
632                                 return 0;
633                         uopt->dmode = option & 0777;
634                         break;
635                 default:
636                         pr_err("bad mount option \"%s\" or missing value\n", p);
637                         return 0;
638                 }
639         }
640         return 1;
641 }
642
643 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
644 {
645         struct udf_options uopt;
646         struct udf_sb_info *sbi = UDF_SB(sb);
647         int error = 0;
648         struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
649
650         sync_filesystem(sb);
651         if (lvidiu) {
652                 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
653                 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY))
654                         return -EACCES;
655         }
656
657         uopt.flags = sbi->s_flags;
658         uopt.uid   = sbi->s_uid;
659         uopt.gid   = sbi->s_gid;
660         uopt.umask = sbi->s_umask;
661         uopt.fmode = sbi->s_fmode;
662         uopt.dmode = sbi->s_dmode;
663
664         if (!udf_parse_options(options, &uopt, true))
665                 return -EINVAL;
666
667         write_lock(&sbi->s_cred_lock);
668         sbi->s_flags = uopt.flags;
669         sbi->s_uid   = uopt.uid;
670         sbi->s_gid   = uopt.gid;
671         sbi->s_umask = uopt.umask;
672         sbi->s_fmode = uopt.fmode;
673         sbi->s_dmode = uopt.dmode;
674         write_unlock(&sbi->s_cred_lock);
675
676         if ((bool)(*flags & MS_RDONLY) == sb_rdonly(sb))
677                 goto out_unlock;
678
679         if (*flags & MS_RDONLY)
680                 udf_close_lvid(sb);
681         else
682                 udf_open_lvid(sb);
683
684 out_unlock:
685         return error;
686 }
687
688 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
689 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
690 static loff_t udf_check_vsd(struct super_block *sb)
691 {
692         struct volStructDesc *vsd = NULL;
693         loff_t sector = VSD_FIRST_SECTOR_OFFSET;
694         int sectorsize;
695         struct buffer_head *bh = NULL;
696         int nsr02 = 0;
697         int nsr03 = 0;
698         struct udf_sb_info *sbi;
699
700         sbi = UDF_SB(sb);
701         if (sb->s_blocksize < sizeof(struct volStructDesc))
702                 sectorsize = sizeof(struct volStructDesc);
703         else
704                 sectorsize = sb->s_blocksize;
705
706         sector += (sbi->s_session << sb->s_blocksize_bits);
707
708         udf_debug("Starting at sector %u (%ld byte sectors)\n",
709                   (unsigned int)(sector >> sb->s_blocksize_bits),
710                   sb->s_blocksize);
711         /* Process the sequence (if applicable). The hard limit on the sector
712          * offset is arbitrary, hopefully large enough so that all valid UDF
713          * filesystems will be recognised. There is no mention of an upper
714          * bound to the size of the volume recognition area in the standard.
715          *  The limit will prevent the code to read all the sectors of a
716          * specially crafted image (like a bluray disc full of CD001 sectors),
717          * potentially causing minutes or even hours of uninterruptible I/O
718          * activity. This actually happened with uninitialised SSD partitions
719          * (all 0xFF) before the check for the limit and all valid IDs were
720          * added */
721         for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
722              sector += sectorsize) {
723                 /* Read a block */
724                 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
725                 if (!bh)
726                         break;
727
728                 /* Look for ISO  descriptors */
729                 vsd = (struct volStructDesc *)(bh->b_data +
730                                               (sector & (sb->s_blocksize - 1)));
731
732                 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
733                                     VSD_STD_ID_LEN)) {
734                         switch (vsd->structType) {
735                         case 0:
736                                 udf_debug("ISO9660 Boot Record found\n");
737                                 break;
738                         case 1:
739                                 udf_debug("ISO9660 Primary Volume Descriptor found\n");
740                                 break;
741                         case 2:
742                                 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
743                                 break;
744                         case 3:
745                                 udf_debug("ISO9660 Volume Partition Descriptor found\n");
746                                 break;
747                         case 255:
748                                 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
749                                 break;
750                         default:
751                                 udf_debug("ISO9660 VRS (%u) found\n",
752                                           vsd->structType);
753                                 break;
754                         }
755                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
756                                     VSD_STD_ID_LEN))
757                         ; /* nothing */
758                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
759                                     VSD_STD_ID_LEN)) {
760                         brelse(bh);
761                         break;
762                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
763                                     VSD_STD_ID_LEN))
764                         nsr02 = sector;
765                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
766                                     VSD_STD_ID_LEN))
767                         nsr03 = sector;
768                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
769                                     VSD_STD_ID_LEN))
770                         ; /* nothing */
771                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
772                                     VSD_STD_ID_LEN))
773                         ; /* nothing */
774                 else {
775                         /* invalid id : end of volume recognition area */
776                         brelse(bh);
777                         break;
778                 }
779                 brelse(bh);
780         }
781
782         if (nsr03)
783                 return nsr03;
784         else if (nsr02)
785                 return nsr02;
786         else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
787                         VSD_FIRST_SECTOR_OFFSET)
788                 return -1;
789         else
790                 return 0;
791 }
792
793 static int udf_find_fileset(struct super_block *sb,
794                             struct kernel_lb_addr *fileset,
795                             struct kernel_lb_addr *root)
796 {
797         struct buffer_head *bh = NULL;
798         long lastblock;
799         uint16_t ident;
800         struct udf_sb_info *sbi;
801
802         if (fileset->logicalBlockNum != 0xFFFFFFFF ||
803             fileset->partitionReferenceNum != 0xFFFF) {
804                 bh = udf_read_ptagged(sb, fileset, 0, &ident);
805
806                 if (!bh) {
807                         return 1;
808                 } else if (ident != TAG_IDENT_FSD) {
809                         brelse(bh);
810                         return 1;
811                 }
812
813         }
814
815         sbi = UDF_SB(sb);
816         if (!bh) {
817                 /* Search backwards through the partitions */
818                 struct kernel_lb_addr newfileset;
819
820 /* --> cvg: FIXME - is it reasonable? */
821                 return 1;
822
823                 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
824                      (newfileset.partitionReferenceNum != 0xFFFF &&
825                       fileset->logicalBlockNum == 0xFFFFFFFF &&
826                       fileset->partitionReferenceNum == 0xFFFF);
827                      newfileset.partitionReferenceNum--) {
828                         lastblock = sbi->s_partmaps
829                                         [newfileset.partitionReferenceNum]
830                                                 .s_partition_len;
831                         newfileset.logicalBlockNum = 0;
832
833                         do {
834                                 bh = udf_read_ptagged(sb, &newfileset, 0,
835                                                       &ident);
836                                 if (!bh) {
837                                         newfileset.logicalBlockNum++;
838                                         continue;
839                                 }
840
841                                 switch (ident) {
842                                 case TAG_IDENT_SBD:
843                                 {
844                                         struct spaceBitmapDesc *sp;
845                                         sp = (struct spaceBitmapDesc *)
846                                                                 bh->b_data;
847                                         newfileset.logicalBlockNum += 1 +
848                                                 ((le32_to_cpu(sp->numOfBytes) +
849                                                   sizeof(struct spaceBitmapDesc)
850                                                   - 1) >> sb->s_blocksize_bits);
851                                         brelse(bh);
852                                         break;
853                                 }
854                                 case TAG_IDENT_FSD:
855                                         *fileset = newfileset;
856                                         break;
857                                 default:
858                                         newfileset.logicalBlockNum++;
859                                         brelse(bh);
860                                         bh = NULL;
861                                         break;
862                                 }
863                         } while (newfileset.logicalBlockNum < lastblock &&
864                                  fileset->logicalBlockNum == 0xFFFFFFFF &&
865                                  fileset->partitionReferenceNum == 0xFFFF);
866                 }
867         }
868
869         if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
870              fileset->partitionReferenceNum != 0xFFFF) && bh) {
871                 udf_debug("Fileset at block=%d, partition=%d\n",
872                           fileset->logicalBlockNum,
873                           fileset->partitionReferenceNum);
874
875                 sbi->s_partition = fileset->partitionReferenceNum;
876                 udf_load_fileset(sb, bh, root);
877                 brelse(bh);
878                 return 0;
879         }
880         return 1;
881 }
882
883 /*
884  * Load primary Volume Descriptor Sequence
885  *
886  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
887  * should be tried.
888  */
889 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
890 {
891         struct primaryVolDesc *pvoldesc;
892         uint8_t *outstr;
893         struct buffer_head *bh;
894         uint16_t ident;
895         int ret = -ENOMEM;
896
897         outstr = kmalloc(128, GFP_NOFS);
898         if (!outstr)
899                 return -ENOMEM;
900
901         bh = udf_read_tagged(sb, block, block, &ident);
902         if (!bh) {
903                 ret = -EAGAIN;
904                 goto out2;
905         }
906
907         if (ident != TAG_IDENT_PVD) {
908                 ret = -EIO;
909                 goto out_bh;
910         }
911
912         pvoldesc = (struct primaryVolDesc *)bh->b_data;
913
914         if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
915                               pvoldesc->recordingDateAndTime)) {
916 #ifdef UDFFS_DEBUG
917                 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
918                 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
919                           le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
920                           ts->minute, le16_to_cpu(ts->typeAndTimezone));
921 #endif
922         }
923
924         ret = udf_dstrCS0toUTF8(outstr, 31, pvoldesc->volIdent, 32);
925         if (ret < 0)
926                 goto out_bh;
927
928         strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
929         udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
930
931         ret = udf_dstrCS0toUTF8(outstr, 127, pvoldesc->volSetIdent, 128);
932         if (ret < 0)
933                 goto out_bh;
934
935         outstr[ret] = 0;
936         udf_debug("volSetIdent[] = '%s'\n", outstr);
937
938         ret = 0;
939 out_bh:
940         brelse(bh);
941 out2:
942         kfree(outstr);
943         return ret;
944 }
945
946 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
947                                         u32 meta_file_loc, u32 partition_ref)
948 {
949         struct kernel_lb_addr addr;
950         struct inode *metadata_fe;
951
952         addr.logicalBlockNum = meta_file_loc;
953         addr.partitionReferenceNum = partition_ref;
954
955         metadata_fe = udf_iget_special(sb, &addr);
956
957         if (IS_ERR(metadata_fe)) {
958                 udf_warn(sb, "metadata inode efe not found\n");
959                 return metadata_fe;
960         }
961         if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
962                 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
963                 iput(metadata_fe);
964                 return ERR_PTR(-EIO);
965         }
966
967         return metadata_fe;
968 }
969
970 static int udf_load_metadata_files(struct super_block *sb, int partition,
971                                    int type1_index)
972 {
973         struct udf_sb_info *sbi = UDF_SB(sb);
974         struct udf_part_map *map;
975         struct udf_meta_data *mdata;
976         struct kernel_lb_addr addr;
977         struct inode *fe;
978
979         map = &sbi->s_partmaps[partition];
980         mdata = &map->s_type_specific.s_metadata;
981         mdata->s_phys_partition_ref = type1_index;
982
983         /* metadata address */
984         udf_debug("Metadata file location: block = %d part = %d\n",
985                   mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
986
987         fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
988                                          mdata->s_phys_partition_ref);
989         if (IS_ERR(fe)) {
990                 /* mirror file entry */
991                 udf_debug("Mirror metadata file location: block = %d part = %d\n",
992                           mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
993
994                 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
995                                                  mdata->s_phys_partition_ref);
996
997                 if (IS_ERR(fe)) {
998                         udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
999                         return PTR_ERR(fe);
1000                 }
1001                 mdata->s_mirror_fe = fe;
1002         } else
1003                 mdata->s_metadata_fe = fe;
1004
1005
1006         /*
1007          * bitmap file entry
1008          * Note:
1009          * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
1010         */
1011         if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
1012                 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
1013                 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
1014
1015                 udf_debug("Bitmap file location: block = %d part = %d\n",
1016                           addr.logicalBlockNum, addr.partitionReferenceNum);
1017
1018                 fe = udf_iget_special(sb, &addr);
1019                 if (IS_ERR(fe)) {
1020                         if (sb_rdonly(sb))
1021                                 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
1022                         else {
1023                                 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
1024                                 return PTR_ERR(fe);
1025                         }
1026                 } else
1027                         mdata->s_bitmap_fe = fe;
1028         }
1029
1030         udf_debug("udf_load_metadata_files Ok\n");
1031         return 0;
1032 }
1033
1034 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1035                              struct kernel_lb_addr *root)
1036 {
1037         struct fileSetDesc *fset;
1038
1039         fset = (struct fileSetDesc *)bh->b_data;
1040
1041         *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1042
1043         UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1044
1045         udf_debug("Rootdir at block=%d, partition=%d\n",
1046                   root->logicalBlockNum, root->partitionReferenceNum);
1047 }
1048
1049 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1050 {
1051         struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1052         return DIV_ROUND_UP(map->s_partition_len +
1053                             (sizeof(struct spaceBitmapDesc) << 3),
1054                             sb->s_blocksize * 8);
1055 }
1056
1057 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1058 {
1059         struct udf_bitmap *bitmap;
1060         int nr_groups;
1061         int size;
1062
1063         nr_groups = udf_compute_nr_groups(sb, index);
1064         size = sizeof(struct udf_bitmap) +
1065                 (sizeof(struct buffer_head *) * nr_groups);
1066
1067         if (size <= PAGE_SIZE)
1068                 bitmap = kzalloc(size, GFP_KERNEL);
1069         else
1070                 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1071
1072         if (!bitmap)
1073                 return NULL;
1074
1075         bitmap->s_nr_groups = nr_groups;
1076         return bitmap;
1077 }
1078
1079 static int udf_fill_partdesc_info(struct super_block *sb,
1080                 struct partitionDesc *p, int p_index)
1081 {
1082         struct udf_part_map *map;
1083         struct udf_sb_info *sbi = UDF_SB(sb);
1084         struct partitionHeaderDesc *phd;
1085
1086         map = &sbi->s_partmaps[p_index];
1087
1088         map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1089         map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1090
1091         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1092                 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1093         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1094                 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1095         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1096                 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1097         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1098                 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1099
1100         udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1101                   p_index, map->s_partition_type,
1102                   map->s_partition_root, map->s_partition_len);
1103
1104         if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1105             strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1106                 return 0;
1107
1108         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1109         if (phd->unallocSpaceTable.extLength) {
1110                 struct kernel_lb_addr loc = {
1111                         .logicalBlockNum = le32_to_cpu(
1112                                 phd->unallocSpaceTable.extPosition),
1113                         .partitionReferenceNum = p_index,
1114                 };
1115                 struct inode *inode;
1116
1117                 inode = udf_iget_special(sb, &loc);
1118                 if (IS_ERR(inode)) {
1119                         udf_debug("cannot load unallocSpaceTable (part %d)\n",
1120                                   p_index);
1121                         return PTR_ERR(inode);
1122                 }
1123                 map->s_uspace.s_table = inode;
1124                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1125                 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1126                           p_index, map->s_uspace.s_table->i_ino);
1127         }
1128
1129         if (phd->unallocSpaceBitmap.extLength) {
1130                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1131                 if (!bitmap)
1132                         return -ENOMEM;
1133                 map->s_uspace.s_bitmap = bitmap;
1134                 bitmap->s_extPosition = le32_to_cpu(
1135                                 phd->unallocSpaceBitmap.extPosition);
1136                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1137                 udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1138                           p_index, bitmap->s_extPosition);
1139         }
1140
1141         if (phd->partitionIntegrityTable.extLength)
1142                 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1143
1144         if (phd->freedSpaceTable.extLength) {
1145                 struct kernel_lb_addr loc = {
1146                         .logicalBlockNum = le32_to_cpu(
1147                                 phd->freedSpaceTable.extPosition),
1148                         .partitionReferenceNum = p_index,
1149                 };
1150                 struct inode *inode;
1151
1152                 inode = udf_iget_special(sb, &loc);
1153                 if (IS_ERR(inode)) {
1154                         udf_debug("cannot load freedSpaceTable (part %d)\n",
1155                                   p_index);
1156                         return PTR_ERR(inode);
1157                 }
1158                 map->s_fspace.s_table = inode;
1159                 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1160                 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1161                           p_index, map->s_fspace.s_table->i_ino);
1162         }
1163
1164         if (phd->freedSpaceBitmap.extLength) {
1165                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1166                 if (!bitmap)
1167                         return -ENOMEM;
1168                 map->s_fspace.s_bitmap = bitmap;
1169                 bitmap->s_extPosition = le32_to_cpu(
1170                                 phd->freedSpaceBitmap.extPosition);
1171                 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1172                 udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1173                           p_index, bitmap->s_extPosition);
1174         }
1175         return 0;
1176 }
1177
1178 static void udf_find_vat_block(struct super_block *sb, int p_index,
1179                                int type1_index, sector_t start_block)
1180 {
1181         struct udf_sb_info *sbi = UDF_SB(sb);
1182         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1183         sector_t vat_block;
1184         struct kernel_lb_addr ino;
1185         struct inode *inode;
1186
1187         /*
1188          * VAT file entry is in the last recorded block. Some broken disks have
1189          * it a few blocks before so try a bit harder...
1190          */
1191         ino.partitionReferenceNum = type1_index;
1192         for (vat_block = start_block;
1193              vat_block >= map->s_partition_root &&
1194              vat_block >= start_block - 3; vat_block--) {
1195                 ino.logicalBlockNum = vat_block - map->s_partition_root;
1196                 inode = udf_iget_special(sb, &ino);
1197                 if (!IS_ERR(inode)) {
1198                         sbi->s_vat_inode = inode;
1199                         break;
1200                 }
1201         }
1202 }
1203
1204 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1205 {
1206         struct udf_sb_info *sbi = UDF_SB(sb);
1207         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1208         struct buffer_head *bh = NULL;
1209         struct udf_inode_info *vati;
1210         uint32_t pos;
1211         struct virtualAllocationTable20 *vat20;
1212         sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1213                           sb->s_blocksize_bits;
1214
1215         udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1216         if (!sbi->s_vat_inode &&
1217             sbi->s_last_block != blocks - 1) {
1218                 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1219                           (unsigned long)sbi->s_last_block,
1220                           (unsigned long)blocks - 1);
1221                 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1222         }
1223         if (!sbi->s_vat_inode)
1224                 return -EIO;
1225
1226         if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1227                 map->s_type_specific.s_virtual.s_start_offset = 0;
1228                 map->s_type_specific.s_virtual.s_num_entries =
1229                         (sbi->s_vat_inode->i_size - 36) >> 2;
1230         } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1231                 vati = UDF_I(sbi->s_vat_inode);
1232                 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1233                         pos = udf_block_map(sbi->s_vat_inode, 0);
1234                         bh = sb_bread(sb, pos);
1235                         if (!bh)
1236                                 return -EIO;
1237                         vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1238                 } else {
1239                         vat20 = (struct virtualAllocationTable20 *)
1240                                                         vati->i_ext.i_data;
1241                 }
1242
1243                 map->s_type_specific.s_virtual.s_start_offset =
1244                         le16_to_cpu(vat20->lengthHeader);
1245                 map->s_type_specific.s_virtual.s_num_entries =
1246                         (sbi->s_vat_inode->i_size -
1247                                 map->s_type_specific.s_virtual.
1248                                         s_start_offset) >> 2;
1249                 brelse(bh);
1250         }
1251         return 0;
1252 }
1253
1254 /*
1255  * Load partition descriptor block
1256  *
1257  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1258  * sequence.
1259  */
1260 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1261 {
1262         struct buffer_head *bh;
1263         struct partitionDesc *p;
1264         struct udf_part_map *map;
1265         struct udf_sb_info *sbi = UDF_SB(sb);
1266         int i, type1_idx;
1267         uint16_t partitionNumber;
1268         uint16_t ident;
1269         int ret;
1270
1271         bh = udf_read_tagged(sb, block, block, &ident);
1272         if (!bh)
1273                 return -EAGAIN;
1274         if (ident != TAG_IDENT_PD) {
1275                 ret = 0;
1276                 goto out_bh;
1277         }
1278
1279         p = (struct partitionDesc *)bh->b_data;
1280         partitionNumber = le16_to_cpu(p->partitionNumber);
1281
1282         /* First scan for TYPE1 and SPARABLE partitions */
1283         for (i = 0; i < sbi->s_partitions; i++) {
1284                 map = &sbi->s_partmaps[i];
1285                 udf_debug("Searching map: (%d == %d)\n",
1286                           map->s_partition_num, partitionNumber);
1287                 if (map->s_partition_num == partitionNumber &&
1288                     (map->s_partition_type == UDF_TYPE1_MAP15 ||
1289                      map->s_partition_type == UDF_SPARABLE_MAP15))
1290                         break;
1291         }
1292
1293         if (i >= sbi->s_partitions) {
1294                 udf_debug("Partition (%d) not found in partition map\n",
1295                           partitionNumber);
1296                 ret = 0;
1297                 goto out_bh;
1298         }
1299
1300         ret = udf_fill_partdesc_info(sb, p, i);
1301         if (ret < 0)
1302                 goto out_bh;
1303
1304         /*
1305          * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1306          * PHYSICAL partitions are already set up
1307          */
1308         type1_idx = i;
1309 #ifdef UDFFS_DEBUG
1310         map = NULL; /* supress 'maybe used uninitialized' warning */
1311 #endif
1312         for (i = 0; i < sbi->s_partitions; i++) {
1313                 map = &sbi->s_partmaps[i];
1314
1315                 if (map->s_partition_num == partitionNumber &&
1316                     (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1317                      map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1318                      map->s_partition_type == UDF_METADATA_MAP25))
1319                         break;
1320         }
1321
1322         if (i >= sbi->s_partitions) {
1323                 ret = 0;
1324                 goto out_bh;
1325         }
1326
1327         ret = udf_fill_partdesc_info(sb, p, i);
1328         if (ret < 0)
1329                 goto out_bh;
1330
1331         if (map->s_partition_type == UDF_METADATA_MAP25) {
1332                 ret = udf_load_metadata_files(sb, i, type1_idx);
1333                 if (ret < 0) {
1334                         udf_err(sb, "error loading MetaData partition map %d\n",
1335                                 i);
1336                         goto out_bh;
1337                 }
1338         } else {
1339                 /*
1340                  * If we have a partition with virtual map, we don't handle
1341                  * writing to it (we overwrite blocks instead of relocating
1342                  * them).
1343                  */
1344                 if (!sb_rdonly(sb)) {
1345                         ret = -EACCES;
1346                         goto out_bh;
1347                 }
1348                 ret = udf_load_vat(sb, i, type1_idx);
1349                 if (ret < 0)
1350                         goto out_bh;
1351         }
1352         ret = 0;
1353 out_bh:
1354         /* In case loading failed, we handle cleanup in udf_fill_super */
1355         brelse(bh);
1356         return ret;
1357 }
1358
1359 static int udf_load_sparable_map(struct super_block *sb,
1360                                  struct udf_part_map *map,
1361                                  struct sparablePartitionMap *spm)
1362 {
1363         uint32_t loc;
1364         uint16_t ident;
1365         struct sparingTable *st;
1366         struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1367         int i;
1368         struct buffer_head *bh;
1369
1370         map->s_partition_type = UDF_SPARABLE_MAP15;
1371         sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1372         if (!is_power_of_2(sdata->s_packet_len)) {
1373                 udf_err(sb, "error loading logical volume descriptor: "
1374                         "Invalid packet length %u\n",
1375                         (unsigned)sdata->s_packet_len);
1376                 return -EIO;
1377         }
1378         if (spm->numSparingTables > 4) {
1379                 udf_err(sb, "error loading logical volume descriptor: "
1380                         "Too many sparing tables (%d)\n",
1381                         (int)spm->numSparingTables);
1382                 return -EIO;
1383         }
1384
1385         for (i = 0; i < spm->numSparingTables; i++) {
1386                 loc = le32_to_cpu(spm->locSparingTable[i]);
1387                 bh = udf_read_tagged(sb, loc, loc, &ident);
1388                 if (!bh)
1389                         continue;
1390
1391                 st = (struct sparingTable *)bh->b_data;
1392                 if (ident != 0 ||
1393                     strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1394                             strlen(UDF_ID_SPARING)) ||
1395                     sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1396                                                         sb->s_blocksize) {
1397                         brelse(bh);
1398                         continue;
1399                 }
1400
1401                 sdata->s_spar_map[i] = bh;
1402         }
1403         map->s_partition_func = udf_get_pblock_spar15;
1404         return 0;
1405 }
1406
1407 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1408                                struct kernel_lb_addr *fileset)
1409 {
1410         struct logicalVolDesc *lvd;
1411         int i, offset;
1412         uint8_t type;
1413         struct udf_sb_info *sbi = UDF_SB(sb);
1414         struct genericPartitionMap *gpm;
1415         uint16_t ident;
1416         struct buffer_head *bh;
1417         unsigned int table_len;
1418         int ret;
1419
1420         bh = udf_read_tagged(sb, block, block, &ident);
1421         if (!bh)
1422                 return -EAGAIN;
1423         BUG_ON(ident != TAG_IDENT_LVD);
1424         lvd = (struct logicalVolDesc *)bh->b_data;
1425         table_len = le32_to_cpu(lvd->mapTableLength);
1426         if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1427                 udf_err(sb, "error loading logical volume descriptor: "
1428                         "Partition table too long (%u > %lu)\n", table_len,
1429                         sb->s_blocksize - sizeof(*lvd));
1430                 ret = -EIO;
1431                 goto out_bh;
1432         }
1433
1434         ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1435         if (ret)
1436                 goto out_bh;
1437
1438         for (i = 0, offset = 0;
1439              i < sbi->s_partitions && offset < table_len;
1440              i++, offset += gpm->partitionMapLength) {
1441                 struct udf_part_map *map = &sbi->s_partmaps[i];
1442                 gpm = (struct genericPartitionMap *)
1443                                 &(lvd->partitionMaps[offset]);
1444                 type = gpm->partitionMapType;
1445                 if (type == 1) {
1446                         struct genericPartitionMap1 *gpm1 =
1447                                 (struct genericPartitionMap1 *)gpm;
1448                         map->s_partition_type = UDF_TYPE1_MAP15;
1449                         map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1450                         map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1451                         map->s_partition_func = NULL;
1452                 } else if (type == 2) {
1453                         struct udfPartitionMap2 *upm2 =
1454                                                 (struct udfPartitionMap2 *)gpm;
1455                         if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1456                                                 strlen(UDF_ID_VIRTUAL))) {
1457                                 u16 suf =
1458                                         le16_to_cpu(((__le16 *)upm2->partIdent.
1459                                                         identSuffix)[0]);
1460                                 if (suf < 0x0200) {
1461                                         map->s_partition_type =
1462                                                         UDF_VIRTUAL_MAP15;
1463                                         map->s_partition_func =
1464                                                         udf_get_pblock_virt15;
1465                                 } else {
1466                                         map->s_partition_type =
1467                                                         UDF_VIRTUAL_MAP20;
1468                                         map->s_partition_func =
1469                                                         udf_get_pblock_virt20;
1470                                 }
1471                         } else if (!strncmp(upm2->partIdent.ident,
1472                                                 UDF_ID_SPARABLE,
1473                                                 strlen(UDF_ID_SPARABLE))) {
1474                                 ret = udf_load_sparable_map(sb, map,
1475                                         (struct sparablePartitionMap *)gpm);
1476                                 if (ret < 0)
1477                                         goto out_bh;
1478                         } else if (!strncmp(upm2->partIdent.ident,
1479                                                 UDF_ID_METADATA,
1480                                                 strlen(UDF_ID_METADATA))) {
1481                                 struct udf_meta_data *mdata =
1482                                         &map->s_type_specific.s_metadata;
1483                                 struct metadataPartitionMap *mdm =
1484                                                 (struct metadataPartitionMap *)
1485                                                 &(lvd->partitionMaps[offset]);
1486                                 udf_debug("Parsing Logical vol part %d type %d  id=%s\n",
1487                                           i, type, UDF_ID_METADATA);
1488
1489                                 map->s_partition_type = UDF_METADATA_MAP25;
1490                                 map->s_partition_func = udf_get_pblock_meta25;
1491
1492                                 mdata->s_meta_file_loc   =
1493                                         le32_to_cpu(mdm->metadataFileLoc);
1494                                 mdata->s_mirror_file_loc =
1495                                         le32_to_cpu(mdm->metadataMirrorFileLoc);
1496                                 mdata->s_bitmap_file_loc =
1497                                         le32_to_cpu(mdm->metadataBitmapFileLoc);
1498                                 mdata->s_alloc_unit_size =
1499                                         le32_to_cpu(mdm->allocUnitSize);
1500                                 mdata->s_align_unit_size =
1501                                         le16_to_cpu(mdm->alignUnitSize);
1502                                 if (mdm->flags & 0x01)
1503                                         mdata->s_flags |= MF_DUPLICATE_MD;
1504
1505                                 udf_debug("Metadata Ident suffix=0x%x\n",
1506                                           le16_to_cpu(*(__le16 *)
1507                                                       mdm->partIdent.identSuffix));
1508                                 udf_debug("Metadata part num=%d\n",
1509                                           le16_to_cpu(mdm->partitionNum));
1510                                 udf_debug("Metadata part alloc unit size=%d\n",
1511                                           le32_to_cpu(mdm->allocUnitSize));
1512                                 udf_debug("Metadata file loc=%d\n",
1513                                           le32_to_cpu(mdm->metadataFileLoc));
1514                                 udf_debug("Mirror file loc=%d\n",
1515                                           le32_to_cpu(mdm->metadataMirrorFileLoc));
1516                                 udf_debug("Bitmap file loc=%d\n",
1517                                           le32_to_cpu(mdm->metadataBitmapFileLoc));
1518                                 udf_debug("Flags: %d %d\n",
1519                                           mdata->s_flags, mdm->flags);
1520                         } else {
1521                                 udf_debug("Unknown ident: %s\n",
1522                                           upm2->partIdent.ident);
1523                                 continue;
1524                         }
1525                         map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1526                         map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1527                 }
1528                 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1529                           i, map->s_partition_num, type, map->s_volumeseqnum);
1530         }
1531
1532         if (fileset) {
1533                 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1534
1535                 *fileset = lelb_to_cpu(la->extLocation);
1536                 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1537                           fileset->logicalBlockNum,
1538                           fileset->partitionReferenceNum);
1539         }
1540         if (lvd->integritySeqExt.extLength)
1541                 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1542         ret = 0;
1543 out_bh:
1544         brelse(bh);
1545         return ret;
1546 }
1547
1548 /*
1549  * Find the prevailing Logical Volume Integrity Descriptor.
1550  */
1551 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1552 {
1553         struct buffer_head *bh, *final_bh;
1554         uint16_t ident;
1555         struct udf_sb_info *sbi = UDF_SB(sb);
1556         struct logicalVolIntegrityDesc *lvid;
1557         int indirections = 0;
1558
1559         while (++indirections <= UDF_MAX_LVID_NESTING) {
1560                 final_bh = NULL;
1561                 while (loc.extLength > 0 &&
1562                         (bh = udf_read_tagged(sb, loc.extLocation,
1563                                         loc.extLocation, &ident))) {
1564                         if (ident != TAG_IDENT_LVID) {
1565                                 brelse(bh);
1566                                 break;
1567                         }
1568
1569                         brelse(final_bh);
1570                         final_bh = bh;
1571
1572                         loc.extLength -= sb->s_blocksize;
1573                         loc.extLocation++;
1574                 }
1575
1576                 if (!final_bh)
1577                         return;
1578
1579                 brelse(sbi->s_lvid_bh);
1580                 sbi->s_lvid_bh = final_bh;
1581
1582                 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1583                 if (lvid->nextIntegrityExt.extLength == 0)
1584                         return;
1585
1586                 loc = leea_to_cpu(lvid->nextIntegrityExt);
1587         }
1588
1589         udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1590                 UDF_MAX_LVID_NESTING);
1591         brelse(sbi->s_lvid_bh);
1592         sbi->s_lvid_bh = NULL;
1593 }
1594
1595
1596 /*
1597  * Process a main/reserve volume descriptor sequence.
1598  *   @block             First block of first extent of the sequence.
1599  *   @lastblock         Lastblock of first extent of the sequence.
1600  *   @fileset           There we store extent containing root fileset
1601  *
1602  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1603  * sequence
1604  */
1605 static noinline int udf_process_sequence(
1606                 struct super_block *sb,
1607                 sector_t block, sector_t lastblock,
1608                 struct kernel_lb_addr *fileset)
1609 {
1610         struct buffer_head *bh = NULL;
1611         struct udf_vds_record vds[VDS_POS_LENGTH];
1612         struct udf_vds_record *curr;
1613         struct generic_desc *gd;
1614         struct volDescPtr *vdp;
1615         bool done = false;
1616         uint32_t vdsn;
1617         uint16_t ident;
1618         long next_s = 0, next_e = 0;
1619         int ret;
1620         unsigned int indirections = 0;
1621
1622         memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1623
1624         /*
1625          * Read the main descriptor sequence and find which descriptors
1626          * are in it.
1627          */
1628         for (; (!done && block <= lastblock); block++) {
1629
1630                 bh = udf_read_tagged(sb, block, block, &ident);
1631                 if (!bh) {
1632                         udf_err(sb,
1633                                 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1634                                 (unsigned long long)block);
1635                         return -EAGAIN;
1636                 }
1637
1638                 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1639                 gd = (struct generic_desc *)bh->b_data;
1640                 vdsn = le32_to_cpu(gd->volDescSeqNum);
1641                 switch (ident) {
1642                 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1643                         curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1644                         if (vdsn >= curr->volDescSeqNum) {
1645                                 curr->volDescSeqNum = vdsn;
1646                                 curr->block = block;
1647                         }
1648                         break;
1649                 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1650                         curr = &vds[VDS_POS_VOL_DESC_PTR];
1651                         if (vdsn >= curr->volDescSeqNum) {
1652                                 curr->volDescSeqNum = vdsn;
1653                                 curr->block = block;
1654
1655                                 vdp = (struct volDescPtr *)bh->b_data;
1656                                 next_s = le32_to_cpu(
1657                                         vdp->nextVolDescSeqExt.extLocation);
1658                                 next_e = le32_to_cpu(
1659                                         vdp->nextVolDescSeqExt.extLength);
1660                                 next_e = next_e >> sb->s_blocksize_bits;
1661                                 next_e += next_s;
1662                         }
1663                         break;
1664                 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1665                         curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1666                         if (vdsn >= curr->volDescSeqNum) {
1667                                 curr->volDescSeqNum = vdsn;
1668                                 curr->block = block;
1669                         }
1670                         break;
1671                 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1672                         curr = &vds[VDS_POS_PARTITION_DESC];
1673                         if (!curr->block)
1674                                 curr->block = block;
1675                         break;
1676                 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1677                         curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1678                         if (vdsn >= curr->volDescSeqNum) {
1679                                 curr->volDescSeqNum = vdsn;
1680                                 curr->block = block;
1681                         }
1682                         break;
1683                 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1684                         curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1685                         if (vdsn >= curr->volDescSeqNum) {
1686                                 curr->volDescSeqNum = vdsn;
1687                                 curr->block = block;
1688                         }
1689                         break;
1690                 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1691                         if (++indirections > UDF_MAX_TD_NESTING) {
1692                                 udf_err(sb, "too many TDs (max %u supported)\n", UDF_MAX_TD_NESTING);
1693                                 brelse(bh);
1694                                 return -EIO;
1695                         }
1696
1697                         vds[VDS_POS_TERMINATING_DESC].block = block;
1698                         if (next_e) {
1699                                 block = next_s;
1700                                 lastblock = next_e;
1701                                 next_s = next_e = 0;
1702                         } else
1703                                 done = true;
1704                         break;
1705                 }
1706                 brelse(bh);
1707         }
1708         /*
1709          * Now read interesting descriptors again and process them
1710          * in a suitable order
1711          */
1712         if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1713                 udf_err(sb, "Primary Volume Descriptor not found!\n");
1714                 return -EAGAIN;
1715         }
1716         ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block);
1717         if (ret < 0)
1718                 return ret;
1719
1720         if (vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1721                 ret = udf_load_logicalvol(sb,
1722                                           vds[VDS_POS_LOGICAL_VOL_DESC].block,
1723                                           fileset);
1724                 if (ret < 0)
1725                         return ret;
1726         }
1727
1728         if (vds[VDS_POS_PARTITION_DESC].block) {
1729                 /*
1730                  * We rescan the whole descriptor sequence to find
1731                  * partition descriptor blocks and process them.
1732                  */
1733                 for (block = vds[VDS_POS_PARTITION_DESC].block;
1734                      block < vds[VDS_POS_TERMINATING_DESC].block;
1735                      block++) {
1736                         ret = udf_load_partdesc(sb, block);
1737                         if (ret < 0)
1738                                 return ret;
1739                 }
1740         }
1741
1742         return 0;
1743 }
1744
1745 /*
1746  * Load Volume Descriptor Sequence described by anchor in bh
1747  *
1748  * Returns <0 on error, 0 on success
1749  */
1750 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1751                              struct kernel_lb_addr *fileset)
1752 {
1753         struct anchorVolDescPtr *anchor;
1754         sector_t main_s, main_e, reserve_s, reserve_e;
1755         int ret;
1756
1757         anchor = (struct anchorVolDescPtr *)bh->b_data;
1758
1759         /* Locate the main sequence */
1760         main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1761         main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1762         main_e = main_e >> sb->s_blocksize_bits;
1763         main_e += main_s;
1764
1765         /* Locate the reserve sequence */
1766         reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1767         reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1768         reserve_e = reserve_e >> sb->s_blocksize_bits;
1769         reserve_e += reserve_s;
1770
1771         /* Process the main & reserve sequences */
1772         /* responsible for finding the PartitionDesc(s) */
1773         ret = udf_process_sequence(sb, main_s, main_e, fileset);
1774         if (ret != -EAGAIN)
1775                 return ret;
1776         udf_sb_free_partitions(sb);
1777         ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1778         if (ret < 0) {
1779                 udf_sb_free_partitions(sb);
1780                 /* No sequence was OK, return -EIO */
1781                 if (ret == -EAGAIN)
1782                         ret = -EIO;
1783         }
1784         return ret;
1785 }
1786
1787 /*
1788  * Check whether there is an anchor block in the given block and
1789  * load Volume Descriptor Sequence if so.
1790  *
1791  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1792  * block
1793  */
1794 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1795                                   struct kernel_lb_addr *fileset)
1796 {
1797         struct buffer_head *bh;
1798         uint16_t ident;
1799         int ret;
1800
1801         if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1802             udf_fixed_to_variable(block) >=
1803             i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1804                 return -EAGAIN;
1805
1806         bh = udf_read_tagged(sb, block, block, &ident);
1807         if (!bh)
1808                 return -EAGAIN;
1809         if (ident != TAG_IDENT_AVDP) {
1810                 brelse(bh);
1811                 return -EAGAIN;
1812         }
1813         ret = udf_load_sequence(sb, bh, fileset);
1814         brelse(bh);
1815         return ret;
1816 }
1817
1818 /*
1819  * Search for an anchor volume descriptor pointer.
1820  *
1821  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1822  * of anchors.
1823  */
1824 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1825                             struct kernel_lb_addr *fileset)
1826 {
1827         sector_t last[6];
1828         int i;
1829         struct udf_sb_info *sbi = UDF_SB(sb);
1830         int last_count = 0;
1831         int ret;
1832
1833         /* First try user provided anchor */
1834         if (sbi->s_anchor) {
1835                 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1836                 if (ret != -EAGAIN)
1837                         return ret;
1838         }
1839         /*
1840          * according to spec, anchor is in either:
1841          *     block 256
1842          *     lastblock-256
1843          *     lastblock
1844          *  however, if the disc isn't closed, it could be 512.
1845          */
1846         ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1847         if (ret != -EAGAIN)
1848                 return ret;
1849         /*
1850          * The trouble is which block is the last one. Drives often misreport
1851          * this so we try various possibilities.
1852          */
1853         last[last_count++] = *lastblock;
1854         if (*lastblock >= 1)
1855                 last[last_count++] = *lastblock - 1;
1856         last[last_count++] = *lastblock + 1;
1857         if (*lastblock >= 2)
1858                 last[last_count++] = *lastblock - 2;
1859         if (*lastblock >= 150)
1860                 last[last_count++] = *lastblock - 150;
1861         if (*lastblock >= 152)
1862                 last[last_count++] = *lastblock - 152;
1863
1864         for (i = 0; i < last_count; i++) {
1865                 if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1866                                 sb->s_blocksize_bits)
1867                         continue;
1868                 ret = udf_check_anchor_block(sb, last[i], fileset);
1869                 if (ret != -EAGAIN) {
1870                         if (!ret)
1871                                 *lastblock = last[i];
1872                         return ret;
1873                 }
1874                 if (last[i] < 256)
1875                         continue;
1876                 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1877                 if (ret != -EAGAIN) {
1878                         if (!ret)
1879                                 *lastblock = last[i];
1880                         return ret;
1881                 }
1882         }
1883
1884         /* Finally try block 512 in case media is open */
1885         return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1886 }
1887
1888 /*
1889  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1890  * area specified by it. The function expects sbi->s_lastblock to be the last
1891  * block on the media.
1892  *
1893  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1894  * was not found.
1895  */
1896 static int udf_find_anchor(struct super_block *sb,
1897                            struct kernel_lb_addr *fileset)
1898 {
1899         struct udf_sb_info *sbi = UDF_SB(sb);
1900         sector_t lastblock = sbi->s_last_block;
1901         int ret;
1902
1903         ret = udf_scan_anchors(sb, &lastblock, fileset);
1904         if (ret != -EAGAIN)
1905                 goto out;
1906
1907         /* No anchor found? Try VARCONV conversion of block numbers */
1908         UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1909         lastblock = udf_variable_to_fixed(sbi->s_last_block);
1910         /* Firstly, we try to not convert number of the last block */
1911         ret = udf_scan_anchors(sb, &lastblock, fileset);
1912         if (ret != -EAGAIN)
1913                 goto out;
1914
1915         lastblock = sbi->s_last_block;
1916         /* Secondly, we try with converted number of the last block */
1917         ret = udf_scan_anchors(sb, &lastblock, fileset);
1918         if (ret < 0) {
1919                 /* VARCONV didn't help. Clear it. */
1920                 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1921         }
1922 out:
1923         if (ret == 0)
1924                 sbi->s_last_block = lastblock;
1925         return ret;
1926 }
1927
1928 /*
1929  * Check Volume Structure Descriptor, find Anchor block and load Volume
1930  * Descriptor Sequence.
1931  *
1932  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1933  * block was not found.
1934  */
1935 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1936                         int silent, struct kernel_lb_addr *fileset)
1937 {
1938         struct udf_sb_info *sbi = UDF_SB(sb);
1939         loff_t nsr_off;
1940         int ret;
1941
1942         if (!sb_set_blocksize(sb, uopt->blocksize)) {
1943                 if (!silent)
1944                         udf_warn(sb, "Bad block size\n");
1945                 return -EINVAL;
1946         }
1947         sbi->s_last_block = uopt->lastblock;
1948         if (!uopt->novrs) {
1949                 /* Check that it is NSR02 compliant */
1950                 nsr_off = udf_check_vsd(sb);
1951                 if (!nsr_off) {
1952                         if (!silent)
1953                                 udf_warn(sb, "No VRS found\n");
1954                         return -EINVAL;
1955                 }
1956                 if (nsr_off == -1)
1957                         udf_debug("Failed to read sector at offset %d. "
1958                                   "Assuming open disc. Skipping validity "
1959                                   "check\n", VSD_FIRST_SECTOR_OFFSET);
1960                 if (!sbi->s_last_block)
1961                         sbi->s_last_block = udf_get_last_block(sb);
1962         } else {
1963                 udf_debug("Validity check skipped because of novrs option\n");
1964         }
1965
1966         /* Look for anchor block and load Volume Descriptor Sequence */
1967         sbi->s_anchor = uopt->anchor;
1968         ret = udf_find_anchor(sb, fileset);
1969         if (ret < 0) {
1970                 if (!silent && ret == -EAGAIN)
1971                         udf_warn(sb, "No anchor found\n");
1972                 return ret;
1973         }
1974         return 0;
1975 }
1976
1977 static void udf_open_lvid(struct super_block *sb)
1978 {
1979         struct udf_sb_info *sbi = UDF_SB(sb);
1980         struct buffer_head *bh = sbi->s_lvid_bh;
1981         struct logicalVolIntegrityDesc *lvid;
1982         struct logicalVolIntegrityDescImpUse *lvidiu;
1983         struct timespec ts;
1984
1985         if (!bh)
1986                 return;
1987         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1988         lvidiu = udf_sb_lvidiu(sb);
1989         if (!lvidiu)
1990                 return;
1991
1992         mutex_lock(&sbi->s_alloc_mutex);
1993         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1994         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1995         ktime_get_real_ts(&ts);
1996         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
1997         lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1998
1999         lvid->descTag.descCRC = cpu_to_le16(
2000                 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2001                         le16_to_cpu(lvid->descTag.descCRCLength)));
2002
2003         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2004         mark_buffer_dirty(bh);
2005         sbi->s_lvid_dirty = 0;
2006         mutex_unlock(&sbi->s_alloc_mutex);
2007         /* Make opening of filesystem visible on the media immediately */
2008         sync_dirty_buffer(bh);
2009 }
2010
2011 static void udf_close_lvid(struct super_block *sb)
2012 {
2013         struct udf_sb_info *sbi = UDF_SB(sb);
2014         struct buffer_head *bh = sbi->s_lvid_bh;
2015         struct logicalVolIntegrityDesc *lvid;
2016         struct logicalVolIntegrityDescImpUse *lvidiu;
2017         struct timespec ts;
2018
2019         if (!bh)
2020                 return;
2021         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2022         lvidiu = udf_sb_lvidiu(sb);
2023         if (!lvidiu)
2024                 return;
2025
2026         mutex_lock(&sbi->s_alloc_mutex);
2027         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2028         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2029         ktime_get_real_ts(&ts);
2030         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2031         if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2032                 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2033         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2034                 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2035         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2036                 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2037         lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2038
2039         lvid->descTag.descCRC = cpu_to_le16(
2040                         crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2041                                 le16_to_cpu(lvid->descTag.descCRCLength)));
2042
2043         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2044         /*
2045          * We set buffer uptodate unconditionally here to avoid spurious
2046          * warnings from mark_buffer_dirty() when previous EIO has marked
2047          * the buffer as !uptodate
2048          */
2049         set_buffer_uptodate(bh);
2050         mark_buffer_dirty(bh);
2051         sbi->s_lvid_dirty = 0;
2052         mutex_unlock(&sbi->s_alloc_mutex);
2053         /* Make closing of filesystem visible on the media immediately */
2054         sync_dirty_buffer(bh);
2055 }
2056
2057 u64 lvid_get_unique_id(struct super_block *sb)
2058 {
2059         struct buffer_head *bh;
2060         struct udf_sb_info *sbi = UDF_SB(sb);
2061         struct logicalVolIntegrityDesc *lvid;
2062         struct logicalVolHeaderDesc *lvhd;
2063         u64 uniqueID;
2064         u64 ret;
2065
2066         bh = sbi->s_lvid_bh;
2067         if (!bh)
2068                 return 0;
2069
2070         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2071         lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2072
2073         mutex_lock(&sbi->s_alloc_mutex);
2074         ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2075         if (!(++uniqueID & 0xFFFFFFFF))
2076                 uniqueID += 16;
2077         lvhd->uniqueID = cpu_to_le64(uniqueID);
2078         mutex_unlock(&sbi->s_alloc_mutex);
2079         mark_buffer_dirty(bh);
2080
2081         return ret;
2082 }
2083
2084 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2085 {
2086         int ret = -EINVAL;
2087         struct inode *inode = NULL;
2088         struct udf_options uopt;
2089         struct kernel_lb_addr rootdir, fileset;
2090         struct udf_sb_info *sbi;
2091         bool lvid_open = false;
2092
2093         uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2094         uopt.uid = INVALID_UID;
2095         uopt.gid = INVALID_GID;
2096         uopt.umask = 0;
2097         uopt.fmode = UDF_INVALID_MODE;
2098         uopt.dmode = UDF_INVALID_MODE;
2099
2100         sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2101         if (!sbi)
2102                 return -ENOMEM;
2103
2104         sb->s_fs_info = sbi;
2105
2106         mutex_init(&sbi->s_alloc_mutex);
2107
2108         if (!udf_parse_options((char *)options, &uopt, false))
2109                 goto parse_options_failure;
2110
2111         if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2112             uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2113                 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2114                 goto parse_options_failure;
2115         }
2116 #ifdef CONFIG_UDF_NLS
2117         if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2118                 uopt.nls_map = load_nls_default();
2119                 if (!uopt.nls_map)
2120                         uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2121                 else
2122                         udf_debug("Using default NLS map\n");
2123         }
2124 #endif
2125         if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2126                 uopt.flags |= (1 << UDF_FLAG_UTF8);
2127
2128         fileset.logicalBlockNum = 0xFFFFFFFF;
2129         fileset.partitionReferenceNum = 0xFFFF;
2130
2131         sbi->s_flags = uopt.flags;
2132         sbi->s_uid = uopt.uid;
2133         sbi->s_gid = uopt.gid;
2134         sbi->s_umask = uopt.umask;
2135         sbi->s_fmode = uopt.fmode;
2136         sbi->s_dmode = uopt.dmode;
2137         sbi->s_nls_map = uopt.nls_map;
2138         rwlock_init(&sbi->s_cred_lock);
2139
2140         if (uopt.session == 0xFFFFFFFF)
2141                 sbi->s_session = udf_get_last_session(sb);
2142         else
2143                 sbi->s_session = uopt.session;
2144
2145         udf_debug("Multi-session=%d\n", sbi->s_session);
2146
2147         /* Fill in the rest of the superblock */
2148         sb->s_op = &udf_sb_ops;
2149         sb->s_export_op = &udf_export_ops;
2150
2151         sb->s_magic = UDF_SUPER_MAGIC;
2152         sb->s_time_gran = 1000;
2153
2154         if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2155                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2156         } else {
2157                 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2158                 while (uopt.blocksize <= 4096) {
2159                         ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2160                         if (ret < 0) {
2161                                 if (!silent && ret != -EACCES) {
2162                                         pr_notice("Scanning with blocksize %d failed\n",
2163                                                   uopt.blocksize);
2164                                 }
2165                                 brelse(sbi->s_lvid_bh);
2166                                 sbi->s_lvid_bh = NULL;
2167                                 /*
2168                                  * EACCES is special - we want to propagate to
2169                                  * upper layers that we cannot handle RW mount.
2170                                  */
2171                                 if (ret == -EACCES)
2172                                         break;
2173                         } else
2174                                 break;
2175
2176                         uopt.blocksize <<= 1;
2177                 }
2178         }
2179         if (ret < 0) {
2180                 if (ret == -EAGAIN) {
2181                         udf_warn(sb, "No partition found (1)\n");
2182                         ret = -EINVAL;
2183                 }
2184                 goto error_out;
2185         }
2186
2187         udf_debug("Lastblock=%d\n", sbi->s_last_block);
2188
2189         if (sbi->s_lvid_bh) {
2190                 struct logicalVolIntegrityDescImpUse *lvidiu =
2191                                                         udf_sb_lvidiu(sb);
2192                 uint16_t minUDFReadRev;
2193                 uint16_t minUDFWriteRev;
2194
2195                 if (!lvidiu) {
2196                         ret = -EINVAL;
2197                         goto error_out;
2198                 }
2199                 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2200                 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2201                 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2202                         udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2203                                 minUDFReadRev,
2204                                 UDF_MAX_READ_VERSION);
2205                         ret = -EINVAL;
2206                         goto error_out;
2207                 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2208                            !sb_rdonly(sb)) {
2209                         ret = -EACCES;
2210                         goto error_out;
2211                 }
2212
2213                 sbi->s_udfrev = minUDFWriteRev;
2214
2215                 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2216                         UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2217                 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2218                         UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2219         }
2220
2221         if (!sbi->s_partitions) {
2222                 udf_warn(sb, "No partition found (2)\n");
2223                 ret = -EINVAL;
2224                 goto error_out;
2225         }
2226
2227         if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2228                         UDF_PART_FLAG_READ_ONLY &&
2229             !sb_rdonly(sb)) {
2230                 ret = -EACCES;
2231                 goto error_out;
2232         }
2233
2234         if (udf_find_fileset(sb, &fileset, &rootdir)) {
2235                 udf_warn(sb, "No fileset found\n");
2236                 ret = -EINVAL;
2237                 goto error_out;
2238         }
2239
2240         if (!silent) {
2241                 struct timestamp ts;
2242                 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2243                 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2244                          sbi->s_volume_ident,
2245                          le16_to_cpu(ts.year), ts.month, ts.day,
2246                          ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2247         }
2248         if (!sb_rdonly(sb)) {
2249                 udf_open_lvid(sb);
2250                 lvid_open = true;
2251         }
2252
2253         /* Assign the root inode */
2254         /* assign inodes by physical block number */
2255         /* perhaps it's not extensible enough, but for now ... */
2256         inode = udf_iget(sb, &rootdir);
2257         if (IS_ERR(inode)) {
2258                 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2259                        rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2260                 ret = PTR_ERR(inode);
2261                 goto error_out;
2262         }
2263
2264         /* Allocate a dentry for the root inode */
2265         sb->s_root = d_make_root(inode);
2266         if (!sb->s_root) {
2267                 udf_err(sb, "Couldn't allocate root dentry\n");
2268                 ret = -ENOMEM;
2269                 goto error_out;
2270         }
2271         sb->s_maxbytes = MAX_LFS_FILESIZE;
2272         sb->s_max_links = UDF_MAX_LINKS;
2273         return 0;
2274
2275 error_out:
2276         iput(sbi->s_vat_inode);
2277 parse_options_failure:
2278 #ifdef CONFIG_UDF_NLS
2279         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2280                 unload_nls(sbi->s_nls_map);
2281 #endif
2282         if (lvid_open)
2283                 udf_close_lvid(sb);
2284         brelse(sbi->s_lvid_bh);
2285         udf_sb_free_partitions(sb);
2286         kfree(sbi);
2287         sb->s_fs_info = NULL;
2288
2289         return ret;
2290 }
2291
2292 void _udf_err(struct super_block *sb, const char *function,
2293               const char *fmt, ...)
2294 {
2295         struct va_format vaf;
2296         va_list args;
2297
2298         va_start(args, fmt);
2299
2300         vaf.fmt = fmt;
2301         vaf.va = &args;
2302
2303         pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2304
2305         va_end(args);
2306 }
2307
2308 void _udf_warn(struct super_block *sb, const char *function,
2309                const char *fmt, ...)
2310 {
2311         struct va_format vaf;
2312         va_list args;
2313
2314         va_start(args, fmt);
2315
2316         vaf.fmt = fmt;
2317         vaf.va = &args;
2318
2319         pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2320
2321         va_end(args);
2322 }
2323
2324 static void udf_put_super(struct super_block *sb)
2325 {
2326         struct udf_sb_info *sbi;
2327
2328         sbi = UDF_SB(sb);
2329
2330         iput(sbi->s_vat_inode);
2331 #ifdef CONFIG_UDF_NLS
2332         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2333                 unload_nls(sbi->s_nls_map);
2334 #endif
2335         if (!sb_rdonly(sb))
2336                 udf_close_lvid(sb);
2337         brelse(sbi->s_lvid_bh);
2338         udf_sb_free_partitions(sb);
2339         mutex_destroy(&sbi->s_alloc_mutex);
2340         kfree(sb->s_fs_info);
2341         sb->s_fs_info = NULL;
2342 }
2343
2344 static int udf_sync_fs(struct super_block *sb, int wait)
2345 {
2346         struct udf_sb_info *sbi = UDF_SB(sb);
2347
2348         mutex_lock(&sbi->s_alloc_mutex);
2349         if (sbi->s_lvid_dirty) {
2350                 /*
2351                  * Blockdevice will be synced later so we don't have to submit
2352                  * the buffer for IO
2353                  */
2354                 mark_buffer_dirty(sbi->s_lvid_bh);
2355                 sbi->s_lvid_dirty = 0;
2356         }
2357         mutex_unlock(&sbi->s_alloc_mutex);
2358
2359         return 0;
2360 }
2361
2362 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2363 {
2364         struct super_block *sb = dentry->d_sb;
2365         struct udf_sb_info *sbi = UDF_SB(sb);
2366         struct logicalVolIntegrityDescImpUse *lvidiu;
2367         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2368
2369         lvidiu = udf_sb_lvidiu(sb);
2370         buf->f_type = UDF_SUPER_MAGIC;
2371         buf->f_bsize = sb->s_blocksize;
2372         buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2373         buf->f_bfree = udf_count_free(sb);
2374         buf->f_bavail = buf->f_bfree;
2375         buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2376                                           le32_to_cpu(lvidiu->numDirs)) : 0)
2377                         + buf->f_bfree;
2378         buf->f_ffree = buf->f_bfree;
2379         buf->f_namelen = UDF_NAME_LEN;
2380         buf->f_fsid.val[0] = (u32)id;
2381         buf->f_fsid.val[1] = (u32)(id >> 32);
2382
2383         return 0;
2384 }
2385
2386 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2387                                           struct udf_bitmap *bitmap)
2388 {
2389         struct buffer_head *bh = NULL;
2390         unsigned int accum = 0;
2391         int index;
2392         int block = 0, newblock;
2393         struct kernel_lb_addr loc;
2394         uint32_t bytes;
2395         uint8_t *ptr;
2396         uint16_t ident;
2397         struct spaceBitmapDesc *bm;
2398
2399         loc.logicalBlockNum = bitmap->s_extPosition;
2400         loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2401         bh = udf_read_ptagged(sb, &loc, 0, &ident);
2402
2403         if (!bh) {
2404                 udf_err(sb, "udf_count_free failed\n");
2405                 goto out;
2406         } else if (ident != TAG_IDENT_SBD) {
2407                 brelse(bh);
2408                 udf_err(sb, "udf_count_free failed\n");
2409                 goto out;
2410         }
2411
2412         bm = (struct spaceBitmapDesc *)bh->b_data;
2413         bytes = le32_to_cpu(bm->numOfBytes);
2414         index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2415         ptr = (uint8_t *)bh->b_data;
2416
2417         while (bytes > 0) {
2418                 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2419                 accum += bitmap_weight((const unsigned long *)(ptr + index),
2420                                         cur_bytes * 8);
2421                 bytes -= cur_bytes;
2422                 if (bytes) {
2423                         brelse(bh);
2424                         newblock = udf_get_lb_pblock(sb, &loc, ++block);
2425                         bh = udf_tread(sb, newblock);
2426                         if (!bh) {
2427                                 udf_debug("read failed\n");
2428                                 goto out;
2429                         }
2430                         index = 0;
2431                         ptr = (uint8_t *)bh->b_data;
2432                 }
2433         }
2434         brelse(bh);
2435 out:
2436         return accum;
2437 }
2438
2439 static unsigned int udf_count_free_table(struct super_block *sb,
2440                                          struct inode *table)
2441 {
2442         unsigned int accum = 0;
2443         uint32_t elen;
2444         struct kernel_lb_addr eloc;
2445         int8_t etype;
2446         struct extent_position epos;
2447
2448         mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2449         epos.block = UDF_I(table)->i_location;
2450         epos.offset = sizeof(struct unallocSpaceEntry);
2451         epos.bh = NULL;
2452
2453         while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2454                 accum += (elen >> table->i_sb->s_blocksize_bits);
2455
2456         brelse(epos.bh);
2457         mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2458
2459         return accum;
2460 }
2461
2462 static unsigned int udf_count_free(struct super_block *sb)
2463 {
2464         unsigned int accum = 0;
2465         struct udf_sb_info *sbi;
2466         struct udf_part_map *map;
2467
2468         sbi = UDF_SB(sb);
2469         if (sbi->s_lvid_bh) {
2470                 struct logicalVolIntegrityDesc *lvid =
2471                         (struct logicalVolIntegrityDesc *)
2472                         sbi->s_lvid_bh->b_data;
2473                 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2474                         accum = le32_to_cpu(
2475                                         lvid->freeSpaceTable[sbi->s_partition]);
2476                         if (accum == 0xFFFFFFFF)
2477                                 accum = 0;
2478                 }
2479         }
2480
2481         if (accum)
2482                 return accum;
2483
2484         map = &sbi->s_partmaps[sbi->s_partition];
2485         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2486                 accum += udf_count_free_bitmap(sb,
2487                                                map->s_uspace.s_bitmap);
2488         }
2489         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2490                 accum += udf_count_free_bitmap(sb,
2491                                                map->s_fspace.s_bitmap);
2492         }
2493         if (accum)
2494                 return accum;
2495
2496         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2497                 accum += udf_count_free_table(sb,
2498                                               map->s_uspace.s_table);
2499         }
2500         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2501                 accum += udf_count_free_table(sb,
2502                                               map->s_fspace.s_table);
2503         }
2504
2505         return accum;
2506 }
2507
2508 MODULE_AUTHOR("Ben Fennema");
2509 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2510 MODULE_LICENSE("GPL");
2511 module_init(init_udf_fs)
2512 module_exit(exit_udf_fs)