Linux 6.9-rc4
[sfrench/cifs-2.6.git] / fs / ocfs2 / aops.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/highmem.h>
9 #include <linux/pagemap.h>
10 #include <asm/byteorder.h>
11 #include <linux/swap.h>
12 #include <linux/mpage.h>
13 #include <linux/quotaops.h>
14 #include <linux/blkdev.h>
15 #include <linux/uio.h>
16 #include <linux/mm.h>
17
18 #include <cluster/masklog.h>
19
20 #include "ocfs2.h"
21
22 #include "alloc.h"
23 #include "aops.h"
24 #include "dlmglue.h"
25 #include "extent_map.h"
26 #include "file.h"
27 #include "inode.h"
28 #include "journal.h"
29 #include "suballoc.h"
30 #include "super.h"
31 #include "symlink.h"
32 #include "refcounttree.h"
33 #include "ocfs2_trace.h"
34
35 #include "buffer_head_io.h"
36 #include "dir.h"
37 #include "namei.h"
38 #include "sysfile.h"
39
40 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
41                                    struct buffer_head *bh_result, int create)
42 {
43         int err = -EIO;
44         int status;
45         struct ocfs2_dinode *fe = NULL;
46         struct buffer_head *bh = NULL;
47         struct buffer_head *buffer_cache_bh = NULL;
48         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
49         void *kaddr;
50
51         trace_ocfs2_symlink_get_block(
52                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
53                         (unsigned long long)iblock, bh_result, create);
54
55         BUG_ON(ocfs2_inode_is_fast_symlink(inode));
56
57         if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
58                 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
59                      (unsigned long long)iblock);
60                 goto bail;
61         }
62
63         status = ocfs2_read_inode_block(inode, &bh);
64         if (status < 0) {
65                 mlog_errno(status);
66                 goto bail;
67         }
68         fe = (struct ocfs2_dinode *) bh->b_data;
69
70         if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
71                                                     le32_to_cpu(fe->i_clusters))) {
72                 err = -ENOMEM;
73                 mlog(ML_ERROR, "block offset is outside the allocated size: "
74                      "%llu\n", (unsigned long long)iblock);
75                 goto bail;
76         }
77
78         /* We don't use the page cache to create symlink data, so if
79          * need be, copy it over from the buffer cache. */
80         if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
81                 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
82                             iblock;
83                 buffer_cache_bh = sb_getblk(osb->sb, blkno);
84                 if (!buffer_cache_bh) {
85                         err = -ENOMEM;
86                         mlog(ML_ERROR, "couldn't getblock for symlink!\n");
87                         goto bail;
88                 }
89
90                 /* we haven't locked out transactions, so a commit
91                  * could've happened. Since we've got a reference on
92                  * the bh, even if it commits while we're doing the
93                  * copy, the data is still good. */
94                 if (buffer_jbd(buffer_cache_bh)
95                     && ocfs2_inode_is_new(inode)) {
96                         kaddr = kmap_atomic(bh_result->b_page);
97                         if (!kaddr) {
98                                 mlog(ML_ERROR, "couldn't kmap!\n");
99                                 goto bail;
100                         }
101                         memcpy(kaddr + (bh_result->b_size * iblock),
102                                buffer_cache_bh->b_data,
103                                bh_result->b_size);
104                         kunmap_atomic(kaddr);
105                         set_buffer_uptodate(bh_result);
106                 }
107                 brelse(buffer_cache_bh);
108         }
109
110         map_bh(bh_result, inode->i_sb,
111                le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
112
113         err = 0;
114
115 bail:
116         brelse(bh);
117
118         return err;
119 }
120
121 static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock,
122                     struct buffer_head *bh_result, int create)
123 {
124         int ret = 0;
125         struct ocfs2_inode_info *oi = OCFS2_I(inode);
126
127         down_read(&oi->ip_alloc_sem);
128         ret = ocfs2_get_block(inode, iblock, bh_result, create);
129         up_read(&oi->ip_alloc_sem);
130
131         return ret;
132 }
133
134 int ocfs2_get_block(struct inode *inode, sector_t iblock,
135                     struct buffer_head *bh_result, int create)
136 {
137         int err = 0;
138         unsigned int ext_flags;
139         u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
140         u64 p_blkno, count, past_eof;
141         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
142
143         trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
144                               (unsigned long long)iblock, bh_result, create);
145
146         if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
147                 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
148                      inode, inode->i_ino);
149
150         if (S_ISLNK(inode->i_mode)) {
151                 /* this always does I/O for some reason. */
152                 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
153                 goto bail;
154         }
155
156         err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
157                                           &ext_flags);
158         if (err) {
159                 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
160                      "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
161                      (unsigned long long)p_blkno);
162                 goto bail;
163         }
164
165         if (max_blocks < count)
166                 count = max_blocks;
167
168         /*
169          * ocfs2 never allocates in this function - the only time we
170          * need to use BH_New is when we're extending i_size on a file
171          * system which doesn't support holes, in which case BH_New
172          * allows __block_write_begin() to zero.
173          *
174          * If we see this on a sparse file system, then a truncate has
175          * raced us and removed the cluster. In this case, we clear
176          * the buffers dirty and uptodate bits and let the buffer code
177          * ignore it as a hole.
178          */
179         if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
180                 clear_buffer_dirty(bh_result);
181                 clear_buffer_uptodate(bh_result);
182                 goto bail;
183         }
184
185         /* Treat the unwritten extent as a hole for zeroing purposes. */
186         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
187                 map_bh(bh_result, inode->i_sb, p_blkno);
188
189         bh_result->b_size = count << inode->i_blkbits;
190
191         if (!ocfs2_sparse_alloc(osb)) {
192                 if (p_blkno == 0) {
193                         err = -EIO;
194                         mlog(ML_ERROR,
195                              "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
196                              (unsigned long long)iblock,
197                              (unsigned long long)p_blkno,
198                              (unsigned long long)OCFS2_I(inode)->ip_blkno);
199                         mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
200                         dump_stack();
201                         goto bail;
202                 }
203         }
204
205         past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
206
207         trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
208                                   (unsigned long long)past_eof);
209         if (create && (iblock >= past_eof))
210                 set_buffer_new(bh_result);
211
212 bail:
213         if (err < 0)
214                 err = -EIO;
215
216         return err;
217 }
218
219 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
220                            struct buffer_head *di_bh)
221 {
222         void *kaddr;
223         loff_t size;
224         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
225
226         if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
227                 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
228                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
229                 return -EROFS;
230         }
231
232         size = i_size_read(inode);
233
234         if (size > PAGE_SIZE ||
235             size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
236                 ocfs2_error(inode->i_sb,
237                             "Inode %llu has with inline data has bad size: %Lu\n",
238                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
239                             (unsigned long long)size);
240                 return -EROFS;
241         }
242
243         kaddr = kmap_atomic(page);
244         if (size)
245                 memcpy(kaddr, di->id2.i_data.id_data, size);
246         /* Clear the remaining part of the page */
247         memset(kaddr + size, 0, PAGE_SIZE - size);
248         flush_dcache_page(page);
249         kunmap_atomic(kaddr);
250
251         SetPageUptodate(page);
252
253         return 0;
254 }
255
256 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
257 {
258         int ret;
259         struct buffer_head *di_bh = NULL;
260
261         BUG_ON(!PageLocked(page));
262         BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
263
264         ret = ocfs2_read_inode_block(inode, &di_bh);
265         if (ret) {
266                 mlog_errno(ret);
267                 goto out;
268         }
269
270         ret = ocfs2_read_inline_data(inode, page, di_bh);
271 out:
272         unlock_page(page);
273
274         brelse(di_bh);
275         return ret;
276 }
277
278 static int ocfs2_read_folio(struct file *file, struct folio *folio)
279 {
280         struct inode *inode = folio->mapping->host;
281         struct ocfs2_inode_info *oi = OCFS2_I(inode);
282         loff_t start = folio_pos(folio);
283         int ret, unlock = 1;
284
285         trace_ocfs2_readpage((unsigned long long)oi->ip_blkno, folio->index);
286
287         ret = ocfs2_inode_lock_with_page(inode, NULL, 0, &folio->page);
288         if (ret != 0) {
289                 if (ret == AOP_TRUNCATED_PAGE)
290                         unlock = 0;
291                 mlog_errno(ret);
292                 goto out;
293         }
294
295         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
296                 /*
297                  * Unlock the folio and cycle ip_alloc_sem so that we don't
298                  * busyloop waiting for ip_alloc_sem to unlock
299                  */
300                 ret = AOP_TRUNCATED_PAGE;
301                 folio_unlock(folio);
302                 unlock = 0;
303                 down_read(&oi->ip_alloc_sem);
304                 up_read(&oi->ip_alloc_sem);
305                 goto out_inode_unlock;
306         }
307
308         /*
309          * i_size might have just been updated as we grabed the meta lock.  We
310          * might now be discovering a truncate that hit on another node.
311          * block_read_full_folio->get_block freaks out if it is asked to read
312          * beyond the end of a file, so we check here.  Callers
313          * (generic_file_read, vm_ops->fault) are clever enough to check i_size
314          * and notice that the folio they just read isn't needed.
315          *
316          * XXX sys_readahead() seems to get that wrong?
317          */
318         if (start >= i_size_read(inode)) {
319                 folio_zero_segment(folio, 0, folio_size(folio));
320                 folio_mark_uptodate(folio);
321                 ret = 0;
322                 goto out_alloc;
323         }
324
325         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
326                 ret = ocfs2_readpage_inline(inode, &folio->page);
327         else
328                 ret = block_read_full_folio(folio, ocfs2_get_block);
329         unlock = 0;
330
331 out_alloc:
332         up_read(&oi->ip_alloc_sem);
333 out_inode_unlock:
334         ocfs2_inode_unlock(inode, 0);
335 out:
336         if (unlock)
337                 folio_unlock(folio);
338         return ret;
339 }
340
341 /*
342  * This is used only for read-ahead. Failures or difficult to handle
343  * situations are safe to ignore.
344  *
345  * Right now, we don't bother with BH_Boundary - in-inode extent lists
346  * are quite large (243 extents on 4k blocks), so most inodes don't
347  * grow out to a tree. If need be, detecting boundary extents could
348  * trivially be added in a future version of ocfs2_get_block().
349  */
350 static void ocfs2_readahead(struct readahead_control *rac)
351 {
352         int ret;
353         struct inode *inode = rac->mapping->host;
354         struct ocfs2_inode_info *oi = OCFS2_I(inode);
355
356         /*
357          * Use the nonblocking flag for the dlm code to avoid page
358          * lock inversion, but don't bother with retrying.
359          */
360         ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
361         if (ret)
362                 return;
363
364         if (down_read_trylock(&oi->ip_alloc_sem) == 0)
365                 goto out_unlock;
366
367         /*
368          * Don't bother with inline-data. There isn't anything
369          * to read-ahead in that case anyway...
370          */
371         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
372                 goto out_up;
373
374         /*
375          * Check whether a remote node truncated this file - we just
376          * drop out in that case as it's not worth handling here.
377          */
378         if (readahead_pos(rac) >= i_size_read(inode))
379                 goto out_up;
380
381         mpage_readahead(rac, ocfs2_get_block);
382
383 out_up:
384         up_read(&oi->ip_alloc_sem);
385 out_unlock:
386         ocfs2_inode_unlock(inode, 0);
387 }
388
389 /* Note: Because we don't support holes, our allocation has
390  * already happened (allocation writes zeros to the file data)
391  * so we don't have to worry about ordered writes in
392  * ocfs2_writepages.
393  *
394  * ->writepages is called during the process of invalidating the page cache
395  * during blocked lock processing.  It can't block on any cluster locks
396  * to during block mapping.  It's relying on the fact that the block
397  * mapping can't have disappeared under the dirty pages that it is
398  * being asked to write back.
399  */
400 static int ocfs2_writepages(struct address_space *mapping,
401                 struct writeback_control *wbc)
402 {
403         return mpage_writepages(mapping, wbc, ocfs2_get_block);
404 }
405
406 /* Taken from ext3. We don't necessarily need the full blown
407  * functionality yet, but IMHO it's better to cut and paste the whole
408  * thing so we can avoid introducing our own bugs (and easily pick up
409  * their fixes when they happen) --Mark */
410 int walk_page_buffers(  handle_t *handle,
411                         struct buffer_head *head,
412                         unsigned from,
413                         unsigned to,
414                         int *partial,
415                         int (*fn)(      handle_t *handle,
416                                         struct buffer_head *bh))
417 {
418         struct buffer_head *bh;
419         unsigned block_start, block_end;
420         unsigned blocksize = head->b_size;
421         int err, ret = 0;
422         struct buffer_head *next;
423
424         for (   bh = head, block_start = 0;
425                 ret == 0 && (bh != head || !block_start);
426                 block_start = block_end, bh = next)
427         {
428                 next = bh->b_this_page;
429                 block_end = block_start + blocksize;
430                 if (block_end <= from || block_start >= to) {
431                         if (partial && !buffer_uptodate(bh))
432                                 *partial = 1;
433                         continue;
434                 }
435                 err = (*fn)(handle, bh);
436                 if (!ret)
437                         ret = err;
438         }
439         return ret;
440 }
441
442 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
443 {
444         sector_t status;
445         u64 p_blkno = 0;
446         int err = 0;
447         struct inode *inode = mapping->host;
448
449         trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
450                          (unsigned long long)block);
451
452         /*
453          * The swap code (ab-)uses ->bmap to get a block mapping and then
454          * bypasseÑ• the file system for actual I/O.  We really can't allow
455          * that on refcounted inodes, so we have to skip out here.  And yes,
456          * 0 is the magic code for a bmap error..
457          */
458         if (ocfs2_is_refcount_inode(inode))
459                 return 0;
460
461         /* We don't need to lock journal system files, since they aren't
462          * accessed concurrently from multiple nodes.
463          */
464         if (!INODE_JOURNAL(inode)) {
465                 err = ocfs2_inode_lock(inode, NULL, 0);
466                 if (err) {
467                         if (err != -ENOENT)
468                                 mlog_errno(err);
469                         goto bail;
470                 }
471                 down_read(&OCFS2_I(inode)->ip_alloc_sem);
472         }
473
474         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
475                 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
476                                                   NULL);
477
478         if (!INODE_JOURNAL(inode)) {
479                 up_read(&OCFS2_I(inode)->ip_alloc_sem);
480                 ocfs2_inode_unlock(inode, 0);
481         }
482
483         if (err) {
484                 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
485                      (unsigned long long)block);
486                 mlog_errno(err);
487                 goto bail;
488         }
489
490 bail:
491         status = err ? 0 : p_blkno;
492
493         return status;
494 }
495
496 static bool ocfs2_release_folio(struct folio *folio, gfp_t wait)
497 {
498         if (!folio_buffers(folio))
499                 return false;
500         return try_to_free_buffers(folio);
501 }
502
503 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
504                                             u32 cpos,
505                                             unsigned int *start,
506                                             unsigned int *end)
507 {
508         unsigned int cluster_start = 0, cluster_end = PAGE_SIZE;
509
510         if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) {
511                 unsigned int cpp;
512
513                 cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits);
514
515                 cluster_start = cpos % cpp;
516                 cluster_start = cluster_start << osb->s_clustersize_bits;
517
518                 cluster_end = cluster_start + osb->s_clustersize;
519         }
520
521         BUG_ON(cluster_start > PAGE_SIZE);
522         BUG_ON(cluster_end > PAGE_SIZE);
523
524         if (start)
525                 *start = cluster_start;
526         if (end)
527                 *end = cluster_end;
528 }
529
530 /*
531  * 'from' and 'to' are the region in the page to avoid zeroing.
532  *
533  * If pagesize > clustersize, this function will avoid zeroing outside
534  * of the cluster boundary.
535  *
536  * from == to == 0 is code for "zero the entire cluster region"
537  */
538 static void ocfs2_clear_page_regions(struct page *page,
539                                      struct ocfs2_super *osb, u32 cpos,
540                                      unsigned from, unsigned to)
541 {
542         void *kaddr;
543         unsigned int cluster_start, cluster_end;
544
545         ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
546
547         kaddr = kmap_atomic(page);
548
549         if (from || to) {
550                 if (from > cluster_start)
551                         memset(kaddr + cluster_start, 0, from - cluster_start);
552                 if (to < cluster_end)
553                         memset(kaddr + to, 0, cluster_end - to);
554         } else {
555                 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
556         }
557
558         kunmap_atomic(kaddr);
559 }
560
561 /*
562  * Nonsparse file systems fully allocate before we get to the write
563  * code. This prevents ocfs2_write() from tagging the write as an
564  * allocating one, which means ocfs2_map_page_blocks() might try to
565  * read-in the blocks at the tail of our file. Avoid reading them by
566  * testing i_size against each block offset.
567  */
568 static int ocfs2_should_read_blk(struct inode *inode, struct folio *folio,
569                                  unsigned int block_start)
570 {
571         u64 offset = folio_pos(folio) + block_start;
572
573         if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
574                 return 1;
575
576         if (i_size_read(inode) > offset)
577                 return 1;
578
579         return 0;
580 }
581
582 /*
583  * Some of this taken from __block_write_begin(). We already have our
584  * mapping by now though, and the entire write will be allocating or
585  * it won't, so not much need to use BH_New.
586  *
587  * This will also skip zeroing, which is handled externally.
588  */
589 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
590                           struct inode *inode, unsigned int from,
591                           unsigned int to, int new)
592 {
593         struct folio *folio = page_folio(page);
594         int ret = 0;
595         struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
596         unsigned int block_end, block_start;
597         unsigned int bsize = i_blocksize(inode);
598
599         head = folio_buffers(folio);
600         if (!head)
601                 head = create_empty_buffers(folio, bsize, 0);
602
603         for (bh = head, block_start = 0; bh != head || !block_start;
604              bh = bh->b_this_page, block_start += bsize) {
605                 block_end = block_start + bsize;
606
607                 clear_buffer_new(bh);
608
609                 /*
610                  * Ignore blocks outside of our i/o range -
611                  * they may belong to unallocated clusters.
612                  */
613                 if (block_start >= to || block_end <= from) {
614                         if (folio_test_uptodate(folio))
615                                 set_buffer_uptodate(bh);
616                         continue;
617                 }
618
619                 /*
620                  * For an allocating write with cluster size >= page
621                  * size, we always write the entire page.
622                  */
623                 if (new)
624                         set_buffer_new(bh);
625
626                 if (!buffer_mapped(bh)) {
627                         map_bh(bh, inode->i_sb, *p_blkno);
628                         clean_bdev_bh_alias(bh);
629                 }
630
631                 if (folio_test_uptodate(folio)) {
632                         set_buffer_uptodate(bh);
633                 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
634                            !buffer_new(bh) &&
635                            ocfs2_should_read_blk(inode, folio, block_start) &&
636                            (block_start < from || block_end > to)) {
637                         bh_read_nowait(bh, 0);
638                         *wait_bh++=bh;
639                 }
640
641                 *p_blkno = *p_blkno + 1;
642         }
643
644         /*
645          * If we issued read requests - let them complete.
646          */
647         while(wait_bh > wait) {
648                 wait_on_buffer(*--wait_bh);
649                 if (!buffer_uptodate(*wait_bh))
650                         ret = -EIO;
651         }
652
653         if (ret == 0 || !new)
654                 return ret;
655
656         /*
657          * If we get -EIO above, zero out any newly allocated blocks
658          * to avoid exposing stale data.
659          */
660         bh = head;
661         block_start = 0;
662         do {
663                 block_end = block_start + bsize;
664                 if (block_end <= from)
665                         goto next_bh;
666                 if (block_start >= to)
667                         break;
668
669                 folio_zero_range(folio, block_start, bh->b_size);
670                 set_buffer_uptodate(bh);
671                 mark_buffer_dirty(bh);
672
673 next_bh:
674                 block_start = block_end;
675                 bh = bh->b_this_page;
676         } while (bh != head);
677
678         return ret;
679 }
680
681 #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
682 #define OCFS2_MAX_CTXT_PAGES    1
683 #else
684 #define OCFS2_MAX_CTXT_PAGES    (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
685 #endif
686
687 #define OCFS2_MAX_CLUSTERS_PER_PAGE     (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
688
689 struct ocfs2_unwritten_extent {
690         struct list_head        ue_node;
691         struct list_head        ue_ip_node;
692         u32                     ue_cpos;
693         u32                     ue_phys;
694 };
695
696 /*
697  * Describe the state of a single cluster to be written to.
698  */
699 struct ocfs2_write_cluster_desc {
700         u32             c_cpos;
701         u32             c_phys;
702         /*
703          * Give this a unique field because c_phys eventually gets
704          * filled.
705          */
706         unsigned        c_new;
707         unsigned        c_clear_unwritten;
708         unsigned        c_needs_zero;
709 };
710
711 struct ocfs2_write_ctxt {
712         /* Logical cluster position / len of write */
713         u32                             w_cpos;
714         u32                             w_clen;
715
716         /* First cluster allocated in a nonsparse extend */
717         u32                             w_first_new_cpos;
718
719         /* Type of caller. Must be one of buffer, mmap, direct.  */
720         ocfs2_write_type_t              w_type;
721
722         struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
723
724         /*
725          * This is true if page_size > cluster_size.
726          *
727          * It triggers a set of special cases during write which might
728          * have to deal with allocating writes to partial pages.
729          */
730         unsigned int                    w_large_pages;
731
732         /*
733          * Pages involved in this write.
734          *
735          * w_target_page is the page being written to by the user.
736          *
737          * w_pages is an array of pages which always contains
738          * w_target_page, and in the case of an allocating write with
739          * page_size < cluster size, it will contain zero'd and mapped
740          * pages adjacent to w_target_page which need to be written
741          * out in so that future reads from that region will get
742          * zero's.
743          */
744         unsigned int                    w_num_pages;
745         struct page                     *w_pages[OCFS2_MAX_CTXT_PAGES];
746         struct page                     *w_target_page;
747
748         /*
749          * w_target_locked is used for page_mkwrite path indicating no unlocking
750          * against w_target_page in ocfs2_write_end_nolock.
751          */
752         unsigned int                    w_target_locked:1;
753
754         /*
755          * ocfs2_write_end() uses this to know what the real range to
756          * write in the target should be.
757          */
758         unsigned int                    w_target_from;
759         unsigned int                    w_target_to;
760
761         /*
762          * We could use journal_current_handle() but this is cleaner,
763          * IMHO -Mark
764          */
765         handle_t                        *w_handle;
766
767         struct buffer_head              *w_di_bh;
768
769         struct ocfs2_cached_dealloc_ctxt w_dealloc;
770
771         struct list_head                w_unwritten_list;
772         unsigned int                    w_unwritten_count;
773 };
774
775 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
776 {
777         int i;
778
779         for(i = 0; i < num_pages; i++) {
780                 if (pages[i]) {
781                         unlock_page(pages[i]);
782                         mark_page_accessed(pages[i]);
783                         put_page(pages[i]);
784                 }
785         }
786 }
787
788 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
789 {
790         int i;
791
792         /*
793          * w_target_locked is only set to true in the page_mkwrite() case.
794          * The intent is to allow us to lock the target page from write_begin()
795          * to write_end(). The caller must hold a ref on w_target_page.
796          */
797         if (wc->w_target_locked) {
798                 BUG_ON(!wc->w_target_page);
799                 for (i = 0; i < wc->w_num_pages; i++) {
800                         if (wc->w_target_page == wc->w_pages[i]) {
801                                 wc->w_pages[i] = NULL;
802                                 break;
803                         }
804                 }
805                 mark_page_accessed(wc->w_target_page);
806                 put_page(wc->w_target_page);
807         }
808         ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
809 }
810
811 static void ocfs2_free_unwritten_list(struct inode *inode,
812                                  struct list_head *head)
813 {
814         struct ocfs2_inode_info *oi = OCFS2_I(inode);
815         struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
816
817         list_for_each_entry_safe(ue, tmp, head, ue_node) {
818                 list_del(&ue->ue_node);
819                 spin_lock(&oi->ip_lock);
820                 list_del(&ue->ue_ip_node);
821                 spin_unlock(&oi->ip_lock);
822                 kfree(ue);
823         }
824 }
825
826 static void ocfs2_free_write_ctxt(struct inode *inode,
827                                   struct ocfs2_write_ctxt *wc)
828 {
829         ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
830         ocfs2_unlock_pages(wc);
831         brelse(wc->w_di_bh);
832         kfree(wc);
833 }
834
835 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
836                                   struct ocfs2_super *osb, loff_t pos,
837                                   unsigned len, ocfs2_write_type_t type,
838                                   struct buffer_head *di_bh)
839 {
840         u32 cend;
841         struct ocfs2_write_ctxt *wc;
842
843         wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
844         if (!wc)
845                 return -ENOMEM;
846
847         wc->w_cpos = pos >> osb->s_clustersize_bits;
848         wc->w_first_new_cpos = UINT_MAX;
849         cend = (pos + len - 1) >> osb->s_clustersize_bits;
850         wc->w_clen = cend - wc->w_cpos + 1;
851         get_bh(di_bh);
852         wc->w_di_bh = di_bh;
853         wc->w_type = type;
854
855         if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits))
856                 wc->w_large_pages = 1;
857         else
858                 wc->w_large_pages = 0;
859
860         ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
861         INIT_LIST_HEAD(&wc->w_unwritten_list);
862
863         *wcp = wc;
864
865         return 0;
866 }
867
868 /*
869  * If a page has any new buffers, zero them out here, and mark them uptodate
870  * and dirty so they'll be written out (in order to prevent uninitialised
871  * block data from leaking). And clear the new bit.
872  */
873 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
874 {
875         unsigned int block_start, block_end;
876         struct buffer_head *head, *bh;
877
878         BUG_ON(!PageLocked(page));
879         if (!page_has_buffers(page))
880                 return;
881
882         bh = head = page_buffers(page);
883         block_start = 0;
884         do {
885                 block_end = block_start + bh->b_size;
886
887                 if (buffer_new(bh)) {
888                         if (block_end > from && block_start < to) {
889                                 if (!PageUptodate(page)) {
890                                         unsigned start, end;
891
892                                         start = max(from, block_start);
893                                         end = min(to, block_end);
894
895                                         zero_user_segment(page, start, end);
896                                         set_buffer_uptodate(bh);
897                                 }
898
899                                 clear_buffer_new(bh);
900                                 mark_buffer_dirty(bh);
901                         }
902                 }
903
904                 block_start = block_end;
905                 bh = bh->b_this_page;
906         } while (bh != head);
907 }
908
909 /*
910  * Only called when we have a failure during allocating write to write
911  * zero's to the newly allocated region.
912  */
913 static void ocfs2_write_failure(struct inode *inode,
914                                 struct ocfs2_write_ctxt *wc,
915                                 loff_t user_pos, unsigned user_len)
916 {
917         int i;
918         unsigned from = user_pos & (PAGE_SIZE - 1),
919                 to = user_pos + user_len;
920         struct page *tmppage;
921
922         if (wc->w_target_page)
923                 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
924
925         for(i = 0; i < wc->w_num_pages; i++) {
926                 tmppage = wc->w_pages[i];
927
928                 if (tmppage && page_has_buffers(tmppage)) {
929                         if (ocfs2_should_order_data(inode))
930                                 ocfs2_jbd2_inode_add_write(wc->w_handle, inode,
931                                                            user_pos, user_len);
932
933                         block_commit_write(tmppage, from, to);
934                 }
935         }
936 }
937
938 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
939                                         struct ocfs2_write_ctxt *wc,
940                                         struct page *page, u32 cpos,
941                                         loff_t user_pos, unsigned user_len,
942                                         int new)
943 {
944         int ret;
945         unsigned int map_from = 0, map_to = 0;
946         unsigned int cluster_start, cluster_end;
947         unsigned int user_data_from = 0, user_data_to = 0;
948
949         ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
950                                         &cluster_start, &cluster_end);
951
952         /* treat the write as new if the a hole/lseek spanned across
953          * the page boundary.
954          */
955         new = new | ((i_size_read(inode) <= page_offset(page)) &&
956                         (page_offset(page) <= user_pos));
957
958         if (page == wc->w_target_page) {
959                 map_from = user_pos & (PAGE_SIZE - 1);
960                 map_to = map_from + user_len;
961
962                 if (new)
963                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
964                                                     cluster_start, cluster_end,
965                                                     new);
966                 else
967                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
968                                                     map_from, map_to, new);
969                 if (ret) {
970                         mlog_errno(ret);
971                         goto out;
972                 }
973
974                 user_data_from = map_from;
975                 user_data_to = map_to;
976                 if (new) {
977                         map_from = cluster_start;
978                         map_to = cluster_end;
979                 }
980         } else {
981                 /*
982                  * If we haven't allocated the new page yet, we
983                  * shouldn't be writing it out without copying user
984                  * data. This is likely a math error from the caller.
985                  */
986                 BUG_ON(!new);
987
988                 map_from = cluster_start;
989                 map_to = cluster_end;
990
991                 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
992                                             cluster_start, cluster_end, new);
993                 if (ret) {
994                         mlog_errno(ret);
995                         goto out;
996                 }
997         }
998
999         /*
1000          * Parts of newly allocated pages need to be zero'd.
1001          *
1002          * Above, we have also rewritten 'to' and 'from' - as far as
1003          * the rest of the function is concerned, the entire cluster
1004          * range inside of a page needs to be written.
1005          *
1006          * We can skip this if the page is up to date - it's already
1007          * been zero'd from being read in as a hole.
1008          */
1009         if (new && !PageUptodate(page))
1010                 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1011                                          cpos, user_data_from, user_data_to);
1012
1013         flush_dcache_page(page);
1014
1015 out:
1016         return ret;
1017 }
1018
1019 /*
1020  * This function will only grab one clusters worth of pages.
1021  */
1022 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1023                                       struct ocfs2_write_ctxt *wc,
1024                                       u32 cpos, loff_t user_pos,
1025                                       unsigned user_len, int new,
1026                                       struct page *mmap_page)
1027 {
1028         int ret = 0, i;
1029         unsigned long start, target_index, end_index, index;
1030         struct inode *inode = mapping->host;
1031         loff_t last_byte;
1032
1033         target_index = user_pos >> PAGE_SHIFT;
1034
1035         /*
1036          * Figure out how many pages we'll be manipulating here. For
1037          * non allocating write, we just change the one
1038          * page. Otherwise, we'll need a whole clusters worth.  If we're
1039          * writing past i_size, we only need enough pages to cover the
1040          * last page of the write.
1041          */
1042         if (new) {
1043                 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1044                 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1045                 /*
1046                  * We need the index *past* the last page we could possibly
1047                  * touch.  This is the page past the end of the write or
1048                  * i_size, whichever is greater.
1049                  */
1050                 last_byte = max(user_pos + user_len, i_size_read(inode));
1051                 BUG_ON(last_byte < 1);
1052                 end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1;
1053                 if ((start + wc->w_num_pages) > end_index)
1054                         wc->w_num_pages = end_index - start;
1055         } else {
1056                 wc->w_num_pages = 1;
1057                 start = target_index;
1058         }
1059         end_index = (user_pos + user_len - 1) >> PAGE_SHIFT;
1060
1061         for(i = 0; i < wc->w_num_pages; i++) {
1062                 index = start + i;
1063
1064                 if (index >= target_index && index <= end_index &&
1065                     wc->w_type == OCFS2_WRITE_MMAP) {
1066                         /*
1067                          * ocfs2_pagemkwrite() is a little different
1068                          * and wants us to directly use the page
1069                          * passed in.
1070                          */
1071                         lock_page(mmap_page);
1072
1073                         /* Exit and let the caller retry */
1074                         if (mmap_page->mapping != mapping) {
1075                                 WARN_ON(mmap_page->mapping);
1076                                 unlock_page(mmap_page);
1077                                 ret = -EAGAIN;
1078                                 goto out;
1079                         }
1080
1081                         get_page(mmap_page);
1082                         wc->w_pages[i] = mmap_page;
1083                         wc->w_target_locked = true;
1084                 } else if (index >= target_index && index <= end_index &&
1085                            wc->w_type == OCFS2_WRITE_DIRECT) {
1086                         /* Direct write has no mapping page. */
1087                         wc->w_pages[i] = NULL;
1088                         continue;
1089                 } else {
1090                         wc->w_pages[i] = find_or_create_page(mapping, index,
1091                                                              GFP_NOFS);
1092                         if (!wc->w_pages[i]) {
1093                                 ret = -ENOMEM;
1094                                 mlog_errno(ret);
1095                                 goto out;
1096                         }
1097                 }
1098                 wait_for_stable_page(wc->w_pages[i]);
1099
1100                 if (index == target_index)
1101                         wc->w_target_page = wc->w_pages[i];
1102         }
1103 out:
1104         if (ret)
1105                 wc->w_target_locked = false;
1106         return ret;
1107 }
1108
1109 /*
1110  * Prepare a single cluster for write one cluster into the file.
1111  */
1112 static int ocfs2_write_cluster(struct address_space *mapping,
1113                                u32 *phys, unsigned int new,
1114                                unsigned int clear_unwritten,
1115                                unsigned int should_zero,
1116                                struct ocfs2_alloc_context *data_ac,
1117                                struct ocfs2_alloc_context *meta_ac,
1118                                struct ocfs2_write_ctxt *wc, u32 cpos,
1119                                loff_t user_pos, unsigned user_len)
1120 {
1121         int ret, i;
1122         u64 p_blkno;
1123         struct inode *inode = mapping->host;
1124         struct ocfs2_extent_tree et;
1125         int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
1126
1127         if (new) {
1128                 u32 tmp_pos;
1129
1130                 /*
1131                  * This is safe to call with the page locks - it won't take
1132                  * any additional semaphores or cluster locks.
1133                  */
1134                 tmp_pos = cpos;
1135                 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1136                                            &tmp_pos, 1, !clear_unwritten,
1137                                            wc->w_di_bh, wc->w_handle,
1138                                            data_ac, meta_ac, NULL);
1139                 /*
1140                  * This shouldn't happen because we must have already
1141                  * calculated the correct meta data allocation required. The
1142                  * internal tree allocation code should know how to increase
1143                  * transaction credits itself.
1144                  *
1145                  * If need be, we could handle -EAGAIN for a
1146                  * RESTART_TRANS here.
1147                  */
1148                 mlog_bug_on_msg(ret == -EAGAIN,
1149                                 "Inode %llu: EAGAIN return during allocation.\n",
1150                                 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1151                 if (ret < 0) {
1152                         mlog_errno(ret);
1153                         goto out;
1154                 }
1155         } else if (clear_unwritten) {
1156                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1157                                               wc->w_di_bh);
1158                 ret = ocfs2_mark_extent_written(inode, &et,
1159                                                 wc->w_handle, cpos, 1, *phys,
1160                                                 meta_ac, &wc->w_dealloc);
1161                 if (ret < 0) {
1162                         mlog_errno(ret);
1163                         goto out;
1164                 }
1165         }
1166
1167         /*
1168          * The only reason this should fail is due to an inability to
1169          * find the extent added.
1170          */
1171         ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
1172         if (ret < 0) {
1173                 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1174                             "at logical cluster %u",
1175                             (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
1176                 goto out;
1177         }
1178
1179         BUG_ON(*phys == 0);
1180
1181         p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
1182         if (!should_zero)
1183                 p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
1184
1185         for(i = 0; i < wc->w_num_pages; i++) {
1186                 int tmpret;
1187
1188                 /* This is the direct io target page. */
1189                 if (wc->w_pages[i] == NULL) {
1190                         p_blkno++;
1191                         continue;
1192                 }
1193
1194                 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1195                                                       wc->w_pages[i], cpos,
1196                                                       user_pos, user_len,
1197                                                       should_zero);
1198                 if (tmpret) {
1199                         mlog_errno(tmpret);
1200                         if (ret == 0)
1201                                 ret = tmpret;
1202                 }
1203         }
1204
1205         /*
1206          * We only have cleanup to do in case of allocating write.
1207          */
1208         if (ret && new)
1209                 ocfs2_write_failure(inode, wc, user_pos, user_len);
1210
1211 out:
1212
1213         return ret;
1214 }
1215
1216 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1217                                        struct ocfs2_alloc_context *data_ac,
1218                                        struct ocfs2_alloc_context *meta_ac,
1219                                        struct ocfs2_write_ctxt *wc,
1220                                        loff_t pos, unsigned len)
1221 {
1222         int ret, i;
1223         loff_t cluster_off;
1224         unsigned int local_len = len;
1225         struct ocfs2_write_cluster_desc *desc;
1226         struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1227
1228         for (i = 0; i < wc->w_clen; i++) {
1229                 desc = &wc->w_desc[i];
1230
1231                 /*
1232                  * We have to make sure that the total write passed in
1233                  * doesn't extend past a single cluster.
1234                  */
1235                 local_len = len;
1236                 cluster_off = pos & (osb->s_clustersize - 1);
1237                 if ((cluster_off + local_len) > osb->s_clustersize)
1238                         local_len = osb->s_clustersize - cluster_off;
1239
1240                 ret = ocfs2_write_cluster(mapping, &desc->c_phys,
1241                                           desc->c_new,
1242                                           desc->c_clear_unwritten,
1243                                           desc->c_needs_zero,
1244                                           data_ac, meta_ac,
1245                                           wc, desc->c_cpos, pos, local_len);
1246                 if (ret) {
1247                         mlog_errno(ret);
1248                         goto out;
1249                 }
1250
1251                 len -= local_len;
1252                 pos += local_len;
1253         }
1254
1255         ret = 0;
1256 out:
1257         return ret;
1258 }
1259
1260 /*
1261  * ocfs2_write_end() wants to know which parts of the target page it
1262  * should complete the write on. It's easiest to compute them ahead of
1263  * time when a more complete view of the write is available.
1264  */
1265 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1266                                         struct ocfs2_write_ctxt *wc,
1267                                         loff_t pos, unsigned len, int alloc)
1268 {
1269         struct ocfs2_write_cluster_desc *desc;
1270
1271         wc->w_target_from = pos & (PAGE_SIZE - 1);
1272         wc->w_target_to = wc->w_target_from + len;
1273
1274         if (alloc == 0)
1275                 return;
1276
1277         /*
1278          * Allocating write - we may have different boundaries based
1279          * on page size and cluster size.
1280          *
1281          * NOTE: We can no longer compute one value from the other as
1282          * the actual write length and user provided length may be
1283          * different.
1284          */
1285
1286         if (wc->w_large_pages) {
1287                 /*
1288                  * We only care about the 1st and last cluster within
1289                  * our range and whether they should be zero'd or not. Either
1290                  * value may be extended out to the start/end of a
1291                  * newly allocated cluster.
1292                  */
1293                 desc = &wc->w_desc[0];
1294                 if (desc->c_needs_zero)
1295                         ocfs2_figure_cluster_boundaries(osb,
1296                                                         desc->c_cpos,
1297                                                         &wc->w_target_from,
1298                                                         NULL);
1299
1300                 desc = &wc->w_desc[wc->w_clen - 1];
1301                 if (desc->c_needs_zero)
1302                         ocfs2_figure_cluster_boundaries(osb,
1303                                                         desc->c_cpos,
1304                                                         NULL,
1305                                                         &wc->w_target_to);
1306         } else {
1307                 wc->w_target_from = 0;
1308                 wc->w_target_to = PAGE_SIZE;
1309         }
1310 }
1311
1312 /*
1313  * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1314  * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1315  * by the direct io procedure.
1316  * If this is a new extent that allocated by direct io, we should mark it in
1317  * the ip_unwritten_list.
1318  */
1319 static int ocfs2_unwritten_check(struct inode *inode,
1320                                  struct ocfs2_write_ctxt *wc,
1321                                  struct ocfs2_write_cluster_desc *desc)
1322 {
1323         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1324         struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
1325         int ret = 0;
1326
1327         if (!desc->c_needs_zero)
1328                 return 0;
1329
1330 retry:
1331         spin_lock(&oi->ip_lock);
1332         /* Needs not to zero no metter buffer or direct. The one who is zero
1333          * the cluster is doing zero. And he will clear unwritten after all
1334          * cluster io finished. */
1335         list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
1336                 if (desc->c_cpos == ue->ue_cpos) {
1337                         BUG_ON(desc->c_new);
1338                         desc->c_needs_zero = 0;
1339                         desc->c_clear_unwritten = 0;
1340                         goto unlock;
1341                 }
1342         }
1343
1344         if (wc->w_type != OCFS2_WRITE_DIRECT)
1345                 goto unlock;
1346
1347         if (new == NULL) {
1348                 spin_unlock(&oi->ip_lock);
1349                 new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
1350                              GFP_NOFS);
1351                 if (new == NULL) {
1352                         ret = -ENOMEM;
1353                         goto out;
1354                 }
1355                 goto retry;
1356         }
1357         /* This direct write will doing zero. */
1358         new->ue_cpos = desc->c_cpos;
1359         new->ue_phys = desc->c_phys;
1360         desc->c_clear_unwritten = 0;
1361         list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
1362         list_add_tail(&new->ue_node, &wc->w_unwritten_list);
1363         wc->w_unwritten_count++;
1364         new = NULL;
1365 unlock:
1366         spin_unlock(&oi->ip_lock);
1367 out:
1368         kfree(new);
1369         return ret;
1370 }
1371
1372 /*
1373  * Populate each single-cluster write descriptor in the write context
1374  * with information about the i/o to be done.
1375  *
1376  * Returns the number of clusters that will have to be allocated, as
1377  * well as a worst case estimate of the number of extent records that
1378  * would have to be created during a write to an unwritten region.
1379  */
1380 static int ocfs2_populate_write_desc(struct inode *inode,
1381                                      struct ocfs2_write_ctxt *wc,
1382                                      unsigned int *clusters_to_alloc,
1383                                      unsigned int *extents_to_split)
1384 {
1385         int ret;
1386         struct ocfs2_write_cluster_desc *desc;
1387         unsigned int num_clusters = 0;
1388         unsigned int ext_flags = 0;
1389         u32 phys = 0;
1390         int i;
1391
1392         *clusters_to_alloc = 0;
1393         *extents_to_split = 0;
1394
1395         for (i = 0; i < wc->w_clen; i++) {
1396                 desc = &wc->w_desc[i];
1397                 desc->c_cpos = wc->w_cpos + i;
1398
1399                 if (num_clusters == 0) {
1400                         /*
1401                          * Need to look up the next extent record.
1402                          */
1403                         ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1404                                                  &num_clusters, &ext_flags);
1405                         if (ret) {
1406                                 mlog_errno(ret);
1407                                 goto out;
1408                         }
1409
1410                         /* We should already CoW the refcountd extent. */
1411                         BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1412
1413                         /*
1414                          * Assume worst case - that we're writing in
1415                          * the middle of the extent.
1416                          *
1417                          * We can assume that the write proceeds from
1418                          * left to right, in which case the extent
1419                          * insert code is smart enough to coalesce the
1420                          * next splits into the previous records created.
1421                          */
1422                         if (ext_flags & OCFS2_EXT_UNWRITTEN)
1423                                 *extents_to_split = *extents_to_split + 2;
1424                 } else if (phys) {
1425                         /*
1426                          * Only increment phys if it doesn't describe
1427                          * a hole.
1428                          */
1429                         phys++;
1430                 }
1431
1432                 /*
1433                  * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1434                  * file that got extended.  w_first_new_cpos tells us
1435                  * where the newly allocated clusters are so we can
1436                  * zero them.
1437                  */
1438                 if (desc->c_cpos >= wc->w_first_new_cpos) {
1439                         BUG_ON(phys == 0);
1440                         desc->c_needs_zero = 1;
1441                 }
1442
1443                 desc->c_phys = phys;
1444                 if (phys == 0) {
1445                         desc->c_new = 1;
1446                         desc->c_needs_zero = 1;
1447                         desc->c_clear_unwritten = 1;
1448                         *clusters_to_alloc = *clusters_to_alloc + 1;
1449                 }
1450
1451                 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1452                         desc->c_clear_unwritten = 1;
1453                         desc->c_needs_zero = 1;
1454                 }
1455
1456                 ret = ocfs2_unwritten_check(inode, wc, desc);
1457                 if (ret) {
1458                         mlog_errno(ret);
1459                         goto out;
1460                 }
1461
1462                 num_clusters--;
1463         }
1464
1465         ret = 0;
1466 out:
1467         return ret;
1468 }
1469
1470 static int ocfs2_write_begin_inline(struct address_space *mapping,
1471                                     struct inode *inode,
1472                                     struct ocfs2_write_ctxt *wc)
1473 {
1474         int ret;
1475         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1476         struct page *page;
1477         handle_t *handle;
1478         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1479
1480         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1481         if (IS_ERR(handle)) {
1482                 ret = PTR_ERR(handle);
1483                 mlog_errno(ret);
1484                 goto out;
1485         }
1486
1487         page = find_or_create_page(mapping, 0, GFP_NOFS);
1488         if (!page) {
1489                 ocfs2_commit_trans(osb, handle);
1490                 ret = -ENOMEM;
1491                 mlog_errno(ret);
1492                 goto out;
1493         }
1494         /*
1495          * If we don't set w_num_pages then this page won't get unlocked
1496          * and freed on cleanup of the write context.
1497          */
1498         wc->w_pages[0] = wc->w_target_page = page;
1499         wc->w_num_pages = 1;
1500
1501         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1502                                       OCFS2_JOURNAL_ACCESS_WRITE);
1503         if (ret) {
1504                 ocfs2_commit_trans(osb, handle);
1505
1506                 mlog_errno(ret);
1507                 goto out;
1508         }
1509
1510         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1511                 ocfs2_set_inode_data_inline(inode, di);
1512
1513         if (!PageUptodate(page)) {
1514                 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1515                 if (ret) {
1516                         ocfs2_commit_trans(osb, handle);
1517
1518                         goto out;
1519                 }
1520         }
1521
1522         wc->w_handle = handle;
1523 out:
1524         return ret;
1525 }
1526
1527 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1528 {
1529         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1530
1531         if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1532                 return 1;
1533         return 0;
1534 }
1535
1536 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1537                                           struct inode *inode, loff_t pos,
1538                                           unsigned len, struct page *mmap_page,
1539                                           struct ocfs2_write_ctxt *wc)
1540 {
1541         int ret, written = 0;
1542         loff_t end = pos + len;
1543         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1544         struct ocfs2_dinode *di = NULL;
1545
1546         trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1547                                              len, (unsigned long long)pos,
1548                                              oi->ip_dyn_features);
1549
1550         /*
1551          * Handle inodes which already have inline data 1st.
1552          */
1553         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1554                 if (mmap_page == NULL &&
1555                     ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1556                         goto do_inline_write;
1557
1558                 /*
1559                  * The write won't fit - we have to give this inode an
1560                  * inline extent list now.
1561                  */
1562                 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1563                 if (ret)
1564                         mlog_errno(ret);
1565                 goto out;
1566         }
1567
1568         /*
1569          * Check whether the inode can accept inline data.
1570          */
1571         if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1572                 return 0;
1573
1574         /*
1575          * Check whether the write can fit.
1576          */
1577         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1578         if (mmap_page ||
1579             end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1580                 return 0;
1581
1582 do_inline_write:
1583         ret = ocfs2_write_begin_inline(mapping, inode, wc);
1584         if (ret) {
1585                 mlog_errno(ret);
1586                 goto out;
1587         }
1588
1589         /*
1590          * This signals to the caller that the data can be written
1591          * inline.
1592          */
1593         written = 1;
1594 out:
1595         return written ? written : ret;
1596 }
1597
1598 /*
1599  * This function only does anything for file systems which can't
1600  * handle sparse files.
1601  *
1602  * What we want to do here is fill in any hole between the current end
1603  * of allocation and the end of our write. That way the rest of the
1604  * write path can treat it as an non-allocating write, which has no
1605  * special case code for sparse/nonsparse files.
1606  */
1607 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1608                                         struct buffer_head *di_bh,
1609                                         loff_t pos, unsigned len,
1610                                         struct ocfs2_write_ctxt *wc)
1611 {
1612         int ret;
1613         loff_t newsize = pos + len;
1614
1615         BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1616
1617         if (newsize <= i_size_read(inode))
1618                 return 0;
1619
1620         ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1621         if (ret)
1622                 mlog_errno(ret);
1623
1624         /* There is no wc if this is call from direct. */
1625         if (wc)
1626                 wc->w_first_new_cpos =
1627                         ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1628
1629         return ret;
1630 }
1631
1632 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1633                            loff_t pos)
1634 {
1635         int ret = 0;
1636
1637         BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1638         if (pos > i_size_read(inode))
1639                 ret = ocfs2_zero_extend(inode, di_bh, pos);
1640
1641         return ret;
1642 }
1643
1644 int ocfs2_write_begin_nolock(struct address_space *mapping,
1645                              loff_t pos, unsigned len, ocfs2_write_type_t type,
1646                              struct page **pagep, void **fsdata,
1647                              struct buffer_head *di_bh, struct page *mmap_page)
1648 {
1649         int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1650         unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1651         struct ocfs2_write_ctxt *wc;
1652         struct inode *inode = mapping->host;
1653         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1654         struct ocfs2_dinode *di;
1655         struct ocfs2_alloc_context *data_ac = NULL;
1656         struct ocfs2_alloc_context *meta_ac = NULL;
1657         handle_t *handle;
1658         struct ocfs2_extent_tree et;
1659         int try_free = 1, ret1;
1660
1661 try_again:
1662         ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
1663         if (ret) {
1664                 mlog_errno(ret);
1665                 return ret;
1666         }
1667
1668         if (ocfs2_supports_inline_data(osb)) {
1669                 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1670                                                      mmap_page, wc);
1671                 if (ret == 1) {
1672                         ret = 0;
1673                         goto success;
1674                 }
1675                 if (ret < 0) {
1676                         mlog_errno(ret);
1677                         goto out;
1678                 }
1679         }
1680
1681         /* Direct io change i_size late, should not zero tail here. */
1682         if (type != OCFS2_WRITE_DIRECT) {
1683                 if (ocfs2_sparse_alloc(osb))
1684                         ret = ocfs2_zero_tail(inode, di_bh, pos);
1685                 else
1686                         ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
1687                                                            len, wc);
1688                 if (ret) {
1689                         mlog_errno(ret);
1690                         goto out;
1691                 }
1692         }
1693
1694         ret = ocfs2_check_range_for_refcount(inode, pos, len);
1695         if (ret < 0) {
1696                 mlog_errno(ret);
1697                 goto out;
1698         } else if (ret == 1) {
1699                 clusters_need = wc->w_clen;
1700                 ret = ocfs2_refcount_cow(inode, di_bh,
1701                                          wc->w_cpos, wc->w_clen, UINT_MAX);
1702                 if (ret) {
1703                         mlog_errno(ret);
1704                         goto out;
1705                 }
1706         }
1707
1708         ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1709                                         &extents_to_split);
1710         if (ret) {
1711                 mlog_errno(ret);
1712                 goto out;
1713         }
1714         clusters_need += clusters_to_alloc;
1715
1716         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1717
1718         trace_ocfs2_write_begin_nolock(
1719                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
1720                         (long long)i_size_read(inode),
1721                         le32_to_cpu(di->i_clusters),
1722                         pos, len, type, mmap_page,
1723                         clusters_to_alloc, extents_to_split);
1724
1725         /*
1726          * We set w_target_from, w_target_to here so that
1727          * ocfs2_write_end() knows which range in the target page to
1728          * write out. An allocation requires that we write the entire
1729          * cluster range.
1730          */
1731         if (clusters_to_alloc || extents_to_split) {
1732                 /*
1733                  * XXX: We are stretching the limits of
1734                  * ocfs2_lock_allocators(). It greatly over-estimates
1735                  * the work to be done.
1736                  */
1737                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1738                                               wc->w_di_bh);
1739                 ret = ocfs2_lock_allocators(inode, &et,
1740                                             clusters_to_alloc, extents_to_split,
1741                                             &data_ac, &meta_ac);
1742                 if (ret) {
1743                         mlog_errno(ret);
1744                         goto out;
1745                 }
1746
1747                 if (data_ac)
1748                         data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1749
1750                 credits = ocfs2_calc_extend_credits(inode->i_sb,
1751                                                     &di->id2.i_list);
1752         } else if (type == OCFS2_WRITE_DIRECT)
1753                 /* direct write needs not to start trans if no extents alloc. */
1754                 goto success;
1755
1756         /*
1757          * We have to zero sparse allocated clusters, unwritten extent clusters,
1758          * and non-sparse clusters we just extended.  For non-sparse writes,
1759          * we know zeros will only be needed in the first and/or last cluster.
1760          */
1761         if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1762                            wc->w_desc[wc->w_clen - 1].c_needs_zero))
1763                 cluster_of_pages = 1;
1764         else
1765                 cluster_of_pages = 0;
1766
1767         ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1768
1769         handle = ocfs2_start_trans(osb, credits);
1770         if (IS_ERR(handle)) {
1771                 ret = PTR_ERR(handle);
1772                 mlog_errno(ret);
1773                 goto out;
1774         }
1775
1776         wc->w_handle = handle;
1777
1778         if (clusters_to_alloc) {
1779                 ret = dquot_alloc_space_nodirty(inode,
1780                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1781                 if (ret)
1782                         goto out_commit;
1783         }
1784
1785         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1786                                       OCFS2_JOURNAL_ACCESS_WRITE);
1787         if (ret) {
1788                 mlog_errno(ret);
1789                 goto out_quota;
1790         }
1791
1792         /*
1793          * Fill our page array first. That way we've grabbed enough so
1794          * that we can zero and flush if we error after adding the
1795          * extent.
1796          */
1797         ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1798                                          cluster_of_pages, mmap_page);
1799         if (ret) {
1800                 /*
1801                  * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1802                  * the target page. In this case, we exit with no error and no target
1803                  * page. This will trigger the caller, page_mkwrite(), to re-try
1804                  * the operation.
1805                  */
1806                 if (type == OCFS2_WRITE_MMAP && ret == -EAGAIN) {
1807                         BUG_ON(wc->w_target_page);
1808                         ret = 0;
1809                         goto out_quota;
1810                 }
1811
1812                 mlog_errno(ret);
1813                 goto out_quota;
1814         }
1815
1816         ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1817                                           len);
1818         if (ret) {
1819                 mlog_errno(ret);
1820                 goto out_quota;
1821         }
1822
1823         if (data_ac)
1824                 ocfs2_free_alloc_context(data_ac);
1825         if (meta_ac)
1826                 ocfs2_free_alloc_context(meta_ac);
1827
1828 success:
1829         if (pagep)
1830                 *pagep = wc->w_target_page;
1831         *fsdata = wc;
1832         return 0;
1833 out_quota:
1834         if (clusters_to_alloc)
1835                 dquot_free_space(inode,
1836                           ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1837 out_commit:
1838         ocfs2_commit_trans(osb, handle);
1839
1840 out:
1841         /*
1842          * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1843          * even in case of error here like ENOSPC and ENOMEM. So, we need
1844          * to unlock the target page manually to prevent deadlocks when
1845          * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1846          * to VM code.
1847          */
1848         if (wc->w_target_locked)
1849                 unlock_page(mmap_page);
1850
1851         ocfs2_free_write_ctxt(inode, wc);
1852
1853         if (data_ac) {
1854                 ocfs2_free_alloc_context(data_ac);
1855                 data_ac = NULL;
1856         }
1857         if (meta_ac) {
1858                 ocfs2_free_alloc_context(meta_ac);
1859                 meta_ac = NULL;
1860         }
1861
1862         if (ret == -ENOSPC && try_free) {
1863                 /*
1864                  * Try to free some truncate log so that we can have enough
1865                  * clusters to allocate.
1866                  */
1867                 try_free = 0;
1868
1869                 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1870                 if (ret1 == 1)
1871                         goto try_again;
1872
1873                 if (ret1 < 0)
1874                         mlog_errno(ret1);
1875         }
1876
1877         return ret;
1878 }
1879
1880 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1881                              loff_t pos, unsigned len,
1882                              struct page **pagep, void **fsdata)
1883 {
1884         int ret;
1885         struct buffer_head *di_bh = NULL;
1886         struct inode *inode = mapping->host;
1887
1888         ret = ocfs2_inode_lock(inode, &di_bh, 1);
1889         if (ret) {
1890                 mlog_errno(ret);
1891                 return ret;
1892         }
1893
1894         /*
1895          * Take alloc sem here to prevent concurrent lookups. That way
1896          * the mapping, zeroing and tree manipulation within
1897          * ocfs2_write() will be safe against ->read_folio(). This
1898          * should also serve to lock out allocation from a shared
1899          * writeable region.
1900          */
1901         down_write(&OCFS2_I(inode)->ip_alloc_sem);
1902
1903         ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
1904                                        pagep, fsdata, di_bh, NULL);
1905         if (ret) {
1906                 mlog_errno(ret);
1907                 goto out_fail;
1908         }
1909
1910         brelse(di_bh);
1911
1912         return 0;
1913
1914 out_fail:
1915         up_write(&OCFS2_I(inode)->ip_alloc_sem);
1916
1917         brelse(di_bh);
1918         ocfs2_inode_unlock(inode, 1);
1919
1920         return ret;
1921 }
1922
1923 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1924                                    unsigned len, unsigned *copied,
1925                                    struct ocfs2_dinode *di,
1926                                    struct ocfs2_write_ctxt *wc)
1927 {
1928         void *kaddr;
1929
1930         if (unlikely(*copied < len)) {
1931                 if (!PageUptodate(wc->w_target_page)) {
1932                         *copied = 0;
1933                         return;
1934                 }
1935         }
1936
1937         kaddr = kmap_atomic(wc->w_target_page);
1938         memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1939         kunmap_atomic(kaddr);
1940
1941         trace_ocfs2_write_end_inline(
1942              (unsigned long long)OCFS2_I(inode)->ip_blkno,
1943              (unsigned long long)pos, *copied,
1944              le16_to_cpu(di->id2.i_data.id_count),
1945              le16_to_cpu(di->i_dyn_features));
1946 }
1947
1948 int ocfs2_write_end_nolock(struct address_space *mapping,
1949                            loff_t pos, unsigned len, unsigned copied, void *fsdata)
1950 {
1951         int i, ret;
1952         unsigned from, to, start = pos & (PAGE_SIZE - 1);
1953         struct inode *inode = mapping->host;
1954         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1955         struct ocfs2_write_ctxt *wc = fsdata;
1956         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1957         handle_t *handle = wc->w_handle;
1958         struct page *tmppage;
1959
1960         BUG_ON(!list_empty(&wc->w_unwritten_list));
1961
1962         if (handle) {
1963                 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
1964                                 wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
1965                 if (ret) {
1966                         copied = ret;
1967                         mlog_errno(ret);
1968                         goto out;
1969                 }
1970         }
1971
1972         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1973                 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1974                 goto out_write_size;
1975         }
1976
1977         if (unlikely(copied < len) && wc->w_target_page) {
1978                 loff_t new_isize;
1979
1980                 if (!PageUptodate(wc->w_target_page))
1981                         copied = 0;
1982
1983                 new_isize = max_t(loff_t, i_size_read(inode), pos + copied);
1984                 if (new_isize > page_offset(wc->w_target_page))
1985                         ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1986                                                start+len);
1987                 else {
1988                         /*
1989                          * When page is fully beyond new isize (data copy
1990                          * failed), do not bother zeroing the page. Invalidate
1991                          * it instead so that writeback does not get confused
1992                          * put page & buffer dirty bits into inconsistent
1993                          * state.
1994                          */
1995                         block_invalidate_folio(page_folio(wc->w_target_page),
1996                                                 0, PAGE_SIZE);
1997                 }
1998         }
1999         if (wc->w_target_page)
2000                 flush_dcache_page(wc->w_target_page);
2001
2002         for(i = 0; i < wc->w_num_pages; i++) {
2003                 tmppage = wc->w_pages[i];
2004
2005                 /* This is the direct io target page. */
2006                 if (tmppage == NULL)
2007                         continue;
2008
2009                 if (tmppage == wc->w_target_page) {
2010                         from = wc->w_target_from;
2011                         to = wc->w_target_to;
2012
2013                         BUG_ON(from > PAGE_SIZE ||
2014                                to > PAGE_SIZE ||
2015                                to < from);
2016                 } else {
2017                         /*
2018                          * Pages adjacent to the target (if any) imply
2019                          * a hole-filling write in which case we want
2020                          * to flush their entire range.
2021                          */
2022                         from = 0;
2023                         to = PAGE_SIZE;
2024                 }
2025
2026                 if (page_has_buffers(tmppage)) {
2027                         if (handle && ocfs2_should_order_data(inode)) {
2028                                 loff_t start_byte =
2029                                         ((loff_t)tmppage->index << PAGE_SHIFT) +
2030                                         from;
2031                                 loff_t length = to - from;
2032                                 ocfs2_jbd2_inode_add_write(handle, inode,
2033                                                            start_byte, length);
2034                         }
2035                         block_commit_write(tmppage, from, to);
2036                 }
2037         }
2038
2039 out_write_size:
2040         /* Direct io do not update i_size here. */
2041         if (wc->w_type != OCFS2_WRITE_DIRECT) {
2042                 pos += copied;
2043                 if (pos > i_size_read(inode)) {
2044                         i_size_write(inode, pos);
2045                         mark_inode_dirty(inode);
2046                 }
2047                 inode->i_blocks = ocfs2_inode_sector_count(inode);
2048                 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2049                 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
2050                 di->i_mtime = di->i_ctime = cpu_to_le64(inode_get_mtime_sec(inode));
2051                 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode_get_mtime_nsec(inode));
2052                 if (handle)
2053                         ocfs2_update_inode_fsync_trans(handle, inode, 1);
2054         }
2055         if (handle)
2056                 ocfs2_journal_dirty(handle, wc->w_di_bh);
2057
2058 out:
2059         /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2060          * lock, or it will cause a deadlock since journal commit threads holds
2061          * this lock and will ask for the page lock when flushing the data.
2062          * put it here to preserve the unlock order.
2063          */
2064         ocfs2_unlock_pages(wc);
2065
2066         if (handle)
2067                 ocfs2_commit_trans(osb, handle);
2068
2069         ocfs2_run_deallocs(osb, &wc->w_dealloc);
2070
2071         brelse(wc->w_di_bh);
2072         kfree(wc);
2073
2074         return copied;
2075 }
2076
2077 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2078                            loff_t pos, unsigned len, unsigned copied,
2079                            struct page *page, void *fsdata)
2080 {
2081         int ret;
2082         struct inode *inode = mapping->host;
2083
2084         ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata);
2085
2086         up_write(&OCFS2_I(inode)->ip_alloc_sem);
2087         ocfs2_inode_unlock(inode, 1);
2088
2089         return ret;
2090 }
2091
2092 struct ocfs2_dio_write_ctxt {
2093         struct list_head        dw_zero_list;
2094         unsigned                dw_zero_count;
2095         int                     dw_orphaned;
2096         pid_t                   dw_writer_pid;
2097 };
2098
2099 static struct ocfs2_dio_write_ctxt *
2100 ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
2101 {
2102         struct ocfs2_dio_write_ctxt *dwc = NULL;
2103
2104         if (bh->b_private)
2105                 return bh->b_private;
2106
2107         dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
2108         if (dwc == NULL)
2109                 return NULL;
2110         INIT_LIST_HEAD(&dwc->dw_zero_list);
2111         dwc->dw_zero_count = 0;
2112         dwc->dw_orphaned = 0;
2113         dwc->dw_writer_pid = task_pid_nr(current);
2114         bh->b_private = dwc;
2115         *alloc = 1;
2116
2117         return dwc;
2118 }
2119
2120 static void ocfs2_dio_free_write_ctx(struct inode *inode,
2121                                      struct ocfs2_dio_write_ctxt *dwc)
2122 {
2123         ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
2124         kfree(dwc);
2125 }
2126
2127 /*
2128  * TODO: Make this into a generic get_blocks function.
2129  *
2130  * From do_direct_io in direct-io.c:
2131  *  "So what we do is to permit the ->get_blocks function to populate
2132  *   bh.b_size with the size of IO which is permitted at this offset and
2133  *   this i_blkbits."
2134  *
2135  * This function is called directly from get_more_blocks in direct-io.c.
2136  *
2137  * called like this: dio->get_blocks(dio->inode, fs_startblk,
2138  *                                      fs_count, map_bh, dio->rw == WRITE);
2139  */
2140 static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock,
2141                                struct buffer_head *bh_result, int create)
2142 {
2143         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2144         struct ocfs2_inode_info *oi = OCFS2_I(inode);
2145         struct ocfs2_write_ctxt *wc;
2146         struct ocfs2_write_cluster_desc *desc = NULL;
2147         struct ocfs2_dio_write_ctxt *dwc = NULL;
2148         struct buffer_head *di_bh = NULL;
2149         u64 p_blkno;
2150         unsigned int i_blkbits = inode->i_sb->s_blocksize_bits;
2151         loff_t pos = iblock << i_blkbits;
2152         sector_t endblk = (i_size_read(inode) - 1) >> i_blkbits;
2153         unsigned len, total_len = bh_result->b_size;
2154         int ret = 0, first_get_block = 0;
2155
2156         len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
2157         len = min(total_len, len);
2158
2159         /*
2160          * bh_result->b_size is count in get_more_blocks according to write
2161          * "pos" and "end", we need map twice to return different buffer state:
2162          * 1. area in file size, not set NEW;
2163          * 2. area out file size, set  NEW.
2164          *
2165          *                 iblock    endblk
2166          * |--------|---------|---------|---------
2167          * |<-------area in file------->|
2168          */
2169
2170         if ((iblock <= endblk) &&
2171             ((iblock + ((len - 1) >> i_blkbits)) > endblk))
2172                 len = (endblk - iblock + 1) << i_blkbits;
2173
2174         mlog(0, "get block of %lu at %llu:%u req %u\n",
2175                         inode->i_ino, pos, len, total_len);
2176
2177         /*
2178          * Because we need to change file size in ocfs2_dio_end_io_write(), or
2179          * we may need to add it to orphan dir. So can not fall to fast path
2180          * while file size will be changed.
2181          */
2182         if (pos + total_len <= i_size_read(inode)) {
2183
2184                 /* This is the fast path for re-write. */
2185                 ret = ocfs2_lock_get_block(inode, iblock, bh_result, create);
2186                 if (buffer_mapped(bh_result) &&
2187                     !buffer_new(bh_result) &&
2188                     ret == 0)
2189                         goto out;
2190
2191                 /* Clear state set by ocfs2_get_block. */
2192                 bh_result->b_state = 0;
2193         }
2194
2195         dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
2196         if (unlikely(dwc == NULL)) {
2197                 ret = -ENOMEM;
2198                 mlog_errno(ret);
2199                 goto out;
2200         }
2201
2202         if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
2203             ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
2204             !dwc->dw_orphaned) {
2205                 /*
2206                  * when we are going to alloc extents beyond file size, add the
2207                  * inode to orphan dir, so we can recall those spaces when
2208                  * system crashed during write.
2209                  */
2210                 ret = ocfs2_add_inode_to_orphan(osb, inode);
2211                 if (ret < 0) {
2212                         mlog_errno(ret);
2213                         goto out;
2214                 }
2215                 dwc->dw_orphaned = 1;
2216         }
2217
2218         ret = ocfs2_inode_lock(inode, &di_bh, 1);
2219         if (ret) {
2220                 mlog_errno(ret);
2221                 goto out;
2222         }
2223
2224         down_write(&oi->ip_alloc_sem);
2225
2226         if (first_get_block) {
2227                 if (ocfs2_sparse_alloc(osb))
2228                         ret = ocfs2_zero_tail(inode, di_bh, pos);
2229                 else
2230                         ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
2231                                                            total_len, NULL);
2232                 if (ret < 0) {
2233                         mlog_errno(ret);
2234                         goto unlock;
2235                 }
2236         }
2237
2238         ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
2239                                        OCFS2_WRITE_DIRECT, NULL,
2240                                        (void **)&wc, di_bh, NULL);
2241         if (ret) {
2242                 mlog_errno(ret);
2243                 goto unlock;
2244         }
2245
2246         desc = &wc->w_desc[0];
2247
2248         p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
2249         BUG_ON(p_blkno == 0);
2250         p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
2251
2252         map_bh(bh_result, inode->i_sb, p_blkno);
2253         bh_result->b_size = len;
2254         if (desc->c_needs_zero)
2255                 set_buffer_new(bh_result);
2256
2257         if (iblock > endblk)
2258                 set_buffer_new(bh_result);
2259
2260         /* May sleep in end_io. It should not happen in a irq context. So defer
2261          * it to dio work queue. */
2262         set_buffer_defer_completion(bh_result);
2263
2264         if (!list_empty(&wc->w_unwritten_list)) {
2265                 struct ocfs2_unwritten_extent *ue = NULL;
2266
2267                 ue = list_first_entry(&wc->w_unwritten_list,
2268                                       struct ocfs2_unwritten_extent,
2269                                       ue_node);
2270                 BUG_ON(ue->ue_cpos != desc->c_cpos);
2271                 /* The physical address may be 0, fill it. */
2272                 ue->ue_phys = desc->c_phys;
2273
2274                 list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
2275                 dwc->dw_zero_count += wc->w_unwritten_count;
2276         }
2277
2278         ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc);
2279         BUG_ON(ret != len);
2280         ret = 0;
2281 unlock:
2282         up_write(&oi->ip_alloc_sem);
2283         ocfs2_inode_unlock(inode, 1);
2284         brelse(di_bh);
2285 out:
2286         if (ret < 0)
2287                 ret = -EIO;
2288         return ret;
2289 }
2290
2291 static int ocfs2_dio_end_io_write(struct inode *inode,
2292                                   struct ocfs2_dio_write_ctxt *dwc,
2293                                   loff_t offset,
2294                                   ssize_t bytes)
2295 {
2296         struct ocfs2_cached_dealloc_ctxt dealloc;
2297         struct ocfs2_extent_tree et;
2298         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2299         struct ocfs2_inode_info *oi = OCFS2_I(inode);
2300         struct ocfs2_unwritten_extent *ue = NULL;
2301         struct buffer_head *di_bh = NULL;
2302         struct ocfs2_dinode *di;
2303         struct ocfs2_alloc_context *data_ac = NULL;
2304         struct ocfs2_alloc_context *meta_ac = NULL;
2305         handle_t *handle = NULL;
2306         loff_t end = offset + bytes;
2307         int ret = 0, credits = 0;
2308
2309         ocfs2_init_dealloc_ctxt(&dealloc);
2310
2311         /* We do clear unwritten, delete orphan, change i_size here. If neither
2312          * of these happen, we can skip all this. */
2313         if (list_empty(&dwc->dw_zero_list) &&
2314             end <= i_size_read(inode) &&
2315             !dwc->dw_orphaned)
2316                 goto out;
2317
2318         ret = ocfs2_inode_lock(inode, &di_bh, 1);
2319         if (ret < 0) {
2320                 mlog_errno(ret);
2321                 goto out;
2322         }
2323
2324         down_write(&oi->ip_alloc_sem);
2325
2326         /* Delete orphan before acquire i_rwsem. */
2327         if (dwc->dw_orphaned) {
2328                 BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
2329
2330                 end = end > i_size_read(inode) ? end : 0;
2331
2332                 ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
2333                                 !!end, end);
2334                 if (ret < 0)
2335                         mlog_errno(ret);
2336         }
2337
2338         di = (struct ocfs2_dinode *)di_bh->b_data;
2339
2340         ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
2341
2342         /* Attach dealloc with extent tree in case that we may reuse extents
2343          * which are already unlinked from current extent tree due to extent
2344          * rotation and merging.
2345          */
2346         et.et_dealloc = &dealloc;
2347
2348         ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
2349                                     &data_ac, &meta_ac);
2350         if (ret) {
2351                 mlog_errno(ret);
2352                 goto unlock;
2353         }
2354
2355         credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
2356
2357         handle = ocfs2_start_trans(osb, credits);
2358         if (IS_ERR(handle)) {
2359                 ret = PTR_ERR(handle);
2360                 mlog_errno(ret);
2361                 goto unlock;
2362         }
2363         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
2364                                       OCFS2_JOURNAL_ACCESS_WRITE);
2365         if (ret) {
2366                 mlog_errno(ret);
2367                 goto commit;
2368         }
2369
2370         list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
2371                 ret = ocfs2_mark_extent_written(inode, &et, handle,
2372                                                 ue->ue_cpos, 1,
2373                                                 ue->ue_phys,
2374                                                 meta_ac, &dealloc);
2375                 if (ret < 0) {
2376                         mlog_errno(ret);
2377                         break;
2378                 }
2379         }
2380
2381         if (end > i_size_read(inode)) {
2382                 ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
2383                 if (ret < 0)
2384                         mlog_errno(ret);
2385         }
2386 commit:
2387         ocfs2_commit_trans(osb, handle);
2388 unlock:
2389         up_write(&oi->ip_alloc_sem);
2390         ocfs2_inode_unlock(inode, 1);
2391         brelse(di_bh);
2392 out:
2393         if (data_ac)
2394                 ocfs2_free_alloc_context(data_ac);
2395         if (meta_ac)
2396                 ocfs2_free_alloc_context(meta_ac);
2397         ocfs2_run_deallocs(osb, &dealloc);
2398         ocfs2_dio_free_write_ctx(inode, dwc);
2399
2400         return ret;
2401 }
2402
2403 /*
2404  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
2405  * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
2406  * to protect io on one node from truncation on another.
2407  */
2408 static int ocfs2_dio_end_io(struct kiocb *iocb,
2409                             loff_t offset,
2410                             ssize_t bytes,
2411                             void *private)
2412 {
2413         struct inode *inode = file_inode(iocb->ki_filp);
2414         int level;
2415         int ret = 0;
2416
2417         /* this io's submitter should not have unlocked this before we could */
2418         BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
2419
2420         if (bytes <= 0)
2421                 mlog_ratelimited(ML_ERROR, "Direct IO failed, bytes = %lld",
2422                                  (long long)bytes);
2423         if (private) {
2424                 if (bytes > 0)
2425                         ret = ocfs2_dio_end_io_write(inode, private, offset,
2426                                                      bytes);
2427                 else
2428                         ocfs2_dio_free_write_ctx(inode, private);
2429         }
2430
2431         ocfs2_iocb_clear_rw_locked(iocb);
2432
2433         level = ocfs2_iocb_rw_locked_level(iocb);
2434         ocfs2_rw_unlock(inode, level);
2435         return ret;
2436 }
2437
2438 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2439 {
2440         struct file *file = iocb->ki_filp;
2441         struct inode *inode = file->f_mapping->host;
2442         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2443         get_block_t *get_block;
2444
2445         /*
2446          * Fallback to buffered I/O if we see an inode without
2447          * extents.
2448          */
2449         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2450                 return 0;
2451
2452         /* Fallback to buffered I/O if we do not support append dio. */
2453         if (iocb->ki_pos + iter->count > i_size_read(inode) &&
2454             !ocfs2_supports_append_dio(osb))
2455                 return 0;
2456
2457         if (iov_iter_rw(iter) == READ)
2458                 get_block = ocfs2_lock_get_block;
2459         else
2460                 get_block = ocfs2_dio_wr_get_block;
2461
2462         return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2463                                     iter, get_block,
2464                                     ocfs2_dio_end_io, 0);
2465 }
2466
2467 const struct address_space_operations ocfs2_aops = {
2468         .dirty_folio            = block_dirty_folio,
2469         .read_folio             = ocfs2_read_folio,
2470         .readahead              = ocfs2_readahead,
2471         .writepages             = ocfs2_writepages,
2472         .write_begin            = ocfs2_write_begin,
2473         .write_end              = ocfs2_write_end,
2474         .bmap                   = ocfs2_bmap,
2475         .direct_IO              = ocfs2_direct_IO,
2476         .invalidate_folio       = block_invalidate_folio,
2477         .release_folio          = ocfs2_release_folio,
2478         .migrate_folio          = buffer_migrate_folio,
2479         .is_partially_uptodate  = block_is_partially_uptodate,
2480         .error_remove_folio     = generic_error_remove_folio,
2481 };