proc: switch auxv to use of __mem_open()
[sfrench/cifs-2.6.git] / fs / proc / base.c
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49
50 #include <asm/uaccess.h>
51
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/printk.h>
77 #include <linux/cgroup.h>
78 #include <linux/cpuset.h>
79 #include <linux/audit.h>
80 #include <linux/poll.h>
81 #include <linux/nsproxy.h>
82 #include <linux/oom.h>
83 #include <linux/elf.h>
84 #include <linux/pid_namespace.h>
85 #include <linux/user_namespace.h>
86 #include <linux/fs_struct.h>
87 #include <linux/slab.h>
88 #include <linux/flex_array.h>
89 #include <linux/posix-timers.h>
90 #ifdef CONFIG_HARDWALL
91 #include <asm/hardwall.h>
92 #endif
93 #include <trace/events/oom.h>
94 #include "internal.h"
95 #include "fd.h"
96
97 /* NOTE:
98  *      Implementing inode permission operations in /proc is almost
99  *      certainly an error.  Permission checks need to happen during
100  *      each system call not at open time.  The reason is that most of
101  *      what we wish to check for permissions in /proc varies at runtime.
102  *
103  *      The classic example of a problem is opening file descriptors
104  *      in /proc for a task before it execs a suid executable.
105  */
106
107 struct pid_entry {
108         const char *name;
109         int len;
110         umode_t mode;
111         const struct inode_operations *iop;
112         const struct file_operations *fop;
113         union proc_op op;
114 };
115
116 #define NOD(NAME, MODE, IOP, FOP, OP) {                 \
117         .name = (NAME),                                 \
118         .len  = sizeof(NAME) - 1,                       \
119         .mode = MODE,                                   \
120         .iop  = IOP,                                    \
121         .fop  = FOP,                                    \
122         .op   = OP,                                     \
123 }
124
125 #define DIR(NAME, MODE, iops, fops)     \
126         NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
127 #define LNK(NAME, get_link)                                     \
128         NOD(NAME, (S_IFLNK|S_IRWXUGO),                          \
129                 &proc_pid_link_inode_operations, NULL,          \
130                 { .proc_get_link = get_link } )
131 #define REG(NAME, MODE, fops)                           \
132         NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
133 #define ONE(NAME, MODE, show)                           \
134         NOD(NAME, (S_IFREG|(MODE)),                     \
135                 NULL, &proc_single_file_operations,     \
136                 { .proc_show = show } )
137
138 /*
139  * Count the number of hardlinks for the pid_entry table, excluding the .
140  * and .. links.
141  */
142 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
143         unsigned int n)
144 {
145         unsigned int i;
146         unsigned int count;
147
148         count = 0;
149         for (i = 0; i < n; ++i) {
150                 if (S_ISDIR(entries[i].mode))
151                         ++count;
152         }
153
154         return count;
155 }
156
157 static int get_task_root(struct task_struct *task, struct path *root)
158 {
159         int result = -ENOENT;
160
161         task_lock(task);
162         if (task->fs) {
163                 get_fs_root(task->fs, root);
164                 result = 0;
165         }
166         task_unlock(task);
167         return result;
168 }
169
170 static int proc_cwd_link(struct dentry *dentry, struct path *path)
171 {
172         struct task_struct *task = get_proc_task(d_inode(dentry));
173         int result = -ENOENT;
174
175         if (task) {
176                 task_lock(task);
177                 if (task->fs) {
178                         get_fs_pwd(task->fs, path);
179                         result = 0;
180                 }
181                 task_unlock(task);
182                 put_task_struct(task);
183         }
184         return result;
185 }
186
187 static int proc_root_link(struct dentry *dentry, struct path *path)
188 {
189         struct task_struct *task = get_proc_task(d_inode(dentry));
190         int result = -ENOENT;
191
192         if (task) {
193                 result = get_task_root(task, path);
194                 put_task_struct(task);
195         }
196         return result;
197 }
198
199 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
200                                      size_t _count, loff_t *pos)
201 {
202         struct task_struct *tsk;
203         struct mm_struct *mm;
204         char *page;
205         unsigned long count = _count;
206         unsigned long arg_start, arg_end, env_start, env_end;
207         unsigned long len1, len2, len;
208         unsigned long p;
209         char c;
210         ssize_t rv;
211
212         BUG_ON(*pos < 0);
213
214         tsk = get_proc_task(file_inode(file));
215         if (!tsk)
216                 return -ESRCH;
217         mm = get_task_mm(tsk);
218         put_task_struct(tsk);
219         if (!mm)
220                 return 0;
221         /* Check if process spawned far enough to have cmdline. */
222         if (!mm->env_end) {
223                 rv = 0;
224                 goto out_mmput;
225         }
226
227         page = (char *)__get_free_page(GFP_TEMPORARY);
228         if (!page) {
229                 rv = -ENOMEM;
230                 goto out_mmput;
231         }
232
233         down_read(&mm->mmap_sem);
234         arg_start = mm->arg_start;
235         arg_end = mm->arg_end;
236         env_start = mm->env_start;
237         env_end = mm->env_end;
238         up_read(&mm->mmap_sem);
239
240         BUG_ON(arg_start > arg_end);
241         BUG_ON(env_start > env_end);
242
243         len1 = arg_end - arg_start;
244         len2 = env_end - env_start;
245
246         /* Empty ARGV. */
247         if (len1 == 0) {
248                 rv = 0;
249                 goto out_free_page;
250         }
251         /*
252          * Inherently racy -- command line shares address space
253          * with code and data.
254          */
255         rv = access_remote_vm(mm, arg_end - 1, &c, 1, 0);
256         if (rv <= 0)
257                 goto out_free_page;
258
259         rv = 0;
260
261         if (c == '\0') {
262                 /* Command line (set of strings) occupies whole ARGV. */
263                 if (len1 <= *pos)
264                         goto out_free_page;
265
266                 p = arg_start + *pos;
267                 len = len1 - *pos;
268                 while (count > 0 && len > 0) {
269                         unsigned int _count;
270                         int nr_read;
271
272                         _count = min3(count, len, PAGE_SIZE);
273                         nr_read = access_remote_vm(mm, p, page, _count, 0);
274                         if (nr_read < 0)
275                                 rv = nr_read;
276                         if (nr_read <= 0)
277                                 goto out_free_page;
278
279                         if (copy_to_user(buf, page, nr_read)) {
280                                 rv = -EFAULT;
281                                 goto out_free_page;
282                         }
283
284                         p       += nr_read;
285                         len     -= nr_read;
286                         buf     += nr_read;
287                         count   -= nr_read;
288                         rv      += nr_read;
289                 }
290         } else {
291                 /*
292                  * Command line (1 string) occupies ARGV and maybe
293                  * extends into ENVP.
294                  */
295                 if (len1 + len2 <= *pos)
296                         goto skip_argv_envp;
297                 if (len1 <= *pos)
298                         goto skip_argv;
299
300                 p = arg_start + *pos;
301                 len = len1 - *pos;
302                 while (count > 0 && len > 0) {
303                         unsigned int _count, l;
304                         int nr_read;
305                         bool final;
306
307                         _count = min3(count, len, PAGE_SIZE);
308                         nr_read = access_remote_vm(mm, p, page, _count, 0);
309                         if (nr_read < 0)
310                                 rv = nr_read;
311                         if (nr_read <= 0)
312                                 goto out_free_page;
313
314                         /*
315                          * Command line can be shorter than whole ARGV
316                          * even if last "marker" byte says it is not.
317                          */
318                         final = false;
319                         l = strnlen(page, nr_read);
320                         if (l < nr_read) {
321                                 nr_read = l;
322                                 final = true;
323                         }
324
325                         if (copy_to_user(buf, page, nr_read)) {
326                                 rv = -EFAULT;
327                                 goto out_free_page;
328                         }
329
330                         p       += nr_read;
331                         len     -= nr_read;
332                         buf     += nr_read;
333                         count   -= nr_read;
334                         rv      += nr_read;
335
336                         if (final)
337                                 goto out_free_page;
338                 }
339 skip_argv:
340                 /*
341                  * Command line (1 string) occupies ARGV and
342                  * extends into ENVP.
343                  */
344                 if (len1 <= *pos) {
345                         p = env_start + *pos - len1;
346                         len = len1 + len2 - *pos;
347                 } else {
348                         p = env_start;
349                         len = len2;
350                 }
351                 while (count > 0 && len > 0) {
352                         unsigned int _count, l;
353                         int nr_read;
354                         bool final;
355
356                         _count = min3(count, len, PAGE_SIZE);
357                         nr_read = access_remote_vm(mm, p, page, _count, 0);
358                         if (nr_read < 0)
359                                 rv = nr_read;
360                         if (nr_read <= 0)
361                                 goto out_free_page;
362
363                         /* Find EOS. */
364                         final = false;
365                         l = strnlen(page, nr_read);
366                         if (l < nr_read) {
367                                 nr_read = l;
368                                 final = true;
369                         }
370
371                         if (copy_to_user(buf, page, nr_read)) {
372                                 rv = -EFAULT;
373                                 goto out_free_page;
374                         }
375
376                         p       += nr_read;
377                         len     -= nr_read;
378                         buf     += nr_read;
379                         count   -= nr_read;
380                         rv      += nr_read;
381
382                         if (final)
383                                 goto out_free_page;
384                 }
385 skip_argv_envp:
386                 ;
387         }
388
389 out_free_page:
390         free_page((unsigned long)page);
391 out_mmput:
392         mmput(mm);
393         if (rv > 0)
394                 *pos += rv;
395         return rv;
396 }
397
398 static const struct file_operations proc_pid_cmdline_ops = {
399         .read   = proc_pid_cmdline_read,
400         .llseek = generic_file_llseek,
401 };
402
403 #ifdef CONFIG_KALLSYMS
404 /*
405  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
406  * Returns the resolved symbol.  If that fails, simply return the address.
407  */
408 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
409                           struct pid *pid, struct task_struct *task)
410 {
411         unsigned long wchan;
412         char symname[KSYM_NAME_LEN];
413
414         wchan = get_wchan(task);
415
416         if (wchan && ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)
417                         && !lookup_symbol_name(wchan, symname))
418                 seq_printf(m, "%s", symname);
419         else
420                 seq_putc(m, '0');
421
422         return 0;
423 }
424 #endif /* CONFIG_KALLSYMS */
425
426 static int lock_trace(struct task_struct *task)
427 {
428         int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
429         if (err)
430                 return err;
431         if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
432                 mutex_unlock(&task->signal->cred_guard_mutex);
433                 return -EPERM;
434         }
435         return 0;
436 }
437
438 static void unlock_trace(struct task_struct *task)
439 {
440         mutex_unlock(&task->signal->cred_guard_mutex);
441 }
442
443 #ifdef CONFIG_STACKTRACE
444
445 #define MAX_STACK_TRACE_DEPTH   64
446
447 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
448                           struct pid *pid, struct task_struct *task)
449 {
450         struct stack_trace trace;
451         unsigned long *entries;
452         int err;
453         int i;
454
455         entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
456         if (!entries)
457                 return -ENOMEM;
458
459         trace.nr_entries        = 0;
460         trace.max_entries       = MAX_STACK_TRACE_DEPTH;
461         trace.entries           = entries;
462         trace.skip              = 0;
463
464         err = lock_trace(task);
465         if (!err) {
466                 save_stack_trace_tsk(task, &trace);
467
468                 for (i = 0; i < trace.nr_entries; i++) {
469                         seq_printf(m, "[<%pK>] %pS\n",
470                                    (void *)entries[i], (void *)entries[i]);
471                 }
472                 unlock_trace(task);
473         }
474         kfree(entries);
475
476         return err;
477 }
478 #endif
479
480 #ifdef CONFIG_SCHED_INFO
481 /*
482  * Provides /proc/PID/schedstat
483  */
484 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
485                               struct pid *pid, struct task_struct *task)
486 {
487         if (unlikely(!sched_info_on()))
488                 seq_printf(m, "0 0 0\n");
489         else
490                 seq_printf(m, "%llu %llu %lu\n",
491                    (unsigned long long)task->se.sum_exec_runtime,
492                    (unsigned long long)task->sched_info.run_delay,
493                    task->sched_info.pcount);
494
495         return 0;
496 }
497 #endif
498
499 #ifdef CONFIG_LATENCYTOP
500 static int lstats_show_proc(struct seq_file *m, void *v)
501 {
502         int i;
503         struct inode *inode = m->private;
504         struct task_struct *task = get_proc_task(inode);
505
506         if (!task)
507                 return -ESRCH;
508         seq_puts(m, "Latency Top version : v0.1\n");
509         for (i = 0; i < 32; i++) {
510                 struct latency_record *lr = &task->latency_record[i];
511                 if (lr->backtrace[0]) {
512                         int q;
513                         seq_printf(m, "%i %li %li",
514                                    lr->count, lr->time, lr->max);
515                         for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
516                                 unsigned long bt = lr->backtrace[q];
517                                 if (!bt)
518                                         break;
519                                 if (bt == ULONG_MAX)
520                                         break;
521                                 seq_printf(m, " %ps", (void *)bt);
522                         }
523                         seq_putc(m, '\n');
524                 }
525
526         }
527         put_task_struct(task);
528         return 0;
529 }
530
531 static int lstats_open(struct inode *inode, struct file *file)
532 {
533         return single_open(file, lstats_show_proc, inode);
534 }
535
536 static ssize_t lstats_write(struct file *file, const char __user *buf,
537                             size_t count, loff_t *offs)
538 {
539         struct task_struct *task = get_proc_task(file_inode(file));
540
541         if (!task)
542                 return -ESRCH;
543         clear_all_latency_tracing(task);
544         put_task_struct(task);
545
546         return count;
547 }
548
549 static const struct file_operations proc_lstats_operations = {
550         .open           = lstats_open,
551         .read           = seq_read,
552         .write          = lstats_write,
553         .llseek         = seq_lseek,
554         .release        = single_release,
555 };
556
557 #endif
558
559 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
560                           struct pid *pid, struct task_struct *task)
561 {
562         unsigned long totalpages = totalram_pages + total_swap_pages;
563         unsigned long points = 0;
564
565         points = oom_badness(task, NULL, NULL, totalpages) *
566                                         1000 / totalpages;
567         seq_printf(m, "%lu\n", points);
568
569         return 0;
570 }
571
572 struct limit_names {
573         const char *name;
574         const char *unit;
575 };
576
577 static const struct limit_names lnames[RLIM_NLIMITS] = {
578         [RLIMIT_CPU] = {"Max cpu time", "seconds"},
579         [RLIMIT_FSIZE] = {"Max file size", "bytes"},
580         [RLIMIT_DATA] = {"Max data size", "bytes"},
581         [RLIMIT_STACK] = {"Max stack size", "bytes"},
582         [RLIMIT_CORE] = {"Max core file size", "bytes"},
583         [RLIMIT_RSS] = {"Max resident set", "bytes"},
584         [RLIMIT_NPROC] = {"Max processes", "processes"},
585         [RLIMIT_NOFILE] = {"Max open files", "files"},
586         [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
587         [RLIMIT_AS] = {"Max address space", "bytes"},
588         [RLIMIT_LOCKS] = {"Max file locks", "locks"},
589         [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
590         [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
591         [RLIMIT_NICE] = {"Max nice priority", NULL},
592         [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
593         [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
594 };
595
596 /* Display limits for a process */
597 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
598                            struct pid *pid, struct task_struct *task)
599 {
600         unsigned int i;
601         unsigned long flags;
602
603         struct rlimit rlim[RLIM_NLIMITS];
604
605         if (!lock_task_sighand(task, &flags))
606                 return 0;
607         memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
608         unlock_task_sighand(task, &flags);
609
610         /*
611          * print the file header
612          */
613        seq_printf(m, "%-25s %-20s %-20s %-10s\n",
614                   "Limit", "Soft Limit", "Hard Limit", "Units");
615
616         for (i = 0; i < RLIM_NLIMITS; i++) {
617                 if (rlim[i].rlim_cur == RLIM_INFINITY)
618                         seq_printf(m, "%-25s %-20s ",
619                                    lnames[i].name, "unlimited");
620                 else
621                         seq_printf(m, "%-25s %-20lu ",
622                                    lnames[i].name, rlim[i].rlim_cur);
623
624                 if (rlim[i].rlim_max == RLIM_INFINITY)
625                         seq_printf(m, "%-20s ", "unlimited");
626                 else
627                         seq_printf(m, "%-20lu ", rlim[i].rlim_max);
628
629                 if (lnames[i].unit)
630                         seq_printf(m, "%-10s\n", lnames[i].unit);
631                 else
632                         seq_putc(m, '\n');
633         }
634
635         return 0;
636 }
637
638 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
639 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
640                             struct pid *pid, struct task_struct *task)
641 {
642         long nr;
643         unsigned long args[6], sp, pc;
644         int res;
645
646         res = lock_trace(task);
647         if (res)
648                 return res;
649
650         if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
651                 seq_puts(m, "running\n");
652         else if (nr < 0)
653                 seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
654         else
655                 seq_printf(m,
656                        "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
657                        nr,
658                        args[0], args[1], args[2], args[3], args[4], args[5],
659                        sp, pc);
660         unlock_trace(task);
661
662         return 0;
663 }
664 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
665
666 /************************************************************************/
667 /*                       Here the fs part begins                        */
668 /************************************************************************/
669
670 /* permission checks */
671 static int proc_fd_access_allowed(struct inode *inode)
672 {
673         struct task_struct *task;
674         int allowed = 0;
675         /* Allow access to a task's file descriptors if it is us or we
676          * may use ptrace attach to the process and find out that
677          * information.
678          */
679         task = get_proc_task(inode);
680         if (task) {
681                 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
682                 put_task_struct(task);
683         }
684         return allowed;
685 }
686
687 int proc_setattr(struct dentry *dentry, struct iattr *attr)
688 {
689         int error;
690         struct inode *inode = d_inode(dentry);
691
692         if (attr->ia_valid & ATTR_MODE)
693                 return -EPERM;
694
695         error = inode_change_ok(inode, attr);
696         if (error)
697                 return error;
698
699         setattr_copy(inode, attr);
700         mark_inode_dirty(inode);
701         return 0;
702 }
703
704 /*
705  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
706  * or euid/egid (for hide_pid_min=2)?
707  */
708 static bool has_pid_permissions(struct pid_namespace *pid,
709                                  struct task_struct *task,
710                                  int hide_pid_min)
711 {
712         if (pid->hide_pid < hide_pid_min)
713                 return true;
714         if (in_group_p(pid->pid_gid))
715                 return true;
716         return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
717 }
718
719
720 static int proc_pid_permission(struct inode *inode, int mask)
721 {
722         struct pid_namespace *pid = inode->i_sb->s_fs_info;
723         struct task_struct *task;
724         bool has_perms;
725
726         task = get_proc_task(inode);
727         if (!task)
728                 return -ESRCH;
729         has_perms = has_pid_permissions(pid, task, 1);
730         put_task_struct(task);
731
732         if (!has_perms) {
733                 if (pid->hide_pid == 2) {
734                         /*
735                          * Let's make getdents(), stat(), and open()
736                          * consistent with each other.  If a process
737                          * may not stat() a file, it shouldn't be seen
738                          * in procfs at all.
739                          */
740                         return -ENOENT;
741                 }
742
743                 return -EPERM;
744         }
745         return generic_permission(inode, mask);
746 }
747
748
749
750 static const struct inode_operations proc_def_inode_operations = {
751         .setattr        = proc_setattr,
752 };
753
754 static int proc_single_show(struct seq_file *m, void *v)
755 {
756         struct inode *inode = m->private;
757         struct pid_namespace *ns;
758         struct pid *pid;
759         struct task_struct *task;
760         int ret;
761
762         ns = inode->i_sb->s_fs_info;
763         pid = proc_pid(inode);
764         task = get_pid_task(pid, PIDTYPE_PID);
765         if (!task)
766                 return -ESRCH;
767
768         ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
769
770         put_task_struct(task);
771         return ret;
772 }
773
774 static int proc_single_open(struct inode *inode, struct file *filp)
775 {
776         return single_open(filp, proc_single_show, inode);
777 }
778
779 static const struct file_operations proc_single_file_operations = {
780         .open           = proc_single_open,
781         .read           = seq_read,
782         .llseek         = seq_lseek,
783         .release        = single_release,
784 };
785
786
787 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
788 {
789         struct task_struct *task = get_proc_task(inode);
790         struct mm_struct *mm = ERR_PTR(-ESRCH);
791
792         if (task) {
793                 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
794                 put_task_struct(task);
795
796                 if (!IS_ERR_OR_NULL(mm)) {
797                         /* ensure this mm_struct can't be freed */
798                         atomic_inc(&mm->mm_count);
799                         /* but do not pin its memory */
800                         mmput(mm);
801                 }
802         }
803
804         return mm;
805 }
806
807 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
808 {
809         struct mm_struct *mm = proc_mem_open(inode, mode);
810
811         if (IS_ERR(mm))
812                 return PTR_ERR(mm);
813
814         file->private_data = mm;
815         return 0;
816 }
817
818 static int mem_open(struct inode *inode, struct file *file)
819 {
820         int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
821
822         /* OK to pass negative loff_t, we can catch out-of-range */
823         file->f_mode |= FMODE_UNSIGNED_OFFSET;
824
825         return ret;
826 }
827
828 static ssize_t mem_rw(struct file *file, char __user *buf,
829                         size_t count, loff_t *ppos, int write)
830 {
831         struct mm_struct *mm = file->private_data;
832         unsigned long addr = *ppos;
833         ssize_t copied;
834         char *page;
835
836         if (!mm)
837                 return 0;
838
839         page = (char *)__get_free_page(GFP_TEMPORARY);
840         if (!page)
841                 return -ENOMEM;
842
843         copied = 0;
844         if (!atomic_inc_not_zero(&mm->mm_users))
845                 goto free;
846
847         while (count > 0) {
848                 int this_len = min_t(int, count, PAGE_SIZE);
849
850                 if (write && copy_from_user(page, buf, this_len)) {
851                         copied = -EFAULT;
852                         break;
853                 }
854
855                 this_len = access_remote_vm(mm, addr, page, this_len, write);
856                 if (!this_len) {
857                         if (!copied)
858                                 copied = -EIO;
859                         break;
860                 }
861
862                 if (!write && copy_to_user(buf, page, this_len)) {
863                         copied = -EFAULT;
864                         break;
865                 }
866
867                 buf += this_len;
868                 addr += this_len;
869                 copied += this_len;
870                 count -= this_len;
871         }
872         *ppos = addr;
873
874         mmput(mm);
875 free:
876         free_page((unsigned long) page);
877         return copied;
878 }
879
880 static ssize_t mem_read(struct file *file, char __user *buf,
881                         size_t count, loff_t *ppos)
882 {
883         return mem_rw(file, buf, count, ppos, 0);
884 }
885
886 static ssize_t mem_write(struct file *file, const char __user *buf,
887                          size_t count, loff_t *ppos)
888 {
889         return mem_rw(file, (char __user*)buf, count, ppos, 1);
890 }
891
892 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
893 {
894         switch (orig) {
895         case 0:
896                 file->f_pos = offset;
897                 break;
898         case 1:
899                 file->f_pos += offset;
900                 break;
901         default:
902                 return -EINVAL;
903         }
904         force_successful_syscall_return();
905         return file->f_pos;
906 }
907
908 static int mem_release(struct inode *inode, struct file *file)
909 {
910         struct mm_struct *mm = file->private_data;
911         if (mm)
912                 mmdrop(mm);
913         return 0;
914 }
915
916 static const struct file_operations proc_mem_operations = {
917         .llseek         = mem_lseek,
918         .read           = mem_read,
919         .write          = mem_write,
920         .open           = mem_open,
921         .release        = mem_release,
922 };
923
924 static int environ_open(struct inode *inode, struct file *file)
925 {
926         return __mem_open(inode, file, PTRACE_MODE_READ);
927 }
928
929 static ssize_t environ_read(struct file *file, char __user *buf,
930                         size_t count, loff_t *ppos)
931 {
932         char *page;
933         unsigned long src = *ppos;
934         int ret = 0;
935         struct mm_struct *mm = file->private_data;
936         unsigned long env_start, env_end;
937
938         /* Ensure the process spawned far enough to have an environment. */
939         if (!mm || !mm->env_end)
940                 return 0;
941
942         page = (char *)__get_free_page(GFP_TEMPORARY);
943         if (!page)
944                 return -ENOMEM;
945
946         ret = 0;
947         if (!atomic_inc_not_zero(&mm->mm_users))
948                 goto free;
949
950         down_read(&mm->mmap_sem);
951         env_start = mm->env_start;
952         env_end = mm->env_end;
953         up_read(&mm->mmap_sem);
954
955         while (count > 0) {
956                 size_t this_len, max_len;
957                 int retval;
958
959                 if (src >= (env_end - env_start))
960                         break;
961
962                 this_len = env_end - (env_start + src);
963
964                 max_len = min_t(size_t, PAGE_SIZE, count);
965                 this_len = min(max_len, this_len);
966
967                 retval = access_remote_vm(mm, (env_start + src),
968                         page, this_len, 0);
969
970                 if (retval <= 0) {
971                         ret = retval;
972                         break;
973                 }
974
975                 if (copy_to_user(buf, page, retval)) {
976                         ret = -EFAULT;
977                         break;
978                 }
979
980                 ret += retval;
981                 src += retval;
982                 buf += retval;
983                 count -= retval;
984         }
985         *ppos = src;
986         mmput(mm);
987
988 free:
989         free_page((unsigned long) page);
990         return ret;
991 }
992
993 static const struct file_operations proc_environ_operations = {
994         .open           = environ_open,
995         .read           = environ_read,
996         .llseek         = generic_file_llseek,
997         .release        = mem_release,
998 };
999
1000 static int auxv_open(struct inode *inode, struct file *file)
1001 {
1002         return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
1003 }
1004
1005 static ssize_t auxv_read(struct file *file, char __user *buf,
1006                         size_t count, loff_t *ppos)
1007 {
1008         struct mm_struct *mm = file->private_data;
1009         unsigned int nwords = 0;
1010         do {
1011                 nwords += 2;
1012         } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1013         return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1014                                        nwords * sizeof(mm->saved_auxv[0]));
1015 }
1016
1017 static const struct file_operations proc_auxv_operations = {
1018         .open           = auxv_open,
1019         .read           = auxv_read,
1020         .llseek         = generic_file_llseek,
1021         .release        = mem_release,
1022 };
1023
1024 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1025                             loff_t *ppos)
1026 {
1027         struct task_struct *task = get_proc_task(file_inode(file));
1028         char buffer[PROC_NUMBUF];
1029         int oom_adj = OOM_ADJUST_MIN;
1030         size_t len;
1031
1032         if (!task)
1033                 return -ESRCH;
1034         if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1035                 oom_adj = OOM_ADJUST_MAX;
1036         else
1037                 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1038                           OOM_SCORE_ADJ_MAX;
1039         put_task_struct(task);
1040         len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1041         return simple_read_from_buffer(buf, count, ppos, buffer, len);
1042 }
1043
1044 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1045 {
1046         static DEFINE_MUTEX(oom_adj_mutex);
1047         struct mm_struct *mm = NULL;
1048         struct task_struct *task;
1049         int err = 0;
1050
1051         task = get_proc_task(file_inode(file));
1052         if (!task)
1053                 return -ESRCH;
1054
1055         mutex_lock(&oom_adj_mutex);
1056         if (legacy) {
1057                 if (oom_adj < task->signal->oom_score_adj &&
1058                                 !capable(CAP_SYS_RESOURCE)) {
1059                         err = -EACCES;
1060                         goto err_unlock;
1061                 }
1062                 /*
1063                  * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1064                  * /proc/pid/oom_score_adj instead.
1065                  */
1066                 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1067                           current->comm, task_pid_nr(current), task_pid_nr(task),
1068                           task_pid_nr(task));
1069         } else {
1070                 if ((short)oom_adj < task->signal->oom_score_adj_min &&
1071                                 !capable(CAP_SYS_RESOURCE)) {
1072                         err = -EACCES;
1073                         goto err_unlock;
1074                 }
1075         }
1076
1077         /*
1078          * Make sure we will check other processes sharing the mm if this is
1079          * not vfrok which wants its own oom_score_adj.
1080          * pin the mm so it doesn't go away and get reused after task_unlock
1081          */
1082         if (!task->vfork_done) {
1083                 struct task_struct *p = find_lock_task_mm(task);
1084
1085                 if (p) {
1086                         if (atomic_read(&p->mm->mm_users) > 1) {
1087                                 mm = p->mm;
1088                                 atomic_inc(&mm->mm_count);
1089                         }
1090                         task_unlock(p);
1091                 }
1092         }
1093
1094         task->signal->oom_score_adj = oom_adj;
1095         if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1096                 task->signal->oom_score_adj_min = (short)oom_adj;
1097         trace_oom_score_adj_update(task);
1098
1099         if (mm) {
1100                 struct task_struct *p;
1101
1102                 rcu_read_lock();
1103                 for_each_process(p) {
1104                         if (same_thread_group(task, p))
1105                                 continue;
1106
1107                         /* do not touch kernel threads or the global init */
1108                         if (p->flags & PF_KTHREAD || is_global_init(p))
1109                                 continue;
1110
1111                         task_lock(p);
1112                         if (!p->vfork_done && process_shares_mm(p, mm)) {
1113                                 pr_info("updating oom_score_adj for %d (%s) from %d to %d because it shares mm with %d (%s). Report if this is unexpected.\n",
1114                                                 task_pid_nr(p), p->comm,
1115                                                 p->signal->oom_score_adj, oom_adj,
1116                                                 task_pid_nr(task), task->comm);
1117                                 p->signal->oom_score_adj = oom_adj;
1118                                 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1119                                         p->signal->oom_score_adj_min = (short)oom_adj;
1120                         }
1121                         task_unlock(p);
1122                 }
1123                 rcu_read_unlock();
1124                 mmdrop(mm);
1125         }
1126 err_unlock:
1127         mutex_unlock(&oom_adj_mutex);
1128         put_task_struct(task);
1129         return err;
1130 }
1131
1132 /*
1133  * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1134  * kernels.  The effective policy is defined by oom_score_adj, which has a
1135  * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1136  * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1137  * Processes that become oom disabled via oom_adj will still be oom disabled
1138  * with this implementation.
1139  *
1140  * oom_adj cannot be removed since existing userspace binaries use it.
1141  */
1142 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1143                              size_t count, loff_t *ppos)
1144 {
1145         char buffer[PROC_NUMBUF];
1146         int oom_adj;
1147         int err;
1148
1149         memset(buffer, 0, sizeof(buffer));
1150         if (count > sizeof(buffer) - 1)
1151                 count = sizeof(buffer) - 1;
1152         if (copy_from_user(buffer, buf, count)) {
1153                 err = -EFAULT;
1154                 goto out;
1155         }
1156
1157         err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1158         if (err)
1159                 goto out;
1160         if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1161              oom_adj != OOM_DISABLE) {
1162                 err = -EINVAL;
1163                 goto out;
1164         }
1165
1166         /*
1167          * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1168          * value is always attainable.
1169          */
1170         if (oom_adj == OOM_ADJUST_MAX)
1171                 oom_adj = OOM_SCORE_ADJ_MAX;
1172         else
1173                 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1174
1175         err = __set_oom_adj(file, oom_adj, true);
1176 out:
1177         return err < 0 ? err : count;
1178 }
1179
1180 static const struct file_operations proc_oom_adj_operations = {
1181         .read           = oom_adj_read,
1182         .write          = oom_adj_write,
1183         .llseek         = generic_file_llseek,
1184 };
1185
1186 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1187                                         size_t count, loff_t *ppos)
1188 {
1189         struct task_struct *task = get_proc_task(file_inode(file));
1190         char buffer[PROC_NUMBUF];
1191         short oom_score_adj = OOM_SCORE_ADJ_MIN;
1192         size_t len;
1193
1194         if (!task)
1195                 return -ESRCH;
1196         oom_score_adj = task->signal->oom_score_adj;
1197         put_task_struct(task);
1198         len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1199         return simple_read_from_buffer(buf, count, ppos, buffer, len);
1200 }
1201
1202 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1203                                         size_t count, loff_t *ppos)
1204 {
1205         char buffer[PROC_NUMBUF];
1206         int oom_score_adj;
1207         int err;
1208
1209         memset(buffer, 0, sizeof(buffer));
1210         if (count > sizeof(buffer) - 1)
1211                 count = sizeof(buffer) - 1;
1212         if (copy_from_user(buffer, buf, count)) {
1213                 err = -EFAULT;
1214                 goto out;
1215         }
1216
1217         err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1218         if (err)
1219                 goto out;
1220         if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1221                         oom_score_adj > OOM_SCORE_ADJ_MAX) {
1222                 err = -EINVAL;
1223                 goto out;
1224         }
1225
1226         err = __set_oom_adj(file, oom_score_adj, false);
1227 out:
1228         return err < 0 ? err : count;
1229 }
1230
1231 static const struct file_operations proc_oom_score_adj_operations = {
1232         .read           = oom_score_adj_read,
1233         .write          = oom_score_adj_write,
1234         .llseek         = default_llseek,
1235 };
1236
1237 #ifdef CONFIG_AUDITSYSCALL
1238 #define TMPBUFLEN 21
1239 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1240                                   size_t count, loff_t *ppos)
1241 {
1242         struct inode * inode = file_inode(file);
1243         struct task_struct *task = get_proc_task(inode);
1244         ssize_t length;
1245         char tmpbuf[TMPBUFLEN];
1246
1247         if (!task)
1248                 return -ESRCH;
1249         length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1250                            from_kuid(file->f_cred->user_ns,
1251                                      audit_get_loginuid(task)));
1252         put_task_struct(task);
1253         return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1254 }
1255
1256 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1257                                    size_t count, loff_t *ppos)
1258 {
1259         struct inode * inode = file_inode(file);
1260         uid_t loginuid;
1261         kuid_t kloginuid;
1262         int rv;
1263
1264         rcu_read_lock();
1265         if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1266                 rcu_read_unlock();
1267                 return -EPERM;
1268         }
1269         rcu_read_unlock();
1270
1271         if (*ppos != 0) {
1272                 /* No partial writes. */
1273                 return -EINVAL;
1274         }
1275
1276         rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1277         if (rv < 0)
1278                 return rv;
1279
1280         /* is userspace tring to explicitly UNSET the loginuid? */
1281         if (loginuid == AUDIT_UID_UNSET) {
1282                 kloginuid = INVALID_UID;
1283         } else {
1284                 kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1285                 if (!uid_valid(kloginuid))
1286                         return -EINVAL;
1287         }
1288
1289         rv = audit_set_loginuid(kloginuid);
1290         if (rv < 0)
1291                 return rv;
1292         return count;
1293 }
1294
1295 static const struct file_operations proc_loginuid_operations = {
1296         .read           = proc_loginuid_read,
1297         .write          = proc_loginuid_write,
1298         .llseek         = generic_file_llseek,
1299 };
1300
1301 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1302                                   size_t count, loff_t *ppos)
1303 {
1304         struct inode * inode = file_inode(file);
1305         struct task_struct *task = get_proc_task(inode);
1306         ssize_t length;
1307         char tmpbuf[TMPBUFLEN];
1308
1309         if (!task)
1310                 return -ESRCH;
1311         length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1312                                 audit_get_sessionid(task));
1313         put_task_struct(task);
1314         return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1315 }
1316
1317 static const struct file_operations proc_sessionid_operations = {
1318         .read           = proc_sessionid_read,
1319         .llseek         = generic_file_llseek,
1320 };
1321 #endif
1322
1323 #ifdef CONFIG_FAULT_INJECTION
1324 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1325                                       size_t count, loff_t *ppos)
1326 {
1327         struct task_struct *task = get_proc_task(file_inode(file));
1328         char buffer[PROC_NUMBUF];
1329         size_t len;
1330         int make_it_fail;
1331
1332         if (!task)
1333                 return -ESRCH;
1334         make_it_fail = task->make_it_fail;
1335         put_task_struct(task);
1336
1337         len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1338
1339         return simple_read_from_buffer(buf, count, ppos, buffer, len);
1340 }
1341
1342 static ssize_t proc_fault_inject_write(struct file * file,
1343                         const char __user * buf, size_t count, loff_t *ppos)
1344 {
1345         struct task_struct *task;
1346         char buffer[PROC_NUMBUF];
1347         int make_it_fail;
1348         int rv;
1349
1350         if (!capable(CAP_SYS_RESOURCE))
1351                 return -EPERM;
1352         memset(buffer, 0, sizeof(buffer));
1353         if (count > sizeof(buffer) - 1)
1354                 count = sizeof(buffer) - 1;
1355         if (copy_from_user(buffer, buf, count))
1356                 return -EFAULT;
1357         rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1358         if (rv < 0)
1359                 return rv;
1360         if (make_it_fail < 0 || make_it_fail > 1)
1361                 return -EINVAL;
1362
1363         task = get_proc_task(file_inode(file));
1364         if (!task)
1365                 return -ESRCH;
1366         task->make_it_fail = make_it_fail;
1367         put_task_struct(task);
1368
1369         return count;
1370 }
1371
1372 static const struct file_operations proc_fault_inject_operations = {
1373         .read           = proc_fault_inject_read,
1374         .write          = proc_fault_inject_write,
1375         .llseek         = generic_file_llseek,
1376 };
1377 #endif
1378
1379
1380 #ifdef CONFIG_SCHED_DEBUG
1381 /*
1382  * Print out various scheduling related per-task fields:
1383  */
1384 static int sched_show(struct seq_file *m, void *v)
1385 {
1386         struct inode *inode = m->private;
1387         struct task_struct *p;
1388
1389         p = get_proc_task(inode);
1390         if (!p)
1391                 return -ESRCH;
1392         proc_sched_show_task(p, m);
1393
1394         put_task_struct(p);
1395
1396         return 0;
1397 }
1398
1399 static ssize_t
1400 sched_write(struct file *file, const char __user *buf,
1401             size_t count, loff_t *offset)
1402 {
1403         struct inode *inode = file_inode(file);
1404         struct task_struct *p;
1405
1406         p = get_proc_task(inode);
1407         if (!p)
1408                 return -ESRCH;
1409         proc_sched_set_task(p);
1410
1411         put_task_struct(p);
1412
1413         return count;
1414 }
1415
1416 static int sched_open(struct inode *inode, struct file *filp)
1417 {
1418         return single_open(filp, sched_show, inode);
1419 }
1420
1421 static const struct file_operations proc_pid_sched_operations = {
1422         .open           = sched_open,
1423         .read           = seq_read,
1424         .write          = sched_write,
1425         .llseek         = seq_lseek,
1426         .release        = single_release,
1427 };
1428
1429 #endif
1430
1431 #ifdef CONFIG_SCHED_AUTOGROUP
1432 /*
1433  * Print out autogroup related information:
1434  */
1435 static int sched_autogroup_show(struct seq_file *m, void *v)
1436 {
1437         struct inode *inode = m->private;
1438         struct task_struct *p;
1439
1440         p = get_proc_task(inode);
1441         if (!p)
1442                 return -ESRCH;
1443         proc_sched_autogroup_show_task(p, m);
1444
1445         put_task_struct(p);
1446
1447         return 0;
1448 }
1449
1450 static ssize_t
1451 sched_autogroup_write(struct file *file, const char __user *buf,
1452             size_t count, loff_t *offset)
1453 {
1454         struct inode *inode = file_inode(file);
1455         struct task_struct *p;
1456         char buffer[PROC_NUMBUF];
1457         int nice;
1458         int err;
1459
1460         memset(buffer, 0, sizeof(buffer));
1461         if (count > sizeof(buffer) - 1)
1462                 count = sizeof(buffer) - 1;
1463         if (copy_from_user(buffer, buf, count))
1464                 return -EFAULT;
1465
1466         err = kstrtoint(strstrip(buffer), 0, &nice);
1467         if (err < 0)
1468                 return err;
1469
1470         p = get_proc_task(inode);
1471         if (!p)
1472                 return -ESRCH;
1473
1474         err = proc_sched_autogroup_set_nice(p, nice);
1475         if (err)
1476                 count = err;
1477
1478         put_task_struct(p);
1479
1480         return count;
1481 }
1482
1483 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1484 {
1485         int ret;
1486
1487         ret = single_open(filp, sched_autogroup_show, NULL);
1488         if (!ret) {
1489                 struct seq_file *m = filp->private_data;
1490
1491                 m->private = inode;
1492         }
1493         return ret;
1494 }
1495
1496 static const struct file_operations proc_pid_sched_autogroup_operations = {
1497         .open           = sched_autogroup_open,
1498         .read           = seq_read,
1499         .write          = sched_autogroup_write,
1500         .llseek         = seq_lseek,
1501         .release        = single_release,
1502 };
1503
1504 #endif /* CONFIG_SCHED_AUTOGROUP */
1505
1506 static ssize_t comm_write(struct file *file, const char __user *buf,
1507                                 size_t count, loff_t *offset)
1508 {
1509         struct inode *inode = file_inode(file);
1510         struct task_struct *p;
1511         char buffer[TASK_COMM_LEN];
1512         const size_t maxlen = sizeof(buffer) - 1;
1513
1514         memset(buffer, 0, sizeof(buffer));
1515         if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1516                 return -EFAULT;
1517
1518         p = get_proc_task(inode);
1519         if (!p)
1520                 return -ESRCH;
1521
1522         if (same_thread_group(current, p))
1523                 set_task_comm(p, buffer);
1524         else
1525                 count = -EINVAL;
1526
1527         put_task_struct(p);
1528
1529         return count;
1530 }
1531
1532 static int comm_show(struct seq_file *m, void *v)
1533 {
1534         struct inode *inode = m->private;
1535         struct task_struct *p;
1536
1537         p = get_proc_task(inode);
1538         if (!p)
1539                 return -ESRCH;
1540
1541         task_lock(p);
1542         seq_printf(m, "%s\n", p->comm);
1543         task_unlock(p);
1544
1545         put_task_struct(p);
1546
1547         return 0;
1548 }
1549
1550 static int comm_open(struct inode *inode, struct file *filp)
1551 {
1552         return single_open(filp, comm_show, inode);
1553 }
1554
1555 static const struct file_operations proc_pid_set_comm_operations = {
1556         .open           = comm_open,
1557         .read           = seq_read,
1558         .write          = comm_write,
1559         .llseek         = seq_lseek,
1560         .release        = single_release,
1561 };
1562
1563 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1564 {
1565         struct task_struct *task;
1566         struct file *exe_file;
1567
1568         task = get_proc_task(d_inode(dentry));
1569         if (!task)
1570                 return -ENOENT;
1571         exe_file = get_task_exe_file(task);
1572         put_task_struct(task);
1573         if (exe_file) {
1574                 *exe_path = exe_file->f_path;
1575                 path_get(&exe_file->f_path);
1576                 fput(exe_file);
1577                 return 0;
1578         } else
1579                 return -ENOENT;
1580 }
1581
1582 static const char *proc_pid_get_link(struct dentry *dentry,
1583                                      struct inode *inode,
1584                                      struct delayed_call *done)
1585 {
1586         struct path path;
1587         int error = -EACCES;
1588
1589         if (!dentry)
1590                 return ERR_PTR(-ECHILD);
1591
1592         /* Are we allowed to snoop on the tasks file descriptors? */
1593         if (!proc_fd_access_allowed(inode))
1594                 goto out;
1595
1596         error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1597         if (error)
1598                 goto out;
1599
1600         nd_jump_link(&path);
1601         return NULL;
1602 out:
1603         return ERR_PTR(error);
1604 }
1605
1606 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1607 {
1608         char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1609         char *pathname;
1610         int len;
1611
1612         if (!tmp)
1613                 return -ENOMEM;
1614
1615         pathname = d_path(path, tmp, PAGE_SIZE);
1616         len = PTR_ERR(pathname);
1617         if (IS_ERR(pathname))
1618                 goto out;
1619         len = tmp + PAGE_SIZE - 1 - pathname;
1620
1621         if (len > buflen)
1622                 len = buflen;
1623         if (copy_to_user(buffer, pathname, len))
1624                 len = -EFAULT;
1625  out:
1626         free_page((unsigned long)tmp);
1627         return len;
1628 }
1629
1630 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1631 {
1632         int error = -EACCES;
1633         struct inode *inode = d_inode(dentry);
1634         struct path path;
1635
1636         /* Are we allowed to snoop on the tasks file descriptors? */
1637         if (!proc_fd_access_allowed(inode))
1638                 goto out;
1639
1640         error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1641         if (error)
1642                 goto out;
1643
1644         error = do_proc_readlink(&path, buffer, buflen);
1645         path_put(&path);
1646 out:
1647         return error;
1648 }
1649
1650 const struct inode_operations proc_pid_link_inode_operations = {
1651         .readlink       = proc_pid_readlink,
1652         .get_link       = proc_pid_get_link,
1653         .setattr        = proc_setattr,
1654 };
1655
1656
1657 /* building an inode */
1658
1659 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1660 {
1661         struct inode * inode;
1662         struct proc_inode *ei;
1663         const struct cred *cred;
1664
1665         /* We need a new inode */
1666
1667         inode = new_inode(sb);
1668         if (!inode)
1669                 goto out;
1670
1671         /* Common stuff */
1672         ei = PROC_I(inode);
1673         inode->i_ino = get_next_ino();
1674         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1675         inode->i_op = &proc_def_inode_operations;
1676
1677         /*
1678          * grab the reference to task.
1679          */
1680         ei->pid = get_task_pid(task, PIDTYPE_PID);
1681         if (!ei->pid)
1682                 goto out_unlock;
1683
1684         if (task_dumpable(task)) {
1685                 rcu_read_lock();
1686                 cred = __task_cred(task);
1687                 inode->i_uid = cred->euid;
1688                 inode->i_gid = cred->egid;
1689                 rcu_read_unlock();
1690         }
1691         security_task_to_inode(task, inode);
1692
1693 out:
1694         return inode;
1695
1696 out_unlock:
1697         iput(inode);
1698         return NULL;
1699 }
1700
1701 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1702 {
1703         struct inode *inode = d_inode(dentry);
1704         struct task_struct *task;
1705         const struct cred *cred;
1706         struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1707
1708         generic_fillattr(inode, stat);
1709
1710         rcu_read_lock();
1711         stat->uid = GLOBAL_ROOT_UID;
1712         stat->gid = GLOBAL_ROOT_GID;
1713         task = pid_task(proc_pid(inode), PIDTYPE_PID);
1714         if (task) {
1715                 if (!has_pid_permissions(pid, task, 2)) {
1716                         rcu_read_unlock();
1717                         /*
1718                          * This doesn't prevent learning whether PID exists,
1719                          * it only makes getattr() consistent with readdir().
1720                          */
1721                         return -ENOENT;
1722                 }
1723                 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1724                     task_dumpable(task)) {
1725                         cred = __task_cred(task);
1726                         stat->uid = cred->euid;
1727                         stat->gid = cred->egid;
1728                 }
1729         }
1730         rcu_read_unlock();
1731         return 0;
1732 }
1733
1734 /* dentry stuff */
1735
1736 /*
1737  *      Exceptional case: normally we are not allowed to unhash a busy
1738  * directory. In this case, however, we can do it - no aliasing problems
1739  * due to the way we treat inodes.
1740  *
1741  * Rewrite the inode's ownerships here because the owning task may have
1742  * performed a setuid(), etc.
1743  *
1744  * Before the /proc/pid/status file was created the only way to read
1745  * the effective uid of a /process was to stat /proc/pid.  Reading
1746  * /proc/pid/status is slow enough that procps and other packages
1747  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1748  * made this apply to all per process world readable and executable
1749  * directories.
1750  */
1751 int pid_revalidate(struct dentry *dentry, unsigned int flags)
1752 {
1753         struct inode *inode;
1754         struct task_struct *task;
1755         const struct cred *cred;
1756
1757         if (flags & LOOKUP_RCU)
1758                 return -ECHILD;
1759
1760         inode = d_inode(dentry);
1761         task = get_proc_task(inode);
1762
1763         if (task) {
1764                 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1765                     task_dumpable(task)) {
1766                         rcu_read_lock();
1767                         cred = __task_cred(task);
1768                         inode->i_uid = cred->euid;
1769                         inode->i_gid = cred->egid;
1770                         rcu_read_unlock();
1771                 } else {
1772                         inode->i_uid = GLOBAL_ROOT_UID;
1773                         inode->i_gid = GLOBAL_ROOT_GID;
1774                 }
1775                 inode->i_mode &= ~(S_ISUID | S_ISGID);
1776                 security_task_to_inode(task, inode);
1777                 put_task_struct(task);
1778                 return 1;
1779         }
1780         return 0;
1781 }
1782
1783 static inline bool proc_inode_is_dead(struct inode *inode)
1784 {
1785         return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1786 }
1787
1788 int pid_delete_dentry(const struct dentry *dentry)
1789 {
1790         /* Is the task we represent dead?
1791          * If so, then don't put the dentry on the lru list,
1792          * kill it immediately.
1793          */
1794         return proc_inode_is_dead(d_inode(dentry));
1795 }
1796
1797 const struct dentry_operations pid_dentry_operations =
1798 {
1799         .d_revalidate   = pid_revalidate,
1800         .d_delete       = pid_delete_dentry,
1801 };
1802
1803 /* Lookups */
1804
1805 /*
1806  * Fill a directory entry.
1807  *
1808  * If possible create the dcache entry and derive our inode number and
1809  * file type from dcache entry.
1810  *
1811  * Since all of the proc inode numbers are dynamically generated, the inode
1812  * numbers do not exist until the inode is cache.  This means creating the
1813  * the dcache entry in readdir is necessary to keep the inode numbers
1814  * reported by readdir in sync with the inode numbers reported
1815  * by stat.
1816  */
1817 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1818         const char *name, int len,
1819         instantiate_t instantiate, struct task_struct *task, const void *ptr)
1820 {
1821         struct dentry *child, *dir = file->f_path.dentry;
1822         struct qstr qname = QSTR_INIT(name, len);
1823         struct inode *inode;
1824         unsigned type;
1825         ino_t ino;
1826
1827         child = d_hash_and_lookup(dir, &qname);
1828         if (!child) {
1829                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1830                 child = d_alloc_parallel(dir, &qname, &wq);
1831                 if (IS_ERR(child))
1832                         goto end_instantiate;
1833                 if (d_in_lookup(child)) {
1834                         int err = instantiate(d_inode(dir), child, task, ptr);
1835                         d_lookup_done(child);
1836                         if (err < 0) {
1837                                 dput(child);
1838                                 goto end_instantiate;
1839                         }
1840                 }
1841         }
1842         inode = d_inode(child);
1843         ino = inode->i_ino;
1844         type = inode->i_mode >> 12;
1845         dput(child);
1846         return dir_emit(ctx, name, len, ino, type);
1847
1848 end_instantiate:
1849         return dir_emit(ctx, name, len, 1, DT_UNKNOWN);
1850 }
1851
1852 /*
1853  * dname_to_vma_addr - maps a dentry name into two unsigned longs
1854  * which represent vma start and end addresses.
1855  */
1856 static int dname_to_vma_addr(struct dentry *dentry,
1857                              unsigned long *start, unsigned long *end)
1858 {
1859         if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
1860                 return -EINVAL;
1861
1862         return 0;
1863 }
1864
1865 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1866 {
1867         unsigned long vm_start, vm_end;
1868         bool exact_vma_exists = false;
1869         struct mm_struct *mm = NULL;
1870         struct task_struct *task;
1871         const struct cred *cred;
1872         struct inode *inode;
1873         int status = 0;
1874
1875         if (flags & LOOKUP_RCU)
1876                 return -ECHILD;
1877
1878         inode = d_inode(dentry);
1879         task = get_proc_task(inode);
1880         if (!task)
1881                 goto out_notask;
1882
1883         mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1884         if (IS_ERR_OR_NULL(mm))
1885                 goto out;
1886
1887         if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1888                 down_read(&mm->mmap_sem);
1889                 exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1890                 up_read(&mm->mmap_sem);
1891         }
1892
1893         mmput(mm);
1894
1895         if (exact_vma_exists) {
1896                 if (task_dumpable(task)) {
1897                         rcu_read_lock();
1898                         cred = __task_cred(task);
1899                         inode->i_uid = cred->euid;
1900                         inode->i_gid = cred->egid;
1901                         rcu_read_unlock();
1902                 } else {
1903                         inode->i_uid = GLOBAL_ROOT_UID;
1904                         inode->i_gid = GLOBAL_ROOT_GID;
1905                 }
1906                 security_task_to_inode(task, inode);
1907                 status = 1;
1908         }
1909
1910 out:
1911         put_task_struct(task);
1912
1913 out_notask:
1914         return status;
1915 }
1916
1917 static const struct dentry_operations tid_map_files_dentry_operations = {
1918         .d_revalidate   = map_files_d_revalidate,
1919         .d_delete       = pid_delete_dentry,
1920 };
1921
1922 static int map_files_get_link(struct dentry *dentry, struct path *path)
1923 {
1924         unsigned long vm_start, vm_end;
1925         struct vm_area_struct *vma;
1926         struct task_struct *task;
1927         struct mm_struct *mm;
1928         int rc;
1929
1930         rc = -ENOENT;
1931         task = get_proc_task(d_inode(dentry));
1932         if (!task)
1933                 goto out;
1934
1935         mm = get_task_mm(task);
1936         put_task_struct(task);
1937         if (!mm)
1938                 goto out;
1939
1940         rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1941         if (rc)
1942                 goto out_mmput;
1943
1944         rc = -ENOENT;
1945         down_read(&mm->mmap_sem);
1946         vma = find_exact_vma(mm, vm_start, vm_end);
1947         if (vma && vma->vm_file) {
1948                 *path = vma->vm_file->f_path;
1949                 path_get(path);
1950                 rc = 0;
1951         }
1952         up_read(&mm->mmap_sem);
1953
1954 out_mmput:
1955         mmput(mm);
1956 out:
1957         return rc;
1958 }
1959
1960 struct map_files_info {
1961         fmode_t         mode;
1962         unsigned long   len;
1963         unsigned char   name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
1964 };
1965
1966 /*
1967  * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
1968  * symlinks may be used to bypass permissions on ancestor directories in the
1969  * path to the file in question.
1970  */
1971 static const char *
1972 proc_map_files_get_link(struct dentry *dentry,
1973                         struct inode *inode,
1974                         struct delayed_call *done)
1975 {
1976         if (!capable(CAP_SYS_ADMIN))
1977                 return ERR_PTR(-EPERM);
1978
1979         return proc_pid_get_link(dentry, inode, done);
1980 }
1981
1982 /*
1983  * Identical to proc_pid_link_inode_operations except for get_link()
1984  */
1985 static const struct inode_operations proc_map_files_link_inode_operations = {
1986         .readlink       = proc_pid_readlink,
1987         .get_link       = proc_map_files_get_link,
1988         .setattr        = proc_setattr,
1989 };
1990
1991 static int
1992 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
1993                            struct task_struct *task, const void *ptr)
1994 {
1995         fmode_t mode = (fmode_t)(unsigned long)ptr;
1996         struct proc_inode *ei;
1997         struct inode *inode;
1998
1999         inode = proc_pid_make_inode(dir->i_sb, task);
2000         if (!inode)
2001                 return -ENOENT;
2002
2003         ei = PROC_I(inode);
2004         ei->op.proc_get_link = map_files_get_link;
2005
2006         inode->i_op = &proc_map_files_link_inode_operations;
2007         inode->i_size = 64;
2008         inode->i_mode = S_IFLNK;
2009
2010         if (mode & FMODE_READ)
2011                 inode->i_mode |= S_IRUSR;
2012         if (mode & FMODE_WRITE)
2013                 inode->i_mode |= S_IWUSR;
2014
2015         d_set_d_op(dentry, &tid_map_files_dentry_operations);
2016         d_add(dentry, inode);
2017
2018         return 0;
2019 }
2020
2021 static struct dentry *proc_map_files_lookup(struct inode *dir,
2022                 struct dentry *dentry, unsigned int flags)
2023 {
2024         unsigned long vm_start, vm_end;
2025         struct vm_area_struct *vma;
2026         struct task_struct *task;
2027         int result;
2028         struct mm_struct *mm;
2029
2030         result = -ENOENT;
2031         task = get_proc_task(dir);
2032         if (!task)
2033                 goto out;
2034
2035         result = -EACCES;
2036         if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2037                 goto out_put_task;
2038
2039         result = -ENOENT;
2040         if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2041                 goto out_put_task;
2042
2043         mm = get_task_mm(task);
2044         if (!mm)
2045                 goto out_put_task;
2046
2047         down_read(&mm->mmap_sem);
2048         vma = find_exact_vma(mm, vm_start, vm_end);
2049         if (!vma)
2050                 goto out_no_vma;
2051
2052         if (vma->vm_file)
2053                 result = proc_map_files_instantiate(dir, dentry, task,
2054                                 (void *)(unsigned long)vma->vm_file->f_mode);
2055
2056 out_no_vma:
2057         up_read(&mm->mmap_sem);
2058         mmput(mm);
2059 out_put_task:
2060         put_task_struct(task);
2061 out:
2062         return ERR_PTR(result);
2063 }
2064
2065 static const struct inode_operations proc_map_files_inode_operations = {
2066         .lookup         = proc_map_files_lookup,
2067         .permission     = proc_fd_permission,
2068         .setattr        = proc_setattr,
2069 };
2070
2071 static int
2072 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2073 {
2074         struct vm_area_struct *vma;
2075         struct task_struct *task;
2076         struct mm_struct *mm;
2077         unsigned long nr_files, pos, i;
2078         struct flex_array *fa = NULL;
2079         struct map_files_info info;
2080         struct map_files_info *p;
2081         int ret;
2082
2083         ret = -ENOENT;
2084         task = get_proc_task(file_inode(file));
2085         if (!task)
2086                 goto out;
2087
2088         ret = -EACCES;
2089         if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2090                 goto out_put_task;
2091
2092         ret = 0;
2093         if (!dir_emit_dots(file, ctx))
2094                 goto out_put_task;
2095
2096         mm = get_task_mm(task);
2097         if (!mm)
2098                 goto out_put_task;
2099         down_read(&mm->mmap_sem);
2100
2101         nr_files = 0;
2102
2103         /*
2104          * We need two passes here:
2105          *
2106          *  1) Collect vmas of mapped files with mmap_sem taken
2107          *  2) Release mmap_sem and instantiate entries
2108          *
2109          * otherwise we get lockdep complained, since filldir()
2110          * routine might require mmap_sem taken in might_fault().
2111          */
2112
2113         for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2114                 if (vma->vm_file && ++pos > ctx->pos)
2115                         nr_files++;
2116         }
2117
2118         if (nr_files) {
2119                 fa = flex_array_alloc(sizeof(info), nr_files,
2120                                         GFP_KERNEL);
2121                 if (!fa || flex_array_prealloc(fa, 0, nr_files,
2122                                                 GFP_KERNEL)) {
2123                         ret = -ENOMEM;
2124                         if (fa)
2125                                 flex_array_free(fa);
2126                         up_read(&mm->mmap_sem);
2127                         mmput(mm);
2128                         goto out_put_task;
2129                 }
2130                 for (i = 0, vma = mm->mmap, pos = 2; vma;
2131                                 vma = vma->vm_next) {
2132                         if (!vma->vm_file)
2133                                 continue;
2134                         if (++pos <= ctx->pos)
2135                                 continue;
2136
2137                         info.mode = vma->vm_file->f_mode;
2138                         info.len = snprintf(info.name,
2139                                         sizeof(info.name), "%lx-%lx",
2140                                         vma->vm_start, vma->vm_end);
2141                         if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2142                                 BUG();
2143                 }
2144         }
2145         up_read(&mm->mmap_sem);
2146
2147         for (i = 0; i < nr_files; i++) {
2148                 p = flex_array_get(fa, i);
2149                 if (!proc_fill_cache(file, ctx,
2150                                       p->name, p->len,
2151                                       proc_map_files_instantiate,
2152                                       task,
2153                                       (void *)(unsigned long)p->mode))
2154                         break;
2155                 ctx->pos++;
2156         }
2157         if (fa)
2158                 flex_array_free(fa);
2159         mmput(mm);
2160
2161 out_put_task:
2162         put_task_struct(task);
2163 out:
2164         return ret;
2165 }
2166
2167 static const struct file_operations proc_map_files_operations = {
2168         .read           = generic_read_dir,
2169         .iterate_shared = proc_map_files_readdir,
2170         .llseek         = generic_file_llseek,
2171 };
2172
2173 #ifdef CONFIG_CHECKPOINT_RESTORE
2174 struct timers_private {
2175         struct pid *pid;
2176         struct task_struct *task;
2177         struct sighand_struct *sighand;
2178         struct pid_namespace *ns;
2179         unsigned long flags;
2180 };
2181
2182 static void *timers_start(struct seq_file *m, loff_t *pos)
2183 {
2184         struct timers_private *tp = m->private;
2185
2186         tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2187         if (!tp->task)
2188                 return ERR_PTR(-ESRCH);
2189
2190         tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2191         if (!tp->sighand)
2192                 return ERR_PTR(-ESRCH);
2193
2194         return seq_list_start(&tp->task->signal->posix_timers, *pos);
2195 }
2196
2197 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2198 {
2199         struct timers_private *tp = m->private;
2200         return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2201 }
2202
2203 static void timers_stop(struct seq_file *m, void *v)
2204 {
2205         struct timers_private *tp = m->private;
2206
2207         if (tp->sighand) {
2208                 unlock_task_sighand(tp->task, &tp->flags);
2209                 tp->sighand = NULL;
2210         }
2211
2212         if (tp->task) {
2213                 put_task_struct(tp->task);
2214                 tp->task = NULL;
2215         }
2216 }
2217
2218 static int show_timer(struct seq_file *m, void *v)
2219 {
2220         struct k_itimer *timer;
2221         struct timers_private *tp = m->private;
2222         int notify;
2223         static const char * const nstr[] = {
2224                 [SIGEV_SIGNAL] = "signal",
2225                 [SIGEV_NONE] = "none",
2226                 [SIGEV_THREAD] = "thread",
2227         };
2228
2229         timer = list_entry((struct list_head *)v, struct k_itimer, list);
2230         notify = timer->it_sigev_notify;
2231
2232         seq_printf(m, "ID: %d\n", timer->it_id);
2233         seq_printf(m, "signal: %d/%p\n",
2234                    timer->sigq->info.si_signo,
2235                    timer->sigq->info.si_value.sival_ptr);
2236         seq_printf(m, "notify: %s/%s.%d\n",
2237                    nstr[notify & ~SIGEV_THREAD_ID],
2238                    (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2239                    pid_nr_ns(timer->it_pid, tp->ns));
2240         seq_printf(m, "ClockID: %d\n", timer->it_clock);
2241
2242         return 0;
2243 }
2244
2245 static const struct seq_operations proc_timers_seq_ops = {
2246         .start  = timers_start,
2247         .next   = timers_next,
2248         .stop   = timers_stop,
2249         .show   = show_timer,
2250 };
2251
2252 static int proc_timers_open(struct inode *inode, struct file *file)
2253 {
2254         struct timers_private *tp;
2255
2256         tp = __seq_open_private(file, &proc_timers_seq_ops,
2257                         sizeof(struct timers_private));
2258         if (!tp)
2259                 return -ENOMEM;
2260
2261         tp->pid = proc_pid(inode);
2262         tp->ns = inode->i_sb->s_fs_info;
2263         return 0;
2264 }
2265
2266 static const struct file_operations proc_timers_operations = {
2267         .open           = proc_timers_open,
2268         .read           = seq_read,
2269         .llseek         = seq_lseek,
2270         .release        = seq_release_private,
2271 };
2272 #endif
2273
2274 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2275                                         size_t count, loff_t *offset)
2276 {
2277         struct inode *inode = file_inode(file);
2278         struct task_struct *p;
2279         u64 slack_ns;
2280         int err;
2281
2282         err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2283         if (err < 0)
2284                 return err;
2285
2286         p = get_proc_task(inode);
2287         if (!p)
2288                 return -ESRCH;
2289
2290         if (ptrace_may_access(p, PTRACE_MODE_ATTACH_FSCREDS)) {
2291                 task_lock(p);
2292                 if (slack_ns == 0)
2293                         p->timer_slack_ns = p->default_timer_slack_ns;
2294                 else
2295                         p->timer_slack_ns = slack_ns;
2296                 task_unlock(p);
2297         } else
2298                 count = -EPERM;
2299
2300         put_task_struct(p);
2301
2302         return count;
2303 }
2304
2305 static int timerslack_ns_show(struct seq_file *m, void *v)
2306 {
2307         struct inode *inode = m->private;
2308         struct task_struct *p;
2309         int err =  0;
2310
2311         p = get_proc_task(inode);
2312         if (!p)
2313                 return -ESRCH;
2314
2315         if (ptrace_may_access(p, PTRACE_MODE_ATTACH_FSCREDS)) {
2316                 task_lock(p);
2317                 seq_printf(m, "%llu\n", p->timer_slack_ns);
2318                 task_unlock(p);
2319         } else
2320                 err = -EPERM;
2321
2322         put_task_struct(p);
2323
2324         return err;
2325 }
2326
2327 static int timerslack_ns_open(struct inode *inode, struct file *filp)
2328 {
2329         return single_open(filp, timerslack_ns_show, inode);
2330 }
2331
2332 static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2333         .open           = timerslack_ns_open,
2334         .read           = seq_read,
2335         .write          = timerslack_ns_write,
2336         .llseek         = seq_lseek,
2337         .release        = single_release,
2338 };
2339
2340 static int proc_pident_instantiate(struct inode *dir,
2341         struct dentry *dentry, struct task_struct *task, const void *ptr)
2342 {
2343         const struct pid_entry *p = ptr;
2344         struct inode *inode;
2345         struct proc_inode *ei;
2346
2347         inode = proc_pid_make_inode(dir->i_sb, task);
2348         if (!inode)
2349                 goto out;
2350
2351         ei = PROC_I(inode);
2352         inode->i_mode = p->mode;
2353         if (S_ISDIR(inode->i_mode))
2354                 set_nlink(inode, 2);    /* Use getattr to fix if necessary */
2355         if (p->iop)
2356                 inode->i_op = p->iop;
2357         if (p->fop)
2358                 inode->i_fop = p->fop;
2359         ei->op = p->op;
2360         d_set_d_op(dentry, &pid_dentry_operations);
2361         d_add(dentry, inode);
2362         /* Close the race of the process dying before we return the dentry */
2363         if (pid_revalidate(dentry, 0))
2364                 return 0;
2365 out:
2366         return -ENOENT;
2367 }
2368
2369 static struct dentry *proc_pident_lookup(struct inode *dir, 
2370                                          struct dentry *dentry,
2371                                          const struct pid_entry *ents,
2372                                          unsigned int nents)
2373 {
2374         int error;
2375         struct task_struct *task = get_proc_task(dir);
2376         const struct pid_entry *p, *last;
2377
2378         error = -ENOENT;
2379
2380         if (!task)
2381                 goto out_no_task;
2382
2383         /*
2384          * Yes, it does not scale. And it should not. Don't add
2385          * new entries into /proc/<tgid>/ without very good reasons.
2386          */
2387         last = &ents[nents - 1];
2388         for (p = ents; p <= last; p++) {
2389                 if (p->len != dentry->d_name.len)
2390                         continue;
2391                 if (!memcmp(dentry->d_name.name, p->name, p->len))
2392                         break;
2393         }
2394         if (p > last)
2395                 goto out;
2396
2397         error = proc_pident_instantiate(dir, dentry, task, p);
2398 out:
2399         put_task_struct(task);
2400 out_no_task:
2401         return ERR_PTR(error);
2402 }
2403
2404 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2405                 const struct pid_entry *ents, unsigned int nents)
2406 {
2407         struct task_struct *task = get_proc_task(file_inode(file));
2408         const struct pid_entry *p;
2409
2410         if (!task)
2411                 return -ENOENT;
2412
2413         if (!dir_emit_dots(file, ctx))
2414                 goto out;
2415
2416         if (ctx->pos >= nents + 2)
2417                 goto out;
2418
2419         for (p = ents + (ctx->pos - 2); p <= ents + nents - 1; p++) {
2420                 if (!proc_fill_cache(file, ctx, p->name, p->len,
2421                                 proc_pident_instantiate, task, p))
2422                         break;
2423                 ctx->pos++;
2424         }
2425 out:
2426         put_task_struct(task);
2427         return 0;
2428 }
2429
2430 #ifdef CONFIG_SECURITY
2431 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2432                                   size_t count, loff_t *ppos)
2433 {
2434         struct inode * inode = file_inode(file);
2435         char *p = NULL;
2436         ssize_t length;
2437         struct task_struct *task = get_proc_task(inode);
2438
2439         if (!task)
2440                 return -ESRCH;
2441
2442         length = security_getprocattr(task,
2443                                       (char*)file->f_path.dentry->d_name.name,
2444                                       &p);
2445         put_task_struct(task);
2446         if (length > 0)
2447                 length = simple_read_from_buffer(buf, count, ppos, p, length);
2448         kfree(p);
2449         return length;
2450 }
2451
2452 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2453                                    size_t count, loff_t *ppos)
2454 {
2455         struct inode * inode = file_inode(file);
2456         void *page;
2457         ssize_t length;
2458         struct task_struct *task = get_proc_task(inode);
2459
2460         length = -ESRCH;
2461         if (!task)
2462                 goto out_no_task;
2463         if (count > PAGE_SIZE)
2464                 count = PAGE_SIZE;
2465
2466         /* No partial writes. */
2467         length = -EINVAL;
2468         if (*ppos != 0)
2469                 goto out;
2470
2471         page = memdup_user(buf, count);
2472         if (IS_ERR(page)) {
2473                 length = PTR_ERR(page);
2474                 goto out;
2475         }
2476
2477         /* Guard against adverse ptrace interaction */
2478         length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2479         if (length < 0)
2480                 goto out_free;
2481
2482         length = security_setprocattr(task,
2483                                       (char*)file->f_path.dentry->d_name.name,
2484                                       page, count);
2485         mutex_unlock(&task->signal->cred_guard_mutex);
2486 out_free:
2487         kfree(page);
2488 out:
2489         put_task_struct(task);
2490 out_no_task:
2491         return length;
2492 }
2493
2494 static const struct file_operations proc_pid_attr_operations = {
2495         .read           = proc_pid_attr_read,
2496         .write          = proc_pid_attr_write,
2497         .llseek         = generic_file_llseek,
2498 };
2499
2500 static const struct pid_entry attr_dir_stuff[] = {
2501         REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2502         REG("prev",       S_IRUGO,         proc_pid_attr_operations),
2503         REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2504         REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2505         REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2506         REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2507 };
2508
2509 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2510 {
2511         return proc_pident_readdir(file, ctx, 
2512                                    attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2513 }
2514
2515 static const struct file_operations proc_attr_dir_operations = {
2516         .read           = generic_read_dir,
2517         .iterate_shared = proc_attr_dir_readdir,
2518         .llseek         = generic_file_llseek,
2519 };
2520
2521 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2522                                 struct dentry *dentry, unsigned int flags)
2523 {
2524         return proc_pident_lookup(dir, dentry,
2525                                   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2526 }
2527
2528 static const struct inode_operations proc_attr_dir_inode_operations = {
2529         .lookup         = proc_attr_dir_lookup,
2530         .getattr        = pid_getattr,
2531         .setattr        = proc_setattr,
2532 };
2533
2534 #endif
2535
2536 #ifdef CONFIG_ELF_CORE
2537 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2538                                          size_t count, loff_t *ppos)
2539 {
2540         struct task_struct *task = get_proc_task(file_inode(file));
2541         struct mm_struct *mm;
2542         char buffer[PROC_NUMBUF];
2543         size_t len;
2544         int ret;
2545
2546         if (!task)
2547                 return -ESRCH;
2548
2549         ret = 0;
2550         mm = get_task_mm(task);
2551         if (mm) {
2552                 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2553                                ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2554                                 MMF_DUMP_FILTER_SHIFT));
2555                 mmput(mm);
2556                 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2557         }
2558
2559         put_task_struct(task);
2560
2561         return ret;
2562 }
2563
2564 static ssize_t proc_coredump_filter_write(struct file *file,
2565                                           const char __user *buf,
2566                                           size_t count,
2567                                           loff_t *ppos)
2568 {
2569         struct task_struct *task;
2570         struct mm_struct *mm;
2571         unsigned int val;
2572         int ret;
2573         int i;
2574         unsigned long mask;
2575
2576         ret = kstrtouint_from_user(buf, count, 0, &val);
2577         if (ret < 0)
2578                 return ret;
2579
2580         ret = -ESRCH;
2581         task = get_proc_task(file_inode(file));
2582         if (!task)
2583                 goto out_no_task;
2584
2585         mm = get_task_mm(task);
2586         if (!mm)
2587                 goto out_no_mm;
2588         ret = 0;
2589
2590         for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2591                 if (val & mask)
2592                         set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2593                 else
2594                         clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2595         }
2596
2597         mmput(mm);
2598  out_no_mm:
2599         put_task_struct(task);
2600  out_no_task:
2601         if (ret < 0)
2602                 return ret;
2603         return count;
2604 }
2605
2606 static const struct file_operations proc_coredump_filter_operations = {
2607         .read           = proc_coredump_filter_read,
2608         .write          = proc_coredump_filter_write,
2609         .llseek         = generic_file_llseek,
2610 };
2611 #endif
2612
2613 #ifdef CONFIG_TASK_IO_ACCOUNTING
2614 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2615 {
2616         struct task_io_accounting acct = task->ioac;
2617         unsigned long flags;
2618         int result;
2619
2620         result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2621         if (result)
2622                 return result;
2623
2624         if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2625                 result = -EACCES;
2626                 goto out_unlock;
2627         }
2628
2629         if (whole && lock_task_sighand(task, &flags)) {
2630                 struct task_struct *t = task;
2631
2632                 task_io_accounting_add(&acct, &task->signal->ioac);
2633                 while_each_thread(task, t)
2634                         task_io_accounting_add(&acct, &t->ioac);
2635
2636                 unlock_task_sighand(task, &flags);
2637         }
2638         seq_printf(m,
2639                    "rchar: %llu\n"
2640                    "wchar: %llu\n"
2641                    "syscr: %llu\n"
2642                    "syscw: %llu\n"
2643                    "read_bytes: %llu\n"
2644                    "write_bytes: %llu\n"
2645                    "cancelled_write_bytes: %llu\n",
2646                    (unsigned long long)acct.rchar,
2647                    (unsigned long long)acct.wchar,
2648                    (unsigned long long)acct.syscr,
2649                    (unsigned long long)acct.syscw,
2650                    (unsigned long long)acct.read_bytes,
2651                    (unsigned long long)acct.write_bytes,
2652                    (unsigned long long)acct.cancelled_write_bytes);
2653         result = 0;
2654
2655 out_unlock:
2656         mutex_unlock(&task->signal->cred_guard_mutex);
2657         return result;
2658 }
2659
2660 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2661                                   struct pid *pid, struct task_struct *task)
2662 {
2663         return do_io_accounting(task, m, 0);
2664 }
2665
2666 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2667                                    struct pid *pid, struct task_struct *task)
2668 {
2669         return do_io_accounting(task, m, 1);
2670 }
2671 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2672
2673 #ifdef CONFIG_USER_NS
2674 static int proc_id_map_open(struct inode *inode, struct file *file,
2675         const struct seq_operations *seq_ops)
2676 {
2677         struct user_namespace *ns = NULL;
2678         struct task_struct *task;
2679         struct seq_file *seq;
2680         int ret = -EINVAL;
2681
2682         task = get_proc_task(inode);
2683         if (task) {
2684                 rcu_read_lock();
2685                 ns = get_user_ns(task_cred_xxx(task, user_ns));
2686                 rcu_read_unlock();
2687                 put_task_struct(task);
2688         }
2689         if (!ns)
2690                 goto err;
2691
2692         ret = seq_open(file, seq_ops);
2693         if (ret)
2694                 goto err_put_ns;
2695
2696         seq = file->private_data;
2697         seq->private = ns;
2698
2699         return 0;
2700 err_put_ns:
2701         put_user_ns(ns);
2702 err:
2703         return ret;
2704 }
2705
2706 static int proc_id_map_release(struct inode *inode, struct file *file)
2707 {
2708         struct seq_file *seq = file->private_data;
2709         struct user_namespace *ns = seq->private;
2710         put_user_ns(ns);
2711         return seq_release(inode, file);
2712 }
2713
2714 static int proc_uid_map_open(struct inode *inode, struct file *file)
2715 {
2716         return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2717 }
2718
2719 static int proc_gid_map_open(struct inode *inode, struct file *file)
2720 {
2721         return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2722 }
2723
2724 static int proc_projid_map_open(struct inode *inode, struct file *file)
2725 {
2726         return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2727 }
2728
2729 static const struct file_operations proc_uid_map_operations = {
2730         .open           = proc_uid_map_open,
2731         .write          = proc_uid_map_write,
2732         .read           = seq_read,
2733         .llseek         = seq_lseek,
2734         .release        = proc_id_map_release,
2735 };
2736
2737 static const struct file_operations proc_gid_map_operations = {
2738         .open           = proc_gid_map_open,
2739         .write          = proc_gid_map_write,
2740         .read           = seq_read,
2741         .llseek         = seq_lseek,
2742         .release        = proc_id_map_release,
2743 };
2744
2745 static const struct file_operations proc_projid_map_operations = {
2746         .open           = proc_projid_map_open,
2747         .write          = proc_projid_map_write,
2748         .read           = seq_read,
2749         .llseek         = seq_lseek,
2750         .release        = proc_id_map_release,
2751 };
2752
2753 static int proc_setgroups_open(struct inode *inode, struct file *file)
2754 {
2755         struct user_namespace *ns = NULL;
2756         struct task_struct *task;
2757         int ret;
2758
2759         ret = -ESRCH;
2760         task = get_proc_task(inode);
2761         if (task) {
2762                 rcu_read_lock();
2763                 ns = get_user_ns(task_cred_xxx(task, user_ns));
2764                 rcu_read_unlock();
2765                 put_task_struct(task);
2766         }
2767         if (!ns)
2768                 goto err;
2769
2770         if (file->f_mode & FMODE_WRITE) {
2771                 ret = -EACCES;
2772                 if (!ns_capable(ns, CAP_SYS_ADMIN))
2773                         goto err_put_ns;
2774         }
2775
2776         ret = single_open(file, &proc_setgroups_show, ns);
2777         if (ret)
2778                 goto err_put_ns;
2779
2780         return 0;
2781 err_put_ns:
2782         put_user_ns(ns);
2783 err:
2784         return ret;
2785 }
2786
2787 static int proc_setgroups_release(struct inode *inode, struct file *file)
2788 {
2789         struct seq_file *seq = file->private_data;
2790         struct user_namespace *ns = seq->private;
2791         int ret = single_release(inode, file);
2792         put_user_ns(ns);
2793         return ret;
2794 }
2795
2796 static const struct file_operations proc_setgroups_operations = {
2797         .open           = proc_setgroups_open,
2798         .write          = proc_setgroups_write,
2799         .read           = seq_read,
2800         .llseek         = seq_lseek,
2801         .release        = proc_setgroups_release,
2802 };
2803 #endif /* CONFIG_USER_NS */
2804
2805 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2806                                 struct pid *pid, struct task_struct *task)
2807 {
2808         int err = lock_trace(task);
2809         if (!err) {
2810                 seq_printf(m, "%08x\n", task->personality);
2811                 unlock_trace(task);
2812         }
2813         return err;
2814 }
2815
2816 /*
2817  * Thread groups
2818  */
2819 static const struct file_operations proc_task_operations;
2820 static const struct inode_operations proc_task_inode_operations;
2821
2822 static const struct pid_entry tgid_base_stuff[] = {
2823         DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2824         DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2825         DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2826         DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2827         DIR("ns",         S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2828 #ifdef CONFIG_NET
2829         DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2830 #endif
2831         REG("environ",    S_IRUSR, proc_environ_operations),
2832         REG("auxv",       S_IRUSR, proc_auxv_operations),
2833         ONE("status",     S_IRUGO, proc_pid_status),
2834         ONE("personality", S_IRUSR, proc_pid_personality),
2835         ONE("limits",     S_IRUGO, proc_pid_limits),
2836 #ifdef CONFIG_SCHED_DEBUG
2837         REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2838 #endif
2839 #ifdef CONFIG_SCHED_AUTOGROUP
2840         REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2841 #endif
2842         REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2843 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2844         ONE("syscall",    S_IRUSR, proc_pid_syscall),
2845 #endif
2846         REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
2847         ONE("stat",       S_IRUGO, proc_tgid_stat),
2848         ONE("statm",      S_IRUGO, proc_pid_statm),
2849         REG("maps",       S_IRUGO, proc_pid_maps_operations),
2850 #ifdef CONFIG_NUMA
2851         REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
2852 #endif
2853         REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2854         LNK("cwd",        proc_cwd_link),
2855         LNK("root",       proc_root_link),
2856         LNK("exe",        proc_exe_link),
2857         REG("mounts",     S_IRUGO, proc_mounts_operations),
2858         REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2859         REG("mountstats", S_IRUSR, proc_mountstats_operations),
2860 #ifdef CONFIG_PROC_PAGE_MONITOR
2861         REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2862         REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
2863         REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2864 #endif
2865 #ifdef CONFIG_SECURITY
2866         DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2867 #endif
2868 #ifdef CONFIG_KALLSYMS
2869         ONE("wchan",      S_IRUGO, proc_pid_wchan),
2870 #endif
2871 #ifdef CONFIG_STACKTRACE
2872         ONE("stack",      S_IRUSR, proc_pid_stack),
2873 #endif
2874 #ifdef CONFIG_SCHED_INFO
2875         ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
2876 #endif
2877 #ifdef CONFIG_LATENCYTOP
2878         REG("latency",  S_IRUGO, proc_lstats_operations),
2879 #endif
2880 #ifdef CONFIG_PROC_PID_CPUSET
2881         ONE("cpuset",     S_IRUGO, proc_cpuset_show),
2882 #endif
2883 #ifdef CONFIG_CGROUPS
2884         ONE("cgroup",  S_IRUGO, proc_cgroup_show),
2885 #endif
2886         ONE("oom_score",  S_IRUGO, proc_oom_score),
2887         REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2888         REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2889 #ifdef CONFIG_AUDITSYSCALL
2890         REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2891         REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2892 #endif
2893 #ifdef CONFIG_FAULT_INJECTION
2894         REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2895 #endif
2896 #ifdef CONFIG_ELF_CORE
2897         REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2898 #endif
2899 #ifdef CONFIG_TASK_IO_ACCOUNTING
2900         ONE("io",       S_IRUSR, proc_tgid_io_accounting),
2901 #endif
2902 #ifdef CONFIG_HARDWALL
2903         ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
2904 #endif
2905 #ifdef CONFIG_USER_NS
2906         REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
2907         REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
2908         REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2909         REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
2910 #endif
2911 #ifdef CONFIG_CHECKPOINT_RESTORE
2912         REG("timers",     S_IRUGO, proc_timers_operations),
2913 #endif
2914         REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
2915 };
2916
2917 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
2918 {
2919         return proc_pident_readdir(file, ctx,
2920                                    tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2921 }
2922
2923 static const struct file_operations proc_tgid_base_operations = {
2924         .read           = generic_read_dir,
2925         .iterate_shared = proc_tgid_base_readdir,
2926         .llseek         = generic_file_llseek,
2927 };
2928
2929 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2930 {
2931         return proc_pident_lookup(dir, dentry,
2932                                   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2933 }
2934
2935 static const struct inode_operations proc_tgid_base_inode_operations = {
2936         .lookup         = proc_tgid_base_lookup,
2937         .getattr        = pid_getattr,
2938         .setattr        = proc_setattr,
2939         .permission     = proc_pid_permission,
2940 };
2941
2942 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2943 {
2944         struct dentry *dentry, *leader, *dir;
2945         char buf[PROC_NUMBUF];
2946         struct qstr name;
2947
2948         name.name = buf;
2949         name.len = snprintf(buf, sizeof(buf), "%d", pid);
2950         /* no ->d_hash() rejects on procfs */
2951         dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2952         if (dentry) {
2953                 d_invalidate(dentry);
2954                 dput(dentry);
2955         }
2956
2957         if (pid == tgid)
2958                 return;
2959
2960         name.name = buf;
2961         name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2962         leader = d_hash_and_lookup(mnt->mnt_root, &name);
2963         if (!leader)
2964                 goto out;
2965
2966         name.name = "task";
2967         name.len = strlen(name.name);
2968         dir = d_hash_and_lookup(leader, &name);
2969         if (!dir)
2970                 goto out_put_leader;
2971
2972         name.name = buf;
2973         name.len = snprintf(buf, sizeof(buf), "%d", pid);
2974         dentry = d_hash_and_lookup(dir, &name);
2975         if (dentry) {
2976                 d_invalidate(dentry);
2977                 dput(dentry);
2978         }
2979
2980         dput(dir);
2981 out_put_leader:
2982         dput(leader);
2983 out:
2984         return;
2985 }
2986
2987 /**
2988  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2989  * @task: task that should be flushed.
2990  *
2991  * When flushing dentries from proc, one needs to flush them from global
2992  * proc (proc_mnt) and from all the namespaces' procs this task was seen
2993  * in. This call is supposed to do all of this job.
2994  *
2995  * Looks in the dcache for
2996  * /proc/@pid
2997  * /proc/@tgid/task/@pid
2998  * if either directory is present flushes it and all of it'ts children
2999  * from the dcache.
3000  *
3001  * It is safe and reasonable to cache /proc entries for a task until
3002  * that task exits.  After that they just clog up the dcache with
3003  * useless entries, possibly causing useful dcache entries to be
3004  * flushed instead.  This routine is proved to flush those useless
3005  * dcache entries at process exit time.
3006  *
3007  * NOTE: This routine is just an optimization so it does not guarantee
3008  *       that no dcache entries will exist at process exit time it
3009  *       just makes it very unlikely that any will persist.
3010  */
3011
3012 void proc_flush_task(struct task_struct *task)
3013 {
3014         int i;
3015         struct pid *pid, *tgid;
3016         struct upid *upid;
3017
3018         pid = task_pid(task);
3019         tgid = task_tgid(task);
3020
3021         for (i = 0; i <= pid->level; i++) {
3022                 upid = &pid->numbers[i];
3023                 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3024                                         tgid->numbers[i].nr);
3025         }
3026 }
3027
3028 static int proc_pid_instantiate(struct inode *dir,
3029                                    struct dentry * dentry,
3030                                    struct task_struct *task, const void *ptr)
3031 {
3032         struct inode *inode;
3033
3034         inode = proc_pid_make_inode(dir->i_sb, task);
3035         if (!inode)
3036                 goto out;
3037
3038         inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3039         inode->i_op = &proc_tgid_base_inode_operations;
3040         inode->i_fop = &proc_tgid_base_operations;
3041         inode->i_flags|=S_IMMUTABLE;
3042
3043         set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
3044                                                   ARRAY_SIZE(tgid_base_stuff)));
3045
3046         d_set_d_op(dentry, &pid_dentry_operations);
3047
3048         d_add(dentry, inode);
3049         /* Close the race of the process dying before we return the dentry */
3050         if (pid_revalidate(dentry, 0))
3051                 return 0;
3052 out:
3053         return -ENOENT;
3054 }
3055
3056 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3057 {
3058         int result = -ENOENT;
3059         struct task_struct *task;
3060         unsigned tgid;
3061         struct pid_namespace *ns;
3062
3063         tgid = name_to_int(&dentry->d_name);
3064         if (tgid == ~0U)
3065                 goto out;
3066
3067         ns = dentry->d_sb->s_fs_info;
3068         rcu_read_lock();
3069         task = find_task_by_pid_ns(tgid, ns);
3070         if (task)
3071                 get_task_struct(task);
3072         rcu_read_unlock();
3073         if (!task)
3074                 goto out;
3075
3076         result = proc_pid_instantiate(dir, dentry, task, NULL);
3077         put_task_struct(task);
3078 out:
3079         return ERR_PTR(result);
3080 }
3081
3082 /*
3083  * Find the first task with tgid >= tgid
3084  *
3085  */
3086 struct tgid_iter {
3087         unsigned int tgid;
3088         struct task_struct *task;
3089 };
3090 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3091 {
3092         struct pid *pid;
3093
3094         if (iter.task)
3095                 put_task_struct(iter.task);
3096         rcu_read_lock();
3097 retry:
3098         iter.task = NULL;
3099         pid = find_ge_pid(iter.tgid, ns);
3100         if (pid) {
3101                 iter.tgid = pid_nr_ns(pid, ns);
3102                 iter.task = pid_task(pid, PIDTYPE_PID);
3103                 /* What we to know is if the pid we have find is the
3104                  * pid of a thread_group_leader.  Testing for task
3105                  * being a thread_group_leader is the obvious thing
3106                  * todo but there is a window when it fails, due to
3107                  * the pid transfer logic in de_thread.
3108                  *
3109                  * So we perform the straight forward test of seeing
3110                  * if the pid we have found is the pid of a thread
3111                  * group leader, and don't worry if the task we have
3112                  * found doesn't happen to be a thread group leader.
3113                  * As we don't care in the case of readdir.
3114                  */
3115                 if (!iter.task || !has_group_leader_pid(iter.task)) {
3116                         iter.tgid += 1;
3117                         goto retry;
3118                 }
3119                 get_task_struct(iter.task);
3120         }
3121         rcu_read_unlock();
3122         return iter;
3123 }
3124
3125 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3126
3127 /* for the /proc/ directory itself, after non-process stuff has been done */
3128 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3129 {
3130         struct tgid_iter iter;
3131         struct pid_namespace *ns = file_inode(file)->i_sb->s_fs_info;
3132         loff_t pos = ctx->pos;
3133
3134         if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3135                 return 0;
3136
3137         if (pos == TGID_OFFSET - 2) {
3138                 struct inode *inode = d_inode(ns->proc_self);
3139                 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3140                         return 0;
3141                 ctx->pos = pos = pos + 1;
3142         }
3143         if (pos == TGID_OFFSET - 1) {
3144                 struct inode *inode = d_inode(ns->proc_thread_self);
3145                 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3146                         return 0;
3147                 ctx->pos = pos = pos + 1;
3148         }
3149         iter.tgid = pos - TGID_OFFSET;
3150         iter.task = NULL;
3151         for (iter = next_tgid(ns, iter);
3152              iter.task;
3153              iter.tgid += 1, iter = next_tgid(ns, iter)) {
3154                 char name[PROC_NUMBUF];
3155                 int len;
3156                 if (!has_pid_permissions(ns, iter.task, 2))
3157                         continue;
3158
3159                 len = snprintf(name, sizeof(name), "%d", iter.tgid);
3160                 ctx->pos = iter.tgid + TGID_OFFSET;
3161                 if (!proc_fill_cache(file, ctx, name, len,
3162                                      proc_pid_instantiate, iter.task, NULL)) {
3163                         put_task_struct(iter.task);
3164                         return 0;
3165                 }
3166         }
3167         ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3168         return 0;
3169 }
3170
3171 /*
3172  * proc_tid_comm_permission is a special permission function exclusively
3173  * used for the node /proc/<pid>/task/<tid>/comm.
3174  * It bypasses generic permission checks in the case where a task of the same
3175  * task group attempts to access the node.
3176  * The rationale behind this is that glibc and bionic access this node for
3177  * cross thread naming (pthread_set/getname_np(!self)). However, if
3178  * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3179  * which locks out the cross thread naming implementation.
3180  * This function makes sure that the node is always accessible for members of
3181  * same thread group.
3182  */
3183 static int proc_tid_comm_permission(struct inode *inode, int mask)
3184 {
3185         bool is_same_tgroup;
3186         struct task_struct *task;
3187
3188         task = get_proc_task(inode);
3189         if (!task)
3190                 return -ESRCH;
3191         is_same_tgroup = same_thread_group(current, task);
3192         put_task_struct(task);
3193
3194         if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3195                 /* This file (/proc/<pid>/task/<tid>/comm) can always be
3196                  * read or written by the members of the corresponding
3197                  * thread group.
3198                  */
3199                 return 0;
3200         }
3201
3202         return generic_permission(inode, mask);
3203 }
3204
3205 static const struct inode_operations proc_tid_comm_inode_operations = {
3206                 .permission = proc_tid_comm_permission,
3207 };
3208
3209 /*
3210  * Tasks
3211  */
3212 static const struct pid_entry tid_base_stuff[] = {
3213         DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3214         DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3215         DIR("ns",        S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3216 #ifdef CONFIG_NET
3217         DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3218 #endif
3219         REG("environ",   S_IRUSR, proc_environ_operations),
3220         REG("auxv",      S_IRUSR, proc_auxv_operations),
3221         ONE("status",    S_IRUGO, proc_pid_status),
3222         ONE("personality", S_IRUSR, proc_pid_personality),
3223         ONE("limits",    S_IRUGO, proc_pid_limits),
3224 #ifdef CONFIG_SCHED_DEBUG
3225         REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3226 #endif
3227         NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3228                          &proc_tid_comm_inode_operations,
3229                          &proc_pid_set_comm_operations, {}),
3230 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3231         ONE("syscall",   S_IRUSR, proc_pid_syscall),
3232 #endif
3233         REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3234         ONE("stat",      S_IRUGO, proc_tid_stat),
3235         ONE("statm",     S_IRUGO, proc_pid_statm),
3236         REG("maps",      S_IRUGO, proc_tid_maps_operations),
3237 #ifdef CONFIG_PROC_CHILDREN
3238         REG("children",  S_IRUGO, proc_tid_children_operations),
3239 #endif
3240 #ifdef CONFIG_NUMA
3241         REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3242 #endif
3243         REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3244         LNK("cwd",       proc_cwd_link),
3245         LNK("root",      proc_root_link),
3246         LNK("exe",       proc_exe_link),
3247         REG("mounts",    S_IRUGO, proc_mounts_operations),
3248         REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3249 #ifdef CONFIG_PROC_PAGE_MONITOR
3250         REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3251         REG("smaps",     S_IRUGO, proc_tid_smaps_operations),
3252         REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3253 #endif
3254 #ifdef CONFIG_SECURITY
3255         DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3256 #endif
3257 #ifdef CONFIG_KALLSYMS
3258         ONE("wchan",     S_IRUGO, proc_pid_wchan),
3259 #endif
3260 #ifdef CONFIG_STACKTRACE
3261         ONE("stack",      S_IRUSR, proc_pid_stack),
3262 #endif
3263 #ifdef CONFIG_SCHED_INFO
3264         ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3265 #endif
3266 #ifdef CONFIG_LATENCYTOP
3267         REG("latency",  S_IRUGO, proc_lstats_operations),
3268 #endif
3269 #ifdef CONFIG_PROC_PID_CPUSET
3270         ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3271 #endif
3272 #ifdef CONFIG_CGROUPS
3273         ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3274 #endif
3275         ONE("oom_score", S_IRUGO, proc_oom_score),
3276         REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3277         REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3278 #ifdef CONFIG_AUDITSYSCALL
3279         REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3280         REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3281 #endif
3282 #ifdef CONFIG_FAULT_INJECTION
3283         REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3284 #endif
3285 #ifdef CONFIG_TASK_IO_ACCOUNTING
3286         ONE("io",       S_IRUSR, proc_tid_io_accounting),
3287 #endif
3288 #ifdef CONFIG_HARDWALL
3289         ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
3290 #endif
3291 #ifdef CONFIG_USER_NS
3292         REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3293         REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3294         REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3295         REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3296 #endif
3297 };
3298
3299 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3300 {
3301         return proc_pident_readdir(file, ctx,
3302                                    tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3303 }
3304
3305 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3306 {
3307         return proc_pident_lookup(dir, dentry,
3308                                   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3309 }
3310
3311 static const struct file_operations proc_tid_base_operations = {
3312         .read           = generic_read_dir,
3313         .iterate_shared = proc_tid_base_readdir,
3314         .llseek         = generic_file_llseek,
3315 };
3316
3317 static const struct inode_operations proc_tid_base_inode_operations = {
3318         .lookup         = proc_tid_base_lookup,
3319         .getattr        = pid_getattr,
3320         .setattr        = proc_setattr,
3321 };
3322
3323 static int proc_task_instantiate(struct inode *dir,
3324         struct dentry *dentry, struct task_struct *task, const void *ptr)
3325 {
3326         struct inode *inode;
3327         inode = proc_pid_make_inode(dir->i_sb, task);
3328
3329         if (!inode)
3330                 goto out;
3331         inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3332         inode->i_op = &proc_tid_base_inode_operations;
3333         inode->i_fop = &proc_tid_base_operations;
3334         inode->i_flags|=S_IMMUTABLE;
3335
3336         set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
3337                                                   ARRAY_SIZE(tid_base_stuff)));
3338
3339         d_set_d_op(dentry, &pid_dentry_operations);
3340
3341         d_add(dentry, inode);
3342         /* Close the race of the process dying before we return the dentry */
3343         if (pid_revalidate(dentry, 0))
3344                 return 0;
3345 out:
3346         return -ENOENT;
3347 }
3348
3349 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3350 {
3351         int result = -ENOENT;
3352         struct task_struct *task;
3353         struct task_struct *leader = get_proc_task(dir);
3354         unsigned tid;
3355         struct pid_namespace *ns;
3356
3357         if (!leader)
3358                 goto out_no_task;
3359
3360         tid = name_to_int(&dentry->d_name);
3361         if (tid == ~0U)
3362                 goto out;
3363
3364         ns = dentry->d_sb->s_fs_info;
3365         rcu_read_lock();
3366         task = find_task_by_pid_ns(tid, ns);
3367         if (task)
3368                 get_task_struct(task);
3369         rcu_read_unlock();
3370         if (!task)
3371                 goto out;
3372         if (!same_thread_group(leader, task))
3373                 goto out_drop_task;
3374
3375         result = proc_task_instantiate(dir, dentry, task, NULL);
3376 out_drop_task:
3377         put_task_struct(task);
3378 out:
3379         put_task_struct(leader);
3380 out_no_task:
3381         return ERR_PTR(result);
3382 }
3383
3384 /*
3385  * Find the first tid of a thread group to return to user space.
3386  *
3387  * Usually this is just the thread group leader, but if the users
3388  * buffer was too small or there was a seek into the middle of the
3389  * directory we have more work todo.
3390  *
3391  * In the case of a short read we start with find_task_by_pid.
3392  *
3393  * In the case of a seek we start with the leader and walk nr
3394  * threads past it.
3395  */
3396 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3397                                         struct pid_namespace *ns)
3398 {
3399         struct task_struct *pos, *task;
3400         unsigned long nr = f_pos;
3401
3402         if (nr != f_pos)        /* 32bit overflow? */
3403                 return NULL;
3404
3405         rcu_read_lock();
3406         task = pid_task(pid, PIDTYPE_PID);
3407         if (!task)
3408                 goto fail;
3409
3410         /* Attempt to start with the tid of a thread */
3411         if (tid && nr) {
3412                 pos = find_task_by_pid_ns(tid, ns);
3413                 if (pos && same_thread_group(pos, task))
3414                         goto found;
3415         }
3416
3417         /* If nr exceeds the number of threads there is nothing todo */
3418         if (nr >= get_nr_threads(task))
3419                 goto fail;
3420
3421         /* If we haven't found our starting place yet start
3422          * with the leader and walk nr threads forward.
3423          */
3424         pos = task = task->group_leader;
3425         do {
3426                 if (!nr--)
3427                         goto found;
3428         } while_each_thread(task, pos);
3429 fail:
3430         pos = NULL;
3431         goto out;
3432 found:
3433         get_task_struct(pos);
3434 out:
3435         rcu_read_unlock();
3436         return pos;
3437 }
3438
3439 /*
3440  * Find the next thread in the thread list.
3441  * Return NULL if there is an error or no next thread.
3442  *
3443  * The reference to the input task_struct is released.
3444  */
3445 static struct task_struct *next_tid(struct task_struct *start)
3446 {
3447         struct task_struct *pos = NULL;
3448         rcu_read_lock();
3449         if (pid_alive(start)) {
3450                 pos = next_thread(start);
3451                 if (thread_group_leader(pos))
3452                         pos = NULL;
3453                 else
3454                         get_task_struct(pos);
3455         }
3456         rcu_read_unlock();
3457         put_task_struct(start);
3458         return pos;
3459 }
3460
3461 /* for the /proc/TGID/task/ directories */
3462 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3463 {
3464         struct inode *inode = file_inode(file);
3465         struct task_struct *task;
3466         struct pid_namespace *ns;
3467         int tid;
3468
3469         if (proc_inode_is_dead(inode))
3470                 return -ENOENT;
3471
3472         if (!dir_emit_dots(file, ctx))
3473                 return 0;
3474
3475         /* f_version caches the tgid value that the last readdir call couldn't
3476          * return. lseek aka telldir automagically resets f_version to 0.
3477          */
3478         ns = inode->i_sb->s_fs_info;
3479         tid = (int)file->f_version;
3480         file->f_version = 0;
3481         for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3482              task;
3483              task = next_tid(task), ctx->pos++) {
3484                 char name[PROC_NUMBUF];
3485                 int len;
3486                 tid = task_pid_nr_ns(task, ns);
3487                 len = snprintf(name, sizeof(name), "%d", tid);
3488                 if (!proc_fill_cache(file, ctx, name, len,
3489                                 proc_task_instantiate, task, NULL)) {
3490                         /* returning this tgid failed, save it as the first
3491                          * pid for the next readir call */
3492                         file->f_version = (u64)tid;
3493                         put_task_struct(task);
3494                         break;
3495                 }
3496         }
3497
3498         return 0;
3499 }
3500
3501 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3502 {
3503         struct inode *inode = d_inode(dentry);
3504         struct task_struct *p = get_proc_task(inode);
3505         generic_fillattr(inode, stat);
3506
3507         if (p) {
3508                 stat->nlink += get_nr_threads(p);
3509                 put_task_struct(p);
3510         }
3511
3512         return 0;
3513 }
3514
3515 static const struct inode_operations proc_task_inode_operations = {
3516         .lookup         = proc_task_lookup,
3517         .getattr        = proc_task_getattr,
3518         .setattr        = proc_setattr,
3519         .permission     = proc_pid_permission,
3520 };
3521
3522 static const struct file_operations proc_task_operations = {
3523         .read           = generic_read_dir,
3524         .iterate_shared = proc_task_readdir,
3525         .llseek         = generic_file_llseek,
3526 };