Merge branch 'xarray' of git://git.infradead.org/users/willy/linux-dax
[sfrench/cifs-2.6.git] / fs / proc / task_mmu.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/mm.h>
3 #include <linux/vmacache.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/seq_file.h>
8 #include <linux/highmem.h>
9 #include <linux/ptrace.h>
10 #include <linux/slab.h>
11 #include <linux/pagemap.h>
12 #include <linux/mempolicy.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/sched/mm.h>
16 #include <linux/swapops.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/page_idle.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/uaccess.h>
21 #include <linux/pkeys.h>
22
23 #include <asm/elf.h>
24 #include <asm/tlb.h>
25 #include <asm/tlbflush.h>
26 #include "internal.h"
27
28 #define SEQ_PUT_DEC(str, val) \
29                 seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
30 void task_mem(struct seq_file *m, struct mm_struct *mm)
31 {
32         unsigned long text, lib, swap, anon, file, shmem;
33         unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
34
35         anon = get_mm_counter(mm, MM_ANONPAGES);
36         file = get_mm_counter(mm, MM_FILEPAGES);
37         shmem = get_mm_counter(mm, MM_SHMEMPAGES);
38
39         /*
40          * Note: to minimize their overhead, mm maintains hiwater_vm and
41          * hiwater_rss only when about to *lower* total_vm or rss.  Any
42          * collector of these hiwater stats must therefore get total_vm
43          * and rss too, which will usually be the higher.  Barriers? not
44          * worth the effort, such snapshots can always be inconsistent.
45          */
46         hiwater_vm = total_vm = mm->total_vm;
47         if (hiwater_vm < mm->hiwater_vm)
48                 hiwater_vm = mm->hiwater_vm;
49         hiwater_rss = total_rss = anon + file + shmem;
50         if (hiwater_rss < mm->hiwater_rss)
51                 hiwater_rss = mm->hiwater_rss;
52
53         /* split executable areas between text and lib */
54         text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
55         text = min(text, mm->exec_vm << PAGE_SHIFT);
56         lib = (mm->exec_vm << PAGE_SHIFT) - text;
57
58         swap = get_mm_counter(mm, MM_SWAPENTS);
59         SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
60         SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
61         SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
62         SEQ_PUT_DEC(" kB\nVmPin:\t", mm->pinned_vm);
63         SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
64         SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
65         SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
66         SEQ_PUT_DEC(" kB\nRssFile:\t", file);
67         SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
68         SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
69         SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
70         seq_put_decimal_ull_width(m,
71                     " kB\nVmExe:\t", text >> 10, 8);
72         seq_put_decimal_ull_width(m,
73                     " kB\nVmLib:\t", lib >> 10, 8);
74         seq_put_decimal_ull_width(m,
75                     " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
76         SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
77         seq_puts(m, " kB\n");
78         hugetlb_report_usage(m, mm);
79 }
80 #undef SEQ_PUT_DEC
81
82 unsigned long task_vsize(struct mm_struct *mm)
83 {
84         return PAGE_SIZE * mm->total_vm;
85 }
86
87 unsigned long task_statm(struct mm_struct *mm,
88                          unsigned long *shared, unsigned long *text,
89                          unsigned long *data, unsigned long *resident)
90 {
91         *shared = get_mm_counter(mm, MM_FILEPAGES) +
92                         get_mm_counter(mm, MM_SHMEMPAGES);
93         *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
94                                                                 >> PAGE_SHIFT;
95         *data = mm->data_vm + mm->stack_vm;
96         *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
97         return mm->total_vm;
98 }
99
100 #ifdef CONFIG_NUMA
101 /*
102  * Save get_task_policy() for show_numa_map().
103  */
104 static void hold_task_mempolicy(struct proc_maps_private *priv)
105 {
106         struct task_struct *task = priv->task;
107
108         task_lock(task);
109         priv->task_mempolicy = get_task_policy(task);
110         mpol_get(priv->task_mempolicy);
111         task_unlock(task);
112 }
113 static void release_task_mempolicy(struct proc_maps_private *priv)
114 {
115         mpol_put(priv->task_mempolicy);
116 }
117 #else
118 static void hold_task_mempolicy(struct proc_maps_private *priv)
119 {
120 }
121 static void release_task_mempolicy(struct proc_maps_private *priv)
122 {
123 }
124 #endif
125
126 static void vma_stop(struct proc_maps_private *priv)
127 {
128         struct mm_struct *mm = priv->mm;
129
130         release_task_mempolicy(priv);
131         up_read(&mm->mmap_sem);
132         mmput(mm);
133 }
134
135 static struct vm_area_struct *
136 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
137 {
138         if (vma == priv->tail_vma)
139                 return NULL;
140         return vma->vm_next ?: priv->tail_vma;
141 }
142
143 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
144 {
145         if (m->count < m->size) /* vma is copied successfully */
146                 m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL;
147 }
148
149 static void *m_start(struct seq_file *m, loff_t *ppos)
150 {
151         struct proc_maps_private *priv = m->private;
152         unsigned long last_addr = m->version;
153         struct mm_struct *mm;
154         struct vm_area_struct *vma;
155         unsigned int pos = *ppos;
156
157         /* See m_cache_vma(). Zero at the start or after lseek. */
158         if (last_addr == -1UL)
159                 return NULL;
160
161         priv->task = get_proc_task(priv->inode);
162         if (!priv->task)
163                 return ERR_PTR(-ESRCH);
164
165         mm = priv->mm;
166         if (!mm || !mmget_not_zero(mm))
167                 return NULL;
168
169         down_read(&mm->mmap_sem);
170         hold_task_mempolicy(priv);
171         priv->tail_vma = get_gate_vma(mm);
172
173         if (last_addr) {
174                 vma = find_vma(mm, last_addr - 1);
175                 if (vma && vma->vm_start <= last_addr)
176                         vma = m_next_vma(priv, vma);
177                 if (vma)
178                         return vma;
179         }
180
181         m->version = 0;
182         if (pos < mm->map_count) {
183                 for (vma = mm->mmap; pos; pos--) {
184                         m->version = vma->vm_start;
185                         vma = vma->vm_next;
186                 }
187                 return vma;
188         }
189
190         /* we do not bother to update m->version in this case */
191         if (pos == mm->map_count && priv->tail_vma)
192                 return priv->tail_vma;
193
194         vma_stop(priv);
195         return NULL;
196 }
197
198 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
199 {
200         struct proc_maps_private *priv = m->private;
201         struct vm_area_struct *next;
202
203         (*pos)++;
204         next = m_next_vma(priv, v);
205         if (!next)
206                 vma_stop(priv);
207         return next;
208 }
209
210 static void m_stop(struct seq_file *m, void *v)
211 {
212         struct proc_maps_private *priv = m->private;
213
214         if (!IS_ERR_OR_NULL(v))
215                 vma_stop(priv);
216         if (priv->task) {
217                 put_task_struct(priv->task);
218                 priv->task = NULL;
219         }
220 }
221
222 static int proc_maps_open(struct inode *inode, struct file *file,
223                         const struct seq_operations *ops, int psize)
224 {
225         struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
226
227         if (!priv)
228                 return -ENOMEM;
229
230         priv->inode = inode;
231         priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
232         if (IS_ERR(priv->mm)) {
233                 int err = PTR_ERR(priv->mm);
234
235                 seq_release_private(inode, file);
236                 return err;
237         }
238
239         return 0;
240 }
241
242 static int proc_map_release(struct inode *inode, struct file *file)
243 {
244         struct seq_file *seq = file->private_data;
245         struct proc_maps_private *priv = seq->private;
246
247         if (priv->mm)
248                 mmdrop(priv->mm);
249
250         return seq_release_private(inode, file);
251 }
252
253 static int do_maps_open(struct inode *inode, struct file *file,
254                         const struct seq_operations *ops)
255 {
256         return proc_maps_open(inode, file, ops,
257                                 sizeof(struct proc_maps_private));
258 }
259
260 /*
261  * Indicate if the VMA is a stack for the given task; for
262  * /proc/PID/maps that is the stack of the main task.
263  */
264 static int is_stack(struct vm_area_struct *vma)
265 {
266         /*
267          * We make no effort to guess what a given thread considers to be
268          * its "stack".  It's not even well-defined for programs written
269          * languages like Go.
270          */
271         return vma->vm_start <= vma->vm_mm->start_stack &&
272                 vma->vm_end >= vma->vm_mm->start_stack;
273 }
274
275 static void show_vma_header_prefix(struct seq_file *m,
276                                    unsigned long start, unsigned long end,
277                                    vm_flags_t flags, unsigned long long pgoff,
278                                    dev_t dev, unsigned long ino)
279 {
280         seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
281         seq_put_hex_ll(m, NULL, start, 8);
282         seq_put_hex_ll(m, "-", end, 8);
283         seq_putc(m, ' ');
284         seq_putc(m, flags & VM_READ ? 'r' : '-');
285         seq_putc(m, flags & VM_WRITE ? 'w' : '-');
286         seq_putc(m, flags & VM_EXEC ? 'x' : '-');
287         seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
288         seq_put_hex_ll(m, " ", pgoff, 8);
289         seq_put_hex_ll(m, " ", MAJOR(dev), 2);
290         seq_put_hex_ll(m, ":", MINOR(dev), 2);
291         seq_put_decimal_ull(m, " ", ino);
292         seq_putc(m, ' ');
293 }
294
295 static void
296 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
297 {
298         struct mm_struct *mm = vma->vm_mm;
299         struct file *file = vma->vm_file;
300         vm_flags_t flags = vma->vm_flags;
301         unsigned long ino = 0;
302         unsigned long long pgoff = 0;
303         unsigned long start, end;
304         dev_t dev = 0;
305         const char *name = NULL;
306
307         if (file) {
308                 struct inode *inode = file_inode(vma->vm_file);
309                 dev = inode->i_sb->s_dev;
310                 ino = inode->i_ino;
311                 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
312         }
313
314         start = vma->vm_start;
315         end = vma->vm_end;
316         show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
317
318         /*
319          * Print the dentry name for named mappings, and a
320          * special [heap] marker for the heap:
321          */
322         if (file) {
323                 seq_pad(m, ' ');
324                 seq_file_path(m, file, "\n");
325                 goto done;
326         }
327
328         if (vma->vm_ops && vma->vm_ops->name) {
329                 name = vma->vm_ops->name(vma);
330                 if (name)
331                         goto done;
332         }
333
334         name = arch_vma_name(vma);
335         if (!name) {
336                 if (!mm) {
337                         name = "[vdso]";
338                         goto done;
339                 }
340
341                 if (vma->vm_start <= mm->brk &&
342                     vma->vm_end >= mm->start_brk) {
343                         name = "[heap]";
344                         goto done;
345                 }
346
347                 if (is_stack(vma))
348                         name = "[stack]";
349         }
350
351 done:
352         if (name) {
353                 seq_pad(m, ' ');
354                 seq_puts(m, name);
355         }
356         seq_putc(m, '\n');
357 }
358
359 static int show_map(struct seq_file *m, void *v)
360 {
361         show_map_vma(m, v);
362         m_cache_vma(m, v);
363         return 0;
364 }
365
366 static const struct seq_operations proc_pid_maps_op = {
367         .start  = m_start,
368         .next   = m_next,
369         .stop   = m_stop,
370         .show   = show_map
371 };
372
373 static int pid_maps_open(struct inode *inode, struct file *file)
374 {
375         return do_maps_open(inode, file, &proc_pid_maps_op);
376 }
377
378 const struct file_operations proc_pid_maps_operations = {
379         .open           = pid_maps_open,
380         .read           = seq_read,
381         .llseek         = seq_lseek,
382         .release        = proc_map_release,
383 };
384
385 /*
386  * Proportional Set Size(PSS): my share of RSS.
387  *
388  * PSS of a process is the count of pages it has in memory, where each
389  * page is divided by the number of processes sharing it.  So if a
390  * process has 1000 pages all to itself, and 1000 shared with one other
391  * process, its PSS will be 1500.
392  *
393  * To keep (accumulated) division errors low, we adopt a 64bit
394  * fixed-point pss counter to minimize division errors. So (pss >>
395  * PSS_SHIFT) would be the real byte count.
396  *
397  * A shift of 12 before division means (assuming 4K page size):
398  *      - 1M 3-user-pages add up to 8KB errors;
399  *      - supports mapcount up to 2^24, or 16M;
400  *      - supports PSS up to 2^52 bytes, or 4PB.
401  */
402 #define PSS_SHIFT 12
403
404 #ifdef CONFIG_PROC_PAGE_MONITOR
405 struct mem_size_stats {
406         unsigned long resident;
407         unsigned long shared_clean;
408         unsigned long shared_dirty;
409         unsigned long private_clean;
410         unsigned long private_dirty;
411         unsigned long referenced;
412         unsigned long anonymous;
413         unsigned long lazyfree;
414         unsigned long anonymous_thp;
415         unsigned long shmem_thp;
416         unsigned long swap;
417         unsigned long shared_hugetlb;
418         unsigned long private_hugetlb;
419         u64 pss;
420         u64 pss_locked;
421         u64 swap_pss;
422         bool check_shmem_swap;
423 };
424
425 static void smaps_account(struct mem_size_stats *mss, struct page *page,
426                 bool compound, bool young, bool dirty)
427 {
428         int i, nr = compound ? 1 << compound_order(page) : 1;
429         unsigned long size = nr * PAGE_SIZE;
430
431         if (PageAnon(page)) {
432                 mss->anonymous += size;
433                 if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
434                         mss->lazyfree += size;
435         }
436
437         mss->resident += size;
438         /* Accumulate the size in pages that have been accessed. */
439         if (young || page_is_young(page) || PageReferenced(page))
440                 mss->referenced += size;
441
442         /*
443          * page_count(page) == 1 guarantees the page is mapped exactly once.
444          * If any subpage of the compound page mapped with PTE it would elevate
445          * page_count().
446          */
447         if (page_count(page) == 1) {
448                 if (dirty || PageDirty(page))
449                         mss->private_dirty += size;
450                 else
451                         mss->private_clean += size;
452                 mss->pss += (u64)size << PSS_SHIFT;
453                 return;
454         }
455
456         for (i = 0; i < nr; i++, page++) {
457                 int mapcount = page_mapcount(page);
458
459                 if (mapcount >= 2) {
460                         if (dirty || PageDirty(page))
461                                 mss->shared_dirty += PAGE_SIZE;
462                         else
463                                 mss->shared_clean += PAGE_SIZE;
464                         mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
465                 } else {
466                         if (dirty || PageDirty(page))
467                                 mss->private_dirty += PAGE_SIZE;
468                         else
469                                 mss->private_clean += PAGE_SIZE;
470                         mss->pss += PAGE_SIZE << PSS_SHIFT;
471                 }
472         }
473 }
474
475 #ifdef CONFIG_SHMEM
476 static int smaps_pte_hole(unsigned long addr, unsigned long end,
477                 struct mm_walk *walk)
478 {
479         struct mem_size_stats *mss = walk->private;
480
481         mss->swap += shmem_partial_swap_usage(
482                         walk->vma->vm_file->f_mapping, addr, end);
483
484         return 0;
485 }
486 #endif
487
488 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
489                 struct mm_walk *walk)
490 {
491         struct mem_size_stats *mss = walk->private;
492         struct vm_area_struct *vma = walk->vma;
493         struct page *page = NULL;
494
495         if (pte_present(*pte)) {
496                 page = vm_normal_page(vma, addr, *pte);
497         } else if (is_swap_pte(*pte)) {
498                 swp_entry_t swpent = pte_to_swp_entry(*pte);
499
500                 if (!non_swap_entry(swpent)) {
501                         int mapcount;
502
503                         mss->swap += PAGE_SIZE;
504                         mapcount = swp_swapcount(swpent);
505                         if (mapcount >= 2) {
506                                 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
507
508                                 do_div(pss_delta, mapcount);
509                                 mss->swap_pss += pss_delta;
510                         } else {
511                                 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
512                         }
513                 } else if (is_migration_entry(swpent))
514                         page = migration_entry_to_page(swpent);
515                 else if (is_device_private_entry(swpent))
516                         page = device_private_entry_to_page(swpent);
517         } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
518                                                         && pte_none(*pte))) {
519                 page = find_get_entry(vma->vm_file->f_mapping,
520                                                 linear_page_index(vma, addr));
521                 if (!page)
522                         return;
523
524                 if (xa_is_value(page))
525                         mss->swap += PAGE_SIZE;
526                 else
527                         put_page(page);
528
529                 return;
530         }
531
532         if (!page)
533                 return;
534
535         smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte));
536 }
537
538 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
539 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
540                 struct mm_walk *walk)
541 {
542         struct mem_size_stats *mss = walk->private;
543         struct vm_area_struct *vma = walk->vma;
544         struct page *page;
545
546         /* FOLL_DUMP will return -EFAULT on huge zero page */
547         page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
548         if (IS_ERR_OR_NULL(page))
549                 return;
550         if (PageAnon(page))
551                 mss->anonymous_thp += HPAGE_PMD_SIZE;
552         else if (PageSwapBacked(page))
553                 mss->shmem_thp += HPAGE_PMD_SIZE;
554         else if (is_zone_device_page(page))
555                 /* pass */;
556         else
557                 VM_BUG_ON_PAGE(1, page);
558         smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd));
559 }
560 #else
561 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
562                 struct mm_walk *walk)
563 {
564 }
565 #endif
566
567 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
568                            struct mm_walk *walk)
569 {
570         struct vm_area_struct *vma = walk->vma;
571         pte_t *pte;
572         spinlock_t *ptl;
573
574         ptl = pmd_trans_huge_lock(pmd, vma);
575         if (ptl) {
576                 if (pmd_present(*pmd))
577                         smaps_pmd_entry(pmd, addr, walk);
578                 spin_unlock(ptl);
579                 goto out;
580         }
581
582         if (pmd_trans_unstable(pmd))
583                 goto out;
584         /*
585          * The mmap_sem held all the way back in m_start() is what
586          * keeps khugepaged out of here and from collapsing things
587          * in here.
588          */
589         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
590         for (; addr != end; pte++, addr += PAGE_SIZE)
591                 smaps_pte_entry(pte, addr, walk);
592         pte_unmap_unlock(pte - 1, ptl);
593 out:
594         cond_resched();
595         return 0;
596 }
597
598 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
599 {
600         /*
601          * Don't forget to update Documentation/ on changes.
602          */
603         static const char mnemonics[BITS_PER_LONG][2] = {
604                 /*
605                  * In case if we meet a flag we don't know about.
606                  */
607                 [0 ... (BITS_PER_LONG-1)] = "??",
608
609                 [ilog2(VM_READ)]        = "rd",
610                 [ilog2(VM_WRITE)]       = "wr",
611                 [ilog2(VM_EXEC)]        = "ex",
612                 [ilog2(VM_SHARED)]      = "sh",
613                 [ilog2(VM_MAYREAD)]     = "mr",
614                 [ilog2(VM_MAYWRITE)]    = "mw",
615                 [ilog2(VM_MAYEXEC)]     = "me",
616                 [ilog2(VM_MAYSHARE)]    = "ms",
617                 [ilog2(VM_GROWSDOWN)]   = "gd",
618                 [ilog2(VM_PFNMAP)]      = "pf",
619                 [ilog2(VM_DENYWRITE)]   = "dw",
620 #ifdef CONFIG_X86_INTEL_MPX
621                 [ilog2(VM_MPX)]         = "mp",
622 #endif
623                 [ilog2(VM_LOCKED)]      = "lo",
624                 [ilog2(VM_IO)]          = "io",
625                 [ilog2(VM_SEQ_READ)]    = "sr",
626                 [ilog2(VM_RAND_READ)]   = "rr",
627                 [ilog2(VM_DONTCOPY)]    = "dc",
628                 [ilog2(VM_DONTEXPAND)]  = "de",
629                 [ilog2(VM_ACCOUNT)]     = "ac",
630                 [ilog2(VM_NORESERVE)]   = "nr",
631                 [ilog2(VM_HUGETLB)]     = "ht",
632                 [ilog2(VM_SYNC)]        = "sf",
633                 [ilog2(VM_ARCH_1)]      = "ar",
634                 [ilog2(VM_WIPEONFORK)]  = "wf",
635                 [ilog2(VM_DONTDUMP)]    = "dd",
636 #ifdef CONFIG_MEM_SOFT_DIRTY
637                 [ilog2(VM_SOFTDIRTY)]   = "sd",
638 #endif
639                 [ilog2(VM_MIXEDMAP)]    = "mm",
640                 [ilog2(VM_HUGEPAGE)]    = "hg",
641                 [ilog2(VM_NOHUGEPAGE)]  = "nh",
642                 [ilog2(VM_MERGEABLE)]   = "mg",
643                 [ilog2(VM_UFFD_MISSING)]= "um",
644                 [ilog2(VM_UFFD_WP)]     = "uw",
645 #ifdef CONFIG_ARCH_HAS_PKEYS
646                 /* These come out via ProtectionKey: */
647                 [ilog2(VM_PKEY_BIT0)]   = "",
648                 [ilog2(VM_PKEY_BIT1)]   = "",
649                 [ilog2(VM_PKEY_BIT2)]   = "",
650                 [ilog2(VM_PKEY_BIT3)]   = "",
651 #if VM_PKEY_BIT4
652                 [ilog2(VM_PKEY_BIT4)]   = "",
653 #endif
654 #endif /* CONFIG_ARCH_HAS_PKEYS */
655         };
656         size_t i;
657
658         seq_puts(m, "VmFlags: ");
659         for (i = 0; i < BITS_PER_LONG; i++) {
660                 if (!mnemonics[i][0])
661                         continue;
662                 if (vma->vm_flags & (1UL << i)) {
663                         seq_putc(m, mnemonics[i][0]);
664                         seq_putc(m, mnemonics[i][1]);
665                         seq_putc(m, ' ');
666                 }
667         }
668         seq_putc(m, '\n');
669 }
670
671 #ifdef CONFIG_HUGETLB_PAGE
672 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
673                                  unsigned long addr, unsigned long end,
674                                  struct mm_walk *walk)
675 {
676         struct mem_size_stats *mss = walk->private;
677         struct vm_area_struct *vma = walk->vma;
678         struct page *page = NULL;
679
680         if (pte_present(*pte)) {
681                 page = vm_normal_page(vma, addr, *pte);
682         } else if (is_swap_pte(*pte)) {
683                 swp_entry_t swpent = pte_to_swp_entry(*pte);
684
685                 if (is_migration_entry(swpent))
686                         page = migration_entry_to_page(swpent);
687                 else if (is_device_private_entry(swpent))
688                         page = device_private_entry_to_page(swpent);
689         }
690         if (page) {
691                 int mapcount = page_mapcount(page);
692
693                 if (mapcount >= 2)
694                         mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
695                 else
696                         mss->private_hugetlb += huge_page_size(hstate_vma(vma));
697         }
698         return 0;
699 }
700 #endif /* HUGETLB_PAGE */
701
702 static void smap_gather_stats(struct vm_area_struct *vma,
703                              struct mem_size_stats *mss)
704 {
705         struct mm_walk smaps_walk = {
706                 .pmd_entry = smaps_pte_range,
707 #ifdef CONFIG_HUGETLB_PAGE
708                 .hugetlb_entry = smaps_hugetlb_range,
709 #endif
710                 .mm = vma->vm_mm,
711         };
712
713         smaps_walk.private = mss;
714
715 #ifdef CONFIG_SHMEM
716         /* In case of smaps_rollup, reset the value from previous vma */
717         mss->check_shmem_swap = false;
718         if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
719                 /*
720                  * For shared or readonly shmem mappings we know that all
721                  * swapped out pages belong to the shmem object, and we can
722                  * obtain the swap value much more efficiently. For private
723                  * writable mappings, we might have COW pages that are
724                  * not affected by the parent swapped out pages of the shmem
725                  * object, so we have to distinguish them during the page walk.
726                  * Unless we know that the shmem object (or the part mapped by
727                  * our VMA) has no swapped out pages at all.
728                  */
729                 unsigned long shmem_swapped = shmem_swap_usage(vma);
730
731                 if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
732                                         !(vma->vm_flags & VM_WRITE)) {
733                         mss->swap += shmem_swapped;
734                 } else {
735                         mss->check_shmem_swap = true;
736                         smaps_walk.pte_hole = smaps_pte_hole;
737                 }
738         }
739 #endif
740
741         /* mmap_sem is held in m_start */
742         walk_page_vma(vma, &smaps_walk);
743         if (vma->vm_flags & VM_LOCKED)
744                 mss->pss_locked += mss->pss;
745 }
746
747 #define SEQ_PUT_DEC(str, val) \
748                 seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
749
750 /* Show the contents common for smaps and smaps_rollup */
751 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss)
752 {
753         SEQ_PUT_DEC("Rss:            ", mss->resident);
754         SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
755         SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
756         SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
757         SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
758         SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
759         SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
760         SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
761         SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
762         SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
763         SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
764         SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
765         seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
766                                   mss->private_hugetlb >> 10, 7);
767         SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
768         SEQ_PUT_DEC(" kB\nSwapPss:        ",
769                                         mss->swap_pss >> PSS_SHIFT);
770         SEQ_PUT_DEC(" kB\nLocked:         ",
771                                         mss->pss_locked >> PSS_SHIFT);
772         seq_puts(m, " kB\n");
773 }
774
775 static int show_smap(struct seq_file *m, void *v)
776 {
777         struct vm_area_struct *vma = v;
778         struct mem_size_stats mss;
779
780         memset(&mss, 0, sizeof(mss));
781
782         smap_gather_stats(vma, &mss);
783
784         show_map_vma(m, vma);
785
786         SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
787         SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
788         SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
789         seq_puts(m, " kB\n");
790
791         __show_smap(m, &mss);
792
793         if (arch_pkeys_enabled())
794                 seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
795         show_smap_vma_flags(m, vma);
796
797         m_cache_vma(m, vma);
798
799         return 0;
800 }
801
802 static int show_smaps_rollup(struct seq_file *m, void *v)
803 {
804         struct proc_maps_private *priv = m->private;
805         struct mem_size_stats mss;
806         struct mm_struct *mm;
807         struct vm_area_struct *vma;
808         unsigned long last_vma_end = 0;
809         int ret = 0;
810
811         priv->task = get_proc_task(priv->inode);
812         if (!priv->task)
813                 return -ESRCH;
814
815         mm = priv->mm;
816         if (!mm || !mmget_not_zero(mm)) {
817                 ret = -ESRCH;
818                 goto out_put_task;
819         }
820
821         memset(&mss, 0, sizeof(mss));
822
823         down_read(&mm->mmap_sem);
824         hold_task_mempolicy(priv);
825
826         for (vma = priv->mm->mmap; vma; vma = vma->vm_next) {
827                 smap_gather_stats(vma, &mss);
828                 last_vma_end = vma->vm_end;
829         }
830
831         show_vma_header_prefix(m, priv->mm->mmap->vm_start,
832                                last_vma_end, 0, 0, 0, 0);
833         seq_pad(m, ' ');
834         seq_puts(m, "[rollup]\n");
835
836         __show_smap(m, &mss);
837
838         release_task_mempolicy(priv);
839         up_read(&mm->mmap_sem);
840         mmput(mm);
841
842 out_put_task:
843         put_task_struct(priv->task);
844         priv->task = NULL;
845
846         return ret;
847 }
848 #undef SEQ_PUT_DEC
849
850 static const struct seq_operations proc_pid_smaps_op = {
851         .start  = m_start,
852         .next   = m_next,
853         .stop   = m_stop,
854         .show   = show_smap
855 };
856
857 static int pid_smaps_open(struct inode *inode, struct file *file)
858 {
859         return do_maps_open(inode, file, &proc_pid_smaps_op);
860 }
861
862 static int smaps_rollup_open(struct inode *inode, struct file *file)
863 {
864         int ret;
865         struct proc_maps_private *priv;
866
867         priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
868         if (!priv)
869                 return -ENOMEM;
870
871         ret = single_open(file, show_smaps_rollup, priv);
872         if (ret)
873                 goto out_free;
874
875         priv->inode = inode;
876         priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
877         if (IS_ERR(priv->mm)) {
878                 ret = PTR_ERR(priv->mm);
879
880                 single_release(inode, file);
881                 goto out_free;
882         }
883
884         return 0;
885
886 out_free:
887         kfree(priv);
888         return ret;
889 }
890
891 static int smaps_rollup_release(struct inode *inode, struct file *file)
892 {
893         struct seq_file *seq = file->private_data;
894         struct proc_maps_private *priv = seq->private;
895
896         if (priv->mm)
897                 mmdrop(priv->mm);
898
899         kfree(priv);
900         return single_release(inode, file);
901 }
902
903 const struct file_operations proc_pid_smaps_operations = {
904         .open           = pid_smaps_open,
905         .read           = seq_read,
906         .llseek         = seq_lseek,
907         .release        = proc_map_release,
908 };
909
910 const struct file_operations proc_pid_smaps_rollup_operations = {
911         .open           = smaps_rollup_open,
912         .read           = seq_read,
913         .llseek         = seq_lseek,
914         .release        = smaps_rollup_release,
915 };
916
917 enum clear_refs_types {
918         CLEAR_REFS_ALL = 1,
919         CLEAR_REFS_ANON,
920         CLEAR_REFS_MAPPED,
921         CLEAR_REFS_SOFT_DIRTY,
922         CLEAR_REFS_MM_HIWATER_RSS,
923         CLEAR_REFS_LAST,
924 };
925
926 struct clear_refs_private {
927         enum clear_refs_types type;
928 };
929
930 #ifdef CONFIG_MEM_SOFT_DIRTY
931 static inline void clear_soft_dirty(struct vm_area_struct *vma,
932                 unsigned long addr, pte_t *pte)
933 {
934         /*
935          * The soft-dirty tracker uses #PF-s to catch writes
936          * to pages, so write-protect the pte as well. See the
937          * Documentation/admin-guide/mm/soft-dirty.rst for full description
938          * of how soft-dirty works.
939          */
940         pte_t ptent = *pte;
941
942         if (pte_present(ptent)) {
943                 ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
944                 ptent = pte_wrprotect(ptent);
945                 ptent = pte_clear_soft_dirty(ptent);
946                 ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
947         } else if (is_swap_pte(ptent)) {
948                 ptent = pte_swp_clear_soft_dirty(ptent);
949                 set_pte_at(vma->vm_mm, addr, pte, ptent);
950         }
951 }
952 #else
953 static inline void clear_soft_dirty(struct vm_area_struct *vma,
954                 unsigned long addr, pte_t *pte)
955 {
956 }
957 #endif
958
959 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
960 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
961                 unsigned long addr, pmd_t *pmdp)
962 {
963         pmd_t old, pmd = *pmdp;
964
965         if (pmd_present(pmd)) {
966                 /* See comment in change_huge_pmd() */
967                 old = pmdp_invalidate(vma, addr, pmdp);
968                 if (pmd_dirty(old))
969                         pmd = pmd_mkdirty(pmd);
970                 if (pmd_young(old))
971                         pmd = pmd_mkyoung(pmd);
972
973                 pmd = pmd_wrprotect(pmd);
974                 pmd = pmd_clear_soft_dirty(pmd);
975
976                 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
977         } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
978                 pmd = pmd_swp_clear_soft_dirty(pmd);
979                 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
980         }
981 }
982 #else
983 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
984                 unsigned long addr, pmd_t *pmdp)
985 {
986 }
987 #endif
988
989 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
990                                 unsigned long end, struct mm_walk *walk)
991 {
992         struct clear_refs_private *cp = walk->private;
993         struct vm_area_struct *vma = walk->vma;
994         pte_t *pte, ptent;
995         spinlock_t *ptl;
996         struct page *page;
997
998         ptl = pmd_trans_huge_lock(pmd, vma);
999         if (ptl) {
1000                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1001                         clear_soft_dirty_pmd(vma, addr, pmd);
1002                         goto out;
1003                 }
1004
1005                 if (!pmd_present(*pmd))
1006                         goto out;
1007
1008                 page = pmd_page(*pmd);
1009
1010                 /* Clear accessed and referenced bits. */
1011                 pmdp_test_and_clear_young(vma, addr, pmd);
1012                 test_and_clear_page_young(page);
1013                 ClearPageReferenced(page);
1014 out:
1015                 spin_unlock(ptl);
1016                 return 0;
1017         }
1018
1019         if (pmd_trans_unstable(pmd))
1020                 return 0;
1021
1022         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1023         for (; addr != end; pte++, addr += PAGE_SIZE) {
1024                 ptent = *pte;
1025
1026                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1027                         clear_soft_dirty(vma, addr, pte);
1028                         continue;
1029                 }
1030
1031                 if (!pte_present(ptent))
1032                         continue;
1033
1034                 page = vm_normal_page(vma, addr, ptent);
1035                 if (!page)
1036                         continue;
1037
1038                 /* Clear accessed and referenced bits. */
1039                 ptep_test_and_clear_young(vma, addr, pte);
1040                 test_and_clear_page_young(page);
1041                 ClearPageReferenced(page);
1042         }
1043         pte_unmap_unlock(pte - 1, ptl);
1044         cond_resched();
1045         return 0;
1046 }
1047
1048 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1049                                 struct mm_walk *walk)
1050 {
1051         struct clear_refs_private *cp = walk->private;
1052         struct vm_area_struct *vma = walk->vma;
1053
1054         if (vma->vm_flags & VM_PFNMAP)
1055                 return 1;
1056
1057         /*
1058          * Writing 1 to /proc/pid/clear_refs affects all pages.
1059          * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1060          * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1061          * Writing 4 to /proc/pid/clear_refs affects all pages.
1062          */
1063         if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1064                 return 1;
1065         if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1066                 return 1;
1067         return 0;
1068 }
1069
1070 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1071                                 size_t count, loff_t *ppos)
1072 {
1073         struct task_struct *task;
1074         char buffer[PROC_NUMBUF];
1075         struct mm_struct *mm;
1076         struct vm_area_struct *vma;
1077         enum clear_refs_types type;
1078         struct mmu_gather tlb;
1079         int itype;
1080         int rv;
1081
1082         memset(buffer, 0, sizeof(buffer));
1083         if (count > sizeof(buffer) - 1)
1084                 count = sizeof(buffer) - 1;
1085         if (copy_from_user(buffer, buf, count))
1086                 return -EFAULT;
1087         rv = kstrtoint(strstrip(buffer), 10, &itype);
1088         if (rv < 0)
1089                 return rv;
1090         type = (enum clear_refs_types)itype;
1091         if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1092                 return -EINVAL;
1093
1094         task = get_proc_task(file_inode(file));
1095         if (!task)
1096                 return -ESRCH;
1097         mm = get_task_mm(task);
1098         if (mm) {
1099                 struct clear_refs_private cp = {
1100                         .type = type,
1101                 };
1102                 struct mm_walk clear_refs_walk = {
1103                         .pmd_entry = clear_refs_pte_range,
1104                         .test_walk = clear_refs_test_walk,
1105                         .mm = mm,
1106                         .private = &cp,
1107                 };
1108
1109                 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1110                         if (down_write_killable(&mm->mmap_sem)) {
1111                                 count = -EINTR;
1112                                 goto out_mm;
1113                         }
1114
1115                         /*
1116                          * Writing 5 to /proc/pid/clear_refs resets the peak
1117                          * resident set size to this mm's current rss value.
1118                          */
1119                         reset_mm_hiwater_rss(mm);
1120                         up_write(&mm->mmap_sem);
1121                         goto out_mm;
1122                 }
1123
1124                 down_read(&mm->mmap_sem);
1125                 tlb_gather_mmu(&tlb, mm, 0, -1);
1126                 if (type == CLEAR_REFS_SOFT_DIRTY) {
1127                         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1128                                 if (!(vma->vm_flags & VM_SOFTDIRTY))
1129                                         continue;
1130                                 up_read(&mm->mmap_sem);
1131                                 if (down_write_killable(&mm->mmap_sem)) {
1132                                         count = -EINTR;
1133                                         goto out_mm;
1134                                 }
1135                                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1136                                         vma->vm_flags &= ~VM_SOFTDIRTY;
1137                                         vma_set_page_prot(vma);
1138                                 }
1139                                 downgrade_write(&mm->mmap_sem);
1140                                 break;
1141                         }
1142                         mmu_notifier_invalidate_range_start(mm, 0, -1);
1143                 }
1144                 walk_page_range(0, mm->highest_vm_end, &clear_refs_walk);
1145                 if (type == CLEAR_REFS_SOFT_DIRTY)
1146                         mmu_notifier_invalidate_range_end(mm, 0, -1);
1147                 tlb_finish_mmu(&tlb, 0, -1);
1148                 up_read(&mm->mmap_sem);
1149 out_mm:
1150                 mmput(mm);
1151         }
1152         put_task_struct(task);
1153
1154         return count;
1155 }
1156
1157 const struct file_operations proc_clear_refs_operations = {
1158         .write          = clear_refs_write,
1159         .llseek         = noop_llseek,
1160 };
1161
1162 typedef struct {
1163         u64 pme;
1164 } pagemap_entry_t;
1165
1166 struct pagemapread {
1167         int pos, len;           /* units: PM_ENTRY_BYTES, not bytes */
1168         pagemap_entry_t *buffer;
1169         bool show_pfn;
1170 };
1171
1172 #define PAGEMAP_WALK_SIZE       (PMD_SIZE)
1173 #define PAGEMAP_WALK_MASK       (PMD_MASK)
1174
1175 #define PM_ENTRY_BYTES          sizeof(pagemap_entry_t)
1176 #define PM_PFRAME_BITS          55
1177 #define PM_PFRAME_MASK          GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1178 #define PM_SOFT_DIRTY           BIT_ULL(55)
1179 #define PM_MMAP_EXCLUSIVE       BIT_ULL(56)
1180 #define PM_FILE                 BIT_ULL(61)
1181 #define PM_SWAP                 BIT_ULL(62)
1182 #define PM_PRESENT              BIT_ULL(63)
1183
1184 #define PM_END_OF_BUFFER    1
1185
1186 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1187 {
1188         return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1189 }
1190
1191 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1192                           struct pagemapread *pm)
1193 {
1194         pm->buffer[pm->pos++] = *pme;
1195         if (pm->pos >= pm->len)
1196                 return PM_END_OF_BUFFER;
1197         return 0;
1198 }
1199
1200 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1201                                 struct mm_walk *walk)
1202 {
1203         struct pagemapread *pm = walk->private;
1204         unsigned long addr = start;
1205         int err = 0;
1206
1207         while (addr < end) {
1208                 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1209                 pagemap_entry_t pme = make_pme(0, 0);
1210                 /* End of address space hole, which we mark as non-present. */
1211                 unsigned long hole_end;
1212
1213                 if (vma)
1214                         hole_end = min(end, vma->vm_start);
1215                 else
1216                         hole_end = end;
1217
1218                 for (; addr < hole_end; addr += PAGE_SIZE) {
1219                         err = add_to_pagemap(addr, &pme, pm);
1220                         if (err)
1221                                 goto out;
1222                 }
1223
1224                 if (!vma)
1225                         break;
1226
1227                 /* Addresses in the VMA. */
1228                 if (vma->vm_flags & VM_SOFTDIRTY)
1229                         pme = make_pme(0, PM_SOFT_DIRTY);
1230                 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1231                         err = add_to_pagemap(addr, &pme, pm);
1232                         if (err)
1233                                 goto out;
1234                 }
1235         }
1236 out:
1237         return err;
1238 }
1239
1240 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1241                 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1242 {
1243         u64 frame = 0, flags = 0;
1244         struct page *page = NULL;
1245
1246         if (pte_present(pte)) {
1247                 if (pm->show_pfn)
1248                         frame = pte_pfn(pte);
1249                 flags |= PM_PRESENT;
1250                 page = _vm_normal_page(vma, addr, pte, true);
1251                 if (pte_soft_dirty(pte))
1252                         flags |= PM_SOFT_DIRTY;
1253         } else if (is_swap_pte(pte)) {
1254                 swp_entry_t entry;
1255                 if (pte_swp_soft_dirty(pte))
1256                         flags |= PM_SOFT_DIRTY;
1257                 entry = pte_to_swp_entry(pte);
1258                 if (pm->show_pfn)
1259                         frame = swp_type(entry) |
1260                                 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1261                 flags |= PM_SWAP;
1262                 if (is_migration_entry(entry))
1263                         page = migration_entry_to_page(entry);
1264
1265                 if (is_device_private_entry(entry))
1266                         page = device_private_entry_to_page(entry);
1267         }
1268
1269         if (page && !PageAnon(page))
1270                 flags |= PM_FILE;
1271         if (page && page_mapcount(page) == 1)
1272                 flags |= PM_MMAP_EXCLUSIVE;
1273         if (vma->vm_flags & VM_SOFTDIRTY)
1274                 flags |= PM_SOFT_DIRTY;
1275
1276         return make_pme(frame, flags);
1277 }
1278
1279 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1280                              struct mm_walk *walk)
1281 {
1282         struct vm_area_struct *vma = walk->vma;
1283         struct pagemapread *pm = walk->private;
1284         spinlock_t *ptl;
1285         pte_t *pte, *orig_pte;
1286         int err = 0;
1287
1288 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1289         ptl = pmd_trans_huge_lock(pmdp, vma);
1290         if (ptl) {
1291                 u64 flags = 0, frame = 0;
1292                 pmd_t pmd = *pmdp;
1293                 struct page *page = NULL;
1294
1295                 if (vma->vm_flags & VM_SOFTDIRTY)
1296                         flags |= PM_SOFT_DIRTY;
1297
1298                 if (pmd_present(pmd)) {
1299                         page = pmd_page(pmd);
1300
1301                         flags |= PM_PRESENT;
1302                         if (pmd_soft_dirty(pmd))
1303                                 flags |= PM_SOFT_DIRTY;
1304                         if (pm->show_pfn)
1305                                 frame = pmd_pfn(pmd) +
1306                                         ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1307                 }
1308 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1309                 else if (is_swap_pmd(pmd)) {
1310                         swp_entry_t entry = pmd_to_swp_entry(pmd);
1311                         unsigned long offset;
1312
1313                         if (pm->show_pfn) {
1314                                 offset = swp_offset(entry) +
1315                                         ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1316                                 frame = swp_type(entry) |
1317                                         (offset << MAX_SWAPFILES_SHIFT);
1318                         }
1319                         flags |= PM_SWAP;
1320                         if (pmd_swp_soft_dirty(pmd))
1321                                 flags |= PM_SOFT_DIRTY;
1322                         VM_BUG_ON(!is_pmd_migration_entry(pmd));
1323                         page = migration_entry_to_page(entry);
1324                 }
1325 #endif
1326
1327                 if (page && page_mapcount(page) == 1)
1328                         flags |= PM_MMAP_EXCLUSIVE;
1329
1330                 for (; addr != end; addr += PAGE_SIZE) {
1331                         pagemap_entry_t pme = make_pme(frame, flags);
1332
1333                         err = add_to_pagemap(addr, &pme, pm);
1334                         if (err)
1335                                 break;
1336                         if (pm->show_pfn) {
1337                                 if (flags & PM_PRESENT)
1338                                         frame++;
1339                                 else if (flags & PM_SWAP)
1340                                         frame += (1 << MAX_SWAPFILES_SHIFT);
1341                         }
1342                 }
1343                 spin_unlock(ptl);
1344                 return err;
1345         }
1346
1347         if (pmd_trans_unstable(pmdp))
1348                 return 0;
1349 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1350
1351         /*
1352          * We can assume that @vma always points to a valid one and @end never
1353          * goes beyond vma->vm_end.
1354          */
1355         orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1356         for (; addr < end; pte++, addr += PAGE_SIZE) {
1357                 pagemap_entry_t pme;
1358
1359                 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1360                 err = add_to_pagemap(addr, &pme, pm);
1361                 if (err)
1362                         break;
1363         }
1364         pte_unmap_unlock(orig_pte, ptl);
1365
1366         cond_resched();
1367
1368         return err;
1369 }
1370
1371 #ifdef CONFIG_HUGETLB_PAGE
1372 /* This function walks within one hugetlb entry in the single call */
1373 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1374                                  unsigned long addr, unsigned long end,
1375                                  struct mm_walk *walk)
1376 {
1377         struct pagemapread *pm = walk->private;
1378         struct vm_area_struct *vma = walk->vma;
1379         u64 flags = 0, frame = 0;
1380         int err = 0;
1381         pte_t pte;
1382
1383         if (vma->vm_flags & VM_SOFTDIRTY)
1384                 flags |= PM_SOFT_DIRTY;
1385
1386         pte = huge_ptep_get(ptep);
1387         if (pte_present(pte)) {
1388                 struct page *page = pte_page(pte);
1389
1390                 if (!PageAnon(page))
1391                         flags |= PM_FILE;
1392
1393                 if (page_mapcount(page) == 1)
1394                         flags |= PM_MMAP_EXCLUSIVE;
1395
1396                 flags |= PM_PRESENT;
1397                 if (pm->show_pfn)
1398                         frame = pte_pfn(pte) +
1399                                 ((addr & ~hmask) >> PAGE_SHIFT);
1400         }
1401
1402         for (; addr != end; addr += PAGE_SIZE) {
1403                 pagemap_entry_t pme = make_pme(frame, flags);
1404
1405                 err = add_to_pagemap(addr, &pme, pm);
1406                 if (err)
1407                         return err;
1408                 if (pm->show_pfn && (flags & PM_PRESENT))
1409                         frame++;
1410         }
1411
1412         cond_resched();
1413
1414         return err;
1415 }
1416 #endif /* HUGETLB_PAGE */
1417
1418 /*
1419  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1420  *
1421  * For each page in the address space, this file contains one 64-bit entry
1422  * consisting of the following:
1423  *
1424  * Bits 0-54  page frame number (PFN) if present
1425  * Bits 0-4   swap type if swapped
1426  * Bits 5-54  swap offset if swapped
1427  * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1428  * Bit  56    page exclusively mapped
1429  * Bits 57-60 zero
1430  * Bit  61    page is file-page or shared-anon
1431  * Bit  62    page swapped
1432  * Bit  63    page present
1433  *
1434  * If the page is not present but in swap, then the PFN contains an
1435  * encoding of the swap file number and the page's offset into the
1436  * swap. Unmapped pages return a null PFN. This allows determining
1437  * precisely which pages are mapped (or in swap) and comparing mapped
1438  * pages between processes.
1439  *
1440  * Efficient users of this interface will use /proc/pid/maps to
1441  * determine which areas of memory are actually mapped and llseek to
1442  * skip over unmapped regions.
1443  */
1444 static ssize_t pagemap_read(struct file *file, char __user *buf,
1445                             size_t count, loff_t *ppos)
1446 {
1447         struct mm_struct *mm = file->private_data;
1448         struct pagemapread pm;
1449         struct mm_walk pagemap_walk = {};
1450         unsigned long src;
1451         unsigned long svpfn;
1452         unsigned long start_vaddr;
1453         unsigned long end_vaddr;
1454         int ret = 0, copied = 0;
1455
1456         if (!mm || !mmget_not_zero(mm))
1457                 goto out;
1458
1459         ret = -EINVAL;
1460         /* file position must be aligned */
1461         if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1462                 goto out_mm;
1463
1464         ret = 0;
1465         if (!count)
1466                 goto out_mm;
1467
1468         /* do not disclose physical addresses: attack vector */
1469         pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1470
1471         pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1472         pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1473         ret = -ENOMEM;
1474         if (!pm.buffer)
1475                 goto out_mm;
1476
1477         pagemap_walk.pmd_entry = pagemap_pmd_range;
1478         pagemap_walk.pte_hole = pagemap_pte_hole;
1479 #ifdef CONFIG_HUGETLB_PAGE
1480         pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1481 #endif
1482         pagemap_walk.mm = mm;
1483         pagemap_walk.private = &pm;
1484
1485         src = *ppos;
1486         svpfn = src / PM_ENTRY_BYTES;
1487         start_vaddr = svpfn << PAGE_SHIFT;
1488         end_vaddr = mm->task_size;
1489
1490         /* watch out for wraparound */
1491         if (svpfn > mm->task_size >> PAGE_SHIFT)
1492                 start_vaddr = end_vaddr;
1493
1494         /*
1495          * The odds are that this will stop walking way
1496          * before end_vaddr, because the length of the
1497          * user buffer is tracked in "pm", and the walk
1498          * will stop when we hit the end of the buffer.
1499          */
1500         ret = 0;
1501         while (count && (start_vaddr < end_vaddr)) {
1502                 int len;
1503                 unsigned long end;
1504
1505                 pm.pos = 0;
1506                 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1507                 /* overflow ? */
1508                 if (end < start_vaddr || end > end_vaddr)
1509                         end = end_vaddr;
1510                 down_read(&mm->mmap_sem);
1511                 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1512                 up_read(&mm->mmap_sem);
1513                 start_vaddr = end;
1514
1515                 len = min(count, PM_ENTRY_BYTES * pm.pos);
1516                 if (copy_to_user(buf, pm.buffer, len)) {
1517                         ret = -EFAULT;
1518                         goto out_free;
1519                 }
1520                 copied += len;
1521                 buf += len;
1522                 count -= len;
1523         }
1524         *ppos += copied;
1525         if (!ret || ret == PM_END_OF_BUFFER)
1526                 ret = copied;
1527
1528 out_free:
1529         kfree(pm.buffer);
1530 out_mm:
1531         mmput(mm);
1532 out:
1533         return ret;
1534 }
1535
1536 static int pagemap_open(struct inode *inode, struct file *file)
1537 {
1538         struct mm_struct *mm;
1539
1540         mm = proc_mem_open(inode, PTRACE_MODE_READ);
1541         if (IS_ERR(mm))
1542                 return PTR_ERR(mm);
1543         file->private_data = mm;
1544         return 0;
1545 }
1546
1547 static int pagemap_release(struct inode *inode, struct file *file)
1548 {
1549         struct mm_struct *mm = file->private_data;
1550
1551         if (mm)
1552                 mmdrop(mm);
1553         return 0;
1554 }
1555
1556 const struct file_operations proc_pagemap_operations = {
1557         .llseek         = mem_lseek, /* borrow this */
1558         .read           = pagemap_read,
1559         .open           = pagemap_open,
1560         .release        = pagemap_release,
1561 };
1562 #endif /* CONFIG_PROC_PAGE_MONITOR */
1563
1564 #ifdef CONFIG_NUMA
1565
1566 struct numa_maps {
1567         unsigned long pages;
1568         unsigned long anon;
1569         unsigned long active;
1570         unsigned long writeback;
1571         unsigned long mapcount_max;
1572         unsigned long dirty;
1573         unsigned long swapcache;
1574         unsigned long node[MAX_NUMNODES];
1575 };
1576
1577 struct numa_maps_private {
1578         struct proc_maps_private proc_maps;
1579         struct numa_maps md;
1580 };
1581
1582 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1583                         unsigned long nr_pages)
1584 {
1585         int count = page_mapcount(page);
1586
1587         md->pages += nr_pages;
1588         if (pte_dirty || PageDirty(page))
1589                 md->dirty += nr_pages;
1590
1591         if (PageSwapCache(page))
1592                 md->swapcache += nr_pages;
1593
1594         if (PageActive(page) || PageUnevictable(page))
1595                 md->active += nr_pages;
1596
1597         if (PageWriteback(page))
1598                 md->writeback += nr_pages;
1599
1600         if (PageAnon(page))
1601                 md->anon += nr_pages;
1602
1603         if (count > md->mapcount_max)
1604                 md->mapcount_max = count;
1605
1606         md->node[page_to_nid(page)] += nr_pages;
1607 }
1608
1609 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1610                 unsigned long addr)
1611 {
1612         struct page *page;
1613         int nid;
1614
1615         if (!pte_present(pte))
1616                 return NULL;
1617
1618         page = vm_normal_page(vma, addr, pte);
1619         if (!page)
1620                 return NULL;
1621
1622         if (PageReserved(page))
1623                 return NULL;
1624
1625         nid = page_to_nid(page);
1626         if (!node_isset(nid, node_states[N_MEMORY]))
1627                 return NULL;
1628
1629         return page;
1630 }
1631
1632 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1633 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1634                                               struct vm_area_struct *vma,
1635                                               unsigned long addr)
1636 {
1637         struct page *page;
1638         int nid;
1639
1640         if (!pmd_present(pmd))
1641                 return NULL;
1642
1643         page = vm_normal_page_pmd(vma, addr, pmd);
1644         if (!page)
1645                 return NULL;
1646
1647         if (PageReserved(page))
1648                 return NULL;
1649
1650         nid = page_to_nid(page);
1651         if (!node_isset(nid, node_states[N_MEMORY]))
1652                 return NULL;
1653
1654         return page;
1655 }
1656 #endif
1657
1658 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1659                 unsigned long end, struct mm_walk *walk)
1660 {
1661         struct numa_maps *md = walk->private;
1662         struct vm_area_struct *vma = walk->vma;
1663         spinlock_t *ptl;
1664         pte_t *orig_pte;
1665         pte_t *pte;
1666
1667 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1668         ptl = pmd_trans_huge_lock(pmd, vma);
1669         if (ptl) {
1670                 struct page *page;
1671
1672                 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1673                 if (page)
1674                         gather_stats(page, md, pmd_dirty(*pmd),
1675                                      HPAGE_PMD_SIZE/PAGE_SIZE);
1676                 spin_unlock(ptl);
1677                 return 0;
1678         }
1679
1680         if (pmd_trans_unstable(pmd))
1681                 return 0;
1682 #endif
1683         orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1684         do {
1685                 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1686                 if (!page)
1687                         continue;
1688                 gather_stats(page, md, pte_dirty(*pte), 1);
1689
1690         } while (pte++, addr += PAGE_SIZE, addr != end);
1691         pte_unmap_unlock(orig_pte, ptl);
1692         cond_resched();
1693         return 0;
1694 }
1695 #ifdef CONFIG_HUGETLB_PAGE
1696 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1697                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1698 {
1699         pte_t huge_pte = huge_ptep_get(pte);
1700         struct numa_maps *md;
1701         struct page *page;
1702
1703         if (!pte_present(huge_pte))
1704                 return 0;
1705
1706         page = pte_page(huge_pte);
1707         if (!page)
1708                 return 0;
1709
1710         md = walk->private;
1711         gather_stats(page, md, pte_dirty(huge_pte), 1);
1712         return 0;
1713 }
1714
1715 #else
1716 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1717                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1718 {
1719         return 0;
1720 }
1721 #endif
1722
1723 /*
1724  * Display pages allocated per node and memory policy via /proc.
1725  */
1726 static int show_numa_map(struct seq_file *m, void *v)
1727 {
1728         struct numa_maps_private *numa_priv = m->private;
1729         struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1730         struct vm_area_struct *vma = v;
1731         struct numa_maps *md = &numa_priv->md;
1732         struct file *file = vma->vm_file;
1733         struct mm_struct *mm = vma->vm_mm;
1734         struct mm_walk walk = {
1735                 .hugetlb_entry = gather_hugetlb_stats,
1736                 .pmd_entry = gather_pte_stats,
1737                 .private = md,
1738                 .mm = mm,
1739         };
1740         struct mempolicy *pol;
1741         char buffer[64];
1742         int nid;
1743
1744         if (!mm)
1745                 return 0;
1746
1747         /* Ensure we start with an empty set of numa_maps statistics. */
1748         memset(md, 0, sizeof(*md));
1749
1750         pol = __get_vma_policy(vma, vma->vm_start);
1751         if (pol) {
1752                 mpol_to_str(buffer, sizeof(buffer), pol);
1753                 mpol_cond_put(pol);
1754         } else {
1755                 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1756         }
1757
1758         seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1759
1760         if (file) {
1761                 seq_puts(m, " file=");
1762                 seq_file_path(m, file, "\n\t= ");
1763         } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1764                 seq_puts(m, " heap");
1765         } else if (is_stack(vma)) {
1766                 seq_puts(m, " stack");
1767         }
1768
1769         if (is_vm_hugetlb_page(vma))
1770                 seq_puts(m, " huge");
1771
1772         /* mmap_sem is held by m_start */
1773         walk_page_vma(vma, &walk);
1774
1775         if (!md->pages)
1776                 goto out;
1777
1778         if (md->anon)
1779                 seq_printf(m, " anon=%lu", md->anon);
1780
1781         if (md->dirty)
1782                 seq_printf(m, " dirty=%lu", md->dirty);
1783
1784         if (md->pages != md->anon && md->pages != md->dirty)
1785                 seq_printf(m, " mapped=%lu", md->pages);
1786
1787         if (md->mapcount_max > 1)
1788                 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1789
1790         if (md->swapcache)
1791                 seq_printf(m, " swapcache=%lu", md->swapcache);
1792
1793         if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1794                 seq_printf(m, " active=%lu", md->active);
1795
1796         if (md->writeback)
1797                 seq_printf(m, " writeback=%lu", md->writeback);
1798
1799         for_each_node_state(nid, N_MEMORY)
1800                 if (md->node[nid])
1801                         seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1802
1803         seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1804 out:
1805         seq_putc(m, '\n');
1806         m_cache_vma(m, vma);
1807         return 0;
1808 }
1809
1810 static const struct seq_operations proc_pid_numa_maps_op = {
1811         .start  = m_start,
1812         .next   = m_next,
1813         .stop   = m_stop,
1814         .show   = show_numa_map,
1815 };
1816
1817 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1818 {
1819         return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
1820                                 sizeof(struct numa_maps_private));
1821 }
1822
1823 const struct file_operations proc_pid_numa_maps_operations = {
1824         .open           = pid_numa_maps_open,
1825         .read           = seq_read,
1826         .llseek         = seq_lseek,
1827         .release        = proc_map_release,
1828 };
1829
1830 #endif /* CONFIG_NUMA */