Merge remote-tracking branches 'regulator/topic/rc5t619' and 'regulator/topic/stm32...
[sfrench/cifs-2.6.git] / fs / proc / task_mmu.c
1 #include <linux/mm.h>
2 #include <linux/vmacache.h>
3 #include <linux/hugetlb.h>
4 #include <linux/huge_mm.h>
5 #include <linux/mount.h>
6 #include <linux/seq_file.h>
7 #include <linux/highmem.h>
8 #include <linux/ptrace.h>
9 #include <linux/slab.h>
10 #include <linux/pagemap.h>
11 #include <linux/mempolicy.h>
12 #include <linux/rmap.h>
13 #include <linux/swap.h>
14 #include <linux/sched/mm.h>
15 #include <linux/swapops.h>
16 #include <linux/mmu_notifier.h>
17 #include <linux/page_idle.h>
18 #include <linux/shmem_fs.h>
19 #include <linux/uaccess.h>
20
21 #include <asm/elf.h>
22 #include <asm/tlb.h>
23 #include <asm/tlbflush.h>
24 #include "internal.h"
25
26 void task_mem(struct seq_file *m, struct mm_struct *mm)
27 {
28         unsigned long text, lib, swap, ptes, pmds, anon, file, shmem;
29         unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
30
31         anon = get_mm_counter(mm, MM_ANONPAGES);
32         file = get_mm_counter(mm, MM_FILEPAGES);
33         shmem = get_mm_counter(mm, MM_SHMEMPAGES);
34
35         /*
36          * Note: to minimize their overhead, mm maintains hiwater_vm and
37          * hiwater_rss only when about to *lower* total_vm or rss.  Any
38          * collector of these hiwater stats must therefore get total_vm
39          * and rss too, which will usually be the higher.  Barriers? not
40          * worth the effort, such snapshots can always be inconsistent.
41          */
42         hiwater_vm = total_vm = mm->total_vm;
43         if (hiwater_vm < mm->hiwater_vm)
44                 hiwater_vm = mm->hiwater_vm;
45         hiwater_rss = total_rss = anon + file + shmem;
46         if (hiwater_rss < mm->hiwater_rss)
47                 hiwater_rss = mm->hiwater_rss;
48
49         text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
50         lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
51         swap = get_mm_counter(mm, MM_SWAPENTS);
52         ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes);
53         pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm);
54         seq_printf(m,
55                 "VmPeak:\t%8lu kB\n"
56                 "VmSize:\t%8lu kB\n"
57                 "VmLck:\t%8lu kB\n"
58                 "VmPin:\t%8lu kB\n"
59                 "VmHWM:\t%8lu kB\n"
60                 "VmRSS:\t%8lu kB\n"
61                 "RssAnon:\t%8lu kB\n"
62                 "RssFile:\t%8lu kB\n"
63                 "RssShmem:\t%8lu kB\n"
64                 "VmData:\t%8lu kB\n"
65                 "VmStk:\t%8lu kB\n"
66                 "VmExe:\t%8lu kB\n"
67                 "VmLib:\t%8lu kB\n"
68                 "VmPTE:\t%8lu kB\n"
69                 "VmPMD:\t%8lu kB\n"
70                 "VmSwap:\t%8lu kB\n",
71                 hiwater_vm << (PAGE_SHIFT-10),
72                 total_vm << (PAGE_SHIFT-10),
73                 mm->locked_vm << (PAGE_SHIFT-10),
74                 mm->pinned_vm << (PAGE_SHIFT-10),
75                 hiwater_rss << (PAGE_SHIFT-10),
76                 total_rss << (PAGE_SHIFT-10),
77                 anon << (PAGE_SHIFT-10),
78                 file << (PAGE_SHIFT-10),
79                 shmem << (PAGE_SHIFT-10),
80                 mm->data_vm << (PAGE_SHIFT-10),
81                 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
82                 ptes >> 10,
83                 pmds >> 10,
84                 swap << (PAGE_SHIFT-10));
85         hugetlb_report_usage(m, mm);
86 }
87
88 unsigned long task_vsize(struct mm_struct *mm)
89 {
90         return PAGE_SIZE * mm->total_vm;
91 }
92
93 unsigned long task_statm(struct mm_struct *mm,
94                          unsigned long *shared, unsigned long *text,
95                          unsigned long *data, unsigned long *resident)
96 {
97         *shared = get_mm_counter(mm, MM_FILEPAGES) +
98                         get_mm_counter(mm, MM_SHMEMPAGES);
99         *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
100                                                                 >> PAGE_SHIFT;
101         *data = mm->data_vm + mm->stack_vm;
102         *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
103         return mm->total_vm;
104 }
105
106 #ifdef CONFIG_NUMA
107 /*
108  * Save get_task_policy() for show_numa_map().
109  */
110 static void hold_task_mempolicy(struct proc_maps_private *priv)
111 {
112         struct task_struct *task = priv->task;
113
114         task_lock(task);
115         priv->task_mempolicy = get_task_policy(task);
116         mpol_get(priv->task_mempolicy);
117         task_unlock(task);
118 }
119 static void release_task_mempolicy(struct proc_maps_private *priv)
120 {
121         mpol_put(priv->task_mempolicy);
122 }
123 #else
124 static void hold_task_mempolicy(struct proc_maps_private *priv)
125 {
126 }
127 static void release_task_mempolicy(struct proc_maps_private *priv)
128 {
129 }
130 #endif
131
132 static void vma_stop(struct proc_maps_private *priv)
133 {
134         struct mm_struct *mm = priv->mm;
135
136         release_task_mempolicy(priv);
137         up_read(&mm->mmap_sem);
138         mmput(mm);
139 }
140
141 static struct vm_area_struct *
142 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
143 {
144         if (vma == priv->tail_vma)
145                 return NULL;
146         return vma->vm_next ?: priv->tail_vma;
147 }
148
149 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
150 {
151         if (m->count < m->size) /* vma is copied successfully */
152                 m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL;
153 }
154
155 static void *m_start(struct seq_file *m, loff_t *ppos)
156 {
157         struct proc_maps_private *priv = m->private;
158         unsigned long last_addr = m->version;
159         struct mm_struct *mm;
160         struct vm_area_struct *vma;
161         unsigned int pos = *ppos;
162
163         /* See m_cache_vma(). Zero at the start or after lseek. */
164         if (last_addr == -1UL)
165                 return NULL;
166
167         priv->task = get_proc_task(priv->inode);
168         if (!priv->task)
169                 return ERR_PTR(-ESRCH);
170
171         mm = priv->mm;
172         if (!mm || !mmget_not_zero(mm))
173                 return NULL;
174
175         down_read(&mm->mmap_sem);
176         hold_task_mempolicy(priv);
177         priv->tail_vma = get_gate_vma(mm);
178
179         if (last_addr) {
180                 vma = find_vma(mm, last_addr - 1);
181                 if (vma && vma->vm_start <= last_addr)
182                         vma = m_next_vma(priv, vma);
183                 if (vma)
184                         return vma;
185         }
186
187         m->version = 0;
188         if (pos < mm->map_count) {
189                 for (vma = mm->mmap; pos; pos--) {
190                         m->version = vma->vm_start;
191                         vma = vma->vm_next;
192                 }
193                 return vma;
194         }
195
196         /* we do not bother to update m->version in this case */
197         if (pos == mm->map_count && priv->tail_vma)
198                 return priv->tail_vma;
199
200         vma_stop(priv);
201         return NULL;
202 }
203
204 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
205 {
206         struct proc_maps_private *priv = m->private;
207         struct vm_area_struct *next;
208
209         (*pos)++;
210         next = m_next_vma(priv, v);
211         if (!next)
212                 vma_stop(priv);
213         return next;
214 }
215
216 static void m_stop(struct seq_file *m, void *v)
217 {
218         struct proc_maps_private *priv = m->private;
219
220         if (!IS_ERR_OR_NULL(v))
221                 vma_stop(priv);
222         if (priv->task) {
223                 put_task_struct(priv->task);
224                 priv->task = NULL;
225         }
226 }
227
228 static int proc_maps_open(struct inode *inode, struct file *file,
229                         const struct seq_operations *ops, int psize)
230 {
231         struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
232
233         if (!priv)
234                 return -ENOMEM;
235
236         priv->inode = inode;
237         priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
238         if (IS_ERR(priv->mm)) {
239                 int err = PTR_ERR(priv->mm);
240
241                 seq_release_private(inode, file);
242                 return err;
243         }
244
245         return 0;
246 }
247
248 static int proc_map_release(struct inode *inode, struct file *file)
249 {
250         struct seq_file *seq = file->private_data;
251         struct proc_maps_private *priv = seq->private;
252
253         if (priv->mm)
254                 mmdrop(priv->mm);
255
256         return seq_release_private(inode, file);
257 }
258
259 static int do_maps_open(struct inode *inode, struct file *file,
260                         const struct seq_operations *ops)
261 {
262         return proc_maps_open(inode, file, ops,
263                                 sizeof(struct proc_maps_private));
264 }
265
266 /*
267  * Indicate if the VMA is a stack for the given task; for
268  * /proc/PID/maps that is the stack of the main task.
269  */
270 static int is_stack(struct proc_maps_private *priv,
271                     struct vm_area_struct *vma)
272 {
273         /*
274          * We make no effort to guess what a given thread considers to be
275          * its "stack".  It's not even well-defined for programs written
276          * languages like Go.
277          */
278         return vma->vm_start <= vma->vm_mm->start_stack &&
279                 vma->vm_end >= vma->vm_mm->start_stack;
280 }
281
282 static void
283 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
284 {
285         struct mm_struct *mm = vma->vm_mm;
286         struct file *file = vma->vm_file;
287         struct proc_maps_private *priv = m->private;
288         vm_flags_t flags = vma->vm_flags;
289         unsigned long ino = 0;
290         unsigned long long pgoff = 0;
291         unsigned long start, end;
292         dev_t dev = 0;
293         const char *name = NULL;
294
295         if (file) {
296                 struct inode *inode = file_inode(vma->vm_file);
297                 dev = inode->i_sb->s_dev;
298                 ino = inode->i_ino;
299                 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
300         }
301
302         start = vma->vm_start;
303         end = vma->vm_end;
304
305         seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
306         seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
307                         start,
308                         end,
309                         flags & VM_READ ? 'r' : '-',
310                         flags & VM_WRITE ? 'w' : '-',
311                         flags & VM_EXEC ? 'x' : '-',
312                         flags & VM_MAYSHARE ? 's' : 'p',
313                         pgoff,
314                         MAJOR(dev), MINOR(dev), ino);
315
316         /*
317          * Print the dentry name for named mappings, and a
318          * special [heap] marker for the heap:
319          */
320         if (file) {
321                 seq_pad(m, ' ');
322                 seq_file_path(m, file, "\n");
323                 goto done;
324         }
325
326         if (vma->vm_ops && vma->vm_ops->name) {
327                 name = vma->vm_ops->name(vma);
328                 if (name)
329                         goto done;
330         }
331
332         name = arch_vma_name(vma);
333         if (!name) {
334                 if (!mm) {
335                         name = "[vdso]";
336                         goto done;
337                 }
338
339                 if (vma->vm_start <= mm->brk &&
340                     vma->vm_end >= mm->start_brk) {
341                         name = "[heap]";
342                         goto done;
343                 }
344
345                 if (is_stack(priv, vma))
346                         name = "[stack]";
347         }
348
349 done:
350         if (name) {
351                 seq_pad(m, ' ');
352                 seq_puts(m, name);
353         }
354         seq_putc(m, '\n');
355 }
356
357 static int show_map(struct seq_file *m, void *v, int is_pid)
358 {
359         show_map_vma(m, v, is_pid);
360         m_cache_vma(m, v);
361         return 0;
362 }
363
364 static int show_pid_map(struct seq_file *m, void *v)
365 {
366         return show_map(m, v, 1);
367 }
368
369 static int show_tid_map(struct seq_file *m, void *v)
370 {
371         return show_map(m, v, 0);
372 }
373
374 static const struct seq_operations proc_pid_maps_op = {
375         .start  = m_start,
376         .next   = m_next,
377         .stop   = m_stop,
378         .show   = show_pid_map
379 };
380
381 static const struct seq_operations proc_tid_maps_op = {
382         .start  = m_start,
383         .next   = m_next,
384         .stop   = m_stop,
385         .show   = show_tid_map
386 };
387
388 static int pid_maps_open(struct inode *inode, struct file *file)
389 {
390         return do_maps_open(inode, file, &proc_pid_maps_op);
391 }
392
393 static int tid_maps_open(struct inode *inode, struct file *file)
394 {
395         return do_maps_open(inode, file, &proc_tid_maps_op);
396 }
397
398 const struct file_operations proc_pid_maps_operations = {
399         .open           = pid_maps_open,
400         .read           = seq_read,
401         .llseek         = seq_lseek,
402         .release        = proc_map_release,
403 };
404
405 const struct file_operations proc_tid_maps_operations = {
406         .open           = tid_maps_open,
407         .read           = seq_read,
408         .llseek         = seq_lseek,
409         .release        = proc_map_release,
410 };
411
412 /*
413  * Proportional Set Size(PSS): my share of RSS.
414  *
415  * PSS of a process is the count of pages it has in memory, where each
416  * page is divided by the number of processes sharing it.  So if a
417  * process has 1000 pages all to itself, and 1000 shared with one other
418  * process, its PSS will be 1500.
419  *
420  * To keep (accumulated) division errors low, we adopt a 64bit
421  * fixed-point pss counter to minimize division errors. So (pss >>
422  * PSS_SHIFT) would be the real byte count.
423  *
424  * A shift of 12 before division means (assuming 4K page size):
425  *      - 1M 3-user-pages add up to 8KB errors;
426  *      - supports mapcount up to 2^24, or 16M;
427  *      - supports PSS up to 2^52 bytes, or 4PB.
428  */
429 #define PSS_SHIFT 12
430
431 #ifdef CONFIG_PROC_PAGE_MONITOR
432 struct mem_size_stats {
433         unsigned long resident;
434         unsigned long shared_clean;
435         unsigned long shared_dirty;
436         unsigned long private_clean;
437         unsigned long private_dirty;
438         unsigned long referenced;
439         unsigned long anonymous;
440         unsigned long lazyfree;
441         unsigned long anonymous_thp;
442         unsigned long shmem_thp;
443         unsigned long swap;
444         unsigned long shared_hugetlb;
445         unsigned long private_hugetlb;
446         u64 pss;
447         u64 swap_pss;
448         bool check_shmem_swap;
449 };
450
451 static void smaps_account(struct mem_size_stats *mss, struct page *page,
452                 bool compound, bool young, bool dirty)
453 {
454         int i, nr = compound ? 1 << compound_order(page) : 1;
455         unsigned long size = nr * PAGE_SIZE;
456
457         if (PageAnon(page)) {
458                 mss->anonymous += size;
459                 if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
460                         mss->lazyfree += size;
461         }
462
463         mss->resident += size;
464         /* Accumulate the size in pages that have been accessed. */
465         if (young || page_is_young(page) || PageReferenced(page))
466                 mss->referenced += size;
467
468         /*
469          * page_count(page) == 1 guarantees the page is mapped exactly once.
470          * If any subpage of the compound page mapped with PTE it would elevate
471          * page_count().
472          */
473         if (page_count(page) == 1) {
474                 if (dirty || PageDirty(page))
475                         mss->private_dirty += size;
476                 else
477                         mss->private_clean += size;
478                 mss->pss += (u64)size << PSS_SHIFT;
479                 return;
480         }
481
482         for (i = 0; i < nr; i++, page++) {
483                 int mapcount = page_mapcount(page);
484
485                 if (mapcount >= 2) {
486                         if (dirty || PageDirty(page))
487                                 mss->shared_dirty += PAGE_SIZE;
488                         else
489                                 mss->shared_clean += PAGE_SIZE;
490                         mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
491                 } else {
492                         if (dirty || PageDirty(page))
493                                 mss->private_dirty += PAGE_SIZE;
494                         else
495                                 mss->private_clean += PAGE_SIZE;
496                         mss->pss += PAGE_SIZE << PSS_SHIFT;
497                 }
498         }
499 }
500
501 #ifdef CONFIG_SHMEM
502 static int smaps_pte_hole(unsigned long addr, unsigned long end,
503                 struct mm_walk *walk)
504 {
505         struct mem_size_stats *mss = walk->private;
506
507         mss->swap += shmem_partial_swap_usage(
508                         walk->vma->vm_file->f_mapping, addr, end);
509
510         return 0;
511 }
512 #endif
513
514 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
515                 struct mm_walk *walk)
516 {
517         struct mem_size_stats *mss = walk->private;
518         struct vm_area_struct *vma = walk->vma;
519         struct page *page = NULL;
520
521         if (pte_present(*pte)) {
522                 page = vm_normal_page(vma, addr, *pte);
523         } else if (is_swap_pte(*pte)) {
524                 swp_entry_t swpent = pte_to_swp_entry(*pte);
525
526                 if (!non_swap_entry(swpent)) {
527                         int mapcount;
528
529                         mss->swap += PAGE_SIZE;
530                         mapcount = swp_swapcount(swpent);
531                         if (mapcount >= 2) {
532                                 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
533
534                                 do_div(pss_delta, mapcount);
535                                 mss->swap_pss += pss_delta;
536                         } else {
537                                 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
538                         }
539                 } else if (is_migration_entry(swpent))
540                         page = migration_entry_to_page(swpent);
541         } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
542                                                         && pte_none(*pte))) {
543                 page = find_get_entry(vma->vm_file->f_mapping,
544                                                 linear_page_index(vma, addr));
545                 if (!page)
546                         return;
547
548                 if (radix_tree_exceptional_entry(page))
549                         mss->swap += PAGE_SIZE;
550                 else
551                         put_page(page);
552
553                 return;
554         }
555
556         if (!page)
557                 return;
558
559         smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte));
560 }
561
562 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
563 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
564                 struct mm_walk *walk)
565 {
566         struct mem_size_stats *mss = walk->private;
567         struct vm_area_struct *vma = walk->vma;
568         struct page *page;
569
570         /* FOLL_DUMP will return -EFAULT on huge zero page */
571         page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
572         if (IS_ERR_OR_NULL(page))
573                 return;
574         if (PageAnon(page))
575                 mss->anonymous_thp += HPAGE_PMD_SIZE;
576         else if (PageSwapBacked(page))
577                 mss->shmem_thp += HPAGE_PMD_SIZE;
578         else if (is_zone_device_page(page))
579                 /* pass */;
580         else
581                 VM_BUG_ON_PAGE(1, page);
582         smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd));
583 }
584 #else
585 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
586                 struct mm_walk *walk)
587 {
588 }
589 #endif
590
591 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
592                            struct mm_walk *walk)
593 {
594         struct vm_area_struct *vma = walk->vma;
595         pte_t *pte;
596         spinlock_t *ptl;
597
598         ptl = pmd_trans_huge_lock(pmd, vma);
599         if (ptl) {
600                 smaps_pmd_entry(pmd, addr, walk);
601                 spin_unlock(ptl);
602                 return 0;
603         }
604
605         if (pmd_trans_unstable(pmd))
606                 return 0;
607         /*
608          * The mmap_sem held all the way back in m_start() is what
609          * keeps khugepaged out of here and from collapsing things
610          * in here.
611          */
612         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
613         for (; addr != end; pte++, addr += PAGE_SIZE)
614                 smaps_pte_entry(pte, addr, walk);
615         pte_unmap_unlock(pte - 1, ptl);
616         cond_resched();
617         return 0;
618 }
619
620 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
621 {
622         /*
623          * Don't forget to update Documentation/ on changes.
624          */
625         static const char mnemonics[BITS_PER_LONG][2] = {
626                 /*
627                  * In case if we meet a flag we don't know about.
628                  */
629                 [0 ... (BITS_PER_LONG-1)] = "??",
630
631                 [ilog2(VM_READ)]        = "rd",
632                 [ilog2(VM_WRITE)]       = "wr",
633                 [ilog2(VM_EXEC)]        = "ex",
634                 [ilog2(VM_SHARED)]      = "sh",
635                 [ilog2(VM_MAYREAD)]     = "mr",
636                 [ilog2(VM_MAYWRITE)]    = "mw",
637                 [ilog2(VM_MAYEXEC)]     = "me",
638                 [ilog2(VM_MAYSHARE)]    = "ms",
639                 [ilog2(VM_GROWSDOWN)]   = "gd",
640                 [ilog2(VM_PFNMAP)]      = "pf",
641                 [ilog2(VM_DENYWRITE)]   = "dw",
642 #ifdef CONFIG_X86_INTEL_MPX
643                 [ilog2(VM_MPX)]         = "mp",
644 #endif
645                 [ilog2(VM_LOCKED)]      = "lo",
646                 [ilog2(VM_IO)]          = "io",
647                 [ilog2(VM_SEQ_READ)]    = "sr",
648                 [ilog2(VM_RAND_READ)]   = "rr",
649                 [ilog2(VM_DONTCOPY)]    = "dc",
650                 [ilog2(VM_DONTEXPAND)]  = "de",
651                 [ilog2(VM_ACCOUNT)]     = "ac",
652                 [ilog2(VM_NORESERVE)]   = "nr",
653                 [ilog2(VM_HUGETLB)]     = "ht",
654                 [ilog2(VM_ARCH_1)]      = "ar",
655                 [ilog2(VM_DONTDUMP)]    = "dd",
656 #ifdef CONFIG_MEM_SOFT_DIRTY
657                 [ilog2(VM_SOFTDIRTY)]   = "sd",
658 #endif
659                 [ilog2(VM_MIXEDMAP)]    = "mm",
660                 [ilog2(VM_HUGEPAGE)]    = "hg",
661                 [ilog2(VM_NOHUGEPAGE)]  = "nh",
662                 [ilog2(VM_MERGEABLE)]   = "mg",
663                 [ilog2(VM_UFFD_MISSING)]= "um",
664                 [ilog2(VM_UFFD_WP)]     = "uw",
665 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
666                 /* These come out via ProtectionKey: */
667                 [ilog2(VM_PKEY_BIT0)]   = "",
668                 [ilog2(VM_PKEY_BIT1)]   = "",
669                 [ilog2(VM_PKEY_BIT2)]   = "",
670                 [ilog2(VM_PKEY_BIT3)]   = "",
671 #endif
672         };
673         size_t i;
674
675         seq_puts(m, "VmFlags: ");
676         for (i = 0; i < BITS_PER_LONG; i++) {
677                 if (!mnemonics[i][0])
678                         continue;
679                 if (vma->vm_flags & (1UL << i)) {
680                         seq_printf(m, "%c%c ",
681                                    mnemonics[i][0], mnemonics[i][1]);
682                 }
683         }
684         seq_putc(m, '\n');
685 }
686
687 #ifdef CONFIG_HUGETLB_PAGE
688 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
689                                  unsigned long addr, unsigned long end,
690                                  struct mm_walk *walk)
691 {
692         struct mem_size_stats *mss = walk->private;
693         struct vm_area_struct *vma = walk->vma;
694         struct page *page = NULL;
695
696         if (pte_present(*pte)) {
697                 page = vm_normal_page(vma, addr, *pte);
698         } else if (is_swap_pte(*pte)) {
699                 swp_entry_t swpent = pte_to_swp_entry(*pte);
700
701                 if (is_migration_entry(swpent))
702                         page = migration_entry_to_page(swpent);
703         }
704         if (page) {
705                 int mapcount = page_mapcount(page);
706
707                 if (mapcount >= 2)
708                         mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
709                 else
710                         mss->private_hugetlb += huge_page_size(hstate_vma(vma));
711         }
712         return 0;
713 }
714 #endif /* HUGETLB_PAGE */
715
716 void __weak arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
717 {
718 }
719
720 static int show_smap(struct seq_file *m, void *v, int is_pid)
721 {
722         struct vm_area_struct *vma = v;
723         struct mem_size_stats mss;
724         struct mm_walk smaps_walk = {
725                 .pmd_entry = smaps_pte_range,
726 #ifdef CONFIG_HUGETLB_PAGE
727                 .hugetlb_entry = smaps_hugetlb_range,
728 #endif
729                 .mm = vma->vm_mm,
730                 .private = &mss,
731         };
732
733         memset(&mss, 0, sizeof mss);
734
735 #ifdef CONFIG_SHMEM
736         if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
737                 /*
738                  * For shared or readonly shmem mappings we know that all
739                  * swapped out pages belong to the shmem object, and we can
740                  * obtain the swap value much more efficiently. For private
741                  * writable mappings, we might have COW pages that are
742                  * not affected by the parent swapped out pages of the shmem
743                  * object, so we have to distinguish them during the page walk.
744                  * Unless we know that the shmem object (or the part mapped by
745                  * our VMA) has no swapped out pages at all.
746                  */
747                 unsigned long shmem_swapped = shmem_swap_usage(vma);
748
749                 if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
750                                         !(vma->vm_flags & VM_WRITE)) {
751                         mss.swap = shmem_swapped;
752                 } else {
753                         mss.check_shmem_swap = true;
754                         smaps_walk.pte_hole = smaps_pte_hole;
755                 }
756         }
757 #endif
758
759         /* mmap_sem is held in m_start */
760         walk_page_vma(vma, &smaps_walk);
761
762         show_map_vma(m, vma, is_pid);
763
764         seq_printf(m,
765                    "Size:           %8lu kB\n"
766                    "Rss:            %8lu kB\n"
767                    "Pss:            %8lu kB\n"
768                    "Shared_Clean:   %8lu kB\n"
769                    "Shared_Dirty:   %8lu kB\n"
770                    "Private_Clean:  %8lu kB\n"
771                    "Private_Dirty:  %8lu kB\n"
772                    "Referenced:     %8lu kB\n"
773                    "Anonymous:      %8lu kB\n"
774                    "LazyFree:       %8lu kB\n"
775                    "AnonHugePages:  %8lu kB\n"
776                    "ShmemPmdMapped: %8lu kB\n"
777                    "Shared_Hugetlb: %8lu kB\n"
778                    "Private_Hugetlb: %7lu kB\n"
779                    "Swap:           %8lu kB\n"
780                    "SwapPss:        %8lu kB\n"
781                    "KernelPageSize: %8lu kB\n"
782                    "MMUPageSize:    %8lu kB\n"
783                    "Locked:         %8lu kB\n",
784                    (vma->vm_end - vma->vm_start) >> 10,
785                    mss.resident >> 10,
786                    (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
787                    mss.shared_clean  >> 10,
788                    mss.shared_dirty  >> 10,
789                    mss.private_clean >> 10,
790                    mss.private_dirty >> 10,
791                    mss.referenced >> 10,
792                    mss.anonymous >> 10,
793                    mss.lazyfree >> 10,
794                    mss.anonymous_thp >> 10,
795                    mss.shmem_thp >> 10,
796                    mss.shared_hugetlb >> 10,
797                    mss.private_hugetlb >> 10,
798                    mss.swap >> 10,
799                    (unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)),
800                    vma_kernel_pagesize(vma) >> 10,
801                    vma_mmu_pagesize(vma) >> 10,
802                    (vma->vm_flags & VM_LOCKED) ?
803                         (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
804
805         arch_show_smap(m, vma);
806         show_smap_vma_flags(m, vma);
807         m_cache_vma(m, vma);
808         return 0;
809 }
810
811 static int show_pid_smap(struct seq_file *m, void *v)
812 {
813         return show_smap(m, v, 1);
814 }
815
816 static int show_tid_smap(struct seq_file *m, void *v)
817 {
818         return show_smap(m, v, 0);
819 }
820
821 static const struct seq_operations proc_pid_smaps_op = {
822         .start  = m_start,
823         .next   = m_next,
824         .stop   = m_stop,
825         .show   = show_pid_smap
826 };
827
828 static const struct seq_operations proc_tid_smaps_op = {
829         .start  = m_start,
830         .next   = m_next,
831         .stop   = m_stop,
832         .show   = show_tid_smap
833 };
834
835 static int pid_smaps_open(struct inode *inode, struct file *file)
836 {
837         return do_maps_open(inode, file, &proc_pid_smaps_op);
838 }
839
840 static int tid_smaps_open(struct inode *inode, struct file *file)
841 {
842         return do_maps_open(inode, file, &proc_tid_smaps_op);
843 }
844
845 const struct file_operations proc_pid_smaps_operations = {
846         .open           = pid_smaps_open,
847         .read           = seq_read,
848         .llseek         = seq_lseek,
849         .release        = proc_map_release,
850 };
851
852 const struct file_operations proc_tid_smaps_operations = {
853         .open           = tid_smaps_open,
854         .read           = seq_read,
855         .llseek         = seq_lseek,
856         .release        = proc_map_release,
857 };
858
859 enum clear_refs_types {
860         CLEAR_REFS_ALL = 1,
861         CLEAR_REFS_ANON,
862         CLEAR_REFS_MAPPED,
863         CLEAR_REFS_SOFT_DIRTY,
864         CLEAR_REFS_MM_HIWATER_RSS,
865         CLEAR_REFS_LAST,
866 };
867
868 struct clear_refs_private {
869         enum clear_refs_types type;
870 };
871
872 #ifdef CONFIG_MEM_SOFT_DIRTY
873 static inline void clear_soft_dirty(struct vm_area_struct *vma,
874                 unsigned long addr, pte_t *pte)
875 {
876         /*
877          * The soft-dirty tracker uses #PF-s to catch writes
878          * to pages, so write-protect the pte as well. See the
879          * Documentation/vm/soft-dirty.txt for full description
880          * of how soft-dirty works.
881          */
882         pte_t ptent = *pte;
883
884         if (pte_present(ptent)) {
885                 ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
886                 ptent = pte_wrprotect(ptent);
887                 ptent = pte_clear_soft_dirty(ptent);
888                 ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
889         } else if (is_swap_pte(ptent)) {
890                 ptent = pte_swp_clear_soft_dirty(ptent);
891                 set_pte_at(vma->vm_mm, addr, pte, ptent);
892         }
893 }
894 #else
895 static inline void clear_soft_dirty(struct vm_area_struct *vma,
896                 unsigned long addr, pte_t *pte)
897 {
898 }
899 #endif
900
901 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
902 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
903                 unsigned long addr, pmd_t *pmdp)
904 {
905         pmd_t pmd = *pmdp;
906
907         /* See comment in change_huge_pmd() */
908         pmdp_invalidate(vma, addr, pmdp);
909         if (pmd_dirty(*pmdp))
910                 pmd = pmd_mkdirty(pmd);
911         if (pmd_young(*pmdp))
912                 pmd = pmd_mkyoung(pmd);
913
914         pmd = pmd_wrprotect(pmd);
915         pmd = pmd_clear_soft_dirty(pmd);
916
917         set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
918 }
919 #else
920 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
921                 unsigned long addr, pmd_t *pmdp)
922 {
923 }
924 #endif
925
926 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
927                                 unsigned long end, struct mm_walk *walk)
928 {
929         struct clear_refs_private *cp = walk->private;
930         struct vm_area_struct *vma = walk->vma;
931         pte_t *pte, ptent;
932         spinlock_t *ptl;
933         struct page *page;
934
935         ptl = pmd_trans_huge_lock(pmd, vma);
936         if (ptl) {
937                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
938                         clear_soft_dirty_pmd(vma, addr, pmd);
939                         goto out;
940                 }
941
942                 page = pmd_page(*pmd);
943
944                 /* Clear accessed and referenced bits. */
945                 pmdp_test_and_clear_young(vma, addr, pmd);
946                 test_and_clear_page_young(page);
947                 ClearPageReferenced(page);
948 out:
949                 spin_unlock(ptl);
950                 return 0;
951         }
952
953         if (pmd_trans_unstable(pmd))
954                 return 0;
955
956         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
957         for (; addr != end; pte++, addr += PAGE_SIZE) {
958                 ptent = *pte;
959
960                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
961                         clear_soft_dirty(vma, addr, pte);
962                         continue;
963                 }
964
965                 if (!pte_present(ptent))
966                         continue;
967
968                 page = vm_normal_page(vma, addr, ptent);
969                 if (!page)
970                         continue;
971
972                 /* Clear accessed and referenced bits. */
973                 ptep_test_and_clear_young(vma, addr, pte);
974                 test_and_clear_page_young(page);
975                 ClearPageReferenced(page);
976         }
977         pte_unmap_unlock(pte - 1, ptl);
978         cond_resched();
979         return 0;
980 }
981
982 static int clear_refs_test_walk(unsigned long start, unsigned long end,
983                                 struct mm_walk *walk)
984 {
985         struct clear_refs_private *cp = walk->private;
986         struct vm_area_struct *vma = walk->vma;
987
988         if (vma->vm_flags & VM_PFNMAP)
989                 return 1;
990
991         /*
992          * Writing 1 to /proc/pid/clear_refs affects all pages.
993          * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
994          * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
995          * Writing 4 to /proc/pid/clear_refs affects all pages.
996          */
997         if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
998                 return 1;
999         if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1000                 return 1;
1001         return 0;
1002 }
1003
1004 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1005                                 size_t count, loff_t *ppos)
1006 {
1007         struct task_struct *task;
1008         char buffer[PROC_NUMBUF];
1009         struct mm_struct *mm;
1010         struct vm_area_struct *vma;
1011         enum clear_refs_types type;
1012         struct mmu_gather tlb;
1013         int itype;
1014         int rv;
1015
1016         memset(buffer, 0, sizeof(buffer));
1017         if (count > sizeof(buffer) - 1)
1018                 count = sizeof(buffer) - 1;
1019         if (copy_from_user(buffer, buf, count))
1020                 return -EFAULT;
1021         rv = kstrtoint(strstrip(buffer), 10, &itype);
1022         if (rv < 0)
1023                 return rv;
1024         type = (enum clear_refs_types)itype;
1025         if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1026                 return -EINVAL;
1027
1028         task = get_proc_task(file_inode(file));
1029         if (!task)
1030                 return -ESRCH;
1031         mm = get_task_mm(task);
1032         if (mm) {
1033                 struct clear_refs_private cp = {
1034                         .type = type,
1035                 };
1036                 struct mm_walk clear_refs_walk = {
1037                         .pmd_entry = clear_refs_pte_range,
1038                         .test_walk = clear_refs_test_walk,
1039                         .mm = mm,
1040                         .private = &cp,
1041                 };
1042
1043                 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1044                         if (down_write_killable(&mm->mmap_sem)) {
1045                                 count = -EINTR;
1046                                 goto out_mm;
1047                         }
1048
1049                         /*
1050                          * Writing 5 to /proc/pid/clear_refs resets the peak
1051                          * resident set size to this mm's current rss value.
1052                          */
1053                         reset_mm_hiwater_rss(mm);
1054                         up_write(&mm->mmap_sem);
1055                         goto out_mm;
1056                 }
1057
1058                 down_read(&mm->mmap_sem);
1059                 tlb_gather_mmu(&tlb, mm, 0, -1);
1060                 if (type == CLEAR_REFS_SOFT_DIRTY) {
1061                         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1062                                 if (!(vma->vm_flags & VM_SOFTDIRTY))
1063                                         continue;
1064                                 up_read(&mm->mmap_sem);
1065                                 if (down_write_killable(&mm->mmap_sem)) {
1066                                         count = -EINTR;
1067                                         goto out_mm;
1068                                 }
1069                                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1070                                         vma->vm_flags &= ~VM_SOFTDIRTY;
1071                                         vma_set_page_prot(vma);
1072                                 }
1073                                 downgrade_write(&mm->mmap_sem);
1074                                 break;
1075                         }
1076                         mmu_notifier_invalidate_range_start(mm, 0, -1);
1077                 }
1078                 walk_page_range(0, mm->highest_vm_end, &clear_refs_walk);
1079                 if (type == CLEAR_REFS_SOFT_DIRTY)
1080                         mmu_notifier_invalidate_range_end(mm, 0, -1);
1081                 tlb_finish_mmu(&tlb, 0, -1);
1082                 up_read(&mm->mmap_sem);
1083 out_mm:
1084                 mmput(mm);
1085         }
1086         put_task_struct(task);
1087
1088         return count;
1089 }
1090
1091 const struct file_operations proc_clear_refs_operations = {
1092         .write          = clear_refs_write,
1093         .llseek         = noop_llseek,
1094 };
1095
1096 typedef struct {
1097         u64 pme;
1098 } pagemap_entry_t;
1099
1100 struct pagemapread {
1101         int pos, len;           /* units: PM_ENTRY_BYTES, not bytes */
1102         pagemap_entry_t *buffer;
1103         bool show_pfn;
1104 };
1105
1106 #define PAGEMAP_WALK_SIZE       (PMD_SIZE)
1107 #define PAGEMAP_WALK_MASK       (PMD_MASK)
1108
1109 #define PM_ENTRY_BYTES          sizeof(pagemap_entry_t)
1110 #define PM_PFRAME_BITS          55
1111 #define PM_PFRAME_MASK          GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1112 #define PM_SOFT_DIRTY           BIT_ULL(55)
1113 #define PM_MMAP_EXCLUSIVE       BIT_ULL(56)
1114 #define PM_FILE                 BIT_ULL(61)
1115 #define PM_SWAP                 BIT_ULL(62)
1116 #define PM_PRESENT              BIT_ULL(63)
1117
1118 #define PM_END_OF_BUFFER    1
1119
1120 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1121 {
1122         return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1123 }
1124
1125 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1126                           struct pagemapread *pm)
1127 {
1128         pm->buffer[pm->pos++] = *pme;
1129         if (pm->pos >= pm->len)
1130                 return PM_END_OF_BUFFER;
1131         return 0;
1132 }
1133
1134 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1135                                 struct mm_walk *walk)
1136 {
1137         struct pagemapread *pm = walk->private;
1138         unsigned long addr = start;
1139         int err = 0;
1140
1141         while (addr < end) {
1142                 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1143                 pagemap_entry_t pme = make_pme(0, 0);
1144                 /* End of address space hole, which we mark as non-present. */
1145                 unsigned long hole_end;
1146
1147                 if (vma)
1148                         hole_end = min(end, vma->vm_start);
1149                 else
1150                         hole_end = end;
1151
1152                 for (; addr < hole_end; addr += PAGE_SIZE) {
1153                         err = add_to_pagemap(addr, &pme, pm);
1154                         if (err)
1155                                 goto out;
1156                 }
1157
1158                 if (!vma)
1159                         break;
1160
1161                 /* Addresses in the VMA. */
1162                 if (vma->vm_flags & VM_SOFTDIRTY)
1163                         pme = make_pme(0, PM_SOFT_DIRTY);
1164                 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1165                         err = add_to_pagemap(addr, &pme, pm);
1166                         if (err)
1167                                 goto out;
1168                 }
1169         }
1170 out:
1171         return err;
1172 }
1173
1174 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1175                 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1176 {
1177         u64 frame = 0, flags = 0;
1178         struct page *page = NULL;
1179
1180         if (pte_present(pte)) {
1181                 if (pm->show_pfn)
1182                         frame = pte_pfn(pte);
1183                 flags |= PM_PRESENT;
1184                 page = vm_normal_page(vma, addr, pte);
1185                 if (pte_soft_dirty(pte))
1186                         flags |= PM_SOFT_DIRTY;
1187         } else if (is_swap_pte(pte)) {
1188                 swp_entry_t entry;
1189                 if (pte_swp_soft_dirty(pte))
1190                         flags |= PM_SOFT_DIRTY;
1191                 entry = pte_to_swp_entry(pte);
1192                 frame = swp_type(entry) |
1193                         (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1194                 flags |= PM_SWAP;
1195                 if (is_migration_entry(entry))
1196                         page = migration_entry_to_page(entry);
1197         }
1198
1199         if (page && !PageAnon(page))
1200                 flags |= PM_FILE;
1201         if (page && page_mapcount(page) == 1)
1202                 flags |= PM_MMAP_EXCLUSIVE;
1203         if (vma->vm_flags & VM_SOFTDIRTY)
1204                 flags |= PM_SOFT_DIRTY;
1205
1206         return make_pme(frame, flags);
1207 }
1208
1209 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1210                              struct mm_walk *walk)
1211 {
1212         struct vm_area_struct *vma = walk->vma;
1213         struct pagemapread *pm = walk->private;
1214         spinlock_t *ptl;
1215         pte_t *pte, *orig_pte;
1216         int err = 0;
1217
1218 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1219         ptl = pmd_trans_huge_lock(pmdp, vma);
1220         if (ptl) {
1221                 u64 flags = 0, frame = 0;
1222                 pmd_t pmd = *pmdp;
1223
1224                 if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd))
1225                         flags |= PM_SOFT_DIRTY;
1226
1227                 /*
1228                  * Currently pmd for thp is always present because thp
1229                  * can not be swapped-out, migrated, or HWPOISONed
1230                  * (split in such cases instead.)
1231                  * This if-check is just to prepare for future implementation.
1232                  */
1233                 if (pmd_present(pmd)) {
1234                         struct page *page = pmd_page(pmd);
1235
1236                         if (page_mapcount(page) == 1)
1237                                 flags |= PM_MMAP_EXCLUSIVE;
1238
1239                         flags |= PM_PRESENT;
1240                         if (pm->show_pfn)
1241                                 frame = pmd_pfn(pmd) +
1242                                         ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1243                 }
1244
1245                 for (; addr != end; addr += PAGE_SIZE) {
1246                         pagemap_entry_t pme = make_pme(frame, flags);
1247
1248                         err = add_to_pagemap(addr, &pme, pm);
1249                         if (err)
1250                                 break;
1251                         if (pm->show_pfn && (flags & PM_PRESENT))
1252                                 frame++;
1253                 }
1254                 spin_unlock(ptl);
1255                 return err;
1256         }
1257
1258         if (pmd_trans_unstable(pmdp))
1259                 return 0;
1260 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1261
1262         /*
1263          * We can assume that @vma always points to a valid one and @end never
1264          * goes beyond vma->vm_end.
1265          */
1266         orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1267         for (; addr < end; pte++, addr += PAGE_SIZE) {
1268                 pagemap_entry_t pme;
1269
1270                 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1271                 err = add_to_pagemap(addr, &pme, pm);
1272                 if (err)
1273                         break;
1274         }
1275         pte_unmap_unlock(orig_pte, ptl);
1276
1277         cond_resched();
1278
1279         return err;
1280 }
1281
1282 #ifdef CONFIG_HUGETLB_PAGE
1283 /* This function walks within one hugetlb entry in the single call */
1284 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1285                                  unsigned long addr, unsigned long end,
1286                                  struct mm_walk *walk)
1287 {
1288         struct pagemapread *pm = walk->private;
1289         struct vm_area_struct *vma = walk->vma;
1290         u64 flags = 0, frame = 0;
1291         int err = 0;
1292         pte_t pte;
1293
1294         if (vma->vm_flags & VM_SOFTDIRTY)
1295                 flags |= PM_SOFT_DIRTY;
1296
1297         pte = huge_ptep_get(ptep);
1298         if (pte_present(pte)) {
1299                 struct page *page = pte_page(pte);
1300
1301                 if (!PageAnon(page))
1302                         flags |= PM_FILE;
1303
1304                 if (page_mapcount(page) == 1)
1305                         flags |= PM_MMAP_EXCLUSIVE;
1306
1307                 flags |= PM_PRESENT;
1308                 if (pm->show_pfn)
1309                         frame = pte_pfn(pte) +
1310                                 ((addr & ~hmask) >> PAGE_SHIFT);
1311         }
1312
1313         for (; addr != end; addr += PAGE_SIZE) {
1314                 pagemap_entry_t pme = make_pme(frame, flags);
1315
1316                 err = add_to_pagemap(addr, &pme, pm);
1317                 if (err)
1318                         return err;
1319                 if (pm->show_pfn && (flags & PM_PRESENT))
1320                         frame++;
1321         }
1322
1323         cond_resched();
1324
1325         return err;
1326 }
1327 #endif /* HUGETLB_PAGE */
1328
1329 /*
1330  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1331  *
1332  * For each page in the address space, this file contains one 64-bit entry
1333  * consisting of the following:
1334  *
1335  * Bits 0-54  page frame number (PFN) if present
1336  * Bits 0-4   swap type if swapped
1337  * Bits 5-54  swap offset if swapped
1338  * Bit  55    pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
1339  * Bit  56    page exclusively mapped
1340  * Bits 57-60 zero
1341  * Bit  61    page is file-page or shared-anon
1342  * Bit  62    page swapped
1343  * Bit  63    page present
1344  *
1345  * If the page is not present but in swap, then the PFN contains an
1346  * encoding of the swap file number and the page's offset into the
1347  * swap. Unmapped pages return a null PFN. This allows determining
1348  * precisely which pages are mapped (or in swap) and comparing mapped
1349  * pages between processes.
1350  *
1351  * Efficient users of this interface will use /proc/pid/maps to
1352  * determine which areas of memory are actually mapped and llseek to
1353  * skip over unmapped regions.
1354  */
1355 static ssize_t pagemap_read(struct file *file, char __user *buf,
1356                             size_t count, loff_t *ppos)
1357 {
1358         struct mm_struct *mm = file->private_data;
1359         struct pagemapread pm;
1360         struct mm_walk pagemap_walk = {};
1361         unsigned long src;
1362         unsigned long svpfn;
1363         unsigned long start_vaddr;
1364         unsigned long end_vaddr;
1365         int ret = 0, copied = 0;
1366
1367         if (!mm || !mmget_not_zero(mm))
1368                 goto out;
1369
1370         ret = -EINVAL;
1371         /* file position must be aligned */
1372         if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1373                 goto out_mm;
1374
1375         ret = 0;
1376         if (!count)
1377                 goto out_mm;
1378
1379         /* do not disclose physical addresses: attack vector */
1380         pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1381
1382         pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1383         pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1384         ret = -ENOMEM;
1385         if (!pm.buffer)
1386                 goto out_mm;
1387
1388         pagemap_walk.pmd_entry = pagemap_pmd_range;
1389         pagemap_walk.pte_hole = pagemap_pte_hole;
1390 #ifdef CONFIG_HUGETLB_PAGE
1391         pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1392 #endif
1393         pagemap_walk.mm = mm;
1394         pagemap_walk.private = &pm;
1395
1396         src = *ppos;
1397         svpfn = src / PM_ENTRY_BYTES;
1398         start_vaddr = svpfn << PAGE_SHIFT;
1399         end_vaddr = mm->task_size;
1400
1401         /* watch out for wraparound */
1402         if (svpfn > mm->task_size >> PAGE_SHIFT)
1403                 start_vaddr = end_vaddr;
1404
1405         /*
1406          * The odds are that this will stop walking way
1407          * before end_vaddr, because the length of the
1408          * user buffer is tracked in "pm", and the walk
1409          * will stop when we hit the end of the buffer.
1410          */
1411         ret = 0;
1412         while (count && (start_vaddr < end_vaddr)) {
1413                 int len;
1414                 unsigned long end;
1415
1416                 pm.pos = 0;
1417                 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1418                 /* overflow ? */
1419                 if (end < start_vaddr || end > end_vaddr)
1420                         end = end_vaddr;
1421                 down_read(&mm->mmap_sem);
1422                 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1423                 up_read(&mm->mmap_sem);
1424                 start_vaddr = end;
1425
1426                 len = min(count, PM_ENTRY_BYTES * pm.pos);
1427                 if (copy_to_user(buf, pm.buffer, len)) {
1428                         ret = -EFAULT;
1429                         goto out_free;
1430                 }
1431                 copied += len;
1432                 buf += len;
1433                 count -= len;
1434         }
1435         *ppos += copied;
1436         if (!ret || ret == PM_END_OF_BUFFER)
1437                 ret = copied;
1438
1439 out_free:
1440         kfree(pm.buffer);
1441 out_mm:
1442         mmput(mm);
1443 out:
1444         return ret;
1445 }
1446
1447 static int pagemap_open(struct inode *inode, struct file *file)
1448 {
1449         struct mm_struct *mm;
1450
1451         mm = proc_mem_open(inode, PTRACE_MODE_READ);
1452         if (IS_ERR(mm))
1453                 return PTR_ERR(mm);
1454         file->private_data = mm;
1455         return 0;
1456 }
1457
1458 static int pagemap_release(struct inode *inode, struct file *file)
1459 {
1460         struct mm_struct *mm = file->private_data;
1461
1462         if (mm)
1463                 mmdrop(mm);
1464         return 0;
1465 }
1466
1467 const struct file_operations proc_pagemap_operations = {
1468         .llseek         = mem_lseek, /* borrow this */
1469         .read           = pagemap_read,
1470         .open           = pagemap_open,
1471         .release        = pagemap_release,
1472 };
1473 #endif /* CONFIG_PROC_PAGE_MONITOR */
1474
1475 #ifdef CONFIG_NUMA
1476
1477 struct numa_maps {
1478         unsigned long pages;
1479         unsigned long anon;
1480         unsigned long active;
1481         unsigned long writeback;
1482         unsigned long mapcount_max;
1483         unsigned long dirty;
1484         unsigned long swapcache;
1485         unsigned long node[MAX_NUMNODES];
1486 };
1487
1488 struct numa_maps_private {
1489         struct proc_maps_private proc_maps;
1490         struct numa_maps md;
1491 };
1492
1493 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1494                         unsigned long nr_pages)
1495 {
1496         int count = page_mapcount(page);
1497
1498         md->pages += nr_pages;
1499         if (pte_dirty || PageDirty(page))
1500                 md->dirty += nr_pages;
1501
1502         if (PageSwapCache(page))
1503                 md->swapcache += nr_pages;
1504
1505         if (PageActive(page) || PageUnevictable(page))
1506                 md->active += nr_pages;
1507
1508         if (PageWriteback(page))
1509                 md->writeback += nr_pages;
1510
1511         if (PageAnon(page))
1512                 md->anon += nr_pages;
1513
1514         if (count > md->mapcount_max)
1515                 md->mapcount_max = count;
1516
1517         md->node[page_to_nid(page)] += nr_pages;
1518 }
1519
1520 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1521                 unsigned long addr)
1522 {
1523         struct page *page;
1524         int nid;
1525
1526         if (!pte_present(pte))
1527                 return NULL;
1528
1529         page = vm_normal_page(vma, addr, pte);
1530         if (!page)
1531                 return NULL;
1532
1533         if (PageReserved(page))
1534                 return NULL;
1535
1536         nid = page_to_nid(page);
1537         if (!node_isset(nid, node_states[N_MEMORY]))
1538                 return NULL;
1539
1540         return page;
1541 }
1542
1543 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1544 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1545                                               struct vm_area_struct *vma,
1546                                               unsigned long addr)
1547 {
1548         struct page *page;
1549         int nid;
1550
1551         if (!pmd_present(pmd))
1552                 return NULL;
1553
1554         page = vm_normal_page_pmd(vma, addr, pmd);
1555         if (!page)
1556                 return NULL;
1557
1558         if (PageReserved(page))
1559                 return NULL;
1560
1561         nid = page_to_nid(page);
1562         if (!node_isset(nid, node_states[N_MEMORY]))
1563                 return NULL;
1564
1565         return page;
1566 }
1567 #endif
1568
1569 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1570                 unsigned long end, struct mm_walk *walk)
1571 {
1572         struct numa_maps *md = walk->private;
1573         struct vm_area_struct *vma = walk->vma;
1574         spinlock_t *ptl;
1575         pte_t *orig_pte;
1576         pte_t *pte;
1577
1578 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1579         ptl = pmd_trans_huge_lock(pmd, vma);
1580         if (ptl) {
1581                 struct page *page;
1582
1583                 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1584                 if (page)
1585                         gather_stats(page, md, pmd_dirty(*pmd),
1586                                      HPAGE_PMD_SIZE/PAGE_SIZE);
1587                 spin_unlock(ptl);
1588                 return 0;
1589         }
1590
1591         if (pmd_trans_unstable(pmd))
1592                 return 0;
1593 #endif
1594         orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1595         do {
1596                 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1597                 if (!page)
1598                         continue;
1599                 gather_stats(page, md, pte_dirty(*pte), 1);
1600
1601         } while (pte++, addr += PAGE_SIZE, addr != end);
1602         pte_unmap_unlock(orig_pte, ptl);
1603         cond_resched();
1604         return 0;
1605 }
1606 #ifdef CONFIG_HUGETLB_PAGE
1607 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1608                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1609 {
1610         pte_t huge_pte = huge_ptep_get(pte);
1611         struct numa_maps *md;
1612         struct page *page;
1613
1614         if (!pte_present(huge_pte))
1615                 return 0;
1616
1617         page = pte_page(huge_pte);
1618         if (!page)
1619                 return 0;
1620
1621         md = walk->private;
1622         gather_stats(page, md, pte_dirty(huge_pte), 1);
1623         return 0;
1624 }
1625
1626 #else
1627 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1628                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1629 {
1630         return 0;
1631 }
1632 #endif
1633
1634 /*
1635  * Display pages allocated per node and memory policy via /proc.
1636  */
1637 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1638 {
1639         struct numa_maps_private *numa_priv = m->private;
1640         struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1641         struct vm_area_struct *vma = v;
1642         struct numa_maps *md = &numa_priv->md;
1643         struct file *file = vma->vm_file;
1644         struct mm_struct *mm = vma->vm_mm;
1645         struct mm_walk walk = {
1646                 .hugetlb_entry = gather_hugetlb_stats,
1647                 .pmd_entry = gather_pte_stats,
1648                 .private = md,
1649                 .mm = mm,
1650         };
1651         struct mempolicy *pol;
1652         char buffer[64];
1653         int nid;
1654
1655         if (!mm)
1656                 return 0;
1657
1658         /* Ensure we start with an empty set of numa_maps statistics. */
1659         memset(md, 0, sizeof(*md));
1660
1661         pol = __get_vma_policy(vma, vma->vm_start);
1662         if (pol) {
1663                 mpol_to_str(buffer, sizeof(buffer), pol);
1664                 mpol_cond_put(pol);
1665         } else {
1666                 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1667         }
1668
1669         seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1670
1671         if (file) {
1672                 seq_puts(m, " file=");
1673                 seq_file_path(m, file, "\n\t= ");
1674         } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1675                 seq_puts(m, " heap");
1676         } else if (is_stack(proc_priv, vma)) {
1677                 seq_puts(m, " stack");
1678         }
1679
1680         if (is_vm_hugetlb_page(vma))
1681                 seq_puts(m, " huge");
1682
1683         /* mmap_sem is held by m_start */
1684         walk_page_vma(vma, &walk);
1685
1686         if (!md->pages)
1687                 goto out;
1688
1689         if (md->anon)
1690                 seq_printf(m, " anon=%lu", md->anon);
1691
1692         if (md->dirty)
1693                 seq_printf(m, " dirty=%lu", md->dirty);
1694
1695         if (md->pages != md->anon && md->pages != md->dirty)
1696                 seq_printf(m, " mapped=%lu", md->pages);
1697
1698         if (md->mapcount_max > 1)
1699                 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1700
1701         if (md->swapcache)
1702                 seq_printf(m, " swapcache=%lu", md->swapcache);
1703
1704         if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1705                 seq_printf(m, " active=%lu", md->active);
1706
1707         if (md->writeback)
1708                 seq_printf(m, " writeback=%lu", md->writeback);
1709
1710         for_each_node_state(nid, N_MEMORY)
1711                 if (md->node[nid])
1712                         seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1713
1714         seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1715 out:
1716         seq_putc(m, '\n');
1717         m_cache_vma(m, vma);
1718         return 0;
1719 }
1720
1721 static int show_pid_numa_map(struct seq_file *m, void *v)
1722 {
1723         return show_numa_map(m, v, 1);
1724 }
1725
1726 static int show_tid_numa_map(struct seq_file *m, void *v)
1727 {
1728         return show_numa_map(m, v, 0);
1729 }
1730
1731 static const struct seq_operations proc_pid_numa_maps_op = {
1732         .start  = m_start,
1733         .next   = m_next,
1734         .stop   = m_stop,
1735         .show   = show_pid_numa_map,
1736 };
1737
1738 static const struct seq_operations proc_tid_numa_maps_op = {
1739         .start  = m_start,
1740         .next   = m_next,
1741         .stop   = m_stop,
1742         .show   = show_tid_numa_map,
1743 };
1744
1745 static int numa_maps_open(struct inode *inode, struct file *file,
1746                           const struct seq_operations *ops)
1747 {
1748         return proc_maps_open(inode, file, ops,
1749                                 sizeof(struct numa_maps_private));
1750 }
1751
1752 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1753 {
1754         return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1755 }
1756
1757 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1758 {
1759         return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1760 }
1761
1762 const struct file_operations proc_pid_numa_maps_operations = {
1763         .open           = pid_numa_maps_open,
1764         .read           = seq_read,
1765         .llseek         = seq_lseek,
1766         .release        = proc_map_release,
1767 };
1768
1769 const struct file_operations proc_tid_numa_maps_operations = {
1770         .open           = tid_numa_maps_open,
1771         .read           = seq_read,
1772         .llseek         = seq_lseek,
1773         .release        = proc_map_release,
1774 };
1775 #endif /* CONFIG_NUMA */