nilfs2: use pagevec_lookup_range_tag()
[sfrench/cifs-2.6.git] / fs / nilfs2 / segment.c
1 /*
2  * segment.c - NILFS segment constructor.
3  *
4  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * Written by Ryusuke Konishi.
17  *
18  */
19
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/writeback.h>
23 #include <linux/bitops.h>
24 #include <linux/bio.h>
25 #include <linux/completion.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/freezer.h>
29 #include <linux/kthread.h>
30 #include <linux/crc32.h>
31 #include <linux/pagevec.h>
32 #include <linux/slab.h>
33 #include <linux/sched/signal.h>
34
35 #include "nilfs.h"
36 #include "btnode.h"
37 #include "page.h"
38 #include "segment.h"
39 #include "sufile.h"
40 #include "cpfile.h"
41 #include "ifile.h"
42 #include "segbuf.h"
43
44
45 /*
46  * Segment constructor
47  */
48 #define SC_N_INODEVEC   16   /* Size of locally allocated inode vector */
49
50 #define SC_MAX_SEGDELTA 64   /*
51                               * Upper limit of the number of segments
52                               * appended in collection retry loop
53                               */
54
55 /* Construction mode */
56 enum {
57         SC_LSEG_SR = 1, /* Make a logical segment having a super root */
58         SC_LSEG_DSYNC,  /*
59                          * Flush data blocks of a given file and make
60                          * a logical segment without a super root.
61                          */
62         SC_FLUSH_FILE,  /*
63                          * Flush data files, leads to segment writes without
64                          * creating a checkpoint.
65                          */
66         SC_FLUSH_DAT,   /*
67                          * Flush DAT file.  This also creates segments
68                          * without a checkpoint.
69                          */
70 };
71
72 /* Stage numbers of dirty block collection */
73 enum {
74         NILFS_ST_INIT = 0,
75         NILFS_ST_GC,            /* Collecting dirty blocks for GC */
76         NILFS_ST_FILE,
77         NILFS_ST_IFILE,
78         NILFS_ST_CPFILE,
79         NILFS_ST_SUFILE,
80         NILFS_ST_DAT,
81         NILFS_ST_SR,            /* Super root */
82         NILFS_ST_DSYNC,         /* Data sync blocks */
83         NILFS_ST_DONE,
84 };
85
86 #define CREATE_TRACE_POINTS
87 #include <trace/events/nilfs2.h>
88
89 /*
90  * nilfs_sc_cstage_inc(), nilfs_sc_cstage_set(), nilfs_sc_cstage_get() are
91  * wrapper functions of stage count (nilfs_sc_info->sc_stage.scnt). Users of
92  * the variable must use them because transition of stage count must involve
93  * trace events (trace_nilfs2_collection_stage_transition).
94  *
95  * nilfs_sc_cstage_get() isn't required for the above purpose because it doesn't
96  * produce tracepoint events. It is provided just for making the intention
97  * clear.
98  */
99 static inline void nilfs_sc_cstage_inc(struct nilfs_sc_info *sci)
100 {
101         sci->sc_stage.scnt++;
102         trace_nilfs2_collection_stage_transition(sci);
103 }
104
105 static inline void nilfs_sc_cstage_set(struct nilfs_sc_info *sci, int next_scnt)
106 {
107         sci->sc_stage.scnt = next_scnt;
108         trace_nilfs2_collection_stage_transition(sci);
109 }
110
111 static inline int nilfs_sc_cstage_get(struct nilfs_sc_info *sci)
112 {
113         return sci->sc_stage.scnt;
114 }
115
116 /* State flags of collection */
117 #define NILFS_CF_NODE           0x0001  /* Collecting node blocks */
118 #define NILFS_CF_IFILE_STARTED  0x0002  /* IFILE stage has started */
119 #define NILFS_CF_SUFREED        0x0004  /* segment usages has been freed */
120 #define NILFS_CF_HISTORY_MASK   (NILFS_CF_IFILE_STARTED | NILFS_CF_SUFREED)
121
122 /* Operations depending on the construction mode and file type */
123 struct nilfs_sc_operations {
124         int (*collect_data)(struct nilfs_sc_info *, struct buffer_head *,
125                             struct inode *);
126         int (*collect_node)(struct nilfs_sc_info *, struct buffer_head *,
127                             struct inode *);
128         int (*collect_bmap)(struct nilfs_sc_info *, struct buffer_head *,
129                             struct inode *);
130         void (*write_data_binfo)(struct nilfs_sc_info *,
131                                  struct nilfs_segsum_pointer *,
132                                  union nilfs_binfo *);
133         void (*write_node_binfo)(struct nilfs_sc_info *,
134                                  struct nilfs_segsum_pointer *,
135                                  union nilfs_binfo *);
136 };
137
138 /*
139  * Other definitions
140  */
141 static void nilfs_segctor_start_timer(struct nilfs_sc_info *);
142 static void nilfs_segctor_do_flush(struct nilfs_sc_info *, int);
143 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *);
144 static void nilfs_dispose_list(struct the_nilfs *, struct list_head *, int);
145
146 #define nilfs_cnt32_gt(a, b)   \
147         (typecheck(__u32, a) && typecheck(__u32, b) && \
148          ((__s32)(b) - (__s32)(a) < 0))
149 #define nilfs_cnt32_ge(a, b)   \
150         (typecheck(__u32, a) && typecheck(__u32, b) && \
151          ((__s32)(a) - (__s32)(b) >= 0))
152 #define nilfs_cnt32_lt(a, b)  nilfs_cnt32_gt(b, a)
153 #define nilfs_cnt32_le(a, b)  nilfs_cnt32_ge(b, a)
154
155 static int nilfs_prepare_segment_lock(struct super_block *sb,
156                                       struct nilfs_transaction_info *ti)
157 {
158         struct nilfs_transaction_info *cur_ti = current->journal_info;
159         void *save = NULL;
160
161         if (cur_ti) {
162                 if (cur_ti->ti_magic == NILFS_TI_MAGIC)
163                         return ++cur_ti->ti_count;
164
165                 /*
166                  * If journal_info field is occupied by other FS,
167                  * it is saved and will be restored on
168                  * nilfs_transaction_commit().
169                  */
170                 nilfs_msg(sb, KERN_WARNING, "journal info from a different FS");
171                 save = current->journal_info;
172         }
173         if (!ti) {
174                 ti = kmem_cache_alloc(nilfs_transaction_cachep, GFP_NOFS);
175                 if (!ti)
176                         return -ENOMEM;
177                 ti->ti_flags = NILFS_TI_DYNAMIC_ALLOC;
178         } else {
179                 ti->ti_flags = 0;
180         }
181         ti->ti_count = 0;
182         ti->ti_save = save;
183         ti->ti_magic = NILFS_TI_MAGIC;
184         current->journal_info = ti;
185         return 0;
186 }
187
188 /**
189  * nilfs_transaction_begin - start indivisible file operations.
190  * @sb: super block
191  * @ti: nilfs_transaction_info
192  * @vacancy_check: flags for vacancy rate checks
193  *
194  * nilfs_transaction_begin() acquires a reader/writer semaphore, called
195  * the segment semaphore, to make a segment construction and write tasks
196  * exclusive.  The function is used with nilfs_transaction_commit() in pairs.
197  * The region enclosed by these two functions can be nested.  To avoid a
198  * deadlock, the semaphore is only acquired or released in the outermost call.
199  *
200  * This function allocates a nilfs_transaction_info struct to keep context
201  * information on it.  It is initialized and hooked onto the current task in
202  * the outermost call.  If a pre-allocated struct is given to @ti, it is used
203  * instead; otherwise a new struct is assigned from a slab.
204  *
205  * When @vacancy_check flag is set, this function will check the amount of
206  * free space, and will wait for the GC to reclaim disk space if low capacity.
207  *
208  * Return Value: On success, 0 is returned. On error, one of the following
209  * negative error code is returned.
210  *
211  * %-ENOMEM - Insufficient memory available.
212  *
213  * %-ENOSPC - No space left on device
214  */
215 int nilfs_transaction_begin(struct super_block *sb,
216                             struct nilfs_transaction_info *ti,
217                             int vacancy_check)
218 {
219         struct the_nilfs *nilfs;
220         int ret = nilfs_prepare_segment_lock(sb, ti);
221         struct nilfs_transaction_info *trace_ti;
222
223         if (unlikely(ret < 0))
224                 return ret;
225         if (ret > 0) {
226                 trace_ti = current->journal_info;
227
228                 trace_nilfs2_transaction_transition(sb, trace_ti,
229                                     trace_ti->ti_count, trace_ti->ti_flags,
230                                     TRACE_NILFS2_TRANSACTION_BEGIN);
231                 return 0;
232         }
233
234         sb_start_intwrite(sb);
235
236         nilfs = sb->s_fs_info;
237         down_read(&nilfs->ns_segctor_sem);
238         if (vacancy_check && nilfs_near_disk_full(nilfs)) {
239                 up_read(&nilfs->ns_segctor_sem);
240                 ret = -ENOSPC;
241                 goto failed;
242         }
243
244         trace_ti = current->journal_info;
245         trace_nilfs2_transaction_transition(sb, trace_ti, trace_ti->ti_count,
246                                             trace_ti->ti_flags,
247                                             TRACE_NILFS2_TRANSACTION_BEGIN);
248         return 0;
249
250  failed:
251         ti = current->journal_info;
252         current->journal_info = ti->ti_save;
253         if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
254                 kmem_cache_free(nilfs_transaction_cachep, ti);
255         sb_end_intwrite(sb);
256         return ret;
257 }
258
259 /**
260  * nilfs_transaction_commit - commit indivisible file operations.
261  * @sb: super block
262  *
263  * nilfs_transaction_commit() releases the read semaphore which is
264  * acquired by nilfs_transaction_begin(). This is only performed
265  * in outermost call of this function.  If a commit flag is set,
266  * nilfs_transaction_commit() sets a timer to start the segment
267  * constructor.  If a sync flag is set, it starts construction
268  * directly.
269  */
270 int nilfs_transaction_commit(struct super_block *sb)
271 {
272         struct nilfs_transaction_info *ti = current->journal_info;
273         struct the_nilfs *nilfs = sb->s_fs_info;
274         int err = 0;
275
276         BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
277         ti->ti_flags |= NILFS_TI_COMMIT;
278         if (ti->ti_count > 0) {
279                 ti->ti_count--;
280                 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
281                             ti->ti_flags, TRACE_NILFS2_TRANSACTION_COMMIT);
282                 return 0;
283         }
284         if (nilfs->ns_writer) {
285                 struct nilfs_sc_info *sci = nilfs->ns_writer;
286
287                 if (ti->ti_flags & NILFS_TI_COMMIT)
288                         nilfs_segctor_start_timer(sci);
289                 if (atomic_read(&nilfs->ns_ndirtyblks) > sci->sc_watermark)
290                         nilfs_segctor_do_flush(sci, 0);
291         }
292         up_read(&nilfs->ns_segctor_sem);
293         trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
294                             ti->ti_flags, TRACE_NILFS2_TRANSACTION_COMMIT);
295
296         current->journal_info = ti->ti_save;
297
298         if (ti->ti_flags & NILFS_TI_SYNC)
299                 err = nilfs_construct_segment(sb);
300         if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
301                 kmem_cache_free(nilfs_transaction_cachep, ti);
302         sb_end_intwrite(sb);
303         return err;
304 }
305
306 void nilfs_transaction_abort(struct super_block *sb)
307 {
308         struct nilfs_transaction_info *ti = current->journal_info;
309         struct the_nilfs *nilfs = sb->s_fs_info;
310
311         BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
312         if (ti->ti_count > 0) {
313                 ti->ti_count--;
314                 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
315                             ti->ti_flags, TRACE_NILFS2_TRANSACTION_ABORT);
316                 return;
317         }
318         up_read(&nilfs->ns_segctor_sem);
319
320         trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
321                     ti->ti_flags, TRACE_NILFS2_TRANSACTION_ABORT);
322
323         current->journal_info = ti->ti_save;
324         if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
325                 kmem_cache_free(nilfs_transaction_cachep, ti);
326         sb_end_intwrite(sb);
327 }
328
329 void nilfs_relax_pressure_in_lock(struct super_block *sb)
330 {
331         struct the_nilfs *nilfs = sb->s_fs_info;
332         struct nilfs_sc_info *sci = nilfs->ns_writer;
333
334         if (!sci || !sci->sc_flush_request)
335                 return;
336
337         set_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
338         up_read(&nilfs->ns_segctor_sem);
339
340         down_write(&nilfs->ns_segctor_sem);
341         if (sci->sc_flush_request &&
342             test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) {
343                 struct nilfs_transaction_info *ti = current->journal_info;
344
345                 ti->ti_flags |= NILFS_TI_WRITER;
346                 nilfs_segctor_do_immediate_flush(sci);
347                 ti->ti_flags &= ~NILFS_TI_WRITER;
348         }
349         downgrade_write(&nilfs->ns_segctor_sem);
350 }
351
352 static void nilfs_transaction_lock(struct super_block *sb,
353                                    struct nilfs_transaction_info *ti,
354                                    int gcflag)
355 {
356         struct nilfs_transaction_info *cur_ti = current->journal_info;
357         struct the_nilfs *nilfs = sb->s_fs_info;
358         struct nilfs_sc_info *sci = nilfs->ns_writer;
359
360         WARN_ON(cur_ti);
361         ti->ti_flags = NILFS_TI_WRITER;
362         ti->ti_count = 0;
363         ti->ti_save = cur_ti;
364         ti->ti_magic = NILFS_TI_MAGIC;
365         current->journal_info = ti;
366
367         for (;;) {
368                 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
369                             ti->ti_flags, TRACE_NILFS2_TRANSACTION_TRYLOCK);
370
371                 down_write(&nilfs->ns_segctor_sem);
372                 if (!test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags))
373                         break;
374
375                 nilfs_segctor_do_immediate_flush(sci);
376
377                 up_write(&nilfs->ns_segctor_sem);
378                 cond_resched();
379         }
380         if (gcflag)
381                 ti->ti_flags |= NILFS_TI_GC;
382
383         trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
384                             ti->ti_flags, TRACE_NILFS2_TRANSACTION_LOCK);
385 }
386
387 static void nilfs_transaction_unlock(struct super_block *sb)
388 {
389         struct nilfs_transaction_info *ti = current->journal_info;
390         struct the_nilfs *nilfs = sb->s_fs_info;
391
392         BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
393         BUG_ON(ti->ti_count > 0);
394
395         up_write(&nilfs->ns_segctor_sem);
396         current->journal_info = ti->ti_save;
397
398         trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
399                             ti->ti_flags, TRACE_NILFS2_TRANSACTION_UNLOCK);
400 }
401
402 static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info *sci,
403                                             struct nilfs_segsum_pointer *ssp,
404                                             unsigned int bytes)
405 {
406         struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
407         unsigned int blocksize = sci->sc_super->s_blocksize;
408         void *p;
409
410         if (unlikely(ssp->offset + bytes > blocksize)) {
411                 ssp->offset = 0;
412                 BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp->bh,
413                                                &segbuf->sb_segsum_buffers));
414                 ssp->bh = NILFS_SEGBUF_NEXT_BH(ssp->bh);
415         }
416         p = ssp->bh->b_data + ssp->offset;
417         ssp->offset += bytes;
418         return p;
419 }
420
421 /**
422  * nilfs_segctor_reset_segment_buffer - reset the current segment buffer
423  * @sci: nilfs_sc_info
424  */
425 static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info *sci)
426 {
427         struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
428         struct buffer_head *sumbh;
429         unsigned int sumbytes;
430         unsigned int flags = 0;
431         int err;
432
433         if (nilfs_doing_gc())
434                 flags = NILFS_SS_GC;
435         err = nilfs_segbuf_reset(segbuf, flags, sci->sc_seg_ctime, sci->sc_cno);
436         if (unlikely(err))
437                 return err;
438
439         sumbh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
440         sumbytes = segbuf->sb_sum.sumbytes;
441         sci->sc_finfo_ptr.bh = sumbh;  sci->sc_finfo_ptr.offset = sumbytes;
442         sci->sc_binfo_ptr.bh = sumbh;  sci->sc_binfo_ptr.offset = sumbytes;
443         sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
444         return 0;
445 }
446
447 static int nilfs_segctor_feed_segment(struct nilfs_sc_info *sci)
448 {
449         sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
450         if (NILFS_SEGBUF_IS_LAST(sci->sc_curseg, &sci->sc_segbufs))
451                 return -E2BIG; /*
452                                 * The current segment is filled up
453                                 * (internal code)
454                                 */
455         sci->sc_curseg = NILFS_NEXT_SEGBUF(sci->sc_curseg);
456         return nilfs_segctor_reset_segment_buffer(sci);
457 }
458
459 static int nilfs_segctor_add_super_root(struct nilfs_sc_info *sci)
460 {
461         struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
462         int err;
463
464         if (segbuf->sb_sum.nblocks >= segbuf->sb_rest_blocks) {
465                 err = nilfs_segctor_feed_segment(sci);
466                 if (err)
467                         return err;
468                 segbuf = sci->sc_curseg;
469         }
470         err = nilfs_segbuf_extend_payload(segbuf, &segbuf->sb_super_root);
471         if (likely(!err))
472                 segbuf->sb_sum.flags |= NILFS_SS_SR;
473         return err;
474 }
475
476 /*
477  * Functions for making segment summary and payloads
478  */
479 static int nilfs_segctor_segsum_block_required(
480         struct nilfs_sc_info *sci, const struct nilfs_segsum_pointer *ssp,
481         unsigned int binfo_size)
482 {
483         unsigned int blocksize = sci->sc_super->s_blocksize;
484         /* Size of finfo and binfo is enough small against blocksize */
485
486         return ssp->offset + binfo_size +
487                 (!sci->sc_blk_cnt ? sizeof(struct nilfs_finfo) : 0) >
488                 blocksize;
489 }
490
491 static void nilfs_segctor_begin_finfo(struct nilfs_sc_info *sci,
492                                       struct inode *inode)
493 {
494         sci->sc_curseg->sb_sum.nfinfo++;
495         sci->sc_binfo_ptr = sci->sc_finfo_ptr;
496         nilfs_segctor_map_segsum_entry(
497                 sci, &sci->sc_binfo_ptr, sizeof(struct nilfs_finfo));
498
499         if (NILFS_I(inode)->i_root &&
500             !test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
501                 set_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
502         /* skip finfo */
503 }
504
505 static void nilfs_segctor_end_finfo(struct nilfs_sc_info *sci,
506                                     struct inode *inode)
507 {
508         struct nilfs_finfo *finfo;
509         struct nilfs_inode_info *ii;
510         struct nilfs_segment_buffer *segbuf;
511         __u64 cno;
512
513         if (sci->sc_blk_cnt == 0)
514                 return;
515
516         ii = NILFS_I(inode);
517
518         if (test_bit(NILFS_I_GCINODE, &ii->i_state))
519                 cno = ii->i_cno;
520         else if (NILFS_ROOT_METADATA_FILE(inode->i_ino))
521                 cno = 0;
522         else
523                 cno = sci->sc_cno;
524
525         finfo = nilfs_segctor_map_segsum_entry(sci, &sci->sc_finfo_ptr,
526                                                  sizeof(*finfo));
527         finfo->fi_ino = cpu_to_le64(inode->i_ino);
528         finfo->fi_nblocks = cpu_to_le32(sci->sc_blk_cnt);
529         finfo->fi_ndatablk = cpu_to_le32(sci->sc_datablk_cnt);
530         finfo->fi_cno = cpu_to_le64(cno);
531
532         segbuf = sci->sc_curseg;
533         segbuf->sb_sum.sumbytes = sci->sc_binfo_ptr.offset +
534                 sci->sc_super->s_blocksize * (segbuf->sb_sum.nsumblk - 1);
535         sci->sc_finfo_ptr = sci->sc_binfo_ptr;
536         sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
537 }
538
539 static int nilfs_segctor_add_file_block(struct nilfs_sc_info *sci,
540                                         struct buffer_head *bh,
541                                         struct inode *inode,
542                                         unsigned int binfo_size)
543 {
544         struct nilfs_segment_buffer *segbuf;
545         int required, err = 0;
546
547  retry:
548         segbuf = sci->sc_curseg;
549         required = nilfs_segctor_segsum_block_required(
550                 sci, &sci->sc_binfo_ptr, binfo_size);
551         if (segbuf->sb_sum.nblocks + required + 1 > segbuf->sb_rest_blocks) {
552                 nilfs_segctor_end_finfo(sci, inode);
553                 err = nilfs_segctor_feed_segment(sci);
554                 if (err)
555                         return err;
556                 goto retry;
557         }
558         if (unlikely(required)) {
559                 err = nilfs_segbuf_extend_segsum(segbuf);
560                 if (unlikely(err))
561                         goto failed;
562         }
563         if (sci->sc_blk_cnt == 0)
564                 nilfs_segctor_begin_finfo(sci, inode);
565
566         nilfs_segctor_map_segsum_entry(sci, &sci->sc_binfo_ptr, binfo_size);
567         /* Substitution to vblocknr is delayed until update_blocknr() */
568         nilfs_segbuf_add_file_buffer(segbuf, bh);
569         sci->sc_blk_cnt++;
570  failed:
571         return err;
572 }
573
574 /*
575  * Callback functions that enumerate, mark, and collect dirty blocks
576  */
577 static int nilfs_collect_file_data(struct nilfs_sc_info *sci,
578                                    struct buffer_head *bh, struct inode *inode)
579 {
580         int err;
581
582         err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
583         if (err < 0)
584                 return err;
585
586         err = nilfs_segctor_add_file_block(sci, bh, inode,
587                                            sizeof(struct nilfs_binfo_v));
588         if (!err)
589                 sci->sc_datablk_cnt++;
590         return err;
591 }
592
593 static int nilfs_collect_file_node(struct nilfs_sc_info *sci,
594                                    struct buffer_head *bh,
595                                    struct inode *inode)
596 {
597         return nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
598 }
599
600 static int nilfs_collect_file_bmap(struct nilfs_sc_info *sci,
601                                    struct buffer_head *bh,
602                                    struct inode *inode)
603 {
604         WARN_ON(!buffer_dirty(bh));
605         return nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
606 }
607
608 static void nilfs_write_file_data_binfo(struct nilfs_sc_info *sci,
609                                         struct nilfs_segsum_pointer *ssp,
610                                         union nilfs_binfo *binfo)
611 {
612         struct nilfs_binfo_v *binfo_v = nilfs_segctor_map_segsum_entry(
613                 sci, ssp, sizeof(*binfo_v));
614         *binfo_v = binfo->bi_v;
615 }
616
617 static void nilfs_write_file_node_binfo(struct nilfs_sc_info *sci,
618                                         struct nilfs_segsum_pointer *ssp,
619                                         union nilfs_binfo *binfo)
620 {
621         __le64 *vblocknr = nilfs_segctor_map_segsum_entry(
622                 sci, ssp, sizeof(*vblocknr));
623         *vblocknr = binfo->bi_v.bi_vblocknr;
624 }
625
626 static const struct nilfs_sc_operations nilfs_sc_file_ops = {
627         .collect_data = nilfs_collect_file_data,
628         .collect_node = nilfs_collect_file_node,
629         .collect_bmap = nilfs_collect_file_bmap,
630         .write_data_binfo = nilfs_write_file_data_binfo,
631         .write_node_binfo = nilfs_write_file_node_binfo,
632 };
633
634 static int nilfs_collect_dat_data(struct nilfs_sc_info *sci,
635                                   struct buffer_head *bh, struct inode *inode)
636 {
637         int err;
638
639         err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
640         if (err < 0)
641                 return err;
642
643         err = nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
644         if (!err)
645                 sci->sc_datablk_cnt++;
646         return err;
647 }
648
649 static int nilfs_collect_dat_bmap(struct nilfs_sc_info *sci,
650                                   struct buffer_head *bh, struct inode *inode)
651 {
652         WARN_ON(!buffer_dirty(bh));
653         return nilfs_segctor_add_file_block(sci, bh, inode,
654                                             sizeof(struct nilfs_binfo_dat));
655 }
656
657 static void nilfs_write_dat_data_binfo(struct nilfs_sc_info *sci,
658                                        struct nilfs_segsum_pointer *ssp,
659                                        union nilfs_binfo *binfo)
660 {
661         __le64 *blkoff = nilfs_segctor_map_segsum_entry(sci, ssp,
662                                                           sizeof(*blkoff));
663         *blkoff = binfo->bi_dat.bi_blkoff;
664 }
665
666 static void nilfs_write_dat_node_binfo(struct nilfs_sc_info *sci,
667                                        struct nilfs_segsum_pointer *ssp,
668                                        union nilfs_binfo *binfo)
669 {
670         struct nilfs_binfo_dat *binfo_dat =
671                 nilfs_segctor_map_segsum_entry(sci, ssp, sizeof(*binfo_dat));
672         *binfo_dat = binfo->bi_dat;
673 }
674
675 static const struct nilfs_sc_operations nilfs_sc_dat_ops = {
676         .collect_data = nilfs_collect_dat_data,
677         .collect_node = nilfs_collect_file_node,
678         .collect_bmap = nilfs_collect_dat_bmap,
679         .write_data_binfo = nilfs_write_dat_data_binfo,
680         .write_node_binfo = nilfs_write_dat_node_binfo,
681 };
682
683 static const struct nilfs_sc_operations nilfs_sc_dsync_ops = {
684         .collect_data = nilfs_collect_file_data,
685         .collect_node = NULL,
686         .collect_bmap = NULL,
687         .write_data_binfo = nilfs_write_file_data_binfo,
688         .write_node_binfo = NULL,
689 };
690
691 static size_t nilfs_lookup_dirty_data_buffers(struct inode *inode,
692                                               struct list_head *listp,
693                                               size_t nlimit,
694                                               loff_t start, loff_t end)
695 {
696         struct address_space *mapping = inode->i_mapping;
697         struct pagevec pvec;
698         pgoff_t index = 0, last = ULONG_MAX;
699         size_t ndirties = 0;
700         int i;
701
702         if (unlikely(start != 0 || end != LLONG_MAX)) {
703                 /*
704                  * A valid range is given for sync-ing data pages. The
705                  * range is rounded to per-page; extra dirty buffers
706                  * may be included if blocksize < pagesize.
707                  */
708                 index = start >> PAGE_SHIFT;
709                 last = end >> PAGE_SHIFT;
710         }
711         pagevec_init(&pvec, 0);
712  repeat:
713         if (unlikely(index > last) ||
714             !pagevec_lookup_range_tag(&pvec, mapping, &index, last,
715                                 PAGECACHE_TAG_DIRTY, PAGEVEC_SIZE))
716                 return ndirties;
717
718         for (i = 0; i < pagevec_count(&pvec); i++) {
719                 struct buffer_head *bh, *head;
720                 struct page *page = pvec.pages[i];
721
722                 lock_page(page);
723                 if (!page_has_buffers(page))
724                         create_empty_buffers(page, i_blocksize(inode), 0);
725                 unlock_page(page);
726
727                 bh = head = page_buffers(page);
728                 do {
729                         if (!buffer_dirty(bh) || buffer_async_write(bh))
730                                 continue;
731                         get_bh(bh);
732                         list_add_tail(&bh->b_assoc_buffers, listp);
733                         ndirties++;
734                         if (unlikely(ndirties >= nlimit)) {
735                                 pagevec_release(&pvec);
736                                 cond_resched();
737                                 return ndirties;
738                         }
739                 } while (bh = bh->b_this_page, bh != head);
740         }
741         pagevec_release(&pvec);
742         cond_resched();
743         goto repeat;
744 }
745
746 static void nilfs_lookup_dirty_node_buffers(struct inode *inode,
747                                             struct list_head *listp)
748 {
749         struct nilfs_inode_info *ii = NILFS_I(inode);
750         struct address_space *mapping = &ii->i_btnode_cache;
751         struct pagevec pvec;
752         struct buffer_head *bh, *head;
753         unsigned int i;
754         pgoff_t index = 0;
755
756         pagevec_init(&pvec, 0);
757
758         while (pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
759                                   PAGEVEC_SIZE)) {
760                 for (i = 0; i < pagevec_count(&pvec); i++) {
761                         bh = head = page_buffers(pvec.pages[i]);
762                         do {
763                                 if (buffer_dirty(bh) &&
764                                                 !buffer_async_write(bh)) {
765                                         get_bh(bh);
766                                         list_add_tail(&bh->b_assoc_buffers,
767                                                       listp);
768                                 }
769                                 bh = bh->b_this_page;
770                         } while (bh != head);
771                 }
772                 pagevec_release(&pvec);
773                 cond_resched();
774         }
775 }
776
777 static void nilfs_dispose_list(struct the_nilfs *nilfs,
778                                struct list_head *head, int force)
779 {
780         struct nilfs_inode_info *ii, *n;
781         struct nilfs_inode_info *ivec[SC_N_INODEVEC], **pii;
782         unsigned int nv = 0;
783
784         while (!list_empty(head)) {
785                 spin_lock(&nilfs->ns_inode_lock);
786                 list_for_each_entry_safe(ii, n, head, i_dirty) {
787                         list_del_init(&ii->i_dirty);
788                         if (force) {
789                                 if (unlikely(ii->i_bh)) {
790                                         brelse(ii->i_bh);
791                                         ii->i_bh = NULL;
792                                 }
793                         } else if (test_bit(NILFS_I_DIRTY, &ii->i_state)) {
794                                 set_bit(NILFS_I_QUEUED, &ii->i_state);
795                                 list_add_tail(&ii->i_dirty,
796                                               &nilfs->ns_dirty_files);
797                                 continue;
798                         }
799                         ivec[nv++] = ii;
800                         if (nv == SC_N_INODEVEC)
801                                 break;
802                 }
803                 spin_unlock(&nilfs->ns_inode_lock);
804
805                 for (pii = ivec; nv > 0; pii++, nv--)
806                         iput(&(*pii)->vfs_inode);
807         }
808 }
809
810 static void nilfs_iput_work_func(struct work_struct *work)
811 {
812         struct nilfs_sc_info *sci = container_of(work, struct nilfs_sc_info,
813                                                  sc_iput_work);
814         struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
815
816         nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 0);
817 }
818
819 static int nilfs_test_metadata_dirty(struct the_nilfs *nilfs,
820                                      struct nilfs_root *root)
821 {
822         int ret = 0;
823
824         if (nilfs_mdt_fetch_dirty(root->ifile))
825                 ret++;
826         if (nilfs_mdt_fetch_dirty(nilfs->ns_cpfile))
827                 ret++;
828         if (nilfs_mdt_fetch_dirty(nilfs->ns_sufile))
829                 ret++;
830         if ((ret || nilfs_doing_gc()) && nilfs_mdt_fetch_dirty(nilfs->ns_dat))
831                 ret++;
832         return ret;
833 }
834
835 static int nilfs_segctor_clean(struct nilfs_sc_info *sci)
836 {
837         return list_empty(&sci->sc_dirty_files) &&
838                 !test_bit(NILFS_SC_DIRTY, &sci->sc_flags) &&
839                 sci->sc_nfreesegs == 0 &&
840                 (!nilfs_doing_gc() || list_empty(&sci->sc_gc_inodes));
841 }
842
843 static int nilfs_segctor_confirm(struct nilfs_sc_info *sci)
844 {
845         struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
846         int ret = 0;
847
848         if (nilfs_test_metadata_dirty(nilfs, sci->sc_root))
849                 set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
850
851         spin_lock(&nilfs->ns_inode_lock);
852         if (list_empty(&nilfs->ns_dirty_files) && nilfs_segctor_clean(sci))
853                 ret++;
854
855         spin_unlock(&nilfs->ns_inode_lock);
856         return ret;
857 }
858
859 static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info *sci)
860 {
861         struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
862
863         nilfs_mdt_clear_dirty(sci->sc_root->ifile);
864         nilfs_mdt_clear_dirty(nilfs->ns_cpfile);
865         nilfs_mdt_clear_dirty(nilfs->ns_sufile);
866         nilfs_mdt_clear_dirty(nilfs->ns_dat);
867 }
868
869 static int nilfs_segctor_create_checkpoint(struct nilfs_sc_info *sci)
870 {
871         struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
872         struct buffer_head *bh_cp;
873         struct nilfs_checkpoint *raw_cp;
874         int err;
875
876         /* XXX: this interface will be changed */
877         err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 1,
878                                           &raw_cp, &bh_cp);
879         if (likely(!err)) {
880                 /*
881                  * The following code is duplicated with cpfile.  But, it is
882                  * needed to collect the checkpoint even if it was not newly
883                  * created.
884                  */
885                 mark_buffer_dirty(bh_cp);
886                 nilfs_mdt_mark_dirty(nilfs->ns_cpfile);
887                 nilfs_cpfile_put_checkpoint(
888                         nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
889         } else
890                 WARN_ON(err == -EINVAL || err == -ENOENT);
891
892         return err;
893 }
894
895 static int nilfs_segctor_fill_in_checkpoint(struct nilfs_sc_info *sci)
896 {
897         struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
898         struct buffer_head *bh_cp;
899         struct nilfs_checkpoint *raw_cp;
900         int err;
901
902         err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 0,
903                                           &raw_cp, &bh_cp);
904         if (unlikely(err)) {
905                 WARN_ON(err == -EINVAL || err == -ENOENT);
906                 goto failed_ibh;
907         }
908         raw_cp->cp_snapshot_list.ssl_next = 0;
909         raw_cp->cp_snapshot_list.ssl_prev = 0;
910         raw_cp->cp_inodes_count =
911                 cpu_to_le64(atomic64_read(&sci->sc_root->inodes_count));
912         raw_cp->cp_blocks_count =
913                 cpu_to_le64(atomic64_read(&sci->sc_root->blocks_count));
914         raw_cp->cp_nblk_inc =
915                 cpu_to_le64(sci->sc_nblk_inc + sci->sc_nblk_this_inc);
916         raw_cp->cp_create = cpu_to_le64(sci->sc_seg_ctime);
917         raw_cp->cp_cno = cpu_to_le64(nilfs->ns_cno);
918
919         if (test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
920                 nilfs_checkpoint_clear_minor(raw_cp);
921         else
922                 nilfs_checkpoint_set_minor(raw_cp);
923
924         nilfs_write_inode_common(sci->sc_root->ifile,
925                                  &raw_cp->cp_ifile_inode, 1);
926         nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
927         return 0;
928
929  failed_ibh:
930         return err;
931 }
932
933 static void nilfs_fill_in_file_bmap(struct inode *ifile,
934                                     struct nilfs_inode_info *ii)
935
936 {
937         struct buffer_head *ibh;
938         struct nilfs_inode *raw_inode;
939
940         if (test_bit(NILFS_I_BMAP, &ii->i_state)) {
941                 ibh = ii->i_bh;
942                 BUG_ON(!ibh);
943                 raw_inode = nilfs_ifile_map_inode(ifile, ii->vfs_inode.i_ino,
944                                                   ibh);
945                 nilfs_bmap_write(ii->i_bmap, raw_inode);
946                 nilfs_ifile_unmap_inode(ifile, ii->vfs_inode.i_ino, ibh);
947         }
948 }
949
950 static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info *sci)
951 {
952         struct nilfs_inode_info *ii;
953
954         list_for_each_entry(ii, &sci->sc_dirty_files, i_dirty) {
955                 nilfs_fill_in_file_bmap(sci->sc_root->ifile, ii);
956                 set_bit(NILFS_I_COLLECTED, &ii->i_state);
957         }
958 }
959
960 static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info *sci,
961                                              struct the_nilfs *nilfs)
962 {
963         struct buffer_head *bh_sr;
964         struct nilfs_super_root *raw_sr;
965         unsigned int isz, srsz;
966
967         bh_sr = NILFS_LAST_SEGBUF(&sci->sc_segbufs)->sb_super_root;
968         raw_sr = (struct nilfs_super_root *)bh_sr->b_data;
969         isz = nilfs->ns_inode_size;
970         srsz = NILFS_SR_BYTES(isz);
971
972         raw_sr->sr_bytes = cpu_to_le16(srsz);
973         raw_sr->sr_nongc_ctime
974                 = cpu_to_le64(nilfs_doing_gc() ?
975                               nilfs->ns_nongc_ctime : sci->sc_seg_ctime);
976         raw_sr->sr_flags = 0;
977
978         nilfs_write_inode_common(nilfs->ns_dat, (void *)raw_sr +
979                                  NILFS_SR_DAT_OFFSET(isz), 1);
980         nilfs_write_inode_common(nilfs->ns_cpfile, (void *)raw_sr +
981                                  NILFS_SR_CPFILE_OFFSET(isz), 1);
982         nilfs_write_inode_common(nilfs->ns_sufile, (void *)raw_sr +
983                                  NILFS_SR_SUFILE_OFFSET(isz), 1);
984         memset((void *)raw_sr + srsz, 0, nilfs->ns_blocksize - srsz);
985 }
986
987 static void nilfs_redirty_inodes(struct list_head *head)
988 {
989         struct nilfs_inode_info *ii;
990
991         list_for_each_entry(ii, head, i_dirty) {
992                 if (test_bit(NILFS_I_COLLECTED, &ii->i_state))
993                         clear_bit(NILFS_I_COLLECTED, &ii->i_state);
994         }
995 }
996
997 static void nilfs_drop_collected_inodes(struct list_head *head)
998 {
999         struct nilfs_inode_info *ii;
1000
1001         list_for_each_entry(ii, head, i_dirty) {
1002                 if (!test_and_clear_bit(NILFS_I_COLLECTED, &ii->i_state))
1003                         continue;
1004
1005                 clear_bit(NILFS_I_INODE_SYNC, &ii->i_state);
1006                 set_bit(NILFS_I_UPDATED, &ii->i_state);
1007         }
1008 }
1009
1010 static int nilfs_segctor_apply_buffers(struct nilfs_sc_info *sci,
1011                                        struct inode *inode,
1012                                        struct list_head *listp,
1013                                        int (*collect)(struct nilfs_sc_info *,
1014                                                       struct buffer_head *,
1015                                                       struct inode *))
1016 {
1017         struct buffer_head *bh, *n;
1018         int err = 0;
1019
1020         if (collect) {
1021                 list_for_each_entry_safe(bh, n, listp, b_assoc_buffers) {
1022                         list_del_init(&bh->b_assoc_buffers);
1023                         err = collect(sci, bh, inode);
1024                         brelse(bh);
1025                         if (unlikely(err))
1026                                 goto dispose_buffers;
1027                 }
1028                 return 0;
1029         }
1030
1031  dispose_buffers:
1032         while (!list_empty(listp)) {
1033                 bh = list_first_entry(listp, struct buffer_head,
1034                                       b_assoc_buffers);
1035                 list_del_init(&bh->b_assoc_buffers);
1036                 brelse(bh);
1037         }
1038         return err;
1039 }
1040
1041 static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info *sci)
1042 {
1043         /* Remaining number of blocks within segment buffer */
1044         return sci->sc_segbuf_nblocks -
1045                 (sci->sc_nblk_this_inc + sci->sc_curseg->sb_sum.nblocks);
1046 }
1047
1048 static int nilfs_segctor_scan_file(struct nilfs_sc_info *sci,
1049                                    struct inode *inode,
1050                                    const struct nilfs_sc_operations *sc_ops)
1051 {
1052         LIST_HEAD(data_buffers);
1053         LIST_HEAD(node_buffers);
1054         int err;
1055
1056         if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
1057                 size_t n, rest = nilfs_segctor_buffer_rest(sci);
1058
1059                 n = nilfs_lookup_dirty_data_buffers(
1060                         inode, &data_buffers, rest + 1, 0, LLONG_MAX);
1061                 if (n > rest) {
1062                         err = nilfs_segctor_apply_buffers(
1063                                 sci, inode, &data_buffers,
1064                                 sc_ops->collect_data);
1065                         BUG_ON(!err); /* always receive -E2BIG or true error */
1066                         goto break_or_fail;
1067                 }
1068         }
1069         nilfs_lookup_dirty_node_buffers(inode, &node_buffers);
1070
1071         if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
1072                 err = nilfs_segctor_apply_buffers(
1073                         sci, inode, &data_buffers, sc_ops->collect_data);
1074                 if (unlikely(err)) {
1075                         /* dispose node list */
1076                         nilfs_segctor_apply_buffers(
1077                                 sci, inode, &node_buffers, NULL);
1078                         goto break_or_fail;
1079                 }
1080                 sci->sc_stage.flags |= NILFS_CF_NODE;
1081         }
1082         /* Collect node */
1083         err = nilfs_segctor_apply_buffers(
1084                 sci, inode, &node_buffers, sc_ops->collect_node);
1085         if (unlikely(err))
1086                 goto break_or_fail;
1087
1088         nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode)->i_bmap, &node_buffers);
1089         err = nilfs_segctor_apply_buffers(
1090                 sci, inode, &node_buffers, sc_ops->collect_bmap);
1091         if (unlikely(err))
1092                 goto break_or_fail;
1093
1094         nilfs_segctor_end_finfo(sci, inode);
1095         sci->sc_stage.flags &= ~NILFS_CF_NODE;
1096
1097  break_or_fail:
1098         return err;
1099 }
1100
1101 static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info *sci,
1102                                          struct inode *inode)
1103 {
1104         LIST_HEAD(data_buffers);
1105         size_t n, rest = nilfs_segctor_buffer_rest(sci);
1106         int err;
1107
1108         n = nilfs_lookup_dirty_data_buffers(inode, &data_buffers, rest + 1,
1109                                             sci->sc_dsync_start,
1110                                             sci->sc_dsync_end);
1111
1112         err = nilfs_segctor_apply_buffers(sci, inode, &data_buffers,
1113                                           nilfs_collect_file_data);
1114         if (!err) {
1115                 nilfs_segctor_end_finfo(sci, inode);
1116                 BUG_ON(n > rest);
1117                 /* always receive -E2BIG or true error if n > rest */
1118         }
1119         return err;
1120 }
1121
1122 static int nilfs_segctor_collect_blocks(struct nilfs_sc_info *sci, int mode)
1123 {
1124         struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
1125         struct list_head *head;
1126         struct nilfs_inode_info *ii;
1127         size_t ndone;
1128         int err = 0;
1129
1130         switch (nilfs_sc_cstage_get(sci)) {
1131         case NILFS_ST_INIT:
1132                 /* Pre-processes */
1133                 sci->sc_stage.flags = 0;
1134
1135                 if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) {
1136                         sci->sc_nblk_inc = 0;
1137                         sci->sc_curseg->sb_sum.flags = NILFS_SS_LOGBGN;
1138                         if (mode == SC_LSEG_DSYNC) {
1139                                 nilfs_sc_cstage_set(sci, NILFS_ST_DSYNC);
1140                                 goto dsync_mode;
1141                         }
1142                 }
1143
1144                 sci->sc_stage.dirty_file_ptr = NULL;
1145                 sci->sc_stage.gc_inode_ptr = NULL;
1146                 if (mode == SC_FLUSH_DAT) {
1147                         nilfs_sc_cstage_set(sci, NILFS_ST_DAT);
1148                         goto dat_stage;
1149                 }
1150                 nilfs_sc_cstage_inc(sci);  /* Fall through */
1151         case NILFS_ST_GC:
1152                 if (nilfs_doing_gc()) {
1153                         head = &sci->sc_gc_inodes;
1154                         ii = list_prepare_entry(sci->sc_stage.gc_inode_ptr,
1155                                                 head, i_dirty);
1156                         list_for_each_entry_continue(ii, head, i_dirty) {
1157                                 err = nilfs_segctor_scan_file(
1158                                         sci, &ii->vfs_inode,
1159                                         &nilfs_sc_file_ops);
1160                                 if (unlikely(err)) {
1161                                         sci->sc_stage.gc_inode_ptr = list_entry(
1162                                                 ii->i_dirty.prev,
1163                                                 struct nilfs_inode_info,
1164                                                 i_dirty);
1165                                         goto break_or_fail;
1166                                 }
1167                                 set_bit(NILFS_I_COLLECTED, &ii->i_state);
1168                         }
1169                         sci->sc_stage.gc_inode_ptr = NULL;
1170                 }
1171                 nilfs_sc_cstage_inc(sci);  /* Fall through */
1172         case NILFS_ST_FILE:
1173                 head = &sci->sc_dirty_files;
1174                 ii = list_prepare_entry(sci->sc_stage.dirty_file_ptr, head,
1175                                         i_dirty);
1176                 list_for_each_entry_continue(ii, head, i_dirty) {
1177                         clear_bit(NILFS_I_DIRTY, &ii->i_state);
1178
1179                         err = nilfs_segctor_scan_file(sci, &ii->vfs_inode,
1180                                                       &nilfs_sc_file_ops);
1181                         if (unlikely(err)) {
1182                                 sci->sc_stage.dirty_file_ptr =
1183                                         list_entry(ii->i_dirty.prev,
1184                                                    struct nilfs_inode_info,
1185                                                    i_dirty);
1186                                 goto break_or_fail;
1187                         }
1188                         /* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */
1189                         /* XXX: required ? */
1190                 }
1191                 sci->sc_stage.dirty_file_ptr = NULL;
1192                 if (mode == SC_FLUSH_FILE) {
1193                         nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
1194                         return 0;
1195                 }
1196                 nilfs_sc_cstage_inc(sci);
1197                 sci->sc_stage.flags |= NILFS_CF_IFILE_STARTED;
1198                 /* Fall through */
1199         case NILFS_ST_IFILE:
1200                 err = nilfs_segctor_scan_file(sci, sci->sc_root->ifile,
1201                                               &nilfs_sc_file_ops);
1202                 if (unlikely(err))
1203                         break;
1204                 nilfs_sc_cstage_inc(sci);
1205                 /* Creating a checkpoint */
1206                 err = nilfs_segctor_create_checkpoint(sci);
1207                 if (unlikely(err))
1208                         break;
1209                 /* Fall through */
1210         case NILFS_ST_CPFILE:
1211                 err = nilfs_segctor_scan_file(sci, nilfs->ns_cpfile,
1212                                               &nilfs_sc_file_ops);
1213                 if (unlikely(err))
1214                         break;
1215                 nilfs_sc_cstage_inc(sci);  /* Fall through */
1216         case NILFS_ST_SUFILE:
1217                 err = nilfs_sufile_freev(nilfs->ns_sufile, sci->sc_freesegs,
1218                                          sci->sc_nfreesegs, &ndone);
1219                 if (unlikely(err)) {
1220                         nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1221                                                   sci->sc_freesegs, ndone,
1222                                                   NULL);
1223                         break;
1224                 }
1225                 sci->sc_stage.flags |= NILFS_CF_SUFREED;
1226
1227                 err = nilfs_segctor_scan_file(sci, nilfs->ns_sufile,
1228                                               &nilfs_sc_file_ops);
1229                 if (unlikely(err))
1230                         break;
1231                 nilfs_sc_cstage_inc(sci);  /* Fall through */
1232         case NILFS_ST_DAT:
1233  dat_stage:
1234                 err = nilfs_segctor_scan_file(sci, nilfs->ns_dat,
1235                                               &nilfs_sc_dat_ops);
1236                 if (unlikely(err))
1237                         break;
1238                 if (mode == SC_FLUSH_DAT) {
1239                         nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
1240                         return 0;
1241                 }
1242                 nilfs_sc_cstage_inc(sci);  /* Fall through */
1243         case NILFS_ST_SR:
1244                 if (mode == SC_LSEG_SR) {
1245                         /* Appending a super root */
1246                         err = nilfs_segctor_add_super_root(sci);
1247                         if (unlikely(err))
1248                                 break;
1249                 }
1250                 /* End of a logical segment */
1251                 sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
1252                 nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
1253                 return 0;
1254         case NILFS_ST_DSYNC:
1255  dsync_mode:
1256                 sci->sc_curseg->sb_sum.flags |= NILFS_SS_SYNDT;
1257                 ii = sci->sc_dsync_inode;
1258                 if (!test_bit(NILFS_I_BUSY, &ii->i_state))
1259                         break;
1260
1261                 err = nilfs_segctor_scan_file_dsync(sci, &ii->vfs_inode);
1262                 if (unlikely(err))
1263                         break;
1264                 sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
1265                 nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
1266                 return 0;
1267         case NILFS_ST_DONE:
1268                 return 0;
1269         default:
1270                 BUG();
1271         }
1272
1273  break_or_fail:
1274         return err;
1275 }
1276
1277 /**
1278  * nilfs_segctor_begin_construction - setup segment buffer to make a new log
1279  * @sci: nilfs_sc_info
1280  * @nilfs: nilfs object
1281  */
1282 static int nilfs_segctor_begin_construction(struct nilfs_sc_info *sci,
1283                                             struct the_nilfs *nilfs)
1284 {
1285         struct nilfs_segment_buffer *segbuf, *prev;
1286         __u64 nextnum;
1287         int err, alloc = 0;
1288
1289         segbuf = nilfs_segbuf_new(sci->sc_super);
1290         if (unlikely(!segbuf))
1291                 return -ENOMEM;
1292
1293         if (list_empty(&sci->sc_write_logs)) {
1294                 nilfs_segbuf_map(segbuf, nilfs->ns_segnum,
1295                                  nilfs->ns_pseg_offset, nilfs);
1296                 if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
1297                         nilfs_shift_to_next_segment(nilfs);
1298                         nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 0, nilfs);
1299                 }
1300
1301                 segbuf->sb_sum.seg_seq = nilfs->ns_seg_seq;
1302                 nextnum = nilfs->ns_nextnum;
1303
1304                 if (nilfs->ns_segnum == nilfs->ns_nextnum)
1305                         /* Start from the head of a new full segment */
1306                         alloc++;
1307         } else {
1308                 /* Continue logs */
1309                 prev = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
1310                 nilfs_segbuf_map_cont(segbuf, prev);
1311                 segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq;
1312                 nextnum = prev->sb_nextnum;
1313
1314                 if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
1315                         nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
1316                         segbuf->sb_sum.seg_seq++;
1317                         alloc++;
1318                 }
1319         }
1320
1321         err = nilfs_sufile_mark_dirty(nilfs->ns_sufile, segbuf->sb_segnum);
1322         if (err)
1323                 goto failed;
1324
1325         if (alloc) {
1326                 err = nilfs_sufile_alloc(nilfs->ns_sufile, &nextnum);
1327                 if (err)
1328                         goto failed;
1329         }
1330         nilfs_segbuf_set_next_segnum(segbuf, nextnum, nilfs);
1331
1332         BUG_ON(!list_empty(&sci->sc_segbufs));
1333         list_add_tail(&segbuf->sb_list, &sci->sc_segbufs);
1334         sci->sc_segbuf_nblocks = segbuf->sb_rest_blocks;
1335         return 0;
1336
1337  failed:
1338         nilfs_segbuf_free(segbuf);
1339         return err;
1340 }
1341
1342 static int nilfs_segctor_extend_segments(struct nilfs_sc_info *sci,
1343                                          struct the_nilfs *nilfs, int nadd)
1344 {
1345         struct nilfs_segment_buffer *segbuf, *prev;
1346         struct inode *sufile = nilfs->ns_sufile;
1347         __u64 nextnextnum;
1348         LIST_HEAD(list);
1349         int err, ret, i;
1350
1351         prev = NILFS_LAST_SEGBUF(&sci->sc_segbufs);
1352         /*
1353          * Since the segment specified with nextnum might be allocated during
1354          * the previous construction, the buffer including its segusage may
1355          * not be dirty.  The following call ensures that the buffer is dirty
1356          * and will pin the buffer on memory until the sufile is written.
1357          */
1358         err = nilfs_sufile_mark_dirty(sufile, prev->sb_nextnum);
1359         if (unlikely(err))
1360                 return err;
1361
1362         for (i = 0; i < nadd; i++) {
1363                 /* extend segment info */
1364                 err = -ENOMEM;
1365                 segbuf = nilfs_segbuf_new(sci->sc_super);
1366                 if (unlikely(!segbuf))
1367                         goto failed;
1368
1369                 /* map this buffer to region of segment on-disk */
1370                 nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
1371                 sci->sc_segbuf_nblocks += segbuf->sb_rest_blocks;
1372
1373                 /* allocate the next next full segment */
1374                 err = nilfs_sufile_alloc(sufile, &nextnextnum);
1375                 if (unlikely(err))
1376                         goto failed_segbuf;
1377
1378                 segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq + 1;
1379                 nilfs_segbuf_set_next_segnum(segbuf, nextnextnum, nilfs);
1380
1381                 list_add_tail(&segbuf->sb_list, &list);
1382                 prev = segbuf;
1383         }
1384         list_splice_tail(&list, &sci->sc_segbufs);
1385         return 0;
1386
1387  failed_segbuf:
1388         nilfs_segbuf_free(segbuf);
1389  failed:
1390         list_for_each_entry(segbuf, &list, sb_list) {
1391                 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1392                 WARN_ON(ret); /* never fails */
1393         }
1394         nilfs_destroy_logs(&list);
1395         return err;
1396 }
1397
1398 static void nilfs_free_incomplete_logs(struct list_head *logs,
1399                                        struct the_nilfs *nilfs)
1400 {
1401         struct nilfs_segment_buffer *segbuf, *prev;
1402         struct inode *sufile = nilfs->ns_sufile;
1403         int ret;
1404
1405         segbuf = NILFS_FIRST_SEGBUF(logs);
1406         if (nilfs->ns_nextnum != segbuf->sb_nextnum) {
1407                 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1408                 WARN_ON(ret); /* never fails */
1409         }
1410         if (atomic_read(&segbuf->sb_err)) {
1411                 /* Case 1: The first segment failed */
1412                 if (segbuf->sb_pseg_start != segbuf->sb_fseg_start)
1413                         /*
1414                          * Case 1a:  Partial segment appended into an existing
1415                          * segment
1416                          */
1417                         nilfs_terminate_segment(nilfs, segbuf->sb_fseg_start,
1418                                                 segbuf->sb_fseg_end);
1419                 else /* Case 1b:  New full segment */
1420                         set_nilfs_discontinued(nilfs);
1421         }
1422
1423         prev = segbuf;
1424         list_for_each_entry_continue(segbuf, logs, sb_list) {
1425                 if (prev->sb_nextnum != segbuf->sb_nextnum) {
1426                         ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1427                         WARN_ON(ret); /* never fails */
1428                 }
1429                 if (atomic_read(&segbuf->sb_err) &&
1430                     segbuf->sb_segnum != nilfs->ns_nextnum)
1431                         /* Case 2: extended segment (!= next) failed */
1432                         nilfs_sufile_set_error(sufile, segbuf->sb_segnum);
1433                 prev = segbuf;
1434         }
1435 }
1436
1437 static void nilfs_segctor_update_segusage(struct nilfs_sc_info *sci,
1438                                           struct inode *sufile)
1439 {
1440         struct nilfs_segment_buffer *segbuf;
1441         unsigned long live_blocks;
1442         int ret;
1443
1444         list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1445                 live_blocks = segbuf->sb_sum.nblocks +
1446                         (segbuf->sb_pseg_start - segbuf->sb_fseg_start);
1447                 ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1448                                                      live_blocks,
1449                                                      sci->sc_seg_ctime);
1450                 WARN_ON(ret); /* always succeed because the segusage is dirty */
1451         }
1452 }
1453
1454 static void nilfs_cancel_segusage(struct list_head *logs, struct inode *sufile)
1455 {
1456         struct nilfs_segment_buffer *segbuf;
1457         int ret;
1458
1459         segbuf = NILFS_FIRST_SEGBUF(logs);
1460         ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1461                                              segbuf->sb_pseg_start -
1462                                              segbuf->sb_fseg_start, 0);
1463         WARN_ON(ret); /* always succeed because the segusage is dirty */
1464
1465         list_for_each_entry_continue(segbuf, logs, sb_list) {
1466                 ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1467                                                      0, 0);
1468                 WARN_ON(ret); /* always succeed */
1469         }
1470 }
1471
1472 static void nilfs_segctor_truncate_segments(struct nilfs_sc_info *sci,
1473                                             struct nilfs_segment_buffer *last,
1474                                             struct inode *sufile)
1475 {
1476         struct nilfs_segment_buffer *segbuf = last;
1477         int ret;
1478
1479         list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) {
1480                 sci->sc_segbuf_nblocks -= segbuf->sb_rest_blocks;
1481                 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1482                 WARN_ON(ret);
1483         }
1484         nilfs_truncate_logs(&sci->sc_segbufs, last);
1485 }
1486
1487
1488 static int nilfs_segctor_collect(struct nilfs_sc_info *sci,
1489                                  struct the_nilfs *nilfs, int mode)
1490 {
1491         struct nilfs_cstage prev_stage = sci->sc_stage;
1492         int err, nadd = 1;
1493
1494         /* Collection retry loop */
1495         for (;;) {
1496                 sci->sc_nblk_this_inc = 0;
1497                 sci->sc_curseg = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
1498
1499                 err = nilfs_segctor_reset_segment_buffer(sci);
1500                 if (unlikely(err))
1501                         goto failed;
1502
1503                 err = nilfs_segctor_collect_blocks(sci, mode);
1504                 sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
1505                 if (!err)
1506                         break;
1507
1508                 if (unlikely(err != -E2BIG))
1509                         goto failed;
1510
1511                 /* The current segment is filled up */
1512                 if (mode != SC_LSEG_SR ||
1513                     nilfs_sc_cstage_get(sci) < NILFS_ST_CPFILE)
1514                         break;
1515
1516                 nilfs_clear_logs(&sci->sc_segbufs);
1517
1518                 if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
1519                         err = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1520                                                         sci->sc_freesegs,
1521                                                         sci->sc_nfreesegs,
1522                                                         NULL);
1523                         WARN_ON(err); /* do not happen */
1524                         sci->sc_stage.flags &= ~NILFS_CF_SUFREED;
1525                 }
1526
1527                 err = nilfs_segctor_extend_segments(sci, nilfs, nadd);
1528                 if (unlikely(err))
1529                         return err;
1530
1531                 nadd = min_t(int, nadd << 1, SC_MAX_SEGDELTA);
1532                 sci->sc_stage = prev_stage;
1533         }
1534         nilfs_segctor_truncate_segments(sci, sci->sc_curseg, nilfs->ns_sufile);
1535         return 0;
1536
1537  failed:
1538         return err;
1539 }
1540
1541 static void nilfs_list_replace_buffer(struct buffer_head *old_bh,
1542                                       struct buffer_head *new_bh)
1543 {
1544         BUG_ON(!list_empty(&new_bh->b_assoc_buffers));
1545
1546         list_replace_init(&old_bh->b_assoc_buffers, &new_bh->b_assoc_buffers);
1547         /* The caller must release old_bh */
1548 }
1549
1550 static int
1551 nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info *sci,
1552                                      struct nilfs_segment_buffer *segbuf,
1553                                      int mode)
1554 {
1555         struct inode *inode = NULL;
1556         sector_t blocknr;
1557         unsigned long nfinfo = segbuf->sb_sum.nfinfo;
1558         unsigned long nblocks = 0, ndatablk = 0;
1559         const struct nilfs_sc_operations *sc_op = NULL;
1560         struct nilfs_segsum_pointer ssp;
1561         struct nilfs_finfo *finfo = NULL;
1562         union nilfs_binfo binfo;
1563         struct buffer_head *bh, *bh_org;
1564         ino_t ino = 0;
1565         int err = 0;
1566
1567         if (!nfinfo)
1568                 goto out;
1569
1570         blocknr = segbuf->sb_pseg_start + segbuf->sb_sum.nsumblk;
1571         ssp.bh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
1572         ssp.offset = sizeof(struct nilfs_segment_summary);
1573
1574         list_for_each_entry(bh, &segbuf->sb_payload_buffers, b_assoc_buffers) {
1575                 if (bh == segbuf->sb_super_root)
1576                         break;
1577                 if (!finfo) {
1578                         finfo = nilfs_segctor_map_segsum_entry(
1579                                 sci, &ssp, sizeof(*finfo));
1580                         ino = le64_to_cpu(finfo->fi_ino);
1581                         nblocks = le32_to_cpu(finfo->fi_nblocks);
1582                         ndatablk = le32_to_cpu(finfo->fi_ndatablk);
1583
1584                         inode = bh->b_page->mapping->host;
1585
1586                         if (mode == SC_LSEG_DSYNC)
1587                                 sc_op = &nilfs_sc_dsync_ops;
1588                         else if (ino == NILFS_DAT_INO)
1589                                 sc_op = &nilfs_sc_dat_ops;
1590                         else /* file blocks */
1591                                 sc_op = &nilfs_sc_file_ops;
1592                 }
1593                 bh_org = bh;
1594                 get_bh(bh_org);
1595                 err = nilfs_bmap_assign(NILFS_I(inode)->i_bmap, &bh, blocknr,
1596                                         &binfo);
1597                 if (bh != bh_org)
1598                         nilfs_list_replace_buffer(bh_org, bh);
1599                 brelse(bh_org);
1600                 if (unlikely(err))
1601                         goto failed_bmap;
1602
1603                 if (ndatablk > 0)
1604                         sc_op->write_data_binfo(sci, &ssp, &binfo);
1605                 else
1606                         sc_op->write_node_binfo(sci, &ssp, &binfo);
1607
1608                 blocknr++;
1609                 if (--nblocks == 0) {
1610                         finfo = NULL;
1611                         if (--nfinfo == 0)
1612                                 break;
1613                 } else if (ndatablk > 0)
1614                         ndatablk--;
1615         }
1616  out:
1617         return 0;
1618
1619  failed_bmap:
1620         return err;
1621 }
1622
1623 static int nilfs_segctor_assign(struct nilfs_sc_info *sci, int mode)
1624 {
1625         struct nilfs_segment_buffer *segbuf;
1626         int err;
1627
1628         list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1629                 err = nilfs_segctor_update_payload_blocknr(sci, segbuf, mode);
1630                 if (unlikely(err))
1631                         return err;
1632                 nilfs_segbuf_fill_in_segsum(segbuf);
1633         }
1634         return 0;
1635 }
1636
1637 static void nilfs_begin_page_io(struct page *page)
1638 {
1639         if (!page || PageWriteback(page))
1640                 /*
1641                  * For split b-tree node pages, this function may be called
1642                  * twice.  We ignore the 2nd or later calls by this check.
1643                  */
1644                 return;
1645
1646         lock_page(page);
1647         clear_page_dirty_for_io(page);
1648         set_page_writeback(page);
1649         unlock_page(page);
1650 }
1651
1652 static void nilfs_segctor_prepare_write(struct nilfs_sc_info *sci)
1653 {
1654         struct nilfs_segment_buffer *segbuf;
1655         struct page *bd_page = NULL, *fs_page = NULL;
1656
1657         list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1658                 struct buffer_head *bh;
1659
1660                 list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1661                                     b_assoc_buffers) {
1662                         if (bh->b_page != bd_page) {
1663                                 if (bd_page) {
1664                                         lock_page(bd_page);
1665                                         clear_page_dirty_for_io(bd_page);
1666                                         set_page_writeback(bd_page);
1667                                         unlock_page(bd_page);
1668                                 }
1669                                 bd_page = bh->b_page;
1670                         }
1671                 }
1672
1673                 list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1674                                     b_assoc_buffers) {
1675                         set_buffer_async_write(bh);
1676                         if (bh == segbuf->sb_super_root) {
1677                                 if (bh->b_page != bd_page) {
1678                                         lock_page(bd_page);
1679                                         clear_page_dirty_for_io(bd_page);
1680                                         set_page_writeback(bd_page);
1681                                         unlock_page(bd_page);
1682                                         bd_page = bh->b_page;
1683                                 }
1684                                 break;
1685                         }
1686                         if (bh->b_page != fs_page) {
1687                                 nilfs_begin_page_io(fs_page);
1688                                 fs_page = bh->b_page;
1689                         }
1690                 }
1691         }
1692         if (bd_page) {
1693                 lock_page(bd_page);
1694                 clear_page_dirty_for_io(bd_page);
1695                 set_page_writeback(bd_page);
1696                 unlock_page(bd_page);
1697         }
1698         nilfs_begin_page_io(fs_page);
1699 }
1700
1701 static int nilfs_segctor_write(struct nilfs_sc_info *sci,
1702                                struct the_nilfs *nilfs)
1703 {
1704         int ret;
1705
1706         ret = nilfs_write_logs(&sci->sc_segbufs, nilfs);
1707         list_splice_tail_init(&sci->sc_segbufs, &sci->sc_write_logs);
1708         return ret;
1709 }
1710
1711 static void nilfs_end_page_io(struct page *page, int err)
1712 {
1713         if (!page)
1714                 return;
1715
1716         if (buffer_nilfs_node(page_buffers(page)) && !PageWriteback(page)) {
1717                 /*
1718                  * For b-tree node pages, this function may be called twice
1719                  * or more because they might be split in a segment.
1720                  */
1721                 if (PageDirty(page)) {
1722                         /*
1723                          * For pages holding split b-tree node buffers, dirty
1724                          * flag on the buffers may be cleared discretely.
1725                          * In that case, the page is once redirtied for
1726                          * remaining buffers, and it must be cancelled if
1727                          * all the buffers get cleaned later.
1728                          */
1729                         lock_page(page);
1730                         if (nilfs_page_buffers_clean(page))
1731                                 __nilfs_clear_page_dirty(page);
1732                         unlock_page(page);
1733                 }
1734                 return;
1735         }
1736
1737         if (!err) {
1738                 if (!nilfs_page_buffers_clean(page))
1739                         __set_page_dirty_nobuffers(page);
1740                 ClearPageError(page);
1741         } else {
1742                 __set_page_dirty_nobuffers(page);
1743                 SetPageError(page);
1744         }
1745
1746         end_page_writeback(page);
1747 }
1748
1749 static void nilfs_abort_logs(struct list_head *logs, int err)
1750 {
1751         struct nilfs_segment_buffer *segbuf;
1752         struct page *bd_page = NULL, *fs_page = NULL;
1753         struct buffer_head *bh;
1754
1755         if (list_empty(logs))
1756                 return;
1757
1758         list_for_each_entry(segbuf, logs, sb_list) {
1759                 list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1760                                     b_assoc_buffers) {
1761                         if (bh->b_page != bd_page) {
1762                                 if (bd_page)
1763                                         end_page_writeback(bd_page);
1764                                 bd_page = bh->b_page;
1765                         }
1766                 }
1767
1768                 list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1769                                     b_assoc_buffers) {
1770                         clear_buffer_async_write(bh);
1771                         if (bh == segbuf->sb_super_root) {
1772                                 if (bh->b_page != bd_page) {
1773                                         end_page_writeback(bd_page);
1774                                         bd_page = bh->b_page;
1775                                 }
1776                                 break;
1777                         }
1778                         if (bh->b_page != fs_page) {
1779                                 nilfs_end_page_io(fs_page, err);
1780                                 fs_page = bh->b_page;
1781                         }
1782                 }
1783         }
1784         if (bd_page)
1785                 end_page_writeback(bd_page);
1786
1787         nilfs_end_page_io(fs_page, err);
1788 }
1789
1790 static void nilfs_segctor_abort_construction(struct nilfs_sc_info *sci,
1791                                              struct the_nilfs *nilfs, int err)
1792 {
1793         LIST_HEAD(logs);
1794         int ret;
1795
1796         list_splice_tail_init(&sci->sc_write_logs, &logs);
1797         ret = nilfs_wait_on_logs(&logs);
1798         nilfs_abort_logs(&logs, ret ? : err);
1799
1800         list_splice_tail_init(&sci->sc_segbufs, &logs);
1801         nilfs_cancel_segusage(&logs, nilfs->ns_sufile);
1802         nilfs_free_incomplete_logs(&logs, nilfs);
1803
1804         if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
1805                 ret = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1806                                                 sci->sc_freesegs,
1807                                                 sci->sc_nfreesegs,
1808                                                 NULL);
1809                 WARN_ON(ret); /* do not happen */
1810         }
1811
1812         nilfs_destroy_logs(&logs);
1813 }
1814
1815 static void nilfs_set_next_segment(struct the_nilfs *nilfs,
1816                                    struct nilfs_segment_buffer *segbuf)
1817 {
1818         nilfs->ns_segnum = segbuf->sb_segnum;
1819         nilfs->ns_nextnum = segbuf->sb_nextnum;
1820         nilfs->ns_pseg_offset = segbuf->sb_pseg_start - segbuf->sb_fseg_start
1821                 + segbuf->sb_sum.nblocks;
1822         nilfs->ns_seg_seq = segbuf->sb_sum.seg_seq;
1823         nilfs->ns_ctime = segbuf->sb_sum.ctime;
1824 }
1825
1826 static void nilfs_segctor_complete_write(struct nilfs_sc_info *sci)
1827 {
1828         struct nilfs_segment_buffer *segbuf;
1829         struct page *bd_page = NULL, *fs_page = NULL;
1830         struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
1831         int update_sr = false;
1832
1833         list_for_each_entry(segbuf, &sci->sc_write_logs, sb_list) {
1834                 struct buffer_head *bh;
1835
1836                 list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1837                                     b_assoc_buffers) {
1838                         set_buffer_uptodate(bh);
1839                         clear_buffer_dirty(bh);
1840                         if (bh->b_page != bd_page) {
1841                                 if (bd_page)
1842                                         end_page_writeback(bd_page);
1843                                 bd_page = bh->b_page;
1844                         }
1845                 }
1846                 /*
1847                  * We assume that the buffers which belong to the same page
1848                  * continue over the buffer list.
1849                  * Under this assumption, the last BHs of pages is
1850                  * identifiable by the discontinuity of bh->b_page
1851                  * (page != fs_page).
1852                  *
1853                  * For B-tree node blocks, however, this assumption is not
1854                  * guaranteed.  The cleanup code of B-tree node pages needs
1855                  * special care.
1856                  */
1857                 list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1858                                     b_assoc_buffers) {
1859                         const unsigned long set_bits = BIT(BH_Uptodate);
1860                         const unsigned long clear_bits =
1861                                 (BIT(BH_Dirty) | BIT(BH_Async_Write) |
1862                                  BIT(BH_Delay) | BIT(BH_NILFS_Volatile) |
1863                                  BIT(BH_NILFS_Redirected));
1864
1865                         set_mask_bits(&bh->b_state, clear_bits, set_bits);
1866                         if (bh == segbuf->sb_super_root) {
1867                                 if (bh->b_page != bd_page) {
1868                                         end_page_writeback(bd_page);
1869                                         bd_page = bh->b_page;
1870                                 }
1871                                 update_sr = true;
1872                                 break;
1873                         }
1874                         if (bh->b_page != fs_page) {
1875                                 nilfs_end_page_io(fs_page, 0);
1876                                 fs_page = bh->b_page;
1877                         }
1878                 }
1879
1880                 if (!nilfs_segbuf_simplex(segbuf)) {
1881                         if (segbuf->sb_sum.flags & NILFS_SS_LOGBGN) {
1882                                 set_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
1883                                 sci->sc_lseg_stime = jiffies;
1884                         }
1885                         if (segbuf->sb_sum.flags & NILFS_SS_LOGEND)
1886                                 clear_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
1887                 }
1888         }
1889         /*
1890          * Since pages may continue over multiple segment buffers,
1891          * end of the last page must be checked outside of the loop.
1892          */
1893         if (bd_page)
1894                 end_page_writeback(bd_page);
1895
1896         nilfs_end_page_io(fs_page, 0);
1897
1898         nilfs_drop_collected_inodes(&sci->sc_dirty_files);
1899
1900         if (nilfs_doing_gc())
1901                 nilfs_drop_collected_inodes(&sci->sc_gc_inodes);
1902         else
1903                 nilfs->ns_nongc_ctime = sci->sc_seg_ctime;
1904
1905         sci->sc_nblk_inc += sci->sc_nblk_this_inc;
1906
1907         segbuf = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
1908         nilfs_set_next_segment(nilfs, segbuf);
1909
1910         if (update_sr) {
1911                 nilfs->ns_flushed_device = 0;
1912                 nilfs_set_last_segment(nilfs, segbuf->sb_pseg_start,
1913                                        segbuf->sb_sum.seg_seq, nilfs->ns_cno++);
1914
1915                 clear_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
1916                 clear_bit(NILFS_SC_DIRTY, &sci->sc_flags);
1917                 set_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
1918                 nilfs_segctor_clear_metadata_dirty(sci);
1919         } else
1920                 clear_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
1921 }
1922
1923 static int nilfs_segctor_wait(struct nilfs_sc_info *sci)
1924 {
1925         int ret;
1926
1927         ret = nilfs_wait_on_logs(&sci->sc_write_logs);
1928         if (!ret) {
1929                 nilfs_segctor_complete_write(sci);
1930                 nilfs_destroy_logs(&sci->sc_write_logs);
1931         }
1932         return ret;
1933 }
1934
1935 static int nilfs_segctor_collect_dirty_files(struct nilfs_sc_info *sci,
1936                                              struct the_nilfs *nilfs)
1937 {
1938         struct nilfs_inode_info *ii, *n;
1939         struct inode *ifile = sci->sc_root->ifile;
1940
1941         spin_lock(&nilfs->ns_inode_lock);
1942  retry:
1943         list_for_each_entry_safe(ii, n, &nilfs->ns_dirty_files, i_dirty) {
1944                 if (!ii->i_bh) {
1945                         struct buffer_head *ibh;
1946                         int err;
1947
1948                         spin_unlock(&nilfs->ns_inode_lock);
1949                         err = nilfs_ifile_get_inode_block(
1950                                 ifile, ii->vfs_inode.i_ino, &ibh);
1951                         if (unlikely(err)) {
1952                                 nilfs_msg(sci->sc_super, KERN_WARNING,
1953                                           "log writer: error %d getting inode block (ino=%lu)",
1954                                           err, ii->vfs_inode.i_ino);
1955                                 return err;
1956                         }
1957                         mark_buffer_dirty(ibh);
1958                         nilfs_mdt_mark_dirty(ifile);
1959                         spin_lock(&nilfs->ns_inode_lock);
1960                         if (likely(!ii->i_bh))
1961                                 ii->i_bh = ibh;
1962                         else
1963                                 brelse(ibh);
1964                         goto retry;
1965                 }
1966
1967                 clear_bit(NILFS_I_QUEUED, &ii->i_state);
1968                 set_bit(NILFS_I_BUSY, &ii->i_state);
1969                 list_move_tail(&ii->i_dirty, &sci->sc_dirty_files);
1970         }
1971         spin_unlock(&nilfs->ns_inode_lock);
1972
1973         return 0;
1974 }
1975
1976 static void nilfs_segctor_drop_written_files(struct nilfs_sc_info *sci,
1977                                              struct the_nilfs *nilfs)
1978 {
1979         struct nilfs_inode_info *ii, *n;
1980         int during_mount = !(sci->sc_super->s_flags & MS_ACTIVE);
1981         int defer_iput = false;
1982
1983         spin_lock(&nilfs->ns_inode_lock);
1984         list_for_each_entry_safe(ii, n, &sci->sc_dirty_files, i_dirty) {
1985                 if (!test_and_clear_bit(NILFS_I_UPDATED, &ii->i_state) ||
1986                     test_bit(NILFS_I_DIRTY, &ii->i_state))
1987                         continue;
1988
1989                 clear_bit(NILFS_I_BUSY, &ii->i_state);
1990                 brelse(ii->i_bh);
1991                 ii->i_bh = NULL;
1992                 list_del_init(&ii->i_dirty);
1993                 if (!ii->vfs_inode.i_nlink || during_mount) {
1994                         /*
1995                          * Defer calling iput() to avoid deadlocks if
1996                          * i_nlink == 0 or mount is not yet finished.
1997                          */
1998                         list_add_tail(&ii->i_dirty, &sci->sc_iput_queue);
1999                         defer_iput = true;
2000                 } else {
2001                         spin_unlock(&nilfs->ns_inode_lock);
2002                         iput(&ii->vfs_inode);
2003                         spin_lock(&nilfs->ns_inode_lock);
2004                 }
2005         }
2006         spin_unlock(&nilfs->ns_inode_lock);
2007
2008         if (defer_iput)
2009                 schedule_work(&sci->sc_iput_work);
2010 }
2011
2012 /*
2013  * Main procedure of segment constructor
2014  */
2015 static int nilfs_segctor_do_construct(struct nilfs_sc_info *sci, int mode)
2016 {
2017         struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2018         int err;
2019
2020         nilfs_sc_cstage_set(sci, NILFS_ST_INIT);
2021         sci->sc_cno = nilfs->ns_cno;
2022
2023         err = nilfs_segctor_collect_dirty_files(sci, nilfs);
2024         if (unlikely(err))
2025                 goto out;
2026
2027         if (nilfs_test_metadata_dirty(nilfs, sci->sc_root))
2028                 set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
2029
2030         if (nilfs_segctor_clean(sci))
2031                 goto out;
2032
2033         do {
2034                 sci->sc_stage.flags &= ~NILFS_CF_HISTORY_MASK;
2035
2036                 err = nilfs_segctor_begin_construction(sci, nilfs);
2037                 if (unlikely(err))
2038                         goto out;
2039
2040                 /* Update time stamp */
2041                 sci->sc_seg_ctime = get_seconds();
2042
2043                 err = nilfs_segctor_collect(sci, nilfs, mode);
2044                 if (unlikely(err))
2045                         goto failed;
2046
2047                 /* Avoid empty segment */
2048                 if (nilfs_sc_cstage_get(sci) == NILFS_ST_DONE &&
2049                     nilfs_segbuf_empty(sci->sc_curseg)) {
2050                         nilfs_segctor_abort_construction(sci, nilfs, 1);
2051                         goto out;
2052                 }
2053
2054                 err = nilfs_segctor_assign(sci, mode);
2055                 if (unlikely(err))
2056                         goto failed;
2057
2058                 if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
2059                         nilfs_segctor_fill_in_file_bmap(sci);
2060
2061                 if (mode == SC_LSEG_SR &&
2062                     nilfs_sc_cstage_get(sci) >= NILFS_ST_CPFILE) {
2063                         err = nilfs_segctor_fill_in_checkpoint(sci);
2064                         if (unlikely(err))
2065                                 goto failed_to_write;
2066
2067                         nilfs_segctor_fill_in_super_root(sci, nilfs);
2068                 }
2069                 nilfs_segctor_update_segusage(sci, nilfs->ns_sufile);
2070
2071                 /* Write partial segments */
2072                 nilfs_segctor_prepare_write(sci);
2073
2074                 nilfs_add_checksums_on_logs(&sci->sc_segbufs,
2075                                             nilfs->ns_crc_seed);
2076
2077                 err = nilfs_segctor_write(sci, nilfs);
2078                 if (unlikely(err))
2079                         goto failed_to_write;
2080
2081                 if (nilfs_sc_cstage_get(sci) == NILFS_ST_DONE ||
2082                     nilfs->ns_blocksize_bits != PAGE_SHIFT) {
2083                         /*
2084                          * At this point, we avoid double buffering
2085                          * for blocksize < pagesize because page dirty
2086                          * flag is turned off during write and dirty
2087                          * buffers are not properly collected for
2088                          * pages crossing over segments.
2089                          */
2090                         err = nilfs_segctor_wait(sci);
2091                         if (err)
2092                                 goto failed_to_write;
2093                 }
2094         } while (nilfs_sc_cstage_get(sci) != NILFS_ST_DONE);
2095
2096  out:
2097         nilfs_segctor_drop_written_files(sci, nilfs);
2098         return err;
2099
2100  failed_to_write:
2101         if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
2102                 nilfs_redirty_inodes(&sci->sc_dirty_files);
2103
2104  failed:
2105         if (nilfs_doing_gc())
2106                 nilfs_redirty_inodes(&sci->sc_gc_inodes);
2107         nilfs_segctor_abort_construction(sci, nilfs, err);
2108         goto out;
2109 }
2110
2111 /**
2112  * nilfs_segctor_start_timer - set timer of background write
2113  * @sci: nilfs_sc_info
2114  *
2115  * If the timer has already been set, it ignores the new request.
2116  * This function MUST be called within a section locking the segment
2117  * semaphore.
2118  */
2119 static void nilfs_segctor_start_timer(struct nilfs_sc_info *sci)
2120 {
2121         spin_lock(&sci->sc_state_lock);
2122         if (!(sci->sc_state & NILFS_SEGCTOR_COMMIT)) {
2123                 sci->sc_timer.expires = jiffies + sci->sc_interval;
2124                 add_timer(&sci->sc_timer);
2125                 sci->sc_state |= NILFS_SEGCTOR_COMMIT;
2126         }
2127         spin_unlock(&sci->sc_state_lock);
2128 }
2129
2130 static void nilfs_segctor_do_flush(struct nilfs_sc_info *sci, int bn)
2131 {
2132         spin_lock(&sci->sc_state_lock);
2133         if (!(sci->sc_flush_request & BIT(bn))) {
2134                 unsigned long prev_req = sci->sc_flush_request;
2135
2136                 sci->sc_flush_request |= BIT(bn);
2137                 if (!prev_req)
2138                         wake_up(&sci->sc_wait_daemon);
2139         }
2140         spin_unlock(&sci->sc_state_lock);
2141 }
2142
2143 /**
2144  * nilfs_flush_segment - trigger a segment construction for resource control
2145  * @sb: super block
2146  * @ino: inode number of the file to be flushed out.
2147  */
2148 void nilfs_flush_segment(struct super_block *sb, ino_t ino)
2149 {
2150         struct the_nilfs *nilfs = sb->s_fs_info;
2151         struct nilfs_sc_info *sci = nilfs->ns_writer;
2152
2153         if (!sci || nilfs_doing_construction())
2154                 return;
2155         nilfs_segctor_do_flush(sci, NILFS_MDT_INODE(sb, ino) ? ino : 0);
2156                                         /* assign bit 0 to data files */
2157 }
2158
2159 struct nilfs_segctor_wait_request {
2160         wait_queue_entry_t      wq;
2161         __u32           seq;
2162         int             err;
2163         atomic_t        done;
2164 };
2165
2166 static int nilfs_segctor_sync(struct nilfs_sc_info *sci)
2167 {
2168         struct nilfs_segctor_wait_request wait_req;
2169         int err = 0;
2170
2171         spin_lock(&sci->sc_state_lock);
2172         init_wait(&wait_req.wq);
2173         wait_req.err = 0;
2174         atomic_set(&wait_req.done, 0);
2175         wait_req.seq = ++sci->sc_seq_request;
2176         spin_unlock(&sci->sc_state_lock);
2177
2178         init_waitqueue_entry(&wait_req.wq, current);
2179         add_wait_queue(&sci->sc_wait_request, &wait_req.wq);
2180         set_current_state(TASK_INTERRUPTIBLE);
2181         wake_up(&sci->sc_wait_daemon);
2182
2183         for (;;) {
2184                 if (atomic_read(&wait_req.done)) {
2185                         err = wait_req.err;
2186                         break;
2187                 }
2188                 if (!signal_pending(current)) {
2189                         schedule();
2190                         continue;
2191                 }
2192                 err = -ERESTARTSYS;
2193                 break;
2194         }
2195         finish_wait(&sci->sc_wait_request, &wait_req.wq);
2196         return err;
2197 }
2198
2199 static void nilfs_segctor_wakeup(struct nilfs_sc_info *sci, int err)
2200 {
2201         struct nilfs_segctor_wait_request *wrq, *n;
2202         unsigned long flags;
2203
2204         spin_lock_irqsave(&sci->sc_wait_request.lock, flags);
2205         list_for_each_entry_safe(wrq, n, &sci->sc_wait_request.head, wq.entry) {
2206                 if (!atomic_read(&wrq->done) &&
2207                     nilfs_cnt32_ge(sci->sc_seq_done, wrq->seq)) {
2208                         wrq->err = err;
2209                         atomic_set(&wrq->done, 1);
2210                 }
2211                 if (atomic_read(&wrq->done)) {
2212                         wrq->wq.func(&wrq->wq,
2213                                      TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
2214                                      0, NULL);
2215                 }
2216         }
2217         spin_unlock_irqrestore(&sci->sc_wait_request.lock, flags);
2218 }
2219
2220 /**
2221  * nilfs_construct_segment - construct a logical segment
2222  * @sb: super block
2223  *
2224  * Return Value: On success, 0 is retured. On errors, one of the following
2225  * negative error code is returned.
2226  *
2227  * %-EROFS - Read only filesystem.
2228  *
2229  * %-EIO - I/O error
2230  *
2231  * %-ENOSPC - No space left on device (only in a panic state).
2232  *
2233  * %-ERESTARTSYS - Interrupted.
2234  *
2235  * %-ENOMEM - Insufficient memory available.
2236  */
2237 int nilfs_construct_segment(struct super_block *sb)
2238 {
2239         struct the_nilfs *nilfs = sb->s_fs_info;
2240         struct nilfs_sc_info *sci = nilfs->ns_writer;
2241         struct nilfs_transaction_info *ti;
2242         int err;
2243
2244         if (!sci)
2245                 return -EROFS;
2246
2247         /* A call inside transactions causes a deadlock. */
2248         BUG_ON((ti = current->journal_info) && ti->ti_magic == NILFS_TI_MAGIC);
2249
2250         err = nilfs_segctor_sync(sci);
2251         return err;
2252 }
2253
2254 /**
2255  * nilfs_construct_dsync_segment - construct a data-only logical segment
2256  * @sb: super block
2257  * @inode: inode whose data blocks should be written out
2258  * @start: start byte offset
2259  * @end: end byte offset (inclusive)
2260  *
2261  * Return Value: On success, 0 is retured. On errors, one of the following
2262  * negative error code is returned.
2263  *
2264  * %-EROFS - Read only filesystem.
2265  *
2266  * %-EIO - I/O error
2267  *
2268  * %-ENOSPC - No space left on device (only in a panic state).
2269  *
2270  * %-ERESTARTSYS - Interrupted.
2271  *
2272  * %-ENOMEM - Insufficient memory available.
2273  */
2274 int nilfs_construct_dsync_segment(struct super_block *sb, struct inode *inode,
2275                                   loff_t start, loff_t end)
2276 {
2277         struct the_nilfs *nilfs = sb->s_fs_info;
2278         struct nilfs_sc_info *sci = nilfs->ns_writer;
2279         struct nilfs_inode_info *ii;
2280         struct nilfs_transaction_info ti;
2281         int err = 0;
2282
2283         if (!sci)
2284                 return -EROFS;
2285
2286         nilfs_transaction_lock(sb, &ti, 0);
2287
2288         ii = NILFS_I(inode);
2289         if (test_bit(NILFS_I_INODE_SYNC, &ii->i_state) ||
2290             nilfs_test_opt(nilfs, STRICT_ORDER) ||
2291             test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
2292             nilfs_discontinued(nilfs)) {
2293                 nilfs_transaction_unlock(sb);
2294                 err = nilfs_segctor_sync(sci);
2295                 return err;
2296         }
2297
2298         spin_lock(&nilfs->ns_inode_lock);
2299         if (!test_bit(NILFS_I_QUEUED, &ii->i_state) &&
2300             !test_bit(NILFS_I_BUSY, &ii->i_state)) {
2301                 spin_unlock(&nilfs->ns_inode_lock);
2302                 nilfs_transaction_unlock(sb);
2303                 return 0;
2304         }
2305         spin_unlock(&nilfs->ns_inode_lock);
2306         sci->sc_dsync_inode = ii;
2307         sci->sc_dsync_start = start;
2308         sci->sc_dsync_end = end;
2309
2310         err = nilfs_segctor_do_construct(sci, SC_LSEG_DSYNC);
2311         if (!err)
2312                 nilfs->ns_flushed_device = 0;
2313
2314         nilfs_transaction_unlock(sb);
2315         return err;
2316 }
2317
2318 #define FLUSH_FILE_BIT  (0x1) /* data file only */
2319 #define FLUSH_DAT_BIT   BIT(NILFS_DAT_INO) /* DAT only */
2320
2321 /**
2322  * nilfs_segctor_accept - record accepted sequence count of log-write requests
2323  * @sci: segment constructor object
2324  */
2325 static void nilfs_segctor_accept(struct nilfs_sc_info *sci)
2326 {
2327         spin_lock(&sci->sc_state_lock);
2328         sci->sc_seq_accepted = sci->sc_seq_request;
2329         spin_unlock(&sci->sc_state_lock);
2330         del_timer_sync(&sci->sc_timer);
2331 }
2332
2333 /**
2334  * nilfs_segctor_notify - notify the result of request to caller threads
2335  * @sci: segment constructor object
2336  * @mode: mode of log forming
2337  * @err: error code to be notified
2338  */
2339 static void nilfs_segctor_notify(struct nilfs_sc_info *sci, int mode, int err)
2340 {
2341         /* Clear requests (even when the construction failed) */
2342         spin_lock(&sci->sc_state_lock);
2343
2344         if (mode == SC_LSEG_SR) {
2345                 sci->sc_state &= ~NILFS_SEGCTOR_COMMIT;
2346                 sci->sc_seq_done = sci->sc_seq_accepted;
2347                 nilfs_segctor_wakeup(sci, err);
2348                 sci->sc_flush_request = 0;
2349         } else {
2350                 if (mode == SC_FLUSH_FILE)
2351                         sci->sc_flush_request &= ~FLUSH_FILE_BIT;
2352                 else if (mode == SC_FLUSH_DAT)
2353                         sci->sc_flush_request &= ~FLUSH_DAT_BIT;
2354
2355                 /* re-enable timer if checkpoint creation was not done */
2356                 if ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
2357                     time_before(jiffies, sci->sc_timer.expires))
2358                         add_timer(&sci->sc_timer);
2359         }
2360         spin_unlock(&sci->sc_state_lock);
2361 }
2362
2363 /**
2364  * nilfs_segctor_construct - form logs and write them to disk
2365  * @sci: segment constructor object
2366  * @mode: mode of log forming
2367  */
2368 static int nilfs_segctor_construct(struct nilfs_sc_info *sci, int mode)
2369 {
2370         struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2371         struct nilfs_super_block **sbp;
2372         int err = 0;
2373
2374         nilfs_segctor_accept(sci);
2375
2376         if (nilfs_discontinued(nilfs))
2377                 mode = SC_LSEG_SR;
2378         if (!nilfs_segctor_confirm(sci))
2379                 err = nilfs_segctor_do_construct(sci, mode);
2380
2381         if (likely(!err)) {
2382                 if (mode != SC_FLUSH_DAT)
2383                         atomic_set(&nilfs->ns_ndirtyblks, 0);
2384                 if (test_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags) &&
2385                     nilfs_discontinued(nilfs)) {
2386                         down_write(&nilfs->ns_sem);
2387                         err = -EIO;
2388                         sbp = nilfs_prepare_super(sci->sc_super,
2389                                                   nilfs_sb_will_flip(nilfs));
2390                         if (likely(sbp)) {
2391                                 nilfs_set_log_cursor(sbp[0], nilfs);
2392                                 err = nilfs_commit_super(sci->sc_super,
2393                                                          NILFS_SB_COMMIT);
2394                         }
2395                         up_write(&nilfs->ns_sem);
2396                 }
2397         }
2398
2399         nilfs_segctor_notify(sci, mode, err);
2400         return err;
2401 }
2402
2403 static void nilfs_construction_timeout(unsigned long data)
2404 {
2405         struct task_struct *p = (struct task_struct *)data;
2406
2407         wake_up_process(p);
2408 }
2409
2410 static void
2411 nilfs_remove_written_gcinodes(struct the_nilfs *nilfs, struct list_head *head)
2412 {
2413         struct nilfs_inode_info *ii, *n;
2414
2415         list_for_each_entry_safe(ii, n, head, i_dirty) {
2416                 if (!test_bit(NILFS_I_UPDATED, &ii->i_state))
2417                         continue;
2418                 list_del_init(&ii->i_dirty);
2419                 truncate_inode_pages(&ii->vfs_inode.i_data, 0);
2420                 nilfs_btnode_cache_clear(&ii->i_btnode_cache);
2421                 iput(&ii->vfs_inode);
2422         }
2423 }
2424
2425 int nilfs_clean_segments(struct super_block *sb, struct nilfs_argv *argv,
2426                          void **kbufs)
2427 {
2428         struct the_nilfs *nilfs = sb->s_fs_info;
2429         struct nilfs_sc_info *sci = nilfs->ns_writer;
2430         struct nilfs_transaction_info ti;
2431         int err;
2432
2433         if (unlikely(!sci))
2434                 return -EROFS;
2435
2436         nilfs_transaction_lock(sb, &ti, 1);
2437
2438         err = nilfs_mdt_save_to_shadow_map(nilfs->ns_dat);
2439         if (unlikely(err))
2440                 goto out_unlock;
2441
2442         err = nilfs_ioctl_prepare_clean_segments(nilfs, argv, kbufs);
2443         if (unlikely(err)) {
2444                 nilfs_mdt_restore_from_shadow_map(nilfs->ns_dat);
2445                 goto out_unlock;
2446         }
2447
2448         sci->sc_freesegs = kbufs[4];
2449         sci->sc_nfreesegs = argv[4].v_nmembs;
2450         list_splice_tail_init(&nilfs->ns_gc_inodes, &sci->sc_gc_inodes);
2451
2452         for (;;) {
2453                 err = nilfs_segctor_construct(sci, SC_LSEG_SR);
2454                 nilfs_remove_written_gcinodes(nilfs, &sci->sc_gc_inodes);
2455
2456                 if (likely(!err))
2457                         break;
2458
2459                 nilfs_msg(sb, KERN_WARNING, "error %d cleaning segments", err);
2460                 set_current_state(TASK_INTERRUPTIBLE);
2461                 schedule_timeout(sci->sc_interval);
2462         }
2463         if (nilfs_test_opt(nilfs, DISCARD)) {
2464                 int ret = nilfs_discard_segments(nilfs, sci->sc_freesegs,
2465                                                  sci->sc_nfreesegs);
2466                 if (ret) {
2467                         nilfs_msg(sb, KERN_WARNING,
2468                                   "error %d on discard request, turning discards off for the device",
2469                                   ret);
2470                         nilfs_clear_opt(nilfs, DISCARD);
2471                 }
2472         }
2473
2474  out_unlock:
2475         sci->sc_freesegs = NULL;
2476         sci->sc_nfreesegs = 0;
2477         nilfs_mdt_clear_shadow_map(nilfs->ns_dat);
2478         nilfs_transaction_unlock(sb);
2479         return err;
2480 }
2481
2482 static void nilfs_segctor_thread_construct(struct nilfs_sc_info *sci, int mode)
2483 {
2484         struct nilfs_transaction_info ti;
2485
2486         nilfs_transaction_lock(sci->sc_super, &ti, 0);
2487         nilfs_segctor_construct(sci, mode);
2488
2489         /*
2490          * Unclosed segment should be retried.  We do this using sc_timer.
2491          * Timeout of sc_timer will invoke complete construction which leads
2492          * to close the current logical segment.
2493          */
2494         if (test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags))
2495                 nilfs_segctor_start_timer(sci);
2496
2497         nilfs_transaction_unlock(sci->sc_super);
2498 }
2499
2500 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *sci)
2501 {
2502         int mode = 0;
2503
2504         spin_lock(&sci->sc_state_lock);
2505         mode = (sci->sc_flush_request & FLUSH_DAT_BIT) ?
2506                 SC_FLUSH_DAT : SC_FLUSH_FILE;
2507         spin_unlock(&sci->sc_state_lock);
2508
2509         if (mode) {
2510                 nilfs_segctor_do_construct(sci, mode);
2511
2512                 spin_lock(&sci->sc_state_lock);
2513                 sci->sc_flush_request &= (mode == SC_FLUSH_FILE) ?
2514                         ~FLUSH_FILE_BIT : ~FLUSH_DAT_BIT;
2515                 spin_unlock(&sci->sc_state_lock);
2516         }
2517         clear_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
2518 }
2519
2520 static int nilfs_segctor_flush_mode(struct nilfs_sc_info *sci)
2521 {
2522         if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
2523             time_before(jiffies, sci->sc_lseg_stime + sci->sc_mjcp_freq)) {
2524                 if (!(sci->sc_flush_request & ~FLUSH_FILE_BIT))
2525                         return SC_FLUSH_FILE;
2526                 else if (!(sci->sc_flush_request & ~FLUSH_DAT_BIT))
2527                         return SC_FLUSH_DAT;
2528         }
2529         return SC_LSEG_SR;
2530 }
2531
2532 /**
2533  * nilfs_segctor_thread - main loop of the segment constructor thread.
2534  * @arg: pointer to a struct nilfs_sc_info.
2535  *
2536  * nilfs_segctor_thread() initializes a timer and serves as a daemon
2537  * to execute segment constructions.
2538  */
2539 static int nilfs_segctor_thread(void *arg)
2540 {
2541         struct nilfs_sc_info *sci = (struct nilfs_sc_info *)arg;
2542         struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2543         int timeout = 0;
2544
2545         sci->sc_timer.data = (unsigned long)current;
2546         sci->sc_timer.function = nilfs_construction_timeout;
2547
2548         /* start sync. */
2549         sci->sc_task = current;
2550         wake_up(&sci->sc_wait_task); /* for nilfs_segctor_start_thread() */
2551         nilfs_msg(sci->sc_super, KERN_INFO,
2552                   "segctord starting. Construction interval = %lu seconds, CP frequency < %lu seconds",
2553                   sci->sc_interval / HZ, sci->sc_mjcp_freq / HZ);
2554
2555         spin_lock(&sci->sc_state_lock);
2556  loop:
2557         for (;;) {
2558                 int mode;
2559
2560                 if (sci->sc_state & NILFS_SEGCTOR_QUIT)
2561                         goto end_thread;
2562
2563                 if (timeout || sci->sc_seq_request != sci->sc_seq_done)
2564                         mode = SC_LSEG_SR;
2565                 else if (sci->sc_flush_request)
2566                         mode = nilfs_segctor_flush_mode(sci);
2567                 else
2568                         break;
2569
2570                 spin_unlock(&sci->sc_state_lock);
2571                 nilfs_segctor_thread_construct(sci, mode);
2572                 spin_lock(&sci->sc_state_lock);
2573                 timeout = 0;
2574         }
2575
2576
2577         if (freezing(current)) {
2578                 spin_unlock(&sci->sc_state_lock);
2579                 try_to_freeze();
2580                 spin_lock(&sci->sc_state_lock);
2581         } else {
2582                 DEFINE_WAIT(wait);
2583                 int should_sleep = 1;
2584
2585                 prepare_to_wait(&sci->sc_wait_daemon, &wait,
2586                                 TASK_INTERRUPTIBLE);
2587
2588                 if (sci->sc_seq_request != sci->sc_seq_done)
2589                         should_sleep = 0;
2590                 else if (sci->sc_flush_request)
2591                         should_sleep = 0;
2592                 else if (sci->sc_state & NILFS_SEGCTOR_COMMIT)
2593                         should_sleep = time_before(jiffies,
2594                                         sci->sc_timer.expires);
2595
2596                 if (should_sleep) {
2597                         spin_unlock(&sci->sc_state_lock);
2598                         schedule();
2599                         spin_lock(&sci->sc_state_lock);
2600                 }
2601                 finish_wait(&sci->sc_wait_daemon, &wait);
2602                 timeout = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
2603                            time_after_eq(jiffies, sci->sc_timer.expires));
2604
2605                 if (nilfs_sb_dirty(nilfs) && nilfs_sb_need_update(nilfs))
2606                         set_nilfs_discontinued(nilfs);
2607         }
2608         goto loop;
2609
2610  end_thread:
2611         spin_unlock(&sci->sc_state_lock);
2612
2613         /* end sync. */
2614         sci->sc_task = NULL;
2615         wake_up(&sci->sc_wait_task); /* for nilfs_segctor_kill_thread() */
2616         return 0;
2617 }
2618
2619 static int nilfs_segctor_start_thread(struct nilfs_sc_info *sci)
2620 {
2621         struct task_struct *t;
2622
2623         t = kthread_run(nilfs_segctor_thread, sci, "segctord");
2624         if (IS_ERR(t)) {
2625                 int err = PTR_ERR(t);
2626
2627                 nilfs_msg(sci->sc_super, KERN_ERR,
2628                           "error %d creating segctord thread", err);
2629                 return err;
2630         }
2631         wait_event(sci->sc_wait_task, sci->sc_task != NULL);
2632         return 0;
2633 }
2634
2635 static void nilfs_segctor_kill_thread(struct nilfs_sc_info *sci)
2636         __acquires(&sci->sc_state_lock)
2637         __releases(&sci->sc_state_lock)
2638 {
2639         sci->sc_state |= NILFS_SEGCTOR_QUIT;
2640
2641         while (sci->sc_task) {
2642                 wake_up(&sci->sc_wait_daemon);
2643                 spin_unlock(&sci->sc_state_lock);
2644                 wait_event(sci->sc_wait_task, sci->sc_task == NULL);
2645                 spin_lock(&sci->sc_state_lock);
2646         }
2647 }
2648
2649 /*
2650  * Setup & clean-up functions
2651  */
2652 static struct nilfs_sc_info *nilfs_segctor_new(struct super_block *sb,
2653                                                struct nilfs_root *root)
2654 {
2655         struct the_nilfs *nilfs = sb->s_fs_info;
2656         struct nilfs_sc_info *sci;
2657
2658         sci = kzalloc(sizeof(*sci), GFP_KERNEL);
2659         if (!sci)
2660                 return NULL;
2661
2662         sci->sc_super = sb;
2663
2664         nilfs_get_root(root);
2665         sci->sc_root = root;
2666
2667         init_waitqueue_head(&sci->sc_wait_request);
2668         init_waitqueue_head(&sci->sc_wait_daemon);
2669         init_waitqueue_head(&sci->sc_wait_task);
2670         spin_lock_init(&sci->sc_state_lock);
2671         INIT_LIST_HEAD(&sci->sc_dirty_files);
2672         INIT_LIST_HEAD(&sci->sc_segbufs);
2673         INIT_LIST_HEAD(&sci->sc_write_logs);
2674         INIT_LIST_HEAD(&sci->sc_gc_inodes);
2675         INIT_LIST_HEAD(&sci->sc_iput_queue);
2676         INIT_WORK(&sci->sc_iput_work, nilfs_iput_work_func);
2677         init_timer(&sci->sc_timer);
2678
2679         sci->sc_interval = HZ * NILFS_SC_DEFAULT_TIMEOUT;
2680         sci->sc_mjcp_freq = HZ * NILFS_SC_DEFAULT_SR_FREQ;
2681         sci->sc_watermark = NILFS_SC_DEFAULT_WATERMARK;
2682
2683         if (nilfs->ns_interval)
2684                 sci->sc_interval = HZ * nilfs->ns_interval;
2685         if (nilfs->ns_watermark)
2686                 sci->sc_watermark = nilfs->ns_watermark;
2687         return sci;
2688 }
2689
2690 static void nilfs_segctor_write_out(struct nilfs_sc_info *sci)
2691 {
2692         int ret, retrycount = NILFS_SC_CLEANUP_RETRY;
2693
2694         /*
2695          * The segctord thread was stopped and its timer was removed.
2696          * But some tasks remain.
2697          */
2698         do {
2699                 struct nilfs_transaction_info ti;
2700
2701                 nilfs_transaction_lock(sci->sc_super, &ti, 0);
2702                 ret = nilfs_segctor_construct(sci, SC_LSEG_SR);
2703                 nilfs_transaction_unlock(sci->sc_super);
2704
2705                 flush_work(&sci->sc_iput_work);
2706
2707         } while (ret && retrycount-- > 0);
2708 }
2709
2710 /**
2711  * nilfs_segctor_destroy - destroy the segment constructor.
2712  * @sci: nilfs_sc_info
2713  *
2714  * nilfs_segctor_destroy() kills the segctord thread and frees
2715  * the nilfs_sc_info struct.
2716  * Caller must hold the segment semaphore.
2717  */
2718 static void nilfs_segctor_destroy(struct nilfs_sc_info *sci)
2719 {
2720         struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2721         int flag;
2722
2723         up_write(&nilfs->ns_segctor_sem);
2724
2725         spin_lock(&sci->sc_state_lock);
2726         nilfs_segctor_kill_thread(sci);
2727         flag = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) || sci->sc_flush_request
2728                 || sci->sc_seq_request != sci->sc_seq_done);
2729         spin_unlock(&sci->sc_state_lock);
2730
2731         if (flush_work(&sci->sc_iput_work))
2732                 flag = true;
2733
2734         if (flag || !nilfs_segctor_confirm(sci))
2735                 nilfs_segctor_write_out(sci);
2736
2737         if (!list_empty(&sci->sc_dirty_files)) {
2738                 nilfs_msg(sci->sc_super, KERN_WARNING,
2739                           "disposed unprocessed dirty file(s) when stopping log writer");
2740                 nilfs_dispose_list(nilfs, &sci->sc_dirty_files, 1);
2741         }
2742
2743         if (!list_empty(&sci->sc_iput_queue)) {
2744                 nilfs_msg(sci->sc_super, KERN_WARNING,
2745                           "disposed unprocessed inode(s) in iput queue when stopping log writer");
2746                 nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 1);
2747         }
2748
2749         WARN_ON(!list_empty(&sci->sc_segbufs));
2750         WARN_ON(!list_empty(&sci->sc_write_logs));
2751
2752         nilfs_put_root(sci->sc_root);
2753
2754         down_write(&nilfs->ns_segctor_sem);
2755
2756         del_timer_sync(&sci->sc_timer);
2757         kfree(sci);
2758 }
2759
2760 /**
2761  * nilfs_attach_log_writer - attach log writer
2762  * @sb: super block instance
2763  * @root: root object of the current filesystem tree
2764  *
2765  * This allocates a log writer object, initializes it, and starts the
2766  * log writer.
2767  *
2768  * Return Value: On success, 0 is returned. On error, one of the following
2769  * negative error code is returned.
2770  *
2771  * %-ENOMEM - Insufficient memory available.
2772  */
2773 int nilfs_attach_log_writer(struct super_block *sb, struct nilfs_root *root)
2774 {
2775         struct the_nilfs *nilfs = sb->s_fs_info;
2776         int err;
2777
2778         if (nilfs->ns_writer) {
2779                 /*
2780                  * This happens if the filesystem was remounted
2781                  * read/write after nilfs_error degenerated it into a
2782                  * read-only mount.
2783                  */
2784                 nilfs_detach_log_writer(sb);
2785         }
2786
2787         nilfs->ns_writer = nilfs_segctor_new(sb, root);
2788         if (!nilfs->ns_writer)
2789                 return -ENOMEM;
2790
2791         err = nilfs_segctor_start_thread(nilfs->ns_writer);
2792         if (err) {
2793                 kfree(nilfs->ns_writer);
2794                 nilfs->ns_writer = NULL;
2795         }
2796         return err;
2797 }
2798
2799 /**
2800  * nilfs_detach_log_writer - destroy log writer
2801  * @sb: super block instance
2802  *
2803  * This kills log writer daemon, frees the log writer object, and
2804  * destroys list of dirty files.
2805  */
2806 void nilfs_detach_log_writer(struct super_block *sb)
2807 {
2808         struct the_nilfs *nilfs = sb->s_fs_info;
2809         LIST_HEAD(garbage_list);
2810
2811         down_write(&nilfs->ns_segctor_sem);
2812         if (nilfs->ns_writer) {
2813                 nilfs_segctor_destroy(nilfs->ns_writer);
2814                 nilfs->ns_writer = NULL;
2815         }
2816
2817         /* Force to free the list of dirty files */
2818         spin_lock(&nilfs->ns_inode_lock);
2819         if (!list_empty(&nilfs->ns_dirty_files)) {
2820                 list_splice_init(&nilfs->ns_dirty_files, &garbage_list);
2821                 nilfs_msg(sb, KERN_WARNING,
2822                           "disposed unprocessed dirty file(s) when detaching log writer");
2823         }
2824         spin_unlock(&nilfs->ns_inode_lock);
2825         up_write(&nilfs->ns_segctor_sem);
2826
2827         nilfs_dispose_list(nilfs, &garbage_list, 1);
2828 }