Merge branch 'linux-next' of git://git.infradead.org/ubifs-2.6
[sfrench/cifs-2.6.git] / fs / ubifs / debug.c
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22
23 /*
24  * This file implements most of the debugging stuff which is compiled in only
25  * when it is enabled. But some debugging check functions are implemented in
26  * corresponding subsystem, just because they are closely related and utilize
27  * various local functions of those subsystems.
28  */
29
30 #define UBIFS_DBG_PRESERVE_UBI
31
32 #include "ubifs.h"
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/debugfs.h>
36 #include <linux/math64.h>
37
38 #ifdef CONFIG_UBIFS_FS_DEBUG
39
40 DEFINE_SPINLOCK(dbg_lock);
41
42 static char dbg_key_buf0[128];
43 static char dbg_key_buf1[128];
44
45 unsigned int ubifs_msg_flags = UBIFS_MSG_FLAGS_DEFAULT;
46 unsigned int ubifs_chk_flags = UBIFS_CHK_FLAGS_DEFAULT;
47 unsigned int ubifs_tst_flags;
48
49 module_param_named(debug_msgs, ubifs_msg_flags, uint, S_IRUGO | S_IWUSR);
50 module_param_named(debug_chks, ubifs_chk_flags, uint, S_IRUGO | S_IWUSR);
51 module_param_named(debug_tsts, ubifs_tst_flags, uint, S_IRUGO | S_IWUSR);
52
53 MODULE_PARM_DESC(debug_msgs, "Debug message type flags");
54 MODULE_PARM_DESC(debug_chks, "Debug check flags");
55 MODULE_PARM_DESC(debug_tsts, "Debug special test flags");
56
57 static const char *get_key_fmt(int fmt)
58 {
59         switch (fmt) {
60         case UBIFS_SIMPLE_KEY_FMT:
61                 return "simple";
62         default:
63                 return "unknown/invalid format";
64         }
65 }
66
67 static const char *get_key_hash(int hash)
68 {
69         switch (hash) {
70         case UBIFS_KEY_HASH_R5:
71                 return "R5";
72         case UBIFS_KEY_HASH_TEST:
73                 return "test";
74         default:
75                 return "unknown/invalid name hash";
76         }
77 }
78
79 static const char *get_key_type(int type)
80 {
81         switch (type) {
82         case UBIFS_INO_KEY:
83                 return "inode";
84         case UBIFS_DENT_KEY:
85                 return "direntry";
86         case UBIFS_XENT_KEY:
87                 return "xentry";
88         case UBIFS_DATA_KEY:
89                 return "data";
90         case UBIFS_TRUN_KEY:
91                 return "truncate";
92         default:
93                 return "unknown/invalid key";
94         }
95 }
96
97 static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key,
98                         char *buffer)
99 {
100         char *p = buffer;
101         int type = key_type(c, key);
102
103         if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
104                 switch (type) {
105                 case UBIFS_INO_KEY:
106                         sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key),
107                                get_key_type(type));
108                         break;
109                 case UBIFS_DENT_KEY:
110                 case UBIFS_XENT_KEY:
111                         sprintf(p, "(%lu, %s, %#08x)",
112                                 (unsigned long)key_inum(c, key),
113                                 get_key_type(type), key_hash(c, key));
114                         break;
115                 case UBIFS_DATA_KEY:
116                         sprintf(p, "(%lu, %s, %u)",
117                                 (unsigned long)key_inum(c, key),
118                                 get_key_type(type), key_block(c, key));
119                         break;
120                 case UBIFS_TRUN_KEY:
121                         sprintf(p, "(%lu, %s)",
122                                 (unsigned long)key_inum(c, key),
123                                 get_key_type(type));
124                         break;
125                 default:
126                         sprintf(p, "(bad key type: %#08x, %#08x)",
127                                 key->u32[0], key->u32[1]);
128                 }
129         } else
130                 sprintf(p, "bad key format %d", c->key_fmt);
131 }
132
133 const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key)
134 {
135         /* dbg_lock must be held */
136         sprintf_key(c, key, dbg_key_buf0);
137         return dbg_key_buf0;
138 }
139
140 const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key)
141 {
142         /* dbg_lock must be held */
143         sprintf_key(c, key, dbg_key_buf1);
144         return dbg_key_buf1;
145 }
146
147 const char *dbg_ntype(int type)
148 {
149         switch (type) {
150         case UBIFS_PAD_NODE:
151                 return "padding node";
152         case UBIFS_SB_NODE:
153                 return "superblock node";
154         case UBIFS_MST_NODE:
155                 return "master node";
156         case UBIFS_REF_NODE:
157                 return "reference node";
158         case UBIFS_INO_NODE:
159                 return "inode node";
160         case UBIFS_DENT_NODE:
161                 return "direntry node";
162         case UBIFS_XENT_NODE:
163                 return "xentry node";
164         case UBIFS_DATA_NODE:
165                 return "data node";
166         case UBIFS_TRUN_NODE:
167                 return "truncate node";
168         case UBIFS_IDX_NODE:
169                 return "indexing node";
170         case UBIFS_CS_NODE:
171                 return "commit start node";
172         case UBIFS_ORPH_NODE:
173                 return "orphan node";
174         default:
175                 return "unknown node";
176         }
177 }
178
179 static const char *dbg_gtype(int type)
180 {
181         switch (type) {
182         case UBIFS_NO_NODE_GROUP:
183                 return "no node group";
184         case UBIFS_IN_NODE_GROUP:
185                 return "in node group";
186         case UBIFS_LAST_OF_NODE_GROUP:
187                 return "last of node group";
188         default:
189                 return "unknown";
190         }
191 }
192
193 const char *dbg_cstate(int cmt_state)
194 {
195         switch (cmt_state) {
196         case COMMIT_RESTING:
197                 return "commit resting";
198         case COMMIT_BACKGROUND:
199                 return "background commit requested";
200         case COMMIT_REQUIRED:
201                 return "commit required";
202         case COMMIT_RUNNING_BACKGROUND:
203                 return "BACKGROUND commit running";
204         case COMMIT_RUNNING_REQUIRED:
205                 return "commit running and required";
206         case COMMIT_BROKEN:
207                 return "broken commit";
208         default:
209                 return "unknown commit state";
210         }
211 }
212
213 static void dump_ch(const struct ubifs_ch *ch)
214 {
215         printk(KERN_DEBUG "\tmagic          %#x\n", le32_to_cpu(ch->magic));
216         printk(KERN_DEBUG "\tcrc            %#x\n", le32_to_cpu(ch->crc));
217         printk(KERN_DEBUG "\tnode_type      %d (%s)\n", ch->node_type,
218                dbg_ntype(ch->node_type));
219         printk(KERN_DEBUG "\tgroup_type     %d (%s)\n", ch->group_type,
220                dbg_gtype(ch->group_type));
221         printk(KERN_DEBUG "\tsqnum          %llu\n",
222                (unsigned long long)le64_to_cpu(ch->sqnum));
223         printk(KERN_DEBUG "\tlen            %u\n", le32_to_cpu(ch->len));
224 }
225
226 void dbg_dump_inode(const struct ubifs_info *c, const struct inode *inode)
227 {
228         const struct ubifs_inode *ui = ubifs_inode(inode);
229
230         printk(KERN_DEBUG "Dump in-memory inode:");
231         printk(KERN_DEBUG "\tinode          %lu\n", inode->i_ino);
232         printk(KERN_DEBUG "\tsize           %llu\n",
233                (unsigned long long)i_size_read(inode));
234         printk(KERN_DEBUG "\tnlink          %u\n", inode->i_nlink);
235         printk(KERN_DEBUG "\tuid            %u\n", (unsigned int)inode->i_uid);
236         printk(KERN_DEBUG "\tgid            %u\n", (unsigned int)inode->i_gid);
237         printk(KERN_DEBUG "\tatime          %u.%u\n",
238                (unsigned int)inode->i_atime.tv_sec,
239                (unsigned int)inode->i_atime.tv_nsec);
240         printk(KERN_DEBUG "\tmtime          %u.%u\n",
241                (unsigned int)inode->i_mtime.tv_sec,
242                (unsigned int)inode->i_mtime.tv_nsec);
243         printk(KERN_DEBUG "\tctime          %u.%u\n",
244                (unsigned int)inode->i_ctime.tv_sec,
245                (unsigned int)inode->i_ctime.tv_nsec);
246         printk(KERN_DEBUG "\tcreat_sqnum    %llu\n", ui->creat_sqnum);
247         printk(KERN_DEBUG "\txattr_size     %u\n", ui->xattr_size);
248         printk(KERN_DEBUG "\txattr_cnt      %u\n", ui->xattr_cnt);
249         printk(KERN_DEBUG "\txattr_names    %u\n", ui->xattr_names);
250         printk(KERN_DEBUG "\tdirty          %u\n", ui->dirty);
251         printk(KERN_DEBUG "\txattr          %u\n", ui->xattr);
252         printk(KERN_DEBUG "\tbulk_read      %u\n", ui->xattr);
253         printk(KERN_DEBUG "\tsynced_i_size  %llu\n",
254                (unsigned long long)ui->synced_i_size);
255         printk(KERN_DEBUG "\tui_size        %llu\n",
256                (unsigned long long)ui->ui_size);
257         printk(KERN_DEBUG "\tflags          %d\n", ui->flags);
258         printk(KERN_DEBUG "\tcompr_type     %d\n", ui->compr_type);
259         printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read);
260         printk(KERN_DEBUG "\tread_in_a_row  %lu\n", ui->read_in_a_row);
261         printk(KERN_DEBUG "\tdata_len       %d\n", ui->data_len);
262 }
263
264 void dbg_dump_node(const struct ubifs_info *c, const void *node)
265 {
266         int i, n;
267         union ubifs_key key;
268         const struct ubifs_ch *ch = node;
269
270         if (dbg_failure_mode)
271                 return;
272
273         /* If the magic is incorrect, just hexdump the first bytes */
274         if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
275                 printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ);
276                 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
277                                (void *)node, UBIFS_CH_SZ, 1);
278                 return;
279         }
280
281         spin_lock(&dbg_lock);
282         dump_ch(node);
283
284         switch (ch->node_type) {
285         case UBIFS_PAD_NODE:
286         {
287                 const struct ubifs_pad_node *pad = node;
288
289                 printk(KERN_DEBUG "\tpad_len        %u\n",
290                        le32_to_cpu(pad->pad_len));
291                 break;
292         }
293         case UBIFS_SB_NODE:
294         {
295                 const struct ubifs_sb_node *sup = node;
296                 unsigned int sup_flags = le32_to_cpu(sup->flags);
297
298                 printk(KERN_DEBUG "\tkey_hash       %d (%s)\n",
299                        (int)sup->key_hash, get_key_hash(sup->key_hash));
300                 printk(KERN_DEBUG "\tkey_fmt        %d (%s)\n",
301                        (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
302                 printk(KERN_DEBUG "\tflags          %#x\n", sup_flags);
303                 printk(KERN_DEBUG "\t  big_lpt      %u\n",
304                        !!(sup_flags & UBIFS_FLG_BIGLPT));
305                 printk(KERN_DEBUG "\tmin_io_size    %u\n",
306                        le32_to_cpu(sup->min_io_size));
307                 printk(KERN_DEBUG "\tleb_size       %u\n",
308                        le32_to_cpu(sup->leb_size));
309                 printk(KERN_DEBUG "\tleb_cnt        %u\n",
310                        le32_to_cpu(sup->leb_cnt));
311                 printk(KERN_DEBUG "\tmax_leb_cnt    %u\n",
312                        le32_to_cpu(sup->max_leb_cnt));
313                 printk(KERN_DEBUG "\tmax_bud_bytes  %llu\n",
314                        (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
315                 printk(KERN_DEBUG "\tlog_lebs       %u\n",
316                        le32_to_cpu(sup->log_lebs));
317                 printk(KERN_DEBUG "\tlpt_lebs       %u\n",
318                        le32_to_cpu(sup->lpt_lebs));
319                 printk(KERN_DEBUG "\torph_lebs      %u\n",
320                        le32_to_cpu(sup->orph_lebs));
321                 printk(KERN_DEBUG "\tjhead_cnt      %u\n",
322                        le32_to_cpu(sup->jhead_cnt));
323                 printk(KERN_DEBUG "\tfanout         %u\n",
324                        le32_to_cpu(sup->fanout));
325                 printk(KERN_DEBUG "\tlsave_cnt      %u\n",
326                        le32_to_cpu(sup->lsave_cnt));
327                 printk(KERN_DEBUG "\tdefault_compr  %u\n",
328                        (int)le16_to_cpu(sup->default_compr));
329                 printk(KERN_DEBUG "\trp_size        %llu\n",
330                        (unsigned long long)le64_to_cpu(sup->rp_size));
331                 printk(KERN_DEBUG "\trp_uid         %u\n",
332                        le32_to_cpu(sup->rp_uid));
333                 printk(KERN_DEBUG "\trp_gid         %u\n",
334                        le32_to_cpu(sup->rp_gid));
335                 printk(KERN_DEBUG "\tfmt_version    %u\n",
336                        le32_to_cpu(sup->fmt_version));
337                 printk(KERN_DEBUG "\ttime_gran      %u\n",
338                        le32_to_cpu(sup->time_gran));
339                 printk(KERN_DEBUG "\tUUID           %02X%02X%02X%02X-%02X%02X"
340                        "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X\n",
341                        sup->uuid[0], sup->uuid[1], sup->uuid[2], sup->uuid[3],
342                        sup->uuid[4], sup->uuid[5], sup->uuid[6], sup->uuid[7],
343                        sup->uuid[8], sup->uuid[9], sup->uuid[10], sup->uuid[11],
344                        sup->uuid[12], sup->uuid[13], sup->uuid[14],
345                        sup->uuid[15]);
346                 break;
347         }
348         case UBIFS_MST_NODE:
349         {
350                 const struct ubifs_mst_node *mst = node;
351
352                 printk(KERN_DEBUG "\thighest_inum   %llu\n",
353                        (unsigned long long)le64_to_cpu(mst->highest_inum));
354                 printk(KERN_DEBUG "\tcommit number  %llu\n",
355                        (unsigned long long)le64_to_cpu(mst->cmt_no));
356                 printk(KERN_DEBUG "\tflags          %#x\n",
357                        le32_to_cpu(mst->flags));
358                 printk(KERN_DEBUG "\tlog_lnum       %u\n",
359                        le32_to_cpu(mst->log_lnum));
360                 printk(KERN_DEBUG "\troot_lnum      %u\n",
361                        le32_to_cpu(mst->root_lnum));
362                 printk(KERN_DEBUG "\troot_offs      %u\n",
363                        le32_to_cpu(mst->root_offs));
364                 printk(KERN_DEBUG "\troot_len       %u\n",
365                        le32_to_cpu(mst->root_len));
366                 printk(KERN_DEBUG "\tgc_lnum        %u\n",
367                        le32_to_cpu(mst->gc_lnum));
368                 printk(KERN_DEBUG "\tihead_lnum     %u\n",
369                        le32_to_cpu(mst->ihead_lnum));
370                 printk(KERN_DEBUG "\tihead_offs     %u\n",
371                        le32_to_cpu(mst->ihead_offs));
372                 printk(KERN_DEBUG "\tindex_size     %llu\n",
373                        (unsigned long long)le64_to_cpu(mst->index_size));
374                 printk(KERN_DEBUG "\tlpt_lnum       %u\n",
375                        le32_to_cpu(mst->lpt_lnum));
376                 printk(KERN_DEBUG "\tlpt_offs       %u\n",
377                        le32_to_cpu(mst->lpt_offs));
378                 printk(KERN_DEBUG "\tnhead_lnum     %u\n",
379                        le32_to_cpu(mst->nhead_lnum));
380                 printk(KERN_DEBUG "\tnhead_offs     %u\n",
381                        le32_to_cpu(mst->nhead_offs));
382                 printk(KERN_DEBUG "\tltab_lnum      %u\n",
383                        le32_to_cpu(mst->ltab_lnum));
384                 printk(KERN_DEBUG "\tltab_offs      %u\n",
385                        le32_to_cpu(mst->ltab_offs));
386                 printk(KERN_DEBUG "\tlsave_lnum     %u\n",
387                        le32_to_cpu(mst->lsave_lnum));
388                 printk(KERN_DEBUG "\tlsave_offs     %u\n",
389                        le32_to_cpu(mst->lsave_offs));
390                 printk(KERN_DEBUG "\tlscan_lnum     %u\n",
391                        le32_to_cpu(mst->lscan_lnum));
392                 printk(KERN_DEBUG "\tleb_cnt        %u\n",
393                        le32_to_cpu(mst->leb_cnt));
394                 printk(KERN_DEBUG "\tempty_lebs     %u\n",
395                        le32_to_cpu(mst->empty_lebs));
396                 printk(KERN_DEBUG "\tidx_lebs       %u\n",
397                        le32_to_cpu(mst->idx_lebs));
398                 printk(KERN_DEBUG "\ttotal_free     %llu\n",
399                        (unsigned long long)le64_to_cpu(mst->total_free));
400                 printk(KERN_DEBUG "\ttotal_dirty    %llu\n",
401                        (unsigned long long)le64_to_cpu(mst->total_dirty));
402                 printk(KERN_DEBUG "\ttotal_used     %llu\n",
403                        (unsigned long long)le64_to_cpu(mst->total_used));
404                 printk(KERN_DEBUG "\ttotal_dead     %llu\n",
405                        (unsigned long long)le64_to_cpu(mst->total_dead));
406                 printk(KERN_DEBUG "\ttotal_dark     %llu\n",
407                        (unsigned long long)le64_to_cpu(mst->total_dark));
408                 break;
409         }
410         case UBIFS_REF_NODE:
411         {
412                 const struct ubifs_ref_node *ref = node;
413
414                 printk(KERN_DEBUG "\tlnum           %u\n",
415                        le32_to_cpu(ref->lnum));
416                 printk(KERN_DEBUG "\toffs           %u\n",
417                        le32_to_cpu(ref->offs));
418                 printk(KERN_DEBUG "\tjhead          %u\n",
419                        le32_to_cpu(ref->jhead));
420                 break;
421         }
422         case UBIFS_INO_NODE:
423         {
424                 const struct ubifs_ino_node *ino = node;
425
426                 key_read(c, &ino->key, &key);
427                 printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
428                 printk(KERN_DEBUG "\tcreat_sqnum    %llu\n",
429                        (unsigned long long)le64_to_cpu(ino->creat_sqnum));
430                 printk(KERN_DEBUG "\tsize           %llu\n",
431                        (unsigned long long)le64_to_cpu(ino->size));
432                 printk(KERN_DEBUG "\tnlink          %u\n",
433                        le32_to_cpu(ino->nlink));
434                 printk(KERN_DEBUG "\tatime          %lld.%u\n",
435                        (long long)le64_to_cpu(ino->atime_sec),
436                        le32_to_cpu(ino->atime_nsec));
437                 printk(KERN_DEBUG "\tmtime          %lld.%u\n",
438                        (long long)le64_to_cpu(ino->mtime_sec),
439                        le32_to_cpu(ino->mtime_nsec));
440                 printk(KERN_DEBUG "\tctime          %lld.%u\n",
441                        (long long)le64_to_cpu(ino->ctime_sec),
442                        le32_to_cpu(ino->ctime_nsec));
443                 printk(KERN_DEBUG "\tuid            %u\n",
444                        le32_to_cpu(ino->uid));
445                 printk(KERN_DEBUG "\tgid            %u\n",
446                        le32_to_cpu(ino->gid));
447                 printk(KERN_DEBUG "\tmode           %u\n",
448                        le32_to_cpu(ino->mode));
449                 printk(KERN_DEBUG "\tflags          %#x\n",
450                        le32_to_cpu(ino->flags));
451                 printk(KERN_DEBUG "\txattr_cnt      %u\n",
452                        le32_to_cpu(ino->xattr_cnt));
453                 printk(KERN_DEBUG "\txattr_size     %u\n",
454                        le32_to_cpu(ino->xattr_size));
455                 printk(KERN_DEBUG "\txattr_names    %u\n",
456                        le32_to_cpu(ino->xattr_names));
457                 printk(KERN_DEBUG "\tcompr_type     %#x\n",
458                        (int)le16_to_cpu(ino->compr_type));
459                 printk(KERN_DEBUG "\tdata len       %u\n",
460                        le32_to_cpu(ino->data_len));
461                 break;
462         }
463         case UBIFS_DENT_NODE:
464         case UBIFS_XENT_NODE:
465         {
466                 const struct ubifs_dent_node *dent = node;
467                 int nlen = le16_to_cpu(dent->nlen);
468
469                 key_read(c, &dent->key, &key);
470                 printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
471                 printk(KERN_DEBUG "\tinum           %llu\n",
472                        (unsigned long long)le64_to_cpu(dent->inum));
473                 printk(KERN_DEBUG "\ttype           %d\n", (int)dent->type);
474                 printk(KERN_DEBUG "\tnlen           %d\n", nlen);
475                 printk(KERN_DEBUG "\tname           ");
476
477                 if (nlen > UBIFS_MAX_NLEN)
478                         printk(KERN_DEBUG "(bad name length, not printing, "
479                                           "bad or corrupted node)");
480                 else {
481                         for (i = 0; i < nlen && dent->name[i]; i++)
482                                 printk("%c", dent->name[i]);
483                 }
484                 printk("\n");
485
486                 break;
487         }
488         case UBIFS_DATA_NODE:
489         {
490                 const struct ubifs_data_node *dn = node;
491                 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
492
493                 key_read(c, &dn->key, &key);
494                 printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
495                 printk(KERN_DEBUG "\tsize           %u\n",
496                        le32_to_cpu(dn->size));
497                 printk(KERN_DEBUG "\tcompr_typ      %d\n",
498                        (int)le16_to_cpu(dn->compr_type));
499                 printk(KERN_DEBUG "\tdata size      %d\n",
500                        dlen);
501                 printk(KERN_DEBUG "\tdata:\n");
502                 print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1,
503                                (void *)&dn->data, dlen, 0);
504                 break;
505         }
506         case UBIFS_TRUN_NODE:
507         {
508                 const struct ubifs_trun_node *trun = node;
509
510                 printk(KERN_DEBUG "\tinum           %u\n",
511                        le32_to_cpu(trun->inum));
512                 printk(KERN_DEBUG "\told_size       %llu\n",
513                        (unsigned long long)le64_to_cpu(trun->old_size));
514                 printk(KERN_DEBUG "\tnew_size       %llu\n",
515                        (unsigned long long)le64_to_cpu(trun->new_size));
516                 break;
517         }
518         case UBIFS_IDX_NODE:
519         {
520                 const struct ubifs_idx_node *idx = node;
521
522                 n = le16_to_cpu(idx->child_cnt);
523                 printk(KERN_DEBUG "\tchild_cnt      %d\n", n);
524                 printk(KERN_DEBUG "\tlevel          %d\n",
525                        (int)le16_to_cpu(idx->level));
526                 printk(KERN_DEBUG "\tBranches:\n");
527
528                 for (i = 0; i < n && i < c->fanout - 1; i++) {
529                         const struct ubifs_branch *br;
530
531                         br = ubifs_idx_branch(c, idx, i);
532                         key_read(c, &br->key, &key);
533                         printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n",
534                                i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
535                                le32_to_cpu(br->len), DBGKEY(&key));
536                 }
537                 break;
538         }
539         case UBIFS_CS_NODE:
540                 break;
541         case UBIFS_ORPH_NODE:
542         {
543                 const struct ubifs_orph_node *orph = node;
544
545                 printk(KERN_DEBUG "\tcommit number  %llu\n",
546                        (unsigned long long)
547                                 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
548                 printk(KERN_DEBUG "\tlast node flag %llu\n",
549                        (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
550                 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
551                 printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n);
552                 for (i = 0; i < n; i++)
553                         printk(KERN_DEBUG "\t  ino %llu\n",
554                                (unsigned long long)le64_to_cpu(orph->inos[i]));
555                 break;
556         }
557         default:
558                 printk(KERN_DEBUG "node type %d was not recognized\n",
559                        (int)ch->node_type);
560         }
561         spin_unlock(&dbg_lock);
562 }
563
564 void dbg_dump_budget_req(const struct ubifs_budget_req *req)
565 {
566         spin_lock(&dbg_lock);
567         printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n",
568                req->new_ino, req->dirtied_ino);
569         printk(KERN_DEBUG "\tnew_ino_d   %d, dirtied_ino_d %d\n",
570                req->new_ino_d, req->dirtied_ino_d);
571         printk(KERN_DEBUG "\tnew_page    %d, dirtied_page %d\n",
572                req->new_page, req->dirtied_page);
573         printk(KERN_DEBUG "\tnew_dent    %d, mod_dent     %d\n",
574                req->new_dent, req->mod_dent);
575         printk(KERN_DEBUG "\tidx_growth  %d\n", req->idx_growth);
576         printk(KERN_DEBUG "\tdata_growth %d dd_growth     %d\n",
577                req->data_growth, req->dd_growth);
578         spin_unlock(&dbg_lock);
579 }
580
581 void dbg_dump_lstats(const struct ubifs_lp_stats *lst)
582 {
583         spin_lock(&dbg_lock);
584         printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, "
585                "idx_lebs  %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
586         printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, "
587                "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
588                lst->total_dirty);
589         printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, "
590                "total_dead %lld\n", lst->total_used, lst->total_dark,
591                lst->total_dead);
592         spin_unlock(&dbg_lock);
593 }
594
595 void dbg_dump_budg(struct ubifs_info *c)
596 {
597         int i;
598         struct rb_node *rb;
599         struct ubifs_bud *bud;
600         struct ubifs_gced_idx_leb *idx_gc;
601         long long available, outstanding, free;
602
603         ubifs_assert(spin_is_locked(&c->space_lock));
604         spin_lock(&dbg_lock);
605         printk(KERN_DEBUG "(pid %d) Budgeting info: budg_data_growth %lld, "
606                "budg_dd_growth %lld, budg_idx_growth %lld\n", current->pid,
607                c->budg_data_growth, c->budg_dd_growth, c->budg_idx_growth);
608         printk(KERN_DEBUG "\tdata budget sum %lld, total budget sum %lld, "
609                "freeable_cnt %d\n", c->budg_data_growth + c->budg_dd_growth,
610                c->budg_data_growth + c->budg_dd_growth + c->budg_idx_growth,
611                c->freeable_cnt);
612         printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %lld, "
613                "calc_idx_sz %lld, idx_gc_cnt %d\n", c->min_idx_lebs,
614                c->old_idx_sz, c->calc_idx_sz, c->idx_gc_cnt);
615         printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
616                "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
617                atomic_long_read(&c->dirty_zn_cnt),
618                atomic_long_read(&c->clean_zn_cnt));
619         printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
620                c->dark_wm, c->dead_wm, c->max_idx_node_sz);
621         printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n",
622                c->gc_lnum, c->ihead_lnum);
623         for (i = 0; i < c->jhead_cnt; i++)
624                 printk(KERN_DEBUG "\tjhead %d\t LEB %d\n",
625                        c->jheads[i].wbuf.jhead, c->jheads[i].wbuf.lnum);
626         for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
627                 bud = rb_entry(rb, struct ubifs_bud, rb);
628                 printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum);
629         }
630         list_for_each_entry(bud, &c->old_buds, list)
631                 printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum);
632         list_for_each_entry(idx_gc, &c->idx_gc, list)
633                 printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n",
634                        idx_gc->lnum, idx_gc->unmap);
635         printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state);
636
637         /* Print budgeting predictions */
638         available = ubifs_calc_available(c, c->min_idx_lebs);
639         outstanding = c->budg_data_growth + c->budg_dd_growth;
640         if (available > outstanding)
641                 free = ubifs_reported_space(c, available - outstanding);
642         else
643                 free = 0;
644         printk(KERN_DEBUG "Budgeting predictions:\n");
645         printk(KERN_DEBUG "\tavailable: %lld, outstanding %lld, free %lld\n",
646                available, outstanding, free);
647         spin_unlock(&dbg_lock);
648 }
649
650 void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
651 {
652         printk(KERN_DEBUG "LEB %d lprops: free %d, dirty %d (used %d), "
653                "flags %#x\n", lp->lnum, lp->free, lp->dirty,
654                c->leb_size - lp->free - lp->dirty, lp->flags);
655 }
656
657 void dbg_dump_lprops(struct ubifs_info *c)
658 {
659         int lnum, err;
660         struct ubifs_lprops lp;
661         struct ubifs_lp_stats lst;
662
663         printk(KERN_DEBUG "(pid %d) start dumping LEB properties\n",
664                current->pid);
665         ubifs_get_lp_stats(c, &lst);
666         dbg_dump_lstats(&lst);
667
668         for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
669                 err = ubifs_read_one_lp(c, lnum, &lp);
670                 if (err)
671                         ubifs_err("cannot read lprops for LEB %d", lnum);
672
673                 dbg_dump_lprop(c, &lp);
674         }
675         printk(KERN_DEBUG "(pid %d) finish dumping LEB properties\n",
676                current->pid);
677 }
678
679 void dbg_dump_lpt_info(struct ubifs_info *c)
680 {
681         int i;
682
683         spin_lock(&dbg_lock);
684         printk(KERN_DEBUG "(pid %d) dumping LPT information\n", current->pid);
685         printk(KERN_DEBUG "\tlpt_sz:        %lld\n", c->lpt_sz);
686         printk(KERN_DEBUG "\tpnode_sz:      %d\n", c->pnode_sz);
687         printk(KERN_DEBUG "\tnnode_sz:      %d\n", c->nnode_sz);
688         printk(KERN_DEBUG "\tltab_sz:       %d\n", c->ltab_sz);
689         printk(KERN_DEBUG "\tlsave_sz:      %d\n", c->lsave_sz);
690         printk(KERN_DEBUG "\tbig_lpt:       %d\n", c->big_lpt);
691         printk(KERN_DEBUG "\tlpt_hght:      %d\n", c->lpt_hght);
692         printk(KERN_DEBUG "\tpnode_cnt:     %d\n", c->pnode_cnt);
693         printk(KERN_DEBUG "\tnnode_cnt:     %d\n", c->nnode_cnt);
694         printk(KERN_DEBUG "\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
695         printk(KERN_DEBUG "\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
696         printk(KERN_DEBUG "\tlsave_cnt:     %d\n", c->lsave_cnt);
697         printk(KERN_DEBUG "\tspace_bits:    %d\n", c->space_bits);
698         printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
699         printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
700         printk(KERN_DEBUG "\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
701         printk(KERN_DEBUG "\tpcnt_bits:     %d\n", c->pcnt_bits);
702         printk(KERN_DEBUG "\tlnum_bits:     %d\n", c->lnum_bits);
703         printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
704         printk(KERN_DEBUG "\tLPT head is at %d:%d\n",
705                c->nhead_lnum, c->nhead_offs);
706         printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n",
707                c->ltab_lnum, c->ltab_offs);
708         if (c->big_lpt)
709                 printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n",
710                        c->lsave_lnum, c->lsave_offs);
711         for (i = 0; i < c->lpt_lebs; i++)
712                 printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d "
713                        "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
714                        c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
715         spin_unlock(&dbg_lock);
716 }
717
718 void dbg_dump_leb(const struct ubifs_info *c, int lnum)
719 {
720         struct ubifs_scan_leb *sleb;
721         struct ubifs_scan_node *snod;
722
723         if (dbg_failure_mode)
724                 return;
725
726         printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
727                current->pid, lnum);
728         sleb = ubifs_scan(c, lnum, 0, c->dbg->buf);
729         if (IS_ERR(sleb)) {
730                 ubifs_err("scan error %d", (int)PTR_ERR(sleb));
731                 return;
732         }
733
734         printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum,
735                sleb->nodes_cnt, sleb->endpt);
736
737         list_for_each_entry(snod, &sleb->nodes, list) {
738                 cond_resched();
739                 printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum,
740                        snod->offs, snod->len);
741                 dbg_dump_node(c, snod->node);
742         }
743
744         printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
745                current->pid, lnum);
746         ubifs_scan_destroy(sleb);
747         return;
748 }
749
750 void dbg_dump_znode(const struct ubifs_info *c,
751                     const struct ubifs_znode *znode)
752 {
753         int n;
754         const struct ubifs_zbranch *zbr;
755
756         spin_lock(&dbg_lock);
757         if (znode->parent)
758                 zbr = &znode->parent->zbranch[znode->iip];
759         else
760                 zbr = &c->zroot;
761
762         printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
763                " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
764                zbr->len, znode->parent, znode->iip, znode->level,
765                znode->child_cnt, znode->flags);
766
767         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
768                 spin_unlock(&dbg_lock);
769                 return;
770         }
771
772         printk(KERN_DEBUG "zbranches:\n");
773         for (n = 0; n < znode->child_cnt; n++) {
774                 zbr = &znode->zbranch[n];
775                 if (znode->level > 0)
776                         printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key "
777                                           "%s\n", n, zbr->znode, zbr->lnum,
778                                           zbr->offs, zbr->len,
779                                           DBGKEY(&zbr->key));
780                 else
781                         printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key "
782                                           "%s\n", n, zbr->znode, zbr->lnum,
783                                           zbr->offs, zbr->len,
784                                           DBGKEY(&zbr->key));
785         }
786         spin_unlock(&dbg_lock);
787 }
788
789 void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
790 {
791         int i;
792
793         printk(KERN_DEBUG "(pid %d) start dumping heap cat %d (%d elements)\n",
794                current->pid, cat, heap->cnt);
795         for (i = 0; i < heap->cnt; i++) {
796                 struct ubifs_lprops *lprops = heap->arr[i];
797
798                 printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d "
799                        "flags %d\n", i, lprops->lnum, lprops->hpos,
800                        lprops->free, lprops->dirty, lprops->flags);
801         }
802         printk(KERN_DEBUG "(pid %d) finish dumping heap\n", current->pid);
803 }
804
805 void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
806                     struct ubifs_nnode *parent, int iip)
807 {
808         int i;
809
810         printk(KERN_DEBUG "(pid %d) dumping pnode:\n", current->pid);
811         printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n",
812                (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
813         printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n",
814                pnode->flags, iip, pnode->level, pnode->num);
815         for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
816                 struct ubifs_lprops *lp = &pnode->lprops[i];
817
818                 printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n",
819                        i, lp->free, lp->dirty, lp->flags, lp->lnum);
820         }
821 }
822
823 void dbg_dump_tnc(struct ubifs_info *c)
824 {
825         struct ubifs_znode *znode;
826         int level;
827
828         printk(KERN_DEBUG "\n");
829         printk(KERN_DEBUG "(pid %d) start dumping TNC tree\n", current->pid);
830         znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
831         level = znode->level;
832         printk(KERN_DEBUG "== Level %d ==\n", level);
833         while (znode) {
834                 if (level != znode->level) {
835                         level = znode->level;
836                         printk(KERN_DEBUG "== Level %d ==\n", level);
837                 }
838                 dbg_dump_znode(c, znode);
839                 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
840         }
841         printk(KERN_DEBUG "(pid %d) finish dumping TNC tree\n", current->pid);
842 }
843
844 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
845                       void *priv)
846 {
847         dbg_dump_znode(c, znode);
848         return 0;
849 }
850
851 /**
852  * dbg_dump_index - dump the on-flash index.
853  * @c: UBIFS file-system description object
854  *
855  * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
856  * which dumps only in-memory znodes and does not read znodes which from flash.
857  */
858 void dbg_dump_index(struct ubifs_info *c)
859 {
860         dbg_walk_index(c, NULL, dump_znode, NULL);
861 }
862
863 /**
864  * dbg_check_synced_i_size - check synchronized inode size.
865  * @inode: inode to check
866  *
867  * If inode is clean, synchronized inode size has to be equivalent to current
868  * inode size. This function has to be called only for locked inodes (@i_mutex
869  * has to be locked). Returns %0 if synchronized inode size if correct, and
870  * %-EINVAL if not.
871  */
872 int dbg_check_synced_i_size(struct inode *inode)
873 {
874         int err = 0;
875         struct ubifs_inode *ui = ubifs_inode(inode);
876
877         if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
878                 return 0;
879         if (!S_ISREG(inode->i_mode))
880                 return 0;
881
882         mutex_lock(&ui->ui_mutex);
883         spin_lock(&ui->ui_lock);
884         if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
885                 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
886                           "is clean", ui->ui_size, ui->synced_i_size);
887                 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
888                           inode->i_mode, i_size_read(inode));
889                 dbg_dump_stack();
890                 err = -EINVAL;
891         }
892         spin_unlock(&ui->ui_lock);
893         mutex_unlock(&ui->ui_mutex);
894         return err;
895 }
896
897 /*
898  * dbg_check_dir - check directory inode size and link count.
899  * @c: UBIFS file-system description object
900  * @dir: the directory to calculate size for
901  * @size: the result is returned here
902  *
903  * This function makes sure that directory size and link count are correct.
904  * Returns zero in case of success and a negative error code in case of
905  * failure.
906  *
907  * Note, it is good idea to make sure the @dir->i_mutex is locked before
908  * calling this function.
909  */
910 int dbg_check_dir_size(struct ubifs_info *c, const struct inode *dir)
911 {
912         unsigned int nlink = 2;
913         union ubifs_key key;
914         struct ubifs_dent_node *dent, *pdent = NULL;
915         struct qstr nm = { .name = NULL };
916         loff_t size = UBIFS_INO_NODE_SZ;
917
918         if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
919                 return 0;
920
921         if (!S_ISDIR(dir->i_mode))
922                 return 0;
923
924         lowest_dent_key(c, &key, dir->i_ino);
925         while (1) {
926                 int err;
927
928                 dent = ubifs_tnc_next_ent(c, &key, &nm);
929                 if (IS_ERR(dent)) {
930                         err = PTR_ERR(dent);
931                         if (err == -ENOENT)
932                                 break;
933                         return err;
934                 }
935
936                 nm.name = dent->name;
937                 nm.len = le16_to_cpu(dent->nlen);
938                 size += CALC_DENT_SIZE(nm.len);
939                 if (dent->type == UBIFS_ITYPE_DIR)
940                         nlink += 1;
941                 kfree(pdent);
942                 pdent = dent;
943                 key_read(c, &dent->key, &key);
944         }
945         kfree(pdent);
946
947         if (i_size_read(dir) != size) {
948                 ubifs_err("directory inode %lu has size %llu, "
949                           "but calculated size is %llu", dir->i_ino,
950                           (unsigned long long)i_size_read(dir),
951                           (unsigned long long)size);
952                 dump_stack();
953                 return -EINVAL;
954         }
955         if (dir->i_nlink != nlink) {
956                 ubifs_err("directory inode %lu has nlink %u, but calculated "
957                           "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
958                 dump_stack();
959                 return -EINVAL;
960         }
961
962         return 0;
963 }
964
965 /**
966  * dbg_check_key_order - make sure that colliding keys are properly ordered.
967  * @c: UBIFS file-system description object
968  * @zbr1: first zbranch
969  * @zbr2: following zbranch
970  *
971  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
972  * names of the direntries/xentries which are referred by the keys. This
973  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
974  * sure the name of direntry/xentry referred by @zbr1 is less than
975  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
976  * and a negative error code in case of failure.
977  */
978 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
979                                struct ubifs_zbranch *zbr2)
980 {
981         int err, nlen1, nlen2, cmp;
982         struct ubifs_dent_node *dent1, *dent2;
983         union ubifs_key key;
984
985         ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
986         dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
987         if (!dent1)
988                 return -ENOMEM;
989         dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
990         if (!dent2) {
991                 err = -ENOMEM;
992                 goto out_free;
993         }
994
995         err = ubifs_tnc_read_node(c, zbr1, dent1);
996         if (err)
997                 goto out_free;
998         err = ubifs_validate_entry(c, dent1);
999         if (err)
1000                 goto out_free;
1001
1002         err = ubifs_tnc_read_node(c, zbr2, dent2);
1003         if (err)
1004                 goto out_free;
1005         err = ubifs_validate_entry(c, dent2);
1006         if (err)
1007                 goto out_free;
1008
1009         /* Make sure node keys are the same as in zbranch */
1010         err = 1;
1011         key_read(c, &dent1->key, &key);
1012         if (keys_cmp(c, &zbr1->key, &key)) {
1013                 dbg_err("1st entry at %d:%d has key %s", zbr1->lnum,
1014                         zbr1->offs, DBGKEY(&key));
1015                 dbg_err("but it should have key %s according to tnc",
1016                         DBGKEY(&zbr1->key));
1017                 dbg_dump_node(c, dent1);
1018                 goto out_free;
1019         }
1020
1021         key_read(c, &dent2->key, &key);
1022         if (keys_cmp(c, &zbr2->key, &key)) {
1023                 dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1024                         zbr1->offs, DBGKEY(&key));
1025                 dbg_err("but it should have key %s according to tnc",
1026                         DBGKEY(&zbr2->key));
1027                 dbg_dump_node(c, dent2);
1028                 goto out_free;
1029         }
1030
1031         nlen1 = le16_to_cpu(dent1->nlen);
1032         nlen2 = le16_to_cpu(dent2->nlen);
1033
1034         cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1035         if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1036                 err = 0;
1037                 goto out_free;
1038         }
1039         if (cmp == 0 && nlen1 == nlen2)
1040                 dbg_err("2 xent/dent nodes with the same name");
1041         else
1042                 dbg_err("bad order of colliding key %s",
1043                         DBGKEY(&key));
1044
1045         ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1046         dbg_dump_node(c, dent1);
1047         ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1048         dbg_dump_node(c, dent2);
1049
1050 out_free:
1051         kfree(dent2);
1052         kfree(dent1);
1053         return err;
1054 }
1055
1056 /**
1057  * dbg_check_znode - check if znode is all right.
1058  * @c: UBIFS file-system description object
1059  * @zbr: zbranch which points to this znode
1060  *
1061  * This function makes sure that znode referred to by @zbr is all right.
1062  * Returns zero if it is, and %-EINVAL if it is not.
1063  */
1064 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1065 {
1066         struct ubifs_znode *znode = zbr->znode;
1067         struct ubifs_znode *zp = znode->parent;
1068         int n, err, cmp;
1069
1070         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1071                 err = 1;
1072                 goto out;
1073         }
1074         if (znode->level < 0) {
1075                 err = 2;
1076                 goto out;
1077         }
1078         if (znode->iip < 0 || znode->iip >= c->fanout) {
1079                 err = 3;
1080                 goto out;
1081         }
1082
1083         if (zbr->len == 0)
1084                 /* Only dirty zbranch may have no on-flash nodes */
1085                 if (!ubifs_zn_dirty(znode)) {
1086                         err = 4;
1087                         goto out;
1088                 }
1089
1090         if (ubifs_zn_dirty(znode)) {
1091                 /*
1092                  * If znode is dirty, its parent has to be dirty as well. The
1093                  * order of the operation is important, so we have to have
1094                  * memory barriers.
1095                  */
1096                 smp_mb();
1097                 if (zp && !ubifs_zn_dirty(zp)) {
1098                         /*
1099                          * The dirty flag is atomic and is cleared outside the
1100                          * TNC mutex, so znode's dirty flag may now have
1101                          * been cleared. The child is always cleared before the
1102                          * parent, so we just need to check again.
1103                          */
1104                         smp_mb();
1105                         if (ubifs_zn_dirty(znode)) {
1106                                 err = 5;
1107                                 goto out;
1108                         }
1109                 }
1110         }
1111
1112         if (zp) {
1113                 const union ubifs_key *min, *max;
1114
1115                 if (znode->level != zp->level - 1) {
1116                         err = 6;
1117                         goto out;
1118                 }
1119
1120                 /* Make sure the 'parent' pointer in our znode is correct */
1121                 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1122                 if (!err) {
1123                         /* This zbranch does not exist in the parent */
1124                         err = 7;
1125                         goto out;
1126                 }
1127
1128                 if (znode->iip >= zp->child_cnt) {
1129                         err = 8;
1130                         goto out;
1131                 }
1132
1133                 if (znode->iip != n) {
1134                         /* This may happen only in case of collisions */
1135                         if (keys_cmp(c, &zp->zbranch[n].key,
1136                                      &zp->zbranch[znode->iip].key)) {
1137                                 err = 9;
1138                                 goto out;
1139                         }
1140                         n = znode->iip;
1141                 }
1142
1143                 /*
1144                  * Make sure that the first key in our znode is greater than or
1145                  * equal to the key in the pointing zbranch.
1146                  */
1147                 min = &zbr->key;
1148                 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1149                 if (cmp == 1) {
1150                         err = 10;
1151                         goto out;
1152                 }
1153
1154                 if (n + 1 < zp->child_cnt) {
1155                         max = &zp->zbranch[n + 1].key;
1156
1157                         /*
1158                          * Make sure the last key in our znode is less or
1159                          * equivalent than the the key in zbranch which goes
1160                          * after our pointing zbranch.
1161                          */
1162                         cmp = keys_cmp(c, max,
1163                                 &znode->zbranch[znode->child_cnt - 1].key);
1164                         if (cmp == -1) {
1165                                 err = 11;
1166                                 goto out;
1167                         }
1168                 }
1169         } else {
1170                 /* This may only be root znode */
1171                 if (zbr != &c->zroot) {
1172                         err = 12;
1173                         goto out;
1174                 }
1175         }
1176
1177         /*
1178          * Make sure that next key is greater or equivalent then the previous
1179          * one.
1180          */
1181         for (n = 1; n < znode->child_cnt; n++) {
1182                 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1183                                &znode->zbranch[n].key);
1184                 if (cmp > 0) {
1185                         err = 13;
1186                         goto out;
1187                 }
1188                 if (cmp == 0) {
1189                         /* This can only be keys with colliding hash */
1190                         if (!is_hash_key(c, &znode->zbranch[n].key)) {
1191                                 err = 14;
1192                                 goto out;
1193                         }
1194
1195                         if (znode->level != 0 || c->replaying)
1196                                 continue;
1197
1198                         /*
1199                          * Colliding keys should follow binary order of
1200                          * corresponding xentry/dentry names.
1201                          */
1202                         err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1203                                                   &znode->zbranch[n]);
1204                         if (err < 0)
1205                                 return err;
1206                         if (err) {
1207                                 err = 15;
1208                                 goto out;
1209                         }
1210                 }
1211         }
1212
1213         for (n = 0; n < znode->child_cnt; n++) {
1214                 if (!znode->zbranch[n].znode &&
1215                     (znode->zbranch[n].lnum == 0 ||
1216                      znode->zbranch[n].len == 0)) {
1217                         err = 16;
1218                         goto out;
1219                 }
1220
1221                 if (znode->zbranch[n].lnum != 0 &&
1222                     znode->zbranch[n].len == 0) {
1223                         err = 17;
1224                         goto out;
1225                 }
1226
1227                 if (znode->zbranch[n].lnum == 0 &&
1228                     znode->zbranch[n].len != 0) {
1229                         err = 18;
1230                         goto out;
1231                 }
1232
1233                 if (znode->zbranch[n].lnum == 0 &&
1234                     znode->zbranch[n].offs != 0) {
1235                         err = 19;
1236                         goto out;
1237                 }
1238
1239                 if (znode->level != 0 && znode->zbranch[n].znode)
1240                         if (znode->zbranch[n].znode->parent != znode) {
1241                                 err = 20;
1242                                 goto out;
1243                         }
1244         }
1245
1246         return 0;
1247
1248 out:
1249         ubifs_err("failed, error %d", err);
1250         ubifs_msg("dump of the znode");
1251         dbg_dump_znode(c, znode);
1252         if (zp) {
1253                 ubifs_msg("dump of the parent znode");
1254                 dbg_dump_znode(c, zp);
1255         }
1256         dump_stack();
1257         return -EINVAL;
1258 }
1259
1260 /**
1261  * dbg_check_tnc - check TNC tree.
1262  * @c: UBIFS file-system description object
1263  * @extra: do extra checks that are possible at start commit
1264  *
1265  * This function traverses whole TNC tree and checks every znode. Returns zero
1266  * if everything is all right and %-EINVAL if something is wrong with TNC.
1267  */
1268 int dbg_check_tnc(struct ubifs_info *c, int extra)
1269 {
1270         struct ubifs_znode *znode;
1271         long clean_cnt = 0, dirty_cnt = 0;
1272         int err, last;
1273
1274         if (!(ubifs_chk_flags & UBIFS_CHK_TNC))
1275                 return 0;
1276
1277         ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1278         if (!c->zroot.znode)
1279                 return 0;
1280
1281         znode = ubifs_tnc_postorder_first(c->zroot.znode);
1282         while (1) {
1283                 struct ubifs_znode *prev;
1284                 struct ubifs_zbranch *zbr;
1285
1286                 if (!znode->parent)
1287                         zbr = &c->zroot;
1288                 else
1289                         zbr = &znode->parent->zbranch[znode->iip];
1290
1291                 err = dbg_check_znode(c, zbr);
1292                 if (err)
1293                         return err;
1294
1295                 if (extra) {
1296                         if (ubifs_zn_dirty(znode))
1297                                 dirty_cnt += 1;
1298                         else
1299                                 clean_cnt += 1;
1300                 }
1301
1302                 prev = znode;
1303                 znode = ubifs_tnc_postorder_next(znode);
1304                 if (!znode)
1305                         break;
1306
1307                 /*
1308                  * If the last key of this znode is equivalent to the first key
1309                  * of the next znode (collision), then check order of the keys.
1310                  */
1311                 last = prev->child_cnt - 1;
1312                 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1313                     !keys_cmp(c, &prev->zbranch[last].key,
1314                               &znode->zbranch[0].key)) {
1315                         err = dbg_check_key_order(c, &prev->zbranch[last],
1316                                                   &znode->zbranch[0]);
1317                         if (err < 0)
1318                                 return err;
1319                         if (err) {
1320                                 ubifs_msg("first znode");
1321                                 dbg_dump_znode(c, prev);
1322                                 ubifs_msg("second znode");
1323                                 dbg_dump_znode(c, znode);
1324                                 return -EINVAL;
1325                         }
1326                 }
1327         }
1328
1329         if (extra) {
1330                 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1331                         ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1332                                   atomic_long_read(&c->clean_zn_cnt),
1333                                   clean_cnt);
1334                         return -EINVAL;
1335                 }
1336                 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1337                         ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1338                                   atomic_long_read(&c->dirty_zn_cnt),
1339                                   dirty_cnt);
1340                         return -EINVAL;
1341                 }
1342         }
1343
1344         return 0;
1345 }
1346
1347 /**
1348  * dbg_walk_index - walk the on-flash index.
1349  * @c: UBIFS file-system description object
1350  * @leaf_cb: called for each leaf node
1351  * @znode_cb: called for each indexing node
1352  * @priv: private date which is passed to callbacks
1353  *
1354  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1355  * node and @znode_cb for each indexing node. Returns zero in case of success
1356  * and a negative error code in case of failure.
1357  *
1358  * It would be better if this function removed every znode it pulled to into
1359  * the TNC, so that the behavior more closely matched the non-debugging
1360  * behavior.
1361  */
1362 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1363                    dbg_znode_callback znode_cb, void *priv)
1364 {
1365         int err;
1366         struct ubifs_zbranch *zbr;
1367         struct ubifs_znode *znode, *child;
1368
1369         mutex_lock(&c->tnc_mutex);
1370         /* If the root indexing node is not in TNC - pull it */
1371         if (!c->zroot.znode) {
1372                 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1373                 if (IS_ERR(c->zroot.znode)) {
1374                         err = PTR_ERR(c->zroot.znode);
1375                         c->zroot.znode = NULL;
1376                         goto out_unlock;
1377                 }
1378         }
1379
1380         /*
1381          * We are going to traverse the indexing tree in the postorder manner.
1382          * Go down and find the leftmost indexing node where we are going to
1383          * start from.
1384          */
1385         znode = c->zroot.znode;
1386         while (znode->level > 0) {
1387                 zbr = &znode->zbranch[0];
1388                 child = zbr->znode;
1389                 if (!child) {
1390                         child = ubifs_load_znode(c, zbr, znode, 0);
1391                         if (IS_ERR(child)) {
1392                                 err = PTR_ERR(child);
1393                                 goto out_unlock;
1394                         }
1395                         zbr->znode = child;
1396                 }
1397
1398                 znode = child;
1399         }
1400
1401         /* Iterate over all indexing nodes */
1402         while (1) {
1403                 int idx;
1404
1405                 cond_resched();
1406
1407                 if (znode_cb) {
1408                         err = znode_cb(c, znode, priv);
1409                         if (err) {
1410                                 ubifs_err("znode checking function returned "
1411                                           "error %d", err);
1412                                 dbg_dump_znode(c, znode);
1413                                 goto out_dump;
1414                         }
1415                 }
1416                 if (leaf_cb && znode->level == 0) {
1417                         for (idx = 0; idx < znode->child_cnt; idx++) {
1418                                 zbr = &znode->zbranch[idx];
1419                                 err = leaf_cb(c, zbr, priv);
1420                                 if (err) {
1421                                         ubifs_err("leaf checking function "
1422                                                   "returned error %d, for leaf "
1423                                                   "at LEB %d:%d",
1424                                                   err, zbr->lnum, zbr->offs);
1425                                         goto out_dump;
1426                                 }
1427                         }
1428                 }
1429
1430                 if (!znode->parent)
1431                         break;
1432
1433                 idx = znode->iip + 1;
1434                 znode = znode->parent;
1435                 if (idx < znode->child_cnt) {
1436                         /* Switch to the next index in the parent */
1437                         zbr = &znode->zbranch[idx];
1438                         child = zbr->znode;
1439                         if (!child) {
1440                                 child = ubifs_load_znode(c, zbr, znode, idx);
1441                                 if (IS_ERR(child)) {
1442                                         err = PTR_ERR(child);
1443                                         goto out_unlock;
1444                                 }
1445                                 zbr->znode = child;
1446                         }
1447                         znode = child;
1448                 } else
1449                         /*
1450                          * This is the last child, switch to the parent and
1451                          * continue.
1452                          */
1453                         continue;
1454
1455                 /* Go to the lowest leftmost znode in the new sub-tree */
1456                 while (znode->level > 0) {
1457                         zbr = &znode->zbranch[0];
1458                         child = zbr->znode;
1459                         if (!child) {
1460                                 child = ubifs_load_znode(c, zbr, znode, 0);
1461                                 if (IS_ERR(child)) {
1462                                         err = PTR_ERR(child);
1463                                         goto out_unlock;
1464                                 }
1465                                 zbr->znode = child;
1466                         }
1467                         znode = child;
1468                 }
1469         }
1470
1471         mutex_unlock(&c->tnc_mutex);
1472         return 0;
1473
1474 out_dump:
1475         if (znode->parent)
1476                 zbr = &znode->parent->zbranch[znode->iip];
1477         else
1478                 zbr = &c->zroot;
1479         ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1480         dbg_dump_znode(c, znode);
1481 out_unlock:
1482         mutex_unlock(&c->tnc_mutex);
1483         return err;
1484 }
1485
1486 /**
1487  * add_size - add znode size to partially calculated index size.
1488  * @c: UBIFS file-system description object
1489  * @znode: znode to add size for
1490  * @priv: partially calculated index size
1491  *
1492  * This is a helper function for 'dbg_check_idx_size()' which is called for
1493  * every indexing node and adds its size to the 'long long' variable pointed to
1494  * by @priv.
1495  */
1496 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1497 {
1498         long long *idx_size = priv;
1499         int add;
1500
1501         add = ubifs_idx_node_sz(c, znode->child_cnt);
1502         add = ALIGN(add, 8);
1503         *idx_size += add;
1504         return 0;
1505 }
1506
1507 /**
1508  * dbg_check_idx_size - check index size.
1509  * @c: UBIFS file-system description object
1510  * @idx_size: size to check
1511  *
1512  * This function walks the UBIFS index, calculates its size and checks that the
1513  * size is equivalent to @idx_size. Returns zero in case of success and a
1514  * negative error code in case of failure.
1515  */
1516 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1517 {
1518         int err;
1519         long long calc = 0;
1520
1521         if (!(ubifs_chk_flags & UBIFS_CHK_IDX_SZ))
1522                 return 0;
1523
1524         err = dbg_walk_index(c, NULL, add_size, &calc);
1525         if (err) {
1526                 ubifs_err("error %d while walking the index", err);
1527                 return err;
1528         }
1529
1530         if (calc != idx_size) {
1531                 ubifs_err("index size check failed: calculated size is %lld, "
1532                           "should be %lld", calc, idx_size);
1533                 dump_stack();
1534                 return -EINVAL;
1535         }
1536
1537         return 0;
1538 }
1539
1540 /**
1541  * struct fsck_inode - information about an inode used when checking the file-system.
1542  * @rb: link in the RB-tree of inodes
1543  * @inum: inode number
1544  * @mode: inode type, permissions, etc
1545  * @nlink: inode link count
1546  * @xattr_cnt: count of extended attributes
1547  * @references: how many directory/xattr entries refer this inode (calculated
1548  *              while walking the index)
1549  * @calc_cnt: for directory inode count of child directories
1550  * @size: inode size (read from on-flash inode)
1551  * @xattr_sz: summary size of all extended attributes (read from on-flash
1552  *            inode)
1553  * @calc_sz: for directories calculated directory size
1554  * @calc_xcnt: count of extended attributes
1555  * @calc_xsz: calculated summary size of all extended attributes
1556  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1557  *             inode (read from on-flash inode)
1558  * @calc_xnms: calculated sum of lengths of all extended attribute names
1559  */
1560 struct fsck_inode {
1561         struct rb_node rb;
1562         ino_t inum;
1563         umode_t mode;
1564         unsigned int nlink;
1565         unsigned int xattr_cnt;
1566         int references;
1567         int calc_cnt;
1568         long long size;
1569         unsigned int xattr_sz;
1570         long long calc_sz;
1571         long long calc_xcnt;
1572         long long calc_xsz;
1573         unsigned int xattr_nms;
1574         long long calc_xnms;
1575 };
1576
1577 /**
1578  * struct fsck_data - private FS checking information.
1579  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1580  */
1581 struct fsck_data {
1582         struct rb_root inodes;
1583 };
1584
1585 /**
1586  * add_inode - add inode information to RB-tree of inodes.
1587  * @c: UBIFS file-system description object
1588  * @fsckd: FS checking information
1589  * @ino: raw UBIFS inode to add
1590  *
1591  * This is a helper function for 'check_leaf()' which adds information about
1592  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1593  * case of success and a negative error code in case of failure.
1594  */
1595 static struct fsck_inode *add_inode(struct ubifs_info *c,
1596                                     struct fsck_data *fsckd,
1597                                     struct ubifs_ino_node *ino)
1598 {
1599         struct rb_node **p, *parent = NULL;
1600         struct fsck_inode *fscki;
1601         ino_t inum = key_inum_flash(c, &ino->key);
1602
1603         p = &fsckd->inodes.rb_node;
1604         while (*p) {
1605                 parent = *p;
1606                 fscki = rb_entry(parent, struct fsck_inode, rb);
1607                 if (inum < fscki->inum)
1608                         p = &(*p)->rb_left;
1609                 else if (inum > fscki->inum)
1610                         p = &(*p)->rb_right;
1611                 else
1612                         return fscki;
1613         }
1614
1615         if (inum > c->highest_inum) {
1616                 ubifs_err("too high inode number, max. is %lu",
1617                           (unsigned long)c->highest_inum);
1618                 return ERR_PTR(-EINVAL);
1619         }
1620
1621         fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1622         if (!fscki)
1623                 return ERR_PTR(-ENOMEM);
1624
1625         fscki->inum = inum;
1626         fscki->nlink = le32_to_cpu(ino->nlink);
1627         fscki->size = le64_to_cpu(ino->size);
1628         fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1629         fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1630         fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1631         fscki->mode = le32_to_cpu(ino->mode);
1632         if (S_ISDIR(fscki->mode)) {
1633                 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1634                 fscki->calc_cnt = 2;
1635         }
1636         rb_link_node(&fscki->rb, parent, p);
1637         rb_insert_color(&fscki->rb, &fsckd->inodes);
1638         return fscki;
1639 }
1640
1641 /**
1642  * search_inode - search inode in the RB-tree of inodes.
1643  * @fsckd: FS checking information
1644  * @inum: inode number to search
1645  *
1646  * This is a helper function for 'check_leaf()' which searches inode @inum in
1647  * the RB-tree of inodes and returns an inode information pointer or %NULL if
1648  * the inode was not found.
1649  */
1650 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1651 {
1652         struct rb_node *p;
1653         struct fsck_inode *fscki;
1654
1655         p = fsckd->inodes.rb_node;
1656         while (p) {
1657                 fscki = rb_entry(p, struct fsck_inode, rb);
1658                 if (inum < fscki->inum)
1659                         p = p->rb_left;
1660                 else if (inum > fscki->inum)
1661                         p = p->rb_right;
1662                 else
1663                         return fscki;
1664         }
1665         return NULL;
1666 }
1667
1668 /**
1669  * read_add_inode - read inode node and add it to RB-tree of inodes.
1670  * @c: UBIFS file-system description object
1671  * @fsckd: FS checking information
1672  * @inum: inode number to read
1673  *
1674  * This is a helper function for 'check_leaf()' which finds inode node @inum in
1675  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1676  * information pointer in case of success and a negative error code in case of
1677  * failure.
1678  */
1679 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1680                                          struct fsck_data *fsckd, ino_t inum)
1681 {
1682         int n, err;
1683         union ubifs_key key;
1684         struct ubifs_znode *znode;
1685         struct ubifs_zbranch *zbr;
1686         struct ubifs_ino_node *ino;
1687         struct fsck_inode *fscki;
1688
1689         fscki = search_inode(fsckd, inum);
1690         if (fscki)
1691                 return fscki;
1692
1693         ino_key_init(c, &key, inum);
1694         err = ubifs_lookup_level0(c, &key, &znode, &n);
1695         if (!err) {
1696                 ubifs_err("inode %lu not found in index", (unsigned long)inum);
1697                 return ERR_PTR(-ENOENT);
1698         } else if (err < 0) {
1699                 ubifs_err("error %d while looking up inode %lu",
1700                           err, (unsigned long)inum);
1701                 return ERR_PTR(err);
1702         }
1703
1704         zbr = &znode->zbranch[n];
1705         if (zbr->len < UBIFS_INO_NODE_SZ) {
1706                 ubifs_err("bad node %lu node length %d",
1707                           (unsigned long)inum, zbr->len);
1708                 return ERR_PTR(-EINVAL);
1709         }
1710
1711         ino = kmalloc(zbr->len, GFP_NOFS);
1712         if (!ino)
1713                 return ERR_PTR(-ENOMEM);
1714
1715         err = ubifs_tnc_read_node(c, zbr, ino);
1716         if (err) {
1717                 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
1718                           zbr->lnum, zbr->offs, err);
1719                 kfree(ino);
1720                 return ERR_PTR(err);
1721         }
1722
1723         fscki = add_inode(c, fsckd, ino);
1724         kfree(ino);
1725         if (IS_ERR(fscki)) {
1726                 ubifs_err("error %ld while adding inode %lu node",
1727                           PTR_ERR(fscki), (unsigned long)inum);
1728                 return fscki;
1729         }
1730
1731         return fscki;
1732 }
1733
1734 /**
1735  * check_leaf - check leaf node.
1736  * @c: UBIFS file-system description object
1737  * @zbr: zbranch of the leaf node to check
1738  * @priv: FS checking information
1739  *
1740  * This is a helper function for 'dbg_check_filesystem()' which is called for
1741  * every single leaf node while walking the indexing tree. It checks that the
1742  * leaf node referred from the indexing tree exists, has correct CRC, and does
1743  * some other basic validation. This function is also responsible for building
1744  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1745  * calculates reference count, size, etc for each inode in order to later
1746  * compare them to the information stored inside the inodes and detect possible
1747  * inconsistencies. Returns zero in case of success and a negative error code
1748  * in case of failure.
1749  */
1750 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1751                       void *priv)
1752 {
1753         ino_t inum;
1754         void *node;
1755         struct ubifs_ch *ch;
1756         int err, type = key_type(c, &zbr->key);
1757         struct fsck_inode *fscki;
1758
1759         if (zbr->len < UBIFS_CH_SZ) {
1760                 ubifs_err("bad leaf length %d (LEB %d:%d)",
1761                           zbr->len, zbr->lnum, zbr->offs);
1762                 return -EINVAL;
1763         }
1764
1765         node = kmalloc(zbr->len, GFP_NOFS);
1766         if (!node)
1767                 return -ENOMEM;
1768
1769         err = ubifs_tnc_read_node(c, zbr, node);
1770         if (err) {
1771                 ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
1772                           zbr->lnum, zbr->offs, err);
1773                 goto out_free;
1774         }
1775
1776         /* If this is an inode node, add it to RB-tree of inodes */
1777         if (type == UBIFS_INO_KEY) {
1778                 fscki = add_inode(c, priv, node);
1779                 if (IS_ERR(fscki)) {
1780                         err = PTR_ERR(fscki);
1781                         ubifs_err("error %d while adding inode node", err);
1782                         goto out_dump;
1783                 }
1784                 goto out;
1785         }
1786
1787         if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
1788             type != UBIFS_DATA_KEY) {
1789                 ubifs_err("unexpected node type %d at LEB %d:%d",
1790                           type, zbr->lnum, zbr->offs);
1791                 err = -EINVAL;
1792                 goto out_free;
1793         }
1794
1795         ch = node;
1796         if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
1797                 ubifs_err("too high sequence number, max. is %llu",
1798                           c->max_sqnum);
1799                 err = -EINVAL;
1800                 goto out_dump;
1801         }
1802
1803         if (type == UBIFS_DATA_KEY) {
1804                 long long blk_offs;
1805                 struct ubifs_data_node *dn = node;
1806
1807                 /*
1808                  * Search the inode node this data node belongs to and insert
1809                  * it to the RB-tree of inodes.
1810                  */
1811                 inum = key_inum_flash(c, &dn->key);
1812                 fscki = read_add_inode(c, priv, inum);
1813                 if (IS_ERR(fscki)) {
1814                         err = PTR_ERR(fscki);
1815                         ubifs_err("error %d while processing data node and "
1816                                   "trying to find inode node %lu",
1817                                   err, (unsigned long)inum);
1818                         goto out_dump;
1819                 }
1820
1821                 /* Make sure the data node is within inode size */
1822                 blk_offs = key_block_flash(c, &dn->key);
1823                 blk_offs <<= UBIFS_BLOCK_SHIFT;
1824                 blk_offs += le32_to_cpu(dn->size);
1825                 if (blk_offs > fscki->size) {
1826                         ubifs_err("data node at LEB %d:%d is not within inode "
1827                                   "size %lld", zbr->lnum, zbr->offs,
1828                                   fscki->size);
1829                         err = -EINVAL;
1830                         goto out_dump;
1831                 }
1832         } else {
1833                 int nlen;
1834                 struct ubifs_dent_node *dent = node;
1835                 struct fsck_inode *fscki1;
1836
1837                 err = ubifs_validate_entry(c, dent);
1838                 if (err)
1839                         goto out_dump;
1840
1841                 /*
1842                  * Search the inode node this entry refers to and the parent
1843                  * inode node and insert them to the RB-tree of inodes.
1844                  */
1845                 inum = le64_to_cpu(dent->inum);
1846                 fscki = read_add_inode(c, priv, inum);
1847                 if (IS_ERR(fscki)) {
1848                         err = PTR_ERR(fscki);
1849                         ubifs_err("error %d while processing entry node and "
1850                                   "trying to find inode node %lu",
1851                                   err, (unsigned long)inum);
1852                         goto out_dump;
1853                 }
1854
1855                 /* Count how many direntries or xentries refers this inode */
1856                 fscki->references += 1;
1857
1858                 inum = key_inum_flash(c, &dent->key);
1859                 fscki1 = read_add_inode(c, priv, inum);
1860                 if (IS_ERR(fscki1)) {
1861                         err = PTR_ERR(fscki);
1862                         ubifs_err("error %d while processing entry node and "
1863                                   "trying to find parent inode node %lu",
1864                                   err, (unsigned long)inum);
1865                         goto out_dump;
1866                 }
1867
1868                 nlen = le16_to_cpu(dent->nlen);
1869                 if (type == UBIFS_XENT_KEY) {
1870                         fscki1->calc_xcnt += 1;
1871                         fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
1872                         fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
1873                         fscki1->calc_xnms += nlen;
1874                 } else {
1875                         fscki1->calc_sz += CALC_DENT_SIZE(nlen);
1876                         if (dent->type == UBIFS_ITYPE_DIR)
1877                                 fscki1->calc_cnt += 1;
1878                 }
1879         }
1880
1881 out:
1882         kfree(node);
1883         return 0;
1884
1885 out_dump:
1886         ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
1887         dbg_dump_node(c, node);
1888 out_free:
1889         kfree(node);
1890         return err;
1891 }
1892
1893 /**
1894  * free_inodes - free RB-tree of inodes.
1895  * @fsckd: FS checking information
1896  */
1897 static void free_inodes(struct fsck_data *fsckd)
1898 {
1899         struct rb_node *this = fsckd->inodes.rb_node;
1900         struct fsck_inode *fscki;
1901
1902         while (this) {
1903                 if (this->rb_left)
1904                         this = this->rb_left;
1905                 else if (this->rb_right)
1906                         this = this->rb_right;
1907                 else {
1908                         fscki = rb_entry(this, struct fsck_inode, rb);
1909                         this = rb_parent(this);
1910                         if (this) {
1911                                 if (this->rb_left == &fscki->rb)
1912                                         this->rb_left = NULL;
1913                                 else
1914                                         this->rb_right = NULL;
1915                         }
1916                         kfree(fscki);
1917                 }
1918         }
1919 }
1920
1921 /**
1922  * check_inodes - checks all inodes.
1923  * @c: UBIFS file-system description object
1924  * @fsckd: FS checking information
1925  *
1926  * This is a helper function for 'dbg_check_filesystem()' which walks the
1927  * RB-tree of inodes after the index scan has been finished, and checks that
1928  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
1929  * %-EINVAL if not, and a negative error code in case of failure.
1930  */
1931 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
1932 {
1933         int n, err;
1934         union ubifs_key key;
1935         struct ubifs_znode *znode;
1936         struct ubifs_zbranch *zbr;
1937         struct ubifs_ino_node *ino;
1938         struct fsck_inode *fscki;
1939         struct rb_node *this = rb_first(&fsckd->inodes);
1940
1941         while (this) {
1942                 fscki = rb_entry(this, struct fsck_inode, rb);
1943                 this = rb_next(this);
1944
1945                 if (S_ISDIR(fscki->mode)) {
1946                         /*
1947                          * Directories have to have exactly one reference (they
1948                          * cannot have hardlinks), although root inode is an
1949                          * exception.
1950                          */
1951                         if (fscki->inum != UBIFS_ROOT_INO &&
1952                             fscki->references != 1) {
1953                                 ubifs_err("directory inode %lu has %d "
1954                                           "direntries which refer it, but "
1955                                           "should be 1",
1956                                           (unsigned long)fscki->inum,
1957                                           fscki->references);
1958                                 goto out_dump;
1959                         }
1960                         if (fscki->inum == UBIFS_ROOT_INO &&
1961                             fscki->references != 0) {
1962                                 ubifs_err("root inode %lu has non-zero (%d) "
1963                                           "direntries which refer it",
1964                                           (unsigned long)fscki->inum,
1965                                           fscki->references);
1966                                 goto out_dump;
1967                         }
1968                         if (fscki->calc_sz != fscki->size) {
1969                                 ubifs_err("directory inode %lu size is %lld, "
1970                                           "but calculated size is %lld",
1971                                           (unsigned long)fscki->inum,
1972                                           fscki->size, fscki->calc_sz);
1973                                 goto out_dump;
1974                         }
1975                         if (fscki->calc_cnt != fscki->nlink) {
1976                                 ubifs_err("directory inode %lu nlink is %d, "
1977                                           "but calculated nlink is %d",
1978                                           (unsigned long)fscki->inum,
1979                                           fscki->nlink, fscki->calc_cnt);
1980                                 goto out_dump;
1981                         }
1982                 } else {
1983                         if (fscki->references != fscki->nlink) {
1984                                 ubifs_err("inode %lu nlink is %d, but "
1985                                           "calculated nlink is %d",
1986                                           (unsigned long)fscki->inum,
1987                                           fscki->nlink, fscki->references);
1988                                 goto out_dump;
1989                         }
1990                 }
1991                 if (fscki->xattr_sz != fscki->calc_xsz) {
1992                         ubifs_err("inode %lu has xattr size %u, but "
1993                                   "calculated size is %lld",
1994                                   (unsigned long)fscki->inum, fscki->xattr_sz,
1995                                   fscki->calc_xsz);
1996                         goto out_dump;
1997                 }
1998                 if (fscki->xattr_cnt != fscki->calc_xcnt) {
1999                         ubifs_err("inode %lu has %u xattrs, but "
2000                                   "calculated count is %lld",
2001                                   (unsigned long)fscki->inum,
2002                                   fscki->xattr_cnt, fscki->calc_xcnt);
2003                         goto out_dump;
2004                 }
2005                 if (fscki->xattr_nms != fscki->calc_xnms) {
2006                         ubifs_err("inode %lu has xattr names' size %u, but "
2007                                   "calculated names' size is %lld",
2008                                   (unsigned long)fscki->inum, fscki->xattr_nms,
2009                                   fscki->calc_xnms);
2010                         goto out_dump;
2011                 }
2012         }
2013
2014         return 0;
2015
2016 out_dump:
2017         /* Read the bad inode and dump it */
2018         ino_key_init(c, &key, fscki->inum);
2019         err = ubifs_lookup_level0(c, &key, &znode, &n);
2020         if (!err) {
2021                 ubifs_err("inode %lu not found in index",
2022                           (unsigned long)fscki->inum);
2023                 return -ENOENT;
2024         } else if (err < 0) {
2025                 ubifs_err("error %d while looking up inode %lu",
2026                           err, (unsigned long)fscki->inum);
2027                 return err;
2028         }
2029
2030         zbr = &znode->zbranch[n];
2031         ino = kmalloc(zbr->len, GFP_NOFS);
2032         if (!ino)
2033                 return -ENOMEM;
2034
2035         err = ubifs_tnc_read_node(c, zbr, ino);
2036         if (err) {
2037                 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2038                           zbr->lnum, zbr->offs, err);
2039                 kfree(ino);
2040                 return err;
2041         }
2042
2043         ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2044                   (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2045         dbg_dump_node(c, ino);
2046         kfree(ino);
2047         return -EINVAL;
2048 }
2049
2050 /**
2051  * dbg_check_filesystem - check the file-system.
2052  * @c: UBIFS file-system description object
2053  *
2054  * This function checks the file system, namely:
2055  * o makes sure that all leaf nodes exist and their CRCs are correct;
2056  * o makes sure inode nlink, size, xattr size/count are correct (for all
2057  *   inodes).
2058  *
2059  * The function reads whole indexing tree and all nodes, so it is pretty
2060  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2061  * not, and a negative error code in case of failure.
2062  */
2063 int dbg_check_filesystem(struct ubifs_info *c)
2064 {
2065         int err;
2066         struct fsck_data fsckd;
2067
2068         if (!(ubifs_chk_flags & UBIFS_CHK_FS))
2069                 return 0;
2070
2071         fsckd.inodes = RB_ROOT;
2072         err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2073         if (err)
2074                 goto out_free;
2075
2076         err = check_inodes(c, &fsckd);
2077         if (err)
2078                 goto out_free;
2079
2080         free_inodes(&fsckd);
2081         return 0;
2082
2083 out_free:
2084         ubifs_err("file-system check failed with error %d", err);
2085         dump_stack();
2086         free_inodes(&fsckd);
2087         return err;
2088 }
2089
2090 static int invocation_cnt;
2091
2092 int dbg_force_in_the_gaps(void)
2093 {
2094         if (!dbg_force_in_the_gaps_enabled)
2095                 return 0;
2096         /* Force in-the-gaps every 8th commit */
2097         return !((invocation_cnt++) & 0x7);
2098 }
2099
2100 /* Failure mode for recovery testing */
2101
2102 #define chance(n, d) (simple_rand() <= (n) * 32768LL / (d))
2103
2104 struct failure_mode_info {
2105         struct list_head list;
2106         struct ubifs_info *c;
2107 };
2108
2109 static LIST_HEAD(fmi_list);
2110 static DEFINE_SPINLOCK(fmi_lock);
2111
2112 static unsigned int next;
2113
2114 static int simple_rand(void)
2115 {
2116         if (next == 0)
2117                 next = current->pid;
2118         next = next * 1103515245 + 12345;
2119         return (next >> 16) & 32767;
2120 }
2121
2122 static void failure_mode_init(struct ubifs_info *c)
2123 {
2124         struct failure_mode_info *fmi;
2125
2126         fmi = kmalloc(sizeof(struct failure_mode_info), GFP_NOFS);
2127         if (!fmi) {
2128                 ubifs_err("Failed to register failure mode - no memory");
2129                 return;
2130         }
2131         fmi->c = c;
2132         spin_lock(&fmi_lock);
2133         list_add_tail(&fmi->list, &fmi_list);
2134         spin_unlock(&fmi_lock);
2135 }
2136
2137 static void failure_mode_exit(struct ubifs_info *c)
2138 {
2139         struct failure_mode_info *fmi, *tmp;
2140
2141         spin_lock(&fmi_lock);
2142         list_for_each_entry_safe(fmi, tmp, &fmi_list, list)
2143                 if (fmi->c == c) {
2144                         list_del(&fmi->list);
2145                         kfree(fmi);
2146                 }
2147         spin_unlock(&fmi_lock);
2148 }
2149
2150 static struct ubifs_info *dbg_find_info(struct ubi_volume_desc *desc)
2151 {
2152         struct failure_mode_info *fmi;
2153
2154         spin_lock(&fmi_lock);
2155         list_for_each_entry(fmi, &fmi_list, list)
2156                 if (fmi->c->ubi == desc) {
2157                         struct ubifs_info *c = fmi->c;
2158
2159                         spin_unlock(&fmi_lock);
2160                         return c;
2161                 }
2162         spin_unlock(&fmi_lock);
2163         return NULL;
2164 }
2165
2166 static int in_failure_mode(struct ubi_volume_desc *desc)
2167 {
2168         struct ubifs_info *c = dbg_find_info(desc);
2169
2170         if (c && dbg_failure_mode)
2171                 return c->dbg->failure_mode;
2172         return 0;
2173 }
2174
2175 static int do_fail(struct ubi_volume_desc *desc, int lnum, int write)
2176 {
2177         struct ubifs_info *c = dbg_find_info(desc);
2178         struct ubifs_debug_info *d;
2179
2180         if (!c || !dbg_failure_mode)
2181                 return 0;
2182         d = c->dbg;
2183         if (d->failure_mode)
2184                 return 1;
2185         if (!d->fail_cnt) {
2186                 /* First call - decide delay to failure */
2187                 if (chance(1, 2)) {
2188                         unsigned int delay = 1 << (simple_rand() >> 11);
2189
2190                         if (chance(1, 2)) {
2191                                 d->fail_delay = 1;
2192                                 d->fail_timeout = jiffies +
2193                                                   msecs_to_jiffies(delay);
2194                                 dbg_rcvry("failing after %ums", delay);
2195                         } else {
2196                                 d->fail_delay = 2;
2197                                 d->fail_cnt_max = delay;
2198                                 dbg_rcvry("failing after %u calls", delay);
2199                         }
2200                 }
2201                 d->fail_cnt += 1;
2202         }
2203         /* Determine if failure delay has expired */
2204         if (d->fail_delay == 1) {
2205                 if (time_before(jiffies, d->fail_timeout))
2206                         return 0;
2207         } else if (d->fail_delay == 2)
2208                 if (d->fail_cnt++ < d->fail_cnt_max)
2209                         return 0;
2210         if (lnum == UBIFS_SB_LNUM) {
2211                 if (write) {
2212                         if (chance(1, 2))
2213                                 return 0;
2214                 } else if (chance(19, 20))
2215                         return 0;
2216                 dbg_rcvry("failing in super block LEB %d", lnum);
2217         } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2218                 if (chance(19, 20))
2219                         return 0;
2220                 dbg_rcvry("failing in master LEB %d", lnum);
2221         } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2222                 if (write) {
2223                         if (chance(99, 100))
2224                                 return 0;
2225                 } else if (chance(399, 400))
2226                         return 0;
2227                 dbg_rcvry("failing in log LEB %d", lnum);
2228         } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2229                 if (write) {
2230                         if (chance(7, 8))
2231                                 return 0;
2232                 } else if (chance(19, 20))
2233                         return 0;
2234                 dbg_rcvry("failing in LPT LEB %d", lnum);
2235         } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2236                 if (write) {
2237                         if (chance(1, 2))
2238                                 return 0;
2239                 } else if (chance(9, 10))
2240                         return 0;
2241                 dbg_rcvry("failing in orphan LEB %d", lnum);
2242         } else if (lnum == c->ihead_lnum) {
2243                 if (chance(99, 100))
2244                         return 0;
2245                 dbg_rcvry("failing in index head LEB %d", lnum);
2246         } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2247                 if (chance(9, 10))
2248                         return 0;
2249                 dbg_rcvry("failing in GC head LEB %d", lnum);
2250         } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2251                    !ubifs_search_bud(c, lnum)) {
2252                 if (chance(19, 20))
2253                         return 0;
2254                 dbg_rcvry("failing in non-bud LEB %d", lnum);
2255         } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2256                    c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2257                 if (chance(999, 1000))
2258                         return 0;
2259                 dbg_rcvry("failing in bud LEB %d commit running", lnum);
2260         } else {
2261                 if (chance(9999, 10000))
2262                         return 0;
2263                 dbg_rcvry("failing in bud LEB %d commit not running", lnum);
2264         }
2265         ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum);
2266         d->failure_mode = 1;
2267         dump_stack();
2268         return 1;
2269 }
2270
2271 static void cut_data(const void *buf, int len)
2272 {
2273         int flen, i;
2274         unsigned char *p = (void *)buf;
2275
2276         flen = (len * (long long)simple_rand()) >> 15;
2277         for (i = flen; i < len; i++)
2278                 p[i] = 0xff;
2279 }
2280
2281 int dbg_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset,
2282                  int len, int check)
2283 {
2284         if (in_failure_mode(desc))
2285                 return -EIO;
2286         return ubi_leb_read(desc, lnum, buf, offset, len, check);
2287 }
2288
2289 int dbg_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf,
2290                   int offset, int len, int dtype)
2291 {
2292         int err, failing;
2293
2294         if (in_failure_mode(desc))
2295                 return -EIO;
2296         failing = do_fail(desc, lnum, 1);
2297         if (failing)
2298                 cut_data(buf, len);
2299         err = ubi_leb_write(desc, lnum, buf, offset, len, dtype);
2300         if (err)
2301                 return err;
2302         if (failing)
2303                 return -EIO;
2304         return 0;
2305 }
2306
2307 int dbg_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf,
2308                    int len, int dtype)
2309 {
2310         int err;
2311
2312         if (do_fail(desc, lnum, 1))
2313                 return -EIO;
2314         err = ubi_leb_change(desc, lnum, buf, len, dtype);
2315         if (err)
2316                 return err;
2317         if (do_fail(desc, lnum, 1))
2318                 return -EIO;
2319         return 0;
2320 }
2321
2322 int dbg_leb_erase(struct ubi_volume_desc *desc, int lnum)
2323 {
2324         int err;
2325
2326         if (do_fail(desc, lnum, 0))
2327                 return -EIO;
2328         err = ubi_leb_erase(desc, lnum);
2329         if (err)
2330                 return err;
2331         if (do_fail(desc, lnum, 0))
2332                 return -EIO;
2333         return 0;
2334 }
2335
2336 int dbg_leb_unmap(struct ubi_volume_desc *desc, int lnum)
2337 {
2338         int err;
2339
2340         if (do_fail(desc, lnum, 0))
2341                 return -EIO;
2342         err = ubi_leb_unmap(desc, lnum);
2343         if (err)
2344                 return err;
2345         if (do_fail(desc, lnum, 0))
2346                 return -EIO;
2347         return 0;
2348 }
2349
2350 int dbg_is_mapped(struct ubi_volume_desc *desc, int lnum)
2351 {
2352         if (in_failure_mode(desc))
2353                 return -EIO;
2354         return ubi_is_mapped(desc, lnum);
2355 }
2356
2357 int dbg_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype)
2358 {
2359         int err;
2360
2361         if (do_fail(desc, lnum, 0))
2362                 return -EIO;
2363         err = ubi_leb_map(desc, lnum, dtype);
2364         if (err)
2365                 return err;
2366         if (do_fail(desc, lnum, 0))
2367                 return -EIO;
2368         return 0;
2369 }
2370
2371 /**
2372  * ubifs_debugging_init - initialize UBIFS debugging.
2373  * @c: UBIFS file-system description object
2374  *
2375  * This function initializes debugging-related data for the file system.
2376  * Returns zero in case of success and a negative error code in case of
2377  * failure.
2378  */
2379 int ubifs_debugging_init(struct ubifs_info *c)
2380 {
2381         c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
2382         if (!c->dbg)
2383                 return -ENOMEM;
2384
2385         c->dbg->buf = vmalloc(c->leb_size);
2386         if (!c->dbg->buf)
2387                 goto out;
2388
2389         failure_mode_init(c);
2390         return 0;
2391
2392 out:
2393         kfree(c->dbg);
2394         return -ENOMEM;
2395 }
2396
2397 /**
2398  * ubifs_debugging_exit - free debugging data.
2399  * @c: UBIFS file-system description object
2400  */
2401 void ubifs_debugging_exit(struct ubifs_info *c)
2402 {
2403         failure_mode_exit(c);
2404         vfree(c->dbg->buf);
2405         kfree(c->dbg);
2406 }
2407
2408 /*
2409  * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2410  * contain the stuff specific to particular file-system mounts.
2411  */
2412 static struct dentry *debugfs_rootdir;
2413
2414 /**
2415  * dbg_debugfs_init - initialize debugfs file-system.
2416  *
2417  * UBIFS uses debugfs file-system to expose various debugging knobs to
2418  * user-space. This function creates "ubifs" directory in the debugfs
2419  * file-system. Returns zero in case of success and a negative error code in
2420  * case of failure.
2421  */
2422 int dbg_debugfs_init(void)
2423 {
2424         debugfs_rootdir = debugfs_create_dir("ubifs", NULL);
2425         if (IS_ERR(debugfs_rootdir)) {
2426                 int err = PTR_ERR(debugfs_rootdir);
2427                 ubifs_err("cannot create \"ubifs\" debugfs directory, "
2428                           "error %d\n", err);
2429                 return err;
2430         }
2431
2432         return 0;
2433 }
2434
2435 /**
2436  * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
2437  */
2438 void dbg_debugfs_exit(void)
2439 {
2440         debugfs_remove(debugfs_rootdir);
2441 }
2442
2443 static int open_debugfs_file(struct inode *inode, struct file *file)
2444 {
2445         file->private_data = inode->i_private;
2446         return 0;
2447 }
2448
2449 static ssize_t write_debugfs_file(struct file *file, const char __user *buf,
2450                                   size_t count, loff_t *ppos)
2451 {
2452         struct ubifs_info *c = file->private_data;
2453         struct ubifs_debug_info *d = c->dbg;
2454
2455         if (file->f_path.dentry == d->dump_lprops)
2456                 dbg_dump_lprops(c);
2457         else if (file->f_path.dentry == d->dump_budg) {
2458                 spin_lock(&c->space_lock);
2459                 dbg_dump_budg(c);
2460                 spin_unlock(&c->space_lock);
2461         } else if (file->f_path.dentry == d->dump_tnc) {
2462                 mutex_lock(&c->tnc_mutex);
2463                 dbg_dump_tnc(c);
2464                 mutex_unlock(&c->tnc_mutex);
2465         } else
2466                 return -EINVAL;
2467
2468         *ppos += count;
2469         return count;
2470 }
2471
2472 static const struct file_operations debugfs_fops = {
2473         .open = open_debugfs_file,
2474         .write = write_debugfs_file,
2475         .owner = THIS_MODULE,
2476 };
2477
2478 /**
2479  * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2480  * @c: UBIFS file-system description object
2481  *
2482  * This function creates all debugfs files for this instance of UBIFS. Returns
2483  * zero in case of success and a negative error code in case of failure.
2484  *
2485  * Note, the only reason we have not merged this function with the
2486  * 'ubifs_debugging_init()' function is because it is better to initialize
2487  * debugfs interfaces at the very end of the mount process, and remove them at
2488  * the very beginning of the mount process.
2489  */
2490 int dbg_debugfs_init_fs(struct ubifs_info *c)
2491 {
2492         int err;
2493         const char *fname;
2494         struct dentry *dent;
2495         struct ubifs_debug_info *d = c->dbg;
2496
2497         sprintf(d->debugfs_dir_name, "ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2498         d->debugfs_dir = debugfs_create_dir(d->debugfs_dir_name,
2499                                               debugfs_rootdir);
2500         if (IS_ERR(d->debugfs_dir)) {
2501                 err = PTR_ERR(d->debugfs_dir);
2502                 ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2503                           d->debugfs_dir_name, err);
2504                 goto out;
2505         }
2506
2507         fname = "dump_lprops";
2508         dent = debugfs_create_file(fname, S_IWUGO, d->debugfs_dir, c,
2509                                    &debugfs_fops);
2510         if (IS_ERR(dent))
2511                 goto out_remove;
2512         d->dump_lprops = dent;
2513
2514         fname = "dump_budg";
2515         dent = debugfs_create_file(fname, S_IWUGO, d->debugfs_dir, c,
2516                                    &debugfs_fops);
2517         if (IS_ERR(dent))
2518                 goto out_remove;
2519         d->dump_budg = dent;
2520
2521         fname = "dump_tnc";
2522         dent = debugfs_create_file(fname, S_IWUGO, d->debugfs_dir, c,
2523                                    &debugfs_fops);
2524         if (IS_ERR(dent))
2525                 goto out_remove;
2526         d->dump_tnc = dent;
2527
2528         return 0;
2529
2530 out_remove:
2531         err = PTR_ERR(dent);
2532         ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2533                   fname, err);
2534         debugfs_remove_recursive(d->debugfs_dir);
2535 out:
2536         return err;
2537 }
2538
2539 /**
2540  * dbg_debugfs_exit_fs - remove all debugfs files.
2541  * @c: UBIFS file-system description object
2542  */
2543 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2544 {
2545         debugfs_remove_recursive(c->dbg->debugfs_dir);
2546 }
2547
2548 #endif /* CONFIG_UBIFS_FS_DEBUG */