PM / Hibernate: user.c, fix SNAPSHOT_SET_SWAP_AREA handling
[sfrench/cifs-2.6.git] / fs / udf / inode.c
1 /*
2  * inode.c
3  *
4  * PURPOSE
5  *  Inode handling routines for the OSTA-UDF(tm) filesystem.
6  *
7  * COPYRIGHT
8  *  This file is distributed under the terms of the GNU General Public
9  *  License (GPL). Copies of the GPL can be obtained from:
10  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
11  *  Each contributing author retains all rights to their own work.
12  *
13  *  (C) 1998 Dave Boynton
14  *  (C) 1998-2004 Ben Fennema
15  *  (C) 1999-2000 Stelias Computing Inc
16  *
17  * HISTORY
18  *
19  *  10/04/98 dgb  Added rudimentary directory functions
20  *  10/07/98      Fully working udf_block_map! It works!
21  *  11/25/98      bmap altered to better support extents
22  *  12/06/98 blf  partition support in udf_iget, udf_block_map
23  *                and udf_read_inode
24  *  12/12/98      rewrote udf_block_map to handle next extents and descs across
25  *                block boundaries (which is not actually allowed)
26  *  12/20/98      added support for strategy 4096
27  *  03/07/99      rewrote udf_block_map (again)
28  *                New funcs, inode_bmap, udf_next_aext
29  *  04/19/99      Support for writing device EA's for major/minor #
30  */
31
32 #include "udfdecl.h"
33 #include <linux/mm.h>
34 #include <linux/smp_lock.h>
35 #include <linux/module.h>
36 #include <linux/pagemap.h>
37 #include <linux/buffer_head.h>
38 #include <linux/writeback.h>
39 #include <linux/quotaops.h>
40 #include <linux/slab.h>
41 #include <linux/crc-itu-t.h>
42
43 #include "udf_i.h"
44 #include "udf_sb.h"
45
46 MODULE_AUTHOR("Ben Fennema");
47 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
48 MODULE_LICENSE("GPL");
49
50 #define EXTENT_MERGE_SIZE 5
51
52 static mode_t udf_convert_permissions(struct fileEntry *);
53 static int udf_update_inode(struct inode *, int);
54 static void udf_fill_inode(struct inode *, struct buffer_head *);
55 static int udf_alloc_i_data(struct inode *inode, size_t size);
56 static struct buffer_head *inode_getblk(struct inode *, sector_t, int *,
57                                         sector_t *, int *);
58 static int8_t udf_insert_aext(struct inode *, struct extent_position,
59                               struct kernel_lb_addr, uint32_t);
60 static void udf_split_extents(struct inode *, int *, int, int,
61                               struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
62 static void udf_prealloc_extents(struct inode *, int, int,
63                                  struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
64 static void udf_merge_extents(struct inode *,
65                               struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
66 static void udf_update_extents(struct inode *,
67                                struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
68                                struct extent_position *);
69 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
70
71
72 void udf_delete_inode(struct inode *inode)
73 {
74         if (!is_bad_inode(inode))
75                 dquot_initialize(inode);
76
77         truncate_inode_pages(&inode->i_data, 0);
78
79         if (is_bad_inode(inode))
80                 goto no_delete;
81
82         inode->i_size = 0;
83         udf_truncate(inode);
84         lock_kernel();
85
86         udf_update_inode(inode, IS_SYNC(inode));
87         udf_free_inode(inode);
88
89         unlock_kernel();
90         return;
91
92 no_delete:
93         clear_inode(inode);
94 }
95
96 /*
97  * If we are going to release inode from memory, we truncate last inode extent
98  * to proper length. We could use drop_inode() but it's called under inode_lock
99  * and thus we cannot mark inode dirty there.  We use clear_inode() but we have
100  * to make sure to write inode as it's not written automatically.
101  */
102 void udf_clear_inode(struct inode *inode)
103 {
104         struct udf_inode_info *iinfo = UDF_I(inode);
105
106         if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
107             inode->i_size != iinfo->i_lenExtents) {
108                 printk(KERN_WARNING "UDF-fs (%s): Inode %lu (mode %o) has "
109                         "inode size %llu different from extent length %llu. "
110                         "Filesystem need not be standards compliant.\n",
111                         inode->i_sb->s_id, inode->i_ino, inode->i_mode,
112                         (unsigned long long)inode->i_size,
113                         (unsigned long long)iinfo->i_lenExtents);
114         }
115
116         dquot_drop(inode);
117         kfree(iinfo->i_ext.i_data);
118         iinfo->i_ext.i_data = NULL;
119 }
120
121 static int udf_writepage(struct page *page, struct writeback_control *wbc)
122 {
123         return block_write_full_page(page, udf_get_block, wbc);
124 }
125
126 static int udf_readpage(struct file *file, struct page *page)
127 {
128         return block_read_full_page(page, udf_get_block);
129 }
130
131 static int udf_write_begin(struct file *file, struct address_space *mapping,
132                         loff_t pos, unsigned len, unsigned flags,
133                         struct page **pagep, void **fsdata)
134 {
135         *pagep = NULL;
136         return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
137                                 udf_get_block);
138 }
139
140 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
141 {
142         return generic_block_bmap(mapping, block, udf_get_block);
143 }
144
145 const struct address_space_operations udf_aops = {
146         .readpage       = udf_readpage,
147         .writepage      = udf_writepage,
148         .sync_page      = block_sync_page,
149         .write_begin            = udf_write_begin,
150         .write_end              = generic_write_end,
151         .bmap           = udf_bmap,
152 };
153
154 void udf_expand_file_adinicb(struct inode *inode, int newsize, int *err)
155 {
156         struct page *page;
157         char *kaddr;
158         struct udf_inode_info *iinfo = UDF_I(inode);
159         struct writeback_control udf_wbc = {
160                 .sync_mode = WB_SYNC_NONE,
161                 .nr_to_write = 1,
162         };
163
164         /* from now on we have normal address_space methods */
165         inode->i_data.a_ops = &udf_aops;
166
167         if (!iinfo->i_lenAlloc) {
168                 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
169                         iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
170                 else
171                         iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
172                 mark_inode_dirty(inode);
173                 return;
174         }
175
176         page = grab_cache_page(inode->i_mapping, 0);
177         BUG_ON(!PageLocked(page));
178
179         if (!PageUptodate(page)) {
180                 kaddr = kmap(page);
181                 memset(kaddr + iinfo->i_lenAlloc, 0x00,
182                        PAGE_CACHE_SIZE - iinfo->i_lenAlloc);
183                 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
184                         iinfo->i_lenAlloc);
185                 flush_dcache_page(page);
186                 SetPageUptodate(page);
187                 kunmap(page);
188         }
189         memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
190                iinfo->i_lenAlloc);
191         iinfo->i_lenAlloc = 0;
192         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
193                 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
194         else
195                 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
196
197         inode->i_data.a_ops->writepage(page, &udf_wbc);
198         page_cache_release(page);
199
200         mark_inode_dirty(inode);
201 }
202
203 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
204                                            int *err)
205 {
206         int newblock;
207         struct buffer_head *dbh = NULL;
208         struct kernel_lb_addr eloc;
209         uint8_t alloctype;
210         struct extent_position epos;
211
212         struct udf_fileident_bh sfibh, dfibh;
213         loff_t f_pos = udf_ext0_offset(inode);
214         int size = udf_ext0_offset(inode) + inode->i_size;
215         struct fileIdentDesc cfi, *sfi, *dfi;
216         struct udf_inode_info *iinfo = UDF_I(inode);
217
218         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
219                 alloctype = ICBTAG_FLAG_AD_SHORT;
220         else
221                 alloctype = ICBTAG_FLAG_AD_LONG;
222
223         if (!inode->i_size) {
224                 iinfo->i_alloc_type = alloctype;
225                 mark_inode_dirty(inode);
226                 return NULL;
227         }
228
229         /* alloc block, and copy data to it */
230         *block = udf_new_block(inode->i_sb, inode,
231                                iinfo->i_location.partitionReferenceNum,
232                                iinfo->i_location.logicalBlockNum, err);
233         if (!(*block))
234                 return NULL;
235         newblock = udf_get_pblock(inode->i_sb, *block,
236                                   iinfo->i_location.partitionReferenceNum,
237                                 0);
238         if (!newblock)
239                 return NULL;
240         dbh = udf_tgetblk(inode->i_sb, newblock);
241         if (!dbh)
242                 return NULL;
243         lock_buffer(dbh);
244         memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
245         set_buffer_uptodate(dbh);
246         unlock_buffer(dbh);
247         mark_buffer_dirty_inode(dbh, inode);
248
249         sfibh.soffset = sfibh.eoffset =
250                         f_pos & (inode->i_sb->s_blocksize - 1);
251         sfibh.sbh = sfibh.ebh = NULL;
252         dfibh.soffset = dfibh.eoffset = 0;
253         dfibh.sbh = dfibh.ebh = dbh;
254         while (f_pos < size) {
255                 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
256                 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
257                                          NULL, NULL, NULL);
258                 if (!sfi) {
259                         brelse(dbh);
260                         return NULL;
261                 }
262                 iinfo->i_alloc_type = alloctype;
263                 sfi->descTag.tagLocation = cpu_to_le32(*block);
264                 dfibh.soffset = dfibh.eoffset;
265                 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
266                 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
267                 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
268                                  sfi->fileIdent +
269                                         le16_to_cpu(sfi->lengthOfImpUse))) {
270                         iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
271                         brelse(dbh);
272                         return NULL;
273                 }
274         }
275         mark_buffer_dirty_inode(dbh, inode);
276
277         memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
278                 iinfo->i_lenAlloc);
279         iinfo->i_lenAlloc = 0;
280         eloc.logicalBlockNum = *block;
281         eloc.partitionReferenceNum =
282                                 iinfo->i_location.partitionReferenceNum;
283         iinfo->i_lenExtents = inode->i_size;
284         epos.bh = NULL;
285         epos.block = iinfo->i_location;
286         epos.offset = udf_file_entry_alloc_offset(inode);
287         udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
288         /* UniqueID stuff */
289
290         brelse(epos.bh);
291         mark_inode_dirty(inode);
292         return dbh;
293 }
294
295 static int udf_get_block(struct inode *inode, sector_t block,
296                          struct buffer_head *bh_result, int create)
297 {
298         int err, new;
299         struct buffer_head *bh;
300         sector_t phys = 0;
301         struct udf_inode_info *iinfo;
302
303         if (!create) {
304                 phys = udf_block_map(inode, block);
305                 if (phys)
306                         map_bh(bh_result, inode->i_sb, phys);
307                 return 0;
308         }
309
310         err = -EIO;
311         new = 0;
312         bh = NULL;
313
314         lock_kernel();
315
316         iinfo = UDF_I(inode);
317         if (block == iinfo->i_next_alloc_block + 1) {
318                 iinfo->i_next_alloc_block++;
319                 iinfo->i_next_alloc_goal++;
320         }
321
322         err = 0;
323
324         bh = inode_getblk(inode, block, &err, &phys, &new);
325         BUG_ON(bh);
326         if (err)
327                 goto abort;
328         BUG_ON(!phys);
329
330         if (new)
331                 set_buffer_new(bh_result);
332         map_bh(bh_result, inode->i_sb, phys);
333
334 abort:
335         unlock_kernel();
336         return err;
337 }
338
339 static struct buffer_head *udf_getblk(struct inode *inode, long block,
340                                       int create, int *err)
341 {
342         struct buffer_head *bh;
343         struct buffer_head dummy;
344
345         dummy.b_state = 0;
346         dummy.b_blocknr = -1000;
347         *err = udf_get_block(inode, block, &dummy, create);
348         if (!*err && buffer_mapped(&dummy)) {
349                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
350                 if (buffer_new(&dummy)) {
351                         lock_buffer(bh);
352                         memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
353                         set_buffer_uptodate(bh);
354                         unlock_buffer(bh);
355                         mark_buffer_dirty_inode(bh, inode);
356                 }
357                 return bh;
358         }
359
360         return NULL;
361 }
362
363 /* Extend the file by 'blocks' blocks, return the number of extents added */
364 int udf_extend_file(struct inode *inode, struct extent_position *last_pos,
365                     struct kernel_long_ad *last_ext, sector_t blocks)
366 {
367         sector_t add;
368         int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
369         struct super_block *sb = inode->i_sb;
370         struct kernel_lb_addr prealloc_loc = {};
371         int prealloc_len = 0;
372         struct udf_inode_info *iinfo;
373
374         /* The previous extent is fake and we should not extend by anything
375          * - there's nothing to do... */
376         if (!blocks && fake)
377                 return 0;
378
379         iinfo = UDF_I(inode);
380         /* Round the last extent up to a multiple of block size */
381         if (last_ext->extLength & (sb->s_blocksize - 1)) {
382                 last_ext->extLength =
383                         (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
384                         (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
385                           sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
386                 iinfo->i_lenExtents =
387                         (iinfo->i_lenExtents + sb->s_blocksize - 1) &
388                         ~(sb->s_blocksize - 1);
389         }
390
391         /* Last extent are just preallocated blocks? */
392         if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
393                                                 EXT_NOT_RECORDED_ALLOCATED) {
394                 /* Save the extent so that we can reattach it to the end */
395                 prealloc_loc = last_ext->extLocation;
396                 prealloc_len = last_ext->extLength;
397                 /* Mark the extent as a hole */
398                 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
399                         (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
400                 last_ext->extLocation.logicalBlockNum = 0;
401                 last_ext->extLocation.partitionReferenceNum = 0;
402         }
403
404         /* Can we merge with the previous extent? */
405         if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
406                                         EXT_NOT_RECORDED_NOT_ALLOCATED) {
407                 add = ((1 << 30) - sb->s_blocksize -
408                         (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
409                         sb->s_blocksize_bits;
410                 if (add > blocks)
411                         add = blocks;
412                 blocks -= add;
413                 last_ext->extLength += add << sb->s_blocksize_bits;
414         }
415
416         if (fake) {
417                 udf_add_aext(inode, last_pos, &last_ext->extLocation,
418                              last_ext->extLength, 1);
419                 count++;
420         } else
421                 udf_write_aext(inode, last_pos, &last_ext->extLocation,
422                                 last_ext->extLength, 1);
423
424         /* Managed to do everything necessary? */
425         if (!blocks)
426                 goto out;
427
428         /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
429         last_ext->extLocation.logicalBlockNum = 0;
430         last_ext->extLocation.partitionReferenceNum = 0;
431         add = (1 << (30-sb->s_blocksize_bits)) - 1;
432         last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
433                                 (add << sb->s_blocksize_bits);
434
435         /* Create enough extents to cover the whole hole */
436         while (blocks > add) {
437                 blocks -= add;
438                 if (udf_add_aext(inode, last_pos, &last_ext->extLocation,
439                                  last_ext->extLength, 1) == -1)
440                         return -1;
441                 count++;
442         }
443         if (blocks) {
444                 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
445                         (blocks << sb->s_blocksize_bits);
446                 if (udf_add_aext(inode, last_pos, &last_ext->extLocation,
447                                  last_ext->extLength, 1) == -1)
448                         return -1;
449                 count++;
450         }
451
452 out:
453         /* Do we have some preallocated blocks saved? */
454         if (prealloc_len) {
455                 if (udf_add_aext(inode, last_pos, &prealloc_loc,
456                                  prealloc_len, 1) == -1)
457                         return -1;
458                 last_ext->extLocation = prealloc_loc;
459                 last_ext->extLength = prealloc_len;
460                 count++;
461         }
462
463         /* last_pos should point to the last written extent... */
464         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
465                 last_pos->offset -= sizeof(struct short_ad);
466         else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
467                 last_pos->offset -= sizeof(struct long_ad);
468         else
469                 return -1;
470
471         return count;
472 }
473
474 static struct buffer_head *inode_getblk(struct inode *inode, sector_t block,
475                                         int *err, sector_t *phys, int *new)
476 {
477         static sector_t last_block;
478         struct buffer_head *result = NULL;
479         struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
480         struct extent_position prev_epos, cur_epos, next_epos;
481         int count = 0, startnum = 0, endnum = 0;
482         uint32_t elen = 0, tmpelen;
483         struct kernel_lb_addr eloc, tmpeloc;
484         int c = 1;
485         loff_t lbcount = 0, b_off = 0;
486         uint32_t newblocknum, newblock;
487         sector_t offset = 0;
488         int8_t etype;
489         struct udf_inode_info *iinfo = UDF_I(inode);
490         int goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
491         int lastblock = 0;
492
493         prev_epos.offset = udf_file_entry_alloc_offset(inode);
494         prev_epos.block = iinfo->i_location;
495         prev_epos.bh = NULL;
496         cur_epos = next_epos = prev_epos;
497         b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
498
499         /* find the extent which contains the block we are looking for.
500            alternate between laarr[0] and laarr[1] for locations of the
501            current extent, and the previous extent */
502         do {
503                 if (prev_epos.bh != cur_epos.bh) {
504                         brelse(prev_epos.bh);
505                         get_bh(cur_epos.bh);
506                         prev_epos.bh = cur_epos.bh;
507                 }
508                 if (cur_epos.bh != next_epos.bh) {
509                         brelse(cur_epos.bh);
510                         get_bh(next_epos.bh);
511                         cur_epos.bh = next_epos.bh;
512                 }
513
514                 lbcount += elen;
515
516                 prev_epos.block = cur_epos.block;
517                 cur_epos.block = next_epos.block;
518
519                 prev_epos.offset = cur_epos.offset;
520                 cur_epos.offset = next_epos.offset;
521
522                 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
523                 if (etype == -1)
524                         break;
525
526                 c = !c;
527
528                 laarr[c].extLength = (etype << 30) | elen;
529                 laarr[c].extLocation = eloc;
530
531                 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
532                         pgoal = eloc.logicalBlockNum +
533                                 ((elen + inode->i_sb->s_blocksize - 1) >>
534                                  inode->i_sb->s_blocksize_bits);
535
536                 count++;
537         } while (lbcount + elen <= b_off);
538
539         b_off -= lbcount;
540         offset = b_off >> inode->i_sb->s_blocksize_bits;
541         /*
542          * Move prev_epos and cur_epos into indirect extent if we are at
543          * the pointer to it
544          */
545         udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
546         udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
547
548         /* if the extent is allocated and recorded, return the block
549            if the extent is not a multiple of the blocksize, round up */
550
551         if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
552                 if (elen & (inode->i_sb->s_blocksize - 1)) {
553                         elen = EXT_RECORDED_ALLOCATED |
554                                 ((elen + inode->i_sb->s_blocksize - 1) &
555                                  ~(inode->i_sb->s_blocksize - 1));
556                         etype = udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
557                 }
558                 brelse(prev_epos.bh);
559                 brelse(cur_epos.bh);
560                 brelse(next_epos.bh);
561                 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
562                 *phys = newblock;
563                 return NULL;
564         }
565
566         last_block = block;
567         /* Are we beyond EOF? */
568         if (etype == -1) {
569                 int ret;
570
571                 if (count) {
572                         if (c)
573                                 laarr[0] = laarr[1];
574                         startnum = 1;
575                 } else {
576                         /* Create a fake extent when there's not one */
577                         memset(&laarr[0].extLocation, 0x00,
578                                 sizeof(struct kernel_lb_addr));
579                         laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
580                         /* Will udf_extend_file() create real extent from
581                            a fake one? */
582                         startnum = (offset > 0);
583                 }
584                 /* Create extents for the hole between EOF and offset */
585                 ret = udf_extend_file(inode, &prev_epos, laarr, offset);
586                 if (ret == -1) {
587                         brelse(prev_epos.bh);
588                         brelse(cur_epos.bh);
589                         brelse(next_epos.bh);
590                         /* We don't really know the error here so we just make
591                          * something up */
592                         *err = -ENOSPC;
593                         return NULL;
594                 }
595                 c = 0;
596                 offset = 0;
597                 count += ret;
598                 /* We are not covered by a preallocated extent? */
599                 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
600                                                 EXT_NOT_RECORDED_ALLOCATED) {
601                         /* Is there any real extent? - otherwise we overwrite
602                          * the fake one... */
603                         if (count)
604                                 c = !c;
605                         laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
606                                 inode->i_sb->s_blocksize;
607                         memset(&laarr[c].extLocation, 0x00,
608                                 sizeof(struct kernel_lb_addr));
609                         count++;
610                         endnum++;
611                 }
612                 endnum = c + 1;
613                 lastblock = 1;
614         } else {
615                 endnum = startnum = ((count > 2) ? 2 : count);
616
617                 /* if the current extent is in position 0,
618                    swap it with the previous */
619                 if (!c && count != 1) {
620                         laarr[2] = laarr[0];
621                         laarr[0] = laarr[1];
622                         laarr[1] = laarr[2];
623                         c = 1;
624                 }
625
626                 /* if the current block is located in an extent,
627                    read the next extent */
628                 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
629                 if (etype != -1) {
630                         laarr[c + 1].extLength = (etype << 30) | elen;
631                         laarr[c + 1].extLocation = eloc;
632                         count++;
633                         startnum++;
634                         endnum++;
635                 } else
636                         lastblock = 1;
637         }
638
639         /* if the current extent is not recorded but allocated, get the
640          * block in the extent corresponding to the requested block */
641         if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
642                 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
643         else { /* otherwise, allocate a new block */
644                 if (iinfo->i_next_alloc_block == block)
645                         goal = iinfo->i_next_alloc_goal;
646
647                 if (!goal) {
648                         if (!(goal = pgoal)) /* XXX: what was intended here? */
649                                 goal = iinfo->i_location.logicalBlockNum + 1;
650                 }
651
652                 newblocknum = udf_new_block(inode->i_sb, inode,
653                                 iinfo->i_location.partitionReferenceNum,
654                                 goal, err);
655                 if (!newblocknum) {
656                         brelse(prev_epos.bh);
657                         *err = -ENOSPC;
658                         return NULL;
659                 }
660                 iinfo->i_lenExtents += inode->i_sb->s_blocksize;
661         }
662
663         /* if the extent the requsted block is located in contains multiple
664          * blocks, split the extent into at most three extents. blocks prior
665          * to requested block, requested block, and blocks after requested
666          * block */
667         udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
668
669 #ifdef UDF_PREALLOCATE
670         /* We preallocate blocks only for regular files. It also makes sense
671          * for directories but there's a problem when to drop the
672          * preallocation. We might use some delayed work for that but I feel
673          * it's overengineering for a filesystem like UDF. */
674         if (S_ISREG(inode->i_mode))
675                 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
676 #endif
677
678         /* merge any continuous blocks in laarr */
679         udf_merge_extents(inode, laarr, &endnum);
680
681         /* write back the new extents, inserting new extents if the new number
682          * of extents is greater than the old number, and deleting extents if
683          * the new number of extents is less than the old number */
684         udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
685
686         brelse(prev_epos.bh);
687
688         newblock = udf_get_pblock(inode->i_sb, newblocknum,
689                                 iinfo->i_location.partitionReferenceNum, 0);
690         if (!newblock)
691                 return NULL;
692         *phys = newblock;
693         *err = 0;
694         *new = 1;
695         iinfo->i_next_alloc_block = block;
696         iinfo->i_next_alloc_goal = newblocknum;
697         inode->i_ctime = current_fs_time(inode->i_sb);
698
699         if (IS_SYNC(inode))
700                 udf_sync_inode(inode);
701         else
702                 mark_inode_dirty(inode);
703
704         return result;
705 }
706
707 static void udf_split_extents(struct inode *inode, int *c, int offset,
708                               int newblocknum,
709                               struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
710                               int *endnum)
711 {
712         unsigned long blocksize = inode->i_sb->s_blocksize;
713         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
714
715         if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
716             (laarr[*c].extLength >> 30) ==
717                                 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
718                 int curr = *c;
719                 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
720                             blocksize - 1) >> blocksize_bits;
721                 int8_t etype = (laarr[curr].extLength >> 30);
722
723                 if (blen == 1)
724                         ;
725                 else if (!offset || blen == offset + 1) {
726                         laarr[curr + 2] = laarr[curr + 1];
727                         laarr[curr + 1] = laarr[curr];
728                 } else {
729                         laarr[curr + 3] = laarr[curr + 1];
730                         laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
731                 }
732
733                 if (offset) {
734                         if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
735                                 udf_free_blocks(inode->i_sb, inode,
736                                                 &laarr[curr].extLocation,
737                                                 0, offset);
738                                 laarr[curr].extLength =
739                                         EXT_NOT_RECORDED_NOT_ALLOCATED |
740                                         (offset << blocksize_bits);
741                                 laarr[curr].extLocation.logicalBlockNum = 0;
742                                 laarr[curr].extLocation.
743                                                 partitionReferenceNum = 0;
744                         } else
745                                 laarr[curr].extLength = (etype << 30) |
746                                         (offset << blocksize_bits);
747                         curr++;
748                         (*c)++;
749                         (*endnum)++;
750                 }
751
752                 laarr[curr].extLocation.logicalBlockNum = newblocknum;
753                 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
754                         laarr[curr].extLocation.partitionReferenceNum =
755                                 UDF_I(inode)->i_location.partitionReferenceNum;
756                 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
757                         blocksize;
758                 curr++;
759
760                 if (blen != offset + 1) {
761                         if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
762                                 laarr[curr].extLocation.logicalBlockNum +=
763                                                                 offset + 1;
764                         laarr[curr].extLength = (etype << 30) |
765                                 ((blen - (offset + 1)) << blocksize_bits);
766                         curr++;
767                         (*endnum)++;
768                 }
769         }
770 }
771
772 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
773                                  struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
774                                  int *endnum)
775 {
776         int start, length = 0, currlength = 0, i;
777
778         if (*endnum >= (c + 1)) {
779                 if (!lastblock)
780                         return;
781                 else
782                         start = c;
783         } else {
784                 if ((laarr[c + 1].extLength >> 30) ==
785                                         (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
786                         start = c + 1;
787                         length = currlength =
788                                 (((laarr[c + 1].extLength &
789                                         UDF_EXTENT_LENGTH_MASK) +
790                                 inode->i_sb->s_blocksize - 1) >>
791                                 inode->i_sb->s_blocksize_bits);
792                 } else
793                         start = c;
794         }
795
796         for (i = start + 1; i <= *endnum; i++) {
797                 if (i == *endnum) {
798                         if (lastblock)
799                                 length += UDF_DEFAULT_PREALLOC_BLOCKS;
800                 } else if ((laarr[i].extLength >> 30) ==
801                                 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
802                         length += (((laarr[i].extLength &
803                                                 UDF_EXTENT_LENGTH_MASK) +
804                                     inode->i_sb->s_blocksize - 1) >>
805                                     inode->i_sb->s_blocksize_bits);
806                 } else
807                         break;
808         }
809
810         if (length) {
811                 int next = laarr[start].extLocation.logicalBlockNum +
812                         (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
813                           inode->i_sb->s_blocksize - 1) >>
814                           inode->i_sb->s_blocksize_bits);
815                 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
816                                 laarr[start].extLocation.partitionReferenceNum,
817                                 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
818                                 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
819                                 currlength);
820                 if (numalloc)   {
821                         if (start == (c + 1))
822                                 laarr[start].extLength +=
823                                         (numalloc <<
824                                          inode->i_sb->s_blocksize_bits);
825                         else {
826                                 memmove(&laarr[c + 2], &laarr[c + 1],
827                                         sizeof(struct long_ad) * (*endnum - (c + 1)));
828                                 (*endnum)++;
829                                 laarr[c + 1].extLocation.logicalBlockNum = next;
830                                 laarr[c + 1].extLocation.partitionReferenceNum =
831                                         laarr[c].extLocation.
832                                                         partitionReferenceNum;
833                                 laarr[c + 1].extLength =
834                                         EXT_NOT_RECORDED_ALLOCATED |
835                                         (numalloc <<
836                                          inode->i_sb->s_blocksize_bits);
837                                 start = c + 1;
838                         }
839
840                         for (i = start + 1; numalloc && i < *endnum; i++) {
841                                 int elen = ((laarr[i].extLength &
842                                                 UDF_EXTENT_LENGTH_MASK) +
843                                             inode->i_sb->s_blocksize - 1) >>
844                                             inode->i_sb->s_blocksize_bits;
845
846                                 if (elen > numalloc) {
847                                         laarr[i].extLength -=
848                                                 (numalloc <<
849                                                  inode->i_sb->s_blocksize_bits);
850                                         numalloc = 0;
851                                 } else {
852                                         numalloc -= elen;
853                                         if (*endnum > (i + 1))
854                                                 memmove(&laarr[i],
855                                                         &laarr[i + 1],
856                                                         sizeof(struct long_ad) *
857                                                         (*endnum - (i + 1)));
858                                         i--;
859                                         (*endnum)--;
860                                 }
861                         }
862                         UDF_I(inode)->i_lenExtents +=
863                                 numalloc << inode->i_sb->s_blocksize_bits;
864                 }
865         }
866 }
867
868 static void udf_merge_extents(struct inode *inode,
869                               struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
870                               int *endnum)
871 {
872         int i;
873         unsigned long blocksize = inode->i_sb->s_blocksize;
874         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
875
876         for (i = 0; i < (*endnum - 1); i++) {
877                 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
878                 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
879
880                 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
881                         (((li->extLength >> 30) ==
882                                 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
883                         ((lip1->extLocation.logicalBlockNum -
884                           li->extLocation.logicalBlockNum) ==
885                         (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
886                         blocksize - 1) >> blocksize_bits)))) {
887
888                         if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
889                                 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
890                                 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
891                                 lip1->extLength = (lip1->extLength -
892                                                   (li->extLength &
893                                                    UDF_EXTENT_LENGTH_MASK) +
894                                                    UDF_EXTENT_LENGTH_MASK) &
895                                                         ~(blocksize - 1);
896                                 li->extLength = (li->extLength &
897                                                  UDF_EXTENT_FLAG_MASK) +
898                                                 (UDF_EXTENT_LENGTH_MASK + 1) -
899                                                 blocksize;
900                                 lip1->extLocation.logicalBlockNum =
901                                         li->extLocation.logicalBlockNum +
902                                         ((li->extLength &
903                                                 UDF_EXTENT_LENGTH_MASK) >>
904                                                 blocksize_bits);
905                         } else {
906                                 li->extLength = lip1->extLength +
907                                         (((li->extLength &
908                                                 UDF_EXTENT_LENGTH_MASK) +
909                                          blocksize - 1) & ~(blocksize - 1));
910                                 if (*endnum > (i + 2))
911                                         memmove(&laarr[i + 1], &laarr[i + 2],
912                                                 sizeof(struct long_ad) *
913                                                 (*endnum - (i + 2)));
914                                 i--;
915                                 (*endnum)--;
916                         }
917                 } else if (((li->extLength >> 30) ==
918                                 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
919                            ((lip1->extLength >> 30) ==
920                                 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
921                         udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
922                                         ((li->extLength &
923                                           UDF_EXTENT_LENGTH_MASK) +
924                                          blocksize - 1) >> blocksize_bits);
925                         li->extLocation.logicalBlockNum = 0;
926                         li->extLocation.partitionReferenceNum = 0;
927
928                         if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
929                              (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
930                              blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
931                                 lip1->extLength = (lip1->extLength -
932                                                    (li->extLength &
933                                                    UDF_EXTENT_LENGTH_MASK) +
934                                                    UDF_EXTENT_LENGTH_MASK) &
935                                                    ~(blocksize - 1);
936                                 li->extLength = (li->extLength &
937                                                  UDF_EXTENT_FLAG_MASK) +
938                                                 (UDF_EXTENT_LENGTH_MASK + 1) -
939                                                 blocksize;
940                         } else {
941                                 li->extLength = lip1->extLength +
942                                         (((li->extLength &
943                                                 UDF_EXTENT_LENGTH_MASK) +
944                                           blocksize - 1) & ~(blocksize - 1));
945                                 if (*endnum > (i + 2))
946                                         memmove(&laarr[i + 1], &laarr[i + 2],
947                                                 sizeof(struct long_ad) *
948                                                 (*endnum - (i + 2)));
949                                 i--;
950                                 (*endnum)--;
951                         }
952                 } else if ((li->extLength >> 30) ==
953                                         (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
954                         udf_free_blocks(inode->i_sb, inode,
955                                         &li->extLocation, 0,
956                                         ((li->extLength &
957                                                 UDF_EXTENT_LENGTH_MASK) +
958                                          blocksize - 1) >> blocksize_bits);
959                         li->extLocation.logicalBlockNum = 0;
960                         li->extLocation.partitionReferenceNum = 0;
961                         li->extLength = (li->extLength &
962                                                 UDF_EXTENT_LENGTH_MASK) |
963                                                 EXT_NOT_RECORDED_NOT_ALLOCATED;
964                 }
965         }
966 }
967
968 static void udf_update_extents(struct inode *inode,
969                                struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
970                                int startnum, int endnum,
971                                struct extent_position *epos)
972 {
973         int start = 0, i;
974         struct kernel_lb_addr tmploc;
975         uint32_t tmplen;
976
977         if (startnum > endnum) {
978                 for (i = 0; i < (startnum - endnum); i++)
979                         udf_delete_aext(inode, *epos, laarr[i].extLocation,
980                                         laarr[i].extLength);
981         } else if (startnum < endnum) {
982                 for (i = 0; i < (endnum - startnum); i++) {
983                         udf_insert_aext(inode, *epos, laarr[i].extLocation,
984                                         laarr[i].extLength);
985                         udf_next_aext(inode, epos, &laarr[i].extLocation,
986                                       &laarr[i].extLength, 1);
987                         start++;
988                 }
989         }
990
991         for (i = start; i < endnum; i++) {
992                 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
993                 udf_write_aext(inode, epos, &laarr[i].extLocation,
994                                laarr[i].extLength, 1);
995         }
996 }
997
998 struct buffer_head *udf_bread(struct inode *inode, int block,
999                               int create, int *err)
1000 {
1001         struct buffer_head *bh = NULL;
1002
1003         bh = udf_getblk(inode, block, create, err);
1004         if (!bh)
1005                 return NULL;
1006
1007         if (buffer_uptodate(bh))
1008                 return bh;
1009
1010         ll_rw_block(READ, 1, &bh);
1011
1012         wait_on_buffer(bh);
1013         if (buffer_uptodate(bh))
1014                 return bh;
1015
1016         brelse(bh);
1017         *err = -EIO;
1018         return NULL;
1019 }
1020
1021 void udf_truncate(struct inode *inode)
1022 {
1023         int offset;
1024         int err;
1025         struct udf_inode_info *iinfo;
1026
1027         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1028               S_ISLNK(inode->i_mode)))
1029                 return;
1030         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1031                 return;
1032
1033         lock_kernel();
1034         iinfo = UDF_I(inode);
1035         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1036                 if (inode->i_sb->s_blocksize <
1037                                 (udf_file_entry_alloc_offset(inode) +
1038                                  inode->i_size)) {
1039                         udf_expand_file_adinicb(inode, inode->i_size, &err);
1040                         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1041                                 inode->i_size = iinfo->i_lenAlloc;
1042                                 unlock_kernel();
1043                                 return;
1044                         } else
1045                                 udf_truncate_extents(inode);
1046                 } else {
1047                         offset = inode->i_size & (inode->i_sb->s_blocksize - 1);
1048                         memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + offset,
1049                                 0x00, inode->i_sb->s_blocksize -
1050                                 offset - udf_file_entry_alloc_offset(inode));
1051                         iinfo->i_lenAlloc = inode->i_size;
1052                 }
1053         } else {
1054                 block_truncate_page(inode->i_mapping, inode->i_size,
1055                                     udf_get_block);
1056                 udf_truncate_extents(inode);
1057         }
1058
1059         inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
1060         if (IS_SYNC(inode))
1061                 udf_sync_inode(inode);
1062         else
1063                 mark_inode_dirty(inode);
1064         unlock_kernel();
1065 }
1066
1067 static void __udf_read_inode(struct inode *inode)
1068 {
1069         struct buffer_head *bh = NULL;
1070         struct fileEntry *fe;
1071         uint16_t ident;
1072         struct udf_inode_info *iinfo = UDF_I(inode);
1073
1074         /*
1075          * Set defaults, but the inode is still incomplete!
1076          * Note: get_new_inode() sets the following on a new inode:
1077          *      i_sb = sb
1078          *      i_no = ino
1079          *      i_flags = sb->s_flags
1080          *      i_state = 0
1081          * clean_inode(): zero fills and sets
1082          *      i_count = 1
1083          *      i_nlink = 1
1084          *      i_op = NULL;
1085          */
1086         bh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 0, &ident);
1087         if (!bh) {
1088                 printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed !bh\n",
1089                        inode->i_ino);
1090                 make_bad_inode(inode);
1091                 return;
1092         }
1093
1094         if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1095             ident != TAG_IDENT_USE) {
1096                 printk(KERN_ERR "udf: udf_read_inode(ino %ld) "
1097                                 "failed ident=%d\n", inode->i_ino, ident);
1098                 brelse(bh);
1099                 make_bad_inode(inode);
1100                 return;
1101         }
1102
1103         fe = (struct fileEntry *)bh->b_data;
1104
1105         if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1106                 struct buffer_head *ibh;
1107
1108                 ibh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 1,
1109                                         &ident);
1110                 if (ident == TAG_IDENT_IE && ibh) {
1111                         struct buffer_head *nbh = NULL;
1112                         struct kernel_lb_addr loc;
1113                         struct indirectEntry *ie;
1114
1115                         ie = (struct indirectEntry *)ibh->b_data;
1116                         loc = lelb_to_cpu(ie->indirectICB.extLocation);
1117
1118                         if (ie->indirectICB.extLength &&
1119                                 (nbh = udf_read_ptagged(inode->i_sb, &loc, 0,
1120                                                         &ident))) {
1121                                 if (ident == TAG_IDENT_FE ||
1122                                         ident == TAG_IDENT_EFE) {
1123                                         memcpy(&iinfo->i_location,
1124                                                 &loc,
1125                                                 sizeof(struct kernel_lb_addr));
1126                                         brelse(bh);
1127                                         brelse(ibh);
1128                                         brelse(nbh);
1129                                         __udf_read_inode(inode);
1130                                         return;
1131                                 }
1132                                 brelse(nbh);
1133                         }
1134                 }
1135                 brelse(ibh);
1136         } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1137                 printk(KERN_ERR "udf: unsupported strategy type: %d\n",
1138                        le16_to_cpu(fe->icbTag.strategyType));
1139                 brelse(bh);
1140                 make_bad_inode(inode);
1141                 return;
1142         }
1143         udf_fill_inode(inode, bh);
1144
1145         brelse(bh);
1146 }
1147
1148 static void udf_fill_inode(struct inode *inode, struct buffer_head *bh)
1149 {
1150         struct fileEntry *fe;
1151         struct extendedFileEntry *efe;
1152         int offset;
1153         struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1154         struct udf_inode_info *iinfo = UDF_I(inode);
1155
1156         fe = (struct fileEntry *)bh->b_data;
1157         efe = (struct extendedFileEntry *)bh->b_data;
1158
1159         if (fe->icbTag.strategyType == cpu_to_le16(4))
1160                 iinfo->i_strat4096 = 0;
1161         else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1162                 iinfo->i_strat4096 = 1;
1163
1164         iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1165                                                         ICBTAG_FLAG_AD_MASK;
1166         iinfo->i_unique = 0;
1167         iinfo->i_lenEAttr = 0;
1168         iinfo->i_lenExtents = 0;
1169         iinfo->i_lenAlloc = 0;
1170         iinfo->i_next_alloc_block = 0;
1171         iinfo->i_next_alloc_goal = 0;
1172         if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1173                 iinfo->i_efe = 1;
1174                 iinfo->i_use = 0;
1175                 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1176                                         sizeof(struct extendedFileEntry))) {
1177                         make_bad_inode(inode);
1178                         return;
1179                 }
1180                 memcpy(iinfo->i_ext.i_data,
1181                        bh->b_data + sizeof(struct extendedFileEntry),
1182                        inode->i_sb->s_blocksize -
1183                                         sizeof(struct extendedFileEntry));
1184         } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1185                 iinfo->i_efe = 0;
1186                 iinfo->i_use = 0;
1187                 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1188                                                 sizeof(struct fileEntry))) {
1189                         make_bad_inode(inode);
1190                         return;
1191                 }
1192                 memcpy(iinfo->i_ext.i_data,
1193                        bh->b_data + sizeof(struct fileEntry),
1194                        inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1195         } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1196                 iinfo->i_efe = 0;
1197                 iinfo->i_use = 1;
1198                 iinfo->i_lenAlloc = le32_to_cpu(
1199                                 ((struct unallocSpaceEntry *)bh->b_data)->
1200                                  lengthAllocDescs);
1201                 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1202                                         sizeof(struct unallocSpaceEntry))) {
1203                         make_bad_inode(inode);
1204                         return;
1205                 }
1206                 memcpy(iinfo->i_ext.i_data,
1207                        bh->b_data + sizeof(struct unallocSpaceEntry),
1208                        inode->i_sb->s_blocksize -
1209                                         sizeof(struct unallocSpaceEntry));
1210                 return;
1211         }
1212
1213         inode->i_uid = le32_to_cpu(fe->uid);
1214         if (inode->i_uid == -1 ||
1215             UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
1216             UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1217                 inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
1218
1219         inode->i_gid = le32_to_cpu(fe->gid);
1220         if (inode->i_gid == -1 ||
1221             UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
1222             UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1223                 inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
1224
1225         inode->i_nlink = le16_to_cpu(fe->fileLinkCount);
1226         if (!inode->i_nlink)
1227                 inode->i_nlink = 1;
1228
1229         inode->i_size = le64_to_cpu(fe->informationLength);
1230         iinfo->i_lenExtents = inode->i_size;
1231
1232         if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1233                         sbi->s_fmode != UDF_INVALID_MODE)
1234                 inode->i_mode = sbi->s_fmode;
1235         else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1236                         sbi->s_dmode != UDF_INVALID_MODE)
1237                 inode->i_mode = sbi->s_dmode;
1238         else
1239                 inode->i_mode = udf_convert_permissions(fe);
1240         inode->i_mode &= ~sbi->s_umask;
1241
1242         if (iinfo->i_efe == 0) {
1243                 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1244                         (inode->i_sb->s_blocksize_bits - 9);
1245
1246                 if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime))
1247                         inode->i_atime = sbi->s_record_time;
1248
1249                 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1250                                             fe->modificationTime))
1251                         inode->i_mtime = sbi->s_record_time;
1252
1253                 if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime))
1254                         inode->i_ctime = sbi->s_record_time;
1255
1256                 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1257                 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1258                 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1259                 offset = sizeof(struct fileEntry) + iinfo->i_lenEAttr;
1260         } else {
1261                 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1262                     (inode->i_sb->s_blocksize_bits - 9);
1263
1264                 if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime))
1265                         inode->i_atime = sbi->s_record_time;
1266
1267                 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1268                                             efe->modificationTime))
1269                         inode->i_mtime = sbi->s_record_time;
1270
1271                 if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime))
1272                         iinfo->i_crtime = sbi->s_record_time;
1273
1274                 if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime))
1275                         inode->i_ctime = sbi->s_record_time;
1276
1277                 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1278                 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1279                 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1280                 offset = sizeof(struct extendedFileEntry) +
1281                                                         iinfo->i_lenEAttr;
1282         }
1283
1284         switch (fe->icbTag.fileType) {
1285         case ICBTAG_FILE_TYPE_DIRECTORY:
1286                 inode->i_op = &udf_dir_inode_operations;
1287                 inode->i_fop = &udf_dir_operations;
1288                 inode->i_mode |= S_IFDIR;
1289                 inc_nlink(inode);
1290                 break;
1291         case ICBTAG_FILE_TYPE_REALTIME:
1292         case ICBTAG_FILE_TYPE_REGULAR:
1293         case ICBTAG_FILE_TYPE_UNDEF:
1294         case ICBTAG_FILE_TYPE_VAT20:
1295                 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1296                         inode->i_data.a_ops = &udf_adinicb_aops;
1297                 else
1298                         inode->i_data.a_ops = &udf_aops;
1299                 inode->i_op = &udf_file_inode_operations;
1300                 inode->i_fop = &udf_file_operations;
1301                 inode->i_mode |= S_IFREG;
1302                 break;
1303         case ICBTAG_FILE_TYPE_BLOCK:
1304                 inode->i_mode |= S_IFBLK;
1305                 break;
1306         case ICBTAG_FILE_TYPE_CHAR:
1307                 inode->i_mode |= S_IFCHR;
1308                 break;
1309         case ICBTAG_FILE_TYPE_FIFO:
1310                 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1311                 break;
1312         case ICBTAG_FILE_TYPE_SOCKET:
1313                 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1314                 break;
1315         case ICBTAG_FILE_TYPE_SYMLINK:
1316                 inode->i_data.a_ops = &udf_symlink_aops;
1317                 inode->i_op = &page_symlink_inode_operations;
1318                 inode->i_mode = S_IFLNK | S_IRWXUGO;
1319                 break;
1320         case ICBTAG_FILE_TYPE_MAIN:
1321                 udf_debug("METADATA FILE-----\n");
1322                 break;
1323         case ICBTAG_FILE_TYPE_MIRROR:
1324                 udf_debug("METADATA MIRROR FILE-----\n");
1325                 break;
1326         case ICBTAG_FILE_TYPE_BITMAP:
1327                 udf_debug("METADATA BITMAP FILE-----\n");
1328                 break;
1329         default:
1330                 printk(KERN_ERR "udf: udf_fill_inode(ino %ld) failed unknown "
1331                                 "file type=%d\n", inode->i_ino,
1332                                 fe->icbTag.fileType);
1333                 make_bad_inode(inode);
1334                 return;
1335         }
1336         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1337                 struct deviceSpec *dsea =
1338                         (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1339                 if (dsea) {
1340                         init_special_inode(inode, inode->i_mode,
1341                                 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1342                                       le32_to_cpu(dsea->minorDeviceIdent)));
1343                         /* Developer ID ??? */
1344                 } else
1345                         make_bad_inode(inode);
1346         }
1347 }
1348
1349 static int udf_alloc_i_data(struct inode *inode, size_t size)
1350 {
1351         struct udf_inode_info *iinfo = UDF_I(inode);
1352         iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1353
1354         if (!iinfo->i_ext.i_data) {
1355                 printk(KERN_ERR "udf:udf_alloc_i_data (ino %ld) "
1356                                 "no free memory\n", inode->i_ino);
1357                 return -ENOMEM;
1358         }
1359
1360         return 0;
1361 }
1362
1363 static mode_t udf_convert_permissions(struct fileEntry *fe)
1364 {
1365         mode_t mode;
1366         uint32_t permissions;
1367         uint32_t flags;
1368
1369         permissions = le32_to_cpu(fe->permissions);
1370         flags = le16_to_cpu(fe->icbTag.flags);
1371
1372         mode =  ((permissions) & S_IRWXO) |
1373                 ((permissions >> 2) & S_IRWXG) |
1374                 ((permissions >> 4) & S_IRWXU) |
1375                 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1376                 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1377                 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1378
1379         return mode;
1380 }
1381
1382 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1383 {
1384         int ret;
1385
1386         lock_kernel();
1387         ret = udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1388         unlock_kernel();
1389
1390         return ret;
1391 }
1392
1393 int udf_sync_inode(struct inode *inode)
1394 {
1395         return udf_update_inode(inode, 1);
1396 }
1397
1398 static int udf_update_inode(struct inode *inode, int do_sync)
1399 {
1400         struct buffer_head *bh = NULL;
1401         struct fileEntry *fe;
1402         struct extendedFileEntry *efe;
1403         uint32_t udfperms;
1404         uint16_t icbflags;
1405         uint16_t crclen;
1406         int err = 0;
1407         struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1408         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1409         struct udf_inode_info *iinfo = UDF_I(inode);
1410
1411         bh = udf_tgetblk(inode->i_sb,
1412                         udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1413         if (!bh) {
1414                 udf_debug("getblk failure\n");
1415                 return -ENOMEM;
1416         }
1417
1418         lock_buffer(bh);
1419         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1420         fe = (struct fileEntry *)bh->b_data;
1421         efe = (struct extendedFileEntry *)bh->b_data;
1422
1423         if (iinfo->i_use) {
1424                 struct unallocSpaceEntry *use =
1425                         (struct unallocSpaceEntry *)bh->b_data;
1426
1427                 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1428                 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1429                        iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1430                                         sizeof(struct unallocSpaceEntry));
1431                 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1432                 use->descTag.tagLocation =
1433                                 cpu_to_le32(iinfo->i_location.logicalBlockNum);
1434                 crclen = sizeof(struct unallocSpaceEntry) +
1435                                 iinfo->i_lenAlloc - sizeof(struct tag);
1436                 use->descTag.descCRCLength = cpu_to_le16(crclen);
1437                 use->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)use +
1438                                                            sizeof(struct tag),
1439                                                            crclen));
1440                 use->descTag.tagChecksum = udf_tag_checksum(&use->descTag);
1441
1442                 goto out;
1443         }
1444
1445         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1446                 fe->uid = cpu_to_le32(-1);
1447         else
1448                 fe->uid = cpu_to_le32(inode->i_uid);
1449
1450         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1451                 fe->gid = cpu_to_le32(-1);
1452         else
1453                 fe->gid = cpu_to_le32(inode->i_gid);
1454
1455         udfperms = ((inode->i_mode & S_IRWXO)) |
1456                    ((inode->i_mode & S_IRWXG) << 2) |
1457                    ((inode->i_mode & S_IRWXU) << 4);
1458
1459         udfperms |= (le32_to_cpu(fe->permissions) &
1460                     (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1461                      FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1462                      FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1463         fe->permissions = cpu_to_le32(udfperms);
1464
1465         if (S_ISDIR(inode->i_mode))
1466                 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1467         else
1468                 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1469
1470         fe->informationLength = cpu_to_le64(inode->i_size);
1471
1472         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1473                 struct regid *eid;
1474                 struct deviceSpec *dsea =
1475                         (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1476                 if (!dsea) {
1477                         dsea = (struct deviceSpec *)
1478                                 udf_add_extendedattr(inode,
1479                                                      sizeof(struct deviceSpec) +
1480                                                      sizeof(struct regid), 12, 0x3);
1481                         dsea->attrType = cpu_to_le32(12);
1482                         dsea->attrSubtype = 1;
1483                         dsea->attrLength = cpu_to_le32(
1484                                                 sizeof(struct deviceSpec) +
1485                                                 sizeof(struct regid));
1486                         dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1487                 }
1488                 eid = (struct regid *)dsea->impUse;
1489                 memset(eid, 0, sizeof(struct regid));
1490                 strcpy(eid->ident, UDF_ID_DEVELOPER);
1491                 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1492                 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1493                 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1494                 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1495         }
1496
1497         if (iinfo->i_efe == 0) {
1498                 memcpy(bh->b_data + sizeof(struct fileEntry),
1499                        iinfo->i_ext.i_data,
1500                        inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1501                 fe->logicalBlocksRecorded = cpu_to_le64(
1502                         (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1503                         (blocksize_bits - 9));
1504
1505                 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1506                 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1507                 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1508                 memset(&(fe->impIdent), 0, sizeof(struct regid));
1509                 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1510                 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1511                 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1512                 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1513                 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1514                 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1515                 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1516                 crclen = sizeof(struct fileEntry);
1517         } else {
1518                 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1519                        iinfo->i_ext.i_data,
1520                        inode->i_sb->s_blocksize -
1521                                         sizeof(struct extendedFileEntry));
1522                 efe->objectSize = cpu_to_le64(inode->i_size);
1523                 efe->logicalBlocksRecorded = cpu_to_le64(
1524                         (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1525                         (blocksize_bits - 9));
1526
1527                 if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec ||
1528                     (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec &&
1529                      iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec))
1530                         iinfo->i_crtime = inode->i_atime;
1531
1532                 if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec ||
1533                     (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec &&
1534                      iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec))
1535                         iinfo->i_crtime = inode->i_mtime;
1536
1537                 if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec ||
1538                     (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec &&
1539                      iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec))
1540                         iinfo->i_crtime = inode->i_ctime;
1541
1542                 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1543                 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1544                 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1545                 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1546
1547                 memset(&(efe->impIdent), 0, sizeof(struct regid));
1548                 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1549                 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1550                 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1551                 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1552                 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1553                 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1554                 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1555                 crclen = sizeof(struct extendedFileEntry);
1556         }
1557         if (iinfo->i_strat4096) {
1558                 fe->icbTag.strategyType = cpu_to_le16(4096);
1559                 fe->icbTag.strategyParameter = cpu_to_le16(1);
1560                 fe->icbTag.numEntries = cpu_to_le16(2);
1561         } else {
1562                 fe->icbTag.strategyType = cpu_to_le16(4);
1563                 fe->icbTag.numEntries = cpu_to_le16(1);
1564         }
1565
1566         if (S_ISDIR(inode->i_mode))
1567                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1568         else if (S_ISREG(inode->i_mode))
1569                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1570         else if (S_ISLNK(inode->i_mode))
1571                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1572         else if (S_ISBLK(inode->i_mode))
1573                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1574         else if (S_ISCHR(inode->i_mode))
1575                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1576         else if (S_ISFIFO(inode->i_mode))
1577                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1578         else if (S_ISSOCK(inode->i_mode))
1579                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1580
1581         icbflags =      iinfo->i_alloc_type |
1582                         ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1583                         ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1584                         ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1585                         (le16_to_cpu(fe->icbTag.flags) &
1586                                 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1587                                 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1588
1589         fe->icbTag.flags = cpu_to_le16(icbflags);
1590         if (sbi->s_udfrev >= 0x0200)
1591                 fe->descTag.descVersion = cpu_to_le16(3);
1592         else
1593                 fe->descTag.descVersion = cpu_to_le16(2);
1594         fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1595         fe->descTag.tagLocation = cpu_to_le32(
1596                                         iinfo->i_location.logicalBlockNum);
1597         crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1598         fe->descTag.descCRCLength = cpu_to_le16(crclen);
1599         fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1600                                                   crclen));
1601         fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1602
1603 out:
1604         set_buffer_uptodate(bh);
1605         unlock_buffer(bh);
1606
1607         /* write the data blocks */
1608         mark_buffer_dirty(bh);
1609         if (do_sync) {
1610                 sync_dirty_buffer(bh);
1611                 if (buffer_write_io_error(bh)) {
1612                         printk(KERN_WARNING "IO error syncing udf inode "
1613                                 "[%s:%08lx]\n", inode->i_sb->s_id,
1614                                 inode->i_ino);
1615                         err = -EIO;
1616                 }
1617         }
1618         brelse(bh);
1619
1620         return err;
1621 }
1622
1623 struct inode *udf_iget(struct super_block *sb, struct kernel_lb_addr *ino)
1624 {
1625         unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1626         struct inode *inode = iget_locked(sb, block);
1627
1628         if (!inode)
1629                 return NULL;
1630
1631         if (inode->i_state & I_NEW) {
1632                 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1633                 __udf_read_inode(inode);
1634                 unlock_new_inode(inode);
1635         }
1636
1637         if (is_bad_inode(inode))
1638                 goto out_iput;
1639
1640         if (ino->logicalBlockNum >= UDF_SB(sb)->
1641                         s_partmaps[ino->partitionReferenceNum].s_partition_len) {
1642                 udf_debug("block=%d, partition=%d out of range\n",
1643                           ino->logicalBlockNum, ino->partitionReferenceNum);
1644                 make_bad_inode(inode);
1645                 goto out_iput;
1646         }
1647
1648         return inode;
1649
1650  out_iput:
1651         iput(inode);
1652         return NULL;
1653 }
1654
1655 int8_t udf_add_aext(struct inode *inode, struct extent_position *epos,
1656                     struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1657 {
1658         int adsize;
1659         struct short_ad *sad = NULL;
1660         struct long_ad *lad = NULL;
1661         struct allocExtDesc *aed;
1662         int8_t etype;
1663         uint8_t *ptr;
1664         struct udf_inode_info *iinfo = UDF_I(inode);
1665
1666         if (!epos->bh)
1667                 ptr = iinfo->i_ext.i_data + epos->offset -
1668                         udf_file_entry_alloc_offset(inode) +
1669                         iinfo->i_lenEAttr;
1670         else
1671                 ptr = epos->bh->b_data + epos->offset;
1672
1673         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1674                 adsize = sizeof(struct short_ad);
1675         else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1676                 adsize = sizeof(struct long_ad);
1677         else
1678                 return -1;
1679
1680         if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) {
1681                 unsigned char *sptr, *dptr;
1682                 struct buffer_head *nbh;
1683                 int err, loffset;
1684                 struct kernel_lb_addr obloc = epos->block;
1685
1686                 epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL,
1687                                                 obloc.partitionReferenceNum,
1688                                                 obloc.logicalBlockNum, &err);
1689                 if (!epos->block.logicalBlockNum)
1690                         return -1;
1691                 nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb,
1692                                                                  &epos->block,
1693                                                                  0));
1694                 if (!nbh)
1695                         return -1;
1696                 lock_buffer(nbh);
1697                 memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize);
1698                 set_buffer_uptodate(nbh);
1699                 unlock_buffer(nbh);
1700                 mark_buffer_dirty_inode(nbh, inode);
1701
1702                 aed = (struct allocExtDesc *)(nbh->b_data);
1703                 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT))
1704                         aed->previousAllocExtLocation =
1705                                         cpu_to_le32(obloc.logicalBlockNum);
1706                 if (epos->offset + adsize > inode->i_sb->s_blocksize) {
1707                         loffset = epos->offset;
1708                         aed->lengthAllocDescs = cpu_to_le32(adsize);
1709                         sptr = ptr - adsize;
1710                         dptr = nbh->b_data + sizeof(struct allocExtDesc);
1711                         memcpy(dptr, sptr, adsize);
1712                         epos->offset = sizeof(struct allocExtDesc) + adsize;
1713                 } else {
1714                         loffset = epos->offset + adsize;
1715                         aed->lengthAllocDescs = cpu_to_le32(0);
1716                         sptr = ptr;
1717                         epos->offset = sizeof(struct allocExtDesc);
1718
1719                         if (epos->bh) {
1720                                 aed = (struct allocExtDesc *)epos->bh->b_data;
1721                                 le32_add_cpu(&aed->lengthAllocDescs, adsize);
1722                         } else {
1723                                 iinfo->i_lenAlloc += adsize;
1724                                 mark_inode_dirty(inode);
1725                         }
1726                 }
1727                 if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200)
1728                         udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1,
1729                                     epos->block.logicalBlockNum, sizeof(struct tag));
1730                 else
1731                         udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1,
1732                                     epos->block.logicalBlockNum, sizeof(struct tag));
1733                 switch (iinfo->i_alloc_type) {
1734                 case ICBTAG_FLAG_AD_SHORT:
1735                         sad = (struct short_ad *)sptr;
1736                         sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1737                                                      inode->i_sb->s_blocksize);
1738                         sad->extPosition =
1739                                 cpu_to_le32(epos->block.logicalBlockNum);
1740                         break;
1741                 case ICBTAG_FLAG_AD_LONG:
1742                         lad = (struct long_ad *)sptr;
1743                         lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1744                                                      inode->i_sb->s_blocksize);
1745                         lad->extLocation = cpu_to_lelb(epos->block);
1746                         memset(lad->impUse, 0x00, sizeof(lad->impUse));
1747                         break;
1748                 }
1749                 if (epos->bh) {
1750                         if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1751                             UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1752                                 udf_update_tag(epos->bh->b_data, loffset);
1753                         else
1754                                 udf_update_tag(epos->bh->b_data,
1755                                                 sizeof(struct allocExtDesc));
1756                         mark_buffer_dirty_inode(epos->bh, inode);
1757                         brelse(epos->bh);
1758                 } else {
1759                         mark_inode_dirty(inode);
1760                 }
1761                 epos->bh = nbh;
1762         }
1763
1764         etype = udf_write_aext(inode, epos, eloc, elen, inc);
1765
1766         if (!epos->bh) {
1767                 iinfo->i_lenAlloc += adsize;
1768                 mark_inode_dirty(inode);
1769         } else {
1770                 aed = (struct allocExtDesc *)epos->bh->b_data;
1771                 le32_add_cpu(&aed->lengthAllocDescs, adsize);
1772                 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1773                                 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1774                         udf_update_tag(epos->bh->b_data,
1775                                         epos->offset + (inc ? 0 : adsize));
1776                 else
1777                         udf_update_tag(epos->bh->b_data,
1778                                         sizeof(struct allocExtDesc));
1779                 mark_buffer_dirty_inode(epos->bh, inode);
1780         }
1781
1782         return etype;
1783 }
1784
1785 int8_t udf_write_aext(struct inode *inode, struct extent_position *epos,
1786                       struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1787 {
1788         int adsize;
1789         uint8_t *ptr;
1790         struct short_ad *sad;
1791         struct long_ad *lad;
1792         struct udf_inode_info *iinfo = UDF_I(inode);
1793
1794         if (!epos->bh)
1795                 ptr = iinfo->i_ext.i_data + epos->offset -
1796                         udf_file_entry_alloc_offset(inode) +
1797                         iinfo->i_lenEAttr;
1798         else
1799                 ptr = epos->bh->b_data + epos->offset;
1800
1801         switch (iinfo->i_alloc_type) {
1802         case ICBTAG_FLAG_AD_SHORT:
1803                 sad = (struct short_ad *)ptr;
1804                 sad->extLength = cpu_to_le32(elen);
1805                 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
1806                 adsize = sizeof(struct short_ad);
1807                 break;
1808         case ICBTAG_FLAG_AD_LONG:
1809                 lad = (struct long_ad *)ptr;
1810                 lad->extLength = cpu_to_le32(elen);
1811                 lad->extLocation = cpu_to_lelb(*eloc);
1812                 memset(lad->impUse, 0x00, sizeof(lad->impUse));
1813                 adsize = sizeof(struct long_ad);
1814                 break;
1815         default:
1816                 return -1;
1817         }
1818
1819         if (epos->bh) {
1820                 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1821                     UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
1822                         struct allocExtDesc *aed =
1823                                 (struct allocExtDesc *)epos->bh->b_data;
1824                         udf_update_tag(epos->bh->b_data,
1825                                        le32_to_cpu(aed->lengthAllocDescs) +
1826                                        sizeof(struct allocExtDesc));
1827                 }
1828                 mark_buffer_dirty_inode(epos->bh, inode);
1829         } else {
1830                 mark_inode_dirty(inode);
1831         }
1832
1833         if (inc)
1834                 epos->offset += adsize;
1835
1836         return (elen >> 30);
1837 }
1838
1839 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
1840                      struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
1841 {
1842         int8_t etype;
1843
1844         while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
1845                (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
1846                 int block;
1847                 epos->block = *eloc;
1848                 epos->offset = sizeof(struct allocExtDesc);
1849                 brelse(epos->bh);
1850                 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
1851                 epos->bh = udf_tread(inode->i_sb, block);
1852                 if (!epos->bh) {
1853                         udf_debug("reading block %d failed!\n", block);
1854                         return -1;
1855                 }
1856         }
1857
1858         return etype;
1859 }
1860
1861 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
1862                         struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
1863 {
1864         int alen;
1865         int8_t etype;
1866         uint8_t *ptr;
1867         struct short_ad *sad;
1868         struct long_ad *lad;
1869         struct udf_inode_info *iinfo = UDF_I(inode);
1870
1871         if (!epos->bh) {
1872                 if (!epos->offset)
1873                         epos->offset = udf_file_entry_alloc_offset(inode);
1874                 ptr = iinfo->i_ext.i_data + epos->offset -
1875                         udf_file_entry_alloc_offset(inode) +
1876                         iinfo->i_lenEAttr;
1877                 alen = udf_file_entry_alloc_offset(inode) +
1878                                                         iinfo->i_lenAlloc;
1879         } else {
1880                 if (!epos->offset)
1881                         epos->offset = sizeof(struct allocExtDesc);
1882                 ptr = epos->bh->b_data + epos->offset;
1883                 alen = sizeof(struct allocExtDesc) +
1884                         le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
1885                                                         lengthAllocDescs);
1886         }
1887
1888         switch (iinfo->i_alloc_type) {
1889         case ICBTAG_FLAG_AD_SHORT:
1890                 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
1891                 if (!sad)
1892                         return -1;
1893                 etype = le32_to_cpu(sad->extLength) >> 30;
1894                 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
1895                 eloc->partitionReferenceNum =
1896                                 iinfo->i_location.partitionReferenceNum;
1897                 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
1898                 break;
1899         case ICBTAG_FLAG_AD_LONG:
1900                 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
1901                 if (!lad)
1902                         return -1;
1903                 etype = le32_to_cpu(lad->extLength) >> 30;
1904                 *eloc = lelb_to_cpu(lad->extLocation);
1905                 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
1906                 break;
1907         default:
1908                 udf_debug("alloc_type = %d unsupported\n",
1909                                 iinfo->i_alloc_type);
1910                 return -1;
1911         }
1912
1913         return etype;
1914 }
1915
1916 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
1917                               struct kernel_lb_addr neloc, uint32_t nelen)
1918 {
1919         struct kernel_lb_addr oeloc;
1920         uint32_t oelen;
1921         int8_t etype;
1922
1923         if (epos.bh)
1924                 get_bh(epos.bh);
1925
1926         while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
1927                 udf_write_aext(inode, &epos, &neloc, nelen, 1);
1928                 neloc = oeloc;
1929                 nelen = (etype << 30) | oelen;
1930         }
1931         udf_add_aext(inode, &epos, &neloc, nelen, 1);
1932         brelse(epos.bh);
1933
1934         return (nelen >> 30);
1935 }
1936
1937 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos,
1938                        struct kernel_lb_addr eloc, uint32_t elen)
1939 {
1940         struct extent_position oepos;
1941         int adsize;
1942         int8_t etype;
1943         struct allocExtDesc *aed;
1944         struct udf_inode_info *iinfo;
1945
1946         if (epos.bh) {
1947                 get_bh(epos.bh);
1948                 get_bh(epos.bh);
1949         }
1950
1951         iinfo = UDF_I(inode);
1952         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1953                 adsize = sizeof(struct short_ad);
1954         else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1955                 adsize = sizeof(struct long_ad);
1956         else
1957                 adsize = 0;
1958
1959         oepos = epos;
1960         if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
1961                 return -1;
1962
1963         while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
1964                 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
1965                 if (oepos.bh != epos.bh) {
1966                         oepos.block = epos.block;
1967                         brelse(oepos.bh);
1968                         get_bh(epos.bh);
1969                         oepos.bh = epos.bh;
1970                         oepos.offset = epos.offset - adsize;
1971                 }
1972         }
1973         memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
1974         elen = 0;
1975
1976         if (epos.bh != oepos.bh) {
1977                 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
1978                 udf_write_aext(inode, &oepos, &eloc, elen, 1);
1979                 udf_write_aext(inode, &oepos, &eloc, elen, 1);
1980                 if (!oepos.bh) {
1981                         iinfo->i_lenAlloc -= (adsize * 2);
1982                         mark_inode_dirty(inode);
1983                 } else {
1984                         aed = (struct allocExtDesc *)oepos.bh->b_data;
1985                         le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
1986                         if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1987                             UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1988                                 udf_update_tag(oepos.bh->b_data,
1989                                                 oepos.offset - (2 * adsize));
1990                         else
1991                                 udf_update_tag(oepos.bh->b_data,
1992                                                 sizeof(struct allocExtDesc));
1993                         mark_buffer_dirty_inode(oepos.bh, inode);
1994                 }
1995         } else {
1996                 udf_write_aext(inode, &oepos, &eloc, elen, 1);
1997                 if (!oepos.bh) {
1998                         iinfo->i_lenAlloc -= adsize;
1999                         mark_inode_dirty(inode);
2000                 } else {
2001                         aed = (struct allocExtDesc *)oepos.bh->b_data;
2002                         le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2003                         if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2004                             UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2005                                 udf_update_tag(oepos.bh->b_data,
2006                                                 epos.offset - adsize);
2007                         else
2008                                 udf_update_tag(oepos.bh->b_data,
2009                                                 sizeof(struct allocExtDesc));
2010                         mark_buffer_dirty_inode(oepos.bh, inode);
2011                 }
2012         }
2013
2014         brelse(epos.bh);
2015         brelse(oepos.bh);
2016
2017         return (elen >> 30);
2018 }
2019
2020 int8_t inode_bmap(struct inode *inode, sector_t block,
2021                   struct extent_position *pos, struct kernel_lb_addr *eloc,
2022                   uint32_t *elen, sector_t *offset)
2023 {
2024         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2025         loff_t lbcount = 0, bcount =
2026             (loff_t) block << blocksize_bits;
2027         int8_t etype;
2028         struct udf_inode_info *iinfo;
2029
2030         iinfo = UDF_I(inode);
2031         pos->offset = 0;
2032         pos->block = iinfo->i_location;
2033         pos->bh = NULL;
2034         *elen = 0;
2035
2036         do {
2037                 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2038                 if (etype == -1) {
2039                         *offset = (bcount - lbcount) >> blocksize_bits;
2040                         iinfo->i_lenExtents = lbcount;
2041                         return -1;
2042                 }
2043                 lbcount += *elen;
2044         } while (lbcount <= bcount);
2045
2046         *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2047
2048         return etype;
2049 }
2050
2051 long udf_block_map(struct inode *inode, sector_t block)
2052 {
2053         struct kernel_lb_addr eloc;
2054         uint32_t elen;
2055         sector_t offset;
2056         struct extent_position epos = {};
2057         int ret;
2058
2059         lock_kernel();
2060
2061         if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2062                                                 (EXT_RECORDED_ALLOCATED >> 30))
2063                 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2064         else
2065                 ret = 0;
2066
2067         unlock_kernel();
2068         brelse(epos.bh);
2069
2070         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2071                 return udf_fixed_to_variable(ret);
2072         else
2073                 return ret;
2074 }