kernel/latencytop.c: rename clear_all_latency_tracing to clear_tsk_latency_tracing
[sfrench/cifs-2.6.git] / fs / proc / base.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/proc/base.c
4  *
5  *  Copyright (C) 1991, 1992 Linus Torvalds
6  *
7  *  proc base directory handling functions
8  *
9  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
10  *  Instead of using magical inumbers to determine the kind of object
11  *  we allocate and fill in-core inodes upon lookup. They don't even
12  *  go into icache. We cache the reference to task_struct upon lookup too.
13  *  Eventually it should become a filesystem in its own. We don't use the
14  *  rest of procfs anymore.
15  *
16  *
17  *  Changelog:
18  *  17-Jan-2005
19  *  Allan Bezerra
20  *  Bruna Moreira <bruna.moreira@indt.org.br>
21  *  Edjard Mota <edjard.mota@indt.org.br>
22  *  Ilias Biris <ilias.biris@indt.org.br>
23  *  Mauricio Lin <mauricio.lin@indt.org.br>
24  *
25  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26  *
27  *  A new process specific entry (smaps) included in /proc. It shows the
28  *  size of rss for each memory area. The maps entry lacks information
29  *  about physical memory size (rss) for each mapped file, i.e.,
30  *  rss information for executables and library files.
31  *  This additional information is useful for any tools that need to know
32  *  about physical memory consumption for a process specific library.
33  *
34  *  Changelog:
35  *  21-Feb-2005
36  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
37  *  Pud inclusion in the page table walking.
38  *
39  *  ChangeLog:
40  *  10-Mar-2005
41  *  10LE Instituto Nokia de Tecnologia - INdT:
42  *  A better way to walks through the page table as suggested by Hugh Dickins.
43  *
44  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
45  *  Smaps information related to shared, private, clean and dirty pages.
46  *
47  *  Paul Mundt <paul.mundt@nokia.com>:
48  *  Overall revision about smaps.
49  */
50
51 #include <linux/uaccess.h>
52
53 #include <linux/errno.h>
54 #include <linux/time.h>
55 #include <linux/proc_fs.h>
56 #include <linux/stat.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/init.h>
59 #include <linux/capability.h>
60 #include <linux/file.h>
61 #include <linux/fdtable.h>
62 #include <linux/generic-radix-tree.h>
63 #include <linux/string.h>
64 #include <linux/seq_file.h>
65 #include <linux/namei.h>
66 #include <linux/mnt_namespace.h>
67 #include <linux/mm.h>
68 #include <linux/swap.h>
69 #include <linux/rcupdate.h>
70 #include <linux/kallsyms.h>
71 #include <linux/stacktrace.h>
72 #include <linux/resource.h>
73 #include <linux/module.h>
74 #include <linux/mount.h>
75 #include <linux/security.h>
76 #include <linux/ptrace.h>
77 #include <linux/tracehook.h>
78 #include <linux/printk.h>
79 #include <linux/cache.h>
80 #include <linux/cgroup.h>
81 #include <linux/cpuset.h>
82 #include <linux/audit.h>
83 #include <linux/poll.h>
84 #include <linux/nsproxy.h>
85 #include <linux/oom.h>
86 #include <linux/elf.h>
87 #include <linux/pid_namespace.h>
88 #include <linux/user_namespace.h>
89 #include <linux/fs_struct.h>
90 #include <linux/slab.h>
91 #include <linux/sched/autogroup.h>
92 #include <linux/sched/mm.h>
93 #include <linux/sched/coredump.h>
94 #include <linux/sched/debug.h>
95 #include <linux/sched/stat.h>
96 #include <linux/posix-timers.h>
97 #include <trace/events/oom.h>
98 #include "internal.h"
99 #include "fd.h"
100
101 #include "../../lib/kstrtox.h"
102
103 /* NOTE:
104  *      Implementing inode permission operations in /proc is almost
105  *      certainly an error.  Permission checks need to happen during
106  *      each system call not at open time.  The reason is that most of
107  *      what we wish to check for permissions in /proc varies at runtime.
108  *
109  *      The classic example of a problem is opening file descriptors
110  *      in /proc for a task before it execs a suid executable.
111  */
112
113 static u8 nlink_tid __ro_after_init;
114 static u8 nlink_tgid __ro_after_init;
115
116 struct pid_entry {
117         const char *name;
118         unsigned int len;
119         umode_t mode;
120         const struct inode_operations *iop;
121         const struct file_operations *fop;
122         union proc_op op;
123 };
124
125 #define NOD(NAME, MODE, IOP, FOP, OP) {                 \
126         .name = (NAME),                                 \
127         .len  = sizeof(NAME) - 1,                       \
128         .mode = MODE,                                   \
129         .iop  = IOP,                                    \
130         .fop  = FOP,                                    \
131         .op   = OP,                                     \
132 }
133
134 #define DIR(NAME, MODE, iops, fops)     \
135         NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
136 #define LNK(NAME, get_link)                                     \
137         NOD(NAME, (S_IFLNK|S_IRWXUGO),                          \
138                 &proc_pid_link_inode_operations, NULL,          \
139                 { .proc_get_link = get_link } )
140 #define REG(NAME, MODE, fops)                           \
141         NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
142 #define ONE(NAME, MODE, show)                           \
143         NOD(NAME, (S_IFREG|(MODE)),                     \
144                 NULL, &proc_single_file_operations,     \
145                 { .proc_show = show } )
146 #define ATTR(LSM, NAME, MODE)                           \
147         NOD(NAME, (S_IFREG|(MODE)),                     \
148                 NULL, &proc_pid_attr_operations,        \
149                 { .lsm = LSM })
150
151 /*
152  * Count the number of hardlinks for the pid_entry table, excluding the .
153  * and .. links.
154  */
155 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
156         unsigned int n)
157 {
158         unsigned int i;
159         unsigned int count;
160
161         count = 2;
162         for (i = 0; i < n; ++i) {
163                 if (S_ISDIR(entries[i].mode))
164                         ++count;
165         }
166
167         return count;
168 }
169
170 static int get_task_root(struct task_struct *task, struct path *root)
171 {
172         int result = -ENOENT;
173
174         task_lock(task);
175         if (task->fs) {
176                 get_fs_root(task->fs, root);
177                 result = 0;
178         }
179         task_unlock(task);
180         return result;
181 }
182
183 static int proc_cwd_link(struct dentry *dentry, struct path *path)
184 {
185         struct task_struct *task = get_proc_task(d_inode(dentry));
186         int result = -ENOENT;
187
188         if (task) {
189                 task_lock(task);
190                 if (task->fs) {
191                         get_fs_pwd(task->fs, path);
192                         result = 0;
193                 }
194                 task_unlock(task);
195                 put_task_struct(task);
196         }
197         return result;
198 }
199
200 static int proc_root_link(struct dentry *dentry, struct path *path)
201 {
202         struct task_struct *task = get_proc_task(d_inode(dentry));
203         int result = -ENOENT;
204
205         if (task) {
206                 result = get_task_root(task, path);
207                 put_task_struct(task);
208         }
209         return result;
210 }
211
212 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
213                               size_t count, loff_t *ppos)
214 {
215         unsigned long arg_start, arg_end, env_start, env_end;
216         unsigned long pos, len;
217         char *page;
218
219         /* Check if process spawned far enough to have cmdline. */
220         if (!mm->env_end)
221                 return 0;
222
223         spin_lock(&mm->arg_lock);
224         arg_start = mm->arg_start;
225         arg_end = mm->arg_end;
226         env_start = mm->env_start;
227         env_end = mm->env_end;
228         spin_unlock(&mm->arg_lock);
229
230         if (arg_start >= arg_end)
231                 return 0;
232
233         /*
234          * We have traditionally allowed the user to re-write
235          * the argument strings and overflow the end result
236          * into the environment section. But only do that if
237          * the environment area is contiguous to the arguments.
238          */
239         if (env_start != arg_end || env_start >= env_end)
240                 env_start = env_end = arg_end;
241
242         /* .. and limit it to a maximum of one page of slop */
243         if (env_end >= arg_end + PAGE_SIZE)
244                 env_end = arg_end + PAGE_SIZE - 1;
245
246         /* We're not going to care if "*ppos" has high bits set */
247         pos = arg_start + *ppos;
248
249         /* .. but we do check the result is in the proper range */
250         if (pos < arg_start || pos >= env_end)
251                 return 0;
252
253         /* .. and we never go past env_end */
254         if (env_end - pos < count)
255                 count = env_end - pos;
256
257         page = (char *)__get_free_page(GFP_KERNEL);
258         if (!page)
259                 return -ENOMEM;
260
261         len = 0;
262         while (count) {
263                 int got;
264                 size_t size = min_t(size_t, PAGE_SIZE, count);
265                 long offset;
266
267                 /*
268                  * Are we already starting past the official end?
269                  * We always include the last byte that is *supposed*
270                  * to be NUL
271                  */
272                 offset = (pos >= arg_end) ? pos - arg_end + 1 : 0;
273
274                 got = access_remote_vm(mm, pos - offset, page, size + offset, FOLL_ANON);
275                 if (got <= offset)
276                         break;
277                 got -= offset;
278
279                 /* Don't walk past a NUL character once you hit arg_end */
280                 if (pos + got >= arg_end) {
281                         int n = 0;
282
283                         /*
284                          * If we started before 'arg_end' but ended up
285                          * at or after it, we start the NUL character
286                          * check at arg_end-1 (where we expect the normal
287                          * EOF to be).
288                          *
289                          * NOTE! This is smaller than 'got', because
290                          * pos + got >= arg_end
291                          */
292                         if (pos < arg_end)
293                                 n = arg_end - pos - 1;
294
295                         /* Cut off at first NUL after 'n' */
296                         got = n + strnlen(page+n, offset+got-n);
297                         if (got < offset)
298                                 break;
299                         got -= offset;
300
301                         /* Include the NUL if it existed */
302                         if (got < size)
303                                 got++;
304                 }
305
306                 got -= copy_to_user(buf, page+offset, got);
307                 if (unlikely(!got)) {
308                         if (!len)
309                                 len = -EFAULT;
310                         break;
311                 }
312                 pos += got;
313                 buf += got;
314                 len += got;
315                 count -= got;
316         }
317
318         free_page((unsigned long)page);
319         return len;
320 }
321
322 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
323                                 size_t count, loff_t *pos)
324 {
325         struct mm_struct *mm;
326         ssize_t ret;
327
328         mm = get_task_mm(tsk);
329         if (!mm)
330                 return 0;
331
332         ret = get_mm_cmdline(mm, buf, count, pos);
333         mmput(mm);
334         return ret;
335 }
336
337 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
338                                      size_t count, loff_t *pos)
339 {
340         struct task_struct *tsk;
341         ssize_t ret;
342
343         BUG_ON(*pos < 0);
344
345         tsk = get_proc_task(file_inode(file));
346         if (!tsk)
347                 return -ESRCH;
348         ret = get_task_cmdline(tsk, buf, count, pos);
349         put_task_struct(tsk);
350         if (ret > 0)
351                 *pos += ret;
352         return ret;
353 }
354
355 static const struct file_operations proc_pid_cmdline_ops = {
356         .read   = proc_pid_cmdline_read,
357         .llseek = generic_file_llseek,
358 };
359
360 #ifdef CONFIG_KALLSYMS
361 /*
362  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
363  * Returns the resolved symbol.  If that fails, simply return the address.
364  */
365 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
366                           struct pid *pid, struct task_struct *task)
367 {
368         unsigned long wchan;
369         char symname[KSYM_NAME_LEN];
370
371         if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
372                 goto print0;
373
374         wchan = get_wchan(task);
375         if (wchan && !lookup_symbol_name(wchan, symname)) {
376                 seq_puts(m, symname);
377                 return 0;
378         }
379
380 print0:
381         seq_putc(m, '0');
382         return 0;
383 }
384 #endif /* CONFIG_KALLSYMS */
385
386 static int lock_trace(struct task_struct *task)
387 {
388         int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
389         if (err)
390                 return err;
391         if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
392                 mutex_unlock(&task->signal->cred_guard_mutex);
393                 return -EPERM;
394         }
395         return 0;
396 }
397
398 static void unlock_trace(struct task_struct *task)
399 {
400         mutex_unlock(&task->signal->cred_guard_mutex);
401 }
402
403 #ifdef CONFIG_STACKTRACE
404
405 #define MAX_STACK_TRACE_DEPTH   64
406
407 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
408                           struct pid *pid, struct task_struct *task)
409 {
410         unsigned long *entries;
411         int err;
412
413         /*
414          * The ability to racily run the kernel stack unwinder on a running task
415          * and then observe the unwinder output is scary; while it is useful for
416          * debugging kernel issues, it can also allow an attacker to leak kernel
417          * stack contents.
418          * Doing this in a manner that is at least safe from races would require
419          * some work to ensure that the remote task can not be scheduled; and
420          * even then, this would still expose the unwinder as local attack
421          * surface.
422          * Therefore, this interface is restricted to root.
423          */
424         if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
425                 return -EACCES;
426
427         entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
428                                 GFP_KERNEL);
429         if (!entries)
430                 return -ENOMEM;
431
432         err = lock_trace(task);
433         if (!err) {
434                 unsigned int i, nr_entries;
435
436                 nr_entries = stack_trace_save_tsk(task, entries,
437                                                   MAX_STACK_TRACE_DEPTH, 0);
438
439                 for (i = 0; i < nr_entries; i++) {
440                         seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
441                 }
442
443                 unlock_trace(task);
444         }
445         kfree(entries);
446
447         return err;
448 }
449 #endif
450
451 #ifdef CONFIG_SCHED_INFO
452 /*
453  * Provides /proc/PID/schedstat
454  */
455 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
456                               struct pid *pid, struct task_struct *task)
457 {
458         if (unlikely(!sched_info_on()))
459                 seq_puts(m, "0 0 0\n");
460         else
461                 seq_printf(m, "%llu %llu %lu\n",
462                    (unsigned long long)task->se.sum_exec_runtime,
463                    (unsigned long long)task->sched_info.run_delay,
464                    task->sched_info.pcount);
465
466         return 0;
467 }
468 #endif
469
470 #ifdef CONFIG_LATENCYTOP
471 static int lstats_show_proc(struct seq_file *m, void *v)
472 {
473         int i;
474         struct inode *inode = m->private;
475         struct task_struct *task = get_proc_task(inode);
476
477         if (!task)
478                 return -ESRCH;
479         seq_puts(m, "Latency Top version : v0.1\n");
480         for (i = 0; i < LT_SAVECOUNT; i++) {
481                 struct latency_record *lr = &task->latency_record[i];
482                 if (lr->backtrace[0]) {
483                         int q;
484                         seq_printf(m, "%i %li %li",
485                                    lr->count, lr->time, lr->max);
486                         for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
487                                 unsigned long bt = lr->backtrace[q];
488
489                                 if (!bt)
490                                         break;
491                                 seq_printf(m, " %ps", (void *)bt);
492                         }
493                         seq_putc(m, '\n');
494                 }
495
496         }
497         put_task_struct(task);
498         return 0;
499 }
500
501 static int lstats_open(struct inode *inode, struct file *file)
502 {
503         return single_open(file, lstats_show_proc, inode);
504 }
505
506 static ssize_t lstats_write(struct file *file, const char __user *buf,
507                             size_t count, loff_t *offs)
508 {
509         struct task_struct *task = get_proc_task(file_inode(file));
510
511         if (!task)
512                 return -ESRCH;
513         clear_tsk_latency_tracing(task);
514         put_task_struct(task);
515
516         return count;
517 }
518
519 static const struct file_operations proc_lstats_operations = {
520         .open           = lstats_open,
521         .read           = seq_read,
522         .write          = lstats_write,
523         .llseek         = seq_lseek,
524         .release        = single_release,
525 };
526
527 #endif
528
529 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
530                           struct pid *pid, struct task_struct *task)
531 {
532         unsigned long totalpages = totalram_pages() + total_swap_pages;
533         unsigned long points = 0;
534
535         points = oom_badness(task, NULL, NULL, totalpages) *
536                                         1000 / totalpages;
537         seq_printf(m, "%lu\n", points);
538
539         return 0;
540 }
541
542 struct limit_names {
543         const char *name;
544         const char *unit;
545 };
546
547 static const struct limit_names lnames[RLIM_NLIMITS] = {
548         [RLIMIT_CPU] = {"Max cpu time", "seconds"},
549         [RLIMIT_FSIZE] = {"Max file size", "bytes"},
550         [RLIMIT_DATA] = {"Max data size", "bytes"},
551         [RLIMIT_STACK] = {"Max stack size", "bytes"},
552         [RLIMIT_CORE] = {"Max core file size", "bytes"},
553         [RLIMIT_RSS] = {"Max resident set", "bytes"},
554         [RLIMIT_NPROC] = {"Max processes", "processes"},
555         [RLIMIT_NOFILE] = {"Max open files", "files"},
556         [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
557         [RLIMIT_AS] = {"Max address space", "bytes"},
558         [RLIMIT_LOCKS] = {"Max file locks", "locks"},
559         [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
560         [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
561         [RLIMIT_NICE] = {"Max nice priority", NULL},
562         [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
563         [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
564 };
565
566 /* Display limits for a process */
567 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
568                            struct pid *pid, struct task_struct *task)
569 {
570         unsigned int i;
571         unsigned long flags;
572
573         struct rlimit rlim[RLIM_NLIMITS];
574
575         if (!lock_task_sighand(task, &flags))
576                 return 0;
577         memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
578         unlock_task_sighand(task, &flags);
579
580         /*
581          * print the file header
582          */
583         seq_puts(m, "Limit                     "
584                 "Soft Limit           "
585                 "Hard Limit           "
586                 "Units     \n");
587
588         for (i = 0; i < RLIM_NLIMITS; i++) {
589                 if (rlim[i].rlim_cur == RLIM_INFINITY)
590                         seq_printf(m, "%-25s %-20s ",
591                                    lnames[i].name, "unlimited");
592                 else
593                         seq_printf(m, "%-25s %-20lu ",
594                                    lnames[i].name, rlim[i].rlim_cur);
595
596                 if (rlim[i].rlim_max == RLIM_INFINITY)
597                         seq_printf(m, "%-20s ", "unlimited");
598                 else
599                         seq_printf(m, "%-20lu ", rlim[i].rlim_max);
600
601                 if (lnames[i].unit)
602                         seq_printf(m, "%-10s\n", lnames[i].unit);
603                 else
604                         seq_putc(m, '\n');
605         }
606
607         return 0;
608 }
609
610 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
611 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
612                             struct pid *pid, struct task_struct *task)
613 {
614         struct syscall_info info;
615         u64 *args = &info.data.args[0];
616         int res;
617
618         res = lock_trace(task);
619         if (res)
620                 return res;
621
622         if (task_current_syscall(task, &info))
623                 seq_puts(m, "running\n");
624         else if (info.data.nr < 0)
625                 seq_printf(m, "%d 0x%llx 0x%llx\n",
626                            info.data.nr, info.sp, info.data.instruction_pointer);
627         else
628                 seq_printf(m,
629                        "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n",
630                        info.data.nr,
631                        args[0], args[1], args[2], args[3], args[4], args[5],
632                        info.sp, info.data.instruction_pointer);
633         unlock_trace(task);
634
635         return 0;
636 }
637 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
638
639 /************************************************************************/
640 /*                       Here the fs part begins                        */
641 /************************************************************************/
642
643 /* permission checks */
644 static int proc_fd_access_allowed(struct inode *inode)
645 {
646         struct task_struct *task;
647         int allowed = 0;
648         /* Allow access to a task's file descriptors if it is us or we
649          * may use ptrace attach to the process and find out that
650          * information.
651          */
652         task = get_proc_task(inode);
653         if (task) {
654                 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
655                 put_task_struct(task);
656         }
657         return allowed;
658 }
659
660 int proc_setattr(struct dentry *dentry, struct iattr *attr)
661 {
662         int error;
663         struct inode *inode = d_inode(dentry);
664
665         if (attr->ia_valid & ATTR_MODE)
666                 return -EPERM;
667
668         error = setattr_prepare(dentry, attr);
669         if (error)
670                 return error;
671
672         setattr_copy(inode, attr);
673         mark_inode_dirty(inode);
674         return 0;
675 }
676
677 /*
678  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
679  * or euid/egid (for hide_pid_min=2)?
680  */
681 static bool has_pid_permissions(struct pid_namespace *pid,
682                                  struct task_struct *task,
683                                  int hide_pid_min)
684 {
685         if (pid->hide_pid < hide_pid_min)
686                 return true;
687         if (in_group_p(pid->pid_gid))
688                 return true;
689         return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
690 }
691
692
693 static int proc_pid_permission(struct inode *inode, int mask)
694 {
695         struct pid_namespace *pid = proc_pid_ns(inode);
696         struct task_struct *task;
697         bool has_perms;
698
699         task = get_proc_task(inode);
700         if (!task)
701                 return -ESRCH;
702         has_perms = has_pid_permissions(pid, task, HIDEPID_NO_ACCESS);
703         put_task_struct(task);
704
705         if (!has_perms) {
706                 if (pid->hide_pid == HIDEPID_INVISIBLE) {
707                         /*
708                          * Let's make getdents(), stat(), and open()
709                          * consistent with each other.  If a process
710                          * may not stat() a file, it shouldn't be seen
711                          * in procfs at all.
712                          */
713                         return -ENOENT;
714                 }
715
716                 return -EPERM;
717         }
718         return generic_permission(inode, mask);
719 }
720
721
722
723 static const struct inode_operations proc_def_inode_operations = {
724         .setattr        = proc_setattr,
725 };
726
727 static int proc_single_show(struct seq_file *m, void *v)
728 {
729         struct inode *inode = m->private;
730         struct pid_namespace *ns = proc_pid_ns(inode);
731         struct pid *pid = proc_pid(inode);
732         struct task_struct *task;
733         int ret;
734
735         task = get_pid_task(pid, PIDTYPE_PID);
736         if (!task)
737                 return -ESRCH;
738
739         ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
740
741         put_task_struct(task);
742         return ret;
743 }
744
745 static int proc_single_open(struct inode *inode, struct file *filp)
746 {
747         return single_open(filp, proc_single_show, inode);
748 }
749
750 static const struct file_operations proc_single_file_operations = {
751         .open           = proc_single_open,
752         .read           = seq_read,
753         .llseek         = seq_lseek,
754         .release        = single_release,
755 };
756
757
758 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
759 {
760         struct task_struct *task = get_proc_task(inode);
761         struct mm_struct *mm = ERR_PTR(-ESRCH);
762
763         if (task) {
764                 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
765                 put_task_struct(task);
766
767                 if (!IS_ERR_OR_NULL(mm)) {
768                         /* ensure this mm_struct can't be freed */
769                         mmgrab(mm);
770                         /* but do not pin its memory */
771                         mmput(mm);
772                 }
773         }
774
775         return mm;
776 }
777
778 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
779 {
780         struct mm_struct *mm = proc_mem_open(inode, mode);
781
782         if (IS_ERR(mm))
783                 return PTR_ERR(mm);
784
785         file->private_data = mm;
786         return 0;
787 }
788
789 static int mem_open(struct inode *inode, struct file *file)
790 {
791         int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
792
793         /* OK to pass negative loff_t, we can catch out-of-range */
794         file->f_mode |= FMODE_UNSIGNED_OFFSET;
795
796         return ret;
797 }
798
799 static ssize_t mem_rw(struct file *file, char __user *buf,
800                         size_t count, loff_t *ppos, int write)
801 {
802         struct mm_struct *mm = file->private_data;
803         unsigned long addr = *ppos;
804         ssize_t copied;
805         char *page;
806         unsigned int flags;
807
808         if (!mm)
809                 return 0;
810
811         page = (char *)__get_free_page(GFP_KERNEL);
812         if (!page)
813                 return -ENOMEM;
814
815         copied = 0;
816         if (!mmget_not_zero(mm))
817                 goto free;
818
819         flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
820
821         while (count > 0) {
822                 int this_len = min_t(int, count, PAGE_SIZE);
823
824                 if (write && copy_from_user(page, buf, this_len)) {
825                         copied = -EFAULT;
826                         break;
827                 }
828
829                 this_len = access_remote_vm(mm, addr, page, this_len, flags);
830                 if (!this_len) {
831                         if (!copied)
832                                 copied = -EIO;
833                         break;
834                 }
835
836                 if (!write && copy_to_user(buf, page, this_len)) {
837                         copied = -EFAULT;
838                         break;
839                 }
840
841                 buf += this_len;
842                 addr += this_len;
843                 copied += this_len;
844                 count -= this_len;
845         }
846         *ppos = addr;
847
848         mmput(mm);
849 free:
850         free_page((unsigned long) page);
851         return copied;
852 }
853
854 static ssize_t mem_read(struct file *file, char __user *buf,
855                         size_t count, loff_t *ppos)
856 {
857         return mem_rw(file, buf, count, ppos, 0);
858 }
859
860 static ssize_t mem_write(struct file *file, const char __user *buf,
861                          size_t count, loff_t *ppos)
862 {
863         return mem_rw(file, (char __user*)buf, count, ppos, 1);
864 }
865
866 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
867 {
868         switch (orig) {
869         case 0:
870                 file->f_pos = offset;
871                 break;
872         case 1:
873                 file->f_pos += offset;
874                 break;
875         default:
876                 return -EINVAL;
877         }
878         force_successful_syscall_return();
879         return file->f_pos;
880 }
881
882 static int mem_release(struct inode *inode, struct file *file)
883 {
884         struct mm_struct *mm = file->private_data;
885         if (mm)
886                 mmdrop(mm);
887         return 0;
888 }
889
890 static const struct file_operations proc_mem_operations = {
891         .llseek         = mem_lseek,
892         .read           = mem_read,
893         .write          = mem_write,
894         .open           = mem_open,
895         .release        = mem_release,
896 };
897
898 static int environ_open(struct inode *inode, struct file *file)
899 {
900         return __mem_open(inode, file, PTRACE_MODE_READ);
901 }
902
903 static ssize_t environ_read(struct file *file, char __user *buf,
904                         size_t count, loff_t *ppos)
905 {
906         char *page;
907         unsigned long src = *ppos;
908         int ret = 0;
909         struct mm_struct *mm = file->private_data;
910         unsigned long env_start, env_end;
911
912         /* Ensure the process spawned far enough to have an environment. */
913         if (!mm || !mm->env_end)
914                 return 0;
915
916         page = (char *)__get_free_page(GFP_KERNEL);
917         if (!page)
918                 return -ENOMEM;
919
920         ret = 0;
921         if (!mmget_not_zero(mm))
922                 goto free;
923
924         spin_lock(&mm->arg_lock);
925         env_start = mm->env_start;
926         env_end = mm->env_end;
927         spin_unlock(&mm->arg_lock);
928
929         while (count > 0) {
930                 size_t this_len, max_len;
931                 int retval;
932
933                 if (src >= (env_end - env_start))
934                         break;
935
936                 this_len = env_end - (env_start + src);
937
938                 max_len = min_t(size_t, PAGE_SIZE, count);
939                 this_len = min(max_len, this_len);
940
941                 retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
942
943                 if (retval <= 0) {
944                         ret = retval;
945                         break;
946                 }
947
948                 if (copy_to_user(buf, page, retval)) {
949                         ret = -EFAULT;
950                         break;
951                 }
952
953                 ret += retval;
954                 src += retval;
955                 buf += retval;
956                 count -= retval;
957         }
958         *ppos = src;
959         mmput(mm);
960
961 free:
962         free_page((unsigned long) page);
963         return ret;
964 }
965
966 static const struct file_operations proc_environ_operations = {
967         .open           = environ_open,
968         .read           = environ_read,
969         .llseek         = generic_file_llseek,
970         .release        = mem_release,
971 };
972
973 static int auxv_open(struct inode *inode, struct file *file)
974 {
975         return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
976 }
977
978 static ssize_t auxv_read(struct file *file, char __user *buf,
979                         size_t count, loff_t *ppos)
980 {
981         struct mm_struct *mm = file->private_data;
982         unsigned int nwords = 0;
983
984         if (!mm)
985                 return 0;
986         do {
987                 nwords += 2;
988         } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
989         return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
990                                        nwords * sizeof(mm->saved_auxv[0]));
991 }
992
993 static const struct file_operations proc_auxv_operations = {
994         .open           = auxv_open,
995         .read           = auxv_read,
996         .llseek         = generic_file_llseek,
997         .release        = mem_release,
998 };
999
1000 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1001                             loff_t *ppos)
1002 {
1003         struct task_struct *task = get_proc_task(file_inode(file));
1004         char buffer[PROC_NUMBUF];
1005         int oom_adj = OOM_ADJUST_MIN;
1006         size_t len;
1007
1008         if (!task)
1009                 return -ESRCH;
1010         if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1011                 oom_adj = OOM_ADJUST_MAX;
1012         else
1013                 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1014                           OOM_SCORE_ADJ_MAX;
1015         put_task_struct(task);
1016         len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1017         return simple_read_from_buffer(buf, count, ppos, buffer, len);
1018 }
1019
1020 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1021 {
1022         static DEFINE_MUTEX(oom_adj_mutex);
1023         struct mm_struct *mm = NULL;
1024         struct task_struct *task;
1025         int err = 0;
1026
1027         task = get_proc_task(file_inode(file));
1028         if (!task)
1029                 return -ESRCH;
1030
1031         mutex_lock(&oom_adj_mutex);
1032         if (legacy) {
1033                 if (oom_adj < task->signal->oom_score_adj &&
1034                                 !capable(CAP_SYS_RESOURCE)) {
1035                         err = -EACCES;
1036                         goto err_unlock;
1037                 }
1038                 /*
1039                  * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1040                  * /proc/pid/oom_score_adj instead.
1041                  */
1042                 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1043                           current->comm, task_pid_nr(current), task_pid_nr(task),
1044                           task_pid_nr(task));
1045         } else {
1046                 if ((short)oom_adj < task->signal->oom_score_adj_min &&
1047                                 !capable(CAP_SYS_RESOURCE)) {
1048                         err = -EACCES;
1049                         goto err_unlock;
1050                 }
1051         }
1052
1053         /*
1054          * Make sure we will check other processes sharing the mm if this is
1055          * not vfrok which wants its own oom_score_adj.
1056          * pin the mm so it doesn't go away and get reused after task_unlock
1057          */
1058         if (!task->vfork_done) {
1059                 struct task_struct *p = find_lock_task_mm(task);
1060
1061                 if (p) {
1062                         if (atomic_read(&p->mm->mm_users) > 1) {
1063                                 mm = p->mm;
1064                                 mmgrab(mm);
1065                         }
1066                         task_unlock(p);
1067                 }
1068         }
1069
1070         task->signal->oom_score_adj = oom_adj;
1071         if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1072                 task->signal->oom_score_adj_min = (short)oom_adj;
1073         trace_oom_score_adj_update(task);
1074
1075         if (mm) {
1076                 struct task_struct *p;
1077
1078                 rcu_read_lock();
1079                 for_each_process(p) {
1080                         if (same_thread_group(task, p))
1081                                 continue;
1082
1083                         /* do not touch kernel threads or the global init */
1084                         if (p->flags & PF_KTHREAD || is_global_init(p))
1085                                 continue;
1086
1087                         task_lock(p);
1088                         if (!p->vfork_done && process_shares_mm(p, mm)) {
1089                                 p->signal->oom_score_adj = oom_adj;
1090                                 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1091                                         p->signal->oom_score_adj_min = (short)oom_adj;
1092                         }
1093                         task_unlock(p);
1094                 }
1095                 rcu_read_unlock();
1096                 mmdrop(mm);
1097         }
1098 err_unlock:
1099         mutex_unlock(&oom_adj_mutex);
1100         put_task_struct(task);
1101         return err;
1102 }
1103
1104 /*
1105  * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1106  * kernels.  The effective policy is defined by oom_score_adj, which has a
1107  * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1108  * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1109  * Processes that become oom disabled via oom_adj will still be oom disabled
1110  * with this implementation.
1111  *
1112  * oom_adj cannot be removed since existing userspace binaries use it.
1113  */
1114 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1115                              size_t count, loff_t *ppos)
1116 {
1117         char buffer[PROC_NUMBUF];
1118         int oom_adj;
1119         int err;
1120
1121         memset(buffer, 0, sizeof(buffer));
1122         if (count > sizeof(buffer) - 1)
1123                 count = sizeof(buffer) - 1;
1124         if (copy_from_user(buffer, buf, count)) {
1125                 err = -EFAULT;
1126                 goto out;
1127         }
1128
1129         err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1130         if (err)
1131                 goto out;
1132         if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1133              oom_adj != OOM_DISABLE) {
1134                 err = -EINVAL;
1135                 goto out;
1136         }
1137
1138         /*
1139          * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1140          * value is always attainable.
1141          */
1142         if (oom_adj == OOM_ADJUST_MAX)
1143                 oom_adj = OOM_SCORE_ADJ_MAX;
1144         else
1145                 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1146
1147         err = __set_oom_adj(file, oom_adj, true);
1148 out:
1149         return err < 0 ? err : count;
1150 }
1151
1152 static const struct file_operations proc_oom_adj_operations = {
1153         .read           = oom_adj_read,
1154         .write          = oom_adj_write,
1155         .llseek         = generic_file_llseek,
1156 };
1157
1158 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1159                                         size_t count, loff_t *ppos)
1160 {
1161         struct task_struct *task = get_proc_task(file_inode(file));
1162         char buffer[PROC_NUMBUF];
1163         short oom_score_adj = OOM_SCORE_ADJ_MIN;
1164         size_t len;
1165
1166         if (!task)
1167                 return -ESRCH;
1168         oom_score_adj = task->signal->oom_score_adj;
1169         put_task_struct(task);
1170         len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1171         return simple_read_from_buffer(buf, count, ppos, buffer, len);
1172 }
1173
1174 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1175                                         size_t count, loff_t *ppos)
1176 {
1177         char buffer[PROC_NUMBUF];
1178         int oom_score_adj;
1179         int err;
1180
1181         memset(buffer, 0, sizeof(buffer));
1182         if (count > sizeof(buffer) - 1)
1183                 count = sizeof(buffer) - 1;
1184         if (copy_from_user(buffer, buf, count)) {
1185                 err = -EFAULT;
1186                 goto out;
1187         }
1188
1189         err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1190         if (err)
1191                 goto out;
1192         if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1193                         oom_score_adj > OOM_SCORE_ADJ_MAX) {
1194                 err = -EINVAL;
1195                 goto out;
1196         }
1197
1198         err = __set_oom_adj(file, oom_score_adj, false);
1199 out:
1200         return err < 0 ? err : count;
1201 }
1202
1203 static const struct file_operations proc_oom_score_adj_operations = {
1204         .read           = oom_score_adj_read,
1205         .write          = oom_score_adj_write,
1206         .llseek         = default_llseek,
1207 };
1208
1209 #ifdef CONFIG_AUDIT
1210 #define TMPBUFLEN 11
1211 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1212                                   size_t count, loff_t *ppos)
1213 {
1214         struct inode * inode = file_inode(file);
1215         struct task_struct *task = get_proc_task(inode);
1216         ssize_t length;
1217         char tmpbuf[TMPBUFLEN];
1218
1219         if (!task)
1220                 return -ESRCH;
1221         length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1222                            from_kuid(file->f_cred->user_ns,
1223                                      audit_get_loginuid(task)));
1224         put_task_struct(task);
1225         return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1226 }
1227
1228 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1229                                    size_t count, loff_t *ppos)
1230 {
1231         struct inode * inode = file_inode(file);
1232         uid_t loginuid;
1233         kuid_t kloginuid;
1234         int rv;
1235
1236         rcu_read_lock();
1237         if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1238                 rcu_read_unlock();
1239                 return -EPERM;
1240         }
1241         rcu_read_unlock();
1242
1243         if (*ppos != 0) {
1244                 /* No partial writes. */
1245                 return -EINVAL;
1246         }
1247
1248         rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1249         if (rv < 0)
1250                 return rv;
1251
1252         /* is userspace tring to explicitly UNSET the loginuid? */
1253         if (loginuid == AUDIT_UID_UNSET) {
1254                 kloginuid = INVALID_UID;
1255         } else {
1256                 kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1257                 if (!uid_valid(kloginuid))
1258                         return -EINVAL;
1259         }
1260
1261         rv = audit_set_loginuid(kloginuid);
1262         if (rv < 0)
1263                 return rv;
1264         return count;
1265 }
1266
1267 static const struct file_operations proc_loginuid_operations = {
1268         .read           = proc_loginuid_read,
1269         .write          = proc_loginuid_write,
1270         .llseek         = generic_file_llseek,
1271 };
1272
1273 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1274                                   size_t count, loff_t *ppos)
1275 {
1276         struct inode * inode = file_inode(file);
1277         struct task_struct *task = get_proc_task(inode);
1278         ssize_t length;
1279         char tmpbuf[TMPBUFLEN];
1280
1281         if (!task)
1282                 return -ESRCH;
1283         length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1284                                 audit_get_sessionid(task));
1285         put_task_struct(task);
1286         return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1287 }
1288
1289 static const struct file_operations proc_sessionid_operations = {
1290         .read           = proc_sessionid_read,
1291         .llseek         = generic_file_llseek,
1292 };
1293 #endif
1294
1295 #ifdef CONFIG_FAULT_INJECTION
1296 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1297                                       size_t count, loff_t *ppos)
1298 {
1299         struct task_struct *task = get_proc_task(file_inode(file));
1300         char buffer[PROC_NUMBUF];
1301         size_t len;
1302         int make_it_fail;
1303
1304         if (!task)
1305                 return -ESRCH;
1306         make_it_fail = task->make_it_fail;
1307         put_task_struct(task);
1308
1309         len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1310
1311         return simple_read_from_buffer(buf, count, ppos, buffer, len);
1312 }
1313
1314 static ssize_t proc_fault_inject_write(struct file * file,
1315                         const char __user * buf, size_t count, loff_t *ppos)
1316 {
1317         struct task_struct *task;
1318         char buffer[PROC_NUMBUF];
1319         int make_it_fail;
1320         int rv;
1321
1322         if (!capable(CAP_SYS_RESOURCE))
1323                 return -EPERM;
1324         memset(buffer, 0, sizeof(buffer));
1325         if (count > sizeof(buffer) - 1)
1326                 count = sizeof(buffer) - 1;
1327         if (copy_from_user(buffer, buf, count))
1328                 return -EFAULT;
1329         rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1330         if (rv < 0)
1331                 return rv;
1332         if (make_it_fail < 0 || make_it_fail > 1)
1333                 return -EINVAL;
1334
1335         task = get_proc_task(file_inode(file));
1336         if (!task)
1337                 return -ESRCH;
1338         task->make_it_fail = make_it_fail;
1339         put_task_struct(task);
1340
1341         return count;
1342 }
1343
1344 static const struct file_operations proc_fault_inject_operations = {
1345         .read           = proc_fault_inject_read,
1346         .write          = proc_fault_inject_write,
1347         .llseek         = generic_file_llseek,
1348 };
1349
1350 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1351                                    size_t count, loff_t *ppos)
1352 {
1353         struct task_struct *task;
1354         int err;
1355         unsigned int n;
1356
1357         err = kstrtouint_from_user(buf, count, 0, &n);
1358         if (err)
1359                 return err;
1360
1361         task = get_proc_task(file_inode(file));
1362         if (!task)
1363                 return -ESRCH;
1364         task->fail_nth = n;
1365         put_task_struct(task);
1366
1367         return count;
1368 }
1369
1370 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1371                                   size_t count, loff_t *ppos)
1372 {
1373         struct task_struct *task;
1374         char numbuf[PROC_NUMBUF];
1375         ssize_t len;
1376
1377         task = get_proc_task(file_inode(file));
1378         if (!task)
1379                 return -ESRCH;
1380         len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1381         put_task_struct(task);
1382         return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1383 }
1384
1385 static const struct file_operations proc_fail_nth_operations = {
1386         .read           = proc_fail_nth_read,
1387         .write          = proc_fail_nth_write,
1388 };
1389 #endif
1390
1391
1392 #ifdef CONFIG_SCHED_DEBUG
1393 /*
1394  * Print out various scheduling related per-task fields:
1395  */
1396 static int sched_show(struct seq_file *m, void *v)
1397 {
1398         struct inode *inode = m->private;
1399         struct pid_namespace *ns = proc_pid_ns(inode);
1400         struct task_struct *p;
1401
1402         p = get_proc_task(inode);
1403         if (!p)
1404                 return -ESRCH;
1405         proc_sched_show_task(p, ns, m);
1406
1407         put_task_struct(p);
1408
1409         return 0;
1410 }
1411
1412 static ssize_t
1413 sched_write(struct file *file, const char __user *buf,
1414             size_t count, loff_t *offset)
1415 {
1416         struct inode *inode = file_inode(file);
1417         struct task_struct *p;
1418
1419         p = get_proc_task(inode);
1420         if (!p)
1421                 return -ESRCH;
1422         proc_sched_set_task(p);
1423
1424         put_task_struct(p);
1425
1426         return count;
1427 }
1428
1429 static int sched_open(struct inode *inode, struct file *filp)
1430 {
1431         return single_open(filp, sched_show, inode);
1432 }
1433
1434 static const struct file_operations proc_pid_sched_operations = {
1435         .open           = sched_open,
1436         .read           = seq_read,
1437         .write          = sched_write,
1438         .llseek         = seq_lseek,
1439         .release        = single_release,
1440 };
1441
1442 #endif
1443
1444 #ifdef CONFIG_SCHED_AUTOGROUP
1445 /*
1446  * Print out autogroup related information:
1447  */
1448 static int sched_autogroup_show(struct seq_file *m, void *v)
1449 {
1450         struct inode *inode = m->private;
1451         struct task_struct *p;
1452
1453         p = get_proc_task(inode);
1454         if (!p)
1455                 return -ESRCH;
1456         proc_sched_autogroup_show_task(p, m);
1457
1458         put_task_struct(p);
1459
1460         return 0;
1461 }
1462
1463 static ssize_t
1464 sched_autogroup_write(struct file *file, const char __user *buf,
1465             size_t count, loff_t *offset)
1466 {
1467         struct inode *inode = file_inode(file);
1468         struct task_struct *p;
1469         char buffer[PROC_NUMBUF];
1470         int nice;
1471         int err;
1472
1473         memset(buffer, 0, sizeof(buffer));
1474         if (count > sizeof(buffer) - 1)
1475                 count = sizeof(buffer) - 1;
1476         if (copy_from_user(buffer, buf, count))
1477                 return -EFAULT;
1478
1479         err = kstrtoint(strstrip(buffer), 0, &nice);
1480         if (err < 0)
1481                 return err;
1482
1483         p = get_proc_task(inode);
1484         if (!p)
1485                 return -ESRCH;
1486
1487         err = proc_sched_autogroup_set_nice(p, nice);
1488         if (err)
1489                 count = err;
1490
1491         put_task_struct(p);
1492
1493         return count;
1494 }
1495
1496 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1497 {
1498         int ret;
1499
1500         ret = single_open(filp, sched_autogroup_show, NULL);
1501         if (!ret) {
1502                 struct seq_file *m = filp->private_data;
1503
1504                 m->private = inode;
1505         }
1506         return ret;
1507 }
1508
1509 static const struct file_operations proc_pid_sched_autogroup_operations = {
1510         .open           = sched_autogroup_open,
1511         .read           = seq_read,
1512         .write          = sched_autogroup_write,
1513         .llseek         = seq_lseek,
1514         .release        = single_release,
1515 };
1516
1517 #endif /* CONFIG_SCHED_AUTOGROUP */
1518
1519 static ssize_t comm_write(struct file *file, const char __user *buf,
1520                                 size_t count, loff_t *offset)
1521 {
1522         struct inode *inode = file_inode(file);
1523         struct task_struct *p;
1524         char buffer[TASK_COMM_LEN];
1525         const size_t maxlen = sizeof(buffer) - 1;
1526
1527         memset(buffer, 0, sizeof(buffer));
1528         if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1529                 return -EFAULT;
1530
1531         p = get_proc_task(inode);
1532         if (!p)
1533                 return -ESRCH;
1534
1535         if (same_thread_group(current, p))
1536                 set_task_comm(p, buffer);
1537         else
1538                 count = -EINVAL;
1539
1540         put_task_struct(p);
1541
1542         return count;
1543 }
1544
1545 static int comm_show(struct seq_file *m, void *v)
1546 {
1547         struct inode *inode = m->private;
1548         struct task_struct *p;
1549
1550         p = get_proc_task(inode);
1551         if (!p)
1552                 return -ESRCH;
1553
1554         proc_task_name(m, p, false);
1555         seq_putc(m, '\n');
1556
1557         put_task_struct(p);
1558
1559         return 0;
1560 }
1561
1562 static int comm_open(struct inode *inode, struct file *filp)
1563 {
1564         return single_open(filp, comm_show, inode);
1565 }
1566
1567 static const struct file_operations proc_pid_set_comm_operations = {
1568         .open           = comm_open,
1569         .read           = seq_read,
1570         .write          = comm_write,
1571         .llseek         = seq_lseek,
1572         .release        = single_release,
1573 };
1574
1575 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1576 {
1577         struct task_struct *task;
1578         struct file *exe_file;
1579
1580         task = get_proc_task(d_inode(dentry));
1581         if (!task)
1582                 return -ENOENT;
1583         exe_file = get_task_exe_file(task);
1584         put_task_struct(task);
1585         if (exe_file) {
1586                 *exe_path = exe_file->f_path;
1587                 path_get(&exe_file->f_path);
1588                 fput(exe_file);
1589                 return 0;
1590         } else
1591                 return -ENOENT;
1592 }
1593
1594 static const char *proc_pid_get_link(struct dentry *dentry,
1595                                      struct inode *inode,
1596                                      struct delayed_call *done)
1597 {
1598         struct path path;
1599         int error = -EACCES;
1600
1601         if (!dentry)
1602                 return ERR_PTR(-ECHILD);
1603
1604         /* Are we allowed to snoop on the tasks file descriptors? */
1605         if (!proc_fd_access_allowed(inode))
1606                 goto out;
1607
1608         error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1609         if (error)
1610                 goto out;
1611
1612         nd_jump_link(&path);
1613         return NULL;
1614 out:
1615         return ERR_PTR(error);
1616 }
1617
1618 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1619 {
1620         char *tmp = (char *)__get_free_page(GFP_KERNEL);
1621         char *pathname;
1622         int len;
1623
1624         if (!tmp)
1625                 return -ENOMEM;
1626
1627         pathname = d_path(path, tmp, PAGE_SIZE);
1628         len = PTR_ERR(pathname);
1629         if (IS_ERR(pathname))
1630                 goto out;
1631         len = tmp + PAGE_SIZE - 1 - pathname;
1632
1633         if (len > buflen)
1634                 len = buflen;
1635         if (copy_to_user(buffer, pathname, len))
1636                 len = -EFAULT;
1637  out:
1638         free_page((unsigned long)tmp);
1639         return len;
1640 }
1641
1642 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1643 {
1644         int error = -EACCES;
1645         struct inode *inode = d_inode(dentry);
1646         struct path path;
1647
1648         /* Are we allowed to snoop on the tasks file descriptors? */
1649         if (!proc_fd_access_allowed(inode))
1650                 goto out;
1651
1652         error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1653         if (error)
1654                 goto out;
1655
1656         error = do_proc_readlink(&path, buffer, buflen);
1657         path_put(&path);
1658 out:
1659         return error;
1660 }
1661
1662 const struct inode_operations proc_pid_link_inode_operations = {
1663         .readlink       = proc_pid_readlink,
1664         .get_link       = proc_pid_get_link,
1665         .setattr        = proc_setattr,
1666 };
1667
1668
1669 /* building an inode */
1670
1671 void task_dump_owner(struct task_struct *task, umode_t mode,
1672                      kuid_t *ruid, kgid_t *rgid)
1673 {
1674         /* Depending on the state of dumpable compute who should own a
1675          * proc file for a task.
1676          */
1677         const struct cred *cred;
1678         kuid_t uid;
1679         kgid_t gid;
1680
1681         if (unlikely(task->flags & PF_KTHREAD)) {
1682                 *ruid = GLOBAL_ROOT_UID;
1683                 *rgid = GLOBAL_ROOT_GID;
1684                 return;
1685         }
1686
1687         /* Default to the tasks effective ownership */
1688         rcu_read_lock();
1689         cred = __task_cred(task);
1690         uid = cred->euid;
1691         gid = cred->egid;
1692         rcu_read_unlock();
1693
1694         /*
1695          * Before the /proc/pid/status file was created the only way to read
1696          * the effective uid of a /process was to stat /proc/pid.  Reading
1697          * /proc/pid/status is slow enough that procps and other packages
1698          * kept stating /proc/pid.  To keep the rules in /proc simple I have
1699          * made this apply to all per process world readable and executable
1700          * directories.
1701          */
1702         if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1703                 struct mm_struct *mm;
1704                 task_lock(task);
1705                 mm = task->mm;
1706                 /* Make non-dumpable tasks owned by some root */
1707                 if (mm) {
1708                         if (get_dumpable(mm) != SUID_DUMP_USER) {
1709                                 struct user_namespace *user_ns = mm->user_ns;
1710
1711                                 uid = make_kuid(user_ns, 0);
1712                                 if (!uid_valid(uid))
1713                                         uid = GLOBAL_ROOT_UID;
1714
1715                                 gid = make_kgid(user_ns, 0);
1716                                 if (!gid_valid(gid))
1717                                         gid = GLOBAL_ROOT_GID;
1718                         }
1719                 } else {
1720                         uid = GLOBAL_ROOT_UID;
1721                         gid = GLOBAL_ROOT_GID;
1722                 }
1723                 task_unlock(task);
1724         }
1725         *ruid = uid;
1726         *rgid = gid;
1727 }
1728
1729 struct inode *proc_pid_make_inode(struct super_block * sb,
1730                                   struct task_struct *task, umode_t mode)
1731 {
1732         struct inode * inode;
1733         struct proc_inode *ei;
1734
1735         /* We need a new inode */
1736
1737         inode = new_inode(sb);
1738         if (!inode)
1739                 goto out;
1740
1741         /* Common stuff */
1742         ei = PROC_I(inode);
1743         inode->i_mode = mode;
1744         inode->i_ino = get_next_ino();
1745         inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1746         inode->i_op = &proc_def_inode_operations;
1747
1748         /*
1749          * grab the reference to task.
1750          */
1751         ei->pid = get_task_pid(task, PIDTYPE_PID);
1752         if (!ei->pid)
1753                 goto out_unlock;
1754
1755         task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1756         security_task_to_inode(task, inode);
1757
1758 out:
1759         return inode;
1760
1761 out_unlock:
1762         iput(inode);
1763         return NULL;
1764 }
1765
1766 int pid_getattr(const struct path *path, struct kstat *stat,
1767                 u32 request_mask, unsigned int query_flags)
1768 {
1769         struct inode *inode = d_inode(path->dentry);
1770         struct pid_namespace *pid = proc_pid_ns(inode);
1771         struct task_struct *task;
1772
1773         generic_fillattr(inode, stat);
1774
1775         stat->uid = GLOBAL_ROOT_UID;
1776         stat->gid = GLOBAL_ROOT_GID;
1777         rcu_read_lock();
1778         task = pid_task(proc_pid(inode), PIDTYPE_PID);
1779         if (task) {
1780                 if (!has_pid_permissions(pid, task, HIDEPID_INVISIBLE)) {
1781                         rcu_read_unlock();
1782                         /*
1783                          * This doesn't prevent learning whether PID exists,
1784                          * it only makes getattr() consistent with readdir().
1785                          */
1786                         return -ENOENT;
1787                 }
1788                 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1789         }
1790         rcu_read_unlock();
1791         return 0;
1792 }
1793
1794 /* dentry stuff */
1795
1796 /*
1797  * Set <pid>/... inode ownership (can change due to setuid(), etc.)
1798  */
1799 void pid_update_inode(struct task_struct *task, struct inode *inode)
1800 {
1801         task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1802
1803         inode->i_mode &= ~(S_ISUID | S_ISGID);
1804         security_task_to_inode(task, inode);
1805 }
1806
1807 /*
1808  * Rewrite the inode's ownerships here because the owning task may have
1809  * performed a setuid(), etc.
1810  *
1811  */
1812 static int pid_revalidate(struct dentry *dentry, unsigned int flags)
1813 {
1814         struct inode *inode;
1815         struct task_struct *task;
1816
1817         if (flags & LOOKUP_RCU)
1818                 return -ECHILD;
1819
1820         inode = d_inode(dentry);
1821         task = get_proc_task(inode);
1822
1823         if (task) {
1824                 pid_update_inode(task, inode);
1825                 put_task_struct(task);
1826                 return 1;
1827         }
1828         return 0;
1829 }
1830
1831 static inline bool proc_inode_is_dead(struct inode *inode)
1832 {
1833         return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1834 }
1835
1836 int pid_delete_dentry(const struct dentry *dentry)
1837 {
1838         /* Is the task we represent dead?
1839          * If so, then don't put the dentry on the lru list,
1840          * kill it immediately.
1841          */
1842         return proc_inode_is_dead(d_inode(dentry));
1843 }
1844
1845 const struct dentry_operations pid_dentry_operations =
1846 {
1847         .d_revalidate   = pid_revalidate,
1848         .d_delete       = pid_delete_dentry,
1849 };
1850
1851 /* Lookups */
1852
1853 /*
1854  * Fill a directory entry.
1855  *
1856  * If possible create the dcache entry and derive our inode number and
1857  * file type from dcache entry.
1858  *
1859  * Since all of the proc inode numbers are dynamically generated, the inode
1860  * numbers do not exist until the inode is cache.  This means creating the
1861  * the dcache entry in readdir is necessary to keep the inode numbers
1862  * reported by readdir in sync with the inode numbers reported
1863  * by stat.
1864  */
1865 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1866         const char *name, unsigned int len,
1867         instantiate_t instantiate, struct task_struct *task, const void *ptr)
1868 {
1869         struct dentry *child, *dir = file->f_path.dentry;
1870         struct qstr qname = QSTR_INIT(name, len);
1871         struct inode *inode;
1872         unsigned type = DT_UNKNOWN;
1873         ino_t ino = 1;
1874
1875         child = d_hash_and_lookup(dir, &qname);
1876         if (!child) {
1877                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1878                 child = d_alloc_parallel(dir, &qname, &wq);
1879                 if (IS_ERR(child))
1880                         goto end_instantiate;
1881                 if (d_in_lookup(child)) {
1882                         struct dentry *res;
1883                         res = instantiate(child, task, ptr);
1884                         d_lookup_done(child);
1885                         if (unlikely(res)) {
1886                                 dput(child);
1887                                 child = res;
1888                                 if (IS_ERR(child))
1889                                         goto end_instantiate;
1890                         }
1891                 }
1892         }
1893         inode = d_inode(child);
1894         ino = inode->i_ino;
1895         type = inode->i_mode >> 12;
1896         dput(child);
1897 end_instantiate:
1898         return dir_emit(ctx, name, len, ino, type);
1899 }
1900
1901 /*
1902  * dname_to_vma_addr - maps a dentry name into two unsigned longs
1903  * which represent vma start and end addresses.
1904  */
1905 static int dname_to_vma_addr(struct dentry *dentry,
1906                              unsigned long *start, unsigned long *end)
1907 {
1908         const char *str = dentry->d_name.name;
1909         unsigned long long sval, eval;
1910         unsigned int len;
1911
1912         if (str[0] == '0' && str[1] != '-')
1913                 return -EINVAL;
1914         len = _parse_integer(str, 16, &sval);
1915         if (len & KSTRTOX_OVERFLOW)
1916                 return -EINVAL;
1917         if (sval != (unsigned long)sval)
1918                 return -EINVAL;
1919         str += len;
1920
1921         if (*str != '-')
1922                 return -EINVAL;
1923         str++;
1924
1925         if (str[0] == '0' && str[1])
1926                 return -EINVAL;
1927         len = _parse_integer(str, 16, &eval);
1928         if (len & KSTRTOX_OVERFLOW)
1929                 return -EINVAL;
1930         if (eval != (unsigned long)eval)
1931                 return -EINVAL;
1932         str += len;
1933
1934         if (*str != '\0')
1935                 return -EINVAL;
1936
1937         *start = sval;
1938         *end = eval;
1939
1940         return 0;
1941 }
1942
1943 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1944 {
1945         unsigned long vm_start, vm_end;
1946         bool exact_vma_exists = false;
1947         struct mm_struct *mm = NULL;
1948         struct task_struct *task;
1949         struct inode *inode;
1950         int status = 0;
1951
1952         if (flags & LOOKUP_RCU)
1953                 return -ECHILD;
1954
1955         inode = d_inode(dentry);
1956         task = get_proc_task(inode);
1957         if (!task)
1958                 goto out_notask;
1959
1960         mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1961         if (IS_ERR_OR_NULL(mm))
1962                 goto out;
1963
1964         if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1965                 down_read(&mm->mmap_sem);
1966                 exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1967                 up_read(&mm->mmap_sem);
1968         }
1969
1970         mmput(mm);
1971
1972         if (exact_vma_exists) {
1973                 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1974
1975                 security_task_to_inode(task, inode);
1976                 status = 1;
1977         }
1978
1979 out:
1980         put_task_struct(task);
1981
1982 out_notask:
1983         return status;
1984 }
1985
1986 static const struct dentry_operations tid_map_files_dentry_operations = {
1987         .d_revalidate   = map_files_d_revalidate,
1988         .d_delete       = pid_delete_dentry,
1989 };
1990
1991 static int map_files_get_link(struct dentry *dentry, struct path *path)
1992 {
1993         unsigned long vm_start, vm_end;
1994         struct vm_area_struct *vma;
1995         struct task_struct *task;
1996         struct mm_struct *mm;
1997         int rc;
1998
1999         rc = -ENOENT;
2000         task = get_proc_task(d_inode(dentry));
2001         if (!task)
2002                 goto out;
2003
2004         mm = get_task_mm(task);
2005         put_task_struct(task);
2006         if (!mm)
2007                 goto out;
2008
2009         rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2010         if (rc)
2011                 goto out_mmput;
2012
2013         rc = -ENOENT;
2014         down_read(&mm->mmap_sem);
2015         vma = find_exact_vma(mm, vm_start, vm_end);
2016         if (vma && vma->vm_file) {
2017                 *path = vma->vm_file->f_path;
2018                 path_get(path);
2019                 rc = 0;
2020         }
2021         up_read(&mm->mmap_sem);
2022
2023 out_mmput:
2024         mmput(mm);
2025 out:
2026         return rc;
2027 }
2028
2029 struct map_files_info {
2030         unsigned long   start;
2031         unsigned long   end;
2032         fmode_t         mode;
2033 };
2034
2035 /*
2036  * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
2037  * symlinks may be used to bypass permissions on ancestor directories in the
2038  * path to the file in question.
2039  */
2040 static const char *
2041 proc_map_files_get_link(struct dentry *dentry,
2042                         struct inode *inode,
2043                         struct delayed_call *done)
2044 {
2045         if (!capable(CAP_SYS_ADMIN))
2046                 return ERR_PTR(-EPERM);
2047
2048         return proc_pid_get_link(dentry, inode, done);
2049 }
2050
2051 /*
2052  * Identical to proc_pid_link_inode_operations except for get_link()
2053  */
2054 static const struct inode_operations proc_map_files_link_inode_operations = {
2055         .readlink       = proc_pid_readlink,
2056         .get_link       = proc_map_files_get_link,
2057         .setattr        = proc_setattr,
2058 };
2059
2060 static struct dentry *
2061 proc_map_files_instantiate(struct dentry *dentry,
2062                            struct task_struct *task, const void *ptr)
2063 {
2064         fmode_t mode = (fmode_t)(unsigned long)ptr;
2065         struct proc_inode *ei;
2066         struct inode *inode;
2067
2068         inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2069                                     ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2070                                     ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2071         if (!inode)
2072                 return ERR_PTR(-ENOENT);
2073
2074         ei = PROC_I(inode);
2075         ei->op.proc_get_link = map_files_get_link;
2076
2077         inode->i_op = &proc_map_files_link_inode_operations;
2078         inode->i_size = 64;
2079
2080         d_set_d_op(dentry, &tid_map_files_dentry_operations);
2081         return d_splice_alias(inode, dentry);
2082 }
2083
2084 static struct dentry *proc_map_files_lookup(struct inode *dir,
2085                 struct dentry *dentry, unsigned int flags)
2086 {
2087         unsigned long vm_start, vm_end;
2088         struct vm_area_struct *vma;
2089         struct task_struct *task;
2090         struct dentry *result;
2091         struct mm_struct *mm;
2092
2093         result = ERR_PTR(-ENOENT);
2094         task = get_proc_task(dir);
2095         if (!task)
2096                 goto out;
2097
2098         result = ERR_PTR(-EACCES);
2099         if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2100                 goto out_put_task;
2101
2102         result = ERR_PTR(-ENOENT);
2103         if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2104                 goto out_put_task;
2105
2106         mm = get_task_mm(task);
2107         if (!mm)
2108                 goto out_put_task;
2109
2110         down_read(&mm->mmap_sem);
2111         vma = find_exact_vma(mm, vm_start, vm_end);
2112         if (!vma)
2113                 goto out_no_vma;
2114
2115         if (vma->vm_file)
2116                 result = proc_map_files_instantiate(dentry, task,
2117                                 (void *)(unsigned long)vma->vm_file->f_mode);
2118
2119 out_no_vma:
2120         up_read(&mm->mmap_sem);
2121         mmput(mm);
2122 out_put_task:
2123         put_task_struct(task);
2124 out:
2125         return result;
2126 }
2127
2128 static const struct inode_operations proc_map_files_inode_operations = {
2129         .lookup         = proc_map_files_lookup,
2130         .permission     = proc_fd_permission,
2131         .setattr        = proc_setattr,
2132 };
2133
2134 static int
2135 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2136 {
2137         struct vm_area_struct *vma;
2138         struct task_struct *task;
2139         struct mm_struct *mm;
2140         unsigned long nr_files, pos, i;
2141         GENRADIX(struct map_files_info) fa;
2142         struct map_files_info *p;
2143         int ret;
2144
2145         genradix_init(&fa);
2146
2147         ret = -ENOENT;
2148         task = get_proc_task(file_inode(file));
2149         if (!task)
2150                 goto out;
2151
2152         ret = -EACCES;
2153         if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2154                 goto out_put_task;
2155
2156         ret = 0;
2157         if (!dir_emit_dots(file, ctx))
2158                 goto out_put_task;
2159
2160         mm = get_task_mm(task);
2161         if (!mm)
2162                 goto out_put_task;
2163         down_read(&mm->mmap_sem);
2164
2165         nr_files = 0;
2166
2167         /*
2168          * We need two passes here:
2169          *
2170          *  1) Collect vmas of mapped files with mmap_sem taken
2171          *  2) Release mmap_sem and instantiate entries
2172          *
2173          * otherwise we get lockdep complained, since filldir()
2174          * routine might require mmap_sem taken in might_fault().
2175          */
2176
2177         for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2178                 if (!vma->vm_file)
2179                         continue;
2180                 if (++pos <= ctx->pos)
2181                         continue;
2182
2183                 p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL);
2184                 if (!p) {
2185                         ret = -ENOMEM;
2186                         up_read(&mm->mmap_sem);
2187                         mmput(mm);
2188                         goto out_put_task;
2189                 }
2190
2191                 p->start = vma->vm_start;
2192                 p->end = vma->vm_end;
2193                 p->mode = vma->vm_file->f_mode;
2194         }
2195         up_read(&mm->mmap_sem);
2196         mmput(mm);
2197
2198         for (i = 0; i < nr_files; i++) {
2199                 char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */
2200                 unsigned int len;
2201
2202                 p = genradix_ptr(&fa, i);
2203                 len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2204                 if (!proc_fill_cache(file, ctx,
2205                                       buf, len,
2206                                       proc_map_files_instantiate,
2207                                       task,
2208                                       (void *)(unsigned long)p->mode))
2209                         break;
2210                 ctx->pos++;
2211         }
2212
2213 out_put_task:
2214         put_task_struct(task);
2215 out:
2216         genradix_free(&fa);
2217         return ret;
2218 }
2219
2220 static const struct file_operations proc_map_files_operations = {
2221         .read           = generic_read_dir,
2222         .iterate_shared = proc_map_files_readdir,
2223         .llseek         = generic_file_llseek,
2224 };
2225
2226 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2227 struct timers_private {
2228         struct pid *pid;
2229         struct task_struct *task;
2230         struct sighand_struct *sighand;
2231         struct pid_namespace *ns;
2232         unsigned long flags;
2233 };
2234
2235 static void *timers_start(struct seq_file *m, loff_t *pos)
2236 {
2237         struct timers_private *tp = m->private;
2238
2239         tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2240         if (!tp->task)
2241                 return ERR_PTR(-ESRCH);
2242
2243         tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2244         if (!tp->sighand)
2245                 return ERR_PTR(-ESRCH);
2246
2247         return seq_list_start(&tp->task->signal->posix_timers, *pos);
2248 }
2249
2250 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2251 {
2252         struct timers_private *tp = m->private;
2253         return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2254 }
2255
2256 static void timers_stop(struct seq_file *m, void *v)
2257 {
2258         struct timers_private *tp = m->private;
2259
2260         if (tp->sighand) {
2261                 unlock_task_sighand(tp->task, &tp->flags);
2262                 tp->sighand = NULL;
2263         }
2264
2265         if (tp->task) {
2266                 put_task_struct(tp->task);
2267                 tp->task = NULL;
2268         }
2269 }
2270
2271 static int show_timer(struct seq_file *m, void *v)
2272 {
2273         struct k_itimer *timer;
2274         struct timers_private *tp = m->private;
2275         int notify;
2276         static const char * const nstr[] = {
2277                 [SIGEV_SIGNAL] = "signal",
2278                 [SIGEV_NONE] = "none",
2279                 [SIGEV_THREAD] = "thread",
2280         };
2281
2282         timer = list_entry((struct list_head *)v, struct k_itimer, list);
2283         notify = timer->it_sigev_notify;
2284
2285         seq_printf(m, "ID: %d\n", timer->it_id);
2286         seq_printf(m, "signal: %d/%px\n",
2287                    timer->sigq->info.si_signo,
2288                    timer->sigq->info.si_value.sival_ptr);
2289         seq_printf(m, "notify: %s/%s.%d\n",
2290                    nstr[notify & ~SIGEV_THREAD_ID],
2291                    (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2292                    pid_nr_ns(timer->it_pid, tp->ns));
2293         seq_printf(m, "ClockID: %d\n", timer->it_clock);
2294
2295         return 0;
2296 }
2297
2298 static const struct seq_operations proc_timers_seq_ops = {
2299         .start  = timers_start,
2300         .next   = timers_next,
2301         .stop   = timers_stop,
2302         .show   = show_timer,
2303 };
2304
2305 static int proc_timers_open(struct inode *inode, struct file *file)
2306 {
2307         struct timers_private *tp;
2308
2309         tp = __seq_open_private(file, &proc_timers_seq_ops,
2310                         sizeof(struct timers_private));
2311         if (!tp)
2312                 return -ENOMEM;
2313
2314         tp->pid = proc_pid(inode);
2315         tp->ns = proc_pid_ns(inode);
2316         return 0;
2317 }
2318
2319 static const struct file_operations proc_timers_operations = {
2320         .open           = proc_timers_open,
2321         .read           = seq_read,
2322         .llseek         = seq_lseek,
2323         .release        = seq_release_private,
2324 };
2325 #endif
2326
2327 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2328                                         size_t count, loff_t *offset)
2329 {
2330         struct inode *inode = file_inode(file);
2331         struct task_struct *p;
2332         u64 slack_ns;
2333         int err;
2334
2335         err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2336         if (err < 0)
2337                 return err;
2338
2339         p = get_proc_task(inode);
2340         if (!p)
2341                 return -ESRCH;
2342
2343         if (p != current) {
2344                 rcu_read_lock();
2345                 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2346                         rcu_read_unlock();
2347                         count = -EPERM;
2348                         goto out;
2349                 }
2350                 rcu_read_unlock();
2351
2352                 err = security_task_setscheduler(p);
2353                 if (err) {
2354                         count = err;
2355                         goto out;
2356                 }
2357         }
2358
2359         task_lock(p);
2360         if (slack_ns == 0)
2361                 p->timer_slack_ns = p->default_timer_slack_ns;
2362         else
2363                 p->timer_slack_ns = slack_ns;
2364         task_unlock(p);
2365
2366 out:
2367         put_task_struct(p);
2368
2369         return count;
2370 }
2371
2372 static int timerslack_ns_show(struct seq_file *m, void *v)
2373 {
2374         struct inode *inode = m->private;
2375         struct task_struct *p;
2376         int err = 0;
2377
2378         p = get_proc_task(inode);
2379         if (!p)
2380                 return -ESRCH;
2381
2382         if (p != current) {
2383                 rcu_read_lock();
2384                 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2385                         rcu_read_unlock();
2386                         err = -EPERM;
2387                         goto out;
2388                 }
2389                 rcu_read_unlock();
2390
2391                 err = security_task_getscheduler(p);
2392                 if (err)
2393                         goto out;
2394         }
2395
2396         task_lock(p);
2397         seq_printf(m, "%llu\n", p->timer_slack_ns);
2398         task_unlock(p);
2399
2400 out:
2401         put_task_struct(p);
2402
2403         return err;
2404 }
2405
2406 static int timerslack_ns_open(struct inode *inode, struct file *filp)
2407 {
2408         return single_open(filp, timerslack_ns_show, inode);
2409 }
2410
2411 static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2412         .open           = timerslack_ns_open,
2413         .read           = seq_read,
2414         .write          = timerslack_ns_write,
2415         .llseek         = seq_lseek,
2416         .release        = single_release,
2417 };
2418
2419 static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2420         struct task_struct *task, const void *ptr)
2421 {
2422         const struct pid_entry *p = ptr;
2423         struct inode *inode;
2424         struct proc_inode *ei;
2425
2426         inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2427         if (!inode)
2428                 return ERR_PTR(-ENOENT);
2429
2430         ei = PROC_I(inode);
2431         if (S_ISDIR(inode->i_mode))
2432                 set_nlink(inode, 2);    /* Use getattr to fix if necessary */
2433         if (p->iop)
2434                 inode->i_op = p->iop;
2435         if (p->fop)
2436                 inode->i_fop = p->fop;
2437         ei->op = p->op;
2438         pid_update_inode(task, inode);
2439         d_set_d_op(dentry, &pid_dentry_operations);
2440         return d_splice_alias(inode, dentry);
2441 }
2442
2443 static struct dentry *proc_pident_lookup(struct inode *dir, 
2444                                          struct dentry *dentry,
2445                                          const struct pid_entry *p,
2446                                          const struct pid_entry *end)
2447 {
2448         struct task_struct *task = get_proc_task(dir);
2449         struct dentry *res = ERR_PTR(-ENOENT);
2450
2451         if (!task)
2452                 goto out_no_task;
2453
2454         /*
2455          * Yes, it does not scale. And it should not. Don't add
2456          * new entries into /proc/<tgid>/ without very good reasons.
2457          */
2458         for (; p < end; p++) {
2459                 if (p->len != dentry->d_name.len)
2460                         continue;
2461                 if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2462                         res = proc_pident_instantiate(dentry, task, p);
2463                         break;
2464                 }
2465         }
2466         put_task_struct(task);
2467 out_no_task:
2468         return res;
2469 }
2470
2471 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2472                 const struct pid_entry *ents, unsigned int nents)
2473 {
2474         struct task_struct *task = get_proc_task(file_inode(file));
2475         const struct pid_entry *p;
2476
2477         if (!task)
2478                 return -ENOENT;
2479
2480         if (!dir_emit_dots(file, ctx))
2481                 goto out;
2482
2483         if (ctx->pos >= nents + 2)
2484                 goto out;
2485
2486         for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2487                 if (!proc_fill_cache(file, ctx, p->name, p->len,
2488                                 proc_pident_instantiate, task, p))
2489                         break;
2490                 ctx->pos++;
2491         }
2492 out:
2493         put_task_struct(task);
2494         return 0;
2495 }
2496
2497 #ifdef CONFIG_SECURITY
2498 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2499                                   size_t count, loff_t *ppos)
2500 {
2501         struct inode * inode = file_inode(file);
2502         char *p = NULL;
2503         ssize_t length;
2504         struct task_struct *task = get_proc_task(inode);
2505
2506         if (!task)
2507                 return -ESRCH;
2508
2509         length = security_getprocattr(task, PROC_I(inode)->op.lsm,
2510                                       (char*)file->f_path.dentry->d_name.name,
2511                                       &p);
2512         put_task_struct(task);
2513         if (length > 0)
2514                 length = simple_read_from_buffer(buf, count, ppos, p, length);
2515         kfree(p);
2516         return length;
2517 }
2518
2519 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2520                                    size_t count, loff_t *ppos)
2521 {
2522         struct inode * inode = file_inode(file);
2523         struct task_struct *task;
2524         void *page;
2525         int rv;
2526
2527         rcu_read_lock();
2528         task = pid_task(proc_pid(inode), PIDTYPE_PID);
2529         if (!task) {
2530                 rcu_read_unlock();
2531                 return -ESRCH;
2532         }
2533         /* A task may only write its own attributes. */
2534         if (current != task) {
2535                 rcu_read_unlock();
2536                 return -EACCES;
2537         }
2538         /* Prevent changes to overridden credentials. */
2539         if (current_cred() != current_real_cred()) {
2540                 rcu_read_unlock();
2541                 return -EBUSY;
2542         }
2543         rcu_read_unlock();
2544
2545         if (count > PAGE_SIZE)
2546                 count = PAGE_SIZE;
2547
2548         /* No partial writes. */
2549         if (*ppos != 0)
2550                 return -EINVAL;
2551
2552         page = memdup_user(buf, count);
2553         if (IS_ERR(page)) {
2554                 rv = PTR_ERR(page);
2555                 goto out;
2556         }
2557
2558         /* Guard against adverse ptrace interaction */
2559         rv = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2560         if (rv < 0)
2561                 goto out_free;
2562
2563         rv = security_setprocattr(PROC_I(inode)->op.lsm,
2564                                   file->f_path.dentry->d_name.name, page,
2565                                   count);
2566         mutex_unlock(&current->signal->cred_guard_mutex);
2567 out_free:
2568         kfree(page);
2569 out:
2570         return rv;
2571 }
2572
2573 static const struct file_operations proc_pid_attr_operations = {
2574         .read           = proc_pid_attr_read,
2575         .write          = proc_pid_attr_write,
2576         .llseek         = generic_file_llseek,
2577 };
2578
2579 #define LSM_DIR_OPS(LSM) \
2580 static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
2581                              struct dir_context *ctx) \
2582 { \
2583         return proc_pident_readdir(filp, ctx, \
2584                                    LSM##_attr_dir_stuff, \
2585                                    ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2586 } \
2587 \
2588 static const struct file_operations proc_##LSM##_attr_dir_ops = { \
2589         .read           = generic_read_dir, \
2590         .iterate        = proc_##LSM##_attr_dir_iterate, \
2591         .llseek         = default_llseek, \
2592 }; \
2593 \
2594 static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
2595                                 struct dentry *dentry, unsigned int flags) \
2596 { \
2597         return proc_pident_lookup(dir, dentry, \
2598                                   LSM##_attr_dir_stuff, \
2599                                   LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2600 } \
2601 \
2602 static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
2603         .lookup         = proc_##LSM##_attr_dir_lookup, \
2604         .getattr        = pid_getattr, \
2605         .setattr        = proc_setattr, \
2606 }
2607
2608 #ifdef CONFIG_SECURITY_SMACK
2609 static const struct pid_entry smack_attr_dir_stuff[] = {
2610         ATTR("smack", "current",        0666),
2611 };
2612 LSM_DIR_OPS(smack);
2613 #endif
2614
2615 static const struct pid_entry attr_dir_stuff[] = {
2616         ATTR(NULL, "current",           0666),
2617         ATTR(NULL, "prev",              0444),
2618         ATTR(NULL, "exec",              0666),
2619         ATTR(NULL, "fscreate",          0666),
2620         ATTR(NULL, "keycreate",         0666),
2621         ATTR(NULL, "sockcreate",        0666),
2622 #ifdef CONFIG_SECURITY_SMACK
2623         DIR("smack",                    0555,
2624             proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
2625 #endif
2626 };
2627
2628 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2629 {
2630         return proc_pident_readdir(file, ctx, 
2631                                    attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2632 }
2633
2634 static const struct file_operations proc_attr_dir_operations = {
2635         .read           = generic_read_dir,
2636         .iterate_shared = proc_attr_dir_readdir,
2637         .llseek         = generic_file_llseek,
2638 };
2639
2640 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2641                                 struct dentry *dentry, unsigned int flags)
2642 {
2643         return proc_pident_lookup(dir, dentry,
2644                                   attr_dir_stuff,
2645                                   attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff));
2646 }
2647
2648 static const struct inode_operations proc_attr_dir_inode_operations = {
2649         .lookup         = proc_attr_dir_lookup,
2650         .getattr        = pid_getattr,
2651         .setattr        = proc_setattr,
2652 };
2653
2654 #endif
2655
2656 #ifdef CONFIG_ELF_CORE
2657 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2658                                          size_t count, loff_t *ppos)
2659 {
2660         struct task_struct *task = get_proc_task(file_inode(file));
2661         struct mm_struct *mm;
2662         char buffer[PROC_NUMBUF];
2663         size_t len;
2664         int ret;
2665
2666         if (!task)
2667                 return -ESRCH;
2668
2669         ret = 0;
2670         mm = get_task_mm(task);
2671         if (mm) {
2672                 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2673                                ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2674                                 MMF_DUMP_FILTER_SHIFT));
2675                 mmput(mm);
2676                 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2677         }
2678
2679         put_task_struct(task);
2680
2681         return ret;
2682 }
2683
2684 static ssize_t proc_coredump_filter_write(struct file *file,
2685                                           const char __user *buf,
2686                                           size_t count,
2687                                           loff_t *ppos)
2688 {
2689         struct task_struct *task;
2690         struct mm_struct *mm;
2691         unsigned int val;
2692         int ret;
2693         int i;
2694         unsigned long mask;
2695
2696         ret = kstrtouint_from_user(buf, count, 0, &val);
2697         if (ret < 0)
2698                 return ret;
2699
2700         ret = -ESRCH;
2701         task = get_proc_task(file_inode(file));
2702         if (!task)
2703                 goto out_no_task;
2704
2705         mm = get_task_mm(task);
2706         if (!mm)
2707                 goto out_no_mm;
2708         ret = 0;
2709
2710         for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2711                 if (val & mask)
2712                         set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2713                 else
2714                         clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2715         }
2716
2717         mmput(mm);
2718  out_no_mm:
2719         put_task_struct(task);
2720  out_no_task:
2721         if (ret < 0)
2722                 return ret;
2723         return count;
2724 }
2725
2726 static const struct file_operations proc_coredump_filter_operations = {
2727         .read           = proc_coredump_filter_read,
2728         .write          = proc_coredump_filter_write,
2729         .llseek         = generic_file_llseek,
2730 };
2731 #endif
2732
2733 #ifdef CONFIG_TASK_IO_ACCOUNTING
2734 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2735 {
2736         struct task_io_accounting acct = task->ioac;
2737         unsigned long flags;
2738         int result;
2739
2740         result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2741         if (result)
2742                 return result;
2743
2744         if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2745                 result = -EACCES;
2746                 goto out_unlock;
2747         }
2748
2749         if (whole && lock_task_sighand(task, &flags)) {
2750                 struct task_struct *t = task;
2751
2752                 task_io_accounting_add(&acct, &task->signal->ioac);
2753                 while_each_thread(task, t)
2754                         task_io_accounting_add(&acct, &t->ioac);
2755
2756                 unlock_task_sighand(task, &flags);
2757         }
2758         seq_printf(m,
2759                    "rchar: %llu\n"
2760                    "wchar: %llu\n"
2761                    "syscr: %llu\n"
2762                    "syscw: %llu\n"
2763                    "read_bytes: %llu\n"
2764                    "write_bytes: %llu\n"
2765                    "cancelled_write_bytes: %llu\n",
2766                    (unsigned long long)acct.rchar,
2767                    (unsigned long long)acct.wchar,
2768                    (unsigned long long)acct.syscr,
2769                    (unsigned long long)acct.syscw,
2770                    (unsigned long long)acct.read_bytes,
2771                    (unsigned long long)acct.write_bytes,
2772                    (unsigned long long)acct.cancelled_write_bytes);
2773         result = 0;
2774
2775 out_unlock:
2776         mutex_unlock(&task->signal->cred_guard_mutex);
2777         return result;
2778 }
2779
2780 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2781                                   struct pid *pid, struct task_struct *task)
2782 {
2783         return do_io_accounting(task, m, 0);
2784 }
2785
2786 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2787                                    struct pid *pid, struct task_struct *task)
2788 {
2789         return do_io_accounting(task, m, 1);
2790 }
2791 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2792
2793 #ifdef CONFIG_USER_NS
2794 static int proc_id_map_open(struct inode *inode, struct file *file,
2795         const struct seq_operations *seq_ops)
2796 {
2797         struct user_namespace *ns = NULL;
2798         struct task_struct *task;
2799         struct seq_file *seq;
2800         int ret = -EINVAL;
2801
2802         task = get_proc_task(inode);
2803         if (task) {
2804                 rcu_read_lock();
2805                 ns = get_user_ns(task_cred_xxx(task, user_ns));
2806                 rcu_read_unlock();
2807                 put_task_struct(task);
2808         }
2809         if (!ns)
2810                 goto err;
2811
2812         ret = seq_open(file, seq_ops);
2813         if (ret)
2814                 goto err_put_ns;
2815
2816         seq = file->private_data;
2817         seq->private = ns;
2818
2819         return 0;
2820 err_put_ns:
2821         put_user_ns(ns);
2822 err:
2823         return ret;
2824 }
2825
2826 static int proc_id_map_release(struct inode *inode, struct file *file)
2827 {
2828         struct seq_file *seq = file->private_data;
2829         struct user_namespace *ns = seq->private;
2830         put_user_ns(ns);
2831         return seq_release(inode, file);
2832 }
2833
2834 static int proc_uid_map_open(struct inode *inode, struct file *file)
2835 {
2836         return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2837 }
2838
2839 static int proc_gid_map_open(struct inode *inode, struct file *file)
2840 {
2841         return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2842 }
2843
2844 static int proc_projid_map_open(struct inode *inode, struct file *file)
2845 {
2846         return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2847 }
2848
2849 static const struct file_operations proc_uid_map_operations = {
2850         .open           = proc_uid_map_open,
2851         .write          = proc_uid_map_write,
2852         .read           = seq_read,
2853         .llseek         = seq_lseek,
2854         .release        = proc_id_map_release,
2855 };
2856
2857 static const struct file_operations proc_gid_map_operations = {
2858         .open           = proc_gid_map_open,
2859         .write          = proc_gid_map_write,
2860         .read           = seq_read,
2861         .llseek         = seq_lseek,
2862         .release        = proc_id_map_release,
2863 };
2864
2865 static const struct file_operations proc_projid_map_operations = {
2866         .open           = proc_projid_map_open,
2867         .write          = proc_projid_map_write,
2868         .read           = seq_read,
2869         .llseek         = seq_lseek,
2870         .release        = proc_id_map_release,
2871 };
2872
2873 static int proc_setgroups_open(struct inode *inode, struct file *file)
2874 {
2875         struct user_namespace *ns = NULL;
2876         struct task_struct *task;
2877         int ret;
2878
2879         ret = -ESRCH;
2880         task = get_proc_task(inode);
2881         if (task) {
2882                 rcu_read_lock();
2883                 ns = get_user_ns(task_cred_xxx(task, user_ns));
2884                 rcu_read_unlock();
2885                 put_task_struct(task);
2886         }
2887         if (!ns)
2888                 goto err;
2889
2890         if (file->f_mode & FMODE_WRITE) {
2891                 ret = -EACCES;
2892                 if (!ns_capable(ns, CAP_SYS_ADMIN))
2893                         goto err_put_ns;
2894         }
2895
2896         ret = single_open(file, &proc_setgroups_show, ns);
2897         if (ret)
2898                 goto err_put_ns;
2899
2900         return 0;
2901 err_put_ns:
2902         put_user_ns(ns);
2903 err:
2904         return ret;
2905 }
2906
2907 static int proc_setgroups_release(struct inode *inode, struct file *file)
2908 {
2909         struct seq_file *seq = file->private_data;
2910         struct user_namespace *ns = seq->private;
2911         int ret = single_release(inode, file);
2912         put_user_ns(ns);
2913         return ret;
2914 }
2915
2916 static const struct file_operations proc_setgroups_operations = {
2917         .open           = proc_setgroups_open,
2918         .write          = proc_setgroups_write,
2919         .read           = seq_read,
2920         .llseek         = seq_lseek,
2921         .release        = proc_setgroups_release,
2922 };
2923 #endif /* CONFIG_USER_NS */
2924
2925 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2926                                 struct pid *pid, struct task_struct *task)
2927 {
2928         int err = lock_trace(task);
2929         if (!err) {
2930                 seq_printf(m, "%08x\n", task->personality);
2931                 unlock_trace(task);
2932         }
2933         return err;
2934 }
2935
2936 #ifdef CONFIG_LIVEPATCH
2937 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
2938                                 struct pid *pid, struct task_struct *task)
2939 {
2940         seq_printf(m, "%d\n", task->patch_state);
2941         return 0;
2942 }
2943 #endif /* CONFIG_LIVEPATCH */
2944
2945 #ifdef CONFIG_STACKLEAK_METRICS
2946 static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
2947                                 struct pid *pid, struct task_struct *task)
2948 {
2949         unsigned long prev_depth = THREAD_SIZE -
2950                                 (task->prev_lowest_stack & (THREAD_SIZE - 1));
2951         unsigned long depth = THREAD_SIZE -
2952                                 (task->lowest_stack & (THREAD_SIZE - 1));
2953
2954         seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
2955                                                         prev_depth, depth);
2956         return 0;
2957 }
2958 #endif /* CONFIG_STACKLEAK_METRICS */
2959
2960 /*
2961  * Thread groups
2962  */
2963 static const struct file_operations proc_task_operations;
2964 static const struct inode_operations proc_task_inode_operations;
2965
2966 static const struct pid_entry tgid_base_stuff[] = {
2967         DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2968         DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2969         DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2970         DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2971         DIR("ns",         S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2972 #ifdef CONFIG_NET
2973         DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2974 #endif
2975         REG("environ",    S_IRUSR, proc_environ_operations),
2976         REG("auxv",       S_IRUSR, proc_auxv_operations),
2977         ONE("status",     S_IRUGO, proc_pid_status),
2978         ONE("personality", S_IRUSR, proc_pid_personality),
2979         ONE("limits",     S_IRUGO, proc_pid_limits),
2980 #ifdef CONFIG_SCHED_DEBUG
2981         REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2982 #endif
2983 #ifdef CONFIG_SCHED_AUTOGROUP
2984         REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2985 #endif
2986         REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2987 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2988         ONE("syscall",    S_IRUSR, proc_pid_syscall),
2989 #endif
2990         REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
2991         ONE("stat",       S_IRUGO, proc_tgid_stat),
2992         ONE("statm",      S_IRUGO, proc_pid_statm),
2993         REG("maps",       S_IRUGO, proc_pid_maps_operations),
2994 #ifdef CONFIG_NUMA
2995         REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
2996 #endif
2997         REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2998         LNK("cwd",        proc_cwd_link),
2999         LNK("root",       proc_root_link),
3000         LNK("exe",        proc_exe_link),
3001         REG("mounts",     S_IRUGO, proc_mounts_operations),
3002         REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3003         REG("mountstats", S_IRUSR, proc_mountstats_operations),
3004 #ifdef CONFIG_PROC_PAGE_MONITOR
3005         REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3006         REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
3007         REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3008         REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3009 #endif
3010 #ifdef CONFIG_SECURITY
3011         DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3012 #endif
3013 #ifdef CONFIG_KALLSYMS
3014         ONE("wchan",      S_IRUGO, proc_pid_wchan),
3015 #endif
3016 #ifdef CONFIG_STACKTRACE
3017         ONE("stack",      S_IRUSR, proc_pid_stack),
3018 #endif
3019 #ifdef CONFIG_SCHED_INFO
3020         ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
3021 #endif
3022 #ifdef CONFIG_LATENCYTOP
3023         REG("latency",  S_IRUGO, proc_lstats_operations),
3024 #endif
3025 #ifdef CONFIG_PROC_PID_CPUSET
3026         ONE("cpuset",     S_IRUGO, proc_cpuset_show),
3027 #endif
3028 #ifdef CONFIG_CGROUPS
3029         ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3030 #endif
3031         ONE("oom_score",  S_IRUGO, proc_oom_score),
3032         REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3033         REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3034 #ifdef CONFIG_AUDIT
3035         REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
3036         REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3037 #endif
3038 #ifdef CONFIG_FAULT_INJECTION
3039         REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3040         REG("fail-nth", 0644, proc_fail_nth_operations),
3041 #endif
3042 #ifdef CONFIG_ELF_CORE
3043         REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3044 #endif
3045 #ifdef CONFIG_TASK_IO_ACCOUNTING
3046         ONE("io",       S_IRUSR, proc_tgid_io_accounting),
3047 #endif
3048 #ifdef CONFIG_USER_NS
3049         REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3050         REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3051         REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3052         REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3053 #endif
3054 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3055         REG("timers",     S_IRUGO, proc_timers_operations),
3056 #endif
3057         REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3058 #ifdef CONFIG_LIVEPATCH
3059         ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3060 #endif
3061 #ifdef CONFIG_STACKLEAK_METRICS
3062         ONE("stack_depth", S_IRUGO, proc_stack_depth),
3063 #endif
3064 };
3065
3066 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3067 {
3068         return proc_pident_readdir(file, ctx,
3069                                    tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3070 }
3071
3072 static const struct file_operations proc_tgid_base_operations = {
3073         .read           = generic_read_dir,
3074         .iterate_shared = proc_tgid_base_readdir,
3075         .llseek         = generic_file_llseek,
3076 };
3077
3078 struct pid *tgid_pidfd_to_pid(const struct file *file)
3079 {
3080         if (!d_is_dir(file->f_path.dentry) ||
3081             (file->f_op != &proc_tgid_base_operations))
3082                 return ERR_PTR(-EBADF);
3083
3084         return proc_pid(file_inode(file));
3085 }
3086
3087 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3088 {
3089         return proc_pident_lookup(dir, dentry,
3090                                   tgid_base_stuff,
3091                                   tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff));
3092 }
3093
3094 static const struct inode_operations proc_tgid_base_inode_operations = {
3095         .lookup         = proc_tgid_base_lookup,
3096         .getattr        = pid_getattr,
3097         .setattr        = proc_setattr,
3098         .permission     = proc_pid_permission,
3099 };
3100
3101 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
3102 {
3103         struct dentry *dentry, *leader, *dir;
3104         char buf[10 + 1];
3105         struct qstr name;
3106
3107         name.name = buf;
3108         name.len = snprintf(buf, sizeof(buf), "%u", pid);
3109         /* no ->d_hash() rejects on procfs */
3110         dentry = d_hash_and_lookup(mnt->mnt_root, &name);
3111         if (dentry) {
3112                 d_invalidate(dentry);
3113                 dput(dentry);
3114         }
3115
3116         if (pid == tgid)
3117                 return;
3118
3119         name.name = buf;
3120         name.len = snprintf(buf, sizeof(buf), "%u", tgid);
3121         leader = d_hash_and_lookup(mnt->mnt_root, &name);
3122         if (!leader)
3123                 goto out;
3124
3125         name.name = "task";
3126         name.len = strlen(name.name);
3127         dir = d_hash_and_lookup(leader, &name);
3128         if (!dir)
3129                 goto out_put_leader;
3130
3131         name.name = buf;
3132         name.len = snprintf(buf, sizeof(buf), "%u", pid);
3133         dentry = d_hash_and_lookup(dir, &name);
3134         if (dentry) {
3135                 d_invalidate(dentry);
3136                 dput(dentry);
3137         }
3138
3139         dput(dir);
3140 out_put_leader:
3141         dput(leader);
3142 out:
3143         return;
3144 }
3145
3146 /**
3147  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
3148  * @task: task that should be flushed.
3149  *
3150  * When flushing dentries from proc, one needs to flush them from global
3151  * proc (proc_mnt) and from all the namespaces' procs this task was seen
3152  * in. This call is supposed to do all of this job.
3153  *
3154  * Looks in the dcache for
3155  * /proc/@pid
3156  * /proc/@tgid/task/@pid
3157  * if either directory is present flushes it and all of it'ts children
3158  * from the dcache.
3159  *
3160  * It is safe and reasonable to cache /proc entries for a task until
3161  * that task exits.  After that they just clog up the dcache with
3162  * useless entries, possibly causing useful dcache entries to be
3163  * flushed instead.  This routine is proved to flush those useless
3164  * dcache entries at process exit time.
3165  *
3166  * NOTE: This routine is just an optimization so it does not guarantee
3167  *       that no dcache entries will exist at process exit time it
3168  *       just makes it very unlikely that any will persist.
3169  */
3170
3171 void proc_flush_task(struct task_struct *task)
3172 {
3173         int i;
3174         struct pid *pid, *tgid;
3175         struct upid *upid;
3176
3177         pid = task_pid(task);
3178         tgid = task_tgid(task);
3179
3180         for (i = 0; i <= pid->level; i++) {
3181                 upid = &pid->numbers[i];
3182                 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3183                                         tgid->numbers[i].nr);
3184         }
3185 }
3186
3187 static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3188                                    struct task_struct *task, const void *ptr)
3189 {
3190         struct inode *inode;
3191
3192         inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3193         if (!inode)
3194                 return ERR_PTR(-ENOENT);
3195
3196         inode->i_op = &proc_tgid_base_inode_operations;
3197         inode->i_fop = &proc_tgid_base_operations;
3198         inode->i_flags|=S_IMMUTABLE;
3199
3200         set_nlink(inode, nlink_tgid);
3201         pid_update_inode(task, inode);
3202
3203         d_set_d_op(dentry, &pid_dentry_operations);
3204         return d_splice_alias(inode, dentry);
3205 }
3206
3207 struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags)
3208 {
3209         struct task_struct *task;
3210         unsigned tgid;
3211         struct pid_namespace *ns;
3212         struct dentry *result = ERR_PTR(-ENOENT);
3213
3214         tgid = name_to_int(&dentry->d_name);
3215         if (tgid == ~0U)
3216                 goto out;
3217
3218         ns = dentry->d_sb->s_fs_info;
3219         rcu_read_lock();
3220         task = find_task_by_pid_ns(tgid, ns);
3221         if (task)
3222                 get_task_struct(task);
3223         rcu_read_unlock();
3224         if (!task)
3225                 goto out;
3226
3227         result = proc_pid_instantiate(dentry, task, NULL);
3228         put_task_struct(task);
3229 out:
3230         return result;
3231 }
3232
3233 /*
3234  * Find the first task with tgid >= tgid
3235  *
3236  */
3237 struct tgid_iter {
3238         unsigned int tgid;
3239         struct task_struct *task;
3240 };
3241 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3242 {
3243         struct pid *pid;
3244
3245         if (iter.task)
3246                 put_task_struct(iter.task);
3247         rcu_read_lock();
3248 retry:
3249         iter.task = NULL;
3250         pid = find_ge_pid(iter.tgid, ns);
3251         if (pid) {
3252                 iter.tgid = pid_nr_ns(pid, ns);
3253                 iter.task = pid_task(pid, PIDTYPE_PID);
3254                 /* What we to know is if the pid we have find is the
3255                  * pid of a thread_group_leader.  Testing for task
3256                  * being a thread_group_leader is the obvious thing
3257                  * todo but there is a window when it fails, due to
3258                  * the pid transfer logic in de_thread.
3259                  *
3260                  * So we perform the straight forward test of seeing
3261                  * if the pid we have found is the pid of a thread
3262                  * group leader, and don't worry if the task we have
3263                  * found doesn't happen to be a thread group leader.
3264                  * As we don't care in the case of readdir.
3265                  */
3266                 if (!iter.task || !has_group_leader_pid(iter.task)) {
3267                         iter.tgid += 1;
3268                         goto retry;
3269                 }
3270                 get_task_struct(iter.task);
3271         }
3272         rcu_read_unlock();
3273         return iter;
3274 }
3275
3276 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3277
3278 /* for the /proc/ directory itself, after non-process stuff has been done */
3279 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3280 {
3281         struct tgid_iter iter;
3282         struct pid_namespace *ns = proc_pid_ns(file_inode(file));
3283         loff_t pos = ctx->pos;
3284
3285         if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3286                 return 0;
3287
3288         if (pos == TGID_OFFSET - 2) {
3289                 struct inode *inode = d_inode(ns->proc_self);
3290                 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3291                         return 0;
3292                 ctx->pos = pos = pos + 1;
3293         }
3294         if (pos == TGID_OFFSET - 1) {
3295                 struct inode *inode = d_inode(ns->proc_thread_self);
3296                 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3297                         return 0;
3298                 ctx->pos = pos = pos + 1;
3299         }
3300         iter.tgid = pos - TGID_OFFSET;
3301         iter.task = NULL;
3302         for (iter = next_tgid(ns, iter);
3303              iter.task;
3304              iter.tgid += 1, iter = next_tgid(ns, iter)) {
3305                 char name[10 + 1];
3306                 unsigned int len;
3307
3308                 cond_resched();
3309                 if (!has_pid_permissions(ns, iter.task, HIDEPID_INVISIBLE))
3310                         continue;
3311
3312                 len = snprintf(name, sizeof(name), "%u", iter.tgid);
3313                 ctx->pos = iter.tgid + TGID_OFFSET;
3314                 if (!proc_fill_cache(file, ctx, name, len,
3315                                      proc_pid_instantiate, iter.task, NULL)) {
3316                         put_task_struct(iter.task);
3317                         return 0;
3318                 }
3319         }
3320         ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3321         return 0;
3322 }
3323
3324 /*
3325  * proc_tid_comm_permission is a special permission function exclusively
3326  * used for the node /proc/<pid>/task/<tid>/comm.
3327  * It bypasses generic permission checks in the case where a task of the same
3328  * task group attempts to access the node.
3329  * The rationale behind this is that glibc and bionic access this node for
3330  * cross thread naming (pthread_set/getname_np(!self)). However, if
3331  * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3332  * which locks out the cross thread naming implementation.
3333  * This function makes sure that the node is always accessible for members of
3334  * same thread group.
3335  */
3336 static int proc_tid_comm_permission(struct inode *inode, int mask)
3337 {
3338         bool is_same_tgroup;
3339         struct task_struct *task;
3340
3341         task = get_proc_task(inode);
3342         if (!task)
3343                 return -ESRCH;
3344         is_same_tgroup = same_thread_group(current, task);
3345         put_task_struct(task);
3346
3347         if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3348                 /* This file (/proc/<pid>/task/<tid>/comm) can always be
3349                  * read or written by the members of the corresponding
3350                  * thread group.
3351                  */
3352                 return 0;
3353         }
3354
3355         return generic_permission(inode, mask);
3356 }
3357
3358 static const struct inode_operations proc_tid_comm_inode_operations = {
3359                 .permission = proc_tid_comm_permission,
3360 };
3361
3362 /*
3363  * Tasks
3364  */
3365 static const struct pid_entry tid_base_stuff[] = {
3366         DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3367         DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3368         DIR("ns",        S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3369 #ifdef CONFIG_NET
3370         DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3371 #endif
3372         REG("environ",   S_IRUSR, proc_environ_operations),
3373         REG("auxv",      S_IRUSR, proc_auxv_operations),
3374         ONE("status",    S_IRUGO, proc_pid_status),
3375         ONE("personality", S_IRUSR, proc_pid_personality),
3376         ONE("limits",    S_IRUGO, proc_pid_limits),
3377 #ifdef CONFIG_SCHED_DEBUG
3378         REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3379 #endif
3380         NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3381                          &proc_tid_comm_inode_operations,
3382                          &proc_pid_set_comm_operations, {}),
3383 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3384         ONE("syscall",   S_IRUSR, proc_pid_syscall),
3385 #endif
3386         REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3387         ONE("stat",      S_IRUGO, proc_tid_stat),
3388         ONE("statm",     S_IRUGO, proc_pid_statm),
3389         REG("maps",      S_IRUGO, proc_pid_maps_operations),
3390 #ifdef CONFIG_PROC_CHILDREN
3391         REG("children",  S_IRUGO, proc_tid_children_operations),
3392 #endif
3393 #ifdef CONFIG_NUMA
3394         REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3395 #endif
3396         REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3397         LNK("cwd",       proc_cwd_link),
3398         LNK("root",      proc_root_link),
3399         LNK("exe",       proc_exe_link),
3400         REG("mounts",    S_IRUGO, proc_mounts_operations),
3401         REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3402 #ifdef CONFIG_PROC_PAGE_MONITOR
3403         REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3404         REG("smaps",     S_IRUGO, proc_pid_smaps_operations),
3405         REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3406         REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3407 #endif
3408 #ifdef CONFIG_SECURITY
3409         DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3410 #endif
3411 #ifdef CONFIG_KALLSYMS
3412         ONE("wchan",     S_IRUGO, proc_pid_wchan),
3413 #endif
3414 #ifdef CONFIG_STACKTRACE
3415         ONE("stack",      S_IRUSR, proc_pid_stack),
3416 #endif
3417 #ifdef CONFIG_SCHED_INFO
3418         ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3419 #endif
3420 #ifdef CONFIG_LATENCYTOP
3421         REG("latency",  S_IRUGO, proc_lstats_operations),
3422 #endif
3423 #ifdef CONFIG_PROC_PID_CPUSET
3424         ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3425 #endif
3426 #ifdef CONFIG_CGROUPS
3427         ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3428 #endif
3429         ONE("oom_score", S_IRUGO, proc_oom_score),
3430         REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3431         REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3432 #ifdef CONFIG_AUDIT
3433         REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3434         REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3435 #endif
3436 #ifdef CONFIG_FAULT_INJECTION
3437         REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3438         REG("fail-nth", 0644, proc_fail_nth_operations),
3439 #endif
3440 #ifdef CONFIG_TASK_IO_ACCOUNTING
3441         ONE("io",       S_IRUSR, proc_tid_io_accounting),
3442 #endif
3443 #ifdef CONFIG_USER_NS
3444         REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3445         REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3446         REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3447         REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3448 #endif
3449 #ifdef CONFIG_LIVEPATCH
3450         ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3451 #endif
3452 };
3453
3454 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3455 {
3456         return proc_pident_readdir(file, ctx,
3457                                    tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3458 }
3459
3460 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3461 {
3462         return proc_pident_lookup(dir, dentry,
3463                                   tid_base_stuff,
3464                                   tid_base_stuff + ARRAY_SIZE(tid_base_stuff));
3465 }
3466
3467 static const struct file_operations proc_tid_base_operations = {
3468         .read           = generic_read_dir,
3469         .iterate_shared = proc_tid_base_readdir,
3470         .llseek         = generic_file_llseek,
3471 };
3472
3473 static const struct inode_operations proc_tid_base_inode_operations = {
3474         .lookup         = proc_tid_base_lookup,
3475         .getattr        = pid_getattr,
3476         .setattr        = proc_setattr,
3477 };
3478
3479 static struct dentry *proc_task_instantiate(struct dentry *dentry,
3480         struct task_struct *task, const void *ptr)
3481 {
3482         struct inode *inode;
3483         inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3484         if (!inode)
3485                 return ERR_PTR(-ENOENT);
3486
3487         inode->i_op = &proc_tid_base_inode_operations;
3488         inode->i_fop = &proc_tid_base_operations;
3489         inode->i_flags |= S_IMMUTABLE;
3490
3491         set_nlink(inode, nlink_tid);
3492         pid_update_inode(task, inode);
3493
3494         d_set_d_op(dentry, &pid_dentry_operations);
3495         return d_splice_alias(inode, dentry);
3496 }
3497
3498 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3499 {
3500         struct task_struct *task;
3501         struct task_struct *leader = get_proc_task(dir);
3502         unsigned tid;
3503         struct pid_namespace *ns;
3504         struct dentry *result = ERR_PTR(-ENOENT);
3505
3506         if (!leader)
3507                 goto out_no_task;
3508
3509         tid = name_to_int(&dentry->d_name);
3510         if (tid == ~0U)
3511                 goto out;
3512
3513         ns = dentry->d_sb->s_fs_info;
3514         rcu_read_lock();
3515         task = find_task_by_pid_ns(tid, ns);
3516         if (task)
3517                 get_task_struct(task);
3518         rcu_read_unlock();
3519         if (!task)
3520                 goto out;
3521         if (!same_thread_group(leader, task))
3522                 goto out_drop_task;
3523
3524         result = proc_task_instantiate(dentry, task, NULL);
3525 out_drop_task:
3526         put_task_struct(task);
3527 out:
3528         put_task_struct(leader);
3529 out_no_task:
3530         return result;
3531 }
3532
3533 /*
3534  * Find the first tid of a thread group to return to user space.
3535  *
3536  * Usually this is just the thread group leader, but if the users
3537  * buffer was too small or there was a seek into the middle of the
3538  * directory we have more work todo.
3539  *
3540  * In the case of a short read we start with find_task_by_pid.
3541  *
3542  * In the case of a seek we start with the leader and walk nr
3543  * threads past it.
3544  */
3545 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3546                                         struct pid_namespace *ns)
3547 {
3548         struct task_struct *pos, *task;
3549         unsigned long nr = f_pos;
3550
3551         if (nr != f_pos)        /* 32bit overflow? */
3552                 return NULL;
3553
3554         rcu_read_lock();
3555         task = pid_task(pid, PIDTYPE_PID);
3556         if (!task)
3557                 goto fail;
3558
3559         /* Attempt to start with the tid of a thread */
3560         if (tid && nr) {
3561                 pos = find_task_by_pid_ns(tid, ns);
3562                 if (pos && same_thread_group(pos, task))
3563                         goto found;
3564         }
3565
3566         /* If nr exceeds the number of threads there is nothing todo */
3567         if (nr >= get_nr_threads(task))
3568                 goto fail;
3569
3570         /* If we haven't found our starting place yet start
3571          * with the leader and walk nr threads forward.
3572          */
3573         pos = task = task->group_leader;
3574         do {
3575                 if (!nr--)
3576                         goto found;
3577         } while_each_thread(task, pos);
3578 fail:
3579         pos = NULL;
3580         goto out;
3581 found:
3582         get_task_struct(pos);
3583 out:
3584         rcu_read_unlock();
3585         return pos;
3586 }
3587
3588 /*
3589  * Find the next thread in the thread list.
3590  * Return NULL if there is an error or no next thread.
3591  *
3592  * The reference to the input task_struct is released.
3593  */
3594 static struct task_struct *next_tid(struct task_struct *start)
3595 {
3596         struct task_struct *pos = NULL;
3597         rcu_read_lock();
3598         if (pid_alive(start)) {
3599                 pos = next_thread(start);
3600                 if (thread_group_leader(pos))
3601                         pos = NULL;
3602                 else
3603                         get_task_struct(pos);
3604         }
3605         rcu_read_unlock();
3606         put_task_struct(start);
3607         return pos;
3608 }
3609
3610 /* for the /proc/TGID/task/ directories */
3611 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3612 {
3613         struct inode *inode = file_inode(file);
3614         struct task_struct *task;
3615         struct pid_namespace *ns;
3616         int tid;
3617
3618         if (proc_inode_is_dead(inode))
3619                 return -ENOENT;
3620
3621         if (!dir_emit_dots(file, ctx))
3622                 return 0;
3623
3624         /* f_version caches the tgid value that the last readdir call couldn't
3625          * return. lseek aka telldir automagically resets f_version to 0.
3626          */
3627         ns = proc_pid_ns(inode);
3628         tid = (int)file->f_version;
3629         file->f_version = 0;
3630         for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3631              task;
3632              task = next_tid(task), ctx->pos++) {
3633                 char name[10 + 1];
3634                 unsigned int len;
3635                 tid = task_pid_nr_ns(task, ns);
3636                 len = snprintf(name, sizeof(name), "%u", tid);
3637                 if (!proc_fill_cache(file, ctx, name, len,
3638                                 proc_task_instantiate, task, NULL)) {
3639                         /* returning this tgid failed, save it as the first
3640                          * pid for the next readir call */
3641                         file->f_version = (u64)tid;
3642                         put_task_struct(task);
3643                         break;
3644                 }
3645         }
3646
3647         return 0;
3648 }
3649
3650 static int proc_task_getattr(const struct path *path, struct kstat *stat,
3651                              u32 request_mask, unsigned int query_flags)
3652 {
3653         struct inode *inode = d_inode(path->dentry);
3654         struct task_struct *p = get_proc_task(inode);
3655         generic_fillattr(inode, stat);
3656
3657         if (p) {
3658                 stat->nlink += get_nr_threads(p);
3659                 put_task_struct(p);
3660         }
3661
3662         return 0;
3663 }
3664
3665 static const struct inode_operations proc_task_inode_operations = {
3666         .lookup         = proc_task_lookup,
3667         .getattr        = proc_task_getattr,
3668         .setattr        = proc_setattr,
3669         .permission     = proc_pid_permission,
3670 };
3671
3672 static const struct file_operations proc_task_operations = {
3673         .read           = generic_read_dir,
3674         .iterate_shared = proc_task_readdir,
3675         .llseek         = generic_file_llseek,
3676 };
3677
3678 void __init set_proc_pid_nlink(void)
3679 {
3680         nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3681         nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3682 }