Merge branch 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux...
[sfrench/cifs-2.6.git] / fs / udf / super.c
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/smp_lock.h>
52 #include <linux/buffer_head.h>
53 #include <linux/vfs.h>
54 #include <linux/vmalloc.h>
55 #include <linux/errno.h>
56 #include <linux/mount.h>
57 #include <linux/seq_file.h>
58 #include <linux/bitmap.h>
59 #include <linux/crc-itu-t.h>
60 #include <asm/byteorder.h>
61
62 #include "udf_sb.h"
63 #include "udf_i.h"
64
65 #include <linux/init.h>
66 #include <asm/uaccess.h>
67
68 #define VDS_POS_PRIMARY_VOL_DESC        0
69 #define VDS_POS_UNALLOC_SPACE_DESC      1
70 #define VDS_POS_LOGICAL_VOL_DESC        2
71 #define VDS_POS_PARTITION_DESC          3
72 #define VDS_POS_IMP_USE_VOL_DESC        4
73 #define VDS_POS_VOL_DESC_PTR            5
74 #define VDS_POS_TERMINATING_DESC        6
75 #define VDS_POS_LENGTH                  7
76
77 #define UDF_DEFAULT_BLOCKSIZE 2048
78
79 static char error_buf[1024];
80
81 /* These are the "meat" - everything else is stuffing */
82 static int udf_fill_super(struct super_block *, void *, int);
83 static void udf_put_super(struct super_block *);
84 static int udf_sync_fs(struct super_block *, int);
85 static int udf_remount_fs(struct super_block *, int *, char *);
86 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
87 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
88                             struct kernel_lb_addr *);
89 static void udf_load_fileset(struct super_block *, struct buffer_head *,
90                              struct kernel_lb_addr *);
91 static void udf_open_lvid(struct super_block *);
92 static void udf_close_lvid(struct super_block *);
93 static unsigned int udf_count_free(struct super_block *);
94 static int udf_statfs(struct dentry *, struct kstatfs *);
95 static int udf_show_options(struct seq_file *, struct vfsmount *);
96 static void udf_error(struct super_block *sb, const char *function,
97                       const char *fmt, ...);
98
99 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi)
100 {
101         struct logicalVolIntegrityDesc *lvid =
102                 (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
103         __u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions);
104         __u32 offset = number_of_partitions * 2 *
105                                 sizeof(uint32_t)/sizeof(uint8_t);
106         return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
107 }
108
109 /* UDF filesystem type */
110 static int udf_get_sb(struct file_system_type *fs_type,
111                       int flags, const char *dev_name, void *data,
112                       struct vfsmount *mnt)
113 {
114         return get_sb_bdev(fs_type, flags, dev_name, data, udf_fill_super, mnt);
115 }
116
117 static struct file_system_type udf_fstype = {
118         .owner          = THIS_MODULE,
119         .name           = "udf",
120         .get_sb         = udf_get_sb,
121         .kill_sb        = kill_block_super,
122         .fs_flags       = FS_REQUIRES_DEV,
123 };
124
125 static struct kmem_cache *udf_inode_cachep;
126
127 static struct inode *udf_alloc_inode(struct super_block *sb)
128 {
129         struct udf_inode_info *ei;
130         ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
131         if (!ei)
132                 return NULL;
133
134         ei->i_unique = 0;
135         ei->i_lenExtents = 0;
136         ei->i_next_alloc_block = 0;
137         ei->i_next_alloc_goal = 0;
138         ei->i_strat4096 = 0;
139
140         return &ei->vfs_inode;
141 }
142
143 static void udf_destroy_inode(struct inode *inode)
144 {
145         kmem_cache_free(udf_inode_cachep, UDF_I(inode));
146 }
147
148 static void init_once(void *foo)
149 {
150         struct udf_inode_info *ei = (struct udf_inode_info *)foo;
151
152         ei->i_ext.i_data = NULL;
153         inode_init_once(&ei->vfs_inode);
154 }
155
156 static int init_inodecache(void)
157 {
158         udf_inode_cachep = kmem_cache_create("udf_inode_cache",
159                                              sizeof(struct udf_inode_info),
160                                              0, (SLAB_RECLAIM_ACCOUNT |
161                                                  SLAB_MEM_SPREAD),
162                                              init_once);
163         if (!udf_inode_cachep)
164                 return -ENOMEM;
165         return 0;
166 }
167
168 static void destroy_inodecache(void)
169 {
170         kmem_cache_destroy(udf_inode_cachep);
171 }
172
173 /* Superblock operations */
174 static const struct super_operations udf_sb_ops = {
175         .alloc_inode    = udf_alloc_inode,
176         .destroy_inode  = udf_destroy_inode,
177         .write_inode    = udf_write_inode,
178         .delete_inode   = udf_delete_inode,
179         .clear_inode    = udf_clear_inode,
180         .put_super      = udf_put_super,
181         .sync_fs        = udf_sync_fs,
182         .statfs         = udf_statfs,
183         .remount_fs     = udf_remount_fs,
184         .show_options   = udf_show_options,
185 };
186
187 struct udf_options {
188         unsigned char novrs;
189         unsigned int blocksize;
190         unsigned int session;
191         unsigned int lastblock;
192         unsigned int anchor;
193         unsigned int volume;
194         unsigned short partition;
195         unsigned int fileset;
196         unsigned int rootdir;
197         unsigned int flags;
198         mode_t umask;
199         gid_t gid;
200         uid_t uid;
201         mode_t fmode;
202         mode_t dmode;
203         struct nls_table *nls_map;
204 };
205
206 static int __init init_udf_fs(void)
207 {
208         int err;
209
210         err = init_inodecache();
211         if (err)
212                 goto out1;
213         err = register_filesystem(&udf_fstype);
214         if (err)
215                 goto out;
216
217         return 0;
218
219 out:
220         destroy_inodecache();
221
222 out1:
223         return err;
224 }
225
226 static void __exit exit_udf_fs(void)
227 {
228         unregister_filesystem(&udf_fstype);
229         destroy_inodecache();
230 }
231
232 module_init(init_udf_fs)
233 module_exit(exit_udf_fs)
234
235 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
236 {
237         struct udf_sb_info *sbi = UDF_SB(sb);
238
239         sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
240                                   GFP_KERNEL);
241         if (!sbi->s_partmaps) {
242                 udf_error(sb, __func__,
243                           "Unable to allocate space for %d partition maps",
244                           count);
245                 sbi->s_partitions = 0;
246                 return -ENOMEM;
247         }
248
249         sbi->s_partitions = count;
250         return 0;
251 }
252
253 static int udf_show_options(struct seq_file *seq, struct vfsmount *mnt)
254 {
255         struct super_block *sb = mnt->mnt_sb;
256         struct udf_sb_info *sbi = UDF_SB(sb);
257
258         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
259                 seq_puts(seq, ",nostrict");
260         if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
261                 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
262         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
263                 seq_puts(seq, ",unhide");
264         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
265                 seq_puts(seq, ",undelete");
266         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
267                 seq_puts(seq, ",noadinicb");
268         if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
269                 seq_puts(seq, ",shortad");
270         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
271                 seq_puts(seq, ",uid=forget");
272         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
273                 seq_puts(seq, ",uid=ignore");
274         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
275                 seq_puts(seq, ",gid=forget");
276         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
277                 seq_puts(seq, ",gid=ignore");
278         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
279                 seq_printf(seq, ",uid=%u", sbi->s_uid);
280         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
281                 seq_printf(seq, ",gid=%u", sbi->s_gid);
282         if (sbi->s_umask != 0)
283                 seq_printf(seq, ",umask=%o", sbi->s_umask);
284         if (sbi->s_fmode != UDF_INVALID_MODE)
285                 seq_printf(seq, ",mode=%o", sbi->s_fmode);
286         if (sbi->s_dmode != UDF_INVALID_MODE)
287                 seq_printf(seq, ",dmode=%o", sbi->s_dmode);
288         if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
289                 seq_printf(seq, ",session=%u", sbi->s_session);
290         if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
291                 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
292         if (sbi->s_anchor != 0)
293                 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
294         /*
295          * volume, partition, fileset and rootdir seem to be ignored
296          * currently
297          */
298         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
299                 seq_puts(seq, ",utf8");
300         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
301                 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
302
303         return 0;
304 }
305
306 /*
307  * udf_parse_options
308  *
309  * PURPOSE
310  *      Parse mount options.
311  *
312  * DESCRIPTION
313  *      The following mount options are supported:
314  *
315  *      gid=            Set the default group.
316  *      umask=          Set the default umask.
317  *      mode=           Set the default file permissions.
318  *      dmode=          Set the default directory permissions.
319  *      uid=            Set the default user.
320  *      bs=             Set the block size.
321  *      unhide          Show otherwise hidden files.
322  *      undelete        Show deleted files in lists.
323  *      adinicb         Embed data in the inode (default)
324  *      noadinicb       Don't embed data in the inode
325  *      shortad         Use short ad's
326  *      longad          Use long ad's (default)
327  *      nostrict        Unset strict conformance
328  *      iocharset=      Set the NLS character set
329  *
330  *      The remaining are for debugging and disaster recovery:
331  *
332  *      novrs           Skip volume sequence recognition
333  *
334  *      The following expect a offset from 0.
335  *
336  *      session=        Set the CDROM session (default= last session)
337  *      anchor=         Override standard anchor location. (default= 256)
338  *      volume=         Override the VolumeDesc location. (unused)
339  *      partition=      Override the PartitionDesc location. (unused)
340  *      lastblock=      Set the last block of the filesystem/
341  *
342  *      The following expect a offset from the partition root.
343  *
344  *      fileset=        Override the fileset block location. (unused)
345  *      rootdir=        Override the root directory location. (unused)
346  *              WARNING: overriding the rootdir to a non-directory may
347  *              yield highly unpredictable results.
348  *
349  * PRE-CONDITIONS
350  *      options         Pointer to mount options string.
351  *      uopts           Pointer to mount options variable.
352  *
353  * POST-CONDITIONS
354  *      <return>        1       Mount options parsed okay.
355  *      <return>        0       Error parsing mount options.
356  *
357  * HISTORY
358  *      July 1, 1997 - Andrew E. Mileski
359  *      Written, tested, and released.
360  */
361
362 enum {
363         Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
364         Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
365         Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
366         Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
367         Opt_rootdir, Opt_utf8, Opt_iocharset,
368         Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
369         Opt_fmode, Opt_dmode
370 };
371
372 static const match_table_t tokens = {
373         {Opt_novrs,     "novrs"},
374         {Opt_nostrict,  "nostrict"},
375         {Opt_bs,        "bs=%u"},
376         {Opt_unhide,    "unhide"},
377         {Opt_undelete,  "undelete"},
378         {Opt_noadinicb, "noadinicb"},
379         {Opt_adinicb,   "adinicb"},
380         {Opt_shortad,   "shortad"},
381         {Opt_longad,    "longad"},
382         {Opt_uforget,   "uid=forget"},
383         {Opt_uignore,   "uid=ignore"},
384         {Opt_gforget,   "gid=forget"},
385         {Opt_gignore,   "gid=ignore"},
386         {Opt_gid,       "gid=%u"},
387         {Opt_uid,       "uid=%u"},
388         {Opt_umask,     "umask=%o"},
389         {Opt_session,   "session=%u"},
390         {Opt_lastblock, "lastblock=%u"},
391         {Opt_anchor,    "anchor=%u"},
392         {Opt_volume,    "volume=%u"},
393         {Opt_partition, "partition=%u"},
394         {Opt_fileset,   "fileset=%u"},
395         {Opt_rootdir,   "rootdir=%u"},
396         {Opt_utf8,      "utf8"},
397         {Opt_iocharset, "iocharset=%s"},
398         {Opt_fmode,     "mode=%o"},
399         {Opt_dmode,     "dmode=%o"},
400         {Opt_err,       NULL}
401 };
402
403 static int udf_parse_options(char *options, struct udf_options *uopt,
404                              bool remount)
405 {
406         char *p;
407         int option;
408
409         uopt->novrs = 0;
410         uopt->partition = 0xFFFF;
411         uopt->session = 0xFFFFFFFF;
412         uopt->lastblock = 0;
413         uopt->anchor = 0;
414         uopt->volume = 0xFFFFFFFF;
415         uopt->rootdir = 0xFFFFFFFF;
416         uopt->fileset = 0xFFFFFFFF;
417         uopt->nls_map = NULL;
418
419         if (!options)
420                 return 1;
421
422         while ((p = strsep(&options, ",")) != NULL) {
423                 substring_t args[MAX_OPT_ARGS];
424                 int token;
425                 if (!*p)
426                         continue;
427
428                 token = match_token(p, tokens, args);
429                 switch (token) {
430                 case Opt_novrs:
431                         uopt->novrs = 1;
432                         break;
433                 case Opt_bs:
434                         if (match_int(&args[0], &option))
435                                 return 0;
436                         uopt->blocksize = option;
437                         uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
438                         break;
439                 case Opt_unhide:
440                         uopt->flags |= (1 << UDF_FLAG_UNHIDE);
441                         break;
442                 case Opt_undelete:
443                         uopt->flags |= (1 << UDF_FLAG_UNDELETE);
444                         break;
445                 case Opt_noadinicb:
446                         uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
447                         break;
448                 case Opt_adinicb:
449                         uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
450                         break;
451                 case Opt_shortad:
452                         uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
453                         break;
454                 case Opt_longad:
455                         uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
456                         break;
457                 case Opt_gid:
458                         if (match_int(args, &option))
459                                 return 0;
460                         uopt->gid = option;
461                         uopt->flags |= (1 << UDF_FLAG_GID_SET);
462                         break;
463                 case Opt_uid:
464                         if (match_int(args, &option))
465                                 return 0;
466                         uopt->uid = option;
467                         uopt->flags |= (1 << UDF_FLAG_UID_SET);
468                         break;
469                 case Opt_umask:
470                         if (match_octal(args, &option))
471                                 return 0;
472                         uopt->umask = option;
473                         break;
474                 case Opt_nostrict:
475                         uopt->flags &= ~(1 << UDF_FLAG_STRICT);
476                         break;
477                 case Opt_session:
478                         if (match_int(args, &option))
479                                 return 0;
480                         uopt->session = option;
481                         if (!remount)
482                                 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
483                         break;
484                 case Opt_lastblock:
485                         if (match_int(args, &option))
486                                 return 0;
487                         uopt->lastblock = option;
488                         if (!remount)
489                                 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
490                         break;
491                 case Opt_anchor:
492                         if (match_int(args, &option))
493                                 return 0;
494                         uopt->anchor = option;
495                         break;
496                 case Opt_volume:
497                         if (match_int(args, &option))
498                                 return 0;
499                         uopt->volume = option;
500                         break;
501                 case Opt_partition:
502                         if (match_int(args, &option))
503                                 return 0;
504                         uopt->partition = option;
505                         break;
506                 case Opt_fileset:
507                         if (match_int(args, &option))
508                                 return 0;
509                         uopt->fileset = option;
510                         break;
511                 case Opt_rootdir:
512                         if (match_int(args, &option))
513                                 return 0;
514                         uopt->rootdir = option;
515                         break;
516                 case Opt_utf8:
517                         uopt->flags |= (1 << UDF_FLAG_UTF8);
518                         break;
519 #ifdef CONFIG_UDF_NLS
520                 case Opt_iocharset:
521                         uopt->nls_map = load_nls(args[0].from);
522                         uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
523                         break;
524 #endif
525                 case Opt_uignore:
526                         uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
527                         break;
528                 case Opt_uforget:
529                         uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
530                         break;
531                 case Opt_gignore:
532                         uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
533                         break;
534                 case Opt_gforget:
535                         uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
536                         break;
537                 case Opt_fmode:
538                         if (match_octal(args, &option))
539                                 return 0;
540                         uopt->fmode = option & 0777;
541                         break;
542                 case Opt_dmode:
543                         if (match_octal(args, &option))
544                                 return 0;
545                         uopt->dmode = option & 0777;
546                         break;
547                 default:
548                         printk(KERN_ERR "udf: bad mount option \"%s\" "
549                                "or missing value\n", p);
550                         return 0;
551                 }
552         }
553         return 1;
554 }
555
556 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
557 {
558         struct udf_options uopt;
559         struct udf_sb_info *sbi = UDF_SB(sb);
560
561         uopt.flags = sbi->s_flags;
562         uopt.uid   = sbi->s_uid;
563         uopt.gid   = sbi->s_gid;
564         uopt.umask = sbi->s_umask;
565         uopt.fmode = sbi->s_fmode;
566         uopt.dmode = sbi->s_dmode;
567
568         if (!udf_parse_options(options, &uopt, true))
569                 return -EINVAL;
570
571         lock_kernel();
572         sbi->s_flags = uopt.flags;
573         sbi->s_uid   = uopt.uid;
574         sbi->s_gid   = uopt.gid;
575         sbi->s_umask = uopt.umask;
576         sbi->s_fmode = uopt.fmode;
577         sbi->s_dmode = uopt.dmode;
578
579         if (sbi->s_lvid_bh) {
580                 int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev);
581                 if (write_rev > UDF_MAX_WRITE_VERSION)
582                         *flags |= MS_RDONLY;
583         }
584
585         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) {
586                 unlock_kernel();
587                 return 0;
588         }
589         if (*flags & MS_RDONLY)
590                 udf_close_lvid(sb);
591         else
592                 udf_open_lvid(sb);
593
594         unlock_kernel();
595         return 0;
596 }
597
598 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
599 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
600 static loff_t udf_check_vsd(struct super_block *sb)
601 {
602         struct volStructDesc *vsd = NULL;
603         loff_t sector = 32768;
604         int sectorsize;
605         struct buffer_head *bh = NULL;
606         int nsr02 = 0;
607         int nsr03 = 0;
608         struct udf_sb_info *sbi;
609
610         sbi = UDF_SB(sb);
611         if (sb->s_blocksize < sizeof(struct volStructDesc))
612                 sectorsize = sizeof(struct volStructDesc);
613         else
614                 sectorsize = sb->s_blocksize;
615
616         sector += (sbi->s_session << sb->s_blocksize_bits);
617
618         udf_debug("Starting at sector %u (%ld byte sectors)\n",
619                   (unsigned int)(sector >> sb->s_blocksize_bits),
620                   sb->s_blocksize);
621         /* Process the sequence (if applicable) */
622         for (; !nsr02 && !nsr03; sector += sectorsize) {
623                 /* Read a block */
624                 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
625                 if (!bh)
626                         break;
627
628                 /* Look for ISO  descriptors */
629                 vsd = (struct volStructDesc *)(bh->b_data +
630                                               (sector & (sb->s_blocksize - 1)));
631
632                 if (vsd->stdIdent[0] == 0) {
633                         brelse(bh);
634                         break;
635                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
636                                     VSD_STD_ID_LEN)) {
637                         switch (vsd->structType) {
638                         case 0:
639                                 udf_debug("ISO9660 Boot Record found\n");
640                                 break;
641                         case 1:
642                                 udf_debug("ISO9660 Primary Volume Descriptor "
643                                           "found\n");
644                                 break;
645                         case 2:
646                                 udf_debug("ISO9660 Supplementary Volume "
647                                           "Descriptor found\n");
648                                 break;
649                         case 3:
650                                 udf_debug("ISO9660 Volume Partition Descriptor "
651                                           "found\n");
652                                 break;
653                         case 255:
654                                 udf_debug("ISO9660 Volume Descriptor Set "
655                                           "Terminator found\n");
656                                 break;
657                         default:
658                                 udf_debug("ISO9660 VRS (%u) found\n",
659                                           vsd->structType);
660                                 break;
661                         }
662                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
663                                     VSD_STD_ID_LEN))
664                         ; /* nothing */
665                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
666                                     VSD_STD_ID_LEN)) {
667                         brelse(bh);
668                         break;
669                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
670                                     VSD_STD_ID_LEN))
671                         nsr02 = sector;
672                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
673                                     VSD_STD_ID_LEN))
674                         nsr03 = sector;
675                 brelse(bh);
676         }
677
678         if (nsr03)
679                 return nsr03;
680         else if (nsr02)
681                 return nsr02;
682         else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768)
683                 return -1;
684         else
685                 return 0;
686 }
687
688 static int udf_find_fileset(struct super_block *sb,
689                             struct kernel_lb_addr *fileset,
690                             struct kernel_lb_addr *root)
691 {
692         struct buffer_head *bh = NULL;
693         long lastblock;
694         uint16_t ident;
695         struct udf_sb_info *sbi;
696
697         if (fileset->logicalBlockNum != 0xFFFFFFFF ||
698             fileset->partitionReferenceNum != 0xFFFF) {
699                 bh = udf_read_ptagged(sb, fileset, 0, &ident);
700
701                 if (!bh) {
702                         return 1;
703                 } else if (ident != TAG_IDENT_FSD) {
704                         brelse(bh);
705                         return 1;
706                 }
707
708         }
709
710         sbi = UDF_SB(sb);
711         if (!bh) {
712                 /* Search backwards through the partitions */
713                 struct kernel_lb_addr newfileset;
714
715 /* --> cvg: FIXME - is it reasonable? */
716                 return 1;
717
718                 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
719                      (newfileset.partitionReferenceNum != 0xFFFF &&
720                       fileset->logicalBlockNum == 0xFFFFFFFF &&
721                       fileset->partitionReferenceNum == 0xFFFF);
722                      newfileset.partitionReferenceNum--) {
723                         lastblock = sbi->s_partmaps
724                                         [newfileset.partitionReferenceNum]
725                                                 .s_partition_len;
726                         newfileset.logicalBlockNum = 0;
727
728                         do {
729                                 bh = udf_read_ptagged(sb, &newfileset, 0,
730                                                       &ident);
731                                 if (!bh) {
732                                         newfileset.logicalBlockNum++;
733                                         continue;
734                                 }
735
736                                 switch (ident) {
737                                 case TAG_IDENT_SBD:
738                                 {
739                                         struct spaceBitmapDesc *sp;
740                                         sp = (struct spaceBitmapDesc *)
741                                                                 bh->b_data;
742                                         newfileset.logicalBlockNum += 1 +
743                                                 ((le32_to_cpu(sp->numOfBytes) +
744                                                   sizeof(struct spaceBitmapDesc)
745                                                   - 1) >> sb->s_blocksize_bits);
746                                         brelse(bh);
747                                         break;
748                                 }
749                                 case TAG_IDENT_FSD:
750                                         *fileset = newfileset;
751                                         break;
752                                 default:
753                                         newfileset.logicalBlockNum++;
754                                         brelse(bh);
755                                         bh = NULL;
756                                         break;
757                                 }
758                         } while (newfileset.logicalBlockNum < lastblock &&
759                                  fileset->logicalBlockNum == 0xFFFFFFFF &&
760                                  fileset->partitionReferenceNum == 0xFFFF);
761                 }
762         }
763
764         if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
765              fileset->partitionReferenceNum != 0xFFFF) && bh) {
766                 udf_debug("Fileset at block=%d, partition=%d\n",
767                           fileset->logicalBlockNum,
768                           fileset->partitionReferenceNum);
769
770                 sbi->s_partition = fileset->partitionReferenceNum;
771                 udf_load_fileset(sb, bh, root);
772                 brelse(bh);
773                 return 0;
774         }
775         return 1;
776 }
777
778 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
779 {
780         struct primaryVolDesc *pvoldesc;
781         struct ustr *instr, *outstr;
782         struct buffer_head *bh;
783         uint16_t ident;
784         int ret = 1;
785
786         instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
787         if (!instr)
788                 return 1;
789
790         outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
791         if (!outstr)
792                 goto out1;
793
794         bh = udf_read_tagged(sb, block, block, &ident);
795         if (!bh)
796                 goto out2;
797
798         BUG_ON(ident != TAG_IDENT_PVD);
799
800         pvoldesc = (struct primaryVolDesc *)bh->b_data;
801
802         if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
803                               pvoldesc->recordingDateAndTime)) {
804 #ifdef UDFFS_DEBUG
805                 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
806                 udf_debug("recording time %04u/%02u/%02u"
807                           " %02u:%02u (%x)\n",
808                           le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
809                           ts->minute, le16_to_cpu(ts->typeAndTimezone));
810 #endif
811         }
812
813         if (!udf_build_ustr(instr, pvoldesc->volIdent, 32))
814                 if (udf_CS0toUTF8(outstr, instr)) {
815                         strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
816                                 outstr->u_len > 31 ? 31 : outstr->u_len);
817                         udf_debug("volIdent[] = '%s'\n",
818                                         UDF_SB(sb)->s_volume_ident);
819                 }
820
821         if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128))
822                 if (udf_CS0toUTF8(outstr, instr))
823                         udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
824
825         brelse(bh);
826         ret = 0;
827 out2:
828         kfree(outstr);
829 out1:
830         kfree(instr);
831         return ret;
832 }
833
834 static int udf_load_metadata_files(struct super_block *sb, int partition)
835 {
836         struct udf_sb_info *sbi = UDF_SB(sb);
837         struct udf_part_map *map;
838         struct udf_meta_data *mdata;
839         struct kernel_lb_addr addr;
840         int fe_error = 0;
841
842         map = &sbi->s_partmaps[partition];
843         mdata = &map->s_type_specific.s_metadata;
844
845         /* metadata address */
846         addr.logicalBlockNum =  mdata->s_meta_file_loc;
847         addr.partitionReferenceNum = map->s_partition_num;
848
849         udf_debug("Metadata file location: block = %d part = %d\n",
850                           addr.logicalBlockNum, addr.partitionReferenceNum);
851
852         mdata->s_metadata_fe = udf_iget(sb, &addr);
853
854         if (mdata->s_metadata_fe == NULL) {
855                 udf_warning(sb, __func__, "metadata inode efe not found, "
856                                 "will try mirror inode.");
857                 fe_error = 1;
858         } else if (UDF_I(mdata->s_metadata_fe)->i_alloc_type !=
859                  ICBTAG_FLAG_AD_SHORT) {
860                 udf_warning(sb, __func__, "metadata inode efe does not have "
861                         "short allocation descriptors!");
862                 fe_error = 1;
863                 iput(mdata->s_metadata_fe);
864                 mdata->s_metadata_fe = NULL;
865         }
866
867         /* mirror file entry */
868         addr.logicalBlockNum = mdata->s_mirror_file_loc;
869         addr.partitionReferenceNum = map->s_partition_num;
870
871         udf_debug("Mirror metadata file location: block = %d part = %d\n",
872                           addr.logicalBlockNum, addr.partitionReferenceNum);
873
874         mdata->s_mirror_fe = udf_iget(sb, &addr);
875
876         if (mdata->s_mirror_fe == NULL) {
877                 if (fe_error) {
878                         udf_error(sb, __func__, "mirror inode efe not found "
879                         "and metadata inode is missing too, exiting...");
880                         goto error_exit;
881                 } else
882                         udf_warning(sb, __func__, "mirror inode efe not found,"
883                                         " but metadata inode is OK");
884         } else if (UDF_I(mdata->s_mirror_fe)->i_alloc_type !=
885                  ICBTAG_FLAG_AD_SHORT) {
886                 udf_warning(sb, __func__, "mirror inode efe does not have "
887                         "short allocation descriptors!");
888                 iput(mdata->s_mirror_fe);
889                 mdata->s_mirror_fe = NULL;
890                 if (fe_error)
891                         goto error_exit;
892         }
893
894         /*
895          * bitmap file entry
896          * Note:
897          * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
898         */
899         if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
900                 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
901                 addr.partitionReferenceNum = map->s_partition_num;
902
903                 udf_debug("Bitmap file location: block = %d part = %d\n",
904                         addr.logicalBlockNum, addr.partitionReferenceNum);
905
906                 mdata->s_bitmap_fe = udf_iget(sb, &addr);
907
908                 if (mdata->s_bitmap_fe == NULL) {
909                         if (sb->s_flags & MS_RDONLY)
910                                 udf_warning(sb, __func__, "bitmap inode efe "
911                                         "not found but it's ok since the disc"
912                                         " is mounted read-only");
913                         else {
914                                 udf_error(sb, __func__, "bitmap inode efe not "
915                                         "found and attempted read-write mount");
916                                 goto error_exit;
917                         }
918                 }
919         }
920
921         udf_debug("udf_load_metadata_files Ok\n");
922
923         return 0;
924
925 error_exit:
926         return 1;
927 }
928
929 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
930                              struct kernel_lb_addr *root)
931 {
932         struct fileSetDesc *fset;
933
934         fset = (struct fileSetDesc *)bh->b_data;
935
936         *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
937
938         UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
939
940         udf_debug("Rootdir at block=%d, partition=%d\n",
941                   root->logicalBlockNum, root->partitionReferenceNum);
942 }
943
944 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
945 {
946         struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
947         return DIV_ROUND_UP(map->s_partition_len +
948                             (sizeof(struct spaceBitmapDesc) << 3),
949                             sb->s_blocksize * 8);
950 }
951
952 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
953 {
954         struct udf_bitmap *bitmap;
955         int nr_groups;
956         int size;
957
958         nr_groups = udf_compute_nr_groups(sb, index);
959         size = sizeof(struct udf_bitmap) +
960                 (sizeof(struct buffer_head *) * nr_groups);
961
962         if (size <= PAGE_SIZE)
963                 bitmap = kmalloc(size, GFP_KERNEL);
964         else
965                 bitmap = vmalloc(size); /* TODO: get rid of vmalloc */
966
967         if (bitmap == NULL) {
968                 udf_error(sb, __func__,
969                           "Unable to allocate space for bitmap "
970                           "and %d buffer_head pointers", nr_groups);
971                 return NULL;
972         }
973
974         memset(bitmap, 0x00, size);
975         bitmap->s_block_bitmap = (struct buffer_head **)(bitmap + 1);
976         bitmap->s_nr_groups = nr_groups;
977         return bitmap;
978 }
979
980 static int udf_fill_partdesc_info(struct super_block *sb,
981                 struct partitionDesc *p, int p_index)
982 {
983         struct udf_part_map *map;
984         struct udf_sb_info *sbi = UDF_SB(sb);
985         struct partitionHeaderDesc *phd;
986
987         map = &sbi->s_partmaps[p_index];
988
989         map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
990         map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
991
992         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
993                 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
994         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
995                 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
996         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
997                 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
998         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
999                 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1000
1001         udf_debug("Partition (%d type %x) starts at physical %d, "
1002                   "block length %d\n", p_index,
1003                   map->s_partition_type, map->s_partition_root,
1004                   map->s_partition_len);
1005
1006         if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1007             strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1008                 return 0;
1009
1010         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1011         if (phd->unallocSpaceTable.extLength) {
1012                 struct kernel_lb_addr loc = {
1013                         .logicalBlockNum = le32_to_cpu(
1014                                 phd->unallocSpaceTable.extPosition),
1015                         .partitionReferenceNum = p_index,
1016                 };
1017
1018                 map->s_uspace.s_table = udf_iget(sb, &loc);
1019                 if (!map->s_uspace.s_table) {
1020                         udf_debug("cannot load unallocSpaceTable (part %d)\n",
1021                                         p_index);
1022                         return 1;
1023                 }
1024                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1025                 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1026                                 p_index, map->s_uspace.s_table->i_ino);
1027         }
1028
1029         if (phd->unallocSpaceBitmap.extLength) {
1030                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1031                 if (!bitmap)
1032                         return 1;
1033                 map->s_uspace.s_bitmap = bitmap;
1034                 bitmap->s_extLength = le32_to_cpu(
1035                                 phd->unallocSpaceBitmap.extLength);
1036                 bitmap->s_extPosition = le32_to_cpu(
1037                                 phd->unallocSpaceBitmap.extPosition);
1038                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1039                 udf_debug("unallocSpaceBitmap (part %d) @ %d\n", p_index,
1040                                                 bitmap->s_extPosition);
1041         }
1042
1043         if (phd->partitionIntegrityTable.extLength)
1044                 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1045
1046         if (phd->freedSpaceTable.extLength) {
1047                 struct kernel_lb_addr loc = {
1048                         .logicalBlockNum = le32_to_cpu(
1049                                 phd->freedSpaceTable.extPosition),
1050                         .partitionReferenceNum = p_index,
1051                 };
1052
1053                 map->s_fspace.s_table = udf_iget(sb, &loc);
1054                 if (!map->s_fspace.s_table) {
1055                         udf_debug("cannot load freedSpaceTable (part %d)\n",
1056                                 p_index);
1057                         return 1;
1058                 }
1059
1060                 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1061                 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1062                                 p_index, map->s_fspace.s_table->i_ino);
1063         }
1064
1065         if (phd->freedSpaceBitmap.extLength) {
1066                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1067                 if (!bitmap)
1068                         return 1;
1069                 map->s_fspace.s_bitmap = bitmap;
1070                 bitmap->s_extLength = le32_to_cpu(
1071                                 phd->freedSpaceBitmap.extLength);
1072                 bitmap->s_extPosition = le32_to_cpu(
1073                                 phd->freedSpaceBitmap.extPosition);
1074                 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1075                 udf_debug("freedSpaceBitmap (part %d) @ %d\n", p_index,
1076                                         bitmap->s_extPosition);
1077         }
1078         return 0;
1079 }
1080
1081 static void udf_find_vat_block(struct super_block *sb, int p_index,
1082                                int type1_index, sector_t start_block)
1083 {
1084         struct udf_sb_info *sbi = UDF_SB(sb);
1085         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1086         sector_t vat_block;
1087         struct kernel_lb_addr ino;
1088
1089         /*
1090          * VAT file entry is in the last recorded block. Some broken disks have
1091          * it a few blocks before so try a bit harder...
1092          */
1093         ino.partitionReferenceNum = type1_index;
1094         for (vat_block = start_block;
1095              vat_block >= map->s_partition_root &&
1096              vat_block >= start_block - 3 &&
1097              !sbi->s_vat_inode; vat_block--) {
1098                 ino.logicalBlockNum = vat_block - map->s_partition_root;
1099                 sbi->s_vat_inode = udf_iget(sb, &ino);
1100         }
1101 }
1102
1103 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1104 {
1105         struct udf_sb_info *sbi = UDF_SB(sb);
1106         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1107         struct buffer_head *bh = NULL;
1108         struct udf_inode_info *vati;
1109         uint32_t pos;
1110         struct virtualAllocationTable20 *vat20;
1111         sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1112
1113         udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1114         if (!sbi->s_vat_inode &&
1115             sbi->s_last_block != blocks - 1) {
1116                 printk(KERN_NOTICE "UDF-fs: Failed to read VAT inode from the"
1117                        " last recorded block (%lu), retrying with the last "
1118                        "block of the device (%lu).\n",
1119                        (unsigned long)sbi->s_last_block,
1120                        (unsigned long)blocks - 1);
1121                 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1122         }
1123         if (!sbi->s_vat_inode)
1124                 return 1;
1125
1126         if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1127                 map->s_type_specific.s_virtual.s_start_offset = 0;
1128                 map->s_type_specific.s_virtual.s_num_entries =
1129                         (sbi->s_vat_inode->i_size - 36) >> 2;
1130         } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1131                 vati = UDF_I(sbi->s_vat_inode);
1132                 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1133                         pos = udf_block_map(sbi->s_vat_inode, 0);
1134                         bh = sb_bread(sb, pos);
1135                         if (!bh)
1136                                 return 1;
1137                         vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1138                 } else {
1139                         vat20 = (struct virtualAllocationTable20 *)
1140                                                         vati->i_ext.i_data;
1141                 }
1142
1143                 map->s_type_specific.s_virtual.s_start_offset =
1144                         le16_to_cpu(vat20->lengthHeader);
1145                 map->s_type_specific.s_virtual.s_num_entries =
1146                         (sbi->s_vat_inode->i_size -
1147                                 map->s_type_specific.s_virtual.
1148                                         s_start_offset) >> 2;
1149                 brelse(bh);
1150         }
1151         return 0;
1152 }
1153
1154 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1155 {
1156         struct buffer_head *bh;
1157         struct partitionDesc *p;
1158         struct udf_part_map *map;
1159         struct udf_sb_info *sbi = UDF_SB(sb);
1160         int i, type1_idx;
1161         uint16_t partitionNumber;
1162         uint16_t ident;
1163         int ret = 0;
1164
1165         bh = udf_read_tagged(sb, block, block, &ident);
1166         if (!bh)
1167                 return 1;
1168         if (ident != TAG_IDENT_PD)
1169                 goto out_bh;
1170
1171         p = (struct partitionDesc *)bh->b_data;
1172         partitionNumber = le16_to_cpu(p->partitionNumber);
1173
1174         /* First scan for TYPE1, SPARABLE and METADATA partitions */
1175         for (i = 0; i < sbi->s_partitions; i++) {
1176                 map = &sbi->s_partmaps[i];
1177                 udf_debug("Searching map: (%d == %d)\n",
1178                           map->s_partition_num, partitionNumber);
1179                 if (map->s_partition_num == partitionNumber &&
1180                     (map->s_partition_type == UDF_TYPE1_MAP15 ||
1181                      map->s_partition_type == UDF_SPARABLE_MAP15))
1182                         break;
1183         }
1184
1185         if (i >= sbi->s_partitions) {
1186                 udf_debug("Partition (%d) not found in partition map\n",
1187                           partitionNumber);
1188                 goto out_bh;
1189         }
1190
1191         ret = udf_fill_partdesc_info(sb, p, i);
1192
1193         /*
1194          * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1195          * PHYSICAL partitions are already set up
1196          */
1197         type1_idx = i;
1198         for (i = 0; i < sbi->s_partitions; i++) {
1199                 map = &sbi->s_partmaps[i];
1200
1201                 if (map->s_partition_num == partitionNumber &&
1202                     (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1203                      map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1204                      map->s_partition_type == UDF_METADATA_MAP25))
1205                         break;
1206         }
1207
1208         if (i >= sbi->s_partitions)
1209                 goto out_bh;
1210
1211         ret = udf_fill_partdesc_info(sb, p, i);
1212         if (ret)
1213                 goto out_bh;
1214
1215         if (map->s_partition_type == UDF_METADATA_MAP25) {
1216                 ret = udf_load_metadata_files(sb, i);
1217                 if (ret) {
1218                         printk(KERN_ERR "UDF-fs: error loading MetaData "
1219                         "partition map %d\n", i);
1220                         goto out_bh;
1221                 }
1222         } else {
1223                 ret = udf_load_vat(sb, i, type1_idx);
1224                 if (ret)
1225                         goto out_bh;
1226                 /*
1227                  * Mark filesystem read-only if we have a partition with
1228                  * virtual map since we don't handle writing to it (we
1229                  * overwrite blocks instead of relocating them).
1230                  */
1231                 sb->s_flags |= MS_RDONLY;
1232                 printk(KERN_NOTICE "UDF-fs: Filesystem marked read-only "
1233                         "because writing to pseudooverwrite partition is "
1234                         "not implemented.\n");
1235         }
1236 out_bh:
1237         /* In case loading failed, we handle cleanup in udf_fill_super */
1238         brelse(bh);
1239         return ret;
1240 }
1241
1242 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1243                                struct kernel_lb_addr *fileset)
1244 {
1245         struct logicalVolDesc *lvd;
1246         int i, j, offset;
1247         uint8_t type;
1248         struct udf_sb_info *sbi = UDF_SB(sb);
1249         struct genericPartitionMap *gpm;
1250         uint16_t ident;
1251         struct buffer_head *bh;
1252         int ret = 0;
1253
1254         bh = udf_read_tagged(sb, block, block, &ident);
1255         if (!bh)
1256                 return 1;
1257         BUG_ON(ident != TAG_IDENT_LVD);
1258         lvd = (struct logicalVolDesc *)bh->b_data;
1259
1260         i = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1261         if (i != 0) {
1262                 ret = i;
1263                 goto out_bh;
1264         }
1265
1266         for (i = 0, offset = 0;
1267              i < sbi->s_partitions && offset < le32_to_cpu(lvd->mapTableLength);
1268              i++, offset += gpm->partitionMapLength) {
1269                 struct udf_part_map *map = &sbi->s_partmaps[i];
1270                 gpm = (struct genericPartitionMap *)
1271                                 &(lvd->partitionMaps[offset]);
1272                 type = gpm->partitionMapType;
1273                 if (type == 1) {
1274                         struct genericPartitionMap1 *gpm1 =
1275                                 (struct genericPartitionMap1 *)gpm;
1276                         map->s_partition_type = UDF_TYPE1_MAP15;
1277                         map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1278                         map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1279                         map->s_partition_func = NULL;
1280                 } else if (type == 2) {
1281                         struct udfPartitionMap2 *upm2 =
1282                                                 (struct udfPartitionMap2 *)gpm;
1283                         if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1284                                                 strlen(UDF_ID_VIRTUAL))) {
1285                                 u16 suf =
1286                                         le16_to_cpu(((__le16 *)upm2->partIdent.
1287                                                         identSuffix)[0]);
1288                                 if (suf < 0x0200) {
1289                                         map->s_partition_type =
1290                                                         UDF_VIRTUAL_MAP15;
1291                                         map->s_partition_func =
1292                                                         udf_get_pblock_virt15;
1293                                 } else {
1294                                         map->s_partition_type =
1295                                                         UDF_VIRTUAL_MAP20;
1296                                         map->s_partition_func =
1297                                                         udf_get_pblock_virt20;
1298                                 }
1299                         } else if (!strncmp(upm2->partIdent.ident,
1300                                                 UDF_ID_SPARABLE,
1301                                                 strlen(UDF_ID_SPARABLE))) {
1302                                 uint32_t loc;
1303                                 struct sparingTable *st;
1304                                 struct sparablePartitionMap *spm =
1305                                         (struct sparablePartitionMap *)gpm;
1306
1307                                 map->s_partition_type = UDF_SPARABLE_MAP15;
1308                                 map->s_type_specific.s_sparing.s_packet_len =
1309                                                 le16_to_cpu(spm->packetLength);
1310                                 for (j = 0; j < spm->numSparingTables; j++) {
1311                                         struct buffer_head *bh2;
1312
1313                                         loc = le32_to_cpu(
1314                                                 spm->locSparingTable[j]);
1315                                         bh2 = udf_read_tagged(sb, loc, loc,
1316                                                              &ident);
1317                                         map->s_type_specific.s_sparing.
1318                                                         s_spar_map[j] = bh2;
1319
1320                                         if (bh2 == NULL)
1321                                                 continue;
1322
1323                                         st = (struct sparingTable *)bh2->b_data;
1324                                         if (ident != 0 || strncmp(
1325                                                 st->sparingIdent.ident,
1326                                                 UDF_ID_SPARING,
1327                                                 strlen(UDF_ID_SPARING))) {
1328                                                 brelse(bh2);
1329                                                 map->s_type_specific.s_sparing.
1330                                                         s_spar_map[j] = NULL;
1331                                         }
1332                                 }
1333                                 map->s_partition_func = udf_get_pblock_spar15;
1334                         } else if (!strncmp(upm2->partIdent.ident,
1335                                                 UDF_ID_METADATA,
1336                                                 strlen(UDF_ID_METADATA))) {
1337                                 struct udf_meta_data *mdata =
1338                                         &map->s_type_specific.s_metadata;
1339                                 struct metadataPartitionMap *mdm =
1340                                                 (struct metadataPartitionMap *)
1341                                                 &(lvd->partitionMaps[offset]);
1342                                 udf_debug("Parsing Logical vol part %d "
1343                                         "type %d  id=%s\n", i, type,
1344                                         UDF_ID_METADATA);
1345
1346                                 map->s_partition_type = UDF_METADATA_MAP25;
1347                                 map->s_partition_func = udf_get_pblock_meta25;
1348
1349                                 mdata->s_meta_file_loc   =
1350                                         le32_to_cpu(mdm->metadataFileLoc);
1351                                 mdata->s_mirror_file_loc =
1352                                         le32_to_cpu(mdm->metadataMirrorFileLoc);
1353                                 mdata->s_bitmap_file_loc =
1354                                         le32_to_cpu(mdm->metadataBitmapFileLoc);
1355                                 mdata->s_alloc_unit_size =
1356                                         le32_to_cpu(mdm->allocUnitSize);
1357                                 mdata->s_align_unit_size =
1358                                         le16_to_cpu(mdm->alignUnitSize);
1359                                 mdata->s_dup_md_flag     =
1360                                         mdm->flags & 0x01;
1361
1362                                 udf_debug("Metadata Ident suffix=0x%x\n",
1363                                         (le16_to_cpu(
1364                                          ((__le16 *)
1365                                               mdm->partIdent.identSuffix)[0])));
1366                                 udf_debug("Metadata part num=%d\n",
1367                                         le16_to_cpu(mdm->partitionNum));
1368                                 udf_debug("Metadata part alloc unit size=%d\n",
1369                                         le32_to_cpu(mdm->allocUnitSize));
1370                                 udf_debug("Metadata file loc=%d\n",
1371                                         le32_to_cpu(mdm->metadataFileLoc));
1372                                 udf_debug("Mirror file loc=%d\n",
1373                                        le32_to_cpu(mdm->metadataMirrorFileLoc));
1374                                 udf_debug("Bitmap file loc=%d\n",
1375                                        le32_to_cpu(mdm->metadataBitmapFileLoc));
1376                                 udf_debug("Duplicate Flag: %d %d\n",
1377                                         mdata->s_dup_md_flag, mdm->flags);
1378                         } else {
1379                                 udf_debug("Unknown ident: %s\n",
1380                                           upm2->partIdent.ident);
1381                                 continue;
1382                         }
1383                         map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1384                         map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1385                 }
1386                 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1387                           i, map->s_partition_num, type,
1388                           map->s_volumeseqnum);
1389         }
1390
1391         if (fileset) {
1392                 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1393
1394                 *fileset = lelb_to_cpu(la->extLocation);
1395                 udf_debug("FileSet found in LogicalVolDesc at block=%d, "
1396                           "partition=%d\n", fileset->logicalBlockNum,
1397                           fileset->partitionReferenceNum);
1398         }
1399         if (lvd->integritySeqExt.extLength)
1400                 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1401
1402 out_bh:
1403         brelse(bh);
1404         return ret;
1405 }
1406
1407 /*
1408  * udf_load_logicalvolint
1409  *
1410  */
1411 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1412 {
1413         struct buffer_head *bh = NULL;
1414         uint16_t ident;
1415         struct udf_sb_info *sbi = UDF_SB(sb);
1416         struct logicalVolIntegrityDesc *lvid;
1417
1418         while (loc.extLength > 0 &&
1419                (bh = udf_read_tagged(sb, loc.extLocation,
1420                                      loc.extLocation, &ident)) &&
1421                ident == TAG_IDENT_LVID) {
1422                 sbi->s_lvid_bh = bh;
1423                 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1424
1425                 if (lvid->nextIntegrityExt.extLength)
1426                         udf_load_logicalvolint(sb,
1427                                 leea_to_cpu(lvid->nextIntegrityExt));
1428
1429                 if (sbi->s_lvid_bh != bh)
1430                         brelse(bh);
1431                 loc.extLength -= sb->s_blocksize;
1432                 loc.extLocation++;
1433         }
1434         if (sbi->s_lvid_bh != bh)
1435                 brelse(bh);
1436 }
1437
1438 /*
1439  * udf_process_sequence
1440  *
1441  * PURPOSE
1442  *      Process a main/reserve volume descriptor sequence.
1443  *
1444  * PRE-CONDITIONS
1445  *      sb                      Pointer to _locked_ superblock.
1446  *      block                   First block of first extent of the sequence.
1447  *      lastblock               Lastblock of first extent of the sequence.
1448  *
1449  * HISTORY
1450  *      July 1, 1997 - Andrew E. Mileski
1451  *      Written, tested, and released.
1452  */
1453 static noinline int udf_process_sequence(struct super_block *sb, long block,
1454                                 long lastblock, struct kernel_lb_addr *fileset)
1455 {
1456         struct buffer_head *bh = NULL;
1457         struct udf_vds_record vds[VDS_POS_LENGTH];
1458         struct udf_vds_record *curr;
1459         struct generic_desc *gd;
1460         struct volDescPtr *vdp;
1461         int done = 0;
1462         uint32_t vdsn;
1463         uint16_t ident;
1464         long next_s = 0, next_e = 0;
1465
1466         memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1467
1468         /*
1469          * Read the main descriptor sequence and find which descriptors
1470          * are in it.
1471          */
1472         for (; (!done && block <= lastblock); block++) {
1473
1474                 bh = udf_read_tagged(sb, block, block, &ident);
1475                 if (!bh) {
1476                         printk(KERN_ERR "udf: Block %Lu of volume descriptor "
1477                                "sequence is corrupted or we could not read "
1478                                "it.\n", (unsigned long long)block);
1479                         return 1;
1480                 }
1481
1482                 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1483                 gd = (struct generic_desc *)bh->b_data;
1484                 vdsn = le32_to_cpu(gd->volDescSeqNum);
1485                 switch (ident) {
1486                 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1487                         curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1488                         if (vdsn >= curr->volDescSeqNum) {
1489                                 curr->volDescSeqNum = vdsn;
1490                                 curr->block = block;
1491                         }
1492                         break;
1493                 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1494                         curr = &vds[VDS_POS_VOL_DESC_PTR];
1495                         if (vdsn >= curr->volDescSeqNum) {
1496                                 curr->volDescSeqNum = vdsn;
1497                                 curr->block = block;
1498
1499                                 vdp = (struct volDescPtr *)bh->b_data;
1500                                 next_s = le32_to_cpu(
1501                                         vdp->nextVolDescSeqExt.extLocation);
1502                                 next_e = le32_to_cpu(
1503                                         vdp->nextVolDescSeqExt.extLength);
1504                                 next_e = next_e >> sb->s_blocksize_bits;
1505                                 next_e += next_s;
1506                         }
1507                         break;
1508                 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1509                         curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1510                         if (vdsn >= curr->volDescSeqNum) {
1511                                 curr->volDescSeqNum = vdsn;
1512                                 curr->block = block;
1513                         }
1514                         break;
1515                 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1516                         curr = &vds[VDS_POS_PARTITION_DESC];
1517                         if (!curr->block)
1518                                 curr->block = block;
1519                         break;
1520                 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1521                         curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1522                         if (vdsn >= curr->volDescSeqNum) {
1523                                 curr->volDescSeqNum = vdsn;
1524                                 curr->block = block;
1525                         }
1526                         break;
1527                 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1528                         curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1529                         if (vdsn >= curr->volDescSeqNum) {
1530                                 curr->volDescSeqNum = vdsn;
1531                                 curr->block = block;
1532                         }
1533                         break;
1534                 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1535                         vds[VDS_POS_TERMINATING_DESC].block = block;
1536                         if (next_e) {
1537                                 block = next_s;
1538                                 lastblock = next_e;
1539                                 next_s = next_e = 0;
1540                         } else
1541                                 done = 1;
1542                         break;
1543                 }
1544                 brelse(bh);
1545         }
1546         /*
1547          * Now read interesting descriptors again and process them
1548          * in a suitable order
1549          */
1550         if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1551                 printk(KERN_ERR "udf: Primary Volume Descriptor not found!\n");
1552                 return 1;
1553         }
1554         if (udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block))
1555                 return 1;
1556
1557         if (vds[VDS_POS_LOGICAL_VOL_DESC].block && udf_load_logicalvol(sb,
1558             vds[VDS_POS_LOGICAL_VOL_DESC].block, fileset))
1559                 return 1;
1560
1561         if (vds[VDS_POS_PARTITION_DESC].block) {
1562                 /*
1563                  * We rescan the whole descriptor sequence to find
1564                  * partition descriptor blocks and process them.
1565                  */
1566                 for (block = vds[VDS_POS_PARTITION_DESC].block;
1567                      block < vds[VDS_POS_TERMINATING_DESC].block;
1568                      block++)
1569                         if (udf_load_partdesc(sb, block))
1570                                 return 1;
1571         }
1572
1573         return 0;
1574 }
1575
1576 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1577                              struct kernel_lb_addr *fileset)
1578 {
1579         struct anchorVolDescPtr *anchor;
1580         long main_s, main_e, reserve_s, reserve_e;
1581         struct udf_sb_info *sbi;
1582
1583         sbi = UDF_SB(sb);
1584         anchor = (struct anchorVolDescPtr *)bh->b_data;
1585
1586         /* Locate the main sequence */
1587         main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1588         main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1589         main_e = main_e >> sb->s_blocksize_bits;
1590         main_e += main_s;
1591
1592         /* Locate the reserve sequence */
1593         reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1594         reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1595         reserve_e = reserve_e >> sb->s_blocksize_bits;
1596         reserve_e += reserve_s;
1597
1598         /* Process the main & reserve sequences */
1599         /* responsible for finding the PartitionDesc(s) */
1600         if (!udf_process_sequence(sb, main_s, main_e, fileset))
1601                 return 1;
1602         return !udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1603 }
1604
1605 /*
1606  * Check whether there is an anchor block in the given block and
1607  * load Volume Descriptor Sequence if so.
1608  */
1609 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1610                                   struct kernel_lb_addr *fileset)
1611 {
1612         struct buffer_head *bh;
1613         uint16_t ident;
1614         int ret;
1615
1616         if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1617             udf_fixed_to_variable(block) >=
1618             sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1619                 return 0;
1620
1621         bh = udf_read_tagged(sb, block, block, &ident);
1622         if (!bh)
1623                 return 0;
1624         if (ident != TAG_IDENT_AVDP) {
1625                 brelse(bh);
1626                 return 0;
1627         }
1628         ret = udf_load_sequence(sb, bh, fileset);
1629         brelse(bh);
1630         return ret;
1631 }
1632
1633 /* Search for an anchor volume descriptor pointer */
1634 static sector_t udf_scan_anchors(struct super_block *sb, sector_t lastblock,
1635                                  struct kernel_lb_addr *fileset)
1636 {
1637         sector_t last[6];
1638         int i;
1639         struct udf_sb_info *sbi = UDF_SB(sb);
1640         int last_count = 0;
1641
1642         /* First try user provided anchor */
1643         if (sbi->s_anchor) {
1644                 if (udf_check_anchor_block(sb, sbi->s_anchor, fileset))
1645                         return lastblock;
1646         }
1647         /*
1648          * according to spec, anchor is in either:
1649          *     block 256
1650          *     lastblock-256
1651          *     lastblock
1652          *  however, if the disc isn't closed, it could be 512.
1653          */
1654         if (udf_check_anchor_block(sb, sbi->s_session + 256, fileset))
1655                 return lastblock;
1656         /*
1657          * The trouble is which block is the last one. Drives often misreport
1658          * this so we try various possibilities.
1659          */
1660         last[last_count++] = lastblock;
1661         if (lastblock >= 1)
1662                 last[last_count++] = lastblock - 1;
1663         last[last_count++] = lastblock + 1;
1664         if (lastblock >= 2)
1665                 last[last_count++] = lastblock - 2;
1666         if (lastblock >= 150)
1667                 last[last_count++] = lastblock - 150;
1668         if (lastblock >= 152)
1669                 last[last_count++] = lastblock - 152;
1670
1671         for (i = 0; i < last_count; i++) {
1672                 if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1673                                 sb->s_blocksize_bits)
1674                         continue;
1675                 if (udf_check_anchor_block(sb, last[i], fileset))
1676                         return last[i];
1677                 if (last[i] < 256)
1678                         continue;
1679                 if (udf_check_anchor_block(sb, last[i] - 256, fileset))
1680                         return last[i];
1681         }
1682
1683         /* Finally try block 512 in case media is open */
1684         if (udf_check_anchor_block(sb, sbi->s_session + 512, fileset))
1685                 return last[0];
1686         return 0;
1687 }
1688
1689 /*
1690  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1691  * area specified by it. The function expects sbi->s_lastblock to be the last
1692  * block on the media.
1693  *
1694  * Return 1 if ok, 0 if not found.
1695  *
1696  */
1697 static int udf_find_anchor(struct super_block *sb,
1698                            struct kernel_lb_addr *fileset)
1699 {
1700         sector_t lastblock;
1701         struct udf_sb_info *sbi = UDF_SB(sb);
1702
1703         lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1704         if (lastblock)
1705                 goto out;
1706
1707         /* No anchor found? Try VARCONV conversion of block numbers */
1708         UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1709         /* Firstly, we try to not convert number of the last block */
1710         lastblock = udf_scan_anchors(sb,
1711                                 udf_variable_to_fixed(sbi->s_last_block),
1712                                 fileset);
1713         if (lastblock)
1714                 goto out;
1715
1716         /* Secondly, we try with converted number of the last block */
1717         lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1718         if (!lastblock) {
1719                 /* VARCONV didn't help. Clear it. */
1720                 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1721                 return 0;
1722         }
1723 out:
1724         sbi->s_last_block = lastblock;
1725         return 1;
1726 }
1727
1728 /*
1729  * Check Volume Structure Descriptor, find Anchor block and load Volume
1730  * Descriptor Sequence
1731  */
1732 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1733                         int silent, struct kernel_lb_addr *fileset)
1734 {
1735         struct udf_sb_info *sbi = UDF_SB(sb);
1736         loff_t nsr_off;
1737
1738         if (!sb_set_blocksize(sb, uopt->blocksize)) {
1739                 if (!silent)
1740                         printk(KERN_WARNING "UDF-fs: Bad block size\n");
1741                 return 0;
1742         }
1743         sbi->s_last_block = uopt->lastblock;
1744         if (!uopt->novrs) {
1745                 /* Check that it is NSR02 compliant */
1746                 nsr_off = udf_check_vsd(sb);
1747                 if (!nsr_off) {
1748                         if (!silent)
1749                                 printk(KERN_WARNING "UDF-fs: No VRS found\n");
1750                         return 0;
1751                 }
1752                 if (nsr_off == -1)
1753                         udf_debug("Failed to read byte 32768. Assuming open "
1754                                   "disc. Skipping validity check\n");
1755                 if (!sbi->s_last_block)
1756                         sbi->s_last_block = udf_get_last_block(sb);
1757         } else {
1758                 udf_debug("Validity check skipped because of novrs option\n");
1759         }
1760
1761         /* Look for anchor block and load Volume Descriptor Sequence */
1762         sbi->s_anchor = uopt->anchor;
1763         if (!udf_find_anchor(sb, fileset)) {
1764                 if (!silent)
1765                         printk(KERN_WARNING "UDF-fs: No anchor found\n");
1766                 return 0;
1767         }
1768         return 1;
1769 }
1770
1771 static void udf_open_lvid(struct super_block *sb)
1772 {
1773         struct udf_sb_info *sbi = UDF_SB(sb);
1774         struct buffer_head *bh = sbi->s_lvid_bh;
1775         struct logicalVolIntegrityDesc *lvid;
1776         struct logicalVolIntegrityDescImpUse *lvidiu;
1777
1778         if (!bh)
1779                 return;
1780         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1781         lvidiu = udf_sb_lvidiu(sbi);
1782
1783         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1784         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1785         udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1786                                 CURRENT_TIME);
1787         lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1788
1789         lvid->descTag.descCRC = cpu_to_le16(
1790                 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1791                         le16_to_cpu(lvid->descTag.descCRCLength)));
1792
1793         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1794         mark_buffer_dirty(bh);
1795         sbi->s_lvid_dirty = 0;
1796 }
1797
1798 static void udf_close_lvid(struct super_block *sb)
1799 {
1800         struct udf_sb_info *sbi = UDF_SB(sb);
1801         struct buffer_head *bh = sbi->s_lvid_bh;
1802         struct logicalVolIntegrityDesc *lvid;
1803         struct logicalVolIntegrityDescImpUse *lvidiu;
1804
1805         if (!bh)
1806                 return;
1807
1808         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1809         lvidiu = udf_sb_lvidiu(sbi);
1810         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1811         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1812         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
1813         if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
1814                 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
1815         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
1816                 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
1817         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
1818                 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
1819         lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
1820
1821         lvid->descTag.descCRC = cpu_to_le16(
1822                         crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1823                                 le16_to_cpu(lvid->descTag.descCRCLength)));
1824
1825         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1826         mark_buffer_dirty(bh);
1827         sbi->s_lvid_dirty = 0;
1828 }
1829
1830 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
1831 {
1832         int i;
1833         int nr_groups = bitmap->s_nr_groups;
1834         int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
1835                                                 nr_groups);
1836
1837         for (i = 0; i < nr_groups; i++)
1838                 if (bitmap->s_block_bitmap[i])
1839                         brelse(bitmap->s_block_bitmap[i]);
1840
1841         if (size <= PAGE_SIZE)
1842                 kfree(bitmap);
1843         else
1844                 vfree(bitmap);
1845 }
1846
1847 static void udf_free_partition(struct udf_part_map *map)
1848 {
1849         int i;
1850         struct udf_meta_data *mdata;
1851
1852         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
1853                 iput(map->s_uspace.s_table);
1854         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
1855                 iput(map->s_fspace.s_table);
1856         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
1857                 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
1858         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
1859                 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
1860         if (map->s_partition_type == UDF_SPARABLE_MAP15)
1861                 for (i = 0; i < 4; i++)
1862                         brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
1863         else if (map->s_partition_type == UDF_METADATA_MAP25) {
1864                 mdata = &map->s_type_specific.s_metadata;
1865                 iput(mdata->s_metadata_fe);
1866                 mdata->s_metadata_fe = NULL;
1867
1868                 iput(mdata->s_mirror_fe);
1869                 mdata->s_mirror_fe = NULL;
1870
1871                 iput(mdata->s_bitmap_fe);
1872                 mdata->s_bitmap_fe = NULL;
1873         }
1874 }
1875
1876 static int udf_fill_super(struct super_block *sb, void *options, int silent)
1877 {
1878         int i;
1879         int ret;
1880         struct inode *inode = NULL;
1881         struct udf_options uopt;
1882         struct kernel_lb_addr rootdir, fileset;
1883         struct udf_sb_info *sbi;
1884
1885         uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
1886         uopt.uid = -1;
1887         uopt.gid = -1;
1888         uopt.umask = 0;
1889         uopt.fmode = UDF_INVALID_MODE;
1890         uopt.dmode = UDF_INVALID_MODE;
1891
1892         sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
1893         if (!sbi)
1894                 return -ENOMEM;
1895
1896         sb->s_fs_info = sbi;
1897
1898         mutex_init(&sbi->s_alloc_mutex);
1899
1900         if (!udf_parse_options((char *)options, &uopt, false))
1901                 goto error_out;
1902
1903         if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
1904             uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
1905                 udf_error(sb, "udf_read_super",
1906                           "utf8 cannot be combined with iocharset\n");
1907                 goto error_out;
1908         }
1909 #ifdef CONFIG_UDF_NLS
1910         if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
1911                 uopt.nls_map = load_nls_default();
1912                 if (!uopt.nls_map)
1913                         uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
1914                 else
1915                         udf_debug("Using default NLS map\n");
1916         }
1917 #endif
1918         if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
1919                 uopt.flags |= (1 << UDF_FLAG_UTF8);
1920
1921         fileset.logicalBlockNum = 0xFFFFFFFF;
1922         fileset.partitionReferenceNum = 0xFFFF;
1923
1924         sbi->s_flags = uopt.flags;
1925         sbi->s_uid = uopt.uid;
1926         sbi->s_gid = uopt.gid;
1927         sbi->s_umask = uopt.umask;
1928         sbi->s_fmode = uopt.fmode;
1929         sbi->s_dmode = uopt.dmode;
1930         sbi->s_nls_map = uopt.nls_map;
1931
1932         if (uopt.session == 0xFFFFFFFF)
1933                 sbi->s_session = udf_get_last_session(sb);
1934         else
1935                 sbi->s_session = uopt.session;
1936
1937         udf_debug("Multi-session=%d\n", sbi->s_session);
1938
1939         /* Fill in the rest of the superblock */
1940         sb->s_op = &udf_sb_ops;
1941         sb->s_export_op = &udf_export_ops;
1942         sb->dq_op = NULL;
1943         sb->s_dirt = 0;
1944         sb->s_magic = UDF_SUPER_MAGIC;
1945         sb->s_time_gran = 1000;
1946
1947         if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
1948                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1949         } else {
1950                 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
1951                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1952                 if (!ret && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
1953                         if (!silent)
1954                                 printk(KERN_NOTICE
1955                                        "UDF-fs: Rescanning with blocksize "
1956                                        "%d\n", UDF_DEFAULT_BLOCKSIZE);
1957                         uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
1958                         ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1959                 }
1960         }
1961         if (!ret) {
1962                 printk(KERN_WARNING "UDF-fs: No partition found (1)\n");
1963                 goto error_out;
1964         }
1965
1966         udf_debug("Lastblock=%d\n", sbi->s_last_block);
1967
1968         if (sbi->s_lvid_bh) {
1969                 struct logicalVolIntegrityDescImpUse *lvidiu =
1970                                                         udf_sb_lvidiu(sbi);
1971                 uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
1972                 uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
1973                 /* uint16_t maxUDFWriteRev =
1974                                 le16_to_cpu(lvidiu->maxUDFWriteRev); */
1975
1976                 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
1977                         printk(KERN_ERR "UDF-fs: minUDFReadRev=%x "
1978                                         "(max is %x)\n",
1979                                le16_to_cpu(lvidiu->minUDFReadRev),
1980                                UDF_MAX_READ_VERSION);
1981                         goto error_out;
1982                 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION)
1983                         sb->s_flags |= MS_RDONLY;
1984
1985                 sbi->s_udfrev = minUDFWriteRev;
1986
1987                 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
1988                         UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
1989                 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
1990                         UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
1991         }
1992
1993         if (!sbi->s_partitions) {
1994                 printk(KERN_WARNING "UDF-fs: No partition found (2)\n");
1995                 goto error_out;
1996         }
1997
1998         if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
1999                         UDF_PART_FLAG_READ_ONLY) {
2000                 printk(KERN_NOTICE "UDF-fs: Partition marked readonly; "
2001                                    "forcing readonly mount\n");
2002                 sb->s_flags |= MS_RDONLY;
2003         }
2004
2005         if (udf_find_fileset(sb, &fileset, &rootdir)) {
2006                 printk(KERN_WARNING "UDF-fs: No fileset found\n");
2007                 goto error_out;
2008         }
2009
2010         if (!silent) {
2011                 struct timestamp ts;
2012                 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2013                 udf_info("UDF: Mounting volume '%s', "
2014                          "timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2015                          sbi->s_volume_ident, le16_to_cpu(ts.year), ts.month, ts.day,
2016                          ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2017         }
2018         if (!(sb->s_flags & MS_RDONLY))
2019                 udf_open_lvid(sb);
2020
2021         /* Assign the root inode */
2022         /* assign inodes by physical block number */
2023         /* perhaps it's not extensible enough, but for now ... */
2024         inode = udf_iget(sb, &rootdir);
2025         if (!inode) {
2026                 printk(KERN_ERR "UDF-fs: Error in udf_iget, block=%d, "
2027                                 "partition=%d\n",
2028                        rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2029                 goto error_out;
2030         }
2031
2032         /* Allocate a dentry for the root inode */
2033         sb->s_root = d_alloc_root(inode);
2034         if (!sb->s_root) {
2035                 printk(KERN_ERR "UDF-fs: Couldn't allocate root dentry\n");
2036                 iput(inode);
2037                 goto error_out;
2038         }
2039         sb->s_maxbytes = MAX_LFS_FILESIZE;
2040         return 0;
2041
2042 error_out:
2043         if (sbi->s_vat_inode)
2044                 iput(sbi->s_vat_inode);
2045         if (sbi->s_partitions)
2046                 for (i = 0; i < sbi->s_partitions; i++)
2047                         udf_free_partition(&sbi->s_partmaps[i]);
2048 #ifdef CONFIG_UDF_NLS
2049         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2050                 unload_nls(sbi->s_nls_map);
2051 #endif
2052         if (!(sb->s_flags & MS_RDONLY))
2053                 udf_close_lvid(sb);
2054         brelse(sbi->s_lvid_bh);
2055
2056         kfree(sbi->s_partmaps);
2057         kfree(sbi);
2058         sb->s_fs_info = NULL;
2059
2060         return -EINVAL;
2061 }
2062
2063 static void udf_error(struct super_block *sb, const char *function,
2064                       const char *fmt, ...)
2065 {
2066         va_list args;
2067
2068         if (!(sb->s_flags & MS_RDONLY)) {
2069                 /* mark sb error */
2070                 sb->s_dirt = 1;
2071         }
2072         va_start(args, fmt);
2073         vsnprintf(error_buf, sizeof(error_buf), fmt, args);
2074         va_end(args);
2075         printk(KERN_CRIT "UDF-fs error (device %s): %s: %s\n",
2076                 sb->s_id, function, error_buf);
2077 }
2078
2079 void udf_warning(struct super_block *sb, const char *function,
2080                  const char *fmt, ...)
2081 {
2082         va_list args;
2083
2084         va_start(args, fmt);
2085         vsnprintf(error_buf, sizeof(error_buf), fmt, args);
2086         va_end(args);
2087         printk(KERN_WARNING "UDF-fs warning (device %s): %s: %s\n",
2088                sb->s_id, function, error_buf);
2089 }
2090
2091 static void udf_put_super(struct super_block *sb)
2092 {
2093         int i;
2094         struct udf_sb_info *sbi;
2095
2096         sbi = UDF_SB(sb);
2097
2098         lock_kernel();
2099
2100         if (sbi->s_vat_inode)
2101                 iput(sbi->s_vat_inode);
2102         if (sbi->s_partitions)
2103                 for (i = 0; i < sbi->s_partitions; i++)
2104                         udf_free_partition(&sbi->s_partmaps[i]);
2105 #ifdef CONFIG_UDF_NLS
2106         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2107                 unload_nls(sbi->s_nls_map);
2108 #endif
2109         if (!(sb->s_flags & MS_RDONLY))
2110                 udf_close_lvid(sb);
2111         brelse(sbi->s_lvid_bh);
2112         kfree(sbi->s_partmaps);
2113         kfree(sb->s_fs_info);
2114         sb->s_fs_info = NULL;
2115
2116         unlock_kernel();
2117 }
2118
2119 static int udf_sync_fs(struct super_block *sb, int wait)
2120 {
2121         struct udf_sb_info *sbi = UDF_SB(sb);
2122
2123         mutex_lock(&sbi->s_alloc_mutex);
2124         if (sbi->s_lvid_dirty) {
2125                 /*
2126                  * Blockdevice will be synced later so we don't have to submit
2127                  * the buffer for IO
2128                  */
2129                 mark_buffer_dirty(sbi->s_lvid_bh);
2130                 sb->s_dirt = 0;
2131                 sbi->s_lvid_dirty = 0;
2132         }
2133         mutex_unlock(&sbi->s_alloc_mutex);
2134
2135         return 0;
2136 }
2137
2138 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2139 {
2140         struct super_block *sb = dentry->d_sb;
2141         struct udf_sb_info *sbi = UDF_SB(sb);
2142         struct logicalVolIntegrityDescImpUse *lvidiu;
2143         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2144
2145         if (sbi->s_lvid_bh != NULL)
2146                 lvidiu = udf_sb_lvidiu(sbi);
2147         else
2148                 lvidiu = NULL;
2149
2150         buf->f_type = UDF_SUPER_MAGIC;
2151         buf->f_bsize = sb->s_blocksize;
2152         buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2153         buf->f_bfree = udf_count_free(sb);
2154         buf->f_bavail = buf->f_bfree;
2155         buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2156                                           le32_to_cpu(lvidiu->numDirs)) : 0)
2157                         + buf->f_bfree;
2158         buf->f_ffree = buf->f_bfree;
2159         buf->f_namelen = UDF_NAME_LEN - 2;
2160         buf->f_fsid.val[0] = (u32)id;
2161         buf->f_fsid.val[1] = (u32)(id >> 32);
2162
2163         return 0;
2164 }
2165
2166 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2167                                           struct udf_bitmap *bitmap)
2168 {
2169         struct buffer_head *bh = NULL;
2170         unsigned int accum = 0;
2171         int index;
2172         int block = 0, newblock;
2173         struct kernel_lb_addr loc;
2174         uint32_t bytes;
2175         uint8_t *ptr;
2176         uint16_t ident;
2177         struct spaceBitmapDesc *bm;
2178
2179         lock_kernel();
2180
2181         loc.logicalBlockNum = bitmap->s_extPosition;
2182         loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2183         bh = udf_read_ptagged(sb, &loc, 0, &ident);
2184
2185         if (!bh) {
2186                 printk(KERN_ERR "udf: udf_count_free failed\n");
2187                 goto out;
2188         } else if (ident != TAG_IDENT_SBD) {
2189                 brelse(bh);
2190                 printk(KERN_ERR "udf: udf_count_free failed\n");
2191                 goto out;
2192         }
2193
2194         bm = (struct spaceBitmapDesc *)bh->b_data;
2195         bytes = le32_to_cpu(bm->numOfBytes);
2196         index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2197         ptr = (uint8_t *)bh->b_data;
2198
2199         while (bytes > 0) {
2200                 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2201                 accum += bitmap_weight((const unsigned long *)(ptr + index),
2202                                         cur_bytes * 8);
2203                 bytes -= cur_bytes;
2204                 if (bytes) {
2205                         brelse(bh);
2206                         newblock = udf_get_lb_pblock(sb, &loc, ++block);
2207                         bh = udf_tread(sb, newblock);
2208                         if (!bh) {
2209                                 udf_debug("read failed\n");
2210                                 goto out;
2211                         }
2212                         index = 0;
2213                         ptr = (uint8_t *)bh->b_data;
2214                 }
2215         }
2216         brelse(bh);
2217
2218 out:
2219         unlock_kernel();
2220
2221         return accum;
2222 }
2223
2224 static unsigned int udf_count_free_table(struct super_block *sb,
2225                                          struct inode *table)
2226 {
2227         unsigned int accum = 0;
2228         uint32_t elen;
2229         struct kernel_lb_addr eloc;
2230         int8_t etype;
2231         struct extent_position epos;
2232
2233         lock_kernel();
2234
2235         epos.block = UDF_I(table)->i_location;
2236         epos.offset = sizeof(struct unallocSpaceEntry);
2237         epos.bh = NULL;
2238
2239         while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2240                 accum += (elen >> table->i_sb->s_blocksize_bits);
2241
2242         brelse(epos.bh);
2243
2244         unlock_kernel();
2245
2246         return accum;
2247 }
2248
2249 static unsigned int udf_count_free(struct super_block *sb)
2250 {
2251         unsigned int accum = 0;
2252         struct udf_sb_info *sbi;
2253         struct udf_part_map *map;
2254
2255         sbi = UDF_SB(sb);
2256         if (sbi->s_lvid_bh) {
2257                 struct logicalVolIntegrityDesc *lvid =
2258                         (struct logicalVolIntegrityDesc *)
2259                         sbi->s_lvid_bh->b_data;
2260                 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2261                         accum = le32_to_cpu(
2262                                         lvid->freeSpaceTable[sbi->s_partition]);
2263                         if (accum == 0xFFFFFFFF)
2264                                 accum = 0;
2265                 }
2266         }
2267
2268         if (accum)
2269                 return accum;
2270
2271         map = &sbi->s_partmaps[sbi->s_partition];
2272         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2273                 accum += udf_count_free_bitmap(sb,
2274                                                map->s_uspace.s_bitmap);
2275         }
2276         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2277                 accum += udf_count_free_bitmap(sb,
2278                                                map->s_fspace.s_bitmap);
2279         }
2280         if (accum)
2281                 return accum;
2282
2283         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2284                 accum += udf_count_free_table(sb,
2285                                               map->s_uspace.s_table);
2286         }
2287         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2288                 accum += udf_count_free_table(sb,
2289                                               map->s_fspace.s_table);
2290         }
2291
2292         return accum;
2293 }