Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc
[sfrench/cifs-2.6.git] / fs / udf / balloc.c
1 /*
2  * balloc.c
3  *
4  * PURPOSE
5  *      Block allocation handling routines for the OSTA-UDF(tm) filesystem.
6  *
7  * COPYRIGHT
8  *      This file is distributed under the terms of the GNU General Public
9  *      License (GPL). Copies of the GPL can be obtained from:
10  *              ftp://prep.ai.mit.edu/pub/gnu/GPL
11  *      Each contributing author retains all rights to their own work.
12  *
13  *  (C) 1999-2001 Ben Fennema
14  *  (C) 1999 Stelias Computing Inc
15  *
16  * HISTORY
17  *
18  *  02/24/99 blf  Created.
19  *
20  */
21
22 #include "udfdecl.h"
23
24 #include <linux/quotaops.h>
25 #include <linux/buffer_head.h>
26 #include <linux/bitops.h>
27
28 #include "udf_i.h"
29 #include "udf_sb.h"
30
31 #define udf_clear_bit(nr,addr) ext2_clear_bit(nr,addr)
32 #define udf_set_bit(nr,addr) ext2_set_bit(nr,addr)
33 #define udf_test_bit(nr, addr) ext2_test_bit(nr, addr)
34 #define udf_find_first_one_bit(addr, size) find_first_one_bit(addr, size)
35 #define udf_find_next_one_bit(addr, size, offset) find_next_one_bit(addr, size, offset)
36
37 #define leBPL_to_cpup(x) leNUM_to_cpup(BITS_PER_LONG, x)
38 #define leNUM_to_cpup(x,y) xleNUM_to_cpup(x,y)
39 #define xleNUM_to_cpup(x,y) (le ## x ## _to_cpup(y))
40 #define uintBPL_t uint(BITS_PER_LONG)
41 #define uint(x) xuint(x)
42 #define xuint(x) __le ## x
43
44 static inline int find_next_one_bit (void * addr, int size, int offset)
45 {
46         uintBPL_t * p = ((uintBPL_t *) addr) + (offset / BITS_PER_LONG);
47         int result = offset & ~(BITS_PER_LONG-1);
48         unsigned long tmp;
49
50         if (offset >= size)
51                 return size;
52         size -= result;
53         offset &= (BITS_PER_LONG-1);
54         if (offset)
55         {
56                 tmp = leBPL_to_cpup(p++);
57                 tmp &= ~0UL << offset;
58                 if (size < BITS_PER_LONG)
59                         goto found_first;
60                 if (tmp)
61                         goto found_middle;
62                 size -= BITS_PER_LONG;
63                 result += BITS_PER_LONG;
64         }
65         while (size & ~(BITS_PER_LONG-1))
66         {
67                 if ((tmp = leBPL_to_cpup(p++)))
68                         goto found_middle;
69                 result += BITS_PER_LONG;
70                 size -= BITS_PER_LONG;
71         }
72         if (!size)
73                 return result;
74         tmp = leBPL_to_cpup(p);
75 found_first:
76         tmp &= ~0UL >> (BITS_PER_LONG-size);
77 found_middle:
78         return result + ffz(~tmp);
79 }
80
81 #define find_first_one_bit(addr, size)\
82         find_next_one_bit((addr), (size), 0)
83
84 static int read_block_bitmap(struct super_block * sb,
85         struct udf_bitmap *bitmap, unsigned int block, unsigned long bitmap_nr)
86 {
87         struct buffer_head *bh = NULL;
88         int retval = 0;
89         kernel_lb_addr loc;
90
91         loc.logicalBlockNum = bitmap->s_extPosition;
92         loc.partitionReferenceNum = UDF_SB_PARTITION(sb);
93
94         bh = udf_tread(sb, udf_get_lb_pblock(sb, loc, block));
95         if (!bh)
96         {
97                 retval = -EIO;
98         }
99         bitmap->s_block_bitmap[bitmap_nr] = bh;
100         return retval;
101 }
102
103 static int __load_block_bitmap(struct super_block * sb,
104         struct udf_bitmap *bitmap, unsigned int block_group)
105 {
106         int retval = 0;
107         int nr_groups = bitmap->s_nr_groups;
108
109         if (block_group >= nr_groups)
110         {
111                 udf_debug("block_group (%d) > nr_groups (%d)\n", block_group, nr_groups);
112         }
113
114         if (bitmap->s_block_bitmap[block_group])
115                 return block_group;
116         else
117         {
118                 retval = read_block_bitmap(sb, bitmap, block_group, block_group);
119                 if (retval < 0)
120                         return retval;
121                 return block_group;
122         }
123 }
124
125 static inline int load_block_bitmap(struct super_block * sb,
126         struct udf_bitmap *bitmap, unsigned int block_group)
127 {
128         int slot;
129
130         slot = __load_block_bitmap(sb, bitmap, block_group);
131
132         if (slot < 0)
133                 return slot;
134
135         if (!bitmap->s_block_bitmap[slot])
136                 return -EIO;
137
138         return slot;
139 }
140
141 static void udf_bitmap_free_blocks(struct super_block * sb,
142         struct inode * inode,
143         struct udf_bitmap *bitmap,
144         kernel_lb_addr bloc, uint32_t offset, uint32_t count)
145 {
146         struct udf_sb_info *sbi = UDF_SB(sb);
147         struct buffer_head * bh = NULL;
148         unsigned long block;
149         unsigned long block_group;
150         unsigned long bit;
151         unsigned long i;
152         int bitmap_nr;
153         unsigned long overflow;
154
155         mutex_lock(&sbi->s_alloc_mutex);
156         if (bloc.logicalBlockNum < 0 ||
157                 (bloc.logicalBlockNum + count) > UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum))
158         {
159                 udf_debug("%d < %d || %d + %d > %d\n",
160                         bloc.logicalBlockNum, 0, bloc.logicalBlockNum, count,
161                         UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum));
162                 goto error_return;
163         }
164
165         block = bloc.logicalBlockNum + offset + (sizeof(struct spaceBitmapDesc) << 3);
166
167 do_more:
168         overflow = 0;
169         block_group = block >> (sb->s_blocksize_bits + 3);
170         bit = block % (sb->s_blocksize << 3);
171
172         /*
173          * Check to see if we are freeing blocks across a group boundary.
174          */
175         if (bit + count > (sb->s_blocksize << 3))
176         {
177                 overflow = bit + count - (sb->s_blocksize << 3);
178                 count -= overflow;
179         }
180         bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
181         if (bitmap_nr < 0)
182                 goto error_return;
183
184         bh = bitmap->s_block_bitmap[bitmap_nr];
185         for (i=0; i < count; i++)
186         {
187                 if (udf_set_bit(bit + i, bh->b_data))
188                 {
189                         udf_debug("bit %ld already set\n", bit + i);
190                         udf_debug("byte=%2x\n", ((char *)bh->b_data)[(bit + i) >> 3]);
191                 }
192                 else
193                 {
194                         if (inode)
195                                 DQUOT_FREE_BLOCK(inode, 1);
196                         if (UDF_SB_LVIDBH(sb))
197                         {
198                                 UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)] =
199                                         cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)])+1);
200                         }
201                 }
202         }
203         mark_buffer_dirty(bh);
204         if (overflow)
205         {
206                 block += count;
207                 count = overflow;
208                 goto do_more;
209         }
210 error_return:
211         sb->s_dirt = 1;
212         if (UDF_SB_LVIDBH(sb))
213                 mark_buffer_dirty(UDF_SB_LVIDBH(sb));
214         mutex_unlock(&sbi->s_alloc_mutex);
215         return;
216 }
217
218 static int udf_bitmap_prealloc_blocks(struct super_block * sb,
219         struct inode * inode,
220         struct udf_bitmap *bitmap, uint16_t partition, uint32_t first_block,
221         uint32_t block_count)
222 {
223         struct udf_sb_info *sbi = UDF_SB(sb);
224         int alloc_count = 0;
225         int bit, block, block_group, group_start;
226         int nr_groups, bitmap_nr;
227         struct buffer_head *bh;
228
229         mutex_lock(&sbi->s_alloc_mutex);
230         if (first_block < 0 || first_block >= UDF_SB_PARTLEN(sb, partition))
231                 goto out;
232
233         if (first_block + block_count > UDF_SB_PARTLEN(sb, partition))
234                 block_count = UDF_SB_PARTLEN(sb, partition) - first_block;
235
236 repeat:
237         nr_groups = (UDF_SB_PARTLEN(sb, partition) +
238                 (sizeof(struct spaceBitmapDesc) << 3) + (sb->s_blocksize * 8) - 1) / (sb->s_blocksize * 8);
239         block = first_block + (sizeof(struct spaceBitmapDesc) << 3);
240         block_group = block >> (sb->s_blocksize_bits + 3);
241         group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
242
243         bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
244         if (bitmap_nr < 0)
245                 goto out;
246         bh = bitmap->s_block_bitmap[bitmap_nr];
247
248         bit = block % (sb->s_blocksize << 3);
249
250         while (bit < (sb->s_blocksize << 3) && block_count > 0)
251         {
252                 if (!udf_test_bit(bit, bh->b_data))
253                         goto out;
254                 else if (DQUOT_PREALLOC_BLOCK(inode, 1))
255                         goto out;
256                 else if (!udf_clear_bit(bit, bh->b_data))
257                 {
258                         udf_debug("bit already cleared for block %d\n", bit);
259                         DQUOT_FREE_BLOCK(inode, 1);
260                         goto out;
261                 }
262                 block_count --;
263                 alloc_count ++;
264                 bit ++;
265                 block ++;
266         }
267         mark_buffer_dirty(bh);
268         if (block_count > 0)
269                 goto repeat;
270 out:
271         if (UDF_SB_LVIDBH(sb))
272         {
273                 UDF_SB_LVID(sb)->freeSpaceTable[partition] =
274                         cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-alloc_count);
275                 mark_buffer_dirty(UDF_SB_LVIDBH(sb));
276         }
277         sb->s_dirt = 1;
278         mutex_unlock(&sbi->s_alloc_mutex);
279         return alloc_count;
280 }
281
282 static int udf_bitmap_new_block(struct super_block * sb,
283         struct inode * inode,
284         struct udf_bitmap *bitmap, uint16_t partition, uint32_t goal, int *err)
285 {
286         struct udf_sb_info *sbi = UDF_SB(sb);
287         int newbit, bit=0, block, block_group, group_start;
288         int end_goal, nr_groups, bitmap_nr, i;
289         struct buffer_head *bh = NULL;
290         char *ptr;
291         int newblock = 0;
292
293         *err = -ENOSPC;
294         mutex_lock(&sbi->s_alloc_mutex);
295
296 repeat:
297         if (goal < 0 || goal >= UDF_SB_PARTLEN(sb, partition))
298                 goal = 0;
299
300         nr_groups = bitmap->s_nr_groups;
301         block = goal + (sizeof(struct spaceBitmapDesc) << 3);
302         block_group = block >> (sb->s_blocksize_bits + 3);
303         group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
304
305         bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
306         if (bitmap_nr < 0)
307                 goto error_return;
308         bh = bitmap->s_block_bitmap[bitmap_nr];
309         ptr = memscan((char *)bh->b_data + group_start, 0xFF, sb->s_blocksize - group_start);
310
311         if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize)
312         {
313                 bit = block % (sb->s_blocksize << 3);
314
315                 if (udf_test_bit(bit, bh->b_data))
316                 {
317                         goto got_block;
318                 }
319                 end_goal = (bit + 63) & ~63;
320                 bit = udf_find_next_one_bit(bh->b_data, end_goal, bit);
321                 if (bit < end_goal)
322                         goto got_block;
323                 ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF, sb->s_blocksize - ((bit + 7) >> 3));
324                 newbit = (ptr - ((char *)bh->b_data)) << 3;
325                 if (newbit < sb->s_blocksize << 3)
326                 {
327                         bit = newbit;
328                         goto search_back;
329                 }
330                 newbit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3, bit);
331                 if (newbit < sb->s_blocksize << 3)
332                 {
333                         bit = newbit;
334                         goto got_block;
335                 }
336         }
337
338         for (i=0; i<(nr_groups*2); i++)
339         {
340                 block_group ++;
341                 if (block_group >= nr_groups)
342                         block_group = 0;
343                 group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
344
345                 bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
346                 if (bitmap_nr < 0)
347                         goto error_return;
348                 bh = bitmap->s_block_bitmap[bitmap_nr];
349                 if (i < nr_groups)
350                 {
351                         ptr = memscan((char *)bh->b_data + group_start, 0xFF, sb->s_blocksize - group_start);
352                         if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize)
353                         {
354                                 bit = (ptr - ((char *)bh->b_data)) << 3;
355                                 break;
356                         }
357                 }
358                 else
359                 {
360                         bit = udf_find_next_one_bit((char *)bh->b_data, sb->s_blocksize << 3, group_start << 3);
361                         if (bit < sb->s_blocksize << 3)
362                                 break;
363                 }
364         }
365         if (i >= (nr_groups*2))
366         {
367                 mutex_unlock(&sbi->s_alloc_mutex);
368                 return newblock;
369         }
370         if (bit < sb->s_blocksize << 3)
371                 goto search_back;
372         else
373                 bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3, group_start << 3);
374         if (bit >= sb->s_blocksize << 3)
375         {
376                 mutex_unlock(&sbi->s_alloc_mutex);
377                 return 0;
378         }
379
380 search_back:
381         for (i=0; i<7 && bit > (group_start << 3) && udf_test_bit(bit - 1, bh->b_data); i++, bit--);
382
383 got_block:
384
385         /*
386          * Check quota for allocation of this block.
387          */
388         if (inode && DQUOT_ALLOC_BLOCK(inode, 1))
389         {
390                 mutex_unlock(&sbi->s_alloc_mutex);
391                 *err = -EDQUOT;
392                 return 0;
393         }
394
395         newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) -
396                 (sizeof(struct spaceBitmapDesc) << 3);
397
398         if (!udf_clear_bit(bit, bh->b_data))
399         {
400                 udf_debug("bit already cleared for block %d\n", bit);
401                 goto repeat;
402         }
403
404         mark_buffer_dirty(bh);
405
406         if (UDF_SB_LVIDBH(sb))
407         {
408                 UDF_SB_LVID(sb)->freeSpaceTable[partition] =
409                         cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-1);
410                 mark_buffer_dirty(UDF_SB_LVIDBH(sb));
411         }
412         sb->s_dirt = 1;
413         mutex_unlock(&sbi->s_alloc_mutex);
414         *err = 0;
415         return newblock;
416
417 error_return:
418         *err = -EIO;
419         mutex_unlock(&sbi->s_alloc_mutex);
420         return 0;
421 }
422
423 static void udf_table_free_blocks(struct super_block * sb,
424         struct inode * inode,
425         struct inode * table,
426         kernel_lb_addr bloc, uint32_t offset, uint32_t count)
427 {
428         struct udf_sb_info *sbi = UDF_SB(sb);
429         uint32_t start, end;
430         uint32_t elen;
431         kernel_lb_addr eloc;
432         struct extent_position oepos, epos;
433         int8_t etype;
434         int i;
435
436         mutex_lock(&sbi->s_alloc_mutex);
437         if (bloc.logicalBlockNum < 0 ||
438                 (bloc.logicalBlockNum + count) > UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum))
439         {
440                 udf_debug("%d < %d || %d + %d > %d\n",
441                         bloc.logicalBlockNum, 0, bloc.logicalBlockNum, count,
442                         UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum));
443                 goto error_return;
444         }
445
446         /* We do this up front - There are some error conditions that could occure,
447            but.. oh well */
448         if (inode)
449                 DQUOT_FREE_BLOCK(inode, count);
450         if (UDF_SB_LVIDBH(sb))
451         {
452                 UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)] =
453                         cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)])+count);
454                 mark_buffer_dirty(UDF_SB_LVIDBH(sb));
455         }
456
457         start = bloc.logicalBlockNum + offset;
458         end = bloc.logicalBlockNum + offset + count - 1;
459
460         epos.offset = oepos.offset = sizeof(struct unallocSpaceEntry);
461         elen = 0;
462         epos.block = oepos.block = UDF_I_LOCATION(table);
463         epos.bh = oepos.bh = NULL;
464
465         while (count && (etype =
466                 udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
467         {
468                 if (((eloc.logicalBlockNum + (elen >> sb->s_blocksize_bits)) ==
469                         start))
470                 {
471                         if ((0x3FFFFFFF - elen) < (count << sb->s_blocksize_bits))
472                         {
473                                 count -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits);
474                                 start += ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits);
475                                 elen = (etype << 30) | (0x40000000 - sb->s_blocksize);
476                         }
477                         else
478                         {
479                                 elen = (etype << 30) |
480                                         (elen + (count << sb->s_blocksize_bits));
481                                 start += count;
482                                 count = 0;
483                         }
484                         udf_write_aext(table, &oepos, eloc, elen, 1);
485                 }
486                 else if (eloc.logicalBlockNum == (end + 1))
487                 {
488                         if ((0x3FFFFFFF - elen) < (count << sb->s_blocksize_bits))
489                         {
490                                 count -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits);
491                                 end -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits);
492                                 eloc.logicalBlockNum -=
493                                         ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits);
494                                 elen = (etype << 30) | (0x40000000 - sb->s_blocksize);
495                         }
496                         else
497                         {
498                                 eloc.logicalBlockNum = start;
499                                 elen = (etype << 30) |
500                                         (elen + (count << sb->s_blocksize_bits));
501                                 end -= count;
502                                 count = 0;
503                         }
504                         udf_write_aext(table, &oepos, eloc, elen, 1);
505                 }
506
507                 if (epos.bh != oepos.bh)
508                 {
509                         i = -1;
510                         oepos.block = epos.block;
511                         brelse(oepos.bh);
512                         get_bh(epos.bh);
513                         oepos.bh = epos.bh;
514                         oepos.offset = 0;
515                 }
516                 else
517                         oepos.offset = epos.offset;
518         }
519
520         if (count)
521         {
522                 /* NOTE: we CANNOT use udf_add_aext here, as it can try to allocate
523                                  a new block, and since we hold the super block lock already
524                                  very bad things would happen :)
525
526                                  We copy the behavior of udf_add_aext, but instead of
527                                  trying to allocate a new block close to the existing one,
528                                  we just steal a block from the extent we are trying to add.
529
530                                  It would be nice if the blocks were close together, but it
531                                  isn't required.
532                 */
533
534                 int adsize;
535                 short_ad *sad = NULL;
536                 long_ad *lad = NULL;
537                 struct allocExtDesc *aed;
538
539                 eloc.logicalBlockNum = start;
540                 elen = EXT_RECORDED_ALLOCATED |
541                         (count << sb->s_blocksize_bits);
542
543                 if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_SHORT)
544                         adsize = sizeof(short_ad);
545                 else if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_LONG)
546                         adsize = sizeof(long_ad);
547                 else
548                 {
549                         brelse(oepos.bh);
550                         brelse(epos.bh);
551                         goto error_return;
552                 }
553
554                 if (epos.offset + (2 * adsize) > sb->s_blocksize)
555                 {
556                         char *sptr, *dptr;
557                         int loffset;
558         
559                         brelse(oepos.bh);
560                         oepos = epos;
561
562                         /* Steal a block from the extent being free'd */
563                         epos.block.logicalBlockNum = eloc.logicalBlockNum;
564                         eloc.logicalBlockNum ++;
565                         elen -= sb->s_blocksize;
566
567                         if (!(epos.bh = udf_tread(sb,
568                                 udf_get_lb_pblock(sb, epos.block, 0))))
569                         {
570                                 brelse(oepos.bh);
571                                 goto error_return;
572                         }
573                         aed = (struct allocExtDesc *)(epos.bh->b_data);
574                         aed->previousAllocExtLocation = cpu_to_le32(oepos.block.logicalBlockNum);
575                         if (epos.offset + adsize > sb->s_blocksize)
576                         {
577                                 loffset = epos.offset;
578                                 aed->lengthAllocDescs = cpu_to_le32(adsize);
579                                 sptr = UDF_I_DATA(inode) + epos.offset -
580                                         udf_file_entry_alloc_offset(inode) +
581                                         UDF_I_LENEATTR(inode) - adsize;
582                                 dptr = epos.bh->b_data + sizeof(struct allocExtDesc);
583                                 memcpy(dptr, sptr, adsize);
584                                 epos.offset = sizeof(struct allocExtDesc) + adsize;
585                         }
586                         else
587                         {
588                                 loffset = epos.offset + adsize;
589                                 aed->lengthAllocDescs = cpu_to_le32(0);
590                                 sptr = oepos.bh->b_data + epos.offset;
591                                 epos.offset = sizeof(struct allocExtDesc);
592
593                                 if (oepos.bh)
594                                 {
595                                         aed = (struct allocExtDesc *)oepos.bh->b_data;
596                                         aed->lengthAllocDescs =
597                                                 cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize);
598                                 }
599                                 else
600                                 {
601                                         UDF_I_LENALLOC(table) += adsize;
602                                         mark_inode_dirty(table);
603                                 }
604                         }
605                         if (UDF_SB_UDFREV(sb) >= 0x0200)
606                                 udf_new_tag(epos.bh->b_data, TAG_IDENT_AED, 3, 1,
607                                         epos.block.logicalBlockNum, sizeof(tag));
608                         else
609                                 udf_new_tag(epos.bh->b_data, TAG_IDENT_AED, 2, 1,
610                                         epos.block.logicalBlockNum, sizeof(tag));
611                         switch (UDF_I_ALLOCTYPE(table))
612                         {
613                                 case ICBTAG_FLAG_AD_SHORT:
614                                 {
615                                         sad = (short_ad *)sptr;
616                                         sad->extLength = cpu_to_le32(
617                                                 EXT_NEXT_EXTENT_ALLOCDECS |
618                                                 sb->s_blocksize);
619                                         sad->extPosition = cpu_to_le32(epos.block.logicalBlockNum);
620                                         break;
621                                 }
622                                 case ICBTAG_FLAG_AD_LONG:
623                                 {
624                                         lad = (long_ad *)sptr;
625                                         lad->extLength = cpu_to_le32(
626                                                 EXT_NEXT_EXTENT_ALLOCDECS |
627                                                 sb->s_blocksize);
628                                         lad->extLocation = cpu_to_lelb(epos.block);
629                                         break;
630                                 }
631                         }
632                         if (oepos.bh)
633                         {
634                                 udf_update_tag(oepos.bh->b_data, loffset);
635                                 mark_buffer_dirty(oepos.bh);
636                         }
637                         else
638                                 mark_inode_dirty(table);
639                 }
640
641                 if (elen) /* It's possible that stealing the block emptied the extent */
642                 {
643                         udf_write_aext(table, &epos, eloc, elen, 1);
644
645                         if (!epos.bh)
646                         {
647                                 UDF_I_LENALLOC(table) += adsize;
648                                 mark_inode_dirty(table);
649                         }
650                         else
651                         {
652                                 aed = (struct allocExtDesc *)epos.bh->b_data;
653                                 aed->lengthAllocDescs =
654                                         cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize);
655                                 udf_update_tag(epos.bh->b_data, epos.offset);
656                                 mark_buffer_dirty(epos.bh);
657                         }
658                 }
659         }
660
661         brelse(epos.bh);
662         brelse(oepos.bh);
663
664 error_return:
665         sb->s_dirt = 1;
666         mutex_unlock(&sbi->s_alloc_mutex);
667         return;
668 }
669
670 static int udf_table_prealloc_blocks(struct super_block * sb,
671         struct inode * inode,
672         struct inode *table, uint16_t partition, uint32_t first_block,
673         uint32_t block_count)
674 {
675         struct udf_sb_info *sbi = UDF_SB(sb);
676         int alloc_count = 0;
677         uint32_t elen, adsize;
678         kernel_lb_addr eloc;
679         struct extent_position epos;
680         int8_t etype = -1;
681
682         if (first_block < 0 || first_block >= UDF_SB_PARTLEN(sb, partition))
683                 return 0;
684
685         if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_SHORT)
686                 adsize = sizeof(short_ad);
687         else if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_LONG)
688                 adsize = sizeof(long_ad);
689         else
690                 return 0;
691
692         mutex_lock(&sbi->s_alloc_mutex);
693         epos.offset = sizeof(struct unallocSpaceEntry);
694         epos.block = UDF_I_LOCATION(table);
695         epos.bh = NULL;
696         eloc.logicalBlockNum = 0xFFFFFFFF;
697
698         while (first_block != eloc.logicalBlockNum && (etype =
699                 udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
700         {
701                 udf_debug("eloc=%d, elen=%d, first_block=%d\n",
702                         eloc.logicalBlockNum, elen, first_block);
703                 ; /* empty loop body */
704         }
705
706         if (first_block == eloc.logicalBlockNum)
707         {
708                 epos.offset -= adsize;
709
710                 alloc_count = (elen >> sb->s_blocksize_bits);
711                 if (inode && DQUOT_PREALLOC_BLOCK(inode, alloc_count > block_count ? block_count : alloc_count))
712                         alloc_count = 0;
713                 else if (alloc_count > block_count)
714                 {
715                         alloc_count = block_count;
716                         eloc.logicalBlockNum += alloc_count;
717                         elen -= (alloc_count << sb->s_blocksize_bits);
718                         udf_write_aext(table, &epos, eloc, (etype << 30) | elen, 1);
719                 }
720                 else
721                         udf_delete_aext(table, epos, eloc, (etype << 30) | elen);
722         }
723         else
724                 alloc_count = 0;
725
726         brelse(epos.bh);
727
728         if (alloc_count && UDF_SB_LVIDBH(sb))
729         {
730                 UDF_SB_LVID(sb)->freeSpaceTable[partition] =
731                         cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-alloc_count);
732                 mark_buffer_dirty(UDF_SB_LVIDBH(sb));
733                 sb->s_dirt = 1;
734         }
735         mutex_unlock(&sbi->s_alloc_mutex);
736         return alloc_count;
737 }
738
739 static int udf_table_new_block(struct super_block * sb,
740         struct inode * inode,
741         struct inode *table, uint16_t partition, uint32_t goal, int *err)
742 {
743         struct udf_sb_info *sbi = UDF_SB(sb);
744         uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF;
745         uint32_t newblock = 0, adsize;
746         uint32_t elen, goal_elen = 0;
747         kernel_lb_addr eloc, goal_eloc;
748         struct extent_position epos, goal_epos;
749         int8_t etype;
750
751         *err = -ENOSPC;
752
753         if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_SHORT)
754                 adsize = sizeof(short_ad);
755         else if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_LONG)
756                 adsize = sizeof(long_ad);
757         else
758                 return newblock;
759
760         mutex_lock(&sbi->s_alloc_mutex);
761         if (goal < 0 || goal >= UDF_SB_PARTLEN(sb, partition))
762                 goal = 0;
763
764         /* We search for the closest matching block to goal. If we find a exact hit,
765            we stop. Otherwise we keep going till we run out of extents.
766            We store the buffer_head, bloc, and extoffset of the current closest
767            match and use that when we are done.
768         */
769         epos.offset = sizeof(struct unallocSpaceEntry);
770         epos.block = UDF_I_LOCATION(table);
771         epos.bh = goal_epos.bh = NULL;
772
773         while (spread && (etype =
774                 udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
775         {
776                 if (goal >= eloc.logicalBlockNum)
777                 {
778                         if (goal < eloc.logicalBlockNum + (elen >> sb->s_blocksize_bits))
779                                 nspread = 0;
780                         else
781                                 nspread = goal - eloc.logicalBlockNum -
782                                         (elen >> sb->s_blocksize_bits);
783                 }
784                 else
785                         nspread = eloc.logicalBlockNum - goal;
786
787                 if (nspread < spread)
788                 {
789                         spread = nspread;
790                         if (goal_epos.bh != epos.bh)
791                         {
792                                 brelse(goal_epos.bh);
793                                 goal_epos.bh = epos.bh;
794                                 get_bh(goal_epos.bh);
795                         }
796                         goal_epos.block = epos.block;
797                         goal_epos.offset = epos.offset - adsize;
798                         goal_eloc = eloc;
799                         goal_elen = (etype << 30) | elen;
800                 }
801         }
802
803         brelse(epos.bh);
804
805         if (spread == 0xFFFFFFFF)
806         {
807                 brelse(goal_epos.bh);
808                 mutex_unlock(&sbi->s_alloc_mutex);
809                 return 0;
810         }
811
812         /* Only allocate blocks from the beginning of the extent.
813            That way, we only delete (empty) extents, never have to insert an
814            extent because of splitting */
815         /* This works, but very poorly.... */
816
817         newblock = goal_eloc.logicalBlockNum;
818         goal_eloc.logicalBlockNum ++;
819         goal_elen -= sb->s_blocksize;
820
821         if (inode && DQUOT_ALLOC_BLOCK(inode, 1))
822         {
823                 brelse(goal_epos.bh);
824                 mutex_unlock(&sbi->s_alloc_mutex);
825                 *err = -EDQUOT;
826                 return 0;
827         }
828
829         if (goal_elen)
830                 udf_write_aext(table, &goal_epos, goal_eloc, goal_elen, 1);
831         else
832                 udf_delete_aext(table, goal_epos, goal_eloc, goal_elen);
833         brelse(goal_epos.bh);
834
835         if (UDF_SB_LVIDBH(sb))
836         {
837                 UDF_SB_LVID(sb)->freeSpaceTable[partition] =
838                         cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-1);
839                 mark_buffer_dirty(UDF_SB_LVIDBH(sb));
840         }
841
842         sb->s_dirt = 1;
843         mutex_unlock(&sbi->s_alloc_mutex);
844         *err = 0;
845         return newblock;
846 }
847
848 inline void udf_free_blocks(struct super_block * sb,
849         struct inode * inode,
850         kernel_lb_addr bloc, uint32_t offset, uint32_t count)
851 {
852         uint16_t partition = bloc.partitionReferenceNum;
853
854         if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP)
855         {
856                 return udf_bitmap_free_blocks(sb, inode,
857                         UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_bitmap,
858                         bloc, offset, count);
859         }
860         else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_TABLE)
861         {
862                 return udf_table_free_blocks(sb, inode,
863                         UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_table,
864                         bloc, offset, count);
865         }
866         else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_BITMAP)
867         {
868                 return udf_bitmap_free_blocks(sb, inode,
869                         UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_bitmap,
870                         bloc, offset, count);
871         }
872         else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_TABLE)
873         {
874                 return udf_table_free_blocks(sb, inode,
875                         UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_table,
876                         bloc, offset, count);
877         }
878         else
879                 return;
880 }
881
882 inline int udf_prealloc_blocks(struct super_block * sb,
883         struct inode * inode,
884         uint16_t partition, uint32_t first_block, uint32_t block_count)
885 {
886         if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP)
887         {
888                 return udf_bitmap_prealloc_blocks(sb, inode,
889                         UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_bitmap,
890                         partition, first_block, block_count);
891         }
892         else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_TABLE)
893         {
894                 return udf_table_prealloc_blocks(sb, inode,
895                         UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_table,
896                         partition, first_block, block_count);
897         }
898         else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_BITMAP)
899         {
900                 return udf_bitmap_prealloc_blocks(sb, inode,
901                         UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_bitmap,
902                         partition, first_block, block_count);
903         }
904         else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_TABLE)
905         {
906                 return udf_table_prealloc_blocks(sb, inode,
907                         UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_table,
908                         partition, first_block, block_count);
909         }
910         else
911                 return 0;
912 }
913
914 inline int udf_new_block(struct super_block * sb,
915         struct inode * inode,
916         uint16_t partition, uint32_t goal, int *err)
917 {
918         int ret;
919
920         if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP)
921         {
922                 ret = udf_bitmap_new_block(sb, inode,
923                         UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_bitmap,
924                         partition, goal, err);
925                 return ret;
926         }
927         else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_TABLE)
928         {
929                 return udf_table_new_block(sb, inode,
930                         UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_table,
931                         partition, goal, err);
932         }
933         else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_BITMAP)
934         {
935                 return udf_bitmap_new_block(sb, inode,
936                         UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_bitmap,
937                         partition, goal, err);
938         }
939         else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_TABLE)
940         {
941                 return udf_table_new_block(sb, inode,
942                         UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_table,
943                         partition, goal, err);
944         }
945         else
946         {
947                 *err = -EIO;
948                 return 0;
949         }
950 }