9256117ffa2709aab9601a75b9670ecc4671a51c
[sfrench/cifs-2.6.git] / fs / udf / super.c
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60
61 #include "udf_sb.h"
62 #include "udf_i.h"
63
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66
67 #define VDS_POS_PRIMARY_VOL_DESC        0
68 #define VDS_POS_UNALLOC_SPACE_DESC      1
69 #define VDS_POS_LOGICAL_VOL_DESC        2
70 #define VDS_POS_PARTITION_DESC          3
71 #define VDS_POS_IMP_USE_VOL_DESC        4
72 #define VDS_POS_VOL_DESC_PTR            5
73 #define VDS_POS_TERMINATING_DESC        6
74 #define VDS_POS_LENGTH                  7
75
76 #define UDF_DEFAULT_BLOCKSIZE 2048
77
78 #define VSD_FIRST_SECTOR_OFFSET         32768
79 #define VSD_MAX_SECTOR_OFFSET           0x800000
80
81 /*
82  * Maximum number of Terminating Descriptor / Logical Volume Integrity
83  * Descriptor redirections. The chosen numbers are arbitrary - just that we
84  * hopefully don't limit any real use of rewritten inode on write-once media
85  * but avoid looping for too long on corrupted media.
86  */
87 #define UDF_MAX_TD_NESTING 64
88 #define UDF_MAX_LVID_NESTING 1000
89
90 enum { UDF_MAX_LINKS = 0xffff };
91
92 /* These are the "meat" - everything else is stuffing */
93 static int udf_fill_super(struct super_block *, void *, int);
94 static void udf_put_super(struct super_block *);
95 static int udf_sync_fs(struct super_block *, int);
96 static int udf_remount_fs(struct super_block *, int *, char *);
97 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
98 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
99                             struct kernel_lb_addr *);
100 static void udf_load_fileset(struct super_block *, struct buffer_head *,
101                              struct kernel_lb_addr *);
102 static void udf_open_lvid(struct super_block *);
103 static void udf_close_lvid(struct super_block *);
104 static unsigned int udf_count_free(struct super_block *);
105 static int udf_statfs(struct dentry *, struct kstatfs *);
106 static int udf_show_options(struct seq_file *, struct dentry *);
107
108 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
109 {
110         struct logicalVolIntegrityDesc *lvid;
111         unsigned int partnum;
112         unsigned int offset;
113
114         if (!UDF_SB(sb)->s_lvid_bh)
115                 return NULL;
116         lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
117         partnum = le32_to_cpu(lvid->numOfPartitions);
118         if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
119              offsetof(struct logicalVolIntegrityDesc, impUse)) /
120              (2 * sizeof(uint32_t)) < partnum) {
121                 udf_err(sb, "Logical volume integrity descriptor corrupted "
122                         "(numOfPartitions = %u)!\n", partnum);
123                 return NULL;
124         }
125         /* The offset is to skip freeSpaceTable and sizeTable arrays */
126         offset = partnum * 2 * sizeof(uint32_t);
127         return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
128 }
129
130 /* UDF filesystem type */
131 static struct dentry *udf_mount(struct file_system_type *fs_type,
132                       int flags, const char *dev_name, void *data)
133 {
134         return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
135 }
136
137 static struct file_system_type udf_fstype = {
138         .owner          = THIS_MODULE,
139         .name           = "udf",
140         .mount          = udf_mount,
141         .kill_sb        = kill_block_super,
142         .fs_flags       = FS_REQUIRES_DEV,
143 };
144 MODULE_ALIAS_FS("udf");
145
146 static struct kmem_cache *udf_inode_cachep;
147
148 static struct inode *udf_alloc_inode(struct super_block *sb)
149 {
150         struct udf_inode_info *ei;
151         ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
152         if (!ei)
153                 return NULL;
154
155         ei->i_unique = 0;
156         ei->i_lenExtents = 0;
157         ei->i_next_alloc_block = 0;
158         ei->i_next_alloc_goal = 0;
159         ei->i_strat4096 = 0;
160         init_rwsem(&ei->i_data_sem);
161         ei->cached_extent.lstart = -1;
162         spin_lock_init(&ei->i_extent_cache_lock);
163
164         return &ei->vfs_inode;
165 }
166
167 static void udf_i_callback(struct rcu_head *head)
168 {
169         struct inode *inode = container_of(head, struct inode, i_rcu);
170         kmem_cache_free(udf_inode_cachep, UDF_I(inode));
171 }
172
173 static void udf_destroy_inode(struct inode *inode)
174 {
175         call_rcu(&inode->i_rcu, udf_i_callback);
176 }
177
178 static void init_once(void *foo)
179 {
180         struct udf_inode_info *ei = (struct udf_inode_info *)foo;
181
182         ei->i_ext.i_data = NULL;
183         inode_init_once(&ei->vfs_inode);
184 }
185
186 static int __init init_inodecache(void)
187 {
188         udf_inode_cachep = kmem_cache_create("udf_inode_cache",
189                                              sizeof(struct udf_inode_info),
190                                              0, (SLAB_RECLAIM_ACCOUNT |
191                                                  SLAB_MEM_SPREAD |
192                                                  SLAB_ACCOUNT),
193                                              init_once);
194         if (!udf_inode_cachep)
195                 return -ENOMEM;
196         return 0;
197 }
198
199 static void destroy_inodecache(void)
200 {
201         /*
202          * Make sure all delayed rcu free inodes are flushed before we
203          * destroy cache.
204          */
205         rcu_barrier();
206         kmem_cache_destroy(udf_inode_cachep);
207 }
208
209 /* Superblock operations */
210 static const struct super_operations udf_sb_ops = {
211         .alloc_inode    = udf_alloc_inode,
212         .destroy_inode  = udf_destroy_inode,
213         .write_inode    = udf_write_inode,
214         .evict_inode    = udf_evict_inode,
215         .put_super      = udf_put_super,
216         .sync_fs        = udf_sync_fs,
217         .statfs         = udf_statfs,
218         .remount_fs     = udf_remount_fs,
219         .show_options   = udf_show_options,
220 };
221
222 struct udf_options {
223         unsigned char novrs;
224         unsigned int blocksize;
225         unsigned int session;
226         unsigned int lastblock;
227         unsigned int anchor;
228         unsigned int volume;
229         unsigned short partition;
230         unsigned int fileset;
231         unsigned int rootdir;
232         unsigned int flags;
233         umode_t umask;
234         kgid_t gid;
235         kuid_t uid;
236         umode_t fmode;
237         umode_t dmode;
238         struct nls_table *nls_map;
239 };
240
241 static int __init init_udf_fs(void)
242 {
243         int err;
244
245         err = init_inodecache();
246         if (err)
247                 goto out1;
248         err = register_filesystem(&udf_fstype);
249         if (err)
250                 goto out;
251
252         return 0;
253
254 out:
255         destroy_inodecache();
256
257 out1:
258         return err;
259 }
260
261 static void __exit exit_udf_fs(void)
262 {
263         unregister_filesystem(&udf_fstype);
264         destroy_inodecache();
265 }
266
267 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
268 {
269         struct udf_sb_info *sbi = UDF_SB(sb);
270
271         sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
272                                   GFP_KERNEL);
273         if (!sbi->s_partmaps) {
274                 udf_err(sb, "Unable to allocate space for %d partition maps\n",
275                         count);
276                 sbi->s_partitions = 0;
277                 return -ENOMEM;
278         }
279
280         sbi->s_partitions = count;
281         return 0;
282 }
283
284 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
285 {
286         int i;
287         int nr_groups = bitmap->s_nr_groups;
288
289         for (i = 0; i < nr_groups; i++)
290                 if (bitmap->s_block_bitmap[i])
291                         brelse(bitmap->s_block_bitmap[i]);
292
293         kvfree(bitmap);
294 }
295
296 static void udf_free_partition(struct udf_part_map *map)
297 {
298         int i;
299         struct udf_meta_data *mdata;
300
301         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
302                 iput(map->s_uspace.s_table);
303         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
304                 iput(map->s_fspace.s_table);
305         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
306                 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
307         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
308                 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
309         if (map->s_partition_type == UDF_SPARABLE_MAP15)
310                 for (i = 0; i < 4; i++)
311                         brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
312         else if (map->s_partition_type == UDF_METADATA_MAP25) {
313                 mdata = &map->s_type_specific.s_metadata;
314                 iput(mdata->s_metadata_fe);
315                 mdata->s_metadata_fe = NULL;
316
317                 iput(mdata->s_mirror_fe);
318                 mdata->s_mirror_fe = NULL;
319
320                 iput(mdata->s_bitmap_fe);
321                 mdata->s_bitmap_fe = NULL;
322         }
323 }
324
325 static void udf_sb_free_partitions(struct super_block *sb)
326 {
327         struct udf_sb_info *sbi = UDF_SB(sb);
328         int i;
329         if (sbi->s_partmaps == NULL)
330                 return;
331         for (i = 0; i < sbi->s_partitions; i++)
332                 udf_free_partition(&sbi->s_partmaps[i]);
333         kfree(sbi->s_partmaps);
334         sbi->s_partmaps = NULL;
335 }
336
337 static int udf_show_options(struct seq_file *seq, struct dentry *root)
338 {
339         struct super_block *sb = root->d_sb;
340         struct udf_sb_info *sbi = UDF_SB(sb);
341
342         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
343                 seq_puts(seq, ",nostrict");
344         if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
345                 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
346         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
347                 seq_puts(seq, ",unhide");
348         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
349                 seq_puts(seq, ",undelete");
350         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
351                 seq_puts(seq, ",noadinicb");
352         if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
353                 seq_puts(seq, ",shortad");
354         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
355                 seq_puts(seq, ",uid=forget");
356         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
357                 seq_puts(seq, ",uid=ignore");
358         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
359                 seq_puts(seq, ",gid=forget");
360         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
361                 seq_puts(seq, ",gid=ignore");
362         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
363                 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
364         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
365                 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
366         if (sbi->s_umask != 0)
367                 seq_printf(seq, ",umask=%ho", sbi->s_umask);
368         if (sbi->s_fmode != UDF_INVALID_MODE)
369                 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
370         if (sbi->s_dmode != UDF_INVALID_MODE)
371                 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
372         if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
373                 seq_printf(seq, ",session=%u", sbi->s_session);
374         if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
375                 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
376         if (sbi->s_anchor != 0)
377                 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
378         /*
379          * volume, partition, fileset and rootdir seem to be ignored
380          * currently
381          */
382         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
383                 seq_puts(seq, ",utf8");
384         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
385                 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
386
387         return 0;
388 }
389
390 /*
391  * udf_parse_options
392  *
393  * PURPOSE
394  *      Parse mount options.
395  *
396  * DESCRIPTION
397  *      The following mount options are supported:
398  *
399  *      gid=            Set the default group.
400  *      umask=          Set the default umask.
401  *      mode=           Set the default file permissions.
402  *      dmode=          Set the default directory permissions.
403  *      uid=            Set the default user.
404  *      bs=             Set the block size.
405  *      unhide          Show otherwise hidden files.
406  *      undelete        Show deleted files in lists.
407  *      adinicb         Embed data in the inode (default)
408  *      noadinicb       Don't embed data in the inode
409  *      shortad         Use short ad's
410  *      longad          Use long ad's (default)
411  *      nostrict        Unset strict conformance
412  *      iocharset=      Set the NLS character set
413  *
414  *      The remaining are for debugging and disaster recovery:
415  *
416  *      novrs           Skip volume sequence recognition
417  *
418  *      The following expect a offset from 0.
419  *
420  *      session=        Set the CDROM session (default= last session)
421  *      anchor=         Override standard anchor location. (default= 256)
422  *      volume=         Override the VolumeDesc location. (unused)
423  *      partition=      Override the PartitionDesc location. (unused)
424  *      lastblock=      Set the last block of the filesystem/
425  *
426  *      The following expect a offset from the partition root.
427  *
428  *      fileset=        Override the fileset block location. (unused)
429  *      rootdir=        Override the root directory location. (unused)
430  *              WARNING: overriding the rootdir to a non-directory may
431  *              yield highly unpredictable results.
432  *
433  * PRE-CONDITIONS
434  *      options         Pointer to mount options string.
435  *      uopts           Pointer to mount options variable.
436  *
437  * POST-CONDITIONS
438  *      <return>        1       Mount options parsed okay.
439  *      <return>        0       Error parsing mount options.
440  *
441  * HISTORY
442  *      July 1, 1997 - Andrew E. Mileski
443  *      Written, tested, and released.
444  */
445
446 enum {
447         Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
448         Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
449         Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
450         Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
451         Opt_rootdir, Opt_utf8, Opt_iocharset,
452         Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
453         Opt_fmode, Opt_dmode
454 };
455
456 static const match_table_t tokens = {
457         {Opt_novrs,     "novrs"},
458         {Opt_nostrict,  "nostrict"},
459         {Opt_bs,        "bs=%u"},
460         {Opt_unhide,    "unhide"},
461         {Opt_undelete,  "undelete"},
462         {Opt_noadinicb, "noadinicb"},
463         {Opt_adinicb,   "adinicb"},
464         {Opt_shortad,   "shortad"},
465         {Opt_longad,    "longad"},
466         {Opt_uforget,   "uid=forget"},
467         {Opt_uignore,   "uid=ignore"},
468         {Opt_gforget,   "gid=forget"},
469         {Opt_gignore,   "gid=ignore"},
470         {Opt_gid,       "gid=%u"},
471         {Opt_uid,       "uid=%u"},
472         {Opt_umask,     "umask=%o"},
473         {Opt_session,   "session=%u"},
474         {Opt_lastblock, "lastblock=%u"},
475         {Opt_anchor,    "anchor=%u"},
476         {Opt_volume,    "volume=%u"},
477         {Opt_partition, "partition=%u"},
478         {Opt_fileset,   "fileset=%u"},
479         {Opt_rootdir,   "rootdir=%u"},
480         {Opt_utf8,      "utf8"},
481         {Opt_iocharset, "iocharset=%s"},
482         {Opt_fmode,     "mode=%o"},
483         {Opt_dmode,     "dmode=%o"},
484         {Opt_err,       NULL}
485 };
486
487 static int udf_parse_options(char *options, struct udf_options *uopt,
488                              bool remount)
489 {
490         char *p;
491         int option;
492
493         uopt->novrs = 0;
494         uopt->partition = 0xFFFF;
495         uopt->session = 0xFFFFFFFF;
496         uopt->lastblock = 0;
497         uopt->anchor = 0;
498         uopt->volume = 0xFFFFFFFF;
499         uopt->rootdir = 0xFFFFFFFF;
500         uopt->fileset = 0xFFFFFFFF;
501         uopt->nls_map = NULL;
502
503         if (!options)
504                 return 1;
505
506         while ((p = strsep(&options, ",")) != NULL) {
507                 substring_t args[MAX_OPT_ARGS];
508                 int token;
509                 unsigned n;
510                 if (!*p)
511                         continue;
512
513                 token = match_token(p, tokens, args);
514                 switch (token) {
515                 case Opt_novrs:
516                         uopt->novrs = 1;
517                         break;
518                 case Opt_bs:
519                         if (match_int(&args[0], &option))
520                                 return 0;
521                         n = option;
522                         if (n != 512 && n != 1024 && n != 2048 && n != 4096)
523                                 return 0;
524                         uopt->blocksize = n;
525                         uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
526                         break;
527                 case Opt_unhide:
528                         uopt->flags |= (1 << UDF_FLAG_UNHIDE);
529                         break;
530                 case Opt_undelete:
531                         uopt->flags |= (1 << UDF_FLAG_UNDELETE);
532                         break;
533                 case Opt_noadinicb:
534                         uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
535                         break;
536                 case Opt_adinicb:
537                         uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
538                         break;
539                 case Opt_shortad:
540                         uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
541                         break;
542                 case Opt_longad:
543                         uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
544                         break;
545                 case Opt_gid:
546                         if (match_int(args, &option))
547                                 return 0;
548                         uopt->gid = make_kgid(current_user_ns(), option);
549                         if (!gid_valid(uopt->gid))
550                                 return 0;
551                         uopt->flags |= (1 << UDF_FLAG_GID_SET);
552                         break;
553                 case Opt_uid:
554                         if (match_int(args, &option))
555                                 return 0;
556                         uopt->uid = make_kuid(current_user_ns(), option);
557                         if (!uid_valid(uopt->uid))
558                                 return 0;
559                         uopt->flags |= (1 << UDF_FLAG_UID_SET);
560                         break;
561                 case Opt_umask:
562                         if (match_octal(args, &option))
563                                 return 0;
564                         uopt->umask = option;
565                         break;
566                 case Opt_nostrict:
567                         uopt->flags &= ~(1 << UDF_FLAG_STRICT);
568                         break;
569                 case Opt_session:
570                         if (match_int(args, &option))
571                                 return 0;
572                         uopt->session = option;
573                         if (!remount)
574                                 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
575                         break;
576                 case Opt_lastblock:
577                         if (match_int(args, &option))
578                                 return 0;
579                         uopt->lastblock = option;
580                         if (!remount)
581                                 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
582                         break;
583                 case Opt_anchor:
584                         if (match_int(args, &option))
585                                 return 0;
586                         uopt->anchor = option;
587                         break;
588                 case Opt_volume:
589                         if (match_int(args, &option))
590                                 return 0;
591                         uopt->volume = option;
592                         break;
593                 case Opt_partition:
594                         if (match_int(args, &option))
595                                 return 0;
596                         uopt->partition = option;
597                         break;
598                 case Opt_fileset:
599                         if (match_int(args, &option))
600                                 return 0;
601                         uopt->fileset = option;
602                         break;
603                 case Opt_rootdir:
604                         if (match_int(args, &option))
605                                 return 0;
606                         uopt->rootdir = option;
607                         break;
608                 case Opt_utf8:
609                         uopt->flags |= (1 << UDF_FLAG_UTF8);
610                         break;
611 #ifdef CONFIG_UDF_NLS
612                 case Opt_iocharset:
613                         uopt->nls_map = load_nls(args[0].from);
614                         uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
615                         break;
616 #endif
617                 case Opt_uignore:
618                         uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
619                         break;
620                 case Opt_uforget:
621                         uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
622                         break;
623                 case Opt_gignore:
624                         uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
625                         break;
626                 case Opt_gforget:
627                         uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
628                         break;
629                 case Opt_fmode:
630                         if (match_octal(args, &option))
631                                 return 0;
632                         uopt->fmode = option & 0777;
633                         break;
634                 case Opt_dmode:
635                         if (match_octal(args, &option))
636                                 return 0;
637                         uopt->dmode = option & 0777;
638                         break;
639                 default:
640                         pr_err("bad mount option \"%s\" or missing value\n", p);
641                         return 0;
642                 }
643         }
644         return 1;
645 }
646
647 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
648 {
649         struct udf_options uopt;
650         struct udf_sb_info *sbi = UDF_SB(sb);
651         int error = 0;
652         struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
653
654         sync_filesystem(sb);
655         if (lvidiu) {
656                 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
657                 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY))
658                         return -EACCES;
659         }
660
661         uopt.flags = sbi->s_flags;
662         uopt.uid   = sbi->s_uid;
663         uopt.gid   = sbi->s_gid;
664         uopt.umask = sbi->s_umask;
665         uopt.fmode = sbi->s_fmode;
666         uopt.dmode = sbi->s_dmode;
667
668         if (!udf_parse_options(options, &uopt, true))
669                 return -EINVAL;
670
671         write_lock(&sbi->s_cred_lock);
672         sbi->s_flags = uopt.flags;
673         sbi->s_uid   = uopt.uid;
674         sbi->s_gid   = uopt.gid;
675         sbi->s_umask = uopt.umask;
676         sbi->s_fmode = uopt.fmode;
677         sbi->s_dmode = uopt.dmode;
678         write_unlock(&sbi->s_cred_lock);
679
680         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
681                 goto out_unlock;
682
683         if (*flags & MS_RDONLY)
684                 udf_close_lvid(sb);
685         else
686                 udf_open_lvid(sb);
687
688 out_unlock:
689         return error;
690 }
691
692 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
693 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
694 static loff_t udf_check_vsd(struct super_block *sb)
695 {
696         struct volStructDesc *vsd = NULL;
697         loff_t sector = VSD_FIRST_SECTOR_OFFSET;
698         int sectorsize;
699         struct buffer_head *bh = NULL;
700         int nsr02 = 0;
701         int nsr03 = 0;
702         struct udf_sb_info *sbi;
703
704         sbi = UDF_SB(sb);
705         if (sb->s_blocksize < sizeof(struct volStructDesc))
706                 sectorsize = sizeof(struct volStructDesc);
707         else
708                 sectorsize = sb->s_blocksize;
709
710         sector += (sbi->s_session << sb->s_blocksize_bits);
711
712         udf_debug("Starting at sector %u (%ld byte sectors)\n",
713                   (unsigned int)(sector >> sb->s_blocksize_bits),
714                   sb->s_blocksize);
715         /* Process the sequence (if applicable). The hard limit on the sector
716          * offset is arbitrary, hopefully large enough so that all valid UDF
717          * filesystems will be recognised. There is no mention of an upper
718          * bound to the size of the volume recognition area in the standard.
719          *  The limit will prevent the code to read all the sectors of a
720          * specially crafted image (like a bluray disc full of CD001 sectors),
721          * potentially causing minutes or even hours of uninterruptible I/O
722          * activity. This actually happened with uninitialised SSD partitions
723          * (all 0xFF) before the check for the limit and all valid IDs were
724          * added */
725         for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
726              sector += sectorsize) {
727                 /* Read a block */
728                 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
729                 if (!bh)
730                         break;
731
732                 /* Look for ISO  descriptors */
733                 vsd = (struct volStructDesc *)(bh->b_data +
734                                               (sector & (sb->s_blocksize - 1)));
735
736                 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
737                                     VSD_STD_ID_LEN)) {
738                         switch (vsd->structType) {
739                         case 0:
740                                 udf_debug("ISO9660 Boot Record found\n");
741                                 break;
742                         case 1:
743                                 udf_debug("ISO9660 Primary Volume Descriptor found\n");
744                                 break;
745                         case 2:
746                                 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
747                                 break;
748                         case 3:
749                                 udf_debug("ISO9660 Volume Partition Descriptor found\n");
750                                 break;
751                         case 255:
752                                 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
753                                 break;
754                         default:
755                                 udf_debug("ISO9660 VRS (%u) found\n",
756                                           vsd->structType);
757                                 break;
758                         }
759                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
760                                     VSD_STD_ID_LEN))
761                         ; /* nothing */
762                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
763                                     VSD_STD_ID_LEN)) {
764                         brelse(bh);
765                         break;
766                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
767                                     VSD_STD_ID_LEN))
768                         nsr02 = sector;
769                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
770                                     VSD_STD_ID_LEN))
771                         nsr03 = sector;
772                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
773                                     VSD_STD_ID_LEN))
774                         ; /* nothing */
775                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
776                                     VSD_STD_ID_LEN))
777                         ; /* nothing */
778                 else {
779                         /* invalid id : end of volume recognition area */
780                         brelse(bh);
781                         break;
782                 }
783                 brelse(bh);
784         }
785
786         if (nsr03)
787                 return nsr03;
788         else if (nsr02)
789                 return nsr02;
790         else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
791                         VSD_FIRST_SECTOR_OFFSET)
792                 return -1;
793         else
794                 return 0;
795 }
796
797 static int udf_find_fileset(struct super_block *sb,
798                             struct kernel_lb_addr *fileset,
799                             struct kernel_lb_addr *root)
800 {
801         struct buffer_head *bh = NULL;
802         long lastblock;
803         uint16_t ident;
804         struct udf_sb_info *sbi;
805
806         if (fileset->logicalBlockNum != 0xFFFFFFFF ||
807             fileset->partitionReferenceNum != 0xFFFF) {
808                 bh = udf_read_ptagged(sb, fileset, 0, &ident);
809
810                 if (!bh) {
811                         return 1;
812                 } else if (ident != TAG_IDENT_FSD) {
813                         brelse(bh);
814                         return 1;
815                 }
816
817         }
818
819         sbi = UDF_SB(sb);
820         if (!bh) {
821                 /* Search backwards through the partitions */
822                 struct kernel_lb_addr newfileset;
823
824 /* --> cvg: FIXME - is it reasonable? */
825                 return 1;
826
827                 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
828                      (newfileset.partitionReferenceNum != 0xFFFF &&
829                       fileset->logicalBlockNum == 0xFFFFFFFF &&
830                       fileset->partitionReferenceNum == 0xFFFF);
831                      newfileset.partitionReferenceNum--) {
832                         lastblock = sbi->s_partmaps
833                                         [newfileset.partitionReferenceNum]
834                                                 .s_partition_len;
835                         newfileset.logicalBlockNum = 0;
836
837                         do {
838                                 bh = udf_read_ptagged(sb, &newfileset, 0,
839                                                       &ident);
840                                 if (!bh) {
841                                         newfileset.logicalBlockNum++;
842                                         continue;
843                                 }
844
845                                 switch (ident) {
846                                 case TAG_IDENT_SBD:
847                                 {
848                                         struct spaceBitmapDesc *sp;
849                                         sp = (struct spaceBitmapDesc *)
850                                                                 bh->b_data;
851                                         newfileset.logicalBlockNum += 1 +
852                                                 ((le32_to_cpu(sp->numOfBytes) +
853                                                   sizeof(struct spaceBitmapDesc)
854                                                   - 1) >> sb->s_blocksize_bits);
855                                         brelse(bh);
856                                         break;
857                                 }
858                                 case TAG_IDENT_FSD:
859                                         *fileset = newfileset;
860                                         break;
861                                 default:
862                                         newfileset.logicalBlockNum++;
863                                         brelse(bh);
864                                         bh = NULL;
865                                         break;
866                                 }
867                         } while (newfileset.logicalBlockNum < lastblock &&
868                                  fileset->logicalBlockNum == 0xFFFFFFFF &&
869                                  fileset->partitionReferenceNum == 0xFFFF);
870                 }
871         }
872
873         if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
874              fileset->partitionReferenceNum != 0xFFFF) && bh) {
875                 udf_debug("Fileset at block=%d, partition=%d\n",
876                           fileset->logicalBlockNum,
877                           fileset->partitionReferenceNum);
878
879                 sbi->s_partition = fileset->partitionReferenceNum;
880                 udf_load_fileset(sb, bh, root);
881                 brelse(bh);
882                 return 0;
883         }
884         return 1;
885 }
886
887 /*
888  * Load primary Volume Descriptor Sequence
889  *
890  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
891  * should be tried.
892  */
893 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
894 {
895         struct primaryVolDesc *pvoldesc;
896         uint8_t *outstr;
897         struct buffer_head *bh;
898         uint16_t ident;
899         int ret = -ENOMEM;
900
901         outstr = kmalloc(128, GFP_NOFS);
902         if (!outstr)
903                 return -ENOMEM;
904
905         bh = udf_read_tagged(sb, block, block, &ident);
906         if (!bh) {
907                 ret = -EAGAIN;
908                 goto out2;
909         }
910
911         if (ident != TAG_IDENT_PVD) {
912                 ret = -EIO;
913                 goto out_bh;
914         }
915
916         pvoldesc = (struct primaryVolDesc *)bh->b_data;
917
918         if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
919                               pvoldesc->recordingDateAndTime)) {
920 #ifdef UDFFS_DEBUG
921                 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
922                 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
923                           le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
924                           ts->minute, le16_to_cpu(ts->typeAndTimezone));
925 #endif
926         }
927
928         ret = udf_dstrCS0toUTF8(outstr, 31, pvoldesc->volIdent, 32);
929         if (ret < 0)
930                 goto out_bh;
931
932         strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
933         udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
934
935         ret = udf_dstrCS0toUTF8(outstr, 127, pvoldesc->volSetIdent, 128);
936         if (ret < 0)
937                 goto out_bh;
938
939         outstr[ret] = 0;
940         udf_debug("volSetIdent[] = '%s'\n", outstr);
941
942         ret = 0;
943 out_bh:
944         brelse(bh);
945 out2:
946         kfree(outstr);
947         return ret;
948 }
949
950 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
951                                         u32 meta_file_loc, u32 partition_ref)
952 {
953         struct kernel_lb_addr addr;
954         struct inode *metadata_fe;
955
956         addr.logicalBlockNum = meta_file_loc;
957         addr.partitionReferenceNum = partition_ref;
958
959         metadata_fe = udf_iget_special(sb, &addr);
960
961         if (IS_ERR(metadata_fe)) {
962                 udf_warn(sb, "metadata inode efe not found\n");
963                 return metadata_fe;
964         }
965         if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
966                 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
967                 iput(metadata_fe);
968                 return ERR_PTR(-EIO);
969         }
970
971         return metadata_fe;
972 }
973
974 static int udf_load_metadata_files(struct super_block *sb, int partition,
975                                    int type1_index)
976 {
977         struct udf_sb_info *sbi = UDF_SB(sb);
978         struct udf_part_map *map;
979         struct udf_meta_data *mdata;
980         struct kernel_lb_addr addr;
981         struct inode *fe;
982
983         map = &sbi->s_partmaps[partition];
984         mdata = &map->s_type_specific.s_metadata;
985         mdata->s_phys_partition_ref = type1_index;
986
987         /* metadata address */
988         udf_debug("Metadata file location: block = %d part = %d\n",
989                   mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
990
991         fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
992                                          mdata->s_phys_partition_ref);
993         if (IS_ERR(fe)) {
994                 /* mirror file entry */
995                 udf_debug("Mirror metadata file location: block = %d part = %d\n",
996                           mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
997
998                 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
999                                                  mdata->s_phys_partition_ref);
1000
1001                 if (IS_ERR(fe)) {
1002                         udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
1003                         return PTR_ERR(fe);
1004                 }
1005                 mdata->s_mirror_fe = fe;
1006         } else
1007                 mdata->s_metadata_fe = fe;
1008
1009
1010         /*
1011          * bitmap file entry
1012          * Note:
1013          * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
1014         */
1015         if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
1016                 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
1017                 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
1018
1019                 udf_debug("Bitmap file location: block = %d part = %d\n",
1020                           addr.logicalBlockNum, addr.partitionReferenceNum);
1021
1022                 fe = udf_iget_special(sb, &addr);
1023                 if (IS_ERR(fe)) {
1024                         if (sb->s_flags & MS_RDONLY)
1025                                 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
1026                         else {
1027                                 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
1028                                 return PTR_ERR(fe);
1029                         }
1030                 } else
1031                         mdata->s_bitmap_fe = fe;
1032         }
1033
1034         udf_debug("udf_load_metadata_files Ok\n");
1035         return 0;
1036 }
1037
1038 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1039                              struct kernel_lb_addr *root)
1040 {
1041         struct fileSetDesc *fset;
1042
1043         fset = (struct fileSetDesc *)bh->b_data;
1044
1045         *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1046
1047         UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1048
1049         udf_debug("Rootdir at block=%d, partition=%d\n",
1050                   root->logicalBlockNum, root->partitionReferenceNum);
1051 }
1052
1053 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1054 {
1055         struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1056         return DIV_ROUND_UP(map->s_partition_len +
1057                             (sizeof(struct spaceBitmapDesc) << 3),
1058                             sb->s_blocksize * 8);
1059 }
1060
1061 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1062 {
1063         struct udf_bitmap *bitmap;
1064         int nr_groups;
1065         int size;
1066
1067         nr_groups = udf_compute_nr_groups(sb, index);
1068         size = sizeof(struct udf_bitmap) +
1069                 (sizeof(struct buffer_head *) * nr_groups);
1070
1071         if (size <= PAGE_SIZE)
1072                 bitmap = kzalloc(size, GFP_KERNEL);
1073         else
1074                 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1075
1076         if (bitmap == NULL)
1077                 return NULL;
1078
1079         bitmap->s_nr_groups = nr_groups;
1080         return bitmap;
1081 }
1082
1083 static int udf_fill_partdesc_info(struct super_block *sb,
1084                 struct partitionDesc *p, int p_index)
1085 {
1086         struct udf_part_map *map;
1087         struct udf_sb_info *sbi = UDF_SB(sb);
1088         struct partitionHeaderDesc *phd;
1089
1090         map = &sbi->s_partmaps[p_index];
1091
1092         map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1093         map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1094
1095         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1096                 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1097         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1098                 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1099         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1100                 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1101         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1102                 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1103
1104         udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1105                   p_index, map->s_partition_type,
1106                   map->s_partition_root, map->s_partition_len);
1107
1108         if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1109             strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1110                 return 0;
1111
1112         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1113         if (phd->unallocSpaceTable.extLength) {
1114                 struct kernel_lb_addr loc = {
1115                         .logicalBlockNum = le32_to_cpu(
1116                                 phd->unallocSpaceTable.extPosition),
1117                         .partitionReferenceNum = p_index,
1118                 };
1119                 struct inode *inode;
1120
1121                 inode = udf_iget_special(sb, &loc);
1122                 if (IS_ERR(inode)) {
1123                         udf_debug("cannot load unallocSpaceTable (part %d)\n",
1124                                   p_index);
1125                         return PTR_ERR(inode);
1126                 }
1127                 map->s_uspace.s_table = inode;
1128                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1129                 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1130                           p_index, map->s_uspace.s_table->i_ino);
1131         }
1132
1133         if (phd->unallocSpaceBitmap.extLength) {
1134                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1135                 if (!bitmap)
1136                         return -ENOMEM;
1137                 map->s_uspace.s_bitmap = bitmap;
1138                 bitmap->s_extPosition = le32_to_cpu(
1139                                 phd->unallocSpaceBitmap.extPosition);
1140                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1141                 udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1142                           p_index, bitmap->s_extPosition);
1143         }
1144
1145         if (phd->partitionIntegrityTable.extLength)
1146                 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1147
1148         if (phd->freedSpaceTable.extLength) {
1149                 struct kernel_lb_addr loc = {
1150                         .logicalBlockNum = le32_to_cpu(
1151                                 phd->freedSpaceTable.extPosition),
1152                         .partitionReferenceNum = p_index,
1153                 };
1154                 struct inode *inode;
1155
1156                 inode = udf_iget_special(sb, &loc);
1157                 if (IS_ERR(inode)) {
1158                         udf_debug("cannot load freedSpaceTable (part %d)\n",
1159                                   p_index);
1160                         return PTR_ERR(inode);
1161                 }
1162                 map->s_fspace.s_table = inode;
1163                 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1164                 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1165                           p_index, map->s_fspace.s_table->i_ino);
1166         }
1167
1168         if (phd->freedSpaceBitmap.extLength) {
1169                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1170                 if (!bitmap)
1171                         return -ENOMEM;
1172                 map->s_fspace.s_bitmap = bitmap;
1173                 bitmap->s_extPosition = le32_to_cpu(
1174                                 phd->freedSpaceBitmap.extPosition);
1175                 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1176                 udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1177                           p_index, bitmap->s_extPosition);
1178         }
1179         return 0;
1180 }
1181
1182 static void udf_find_vat_block(struct super_block *sb, int p_index,
1183                                int type1_index, sector_t start_block)
1184 {
1185         struct udf_sb_info *sbi = UDF_SB(sb);
1186         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1187         sector_t vat_block;
1188         struct kernel_lb_addr ino;
1189         struct inode *inode;
1190
1191         /*
1192          * VAT file entry is in the last recorded block. Some broken disks have
1193          * it a few blocks before so try a bit harder...
1194          */
1195         ino.partitionReferenceNum = type1_index;
1196         for (vat_block = start_block;
1197              vat_block >= map->s_partition_root &&
1198              vat_block >= start_block - 3; vat_block--) {
1199                 ino.logicalBlockNum = vat_block - map->s_partition_root;
1200                 inode = udf_iget_special(sb, &ino);
1201                 if (!IS_ERR(inode)) {
1202                         sbi->s_vat_inode = inode;
1203                         break;
1204                 }
1205         }
1206 }
1207
1208 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1209 {
1210         struct udf_sb_info *sbi = UDF_SB(sb);
1211         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1212         struct buffer_head *bh = NULL;
1213         struct udf_inode_info *vati;
1214         uint32_t pos;
1215         struct virtualAllocationTable20 *vat20;
1216         sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1217
1218         udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1219         if (!sbi->s_vat_inode &&
1220             sbi->s_last_block != blocks - 1) {
1221                 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1222                           (unsigned long)sbi->s_last_block,
1223                           (unsigned long)blocks - 1);
1224                 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1225         }
1226         if (!sbi->s_vat_inode)
1227                 return -EIO;
1228
1229         if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1230                 map->s_type_specific.s_virtual.s_start_offset = 0;
1231                 map->s_type_specific.s_virtual.s_num_entries =
1232                         (sbi->s_vat_inode->i_size - 36) >> 2;
1233         } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1234                 vati = UDF_I(sbi->s_vat_inode);
1235                 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1236                         pos = udf_block_map(sbi->s_vat_inode, 0);
1237                         bh = sb_bread(sb, pos);
1238                         if (!bh)
1239                                 return -EIO;
1240                         vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1241                 } else {
1242                         vat20 = (struct virtualAllocationTable20 *)
1243                                                         vati->i_ext.i_data;
1244                 }
1245
1246                 map->s_type_specific.s_virtual.s_start_offset =
1247                         le16_to_cpu(vat20->lengthHeader);
1248                 map->s_type_specific.s_virtual.s_num_entries =
1249                         (sbi->s_vat_inode->i_size -
1250                                 map->s_type_specific.s_virtual.
1251                                         s_start_offset) >> 2;
1252                 brelse(bh);
1253         }
1254         return 0;
1255 }
1256
1257 /*
1258  * Load partition descriptor block
1259  *
1260  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1261  * sequence.
1262  */
1263 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1264 {
1265         struct buffer_head *bh;
1266         struct partitionDesc *p;
1267         struct udf_part_map *map;
1268         struct udf_sb_info *sbi = UDF_SB(sb);
1269         int i, type1_idx;
1270         uint16_t partitionNumber;
1271         uint16_t ident;
1272         int ret;
1273
1274         bh = udf_read_tagged(sb, block, block, &ident);
1275         if (!bh)
1276                 return -EAGAIN;
1277         if (ident != TAG_IDENT_PD) {
1278                 ret = 0;
1279                 goto out_bh;
1280         }
1281
1282         p = (struct partitionDesc *)bh->b_data;
1283         partitionNumber = le16_to_cpu(p->partitionNumber);
1284
1285         /* First scan for TYPE1 and SPARABLE partitions */
1286         for (i = 0; i < sbi->s_partitions; i++) {
1287                 map = &sbi->s_partmaps[i];
1288                 udf_debug("Searching map: (%d == %d)\n",
1289                           map->s_partition_num, partitionNumber);
1290                 if (map->s_partition_num == partitionNumber &&
1291                     (map->s_partition_type == UDF_TYPE1_MAP15 ||
1292                      map->s_partition_type == UDF_SPARABLE_MAP15))
1293                         break;
1294         }
1295
1296         if (i >= sbi->s_partitions) {
1297                 udf_debug("Partition (%d) not found in partition map\n",
1298                           partitionNumber);
1299                 ret = 0;
1300                 goto out_bh;
1301         }
1302
1303         ret = udf_fill_partdesc_info(sb, p, i);
1304         if (ret < 0)
1305                 goto out_bh;
1306
1307         /*
1308          * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1309          * PHYSICAL partitions are already set up
1310          */
1311         type1_idx = i;
1312 #ifdef UDFFS_DEBUG
1313         map = NULL; /* supress 'maybe used uninitialized' warning */
1314 #endif
1315         for (i = 0; i < sbi->s_partitions; i++) {
1316                 map = &sbi->s_partmaps[i];
1317
1318                 if (map->s_partition_num == partitionNumber &&
1319                     (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1320                      map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1321                      map->s_partition_type == UDF_METADATA_MAP25))
1322                         break;
1323         }
1324
1325         if (i >= sbi->s_partitions) {
1326                 ret = 0;
1327                 goto out_bh;
1328         }
1329
1330         ret = udf_fill_partdesc_info(sb, p, i);
1331         if (ret < 0)
1332                 goto out_bh;
1333
1334         if (map->s_partition_type == UDF_METADATA_MAP25) {
1335                 ret = udf_load_metadata_files(sb, i, type1_idx);
1336                 if (ret < 0) {
1337                         udf_err(sb, "error loading MetaData partition map %d\n",
1338                                 i);
1339                         goto out_bh;
1340                 }
1341         } else {
1342                 /*
1343                  * If we have a partition with virtual map, we don't handle
1344                  * writing to it (we overwrite blocks instead of relocating
1345                  * them).
1346                  */
1347                 if (!(sb->s_flags & MS_RDONLY)) {
1348                         ret = -EACCES;
1349                         goto out_bh;
1350                 }
1351                 ret = udf_load_vat(sb, i, type1_idx);
1352                 if (ret < 0)
1353                         goto out_bh;
1354         }
1355         ret = 0;
1356 out_bh:
1357         /* In case loading failed, we handle cleanup in udf_fill_super */
1358         brelse(bh);
1359         return ret;
1360 }
1361
1362 static int udf_load_sparable_map(struct super_block *sb,
1363                                  struct udf_part_map *map,
1364                                  struct sparablePartitionMap *spm)
1365 {
1366         uint32_t loc;
1367         uint16_t ident;
1368         struct sparingTable *st;
1369         struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1370         int i;
1371         struct buffer_head *bh;
1372
1373         map->s_partition_type = UDF_SPARABLE_MAP15;
1374         sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1375         if (!is_power_of_2(sdata->s_packet_len)) {
1376                 udf_err(sb, "error loading logical volume descriptor: "
1377                         "Invalid packet length %u\n",
1378                         (unsigned)sdata->s_packet_len);
1379                 return -EIO;
1380         }
1381         if (spm->numSparingTables > 4) {
1382                 udf_err(sb, "error loading logical volume descriptor: "
1383                         "Too many sparing tables (%d)\n",
1384                         (int)spm->numSparingTables);
1385                 return -EIO;
1386         }
1387
1388         for (i = 0; i < spm->numSparingTables; i++) {
1389                 loc = le32_to_cpu(spm->locSparingTable[i]);
1390                 bh = udf_read_tagged(sb, loc, loc, &ident);
1391                 if (!bh)
1392                         continue;
1393
1394                 st = (struct sparingTable *)bh->b_data;
1395                 if (ident != 0 ||
1396                     strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1397                             strlen(UDF_ID_SPARING)) ||
1398                     sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1399                                                         sb->s_blocksize) {
1400                         brelse(bh);
1401                         continue;
1402                 }
1403
1404                 sdata->s_spar_map[i] = bh;
1405         }
1406         map->s_partition_func = udf_get_pblock_spar15;
1407         return 0;
1408 }
1409
1410 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1411                                struct kernel_lb_addr *fileset)
1412 {
1413         struct logicalVolDesc *lvd;
1414         int i, offset;
1415         uint8_t type;
1416         struct udf_sb_info *sbi = UDF_SB(sb);
1417         struct genericPartitionMap *gpm;
1418         uint16_t ident;
1419         struct buffer_head *bh;
1420         unsigned int table_len;
1421         int ret;
1422
1423         bh = udf_read_tagged(sb, block, block, &ident);
1424         if (!bh)
1425                 return -EAGAIN;
1426         BUG_ON(ident != TAG_IDENT_LVD);
1427         lvd = (struct logicalVolDesc *)bh->b_data;
1428         table_len = le32_to_cpu(lvd->mapTableLength);
1429         if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1430                 udf_err(sb, "error loading logical volume descriptor: "
1431                         "Partition table too long (%u > %lu)\n", table_len,
1432                         sb->s_blocksize - sizeof(*lvd));
1433                 ret = -EIO;
1434                 goto out_bh;
1435         }
1436
1437         ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1438         if (ret)
1439                 goto out_bh;
1440
1441         for (i = 0, offset = 0;
1442              i < sbi->s_partitions && offset < table_len;
1443              i++, offset += gpm->partitionMapLength) {
1444                 struct udf_part_map *map = &sbi->s_partmaps[i];
1445                 gpm = (struct genericPartitionMap *)
1446                                 &(lvd->partitionMaps[offset]);
1447                 type = gpm->partitionMapType;
1448                 if (type == 1) {
1449                         struct genericPartitionMap1 *gpm1 =
1450                                 (struct genericPartitionMap1 *)gpm;
1451                         map->s_partition_type = UDF_TYPE1_MAP15;
1452                         map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1453                         map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1454                         map->s_partition_func = NULL;
1455                 } else if (type == 2) {
1456                         struct udfPartitionMap2 *upm2 =
1457                                                 (struct udfPartitionMap2 *)gpm;
1458                         if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1459                                                 strlen(UDF_ID_VIRTUAL))) {
1460                                 u16 suf =
1461                                         le16_to_cpu(((__le16 *)upm2->partIdent.
1462                                                         identSuffix)[0]);
1463                                 if (suf < 0x0200) {
1464                                         map->s_partition_type =
1465                                                         UDF_VIRTUAL_MAP15;
1466                                         map->s_partition_func =
1467                                                         udf_get_pblock_virt15;
1468                                 } else {
1469                                         map->s_partition_type =
1470                                                         UDF_VIRTUAL_MAP20;
1471                                         map->s_partition_func =
1472                                                         udf_get_pblock_virt20;
1473                                 }
1474                         } else if (!strncmp(upm2->partIdent.ident,
1475                                                 UDF_ID_SPARABLE,
1476                                                 strlen(UDF_ID_SPARABLE))) {
1477                                 ret = udf_load_sparable_map(sb, map,
1478                                         (struct sparablePartitionMap *)gpm);
1479                                 if (ret < 0)
1480                                         goto out_bh;
1481                         } else if (!strncmp(upm2->partIdent.ident,
1482                                                 UDF_ID_METADATA,
1483                                                 strlen(UDF_ID_METADATA))) {
1484                                 struct udf_meta_data *mdata =
1485                                         &map->s_type_specific.s_metadata;
1486                                 struct metadataPartitionMap *mdm =
1487                                                 (struct metadataPartitionMap *)
1488                                                 &(lvd->partitionMaps[offset]);
1489                                 udf_debug("Parsing Logical vol part %d type %d  id=%s\n",
1490                                           i, type, UDF_ID_METADATA);
1491
1492                                 map->s_partition_type = UDF_METADATA_MAP25;
1493                                 map->s_partition_func = udf_get_pblock_meta25;
1494
1495                                 mdata->s_meta_file_loc   =
1496                                         le32_to_cpu(mdm->metadataFileLoc);
1497                                 mdata->s_mirror_file_loc =
1498                                         le32_to_cpu(mdm->metadataMirrorFileLoc);
1499                                 mdata->s_bitmap_file_loc =
1500                                         le32_to_cpu(mdm->metadataBitmapFileLoc);
1501                                 mdata->s_alloc_unit_size =
1502                                         le32_to_cpu(mdm->allocUnitSize);
1503                                 mdata->s_align_unit_size =
1504                                         le16_to_cpu(mdm->alignUnitSize);
1505                                 if (mdm->flags & 0x01)
1506                                         mdata->s_flags |= MF_DUPLICATE_MD;
1507
1508                                 udf_debug("Metadata Ident suffix=0x%x\n",
1509                                           le16_to_cpu(*(__le16 *)
1510                                                       mdm->partIdent.identSuffix));
1511                                 udf_debug("Metadata part num=%d\n",
1512                                           le16_to_cpu(mdm->partitionNum));
1513                                 udf_debug("Metadata part alloc unit size=%d\n",
1514                                           le32_to_cpu(mdm->allocUnitSize));
1515                                 udf_debug("Metadata file loc=%d\n",
1516                                           le32_to_cpu(mdm->metadataFileLoc));
1517                                 udf_debug("Mirror file loc=%d\n",
1518                                           le32_to_cpu(mdm->metadataMirrorFileLoc));
1519                                 udf_debug("Bitmap file loc=%d\n",
1520                                           le32_to_cpu(mdm->metadataBitmapFileLoc));
1521                                 udf_debug("Flags: %d %d\n",
1522                                           mdata->s_flags, mdm->flags);
1523                         } else {
1524                                 udf_debug("Unknown ident: %s\n",
1525                                           upm2->partIdent.ident);
1526                                 continue;
1527                         }
1528                         map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1529                         map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1530                 }
1531                 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1532                           i, map->s_partition_num, type, map->s_volumeseqnum);
1533         }
1534
1535         if (fileset) {
1536                 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1537
1538                 *fileset = lelb_to_cpu(la->extLocation);
1539                 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1540                           fileset->logicalBlockNum,
1541                           fileset->partitionReferenceNum);
1542         }
1543         if (lvd->integritySeqExt.extLength)
1544                 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1545         ret = 0;
1546 out_bh:
1547         brelse(bh);
1548         return ret;
1549 }
1550
1551 /*
1552  * Find the prevailing Logical Volume Integrity Descriptor.
1553  */
1554 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1555 {
1556         struct buffer_head *bh, *final_bh;
1557         uint16_t ident;
1558         struct udf_sb_info *sbi = UDF_SB(sb);
1559         struct logicalVolIntegrityDesc *lvid;
1560         int indirections = 0;
1561
1562         while (++indirections <= UDF_MAX_LVID_NESTING) {
1563                 final_bh = NULL;
1564                 while (loc.extLength > 0 &&
1565                         (bh = udf_read_tagged(sb, loc.extLocation,
1566                                         loc.extLocation, &ident))) {
1567                         if (ident != TAG_IDENT_LVID) {
1568                                 brelse(bh);
1569                                 break;
1570                         }
1571
1572                         brelse(final_bh);
1573                         final_bh = bh;
1574
1575                         loc.extLength -= sb->s_blocksize;
1576                         loc.extLocation++;
1577                 }
1578
1579                 if (!final_bh)
1580                         return;
1581
1582                 brelse(sbi->s_lvid_bh);
1583                 sbi->s_lvid_bh = final_bh;
1584
1585                 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1586                 if (lvid->nextIntegrityExt.extLength == 0)
1587                         return;
1588
1589                 loc = leea_to_cpu(lvid->nextIntegrityExt);
1590         }
1591
1592         udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1593                 UDF_MAX_LVID_NESTING);
1594         brelse(sbi->s_lvid_bh);
1595         sbi->s_lvid_bh = NULL;
1596 }
1597
1598
1599 /*
1600  * Process a main/reserve volume descriptor sequence.
1601  *   @block             First block of first extent of the sequence.
1602  *   @lastblock         Lastblock of first extent of the sequence.
1603  *   @fileset           There we store extent containing root fileset
1604  *
1605  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1606  * sequence
1607  */
1608 static noinline int udf_process_sequence(
1609                 struct super_block *sb,
1610                 sector_t block, sector_t lastblock,
1611                 struct kernel_lb_addr *fileset)
1612 {
1613         struct buffer_head *bh = NULL;
1614         struct udf_vds_record vds[VDS_POS_LENGTH];
1615         struct udf_vds_record *curr;
1616         struct generic_desc *gd;
1617         struct volDescPtr *vdp;
1618         bool done = false;
1619         uint32_t vdsn;
1620         uint16_t ident;
1621         long next_s = 0, next_e = 0;
1622         int ret;
1623         unsigned int indirections = 0;
1624
1625         memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1626
1627         /*
1628          * Read the main descriptor sequence and find which descriptors
1629          * are in it.
1630          */
1631         for (; (!done && block <= lastblock); block++) {
1632
1633                 bh = udf_read_tagged(sb, block, block, &ident);
1634                 if (!bh) {
1635                         udf_err(sb,
1636                                 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1637                                 (unsigned long long)block);
1638                         return -EAGAIN;
1639                 }
1640
1641                 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1642                 gd = (struct generic_desc *)bh->b_data;
1643                 vdsn = le32_to_cpu(gd->volDescSeqNum);
1644                 switch (ident) {
1645                 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1646                         curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1647                         if (vdsn >= curr->volDescSeqNum) {
1648                                 curr->volDescSeqNum = vdsn;
1649                                 curr->block = block;
1650                         }
1651                         break;
1652                 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1653                         curr = &vds[VDS_POS_VOL_DESC_PTR];
1654                         if (vdsn >= curr->volDescSeqNum) {
1655                                 curr->volDescSeqNum = vdsn;
1656                                 curr->block = block;
1657
1658                                 vdp = (struct volDescPtr *)bh->b_data;
1659                                 next_s = le32_to_cpu(
1660                                         vdp->nextVolDescSeqExt.extLocation);
1661                                 next_e = le32_to_cpu(
1662                                         vdp->nextVolDescSeqExt.extLength);
1663                                 next_e = next_e >> sb->s_blocksize_bits;
1664                                 next_e += next_s;
1665                         }
1666                         break;
1667                 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1668                         curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1669                         if (vdsn >= curr->volDescSeqNum) {
1670                                 curr->volDescSeqNum = vdsn;
1671                                 curr->block = block;
1672                         }
1673                         break;
1674                 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1675                         curr = &vds[VDS_POS_PARTITION_DESC];
1676                         if (!curr->block)
1677                                 curr->block = block;
1678                         break;
1679                 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1680                         curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1681                         if (vdsn >= curr->volDescSeqNum) {
1682                                 curr->volDescSeqNum = vdsn;
1683                                 curr->block = block;
1684                         }
1685                         break;
1686                 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1687                         curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1688                         if (vdsn >= curr->volDescSeqNum) {
1689                                 curr->volDescSeqNum = vdsn;
1690                                 curr->block = block;
1691                         }
1692                         break;
1693                 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1694                         if (++indirections > UDF_MAX_TD_NESTING) {
1695                                 udf_err(sb, "too many TDs (max %u supported)\n", UDF_MAX_TD_NESTING);
1696                                 brelse(bh);
1697                                 return -EIO;
1698                         }
1699
1700                         vds[VDS_POS_TERMINATING_DESC].block = block;
1701                         if (next_e) {
1702                                 block = next_s;
1703                                 lastblock = next_e;
1704                                 next_s = next_e = 0;
1705                         } else
1706                                 done = true;
1707                         break;
1708                 }
1709                 brelse(bh);
1710         }
1711         /*
1712          * Now read interesting descriptors again and process them
1713          * in a suitable order
1714          */
1715         if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1716                 udf_err(sb, "Primary Volume Descriptor not found!\n");
1717                 return -EAGAIN;
1718         }
1719         ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block);
1720         if (ret < 0)
1721                 return ret;
1722
1723         if (vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1724                 ret = udf_load_logicalvol(sb,
1725                                           vds[VDS_POS_LOGICAL_VOL_DESC].block,
1726                                           fileset);
1727                 if (ret < 0)
1728                         return ret;
1729         }
1730
1731         if (vds[VDS_POS_PARTITION_DESC].block) {
1732                 /*
1733                  * We rescan the whole descriptor sequence to find
1734                  * partition descriptor blocks and process them.
1735                  */
1736                 for (block = vds[VDS_POS_PARTITION_DESC].block;
1737                      block < vds[VDS_POS_TERMINATING_DESC].block;
1738                      block++) {
1739                         ret = udf_load_partdesc(sb, block);
1740                         if (ret < 0)
1741                                 return ret;
1742                 }
1743         }
1744
1745         return 0;
1746 }
1747
1748 /*
1749  * Load Volume Descriptor Sequence described by anchor in bh
1750  *
1751  * Returns <0 on error, 0 on success
1752  */
1753 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1754                              struct kernel_lb_addr *fileset)
1755 {
1756         struct anchorVolDescPtr *anchor;
1757         sector_t main_s, main_e, reserve_s, reserve_e;
1758         int ret;
1759
1760         anchor = (struct anchorVolDescPtr *)bh->b_data;
1761
1762         /* Locate the main sequence */
1763         main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1764         main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1765         main_e = main_e >> sb->s_blocksize_bits;
1766         main_e += main_s;
1767
1768         /* Locate the reserve sequence */
1769         reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1770         reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1771         reserve_e = reserve_e >> sb->s_blocksize_bits;
1772         reserve_e += reserve_s;
1773
1774         /* Process the main & reserve sequences */
1775         /* responsible for finding the PartitionDesc(s) */
1776         ret = udf_process_sequence(sb, main_s, main_e, fileset);
1777         if (ret != -EAGAIN)
1778                 return ret;
1779         udf_sb_free_partitions(sb);
1780         ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1781         if (ret < 0) {
1782                 udf_sb_free_partitions(sb);
1783                 /* No sequence was OK, return -EIO */
1784                 if (ret == -EAGAIN)
1785                         ret = -EIO;
1786         }
1787         return ret;
1788 }
1789
1790 /*
1791  * Check whether there is an anchor block in the given block and
1792  * load Volume Descriptor Sequence if so.
1793  *
1794  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1795  * block
1796  */
1797 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1798                                   struct kernel_lb_addr *fileset)
1799 {
1800         struct buffer_head *bh;
1801         uint16_t ident;
1802         int ret;
1803
1804         if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1805             udf_fixed_to_variable(block) >=
1806             sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1807                 return -EAGAIN;
1808
1809         bh = udf_read_tagged(sb, block, block, &ident);
1810         if (!bh)
1811                 return -EAGAIN;
1812         if (ident != TAG_IDENT_AVDP) {
1813                 brelse(bh);
1814                 return -EAGAIN;
1815         }
1816         ret = udf_load_sequence(sb, bh, fileset);
1817         brelse(bh);
1818         return ret;
1819 }
1820
1821 /*
1822  * Search for an anchor volume descriptor pointer.
1823  *
1824  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1825  * of anchors.
1826  */
1827 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1828                             struct kernel_lb_addr *fileset)
1829 {
1830         sector_t last[6];
1831         int i;
1832         struct udf_sb_info *sbi = UDF_SB(sb);
1833         int last_count = 0;
1834         int ret;
1835
1836         /* First try user provided anchor */
1837         if (sbi->s_anchor) {
1838                 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1839                 if (ret != -EAGAIN)
1840                         return ret;
1841         }
1842         /*
1843          * according to spec, anchor is in either:
1844          *     block 256
1845          *     lastblock-256
1846          *     lastblock
1847          *  however, if the disc isn't closed, it could be 512.
1848          */
1849         ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1850         if (ret != -EAGAIN)
1851                 return ret;
1852         /*
1853          * The trouble is which block is the last one. Drives often misreport
1854          * this so we try various possibilities.
1855          */
1856         last[last_count++] = *lastblock;
1857         if (*lastblock >= 1)
1858                 last[last_count++] = *lastblock - 1;
1859         last[last_count++] = *lastblock + 1;
1860         if (*lastblock >= 2)
1861                 last[last_count++] = *lastblock - 2;
1862         if (*lastblock >= 150)
1863                 last[last_count++] = *lastblock - 150;
1864         if (*lastblock >= 152)
1865                 last[last_count++] = *lastblock - 152;
1866
1867         for (i = 0; i < last_count; i++) {
1868                 if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1869                                 sb->s_blocksize_bits)
1870                         continue;
1871                 ret = udf_check_anchor_block(sb, last[i], fileset);
1872                 if (ret != -EAGAIN) {
1873                         if (!ret)
1874                                 *lastblock = last[i];
1875                         return ret;
1876                 }
1877                 if (last[i] < 256)
1878                         continue;
1879                 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1880                 if (ret != -EAGAIN) {
1881                         if (!ret)
1882                                 *lastblock = last[i];
1883                         return ret;
1884                 }
1885         }
1886
1887         /* Finally try block 512 in case media is open */
1888         return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1889 }
1890
1891 /*
1892  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1893  * area specified by it. The function expects sbi->s_lastblock to be the last
1894  * block on the media.
1895  *
1896  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1897  * was not found.
1898  */
1899 static int udf_find_anchor(struct super_block *sb,
1900                            struct kernel_lb_addr *fileset)
1901 {
1902         struct udf_sb_info *sbi = UDF_SB(sb);
1903         sector_t lastblock = sbi->s_last_block;
1904         int ret;
1905
1906         ret = udf_scan_anchors(sb, &lastblock, fileset);
1907         if (ret != -EAGAIN)
1908                 goto out;
1909
1910         /* No anchor found? Try VARCONV conversion of block numbers */
1911         UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1912         lastblock = udf_variable_to_fixed(sbi->s_last_block);
1913         /* Firstly, we try to not convert number of the last block */
1914         ret = udf_scan_anchors(sb, &lastblock, fileset);
1915         if (ret != -EAGAIN)
1916                 goto out;
1917
1918         lastblock = sbi->s_last_block;
1919         /* Secondly, we try with converted number of the last block */
1920         ret = udf_scan_anchors(sb, &lastblock, fileset);
1921         if (ret < 0) {
1922                 /* VARCONV didn't help. Clear it. */
1923                 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1924         }
1925 out:
1926         if (ret == 0)
1927                 sbi->s_last_block = lastblock;
1928         return ret;
1929 }
1930
1931 /*
1932  * Check Volume Structure Descriptor, find Anchor block and load Volume
1933  * Descriptor Sequence.
1934  *
1935  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1936  * block was not found.
1937  */
1938 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1939                         int silent, struct kernel_lb_addr *fileset)
1940 {
1941         struct udf_sb_info *sbi = UDF_SB(sb);
1942         loff_t nsr_off;
1943         int ret;
1944
1945         if (!sb_set_blocksize(sb, uopt->blocksize)) {
1946                 if (!silent)
1947                         udf_warn(sb, "Bad block size\n");
1948                 return -EINVAL;
1949         }
1950         sbi->s_last_block = uopt->lastblock;
1951         if (!uopt->novrs) {
1952                 /* Check that it is NSR02 compliant */
1953                 nsr_off = udf_check_vsd(sb);
1954                 if (!nsr_off) {
1955                         if (!silent)
1956                                 udf_warn(sb, "No VRS found\n");
1957                         return 0;
1958                 }
1959                 if (nsr_off == -1)
1960                         udf_debug("Failed to read sector at offset %d. "
1961                                   "Assuming open disc. Skipping validity "
1962                                   "check\n", VSD_FIRST_SECTOR_OFFSET);
1963                 if (!sbi->s_last_block)
1964                         sbi->s_last_block = udf_get_last_block(sb);
1965         } else {
1966                 udf_debug("Validity check skipped because of novrs option\n");
1967         }
1968
1969         /* Look for anchor block and load Volume Descriptor Sequence */
1970         sbi->s_anchor = uopt->anchor;
1971         ret = udf_find_anchor(sb, fileset);
1972         if (ret < 0) {
1973                 if (!silent && ret == -EAGAIN)
1974                         udf_warn(sb, "No anchor found\n");
1975                 return ret;
1976         }
1977         return 0;
1978 }
1979
1980 static void udf_open_lvid(struct super_block *sb)
1981 {
1982         struct udf_sb_info *sbi = UDF_SB(sb);
1983         struct buffer_head *bh = sbi->s_lvid_bh;
1984         struct logicalVolIntegrityDesc *lvid;
1985         struct logicalVolIntegrityDescImpUse *lvidiu;
1986         struct timespec ts;
1987
1988         if (!bh)
1989                 return;
1990         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1991         lvidiu = udf_sb_lvidiu(sb);
1992         if (!lvidiu)
1993                 return;
1994
1995         mutex_lock(&sbi->s_alloc_mutex);
1996         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1997         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1998         ktime_get_real_ts(&ts);
1999         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2000         lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2001
2002         lvid->descTag.descCRC = cpu_to_le16(
2003                 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2004                         le16_to_cpu(lvid->descTag.descCRCLength)));
2005
2006         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2007         mark_buffer_dirty(bh);
2008         sbi->s_lvid_dirty = 0;
2009         mutex_unlock(&sbi->s_alloc_mutex);
2010         /* Make opening of filesystem visible on the media immediately */
2011         sync_dirty_buffer(bh);
2012 }
2013
2014 static void udf_close_lvid(struct super_block *sb)
2015 {
2016         struct udf_sb_info *sbi = UDF_SB(sb);
2017         struct buffer_head *bh = sbi->s_lvid_bh;
2018         struct logicalVolIntegrityDesc *lvid;
2019         struct logicalVolIntegrityDescImpUse *lvidiu;
2020         struct timespec ts;
2021
2022         if (!bh)
2023                 return;
2024         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2025         lvidiu = udf_sb_lvidiu(sb);
2026         if (!lvidiu)
2027                 return;
2028
2029         mutex_lock(&sbi->s_alloc_mutex);
2030         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2031         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2032         ktime_get_real_ts(&ts);
2033         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2034         if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2035                 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2036         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2037                 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2038         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2039                 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2040         lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2041
2042         lvid->descTag.descCRC = cpu_to_le16(
2043                         crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2044                                 le16_to_cpu(lvid->descTag.descCRCLength)));
2045
2046         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2047         /*
2048          * We set buffer uptodate unconditionally here to avoid spurious
2049          * warnings from mark_buffer_dirty() when previous EIO has marked
2050          * the buffer as !uptodate
2051          */
2052         set_buffer_uptodate(bh);
2053         mark_buffer_dirty(bh);
2054         sbi->s_lvid_dirty = 0;
2055         mutex_unlock(&sbi->s_alloc_mutex);
2056         /* Make closing of filesystem visible on the media immediately */
2057         sync_dirty_buffer(bh);
2058 }
2059
2060 u64 lvid_get_unique_id(struct super_block *sb)
2061 {
2062         struct buffer_head *bh;
2063         struct udf_sb_info *sbi = UDF_SB(sb);
2064         struct logicalVolIntegrityDesc *lvid;
2065         struct logicalVolHeaderDesc *lvhd;
2066         u64 uniqueID;
2067         u64 ret;
2068
2069         bh = sbi->s_lvid_bh;
2070         if (!bh)
2071                 return 0;
2072
2073         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2074         lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2075
2076         mutex_lock(&sbi->s_alloc_mutex);
2077         ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2078         if (!(++uniqueID & 0xFFFFFFFF))
2079                 uniqueID += 16;
2080         lvhd->uniqueID = cpu_to_le64(uniqueID);
2081         mutex_unlock(&sbi->s_alloc_mutex);
2082         mark_buffer_dirty(bh);
2083
2084         return ret;
2085 }
2086
2087 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2088 {
2089         int ret = -EINVAL;
2090         struct inode *inode = NULL;
2091         struct udf_options uopt;
2092         struct kernel_lb_addr rootdir, fileset;
2093         struct udf_sb_info *sbi;
2094         bool lvid_open = false;
2095
2096         uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2097         uopt.uid = INVALID_UID;
2098         uopt.gid = INVALID_GID;
2099         uopt.umask = 0;
2100         uopt.fmode = UDF_INVALID_MODE;
2101         uopt.dmode = UDF_INVALID_MODE;
2102
2103         sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
2104         if (!sbi)
2105                 return -ENOMEM;
2106
2107         sb->s_fs_info = sbi;
2108
2109         mutex_init(&sbi->s_alloc_mutex);
2110
2111         if (!udf_parse_options((char *)options, &uopt, false))
2112                 goto parse_options_failure;
2113
2114         if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2115             uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2116                 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2117                 goto parse_options_failure;
2118         }
2119 #ifdef CONFIG_UDF_NLS
2120         if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2121                 uopt.nls_map = load_nls_default();
2122                 if (!uopt.nls_map)
2123                         uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2124                 else
2125                         udf_debug("Using default NLS map\n");
2126         }
2127 #endif
2128         if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2129                 uopt.flags |= (1 << UDF_FLAG_UTF8);
2130
2131         fileset.logicalBlockNum = 0xFFFFFFFF;
2132         fileset.partitionReferenceNum = 0xFFFF;
2133
2134         sbi->s_flags = uopt.flags;
2135         sbi->s_uid = uopt.uid;
2136         sbi->s_gid = uopt.gid;
2137         sbi->s_umask = uopt.umask;
2138         sbi->s_fmode = uopt.fmode;
2139         sbi->s_dmode = uopt.dmode;
2140         sbi->s_nls_map = uopt.nls_map;
2141         rwlock_init(&sbi->s_cred_lock);
2142
2143         if (uopt.session == 0xFFFFFFFF)
2144                 sbi->s_session = udf_get_last_session(sb);
2145         else
2146                 sbi->s_session = uopt.session;
2147
2148         udf_debug("Multi-session=%d\n", sbi->s_session);
2149
2150         /* Fill in the rest of the superblock */
2151         sb->s_op = &udf_sb_ops;
2152         sb->s_export_op = &udf_export_ops;
2153
2154         sb->s_magic = UDF_SUPER_MAGIC;
2155         sb->s_time_gran = 1000;
2156
2157         if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2158                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2159         } else {
2160                 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2161                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2162                 if (ret == -EAGAIN && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
2163                         if (!silent)
2164                                 pr_notice("Rescanning with blocksize %d\n",
2165                                           UDF_DEFAULT_BLOCKSIZE);
2166                         brelse(sbi->s_lvid_bh);
2167                         sbi->s_lvid_bh = NULL;
2168                         uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
2169                         ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2170                 }
2171         }
2172         if (ret < 0) {
2173                 if (ret == -EAGAIN) {
2174                         udf_warn(sb, "No partition found (1)\n");
2175                         ret = -EINVAL;
2176                 }
2177                 goto error_out;
2178         }
2179
2180         udf_debug("Lastblock=%d\n", sbi->s_last_block);
2181
2182         if (sbi->s_lvid_bh) {
2183                 struct logicalVolIntegrityDescImpUse *lvidiu =
2184                                                         udf_sb_lvidiu(sb);
2185                 uint16_t minUDFReadRev;
2186                 uint16_t minUDFWriteRev;
2187
2188                 if (!lvidiu) {
2189                         ret = -EINVAL;
2190                         goto error_out;
2191                 }
2192                 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2193                 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2194                 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2195                         udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2196                                 minUDFReadRev,
2197                                 UDF_MAX_READ_VERSION);
2198                         ret = -EINVAL;
2199                         goto error_out;
2200                 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2201                            !(sb->s_flags & MS_RDONLY)) {
2202                         ret = -EACCES;
2203                         goto error_out;
2204                 }
2205
2206                 sbi->s_udfrev = minUDFWriteRev;
2207
2208                 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2209                         UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2210                 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2211                         UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2212         }
2213
2214         if (!sbi->s_partitions) {
2215                 udf_warn(sb, "No partition found (2)\n");
2216                 ret = -EINVAL;
2217                 goto error_out;
2218         }
2219
2220         if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2221                         UDF_PART_FLAG_READ_ONLY &&
2222             !(sb->s_flags & MS_RDONLY)) {
2223                 ret = -EACCES;
2224                 goto error_out;
2225         }
2226
2227         if (udf_find_fileset(sb, &fileset, &rootdir)) {
2228                 udf_warn(sb, "No fileset found\n");
2229                 ret = -EINVAL;
2230                 goto error_out;
2231         }
2232
2233         if (!silent) {
2234                 struct timestamp ts;
2235                 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2236                 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2237                          sbi->s_volume_ident,
2238                          le16_to_cpu(ts.year), ts.month, ts.day,
2239                          ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2240         }
2241         if (!(sb->s_flags & MS_RDONLY)) {
2242                 udf_open_lvid(sb);
2243                 lvid_open = true;
2244         }
2245
2246         /* Assign the root inode */
2247         /* assign inodes by physical block number */
2248         /* perhaps it's not extensible enough, but for now ... */
2249         inode = udf_iget(sb, &rootdir);
2250         if (IS_ERR(inode)) {
2251                 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2252                        rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2253                 ret = PTR_ERR(inode);
2254                 goto error_out;
2255         }
2256
2257         /* Allocate a dentry for the root inode */
2258         sb->s_root = d_make_root(inode);
2259         if (!sb->s_root) {
2260                 udf_err(sb, "Couldn't allocate root dentry\n");
2261                 ret = -ENOMEM;
2262                 goto error_out;
2263         }
2264         sb->s_maxbytes = MAX_LFS_FILESIZE;
2265         sb->s_max_links = UDF_MAX_LINKS;
2266         return 0;
2267
2268 error_out:
2269         iput(sbi->s_vat_inode);
2270 parse_options_failure:
2271 #ifdef CONFIG_UDF_NLS
2272         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2273                 unload_nls(sbi->s_nls_map);
2274 #endif
2275         if (lvid_open)
2276                 udf_close_lvid(sb);
2277         brelse(sbi->s_lvid_bh);
2278         udf_sb_free_partitions(sb);
2279         kfree(sbi);
2280         sb->s_fs_info = NULL;
2281
2282         return ret;
2283 }
2284
2285 void _udf_err(struct super_block *sb, const char *function,
2286               const char *fmt, ...)
2287 {
2288         struct va_format vaf;
2289         va_list args;
2290
2291         va_start(args, fmt);
2292
2293         vaf.fmt = fmt;
2294         vaf.va = &args;
2295
2296         pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2297
2298         va_end(args);
2299 }
2300
2301 void _udf_warn(struct super_block *sb, const char *function,
2302                const char *fmt, ...)
2303 {
2304         struct va_format vaf;
2305         va_list args;
2306
2307         va_start(args, fmt);
2308
2309         vaf.fmt = fmt;
2310         vaf.va = &args;
2311
2312         pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2313
2314         va_end(args);
2315 }
2316
2317 static void udf_put_super(struct super_block *sb)
2318 {
2319         struct udf_sb_info *sbi;
2320
2321         sbi = UDF_SB(sb);
2322
2323         iput(sbi->s_vat_inode);
2324 #ifdef CONFIG_UDF_NLS
2325         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2326                 unload_nls(sbi->s_nls_map);
2327 #endif
2328         if (!(sb->s_flags & MS_RDONLY))
2329                 udf_close_lvid(sb);
2330         brelse(sbi->s_lvid_bh);
2331         udf_sb_free_partitions(sb);
2332         mutex_destroy(&sbi->s_alloc_mutex);
2333         kfree(sb->s_fs_info);
2334         sb->s_fs_info = NULL;
2335 }
2336
2337 static int udf_sync_fs(struct super_block *sb, int wait)
2338 {
2339         struct udf_sb_info *sbi = UDF_SB(sb);
2340
2341         mutex_lock(&sbi->s_alloc_mutex);
2342         if (sbi->s_lvid_dirty) {
2343                 /*
2344                  * Blockdevice will be synced later so we don't have to submit
2345                  * the buffer for IO
2346                  */
2347                 mark_buffer_dirty(sbi->s_lvid_bh);
2348                 sbi->s_lvid_dirty = 0;
2349         }
2350         mutex_unlock(&sbi->s_alloc_mutex);
2351
2352         return 0;
2353 }
2354
2355 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2356 {
2357         struct super_block *sb = dentry->d_sb;
2358         struct udf_sb_info *sbi = UDF_SB(sb);
2359         struct logicalVolIntegrityDescImpUse *lvidiu;
2360         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2361
2362         lvidiu = udf_sb_lvidiu(sb);
2363         buf->f_type = UDF_SUPER_MAGIC;
2364         buf->f_bsize = sb->s_blocksize;
2365         buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2366         buf->f_bfree = udf_count_free(sb);
2367         buf->f_bavail = buf->f_bfree;
2368         buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2369                                           le32_to_cpu(lvidiu->numDirs)) : 0)
2370                         + buf->f_bfree;
2371         buf->f_ffree = buf->f_bfree;
2372         buf->f_namelen = UDF_NAME_LEN;
2373         buf->f_fsid.val[0] = (u32)id;
2374         buf->f_fsid.val[1] = (u32)(id >> 32);
2375
2376         return 0;
2377 }
2378
2379 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2380                                           struct udf_bitmap *bitmap)
2381 {
2382         struct buffer_head *bh = NULL;
2383         unsigned int accum = 0;
2384         int index;
2385         int block = 0, newblock;
2386         struct kernel_lb_addr loc;
2387         uint32_t bytes;
2388         uint8_t *ptr;
2389         uint16_t ident;
2390         struct spaceBitmapDesc *bm;
2391
2392         loc.logicalBlockNum = bitmap->s_extPosition;
2393         loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2394         bh = udf_read_ptagged(sb, &loc, 0, &ident);
2395
2396         if (!bh) {
2397                 udf_err(sb, "udf_count_free failed\n");
2398                 goto out;
2399         } else if (ident != TAG_IDENT_SBD) {
2400                 brelse(bh);
2401                 udf_err(sb, "udf_count_free failed\n");
2402                 goto out;
2403         }
2404
2405         bm = (struct spaceBitmapDesc *)bh->b_data;
2406         bytes = le32_to_cpu(bm->numOfBytes);
2407         index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2408         ptr = (uint8_t *)bh->b_data;
2409
2410         while (bytes > 0) {
2411                 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2412                 accum += bitmap_weight((const unsigned long *)(ptr + index),
2413                                         cur_bytes * 8);
2414                 bytes -= cur_bytes;
2415                 if (bytes) {
2416                         brelse(bh);
2417                         newblock = udf_get_lb_pblock(sb, &loc, ++block);
2418                         bh = udf_tread(sb, newblock);
2419                         if (!bh) {
2420                                 udf_debug("read failed\n");
2421                                 goto out;
2422                         }
2423                         index = 0;
2424                         ptr = (uint8_t *)bh->b_data;
2425                 }
2426         }
2427         brelse(bh);
2428 out:
2429         return accum;
2430 }
2431
2432 static unsigned int udf_count_free_table(struct super_block *sb,
2433                                          struct inode *table)
2434 {
2435         unsigned int accum = 0;
2436         uint32_t elen;
2437         struct kernel_lb_addr eloc;
2438         int8_t etype;
2439         struct extent_position epos;
2440
2441         mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2442         epos.block = UDF_I(table)->i_location;
2443         epos.offset = sizeof(struct unallocSpaceEntry);
2444         epos.bh = NULL;
2445
2446         while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2447                 accum += (elen >> table->i_sb->s_blocksize_bits);
2448
2449         brelse(epos.bh);
2450         mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2451
2452         return accum;
2453 }
2454
2455 static unsigned int udf_count_free(struct super_block *sb)
2456 {
2457         unsigned int accum = 0;
2458         struct udf_sb_info *sbi;
2459         struct udf_part_map *map;
2460
2461         sbi = UDF_SB(sb);
2462         if (sbi->s_lvid_bh) {
2463                 struct logicalVolIntegrityDesc *lvid =
2464                         (struct logicalVolIntegrityDesc *)
2465                         sbi->s_lvid_bh->b_data;
2466                 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2467                         accum = le32_to_cpu(
2468                                         lvid->freeSpaceTable[sbi->s_partition]);
2469                         if (accum == 0xFFFFFFFF)
2470                                 accum = 0;
2471                 }
2472         }
2473
2474         if (accum)
2475                 return accum;
2476
2477         map = &sbi->s_partmaps[sbi->s_partition];
2478         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2479                 accum += udf_count_free_bitmap(sb,
2480                                                map->s_uspace.s_bitmap);
2481         }
2482         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2483                 accum += udf_count_free_bitmap(sb,
2484                                                map->s_fspace.s_bitmap);
2485         }
2486         if (accum)
2487                 return accum;
2488
2489         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2490                 accum += udf_count_free_table(sb,
2491                                               map->s_uspace.s_table);
2492         }
2493         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2494                 accum += udf_count_free_table(sb,
2495                                               map->s_fspace.s_table);
2496         }
2497
2498         return accum;
2499 }
2500
2501 MODULE_AUTHOR("Ben Fennema");
2502 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2503 MODULE_LICENSE("GPL");
2504 module_init(init_udf_fs)
2505 module_exit(exit_udf_fs)