NFSv4: fix delegated locking
[sfrench/cifs-2.6.git] / fs / nfs / nfs4proc.c
1 /*
2  *  fs/nfs/nfs4proc.c
3  *
4  *  Client-side procedure declarations for NFSv4.
5  *
6  *  Copyright (c) 2002 The Regents of the University of Michigan.
7  *  All rights reserved.
8  *
9  *  Kendrick Smith <kmsmith@umich.edu>
10  *  Andy Adamson   <andros@umich.edu>
11  *
12  *  Redistribution and use in source and binary forms, with or without
13  *  modification, are permitted provided that the following conditions
14  *  are met:
15  *
16  *  1. Redistributions of source code must retain the above copyright
17  *     notice, this list of conditions and the following disclaimer.
18  *  2. Redistributions in binary form must reproduce the above copyright
19  *     notice, this list of conditions and the following disclaimer in the
20  *     documentation and/or other materials provided with the distribution.
21  *  3. Neither the name of the University nor the names of its
22  *     contributors may be used to endorse or promote products derived
23  *     from this software without specific prior written permission.
24  *
25  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
26  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
27  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
28  *  DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  *  FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
32  *  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33  *  LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34  *  NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35  *  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37
38 #include <linux/mm.h>
39 #include <linux/delay.h>
40 #include <linux/errno.h>
41 #include <linux/string.h>
42 #include <linux/slab.h>
43 #include <linux/sunrpc/clnt.h>
44 #include <linux/nfs.h>
45 #include <linux/nfs4.h>
46 #include <linux/nfs_fs.h>
47 #include <linux/nfs_page.h>
48 #include <linux/namei.h>
49 #include <linux/mount.h>
50 #include <linux/module.h>
51 #include <linux/sunrpc/bc_xprt.h>
52
53 #include "nfs4_fs.h"
54 #include "delegation.h"
55 #include "internal.h"
56 #include "iostat.h"
57 #include "callback.h"
58
59 #define NFSDBG_FACILITY         NFSDBG_PROC
60
61 #define NFS4_POLL_RETRY_MIN     (HZ/10)
62 #define NFS4_POLL_RETRY_MAX     (15*HZ)
63
64 #define NFS4_MAX_LOOP_ON_RECOVER (10)
65
66 struct nfs4_opendata;
67 static int _nfs4_proc_open(struct nfs4_opendata *data);
68 static int _nfs4_recover_proc_open(struct nfs4_opendata *data);
69 static int nfs4_do_fsinfo(struct nfs_server *, struct nfs_fh *, struct nfs_fsinfo *);
70 static int nfs4_async_handle_error(struct rpc_task *, const struct nfs_server *, struct nfs4_state *);
71 static int _nfs4_proc_lookup(struct inode *dir, const struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr);
72 static int _nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr);
73
74 /* Prevent leaks of NFSv4 errors into userland */
75 static int nfs4_map_errors(int err)
76 {
77         if (err >= -1000)
78                 return err;
79         switch (err) {
80         case -NFS4ERR_RESOURCE:
81                 return -EREMOTEIO;
82         default:
83                 dprintk("%s could not handle NFSv4 error %d\n",
84                                 __func__, -err);
85                 break;
86         }
87         return -EIO;
88 }
89
90 /*
91  * This is our standard bitmap for GETATTR requests.
92  */
93 const u32 nfs4_fattr_bitmap[2] = {
94         FATTR4_WORD0_TYPE
95         | FATTR4_WORD0_CHANGE
96         | FATTR4_WORD0_SIZE
97         | FATTR4_WORD0_FSID
98         | FATTR4_WORD0_FILEID,
99         FATTR4_WORD1_MODE
100         | FATTR4_WORD1_NUMLINKS
101         | FATTR4_WORD1_OWNER
102         | FATTR4_WORD1_OWNER_GROUP
103         | FATTR4_WORD1_RAWDEV
104         | FATTR4_WORD1_SPACE_USED
105         | FATTR4_WORD1_TIME_ACCESS
106         | FATTR4_WORD1_TIME_METADATA
107         | FATTR4_WORD1_TIME_MODIFY
108 };
109
110 const u32 nfs4_statfs_bitmap[2] = {
111         FATTR4_WORD0_FILES_AVAIL
112         | FATTR4_WORD0_FILES_FREE
113         | FATTR4_WORD0_FILES_TOTAL,
114         FATTR4_WORD1_SPACE_AVAIL
115         | FATTR4_WORD1_SPACE_FREE
116         | FATTR4_WORD1_SPACE_TOTAL
117 };
118
119 const u32 nfs4_pathconf_bitmap[2] = {
120         FATTR4_WORD0_MAXLINK
121         | FATTR4_WORD0_MAXNAME,
122         0
123 };
124
125 const u32 nfs4_fsinfo_bitmap[2] = { FATTR4_WORD0_MAXFILESIZE
126                         | FATTR4_WORD0_MAXREAD
127                         | FATTR4_WORD0_MAXWRITE
128                         | FATTR4_WORD0_LEASE_TIME,
129                         0
130 };
131
132 const u32 nfs4_fs_locations_bitmap[2] = {
133         FATTR4_WORD0_TYPE
134         | FATTR4_WORD0_CHANGE
135         | FATTR4_WORD0_SIZE
136         | FATTR4_WORD0_FSID
137         | FATTR4_WORD0_FILEID
138         | FATTR4_WORD0_FS_LOCATIONS,
139         FATTR4_WORD1_MODE
140         | FATTR4_WORD1_NUMLINKS
141         | FATTR4_WORD1_OWNER
142         | FATTR4_WORD1_OWNER_GROUP
143         | FATTR4_WORD1_RAWDEV
144         | FATTR4_WORD1_SPACE_USED
145         | FATTR4_WORD1_TIME_ACCESS
146         | FATTR4_WORD1_TIME_METADATA
147         | FATTR4_WORD1_TIME_MODIFY
148         | FATTR4_WORD1_MOUNTED_ON_FILEID
149 };
150
151 static void nfs4_setup_readdir(u64 cookie, __be32 *verifier, struct dentry *dentry,
152                 struct nfs4_readdir_arg *readdir)
153 {
154         __be32 *start, *p;
155
156         BUG_ON(readdir->count < 80);
157         if (cookie > 2) {
158                 readdir->cookie = cookie;
159                 memcpy(&readdir->verifier, verifier, sizeof(readdir->verifier));
160                 return;
161         }
162
163         readdir->cookie = 0;
164         memset(&readdir->verifier, 0, sizeof(readdir->verifier));
165         if (cookie == 2)
166                 return;
167         
168         /*
169          * NFSv4 servers do not return entries for '.' and '..'
170          * Therefore, we fake these entries here.  We let '.'
171          * have cookie 0 and '..' have cookie 1.  Note that
172          * when talking to the server, we always send cookie 0
173          * instead of 1 or 2.
174          */
175         start = p = kmap_atomic(*readdir->pages, KM_USER0);
176         
177         if (cookie == 0) {
178                 *p++ = xdr_one;                                  /* next */
179                 *p++ = xdr_zero;                   /* cookie, first word */
180                 *p++ = xdr_one;                   /* cookie, second word */
181                 *p++ = xdr_one;                             /* entry len */
182                 memcpy(p, ".\0\0\0", 4);                        /* entry */
183                 p++;
184                 *p++ = xdr_one;                         /* bitmap length */
185                 *p++ = htonl(FATTR4_WORD0_FILEID);             /* bitmap */
186                 *p++ = htonl(8);              /* attribute buffer length */
187                 p = xdr_encode_hyper(p, NFS_FILEID(dentry->d_inode));
188         }
189         
190         *p++ = xdr_one;                                  /* next */
191         *p++ = xdr_zero;                   /* cookie, first word */
192         *p++ = xdr_two;                   /* cookie, second word */
193         *p++ = xdr_two;                             /* entry len */
194         memcpy(p, "..\0\0", 4);                         /* entry */
195         p++;
196         *p++ = xdr_one;                         /* bitmap length */
197         *p++ = htonl(FATTR4_WORD0_FILEID);             /* bitmap */
198         *p++ = htonl(8);              /* attribute buffer length */
199         p = xdr_encode_hyper(p, NFS_FILEID(dentry->d_parent->d_inode));
200
201         readdir->pgbase = (char *)p - (char *)start;
202         readdir->count -= readdir->pgbase;
203         kunmap_atomic(start, KM_USER0);
204 }
205
206 static int nfs4_wait_clnt_recover(struct nfs_client *clp)
207 {
208         int res;
209
210         might_sleep();
211
212         res = wait_on_bit(&clp->cl_state, NFS4CLNT_MANAGER_RUNNING,
213                         nfs_wait_bit_killable, TASK_KILLABLE);
214         return res;
215 }
216
217 static int nfs4_delay(struct rpc_clnt *clnt, long *timeout)
218 {
219         int res = 0;
220
221         might_sleep();
222
223         if (*timeout <= 0)
224                 *timeout = NFS4_POLL_RETRY_MIN;
225         if (*timeout > NFS4_POLL_RETRY_MAX)
226                 *timeout = NFS4_POLL_RETRY_MAX;
227         schedule_timeout_killable(*timeout);
228         if (fatal_signal_pending(current))
229                 res = -ERESTARTSYS;
230         *timeout <<= 1;
231         return res;
232 }
233
234 /* This is the error handling routine for processes that are allowed
235  * to sleep.
236  */
237 static int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception)
238 {
239         struct nfs_client *clp = server->nfs_client;
240         struct nfs4_state *state = exception->state;
241         int ret = errorcode;
242
243         exception->retry = 0;
244         switch(errorcode) {
245                 case 0:
246                         return 0;
247                 case -NFS4ERR_ADMIN_REVOKED:
248                 case -NFS4ERR_BAD_STATEID:
249                 case -NFS4ERR_OPENMODE:
250                         if (state == NULL)
251                                 break;
252                         nfs4_state_mark_reclaim_nograce(clp, state);
253                         goto do_state_recovery;
254                 case -NFS4ERR_STALE_STATEID:
255                         if (state == NULL)
256                                 break;
257                         nfs4_state_mark_reclaim_reboot(clp, state);
258                 case -NFS4ERR_STALE_CLIENTID:
259                 case -NFS4ERR_EXPIRED:
260                         goto do_state_recovery;
261 #if defined(CONFIG_NFS_V4_1)
262                 case -NFS4ERR_BADSESSION:
263                 case -NFS4ERR_BADSLOT:
264                 case -NFS4ERR_BAD_HIGH_SLOT:
265                 case -NFS4ERR_CONN_NOT_BOUND_TO_SESSION:
266                 case -NFS4ERR_DEADSESSION:
267                 case -NFS4ERR_SEQ_FALSE_RETRY:
268                 case -NFS4ERR_SEQ_MISORDERED:
269                         dprintk("%s ERROR: %d Reset session\n", __func__,
270                                 errorcode);
271                         nfs4_schedule_state_recovery(clp);
272                         exception->retry = 1;
273                         break;
274 #endif /* defined(CONFIG_NFS_V4_1) */
275                 case -NFS4ERR_FILE_OPEN:
276                         if (exception->timeout > HZ) {
277                                 /* We have retried a decent amount, time to
278                                  * fail
279                                  */
280                                 ret = -EBUSY;
281                                 break;
282                         }
283                 case -NFS4ERR_GRACE:
284                 case -NFS4ERR_DELAY:
285                 case -EKEYEXPIRED:
286                         ret = nfs4_delay(server->client, &exception->timeout);
287                         if (ret != 0)
288                                 break;
289                 case -NFS4ERR_OLD_STATEID:
290                         exception->retry = 1;
291         }
292         /* We failed to handle the error */
293         return nfs4_map_errors(ret);
294 do_state_recovery:
295         nfs4_schedule_state_recovery(clp);
296         ret = nfs4_wait_clnt_recover(clp);
297         if (ret == 0)
298                 exception->retry = 1;
299         return ret;
300 }
301
302
303 static void renew_lease(const struct nfs_server *server, unsigned long timestamp)
304 {
305         struct nfs_client *clp = server->nfs_client;
306         spin_lock(&clp->cl_lock);
307         if (time_before(clp->cl_last_renewal,timestamp))
308                 clp->cl_last_renewal = timestamp;
309         spin_unlock(&clp->cl_lock);
310 }
311
312 #if defined(CONFIG_NFS_V4_1)
313
314 /*
315  * nfs4_free_slot - free a slot and efficiently update slot table.
316  *
317  * freeing a slot is trivially done by clearing its respective bit
318  * in the bitmap.
319  * If the freed slotid equals highest_used_slotid we want to update it
320  * so that the server would be able to size down the slot table if needed,
321  * otherwise we know that the highest_used_slotid is still in use.
322  * When updating highest_used_slotid there may be "holes" in the bitmap
323  * so we need to scan down from highest_used_slotid to 0 looking for the now
324  * highest slotid in use.
325  * If none found, highest_used_slotid is set to -1.
326  *
327  * Must be called while holding tbl->slot_tbl_lock
328  */
329 static void
330 nfs4_free_slot(struct nfs4_slot_table *tbl, u8 free_slotid)
331 {
332         int slotid = free_slotid;
333
334         /* clear used bit in bitmap */
335         __clear_bit(slotid, tbl->used_slots);
336
337         /* update highest_used_slotid when it is freed */
338         if (slotid == tbl->highest_used_slotid) {
339                 slotid = find_last_bit(tbl->used_slots, tbl->max_slots);
340                 if (slotid < tbl->max_slots)
341                         tbl->highest_used_slotid = slotid;
342                 else
343                         tbl->highest_used_slotid = -1;
344         }
345         dprintk("%s: free_slotid %u highest_used_slotid %d\n", __func__,
346                 free_slotid, tbl->highest_used_slotid);
347 }
348
349 /*
350  * Signal state manager thread if session is drained
351  */
352 static void nfs41_check_drain_session_complete(struct nfs4_session *ses)
353 {
354         struct rpc_task *task;
355
356         if (!test_bit(NFS4CLNT_SESSION_DRAINING, &ses->clp->cl_state)) {
357                 task = rpc_wake_up_next(&ses->fc_slot_table.slot_tbl_waitq);
358                 if (task)
359                         rpc_task_set_priority(task, RPC_PRIORITY_PRIVILEGED);
360                 return;
361         }
362
363         if (ses->fc_slot_table.highest_used_slotid != -1)
364                 return;
365
366         dprintk("%s COMPLETE: Session Drained\n", __func__);
367         complete(&ses->complete);
368 }
369
370 static void nfs41_sequence_free_slot(const struct nfs_client *clp,
371                               struct nfs4_sequence_res *res)
372 {
373         struct nfs4_slot_table *tbl;
374
375         tbl = &clp->cl_session->fc_slot_table;
376         if (res->sr_slotid == NFS4_MAX_SLOT_TABLE) {
377                 /* just wake up the next guy waiting since
378                  * we may have not consumed a slot after all */
379                 dprintk("%s: No slot\n", __func__);
380                 return;
381         }
382
383         spin_lock(&tbl->slot_tbl_lock);
384         nfs4_free_slot(tbl, res->sr_slotid);
385         nfs41_check_drain_session_complete(clp->cl_session);
386         spin_unlock(&tbl->slot_tbl_lock);
387         res->sr_slotid = NFS4_MAX_SLOT_TABLE;
388 }
389
390 static void nfs41_sequence_done(struct nfs_client *clp,
391                                 struct nfs4_sequence_res *res,
392                                 int rpc_status)
393 {
394         unsigned long timestamp;
395         struct nfs4_slot_table *tbl;
396         struct nfs4_slot *slot;
397
398         /*
399          * sr_status remains 1 if an RPC level error occurred. The server
400          * may or may not have processed the sequence operation..
401          * Proceed as if the server received and processed the sequence
402          * operation.
403          */
404         if (res->sr_status == 1)
405                 res->sr_status = NFS_OK;
406
407         /* -ERESTARTSYS can result in skipping nfs41_sequence_setup */
408         if (res->sr_slotid == NFS4_MAX_SLOT_TABLE)
409                 goto out;
410
411         /* Check the SEQUENCE operation status */
412         if (res->sr_status == 0) {
413                 tbl = &clp->cl_session->fc_slot_table;
414                 slot = tbl->slots + res->sr_slotid;
415                 /* Update the slot's sequence and clientid lease timer */
416                 ++slot->seq_nr;
417                 timestamp = res->sr_renewal_time;
418                 spin_lock(&clp->cl_lock);
419                 if (time_before(clp->cl_last_renewal, timestamp))
420                         clp->cl_last_renewal = timestamp;
421                 spin_unlock(&clp->cl_lock);
422                 /* Check sequence flags */
423                 if (atomic_read(&clp->cl_count) > 1)
424                         nfs41_handle_sequence_flag_errors(clp, res->sr_status_flags);
425         }
426 out:
427         /* The session may be reset by one of the error handlers. */
428         dprintk("%s: Error %d free the slot \n", __func__, res->sr_status);
429         nfs41_sequence_free_slot(clp, res);
430 }
431
432 /*
433  * nfs4_find_slot - efficiently look for a free slot
434  *
435  * nfs4_find_slot looks for an unset bit in the used_slots bitmap.
436  * If found, we mark the slot as used, update the highest_used_slotid,
437  * and respectively set up the sequence operation args.
438  * The slot number is returned if found, or NFS4_MAX_SLOT_TABLE otherwise.
439  *
440  * Note: must be called with under the slot_tbl_lock.
441  */
442 static u8
443 nfs4_find_slot(struct nfs4_slot_table *tbl)
444 {
445         int slotid;
446         u8 ret_id = NFS4_MAX_SLOT_TABLE;
447         BUILD_BUG_ON((u8)NFS4_MAX_SLOT_TABLE != (int)NFS4_MAX_SLOT_TABLE);
448
449         dprintk("--> %s used_slots=%04lx highest_used=%d max_slots=%d\n",
450                 __func__, tbl->used_slots[0], tbl->highest_used_slotid,
451                 tbl->max_slots);
452         slotid = find_first_zero_bit(tbl->used_slots, tbl->max_slots);
453         if (slotid >= tbl->max_slots)
454                 goto out;
455         __set_bit(slotid, tbl->used_slots);
456         if (slotid > tbl->highest_used_slotid)
457                 tbl->highest_used_slotid = slotid;
458         ret_id = slotid;
459 out:
460         dprintk("<-- %s used_slots=%04lx highest_used=%d slotid=%d \n",
461                 __func__, tbl->used_slots[0], tbl->highest_used_slotid, ret_id);
462         return ret_id;
463 }
464
465 static int nfs41_setup_sequence(struct nfs4_session *session,
466                                 struct nfs4_sequence_args *args,
467                                 struct nfs4_sequence_res *res,
468                                 int cache_reply,
469                                 struct rpc_task *task)
470 {
471         struct nfs4_slot *slot;
472         struct nfs4_slot_table *tbl;
473         u8 slotid;
474
475         dprintk("--> %s\n", __func__);
476         /* slot already allocated? */
477         if (res->sr_slotid != NFS4_MAX_SLOT_TABLE)
478                 return 0;
479
480         memset(res, 0, sizeof(*res));
481         res->sr_slotid = NFS4_MAX_SLOT_TABLE;
482         tbl = &session->fc_slot_table;
483
484         spin_lock(&tbl->slot_tbl_lock);
485         if (test_bit(NFS4CLNT_SESSION_DRAINING, &session->clp->cl_state) &&
486             !rpc_task_has_priority(task, RPC_PRIORITY_PRIVILEGED)) {
487                 /*
488                  * The state manager will wait until the slot table is empty.
489                  * Schedule the reset thread
490                  */
491                 rpc_sleep_on(&tbl->slot_tbl_waitq, task, NULL);
492                 spin_unlock(&tbl->slot_tbl_lock);
493                 dprintk("%s Schedule Session Reset\n", __func__);
494                 return -EAGAIN;
495         }
496
497         if (!rpc_queue_empty(&tbl->slot_tbl_waitq) &&
498             !rpc_task_has_priority(task, RPC_PRIORITY_PRIVILEGED)) {
499                 rpc_sleep_on(&tbl->slot_tbl_waitq, task, NULL);
500                 spin_unlock(&tbl->slot_tbl_lock);
501                 dprintk("%s enforce FIFO order\n", __func__);
502                 return -EAGAIN;
503         }
504
505         slotid = nfs4_find_slot(tbl);
506         if (slotid == NFS4_MAX_SLOT_TABLE) {
507                 rpc_sleep_on(&tbl->slot_tbl_waitq, task, NULL);
508                 spin_unlock(&tbl->slot_tbl_lock);
509                 dprintk("<-- %s: no free slots\n", __func__);
510                 return -EAGAIN;
511         }
512         spin_unlock(&tbl->slot_tbl_lock);
513
514         rpc_task_set_priority(task, RPC_PRIORITY_NORMAL);
515         slot = tbl->slots + slotid;
516         args->sa_session = session;
517         args->sa_slotid = slotid;
518         args->sa_cache_this = cache_reply;
519
520         dprintk("<-- %s slotid=%d seqid=%d\n", __func__, slotid, slot->seq_nr);
521
522         res->sr_session = session;
523         res->sr_slotid = slotid;
524         res->sr_renewal_time = jiffies;
525         /*
526          * sr_status is only set in decode_sequence, and so will remain
527          * set to 1 if an rpc level failure occurs.
528          */
529         res->sr_status = 1;
530         return 0;
531 }
532
533 int nfs4_setup_sequence(struct nfs_client *clp,
534                         struct nfs4_sequence_args *args,
535                         struct nfs4_sequence_res *res,
536                         int cache_reply,
537                         struct rpc_task *task)
538 {
539         int ret = 0;
540
541         dprintk("--> %s clp %p session %p sr_slotid %d\n",
542                 __func__, clp, clp->cl_session, res->sr_slotid);
543
544         if (!nfs4_has_session(clp))
545                 goto out;
546         ret = nfs41_setup_sequence(clp->cl_session, args, res, cache_reply,
547                                    task);
548         if (ret && ret != -EAGAIN) {
549                 /* terminate rpc task */
550                 task->tk_status = ret;
551                 task->tk_action = NULL;
552         }
553 out:
554         dprintk("<-- %s status=%d\n", __func__, ret);
555         return ret;
556 }
557
558 struct nfs41_call_sync_data {
559         struct nfs_client *clp;
560         struct nfs4_sequence_args *seq_args;
561         struct nfs4_sequence_res *seq_res;
562         int cache_reply;
563 };
564
565 static void nfs41_call_sync_prepare(struct rpc_task *task, void *calldata)
566 {
567         struct nfs41_call_sync_data *data = calldata;
568
569         dprintk("--> %s data->clp->cl_session %p\n", __func__,
570                 data->clp->cl_session);
571         if (nfs4_setup_sequence(data->clp, data->seq_args,
572                                 data->seq_res, data->cache_reply, task))
573                 return;
574         rpc_call_start(task);
575 }
576
577 static void nfs41_call_priv_sync_prepare(struct rpc_task *task, void *calldata)
578 {
579         rpc_task_set_priority(task, RPC_PRIORITY_PRIVILEGED);
580         nfs41_call_sync_prepare(task, calldata);
581 }
582
583 static void nfs41_call_sync_done(struct rpc_task *task, void *calldata)
584 {
585         struct nfs41_call_sync_data *data = calldata;
586
587         nfs41_sequence_done(data->clp, data->seq_res, task->tk_status);
588 }
589
590 struct rpc_call_ops nfs41_call_sync_ops = {
591         .rpc_call_prepare = nfs41_call_sync_prepare,
592         .rpc_call_done = nfs41_call_sync_done,
593 };
594
595 struct rpc_call_ops nfs41_call_priv_sync_ops = {
596         .rpc_call_prepare = nfs41_call_priv_sync_prepare,
597         .rpc_call_done = nfs41_call_sync_done,
598 };
599
600 static int nfs4_call_sync_sequence(struct nfs_client *clp,
601                                    struct rpc_clnt *clnt,
602                                    struct rpc_message *msg,
603                                    struct nfs4_sequence_args *args,
604                                    struct nfs4_sequence_res *res,
605                                    int cache_reply,
606                                    int privileged)
607 {
608         int ret;
609         struct rpc_task *task;
610         struct nfs41_call_sync_data data = {
611                 .clp = clp,
612                 .seq_args = args,
613                 .seq_res = res,
614                 .cache_reply = cache_reply,
615         };
616         struct rpc_task_setup task_setup = {
617                 .rpc_client = clnt,
618                 .rpc_message = msg,
619                 .callback_ops = &nfs41_call_sync_ops,
620                 .callback_data = &data
621         };
622
623         res->sr_slotid = NFS4_MAX_SLOT_TABLE;
624         if (privileged)
625                 task_setup.callback_ops = &nfs41_call_priv_sync_ops;
626         task = rpc_run_task(&task_setup);
627         if (IS_ERR(task))
628                 ret = PTR_ERR(task);
629         else {
630                 ret = task->tk_status;
631                 rpc_put_task(task);
632         }
633         return ret;
634 }
635
636 int _nfs4_call_sync_session(struct nfs_server *server,
637                             struct rpc_message *msg,
638                             struct nfs4_sequence_args *args,
639                             struct nfs4_sequence_res *res,
640                             int cache_reply)
641 {
642         return nfs4_call_sync_sequence(server->nfs_client, server->client,
643                                        msg, args, res, cache_reply, 0);
644 }
645
646 #endif /* CONFIG_NFS_V4_1 */
647
648 int _nfs4_call_sync(struct nfs_server *server,
649                     struct rpc_message *msg,
650                     struct nfs4_sequence_args *args,
651                     struct nfs4_sequence_res *res,
652                     int cache_reply)
653 {
654         args->sa_session = res->sr_session = NULL;
655         return rpc_call_sync(server->client, msg, 0);
656 }
657
658 #define nfs4_call_sync(server, msg, args, res, cache_reply) \
659         (server)->nfs_client->cl_call_sync((server), (msg), &(args)->seq_args, \
660                         &(res)->seq_res, (cache_reply))
661
662 static void nfs4_sequence_done(const struct nfs_server *server,
663                                struct nfs4_sequence_res *res, int rpc_status)
664 {
665 #ifdef CONFIG_NFS_V4_1
666         if (nfs4_has_session(server->nfs_client))
667                 nfs41_sequence_done(server->nfs_client, res, rpc_status);
668 #endif /* CONFIG_NFS_V4_1 */
669 }
670
671 static void update_changeattr(struct inode *dir, struct nfs4_change_info *cinfo)
672 {
673         struct nfs_inode *nfsi = NFS_I(dir);
674
675         spin_lock(&dir->i_lock);
676         nfsi->cache_validity |= NFS_INO_INVALID_ATTR|NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA;
677         if (!cinfo->atomic || cinfo->before != nfsi->change_attr)
678                 nfs_force_lookup_revalidate(dir);
679         nfsi->change_attr = cinfo->after;
680         spin_unlock(&dir->i_lock);
681 }
682
683 struct nfs4_opendata {
684         struct kref kref;
685         struct nfs_openargs o_arg;
686         struct nfs_openres o_res;
687         struct nfs_open_confirmargs c_arg;
688         struct nfs_open_confirmres c_res;
689         struct nfs_fattr f_attr;
690         struct nfs_fattr dir_attr;
691         struct path path;
692         struct dentry *dir;
693         struct nfs4_state_owner *owner;
694         struct nfs4_state *state;
695         struct iattr attrs;
696         unsigned long timestamp;
697         unsigned int rpc_done : 1;
698         int rpc_status;
699         int cancelled;
700 };
701
702
703 static void nfs4_init_opendata_res(struct nfs4_opendata *p)
704 {
705         p->o_res.f_attr = &p->f_attr;
706         p->o_res.dir_attr = &p->dir_attr;
707         p->o_res.seqid = p->o_arg.seqid;
708         p->c_res.seqid = p->c_arg.seqid;
709         p->o_res.server = p->o_arg.server;
710         nfs_fattr_init(&p->f_attr);
711         nfs_fattr_init(&p->dir_attr);
712         p->o_res.seq_res.sr_slotid = NFS4_MAX_SLOT_TABLE;
713 }
714
715 static struct nfs4_opendata *nfs4_opendata_alloc(struct path *path,
716                 struct nfs4_state_owner *sp, fmode_t fmode, int flags,
717                 const struct iattr *attrs)
718 {
719         struct dentry *parent = dget_parent(path->dentry);
720         struct inode *dir = parent->d_inode;
721         struct nfs_server *server = NFS_SERVER(dir);
722         struct nfs4_opendata *p;
723
724         p = kzalloc(sizeof(*p), GFP_KERNEL);
725         if (p == NULL)
726                 goto err;
727         p->o_arg.seqid = nfs_alloc_seqid(&sp->so_seqid);
728         if (p->o_arg.seqid == NULL)
729                 goto err_free;
730         path_get(path);
731         p->path = *path;
732         p->dir = parent;
733         p->owner = sp;
734         atomic_inc(&sp->so_count);
735         p->o_arg.fh = NFS_FH(dir);
736         p->o_arg.open_flags = flags;
737         p->o_arg.fmode = fmode & (FMODE_READ|FMODE_WRITE);
738         p->o_arg.clientid = server->nfs_client->cl_clientid;
739         p->o_arg.id = sp->so_owner_id.id;
740         p->o_arg.name = &p->path.dentry->d_name;
741         p->o_arg.server = server;
742         p->o_arg.bitmask = server->attr_bitmask;
743         p->o_arg.claim = NFS4_OPEN_CLAIM_NULL;
744         if (flags & O_EXCL) {
745                 if (nfs4_has_persistent_session(server->nfs_client)) {
746                         /* GUARDED */
747                         p->o_arg.u.attrs = &p->attrs;
748                         memcpy(&p->attrs, attrs, sizeof(p->attrs));
749                 } else { /* EXCLUSIVE4_1 */
750                         u32 *s = (u32 *) p->o_arg.u.verifier.data;
751                         s[0] = jiffies;
752                         s[1] = current->pid;
753                 }
754         } else if (flags & O_CREAT) {
755                 p->o_arg.u.attrs = &p->attrs;
756                 memcpy(&p->attrs, attrs, sizeof(p->attrs));
757         }
758         p->c_arg.fh = &p->o_res.fh;
759         p->c_arg.stateid = &p->o_res.stateid;
760         p->c_arg.seqid = p->o_arg.seqid;
761         nfs4_init_opendata_res(p);
762         kref_init(&p->kref);
763         return p;
764 err_free:
765         kfree(p);
766 err:
767         dput(parent);
768         return NULL;
769 }
770
771 static void nfs4_opendata_free(struct kref *kref)
772 {
773         struct nfs4_opendata *p = container_of(kref,
774                         struct nfs4_opendata, kref);
775
776         nfs_free_seqid(p->o_arg.seqid);
777         if (p->state != NULL)
778                 nfs4_put_open_state(p->state);
779         nfs4_put_state_owner(p->owner);
780         dput(p->dir);
781         path_put(&p->path);
782         kfree(p);
783 }
784
785 static void nfs4_opendata_put(struct nfs4_opendata *p)
786 {
787         if (p != NULL)
788                 kref_put(&p->kref, nfs4_opendata_free);
789 }
790
791 static int nfs4_wait_for_completion_rpc_task(struct rpc_task *task)
792 {
793         int ret;
794
795         ret = rpc_wait_for_completion_task(task);
796         return ret;
797 }
798
799 static int can_open_cached(struct nfs4_state *state, fmode_t mode, int open_mode)
800 {
801         int ret = 0;
802
803         if (open_mode & O_EXCL)
804                 goto out;
805         switch (mode & (FMODE_READ|FMODE_WRITE)) {
806                 case FMODE_READ:
807                         ret |= test_bit(NFS_O_RDONLY_STATE, &state->flags) != 0
808                                 && state->n_rdonly != 0;
809                         break;
810                 case FMODE_WRITE:
811                         ret |= test_bit(NFS_O_WRONLY_STATE, &state->flags) != 0
812                                 && state->n_wronly != 0;
813                         break;
814                 case FMODE_READ|FMODE_WRITE:
815                         ret |= test_bit(NFS_O_RDWR_STATE, &state->flags) != 0
816                                 && state->n_rdwr != 0;
817         }
818 out:
819         return ret;
820 }
821
822 static int can_open_delegated(struct nfs_delegation *delegation, fmode_t fmode)
823 {
824         if ((delegation->type & fmode) != fmode)
825                 return 0;
826         if (test_bit(NFS_DELEGATION_NEED_RECLAIM, &delegation->flags))
827                 return 0;
828         nfs_mark_delegation_referenced(delegation);
829         return 1;
830 }
831
832 static void update_open_stateflags(struct nfs4_state *state, fmode_t fmode)
833 {
834         switch (fmode) {
835                 case FMODE_WRITE:
836                         state->n_wronly++;
837                         break;
838                 case FMODE_READ:
839                         state->n_rdonly++;
840                         break;
841                 case FMODE_READ|FMODE_WRITE:
842                         state->n_rdwr++;
843         }
844         nfs4_state_set_mode_locked(state, state->state | fmode);
845 }
846
847 static void nfs_set_open_stateid_locked(struct nfs4_state *state, nfs4_stateid *stateid, fmode_t fmode)
848 {
849         if (test_bit(NFS_DELEGATED_STATE, &state->flags) == 0)
850                 memcpy(state->stateid.data, stateid->data, sizeof(state->stateid.data));
851         memcpy(state->open_stateid.data, stateid->data, sizeof(state->open_stateid.data));
852         switch (fmode) {
853                 case FMODE_READ:
854                         set_bit(NFS_O_RDONLY_STATE, &state->flags);
855                         break;
856                 case FMODE_WRITE:
857                         set_bit(NFS_O_WRONLY_STATE, &state->flags);
858                         break;
859                 case FMODE_READ|FMODE_WRITE:
860                         set_bit(NFS_O_RDWR_STATE, &state->flags);
861         }
862 }
863
864 static void nfs_set_open_stateid(struct nfs4_state *state, nfs4_stateid *stateid, fmode_t fmode)
865 {
866         write_seqlock(&state->seqlock);
867         nfs_set_open_stateid_locked(state, stateid, fmode);
868         write_sequnlock(&state->seqlock);
869 }
870
871 static void __update_open_stateid(struct nfs4_state *state, nfs4_stateid *open_stateid, const nfs4_stateid *deleg_stateid, fmode_t fmode)
872 {
873         /*
874          * Protect the call to nfs4_state_set_mode_locked and
875          * serialise the stateid update
876          */
877         write_seqlock(&state->seqlock);
878         if (deleg_stateid != NULL) {
879                 memcpy(state->stateid.data, deleg_stateid->data, sizeof(state->stateid.data));
880                 set_bit(NFS_DELEGATED_STATE, &state->flags);
881         }
882         if (open_stateid != NULL)
883                 nfs_set_open_stateid_locked(state, open_stateid, fmode);
884         write_sequnlock(&state->seqlock);
885         spin_lock(&state->owner->so_lock);
886         update_open_stateflags(state, fmode);
887         spin_unlock(&state->owner->so_lock);
888 }
889
890 static int update_open_stateid(struct nfs4_state *state, nfs4_stateid *open_stateid, nfs4_stateid *delegation, fmode_t fmode)
891 {
892         struct nfs_inode *nfsi = NFS_I(state->inode);
893         struct nfs_delegation *deleg_cur;
894         int ret = 0;
895
896         fmode &= (FMODE_READ|FMODE_WRITE);
897
898         rcu_read_lock();
899         deleg_cur = rcu_dereference(nfsi->delegation);
900         if (deleg_cur == NULL)
901                 goto no_delegation;
902
903         spin_lock(&deleg_cur->lock);
904         if (nfsi->delegation != deleg_cur ||
905             (deleg_cur->type & fmode) != fmode)
906                 goto no_delegation_unlock;
907
908         if (delegation == NULL)
909                 delegation = &deleg_cur->stateid;
910         else if (memcmp(deleg_cur->stateid.data, delegation->data, NFS4_STATEID_SIZE) != 0)
911                 goto no_delegation_unlock;
912
913         nfs_mark_delegation_referenced(deleg_cur);
914         __update_open_stateid(state, open_stateid, &deleg_cur->stateid, fmode);
915         ret = 1;
916 no_delegation_unlock:
917         spin_unlock(&deleg_cur->lock);
918 no_delegation:
919         rcu_read_unlock();
920
921         if (!ret && open_stateid != NULL) {
922                 __update_open_stateid(state, open_stateid, NULL, fmode);
923                 ret = 1;
924         }
925
926         return ret;
927 }
928
929
930 static void nfs4_return_incompatible_delegation(struct inode *inode, fmode_t fmode)
931 {
932         struct nfs_delegation *delegation;
933
934         rcu_read_lock();
935         delegation = rcu_dereference(NFS_I(inode)->delegation);
936         if (delegation == NULL || (delegation->type & fmode) == fmode) {
937                 rcu_read_unlock();
938                 return;
939         }
940         rcu_read_unlock();
941         nfs_inode_return_delegation(inode);
942 }
943
944 static struct nfs4_state *nfs4_try_open_cached(struct nfs4_opendata *opendata)
945 {
946         struct nfs4_state *state = opendata->state;
947         struct nfs_inode *nfsi = NFS_I(state->inode);
948         struct nfs_delegation *delegation;
949         int open_mode = opendata->o_arg.open_flags & O_EXCL;
950         fmode_t fmode = opendata->o_arg.fmode;
951         nfs4_stateid stateid;
952         int ret = -EAGAIN;
953
954         for (;;) {
955                 if (can_open_cached(state, fmode, open_mode)) {
956                         spin_lock(&state->owner->so_lock);
957                         if (can_open_cached(state, fmode, open_mode)) {
958                                 update_open_stateflags(state, fmode);
959                                 spin_unlock(&state->owner->so_lock);
960                                 goto out_return_state;
961                         }
962                         spin_unlock(&state->owner->so_lock);
963                 }
964                 rcu_read_lock();
965                 delegation = rcu_dereference(nfsi->delegation);
966                 if (delegation == NULL ||
967                     !can_open_delegated(delegation, fmode)) {
968                         rcu_read_unlock();
969                         break;
970                 }
971                 /* Save the delegation */
972                 memcpy(stateid.data, delegation->stateid.data, sizeof(stateid.data));
973                 rcu_read_unlock();
974                 ret = nfs_may_open(state->inode, state->owner->so_cred, open_mode);
975                 if (ret != 0)
976                         goto out;
977                 ret = -EAGAIN;
978
979                 /* Try to update the stateid using the delegation */
980                 if (update_open_stateid(state, NULL, &stateid, fmode))
981                         goto out_return_state;
982         }
983 out:
984         return ERR_PTR(ret);
985 out_return_state:
986         atomic_inc(&state->count);
987         return state;
988 }
989
990 static struct nfs4_state *nfs4_opendata_to_nfs4_state(struct nfs4_opendata *data)
991 {
992         struct inode *inode;
993         struct nfs4_state *state = NULL;
994         struct nfs_delegation *delegation;
995         int ret;
996
997         if (!data->rpc_done) {
998                 state = nfs4_try_open_cached(data);
999                 goto out;
1000         }
1001
1002         ret = -EAGAIN;
1003         if (!(data->f_attr.valid & NFS_ATTR_FATTR))
1004                 goto err;
1005         inode = nfs_fhget(data->dir->d_sb, &data->o_res.fh, &data->f_attr);
1006         ret = PTR_ERR(inode);
1007         if (IS_ERR(inode))
1008                 goto err;
1009         ret = -ENOMEM;
1010         state = nfs4_get_open_state(inode, data->owner);
1011         if (state == NULL)
1012                 goto err_put_inode;
1013         if (data->o_res.delegation_type != 0) {
1014                 int delegation_flags = 0;
1015
1016                 rcu_read_lock();
1017                 delegation = rcu_dereference(NFS_I(inode)->delegation);
1018                 if (delegation)
1019                         delegation_flags = delegation->flags;
1020                 rcu_read_unlock();
1021                 if ((delegation_flags & 1UL<<NFS_DELEGATION_NEED_RECLAIM) == 0)
1022                         nfs_inode_set_delegation(state->inode,
1023                                         data->owner->so_cred,
1024                                         &data->o_res);
1025                 else
1026                         nfs_inode_reclaim_delegation(state->inode,
1027                                         data->owner->so_cred,
1028                                         &data->o_res);
1029         }
1030
1031         update_open_stateid(state, &data->o_res.stateid, NULL,
1032                         data->o_arg.fmode);
1033         iput(inode);
1034 out:
1035         return state;
1036 err_put_inode:
1037         iput(inode);
1038 err:
1039         return ERR_PTR(ret);
1040 }
1041
1042 static struct nfs_open_context *nfs4_state_find_open_context(struct nfs4_state *state)
1043 {
1044         struct nfs_inode *nfsi = NFS_I(state->inode);
1045         struct nfs_open_context *ctx;
1046
1047         spin_lock(&state->inode->i_lock);
1048         list_for_each_entry(ctx, &nfsi->open_files, list) {
1049                 if (ctx->state != state)
1050                         continue;
1051                 get_nfs_open_context(ctx);
1052                 spin_unlock(&state->inode->i_lock);
1053                 return ctx;
1054         }
1055         spin_unlock(&state->inode->i_lock);
1056         return ERR_PTR(-ENOENT);
1057 }
1058
1059 static struct nfs4_opendata *nfs4_open_recoverdata_alloc(struct nfs_open_context *ctx, struct nfs4_state *state)
1060 {
1061         struct nfs4_opendata *opendata;
1062
1063         opendata = nfs4_opendata_alloc(&ctx->path, state->owner, 0, 0, NULL);
1064         if (opendata == NULL)
1065                 return ERR_PTR(-ENOMEM);
1066         opendata->state = state;
1067         atomic_inc(&state->count);
1068         return opendata;
1069 }
1070
1071 static int nfs4_open_recover_helper(struct nfs4_opendata *opendata, fmode_t fmode, struct nfs4_state **res)
1072 {
1073         struct nfs4_state *newstate;
1074         int ret;
1075
1076         opendata->o_arg.open_flags = 0;
1077         opendata->o_arg.fmode = fmode;
1078         memset(&opendata->o_res, 0, sizeof(opendata->o_res));
1079         memset(&opendata->c_res, 0, sizeof(opendata->c_res));
1080         nfs4_init_opendata_res(opendata);
1081         ret = _nfs4_recover_proc_open(opendata);
1082         if (ret != 0)
1083                 return ret; 
1084         newstate = nfs4_opendata_to_nfs4_state(opendata);
1085         if (IS_ERR(newstate))
1086                 return PTR_ERR(newstate);
1087         nfs4_close_state(&opendata->path, newstate, fmode);
1088         *res = newstate;
1089         return 0;
1090 }
1091
1092 static int nfs4_open_recover(struct nfs4_opendata *opendata, struct nfs4_state *state)
1093 {
1094         struct nfs4_state *newstate;
1095         int ret;
1096
1097         /* memory barrier prior to reading state->n_* */
1098         clear_bit(NFS_DELEGATED_STATE, &state->flags);
1099         smp_rmb();
1100         if (state->n_rdwr != 0) {
1101                 ret = nfs4_open_recover_helper(opendata, FMODE_READ|FMODE_WRITE, &newstate);
1102                 if (ret != 0)
1103                         return ret;
1104                 if (newstate != state)
1105                         return -ESTALE;
1106         }
1107         if (state->n_wronly != 0) {
1108                 ret = nfs4_open_recover_helper(opendata, FMODE_WRITE, &newstate);
1109                 if (ret != 0)
1110                         return ret;
1111                 if (newstate != state)
1112                         return -ESTALE;
1113         }
1114         if (state->n_rdonly != 0) {
1115                 ret = nfs4_open_recover_helper(opendata, FMODE_READ, &newstate);
1116                 if (ret != 0)
1117                         return ret;
1118                 if (newstate != state)
1119                         return -ESTALE;
1120         }
1121         /*
1122          * We may have performed cached opens for all three recoveries.
1123          * Check if we need to update the current stateid.
1124          */
1125         if (test_bit(NFS_DELEGATED_STATE, &state->flags) == 0 &&
1126             memcmp(state->stateid.data, state->open_stateid.data, sizeof(state->stateid.data)) != 0) {
1127                 write_seqlock(&state->seqlock);
1128                 if (test_bit(NFS_DELEGATED_STATE, &state->flags) == 0)
1129                         memcpy(state->stateid.data, state->open_stateid.data, sizeof(state->stateid.data));
1130                 write_sequnlock(&state->seqlock);
1131         }
1132         return 0;
1133 }
1134
1135 /*
1136  * OPEN_RECLAIM:
1137  *      reclaim state on the server after a reboot.
1138  */
1139 static int _nfs4_do_open_reclaim(struct nfs_open_context *ctx, struct nfs4_state *state)
1140 {
1141         struct nfs_delegation *delegation;
1142         struct nfs4_opendata *opendata;
1143         fmode_t delegation_type = 0;
1144         int status;
1145
1146         opendata = nfs4_open_recoverdata_alloc(ctx, state);
1147         if (IS_ERR(opendata))
1148                 return PTR_ERR(opendata);
1149         opendata->o_arg.claim = NFS4_OPEN_CLAIM_PREVIOUS;
1150         opendata->o_arg.fh = NFS_FH(state->inode);
1151         rcu_read_lock();
1152         delegation = rcu_dereference(NFS_I(state->inode)->delegation);
1153         if (delegation != NULL && test_bit(NFS_DELEGATION_NEED_RECLAIM, &delegation->flags) != 0)
1154                 delegation_type = delegation->type;
1155         rcu_read_unlock();
1156         opendata->o_arg.u.delegation_type = delegation_type;
1157         status = nfs4_open_recover(opendata, state);
1158         nfs4_opendata_put(opendata);
1159         return status;
1160 }
1161
1162 static int nfs4_do_open_reclaim(struct nfs_open_context *ctx, struct nfs4_state *state)
1163 {
1164         struct nfs_server *server = NFS_SERVER(state->inode);
1165         struct nfs4_exception exception = { };
1166         int err;
1167         do {
1168                 err = _nfs4_do_open_reclaim(ctx, state);
1169                 if (err != -NFS4ERR_DELAY && err != -EKEYEXPIRED)
1170                         break;
1171                 nfs4_handle_exception(server, err, &exception);
1172         } while (exception.retry);
1173         return err;
1174 }
1175
1176 static int nfs4_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state)
1177 {
1178         struct nfs_open_context *ctx;
1179         int ret;
1180
1181         ctx = nfs4_state_find_open_context(state);
1182         if (IS_ERR(ctx))
1183                 return PTR_ERR(ctx);
1184         ret = nfs4_do_open_reclaim(ctx, state);
1185         put_nfs_open_context(ctx);
1186         return ret;
1187 }
1188
1189 static int _nfs4_open_delegation_recall(struct nfs_open_context *ctx, struct nfs4_state *state, const nfs4_stateid *stateid)
1190 {
1191         struct nfs4_opendata *opendata;
1192         int ret;
1193
1194         opendata = nfs4_open_recoverdata_alloc(ctx, state);
1195         if (IS_ERR(opendata))
1196                 return PTR_ERR(opendata);
1197         opendata->o_arg.claim = NFS4_OPEN_CLAIM_DELEGATE_CUR;
1198         memcpy(opendata->o_arg.u.delegation.data, stateid->data,
1199                         sizeof(opendata->o_arg.u.delegation.data));
1200         ret = nfs4_open_recover(opendata, state);
1201         nfs4_opendata_put(opendata);
1202         return ret;
1203 }
1204
1205 int nfs4_open_delegation_recall(struct nfs_open_context *ctx, struct nfs4_state *state, const nfs4_stateid *stateid)
1206 {
1207         struct nfs4_exception exception = { };
1208         struct nfs_server *server = NFS_SERVER(state->inode);
1209         int err;
1210         do {
1211                 err = _nfs4_open_delegation_recall(ctx, state, stateid);
1212                 switch (err) {
1213                         case 0:
1214                         case -ENOENT:
1215                         case -ESTALE:
1216                                 goto out;
1217                         case -NFS4ERR_BADSESSION:
1218                         case -NFS4ERR_BADSLOT:
1219                         case -NFS4ERR_BAD_HIGH_SLOT:
1220                         case -NFS4ERR_CONN_NOT_BOUND_TO_SESSION:
1221                         case -NFS4ERR_DEADSESSION:
1222                                 nfs4_schedule_state_recovery(
1223                                         server->nfs_client);
1224                                 goto out;
1225                         case -NFS4ERR_STALE_CLIENTID:
1226                         case -NFS4ERR_STALE_STATEID:
1227                         case -NFS4ERR_EXPIRED:
1228                                 /* Don't recall a delegation if it was lost */
1229                                 nfs4_schedule_state_recovery(server->nfs_client);
1230                                 goto out;
1231                         case -ERESTARTSYS:
1232                                 /*
1233                                  * The show must go on: exit, but mark the
1234                                  * stateid as needing recovery.
1235                                  */
1236                         case -NFS4ERR_ADMIN_REVOKED:
1237                         case -NFS4ERR_BAD_STATEID:
1238                                 nfs4_state_mark_reclaim_nograce(server->nfs_client, state);
1239                         case -ENOMEM:
1240                                 err = 0;
1241                                 goto out;
1242                 }
1243                 err = nfs4_handle_exception(server, err, &exception);
1244         } while (exception.retry);
1245 out:
1246         return err;
1247 }
1248
1249 static void nfs4_open_confirm_done(struct rpc_task *task, void *calldata)
1250 {
1251         struct nfs4_opendata *data = calldata;
1252
1253         data->rpc_status = task->tk_status;
1254         if (RPC_ASSASSINATED(task))
1255                 return;
1256         if (data->rpc_status == 0) {
1257                 memcpy(data->o_res.stateid.data, data->c_res.stateid.data,
1258                                 sizeof(data->o_res.stateid.data));
1259                 nfs_confirm_seqid(&data->owner->so_seqid, 0);
1260                 renew_lease(data->o_res.server, data->timestamp);
1261                 data->rpc_done = 1;
1262         }
1263 }
1264
1265 static void nfs4_open_confirm_release(void *calldata)
1266 {
1267         struct nfs4_opendata *data = calldata;
1268         struct nfs4_state *state = NULL;
1269
1270         /* If this request hasn't been cancelled, do nothing */
1271         if (data->cancelled == 0)
1272                 goto out_free;
1273         /* In case of error, no cleanup! */
1274         if (!data->rpc_done)
1275                 goto out_free;
1276         state = nfs4_opendata_to_nfs4_state(data);
1277         if (!IS_ERR(state))
1278                 nfs4_close_state(&data->path, state, data->o_arg.fmode);
1279 out_free:
1280         nfs4_opendata_put(data);
1281 }
1282
1283 static const struct rpc_call_ops nfs4_open_confirm_ops = {
1284         .rpc_call_done = nfs4_open_confirm_done,
1285         .rpc_release = nfs4_open_confirm_release,
1286 };
1287
1288 /*
1289  * Note: On error, nfs4_proc_open_confirm will free the struct nfs4_opendata
1290  */
1291 static int _nfs4_proc_open_confirm(struct nfs4_opendata *data)
1292 {
1293         struct nfs_server *server = NFS_SERVER(data->dir->d_inode);
1294         struct rpc_task *task;
1295         struct  rpc_message msg = {
1296                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_CONFIRM],
1297                 .rpc_argp = &data->c_arg,
1298                 .rpc_resp = &data->c_res,
1299                 .rpc_cred = data->owner->so_cred,
1300         };
1301         struct rpc_task_setup task_setup_data = {
1302                 .rpc_client = server->client,
1303                 .rpc_message = &msg,
1304                 .callback_ops = &nfs4_open_confirm_ops,
1305                 .callback_data = data,
1306                 .workqueue = nfsiod_workqueue,
1307                 .flags = RPC_TASK_ASYNC,
1308         };
1309         int status;
1310
1311         kref_get(&data->kref);
1312         data->rpc_done = 0;
1313         data->rpc_status = 0;
1314         data->timestamp = jiffies;
1315         task = rpc_run_task(&task_setup_data);
1316         if (IS_ERR(task))
1317                 return PTR_ERR(task);
1318         status = nfs4_wait_for_completion_rpc_task(task);
1319         if (status != 0) {
1320                 data->cancelled = 1;
1321                 smp_wmb();
1322         } else
1323                 status = data->rpc_status;
1324         rpc_put_task(task);
1325         return status;
1326 }
1327
1328 static void nfs4_open_prepare(struct rpc_task *task, void *calldata)
1329 {
1330         struct nfs4_opendata *data = calldata;
1331         struct nfs4_state_owner *sp = data->owner;
1332
1333         if (nfs_wait_on_sequence(data->o_arg.seqid, task) != 0)
1334                 return;
1335         /*
1336          * Check if we still need to send an OPEN call, or if we can use
1337          * a delegation instead.
1338          */
1339         if (data->state != NULL) {
1340                 struct nfs_delegation *delegation;
1341
1342                 if (can_open_cached(data->state, data->o_arg.fmode, data->o_arg.open_flags))
1343                         goto out_no_action;
1344                 rcu_read_lock();
1345                 delegation = rcu_dereference(NFS_I(data->state->inode)->delegation);
1346                 if (delegation != NULL &&
1347                     test_bit(NFS_DELEGATION_NEED_RECLAIM, &delegation->flags) == 0) {
1348                         rcu_read_unlock();
1349                         goto out_no_action;
1350                 }
1351                 rcu_read_unlock();
1352         }
1353         /* Update sequence id. */
1354         data->o_arg.id = sp->so_owner_id.id;
1355         data->o_arg.clientid = sp->so_client->cl_clientid;
1356         if (data->o_arg.claim == NFS4_OPEN_CLAIM_PREVIOUS) {
1357                 task->tk_msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_NOATTR];
1358                 nfs_copy_fh(&data->o_res.fh, data->o_arg.fh);
1359         }
1360         data->timestamp = jiffies;
1361         if (nfs4_setup_sequence(data->o_arg.server->nfs_client,
1362                                 &data->o_arg.seq_args,
1363                                 &data->o_res.seq_res, 1, task))
1364                 return;
1365         rpc_call_start(task);
1366         return;
1367 out_no_action:
1368         task->tk_action = NULL;
1369
1370 }
1371
1372 static void nfs4_recover_open_prepare(struct rpc_task *task, void *calldata)
1373 {
1374         rpc_task_set_priority(task, RPC_PRIORITY_PRIVILEGED);
1375         nfs4_open_prepare(task, calldata);
1376 }
1377
1378 static void nfs4_open_done(struct rpc_task *task, void *calldata)
1379 {
1380         struct nfs4_opendata *data = calldata;
1381
1382         data->rpc_status = task->tk_status;
1383
1384         nfs4_sequence_done(data->o_arg.server, &data->o_res.seq_res,
1385                         task->tk_status);
1386
1387         if (RPC_ASSASSINATED(task))
1388                 return;
1389         if (task->tk_status == 0) {
1390                 switch (data->o_res.f_attr->mode & S_IFMT) {
1391                         case S_IFREG:
1392                                 break;
1393                         case S_IFLNK:
1394                                 data->rpc_status = -ELOOP;
1395                                 break;
1396                         case S_IFDIR:
1397                                 data->rpc_status = -EISDIR;
1398                                 break;
1399                         default:
1400                                 data->rpc_status = -ENOTDIR;
1401                 }
1402                 renew_lease(data->o_res.server, data->timestamp);
1403                 if (!(data->o_res.rflags & NFS4_OPEN_RESULT_CONFIRM))
1404                         nfs_confirm_seqid(&data->owner->so_seqid, 0);
1405         }
1406         data->rpc_done = 1;
1407 }
1408
1409 static void nfs4_open_release(void *calldata)
1410 {
1411         struct nfs4_opendata *data = calldata;
1412         struct nfs4_state *state = NULL;
1413
1414         /* If this request hasn't been cancelled, do nothing */
1415         if (data->cancelled == 0)
1416                 goto out_free;
1417         /* In case of error, no cleanup! */
1418         if (data->rpc_status != 0 || !data->rpc_done)
1419                 goto out_free;
1420         /* In case we need an open_confirm, no cleanup! */
1421         if (data->o_res.rflags & NFS4_OPEN_RESULT_CONFIRM)
1422                 goto out_free;
1423         state = nfs4_opendata_to_nfs4_state(data);
1424         if (!IS_ERR(state))
1425                 nfs4_close_state(&data->path, state, data->o_arg.fmode);
1426 out_free:
1427         nfs4_opendata_put(data);
1428 }
1429
1430 static const struct rpc_call_ops nfs4_open_ops = {
1431         .rpc_call_prepare = nfs4_open_prepare,
1432         .rpc_call_done = nfs4_open_done,
1433         .rpc_release = nfs4_open_release,
1434 };
1435
1436 static const struct rpc_call_ops nfs4_recover_open_ops = {
1437         .rpc_call_prepare = nfs4_recover_open_prepare,
1438         .rpc_call_done = nfs4_open_done,
1439         .rpc_release = nfs4_open_release,
1440 };
1441
1442 static int nfs4_run_open_task(struct nfs4_opendata *data, int isrecover)
1443 {
1444         struct inode *dir = data->dir->d_inode;
1445         struct nfs_server *server = NFS_SERVER(dir);
1446         struct nfs_openargs *o_arg = &data->o_arg;
1447         struct nfs_openres *o_res = &data->o_res;
1448         struct rpc_task *task;
1449         struct rpc_message msg = {
1450                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN],
1451                 .rpc_argp = o_arg,
1452                 .rpc_resp = o_res,
1453                 .rpc_cred = data->owner->so_cred,
1454         };
1455         struct rpc_task_setup task_setup_data = {
1456                 .rpc_client = server->client,
1457                 .rpc_message = &msg,
1458                 .callback_ops = &nfs4_open_ops,
1459                 .callback_data = data,
1460                 .workqueue = nfsiod_workqueue,
1461                 .flags = RPC_TASK_ASYNC,
1462         };
1463         int status;
1464
1465         kref_get(&data->kref);
1466         data->rpc_done = 0;
1467         data->rpc_status = 0;
1468         data->cancelled = 0;
1469         if (isrecover)
1470                 task_setup_data.callback_ops = &nfs4_recover_open_ops;
1471         task = rpc_run_task(&task_setup_data);
1472         if (IS_ERR(task))
1473                 return PTR_ERR(task);
1474         status = nfs4_wait_for_completion_rpc_task(task);
1475         if (status != 0) {
1476                 data->cancelled = 1;
1477                 smp_wmb();
1478         } else
1479                 status = data->rpc_status;
1480         rpc_put_task(task);
1481
1482         return status;
1483 }
1484
1485 static int _nfs4_recover_proc_open(struct nfs4_opendata *data)
1486 {
1487         struct inode *dir = data->dir->d_inode;
1488         struct nfs_openres *o_res = &data->o_res;
1489         int status;
1490
1491         status = nfs4_run_open_task(data, 1);
1492         if (status != 0 || !data->rpc_done)
1493                 return status;
1494
1495         nfs_refresh_inode(dir, o_res->dir_attr);
1496
1497         if (o_res->rflags & NFS4_OPEN_RESULT_CONFIRM) {
1498                 status = _nfs4_proc_open_confirm(data);
1499                 if (status != 0)
1500                         return status;
1501         }
1502
1503         return status;
1504 }
1505
1506 /*
1507  * Note: On error, nfs4_proc_open will free the struct nfs4_opendata
1508  */
1509 static int _nfs4_proc_open(struct nfs4_opendata *data)
1510 {
1511         struct inode *dir = data->dir->d_inode;
1512         struct nfs_server *server = NFS_SERVER(dir);
1513         struct nfs_openargs *o_arg = &data->o_arg;
1514         struct nfs_openres *o_res = &data->o_res;
1515         int status;
1516
1517         status = nfs4_run_open_task(data, 0);
1518         if (status != 0 || !data->rpc_done)
1519                 return status;
1520
1521         if (o_arg->open_flags & O_CREAT) {
1522                 update_changeattr(dir, &o_res->cinfo);
1523                 nfs_post_op_update_inode(dir, o_res->dir_attr);
1524         } else
1525                 nfs_refresh_inode(dir, o_res->dir_attr);
1526         if ((o_res->rflags & NFS4_OPEN_RESULT_LOCKTYPE_POSIX) == 0)
1527                 server->caps &= ~NFS_CAP_POSIX_LOCK;
1528         if(o_res->rflags & NFS4_OPEN_RESULT_CONFIRM) {
1529                 status = _nfs4_proc_open_confirm(data);
1530                 if (status != 0)
1531                         return status;
1532         }
1533         if (!(o_res->f_attr->valid & NFS_ATTR_FATTR))
1534                 _nfs4_proc_getattr(server, &o_res->fh, o_res->f_attr);
1535         return 0;
1536 }
1537
1538 static int nfs4_recover_expired_lease(struct nfs_server *server)
1539 {
1540         struct nfs_client *clp = server->nfs_client;
1541         unsigned int loop;
1542         int ret;
1543
1544         for (loop = NFS4_MAX_LOOP_ON_RECOVER; loop != 0; loop--) {
1545                 ret = nfs4_wait_clnt_recover(clp);
1546                 if (ret != 0)
1547                         break;
1548                 if (!test_bit(NFS4CLNT_LEASE_EXPIRED, &clp->cl_state) &&
1549                     !test_bit(NFS4CLNT_CHECK_LEASE,&clp->cl_state))
1550                         break;
1551                 nfs4_schedule_state_recovery(clp);
1552                 ret = -EIO;
1553         }
1554         return ret;
1555 }
1556
1557 /*
1558  * OPEN_EXPIRED:
1559  *      reclaim state on the server after a network partition.
1560  *      Assumes caller holds the appropriate lock
1561  */
1562 static int _nfs4_open_expired(struct nfs_open_context *ctx, struct nfs4_state *state)
1563 {
1564         struct nfs4_opendata *opendata;
1565         int ret;
1566
1567         opendata = nfs4_open_recoverdata_alloc(ctx, state);
1568         if (IS_ERR(opendata))
1569                 return PTR_ERR(opendata);
1570         ret = nfs4_open_recover(opendata, state);
1571         if (ret == -ESTALE)
1572                 d_drop(ctx->path.dentry);
1573         nfs4_opendata_put(opendata);
1574         return ret;
1575 }
1576
1577 static int nfs4_do_open_expired(struct nfs_open_context *ctx, struct nfs4_state *state)
1578 {
1579         struct nfs_server *server = NFS_SERVER(state->inode);
1580         struct nfs4_exception exception = { };
1581         int err;
1582
1583         do {
1584                 err = _nfs4_open_expired(ctx, state);
1585                 switch (err) {
1586                 default:
1587                         goto out;
1588                 case -NFS4ERR_GRACE:
1589                 case -NFS4ERR_DELAY:
1590                 case -EKEYEXPIRED:
1591                         nfs4_handle_exception(server, err, &exception);
1592                         err = 0;
1593                 }
1594         } while (exception.retry);
1595 out:
1596         return err;
1597 }
1598
1599 static int nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state)
1600 {
1601         struct nfs_open_context *ctx;
1602         int ret;
1603
1604         ctx = nfs4_state_find_open_context(state);
1605         if (IS_ERR(ctx))
1606                 return PTR_ERR(ctx);
1607         ret = nfs4_do_open_expired(ctx, state);
1608         put_nfs_open_context(ctx);
1609         return ret;
1610 }
1611
1612 /*
1613  * on an EXCLUSIVE create, the server should send back a bitmask with FATTR4-*
1614  * fields corresponding to attributes that were used to store the verifier.
1615  * Make sure we clobber those fields in the later setattr call
1616  */
1617 static inline void nfs4_exclusive_attrset(struct nfs4_opendata *opendata, struct iattr *sattr)
1618 {
1619         if ((opendata->o_res.attrset[1] & FATTR4_WORD1_TIME_ACCESS) &&
1620             !(sattr->ia_valid & ATTR_ATIME_SET))
1621                 sattr->ia_valid |= ATTR_ATIME;
1622
1623         if ((opendata->o_res.attrset[1] & FATTR4_WORD1_TIME_MODIFY) &&
1624             !(sattr->ia_valid & ATTR_MTIME_SET))
1625                 sattr->ia_valid |= ATTR_MTIME;
1626 }
1627
1628 /*
1629  * Returns a referenced nfs4_state
1630  */
1631 static int _nfs4_do_open(struct inode *dir, struct path *path, fmode_t fmode, int flags, struct iattr *sattr, struct rpc_cred *cred, struct nfs4_state **res)
1632 {
1633         struct nfs4_state_owner  *sp;
1634         struct nfs4_state     *state = NULL;
1635         struct nfs_server       *server = NFS_SERVER(dir);
1636         struct nfs4_opendata *opendata;
1637         int status;
1638
1639         /* Protect against reboot recovery conflicts */
1640         status = -ENOMEM;
1641         if (!(sp = nfs4_get_state_owner(server, cred))) {
1642                 dprintk("nfs4_do_open: nfs4_get_state_owner failed!\n");
1643                 goto out_err;
1644         }
1645         status = nfs4_recover_expired_lease(server);
1646         if (status != 0)
1647                 goto err_put_state_owner;
1648         if (path->dentry->d_inode != NULL)
1649                 nfs4_return_incompatible_delegation(path->dentry->d_inode, fmode);
1650         status = -ENOMEM;
1651         opendata = nfs4_opendata_alloc(path, sp, fmode, flags, sattr);
1652         if (opendata == NULL)
1653                 goto err_put_state_owner;
1654
1655         if (path->dentry->d_inode != NULL)
1656                 opendata->state = nfs4_get_open_state(path->dentry->d_inode, sp);
1657
1658         status = _nfs4_proc_open(opendata);
1659         if (status != 0)
1660                 goto err_opendata_put;
1661
1662         if (opendata->o_arg.open_flags & O_EXCL)
1663                 nfs4_exclusive_attrset(opendata, sattr);
1664
1665         state = nfs4_opendata_to_nfs4_state(opendata);
1666         status = PTR_ERR(state);
1667         if (IS_ERR(state))
1668                 goto err_opendata_put;
1669         if (server->caps & NFS_CAP_POSIX_LOCK)
1670                 set_bit(NFS_STATE_POSIX_LOCKS, &state->flags);
1671         nfs4_opendata_put(opendata);
1672         nfs4_put_state_owner(sp);
1673         *res = state;
1674         return 0;
1675 err_opendata_put:
1676         nfs4_opendata_put(opendata);
1677 err_put_state_owner:
1678         nfs4_put_state_owner(sp);
1679 out_err:
1680         *res = NULL;
1681         return status;
1682 }
1683
1684
1685 static struct nfs4_state *nfs4_do_open(struct inode *dir, struct path *path, fmode_t fmode, int flags, struct iattr *sattr, struct rpc_cred *cred)
1686 {
1687         struct nfs4_exception exception = { };
1688         struct nfs4_state *res;
1689         int status;
1690
1691         do {
1692                 status = _nfs4_do_open(dir, path, fmode, flags, sattr, cred, &res);
1693                 if (status == 0)
1694                         break;
1695                 /* NOTE: BAD_SEQID means the server and client disagree about the
1696                  * book-keeping w.r.t. state-changing operations
1697                  * (OPEN/CLOSE/LOCK/LOCKU...)
1698                  * It is actually a sign of a bug on the client or on the server.
1699                  *
1700                  * If we receive a BAD_SEQID error in the particular case of
1701                  * doing an OPEN, we assume that nfs_increment_open_seqid() will
1702                  * have unhashed the old state_owner for us, and that we can
1703                  * therefore safely retry using a new one. We should still warn
1704                  * the user though...
1705                  */
1706                 if (status == -NFS4ERR_BAD_SEQID) {
1707                         printk(KERN_WARNING "NFS: v4 server %s "
1708                                         " returned a bad sequence-id error!\n",
1709                                         NFS_SERVER(dir)->nfs_client->cl_hostname);
1710                         exception.retry = 1;
1711                         continue;
1712                 }
1713                 /*
1714                  * BAD_STATEID on OPEN means that the server cancelled our
1715                  * state before it received the OPEN_CONFIRM.
1716                  * Recover by retrying the request as per the discussion
1717                  * on Page 181 of RFC3530.
1718                  */
1719                 if (status == -NFS4ERR_BAD_STATEID) {
1720                         exception.retry = 1;
1721                         continue;
1722                 }
1723                 if (status == -EAGAIN) {
1724                         /* We must have found a delegation */
1725                         exception.retry = 1;
1726                         continue;
1727                 }
1728                 res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(dir),
1729                                         status, &exception));
1730         } while (exception.retry);
1731         return res;
1732 }
1733
1734 static int _nfs4_do_setattr(struct inode *inode, struct rpc_cred *cred,
1735                             struct nfs_fattr *fattr, struct iattr *sattr,
1736                             struct nfs4_state *state)
1737 {
1738         struct nfs_server *server = NFS_SERVER(inode);
1739         struct nfs_setattrargs  arg = {
1740                 .fh             = NFS_FH(inode),
1741                 .iap            = sattr,
1742                 .server         = server,
1743                 .bitmask = server->attr_bitmask,
1744         };
1745         struct nfs_setattrres  res = {
1746                 .fattr          = fattr,
1747                 .server         = server,
1748         };
1749         struct rpc_message msg = {
1750                 .rpc_proc       = &nfs4_procedures[NFSPROC4_CLNT_SETATTR],
1751                 .rpc_argp       = &arg,
1752                 .rpc_resp       = &res,
1753                 .rpc_cred       = cred,
1754         };
1755         unsigned long timestamp = jiffies;
1756         int status;
1757
1758         nfs_fattr_init(fattr);
1759
1760         if (nfs4_copy_delegation_stateid(&arg.stateid, inode)) {
1761                 /* Use that stateid */
1762         } else if (state != NULL) {
1763                 nfs4_copy_stateid(&arg.stateid, state, current->files);
1764         } else
1765                 memcpy(&arg.stateid, &zero_stateid, sizeof(arg.stateid));
1766
1767         status = nfs4_call_sync(server, &msg, &arg, &res, 1);
1768         if (status == 0 && state != NULL)
1769                 renew_lease(server, timestamp);
1770         return status;
1771 }
1772
1773 static int nfs4_do_setattr(struct inode *inode, struct rpc_cred *cred,
1774                            struct nfs_fattr *fattr, struct iattr *sattr,
1775                            struct nfs4_state *state)
1776 {
1777         struct nfs_server *server = NFS_SERVER(inode);
1778         struct nfs4_exception exception = { };
1779         int err;
1780         do {
1781                 err = nfs4_handle_exception(server,
1782                                 _nfs4_do_setattr(inode, cred, fattr, sattr, state),
1783                                 &exception);
1784         } while (exception.retry);
1785         return err;
1786 }
1787
1788 struct nfs4_closedata {
1789         struct path path;
1790         struct inode *inode;
1791         struct nfs4_state *state;
1792         struct nfs_closeargs arg;
1793         struct nfs_closeres res;
1794         struct nfs_fattr fattr;
1795         unsigned long timestamp;
1796 };
1797
1798 static void nfs4_free_closedata(void *data)
1799 {
1800         struct nfs4_closedata *calldata = data;
1801         struct nfs4_state_owner *sp = calldata->state->owner;
1802
1803         nfs4_put_open_state(calldata->state);
1804         nfs_free_seqid(calldata->arg.seqid);
1805         nfs4_put_state_owner(sp);
1806         path_put(&calldata->path);
1807         kfree(calldata);
1808 }
1809
1810 static void nfs4_close_clear_stateid_flags(struct nfs4_state *state,
1811                 fmode_t fmode)
1812 {
1813         spin_lock(&state->owner->so_lock);
1814         if (!(fmode & FMODE_READ))
1815                 clear_bit(NFS_O_RDONLY_STATE, &state->flags);
1816         if (!(fmode & FMODE_WRITE))
1817                 clear_bit(NFS_O_WRONLY_STATE, &state->flags);
1818         clear_bit(NFS_O_RDWR_STATE, &state->flags);
1819         spin_unlock(&state->owner->so_lock);
1820 }
1821
1822 static void nfs4_close_done(struct rpc_task *task, void *data)
1823 {
1824         struct nfs4_closedata *calldata = data;
1825         struct nfs4_state *state = calldata->state;
1826         struct nfs_server *server = NFS_SERVER(calldata->inode);
1827
1828         nfs4_sequence_done(server, &calldata->res.seq_res, task->tk_status);
1829         if (RPC_ASSASSINATED(task))
1830                 return;
1831         /* hmm. we are done with the inode, and in the process of freeing
1832          * the state_owner. we keep this around to process errors
1833          */
1834         switch (task->tk_status) {
1835                 case 0:
1836                         nfs_set_open_stateid(state, &calldata->res.stateid, 0);
1837                         renew_lease(server, calldata->timestamp);
1838                         nfs4_close_clear_stateid_flags(state,
1839                                         calldata->arg.fmode);
1840                         break;
1841                 case -NFS4ERR_STALE_STATEID:
1842                 case -NFS4ERR_OLD_STATEID:
1843                 case -NFS4ERR_BAD_STATEID:
1844                 case -NFS4ERR_EXPIRED:
1845                         if (calldata->arg.fmode == 0)
1846                                 break;
1847                 default:
1848                         if (nfs4_async_handle_error(task, server, state) == -EAGAIN)
1849                                 rpc_restart_call_prepare(task);
1850         }
1851         nfs_release_seqid(calldata->arg.seqid);
1852         nfs_refresh_inode(calldata->inode, calldata->res.fattr);
1853 }
1854
1855 static void nfs4_close_prepare(struct rpc_task *task, void *data)
1856 {
1857         struct nfs4_closedata *calldata = data;
1858         struct nfs4_state *state = calldata->state;
1859         int call_close = 0;
1860
1861         if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0)
1862                 return;
1863
1864         task->tk_msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_DOWNGRADE];
1865         calldata->arg.fmode = FMODE_READ|FMODE_WRITE;
1866         spin_lock(&state->owner->so_lock);
1867         /* Calculate the change in open mode */
1868         if (state->n_rdwr == 0) {
1869                 if (state->n_rdonly == 0) {
1870                         call_close |= test_bit(NFS_O_RDONLY_STATE, &state->flags);
1871                         call_close |= test_bit(NFS_O_RDWR_STATE, &state->flags);
1872                         calldata->arg.fmode &= ~FMODE_READ;
1873                 }
1874                 if (state->n_wronly == 0) {
1875                         call_close |= test_bit(NFS_O_WRONLY_STATE, &state->flags);
1876                         call_close |= test_bit(NFS_O_RDWR_STATE, &state->flags);
1877                         calldata->arg.fmode &= ~FMODE_WRITE;
1878                 }
1879         }
1880         spin_unlock(&state->owner->so_lock);
1881
1882         if (!call_close) {
1883                 /* Note: exit _without_ calling nfs4_close_done */
1884                 task->tk_action = NULL;
1885                 return;
1886         }
1887
1888         if (calldata->arg.fmode == 0)
1889                 task->tk_msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CLOSE];
1890
1891         nfs_fattr_init(calldata->res.fattr);
1892         calldata->timestamp = jiffies;
1893         if (nfs4_setup_sequence((NFS_SERVER(calldata->inode))->nfs_client,
1894                                 &calldata->arg.seq_args, &calldata->res.seq_res,
1895                                 1, task))
1896                 return;
1897         rpc_call_start(task);
1898 }
1899
1900 static const struct rpc_call_ops nfs4_close_ops = {
1901         .rpc_call_prepare = nfs4_close_prepare,
1902         .rpc_call_done = nfs4_close_done,
1903         .rpc_release = nfs4_free_closedata,
1904 };
1905
1906 /* 
1907  * It is possible for data to be read/written from a mem-mapped file 
1908  * after the sys_close call (which hits the vfs layer as a flush).
1909  * This means that we can't safely call nfsv4 close on a file until 
1910  * the inode is cleared. This in turn means that we are not good
1911  * NFSv4 citizens - we do not indicate to the server to update the file's 
1912  * share state even when we are done with one of the three share 
1913  * stateid's in the inode.
1914  *
1915  * NOTE: Caller must be holding the sp->so_owner semaphore!
1916  */
1917 int nfs4_do_close(struct path *path, struct nfs4_state *state, int wait)
1918 {
1919         struct nfs_server *server = NFS_SERVER(state->inode);
1920         struct nfs4_closedata *calldata;
1921         struct nfs4_state_owner *sp = state->owner;
1922         struct rpc_task *task;
1923         struct rpc_message msg = {
1924                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CLOSE],
1925                 .rpc_cred = state->owner->so_cred,
1926         };
1927         struct rpc_task_setup task_setup_data = {
1928                 .rpc_client = server->client,
1929                 .rpc_message = &msg,
1930                 .callback_ops = &nfs4_close_ops,
1931                 .workqueue = nfsiod_workqueue,
1932                 .flags = RPC_TASK_ASYNC,
1933         };
1934         int status = -ENOMEM;
1935
1936         calldata = kzalloc(sizeof(*calldata), GFP_KERNEL);
1937         if (calldata == NULL)
1938                 goto out;
1939         calldata->inode = state->inode;
1940         calldata->state = state;
1941         calldata->arg.fh = NFS_FH(state->inode);
1942         calldata->arg.stateid = &state->open_stateid;
1943         /* Serialization for the sequence id */
1944         calldata->arg.seqid = nfs_alloc_seqid(&state->owner->so_seqid);
1945         if (calldata->arg.seqid == NULL)
1946                 goto out_free_calldata;
1947         calldata->arg.fmode = 0;
1948         calldata->arg.bitmask = server->cache_consistency_bitmask;
1949         calldata->res.fattr = &calldata->fattr;
1950         calldata->res.seqid = calldata->arg.seqid;
1951         calldata->res.server = server;
1952         calldata->res.seq_res.sr_slotid = NFS4_MAX_SLOT_TABLE;
1953         path_get(path);
1954         calldata->path = *path;
1955
1956         msg.rpc_argp = &calldata->arg,
1957         msg.rpc_resp = &calldata->res,
1958         task_setup_data.callback_data = calldata;
1959         task = rpc_run_task(&task_setup_data);
1960         if (IS_ERR(task))
1961                 return PTR_ERR(task);
1962         status = 0;
1963         if (wait)
1964                 status = rpc_wait_for_completion_task(task);
1965         rpc_put_task(task);
1966         return status;
1967 out_free_calldata:
1968         kfree(calldata);
1969 out:
1970         nfs4_put_open_state(state);
1971         nfs4_put_state_owner(sp);
1972         return status;
1973 }
1974
1975 static int nfs4_intent_set_file(struct nameidata *nd, struct path *path, struct nfs4_state *state, fmode_t fmode)
1976 {
1977         struct file *filp;
1978         int ret;
1979
1980         /* If the open_intent is for execute, we have an extra check to make */
1981         if (fmode & FMODE_EXEC) {
1982                 ret = nfs_may_open(state->inode,
1983                                 state->owner->so_cred,
1984                                 nd->intent.open.flags);
1985                 if (ret < 0)
1986                         goto out_close;
1987         }
1988         filp = lookup_instantiate_filp(nd, path->dentry, NULL);
1989         if (!IS_ERR(filp)) {
1990                 struct nfs_open_context *ctx;
1991                 ctx = nfs_file_open_context(filp);
1992                 ctx->state = state;
1993                 return 0;
1994         }
1995         ret = PTR_ERR(filp);
1996 out_close:
1997         nfs4_close_sync(path, state, fmode & (FMODE_READ|FMODE_WRITE));
1998         return ret;
1999 }
2000
2001 struct dentry *
2002 nfs4_atomic_open(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
2003 {
2004         struct path path = {
2005                 .mnt = nd->path.mnt,
2006                 .dentry = dentry,
2007         };
2008         struct dentry *parent;
2009         struct iattr attr;
2010         struct rpc_cred *cred;
2011         struct nfs4_state *state;
2012         struct dentry *res;
2013         fmode_t fmode = nd->intent.open.flags & (FMODE_READ | FMODE_WRITE | FMODE_EXEC);
2014
2015         if (nd->flags & LOOKUP_CREATE) {
2016                 attr.ia_mode = nd->intent.open.create_mode;
2017                 attr.ia_valid = ATTR_MODE;
2018                 if (!IS_POSIXACL(dir))
2019                         attr.ia_mode &= ~current_umask();
2020         } else {
2021                 attr.ia_valid = 0;
2022                 BUG_ON(nd->intent.open.flags & O_CREAT);
2023         }
2024
2025         cred = rpc_lookup_cred();
2026         if (IS_ERR(cred))
2027                 return (struct dentry *)cred;
2028         parent = dentry->d_parent;
2029         /* Protect against concurrent sillydeletes */
2030         nfs_block_sillyrename(parent);
2031         state = nfs4_do_open(dir, &path, fmode, nd->intent.open.flags, &attr, cred);
2032         put_rpccred(cred);
2033         if (IS_ERR(state)) {
2034                 if (PTR_ERR(state) == -ENOENT) {
2035                         d_add(dentry, NULL);
2036                         nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2037                 }
2038                 nfs_unblock_sillyrename(parent);
2039                 return (struct dentry *)state;
2040         }
2041         res = d_add_unique(dentry, igrab(state->inode));
2042         if (res != NULL)
2043                 path.dentry = res;
2044         nfs_set_verifier(path.dentry, nfs_save_change_attribute(dir));
2045         nfs_unblock_sillyrename(parent);
2046         nfs4_intent_set_file(nd, &path, state, fmode);
2047         return res;
2048 }
2049
2050 int
2051 nfs4_open_revalidate(struct inode *dir, struct dentry *dentry, int openflags, struct nameidata *nd)
2052 {
2053         struct path path = {
2054                 .mnt = nd->path.mnt,
2055                 .dentry = dentry,
2056         };
2057         struct rpc_cred *cred;
2058         struct nfs4_state *state;
2059         fmode_t fmode = openflags & (FMODE_READ | FMODE_WRITE);
2060
2061         cred = rpc_lookup_cred();
2062         if (IS_ERR(cred))
2063                 return PTR_ERR(cred);
2064         state = nfs4_do_open(dir, &path, fmode, openflags, NULL, cred);
2065         put_rpccred(cred);
2066         if (IS_ERR(state)) {
2067                 switch (PTR_ERR(state)) {
2068                         case -EPERM:
2069                         case -EACCES:
2070                         case -EDQUOT:
2071                         case -ENOSPC:
2072                         case -EROFS:
2073                                 return PTR_ERR(state);
2074                         default:
2075                                 goto out_drop;
2076                 }
2077         }
2078         if (state->inode == dentry->d_inode) {
2079                 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2080                 nfs4_intent_set_file(nd, &path, state, fmode);
2081                 return 1;
2082         }
2083         nfs4_close_sync(&path, state, fmode);
2084 out_drop:
2085         d_drop(dentry);
2086         return 0;
2087 }
2088
2089 static void nfs4_close_context(struct nfs_open_context *ctx, int is_sync)
2090 {
2091         if (ctx->state == NULL)
2092                 return;
2093         if (is_sync)
2094                 nfs4_close_sync(&ctx->path, ctx->state, ctx->mode);
2095         else
2096                 nfs4_close_state(&ctx->path, ctx->state, ctx->mode);
2097 }
2098
2099 static int _nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
2100 {
2101         struct nfs4_server_caps_arg args = {
2102                 .fhandle = fhandle,
2103         };
2104         struct nfs4_server_caps_res res = {};
2105         struct rpc_message msg = {
2106                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SERVER_CAPS],
2107                 .rpc_argp = &args,
2108                 .rpc_resp = &res,
2109         };
2110         int status;
2111
2112         status = nfs4_call_sync(server, &msg, &args, &res, 0);
2113         if (status == 0) {
2114                 memcpy(server->attr_bitmask, res.attr_bitmask, sizeof(server->attr_bitmask));
2115                 server->caps &= ~(NFS_CAP_ACLS|NFS_CAP_HARDLINKS|
2116                                 NFS_CAP_SYMLINKS|NFS_CAP_FILEID|
2117                                 NFS_CAP_MODE|NFS_CAP_NLINK|NFS_CAP_OWNER|
2118                                 NFS_CAP_OWNER_GROUP|NFS_CAP_ATIME|
2119                                 NFS_CAP_CTIME|NFS_CAP_MTIME);
2120                 if (res.attr_bitmask[0] & FATTR4_WORD0_ACL)
2121                         server->caps |= NFS_CAP_ACLS;
2122                 if (res.has_links != 0)
2123                         server->caps |= NFS_CAP_HARDLINKS;
2124                 if (res.has_symlinks != 0)
2125                         server->caps |= NFS_CAP_SYMLINKS;
2126                 if (res.attr_bitmask[0] & FATTR4_WORD0_FILEID)
2127                         server->caps |= NFS_CAP_FILEID;
2128                 if (res.attr_bitmask[1] & FATTR4_WORD1_MODE)
2129                         server->caps |= NFS_CAP_MODE;
2130                 if (res.attr_bitmask[1] & FATTR4_WORD1_NUMLINKS)
2131                         server->caps |= NFS_CAP_NLINK;
2132                 if (res.attr_bitmask[1] & FATTR4_WORD1_OWNER)
2133                         server->caps |= NFS_CAP_OWNER;
2134                 if (res.attr_bitmask[1] & FATTR4_WORD1_OWNER_GROUP)
2135                         server->caps |= NFS_CAP_OWNER_GROUP;
2136                 if (res.attr_bitmask[1] & FATTR4_WORD1_TIME_ACCESS)
2137                         server->caps |= NFS_CAP_ATIME;
2138                 if (res.attr_bitmask[1] & FATTR4_WORD1_TIME_METADATA)
2139                         server->caps |= NFS_CAP_CTIME;
2140                 if (res.attr_bitmask[1] & FATTR4_WORD1_TIME_MODIFY)
2141                         server->caps |= NFS_CAP_MTIME;
2142
2143                 memcpy(server->cache_consistency_bitmask, res.attr_bitmask, sizeof(server->cache_consistency_bitmask));
2144                 server->cache_consistency_bitmask[0] &= FATTR4_WORD0_CHANGE|FATTR4_WORD0_SIZE;
2145                 server->cache_consistency_bitmask[1] &= FATTR4_WORD1_TIME_METADATA|FATTR4_WORD1_TIME_MODIFY;
2146                 server->acl_bitmask = res.acl_bitmask;
2147         }
2148
2149         return status;
2150 }
2151
2152 int nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
2153 {
2154         struct nfs4_exception exception = { };
2155         int err;
2156         do {
2157                 err = nfs4_handle_exception(server,
2158                                 _nfs4_server_capabilities(server, fhandle),
2159                                 &exception);
2160         } while (exception.retry);
2161         return err;
2162 }
2163
2164 static int _nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
2165                 struct nfs_fsinfo *info)
2166 {
2167         struct nfs4_lookup_root_arg args = {
2168                 .bitmask = nfs4_fattr_bitmap,
2169         };
2170         struct nfs4_lookup_res res = {
2171                 .server = server,
2172                 .fattr = info->fattr,
2173                 .fh = fhandle,
2174         };
2175         struct rpc_message msg = {
2176                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP_ROOT],
2177                 .rpc_argp = &args,
2178                 .rpc_resp = &res,
2179         };
2180
2181         nfs_fattr_init(info->fattr);
2182         return nfs4_call_sync(server, &msg, &args, &res, 0);
2183 }
2184
2185 static int nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
2186                 struct nfs_fsinfo *info)
2187 {
2188         struct nfs4_exception exception = { };
2189         int err;
2190         do {
2191                 err = nfs4_handle_exception(server,
2192                                 _nfs4_lookup_root(server, fhandle, info),
2193                                 &exception);
2194         } while (exception.retry);
2195         return err;
2196 }
2197
2198 /*
2199  * get the file handle for the "/" directory on the server
2200  */
2201 static int nfs4_proc_get_root(struct nfs_server *server, struct nfs_fh *fhandle,
2202                               struct nfs_fsinfo *info)
2203 {
2204         int status;
2205
2206         status = nfs4_lookup_root(server, fhandle, info);
2207         if (status == 0)
2208                 status = nfs4_server_capabilities(server, fhandle);
2209         if (status == 0)
2210                 status = nfs4_do_fsinfo(server, fhandle, info);
2211         return nfs4_map_errors(status);
2212 }
2213
2214 /*
2215  * Get locations and (maybe) other attributes of a referral.
2216  * Note that we'll actually follow the referral later when
2217  * we detect fsid mismatch in inode revalidation
2218  */
2219 static int nfs4_get_referral(struct inode *dir, const struct qstr *name, struct nfs_fattr *fattr, struct nfs_fh *fhandle)
2220 {
2221         int status = -ENOMEM;
2222         struct page *page = NULL;
2223         struct nfs4_fs_locations *locations = NULL;
2224
2225         page = alloc_page(GFP_KERNEL);
2226         if (page == NULL)
2227                 goto out;
2228         locations = kmalloc(sizeof(struct nfs4_fs_locations), GFP_KERNEL);
2229         if (locations == NULL)
2230                 goto out;
2231
2232         status = nfs4_proc_fs_locations(dir, name, locations, page);
2233         if (status != 0)
2234                 goto out;
2235         /* Make sure server returned a different fsid for the referral */
2236         if (nfs_fsid_equal(&NFS_SERVER(dir)->fsid, &locations->fattr.fsid)) {
2237                 dprintk("%s: server did not return a different fsid for a referral at %s\n", __func__, name->name);
2238                 status = -EIO;
2239                 goto out;
2240         }
2241
2242         memcpy(fattr, &locations->fattr, sizeof(struct nfs_fattr));
2243         fattr->valid |= NFS_ATTR_FATTR_V4_REFERRAL;
2244         if (!fattr->mode)
2245                 fattr->mode = S_IFDIR;
2246         memset(fhandle, 0, sizeof(struct nfs_fh));
2247 out:
2248         if (page)
2249                 __free_page(page);
2250         if (locations)
2251                 kfree(locations);
2252         return status;
2253 }
2254
2255 static int _nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
2256 {
2257         struct nfs4_getattr_arg args = {
2258                 .fh = fhandle,
2259                 .bitmask = server->attr_bitmask,
2260         };
2261         struct nfs4_getattr_res res = {
2262                 .fattr = fattr,
2263                 .server = server,
2264         };
2265         struct rpc_message msg = {
2266                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETATTR],
2267                 .rpc_argp = &args,
2268                 .rpc_resp = &res,
2269         };
2270         
2271         nfs_fattr_init(fattr);
2272         return nfs4_call_sync(server, &msg, &args, &res, 0);
2273 }
2274
2275 static int nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
2276 {
2277         struct nfs4_exception exception = { };
2278         int err;
2279         do {
2280                 err = nfs4_handle_exception(server,
2281                                 _nfs4_proc_getattr(server, fhandle, fattr),
2282                                 &exception);
2283         } while (exception.retry);
2284         return err;
2285 }
2286
2287 /* 
2288  * The file is not closed if it is opened due to the a request to change
2289  * the size of the file. The open call will not be needed once the
2290  * VFS layer lookup-intents are implemented.
2291  *
2292  * Close is called when the inode is destroyed.
2293  * If we haven't opened the file for O_WRONLY, we
2294  * need to in the size_change case to obtain a stateid.
2295  *
2296  * Got race?
2297  * Because OPEN is always done by name in nfsv4, it is
2298  * possible that we opened a different file by the same
2299  * name.  We can recognize this race condition, but we
2300  * can't do anything about it besides returning an error.
2301  *
2302  * This will be fixed with VFS changes (lookup-intent).
2303  */
2304 static int
2305 nfs4_proc_setattr(struct dentry *dentry, struct nfs_fattr *fattr,
2306                   struct iattr *sattr)
2307 {
2308         struct inode *inode = dentry->d_inode;
2309         struct rpc_cred *cred = NULL;
2310         struct nfs4_state *state = NULL;
2311         int status;
2312
2313         nfs_fattr_init(fattr);
2314         
2315         /* Search for an existing open(O_WRITE) file */
2316         if (sattr->ia_valid & ATTR_FILE) {
2317                 struct nfs_open_context *ctx;
2318
2319                 ctx = nfs_file_open_context(sattr->ia_file);
2320                 if (ctx) {
2321                         cred = ctx->cred;
2322                         state = ctx->state;
2323                 }
2324         }
2325
2326         status = nfs4_do_setattr(inode, cred, fattr, sattr, state);
2327         if (status == 0)
2328                 nfs_setattr_update_inode(inode, sattr);
2329         return status;
2330 }
2331
2332 static int _nfs4_proc_lookupfh(struct nfs_server *server, const struct nfs_fh *dirfh,
2333                 const struct qstr *name, struct nfs_fh *fhandle,
2334                 struct nfs_fattr *fattr)
2335 {
2336         int                    status;
2337         struct nfs4_lookup_arg args = {
2338                 .bitmask = server->attr_bitmask,
2339                 .dir_fh = dirfh,
2340                 .name = name,
2341         };
2342         struct nfs4_lookup_res res = {
2343                 .server = server,
2344                 .fattr = fattr,
2345                 .fh = fhandle,
2346         };
2347         struct rpc_message msg = {
2348                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP],
2349                 .rpc_argp = &args,
2350                 .rpc_resp = &res,
2351         };
2352
2353         nfs_fattr_init(fattr);
2354
2355         dprintk("NFS call  lookupfh %s\n", name->name);
2356         status = nfs4_call_sync(server, &msg, &args, &res, 0);
2357         dprintk("NFS reply lookupfh: %d\n", status);
2358         return status;
2359 }
2360
2361 static int nfs4_proc_lookupfh(struct nfs_server *server, struct nfs_fh *dirfh,
2362                               struct qstr *name, struct nfs_fh *fhandle,
2363                               struct nfs_fattr *fattr)
2364 {
2365         struct nfs4_exception exception = { };
2366         int err;
2367         do {
2368                 err = _nfs4_proc_lookupfh(server, dirfh, name, fhandle, fattr);
2369                 /* FIXME: !!!! */
2370                 if (err == -NFS4ERR_MOVED) {
2371                         err = -EREMOTE;
2372                         break;
2373                 }
2374                 err = nfs4_handle_exception(server, err, &exception);
2375         } while (exception.retry);
2376         return err;
2377 }
2378
2379 static int _nfs4_proc_lookup(struct inode *dir, const struct qstr *name,
2380                 struct nfs_fh *fhandle, struct nfs_fattr *fattr)
2381 {
2382         int status;
2383         
2384         dprintk("NFS call  lookup %s\n", name->name);
2385         status = _nfs4_proc_lookupfh(NFS_SERVER(dir), NFS_FH(dir), name, fhandle, fattr);
2386         if (status == -NFS4ERR_MOVED)
2387                 status = nfs4_get_referral(dir, name, fattr, fhandle);
2388         dprintk("NFS reply lookup: %d\n", status);
2389         return status;
2390 }
2391
2392 static int nfs4_proc_lookup(struct inode *dir, struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
2393 {
2394         struct nfs4_exception exception = { };
2395         int err;
2396         do {
2397                 err = nfs4_handle_exception(NFS_SERVER(dir),
2398                                 _nfs4_proc_lookup(dir, name, fhandle, fattr),
2399                                 &exception);
2400         } while (exception.retry);
2401         return err;
2402 }
2403
2404 static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry)
2405 {
2406         struct nfs_server *server = NFS_SERVER(inode);
2407         struct nfs_fattr fattr;
2408         struct nfs4_accessargs args = {
2409                 .fh = NFS_FH(inode),
2410                 .bitmask = server->attr_bitmask,
2411         };
2412         struct nfs4_accessres res = {
2413                 .server = server,
2414                 .fattr = &fattr,
2415         };
2416         struct rpc_message msg = {
2417                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_ACCESS],
2418                 .rpc_argp = &args,
2419                 .rpc_resp = &res,
2420                 .rpc_cred = entry->cred,
2421         };
2422         int mode = entry->mask;
2423         int status;
2424
2425         /*
2426          * Determine which access bits we want to ask for...
2427          */
2428         if (mode & MAY_READ)
2429                 args.access |= NFS4_ACCESS_READ;
2430         if (S_ISDIR(inode->i_mode)) {
2431                 if (mode & MAY_WRITE)
2432                         args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE;
2433                 if (mode & MAY_EXEC)
2434                         args.access |= NFS4_ACCESS_LOOKUP;
2435         } else {
2436                 if (mode & MAY_WRITE)
2437                         args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND;
2438                 if (mode & MAY_EXEC)
2439                         args.access |= NFS4_ACCESS_EXECUTE;
2440         }
2441         nfs_fattr_init(&fattr);
2442         status = nfs4_call_sync(server, &msg, &args, &res, 0);
2443         if (!status) {
2444                 entry->mask = 0;
2445                 if (res.access & NFS4_ACCESS_READ)
2446                         entry->mask |= MAY_READ;
2447                 if (res.access & (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
2448                         entry->mask |= MAY_WRITE;
2449                 if (res.access & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
2450                         entry->mask |= MAY_EXEC;
2451                 nfs_refresh_inode(inode, &fattr);
2452         }
2453         return status;
2454 }
2455
2456 static int nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry)
2457 {
2458         struct nfs4_exception exception = { };
2459         int err;
2460         do {
2461                 err = nfs4_handle_exception(NFS_SERVER(inode),
2462                                 _nfs4_proc_access(inode, entry),
2463                                 &exception);
2464         } while (exception.retry);
2465         return err;
2466 }
2467
2468 /*
2469  * TODO: For the time being, we don't try to get any attributes
2470  * along with any of the zero-copy operations READ, READDIR,
2471  * READLINK, WRITE.
2472  *
2473  * In the case of the first three, we want to put the GETATTR
2474  * after the read-type operation -- this is because it is hard
2475  * to predict the length of a GETATTR response in v4, and thus
2476  * align the READ data correctly.  This means that the GETATTR
2477  * may end up partially falling into the page cache, and we should
2478  * shift it into the 'tail' of the xdr_buf before processing.
2479  * To do this efficiently, we need to know the total length
2480  * of data received, which doesn't seem to be available outside
2481  * of the RPC layer.
2482  *
2483  * In the case of WRITE, we also want to put the GETATTR after
2484  * the operation -- in this case because we want to make sure
2485  * we get the post-operation mtime and size.  This means that
2486  * we can't use xdr_encode_pages() as written: we need a variant
2487  * of it which would leave room in the 'tail' iovec.
2488  *
2489  * Both of these changes to the XDR layer would in fact be quite
2490  * minor, but I decided to leave them for a subsequent patch.
2491  */
2492 static int _nfs4_proc_readlink(struct inode *inode, struct page *page,
2493                 unsigned int pgbase, unsigned int pglen)
2494 {
2495         struct nfs4_readlink args = {
2496                 .fh       = NFS_FH(inode),
2497                 .pgbase   = pgbase,
2498                 .pglen    = pglen,
2499                 .pages    = &page,
2500         };
2501         struct nfs4_readlink_res res;
2502         struct rpc_message msg = {
2503                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READLINK],
2504                 .rpc_argp = &args,
2505                 .rpc_resp = &res,
2506         };
2507
2508         return nfs4_call_sync(NFS_SERVER(inode), &msg, &args, &res, 0);
2509 }
2510
2511 static int nfs4_proc_readlink(struct inode *inode, struct page *page,
2512                 unsigned int pgbase, unsigned int pglen)
2513 {
2514         struct nfs4_exception exception = { };
2515         int err;
2516         do {
2517                 err = nfs4_handle_exception(NFS_SERVER(inode),
2518                                 _nfs4_proc_readlink(inode, page, pgbase, pglen),
2519                                 &exception);
2520         } while (exception.retry);
2521         return err;
2522 }
2523
2524 /*
2525  * Got race?
2526  * We will need to arrange for the VFS layer to provide an atomic open.
2527  * Until then, this create/open method is prone to inefficiency and race
2528  * conditions due to the lookup, create, and open VFS calls from sys_open()
2529  * placed on the wire.
2530  *
2531  * Given the above sorry state of affairs, I'm simply sending an OPEN.
2532  * The file will be opened again in the subsequent VFS open call
2533  * (nfs4_proc_file_open).
2534  *
2535  * The open for read will just hang around to be used by any process that
2536  * opens the file O_RDONLY. This will all be resolved with the VFS changes.
2537  */
2538
2539 static int
2540 nfs4_proc_create(struct inode *dir, struct dentry *dentry, struct iattr *sattr,
2541                  int flags, struct nameidata *nd)
2542 {
2543         struct path path = {
2544                 .mnt = nd->path.mnt,
2545                 .dentry = dentry,
2546         };
2547         struct nfs4_state *state;
2548         struct rpc_cred *cred;
2549         fmode_t fmode = flags & (FMODE_READ | FMODE_WRITE);
2550         int status = 0;
2551
2552         cred = rpc_lookup_cred();
2553         if (IS_ERR(cred)) {
2554                 status = PTR_ERR(cred);
2555                 goto out;
2556         }
2557         state = nfs4_do_open(dir, &path, fmode, flags, sattr, cred);
2558         d_drop(dentry);
2559         if (IS_ERR(state)) {
2560                 status = PTR_ERR(state);
2561                 goto out_putcred;
2562         }
2563         d_add(dentry, igrab(state->inode));
2564         nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2565         if (flags & O_EXCL) {
2566                 struct nfs_fattr fattr;
2567                 status = nfs4_do_setattr(state->inode, cred, &fattr, sattr, state);
2568                 if (status == 0)
2569                         nfs_setattr_update_inode(state->inode, sattr);
2570                 nfs_post_op_update_inode(state->inode, &fattr);
2571         }
2572         if (status == 0 && (nd->flags & LOOKUP_OPEN) != 0)
2573                 status = nfs4_intent_set_file(nd, &path, state, fmode);
2574         else
2575                 nfs4_close_sync(&path, state, fmode);
2576 out_putcred:
2577         put_rpccred(cred);
2578 out:
2579         return status;
2580 }
2581
2582 static int _nfs4_proc_remove(struct inode *dir, struct qstr *name)
2583 {
2584         struct nfs_server *server = NFS_SERVER(dir);
2585         struct nfs_removeargs args = {
2586                 .fh = NFS_FH(dir),
2587                 .name.len = name->len,
2588                 .name.name = name->name,
2589                 .bitmask = server->attr_bitmask,
2590         };
2591         struct nfs_removeres res = {
2592                 .server = server,
2593         };
2594         struct rpc_message msg = {
2595                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE],
2596                 .rpc_argp = &args,
2597                 .rpc_resp = &res,
2598         };
2599         int                     status;
2600
2601         nfs_fattr_init(&res.dir_attr);
2602         status = nfs4_call_sync(server, &msg, &args, &res, 1);
2603         if (status == 0) {
2604                 update_changeattr(dir, &res.cinfo);
2605                 nfs_post_op_update_inode(dir, &res.dir_attr);
2606         }
2607         return status;
2608 }
2609
2610 static int nfs4_proc_remove(struct inode *dir, struct qstr *name)
2611 {
2612         struct nfs4_exception exception = { };
2613         int err;
2614         do {
2615                 err = nfs4_handle_exception(NFS_SERVER(dir),
2616                                 _nfs4_proc_remove(dir, name),
2617                                 &exception);
2618         } while (exception.retry);
2619         return err;
2620 }
2621
2622 static void nfs4_proc_unlink_setup(struct rpc_message *msg, struct inode *dir)
2623 {
2624         struct nfs_server *server = NFS_SERVER(dir);
2625         struct nfs_removeargs *args = msg->rpc_argp;
2626         struct nfs_removeres *res = msg->rpc_resp;
2627
2628         args->bitmask = server->cache_consistency_bitmask;
2629         res->server = server;
2630         msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE];
2631 }
2632
2633 static int nfs4_proc_unlink_done(struct rpc_task *task, struct inode *dir)
2634 {
2635         struct nfs_removeres *res = task->tk_msg.rpc_resp;
2636
2637         nfs4_sequence_done(res->server, &res->seq_res, task->tk_status);
2638         if (nfs4_async_handle_error(task, res->server, NULL) == -EAGAIN)
2639                 return 0;
2640         update_changeattr(dir, &res->cinfo);
2641         nfs_post_op_update_inode(dir, &res->dir_attr);
2642         return 1;
2643 }
2644
2645 static int _nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name,
2646                 struct inode *new_dir, struct qstr *new_name)
2647 {
2648         struct nfs_server *server = NFS_SERVER(old_dir);
2649         struct nfs4_rename_arg arg = {
2650                 .old_dir = NFS_FH(old_dir),
2651                 .new_dir = NFS_FH(new_dir),
2652                 .old_name = old_name,
2653                 .new_name = new_name,
2654                 .bitmask = server->attr_bitmask,
2655         };
2656         struct nfs_fattr old_fattr, new_fattr;
2657         struct nfs4_rename_res res = {
2658                 .server = server,
2659                 .old_fattr = &old_fattr,
2660                 .new_fattr = &new_fattr,
2661         };
2662         struct rpc_message msg = {
2663                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENAME],
2664                 .rpc_argp = &arg,
2665                 .rpc_resp = &res,
2666         };
2667         int                     status;
2668         
2669         nfs_fattr_init(res.old_fattr);
2670         nfs_fattr_init(res.new_fattr);
2671         status = nfs4_call_sync(server, &msg, &arg, &res, 1);
2672
2673         if (!status) {
2674                 update_changeattr(old_dir, &res.old_cinfo);
2675                 nfs_post_op_update_inode(old_dir, res.old_fattr);
2676                 update_changeattr(new_dir, &res.new_cinfo);
2677                 nfs_post_op_update_inode(new_dir, res.new_fattr);
2678         }
2679         return status;
2680 }
2681
2682 static int nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name,
2683                 struct inode *new_dir, struct qstr *new_name)
2684 {
2685         struct nfs4_exception exception = { };
2686         int err;
2687         do {
2688                 err = nfs4_handle_exception(NFS_SERVER(old_dir),
2689                                 _nfs4_proc_rename(old_dir, old_name,
2690                                         new_dir, new_name),
2691                                 &exception);
2692         } while (exception.retry);
2693         return err;
2694 }
2695
2696 static int _nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
2697 {
2698         struct nfs_server *server = NFS_SERVER(inode);
2699         struct nfs4_link_arg arg = {
2700                 .fh     = NFS_FH(inode),
2701                 .dir_fh = NFS_FH(dir),
2702                 .name   = name,
2703                 .bitmask = server->attr_bitmask,
2704         };
2705         struct nfs_fattr fattr, dir_attr;
2706         struct nfs4_link_res res = {
2707                 .server = server,
2708                 .fattr = &fattr,
2709                 .dir_attr = &dir_attr,
2710         };
2711         struct rpc_message msg = {
2712                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LINK],
2713                 .rpc_argp = &arg,
2714                 .rpc_resp = &res,
2715         };
2716         int                     status;
2717
2718         nfs_fattr_init(res.fattr);
2719         nfs_fattr_init(res.dir_attr);
2720         status = nfs4_call_sync(server, &msg, &arg, &res, 1);
2721         if (!status) {
2722                 update_changeattr(dir, &res.cinfo);
2723                 nfs_post_op_update_inode(dir, res.dir_attr);
2724                 nfs_post_op_update_inode(inode, res.fattr);
2725         }
2726
2727         return status;
2728 }
2729
2730 static int nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
2731 {
2732         struct nfs4_exception exception = { };
2733         int err;
2734         do {
2735                 err = nfs4_handle_exception(NFS_SERVER(inode),
2736                                 _nfs4_proc_link(inode, dir, name),
2737                                 &exception);
2738         } while (exception.retry);
2739         return err;
2740 }
2741
2742 struct nfs4_createdata {
2743         struct rpc_message msg;
2744         struct nfs4_create_arg arg;
2745         struct nfs4_create_res res;
2746         struct nfs_fh fh;
2747         struct nfs_fattr fattr;
2748         struct nfs_fattr dir_fattr;
2749 };
2750
2751 static struct nfs4_createdata *nfs4_alloc_createdata(struct inode *dir,
2752                 struct qstr *name, struct iattr *sattr, u32 ftype)
2753 {
2754         struct nfs4_createdata *data;
2755
2756         data = kzalloc(sizeof(*data), GFP_KERNEL);
2757         if (data != NULL) {
2758                 struct nfs_server *server = NFS_SERVER(dir);
2759
2760                 data->msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE];
2761                 data->msg.rpc_argp = &data->arg;
2762                 data->msg.rpc_resp = &data->res;
2763                 data->arg.dir_fh = NFS_FH(dir);
2764                 data->arg.server = server;
2765                 data->arg.name = name;
2766                 data->arg.attrs = sattr;
2767                 data->arg.ftype = ftype;
2768                 data->arg.bitmask = server->attr_bitmask;
2769                 data->res.server = server;
2770                 data->res.fh = &data->fh;
2771                 data->res.fattr = &data->fattr;
2772                 data->res.dir_fattr = &data->dir_fattr;
2773                 nfs_fattr_init(data->res.fattr);
2774                 nfs_fattr_init(data->res.dir_fattr);
2775         }
2776         return data;
2777 }
2778
2779 static int nfs4_do_create(struct inode *dir, struct dentry *dentry, struct nfs4_createdata *data)
2780 {
2781         int status = nfs4_call_sync(NFS_SERVER(dir), &data->msg,
2782                                     &data->arg, &data->res, 1);
2783         if (status == 0) {
2784                 update_changeattr(dir, &data->res.dir_cinfo);
2785                 nfs_post_op_update_inode(dir, data->res.dir_fattr);
2786                 status = nfs_instantiate(dentry, data->res.fh, data->res.fattr);
2787         }
2788         return status;
2789 }
2790
2791 static void nfs4_free_createdata(struct nfs4_createdata *data)
2792 {
2793         kfree(data);
2794 }
2795
2796 static int _nfs4_proc_symlink(struct inode *dir, struct dentry *dentry,
2797                 struct page *page, unsigned int len, struct iattr *sattr)
2798 {
2799         struct nfs4_createdata *data;
2800         int status = -ENAMETOOLONG;
2801
2802         if (len > NFS4_MAXPATHLEN)
2803                 goto out;
2804
2805         status = -ENOMEM;
2806         data = nfs4_alloc_createdata(dir, &dentry->d_name, sattr, NF4LNK);
2807         if (data == NULL)
2808                 goto out;
2809
2810         data->msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SYMLINK];
2811         data->arg.u.symlink.pages = &page;
2812         data->arg.u.symlink.len = len;
2813         
2814         status = nfs4_do_create(dir, dentry, data);
2815
2816         nfs4_free_createdata(data);
2817 out:
2818         return status;
2819 }
2820
2821 static int nfs4_proc_symlink(struct inode *dir, struct dentry *dentry,
2822                 struct page *page, unsigned int len, struct iattr *sattr)
2823 {
2824         struct nfs4_exception exception = { };
2825         int err;
2826         do {
2827                 err = nfs4_handle_exception(NFS_SERVER(dir),
2828                                 _nfs4_proc_symlink(dir, dentry, page,
2829                                                         len, sattr),
2830                                 &exception);
2831         } while (exception.retry);
2832         return err;
2833 }
2834
2835 static int _nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
2836                 struct iattr *sattr)
2837 {
2838         struct nfs4_createdata *data;
2839         int status = -ENOMEM;
2840
2841         data = nfs4_alloc_createdata(dir, &dentry->d_name, sattr, NF4DIR);
2842         if (data == NULL)
2843                 goto out;
2844
2845         status = nfs4_do_create(dir, dentry, data);
2846
2847         nfs4_free_createdata(data);
2848 out:
2849         return status;
2850 }
2851
2852 static int nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
2853                 struct iattr *sattr)
2854 {
2855         struct nfs4_exception exception = { };
2856         int err;
2857         do {
2858                 err = nfs4_handle_exception(NFS_SERVER(dir),
2859                                 _nfs4_proc_mkdir(dir, dentry, sattr),
2860                                 &exception);
2861         } while (exception.retry);
2862         return err;
2863 }
2864
2865 static int _nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
2866                   u64 cookie, struct page *page, unsigned int count, int plus)
2867 {
2868         struct inode            *dir = dentry->d_inode;
2869         struct nfs4_readdir_arg args = {
2870                 .fh = NFS_FH(dir),
2871                 .pages = &page,
2872                 .pgbase = 0,
2873                 .count = count,
2874                 .bitmask = NFS_SERVER(dentry->d_inode)->attr_bitmask,
2875         };
2876         struct nfs4_readdir_res res;
2877         struct rpc_message msg = {
2878                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READDIR],
2879                 .rpc_argp = &args,
2880                 .rpc_resp = &res,
2881                 .rpc_cred = cred,
2882         };
2883         int                     status;
2884
2885         dprintk("%s: dentry = %s/%s, cookie = %Lu\n", __func__,
2886                         dentry->d_parent->d_name.name,
2887                         dentry->d_name.name,
2888                         (unsigned long long)cookie);
2889         nfs4_setup_readdir(cookie, NFS_COOKIEVERF(dir), dentry, &args);
2890         res.pgbase = args.pgbase;
2891         status = nfs4_call_sync(NFS_SERVER(dir), &msg, &args, &res, 0);
2892         if (status == 0)
2893                 memcpy(NFS_COOKIEVERF(dir), res.verifier.data, NFS4_VERIFIER_SIZE);
2894
2895         nfs_invalidate_atime(dir);
2896
2897         dprintk("%s: returns %d\n", __func__, status);
2898         return status;
2899 }
2900
2901 static int nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
2902                   u64 cookie, struct page *page, unsigned int count, int plus)
2903 {
2904         struct nfs4_exception exception = { };
2905         int err;
2906         do {
2907                 err = nfs4_handle_exception(NFS_SERVER(dentry->d_inode),
2908                                 _nfs4_proc_readdir(dentry, cred, cookie,
2909                                         page, count, plus),
2910                                 &exception);
2911         } while (exception.retry);
2912         return err;
2913 }
2914
2915 static int _nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
2916                 struct iattr *sattr, dev_t rdev)
2917 {
2918         struct nfs4_createdata *data;
2919         int mode = sattr->ia_mode;
2920         int status = -ENOMEM;
2921
2922         BUG_ON(!(sattr->ia_valid & ATTR_MODE));
2923         BUG_ON(!S_ISFIFO(mode) && !S_ISBLK(mode) && !S_ISCHR(mode) && !S_ISSOCK(mode));
2924
2925         data = nfs4_alloc_createdata(dir, &dentry->d_name, sattr, NF4SOCK);
2926         if (data == NULL)
2927                 goto out;
2928
2929         if (S_ISFIFO(mode))
2930                 data->arg.ftype = NF4FIFO;
2931         else if (S_ISBLK(mode)) {
2932                 data->arg.ftype = NF4BLK;
2933                 data->arg.u.device.specdata1 = MAJOR(rdev);
2934                 data->arg.u.device.specdata2 = MINOR(rdev);
2935         }
2936         else if (S_ISCHR(mode)) {
2937                 data->arg.ftype = NF4CHR;
2938                 data->arg.u.device.specdata1 = MAJOR(rdev);
2939                 data->arg.u.device.specdata2 = MINOR(rdev);
2940         }
2941         
2942         status = nfs4_do_create(dir, dentry, data);
2943
2944         nfs4_free_createdata(data);
2945 out:
2946         return status;
2947 }
2948
2949 static int nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
2950                 struct iattr *sattr, dev_t rdev)
2951 {
2952         struct nfs4_exception exception = { };
2953         int err;
2954         do {
2955                 err = nfs4_handle_exception(NFS_SERVER(dir),
2956                                 _nfs4_proc_mknod(dir, dentry, sattr, rdev),
2957                                 &exception);
2958         } while (exception.retry);
2959         return err;
2960 }
2961
2962 static int _nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle,
2963                  struct nfs_fsstat *fsstat)
2964 {
2965         struct nfs4_statfs_arg args = {
2966                 .fh = fhandle,
2967                 .bitmask = server->attr_bitmask,
2968         };
2969         struct nfs4_statfs_res res = {
2970                 .fsstat = fsstat,
2971         };
2972         struct rpc_message msg = {
2973                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_STATFS],
2974                 .rpc_argp = &args,
2975                 .rpc_resp = &res,
2976         };
2977
2978         nfs_fattr_init(fsstat->fattr);
2979         return  nfs4_call_sync(server, &msg, &args, &res, 0);
2980 }
2981
2982 static int nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsstat *fsstat)
2983 {
2984         struct nfs4_exception exception = { };
2985         int err;
2986         do {
2987                 err = nfs4_handle_exception(server,
2988                                 _nfs4_proc_statfs(server, fhandle, fsstat),
2989                                 &exception);
2990         } while (exception.retry);
2991         return err;
2992 }
2993
2994 static int _nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle,
2995                 struct nfs_fsinfo *fsinfo)
2996 {
2997         struct nfs4_fsinfo_arg args = {
2998                 .fh = fhandle,
2999                 .bitmask = server->attr_bitmask,
3000         };
3001         struct nfs4_fsinfo_res res = {
3002                 .fsinfo = fsinfo,
3003         };
3004         struct rpc_message msg = {
3005                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FSINFO],
3006                 .rpc_argp = &args,
3007                 .rpc_resp = &res,
3008         };
3009
3010         return nfs4_call_sync(server, &msg, &args, &res, 0);
3011 }
3012
3013 static int nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
3014 {
3015         struct nfs4_exception exception = { };
3016         int err;
3017
3018         do {
3019                 err = nfs4_handle_exception(server,
3020                                 _nfs4_do_fsinfo(server, fhandle, fsinfo),
3021                                 &exception);
3022         } while (exception.retry);
3023         return err;
3024 }
3025
3026 static int nfs4_proc_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
3027 {
3028         nfs_fattr_init(fsinfo->fattr);
3029         return nfs4_do_fsinfo(server, fhandle, fsinfo);
3030 }
3031
3032 static int _nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
3033                 struct nfs_pathconf *pathconf)
3034 {
3035         struct nfs4_pathconf_arg args = {
3036                 .fh = fhandle,
3037                 .bitmask = server->attr_bitmask,
3038         };
3039         struct nfs4_pathconf_res res = {
3040                 .pathconf = pathconf,
3041         };
3042         struct rpc_message msg = {
3043                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_PATHCONF],
3044                 .rpc_argp = &args,
3045                 .rpc_resp = &res,
3046         };
3047
3048         /* None of the pathconf attributes are mandatory to implement */
3049         if ((args.bitmask[0] & nfs4_pathconf_bitmap[0]) == 0) {
3050                 memset(pathconf, 0, sizeof(*pathconf));
3051                 return 0;
3052         }
3053
3054         nfs_fattr_init(pathconf->fattr);
3055         return nfs4_call_sync(server, &msg, &args, &res, 0);
3056 }
3057
3058 static int nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
3059                 struct nfs_pathconf *pathconf)
3060 {
3061         struct nfs4_exception exception = { };
3062         int err;
3063
3064         do {
3065                 err = nfs4_handle_exception(server,
3066                                 _nfs4_proc_pathconf(server, fhandle, pathconf),
3067                                 &exception);
3068         } while (exception.retry);
3069         return err;
3070 }
3071
3072 static int nfs4_read_done(struct rpc_task *task, struct nfs_read_data *data)
3073 {
3074         struct nfs_server *server = NFS_SERVER(data->inode);
3075
3076         dprintk("--> %s\n", __func__);
3077
3078         nfs4_sequence_done(server, &data->res.seq_res, task->tk_status);
3079
3080         if (nfs4_async_handle_error(task, server, data->args.context->state) == -EAGAIN) {
3081                 nfs_restart_rpc(task, server->nfs_client);
3082                 return -EAGAIN;
3083         }
3084
3085         nfs_invalidate_atime(data->inode);
3086         if (task->tk_status > 0)
3087                 renew_lease(server, data->timestamp);
3088         return 0;
3089 }
3090
3091 static void nfs4_proc_read_setup(struct nfs_read_data *data, struct rpc_message *msg)
3092 {
3093         data->timestamp   = jiffies;
3094         msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READ];
3095 }
3096
3097 static int nfs4_write_done(struct rpc_task *task, struct nfs_write_data *data)
3098 {
3099         struct inode *inode = data->inode;
3100         
3101         nfs4_sequence_done(NFS_SERVER(inode), &data->res.seq_res,
3102                            task->tk_status);
3103
3104         if (nfs4_async_handle_error(task, NFS_SERVER(inode), data->args.context->state) == -EAGAIN) {
3105                 nfs_restart_rpc(task, NFS_SERVER(inode)->nfs_client);
3106                 return -EAGAIN;
3107         }
3108         if (task->tk_status >= 0) {
3109                 renew_lease(NFS_SERVER(inode), data->timestamp);
3110                 nfs_post_op_update_inode_force_wcc(inode, data->res.fattr);
3111         }
3112         return 0;
3113 }
3114
3115 static void nfs4_proc_write_setup(struct nfs_write_data *data, struct rpc_message *msg)
3116 {
3117         struct nfs_server *server = NFS_SERVER(data->inode);
3118
3119         data->args.bitmask = server->cache_consistency_bitmask;
3120         data->res.server = server;
3121         data->timestamp   = jiffies;
3122
3123         msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_WRITE];
3124 }
3125
3126 static int nfs4_commit_done(struct rpc_task *task, struct nfs_write_data *data)
3127 {
3128         struct inode *inode = data->inode;
3129         
3130         nfs4_sequence_done(NFS_SERVER(inode), &data->res.seq_res,
3131                            task->tk_status);
3132         if (nfs4_async_handle_error(task, NFS_SERVER(inode), NULL) == -EAGAIN) {
3133                 nfs_restart_rpc(task, NFS_SERVER(inode)->nfs_client);
3134                 return -EAGAIN;
3135         }
3136         nfs_refresh_inode(inode, data->res.fattr);
3137         return 0;
3138 }
3139
3140 static void nfs4_proc_commit_setup(struct nfs_write_data *data, struct rpc_message *msg)
3141 {
3142         struct nfs_server *server = NFS_SERVER(data->inode);
3143         
3144         data->args.bitmask = server->cache_consistency_bitmask;
3145         data->res.server = server;
3146         msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_COMMIT];
3147 }
3148
3149 /*
3150  * nfs4_proc_async_renew(): This is not one of the nfs_rpc_ops; it is a special
3151  * standalone procedure for queueing an asynchronous RENEW.
3152  */
3153 static void nfs4_renew_release(void *data)
3154 {
3155         struct nfs_client *clp = data;
3156
3157         if (atomic_read(&clp->cl_count) > 1)
3158                 nfs4_schedule_state_renewal(clp);
3159         nfs_put_client(clp);
3160 }
3161
3162 static void nfs4_renew_done(struct rpc_task *task, void *data)
3163 {
3164         struct nfs_client *clp = data;
3165         unsigned long timestamp = task->tk_start;
3166
3167         if (task->tk_status < 0) {
3168                 /* Unless we're shutting down, schedule state recovery! */
3169                 if (test_bit(NFS_CS_RENEWD, &clp->cl_res_state) != 0)
3170                         nfs4_schedule_state_recovery(clp);
3171                 return;
3172         }
3173         spin_lock(&clp->cl_lock);
3174         if (time_before(clp->cl_last_renewal,timestamp))
3175                 clp->cl_last_renewal = timestamp;
3176         spin_unlock(&clp->cl_lock);
3177 }
3178
3179 static const struct rpc_call_ops nfs4_renew_ops = {
3180         .rpc_call_done = nfs4_renew_done,
3181         .rpc_release = nfs4_renew_release,
3182 };
3183
3184 int nfs4_proc_async_renew(struct nfs_client *clp, struct rpc_cred *cred)
3185 {
3186         struct rpc_message msg = {
3187                 .rpc_proc       = &nfs4_procedures[NFSPROC4_CLNT_RENEW],
3188                 .rpc_argp       = clp,
3189                 .rpc_cred       = cred,
3190         };
3191
3192         if (!atomic_inc_not_zero(&clp->cl_count))
3193                 return -EIO;
3194         return rpc_call_async(clp->cl_rpcclient, &msg, RPC_TASK_SOFT,
3195                         &nfs4_renew_ops, clp);
3196 }
3197
3198 int nfs4_proc_renew(struct nfs_client *clp, struct rpc_cred *cred)
3199 {
3200         struct rpc_message msg = {
3201                 .rpc_proc       = &nfs4_procedures[NFSPROC4_CLNT_RENEW],
3202                 .rpc_argp       = clp,
3203                 .rpc_cred       = cred,
3204         };
3205         unsigned long now = jiffies;
3206         int status;
3207
3208         status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
3209         if (status < 0)
3210                 return status;
3211         spin_lock(&clp->cl_lock);
3212         if (time_before(clp->cl_last_renewal,now))
3213                 clp->cl_last_renewal = now;
3214         spin_unlock(&clp->cl_lock);
3215         return 0;
3216 }
3217
3218 static inline int nfs4_server_supports_acls(struct nfs_server *server)
3219 {
3220         return (server->caps & NFS_CAP_ACLS)
3221                 && (server->acl_bitmask & ACL4_SUPPORT_ALLOW_ACL)
3222                 && (server->acl_bitmask & ACL4_SUPPORT_DENY_ACL);
3223 }
3224
3225 /* Assuming that XATTR_SIZE_MAX is a multiple of PAGE_CACHE_SIZE, and that
3226  * it's OK to put sizeof(void) * (XATTR_SIZE_MAX/PAGE_CACHE_SIZE) bytes on
3227  * the stack.
3228  */
3229 #define NFS4ACL_MAXPAGES (XATTR_SIZE_MAX >> PAGE_CACHE_SHIFT)
3230
3231 static void buf_to_pages(const void *buf, size_t buflen,
3232                 struct page **pages, unsigned int *pgbase)
3233 {
3234         const void *p = buf;
3235
3236         *pgbase = offset_in_page(buf);
3237         p -= *pgbase;
3238         while (p < buf + buflen) {
3239                 *(pages++) = virt_to_page(p);
3240                 p += PAGE_CACHE_SIZE;
3241         }
3242 }
3243
3244 struct nfs4_cached_acl {
3245         int cached;
3246         size_t len;
3247         char data[0];
3248 };
3249
3250 static void nfs4_set_cached_acl(struct inode *inode, struct nfs4_cached_acl *acl)
3251 {
3252         struct nfs_inode *nfsi = NFS_I(inode);
3253
3254         spin_lock(&inode->i_lock);
3255         kfree(nfsi->nfs4_acl);
3256         nfsi->nfs4_acl = acl;
3257         spin_unlock(&inode->i_lock);
3258 }
3259
3260 static void nfs4_zap_acl_attr(struct inode *inode)
3261 {
3262         nfs4_set_cached_acl(inode, NULL);
3263 }
3264
3265 static inline ssize_t nfs4_read_cached_acl(struct inode *inode, char *buf, size_t buflen)
3266 {
3267         struct nfs_inode *nfsi = NFS_I(inode);
3268         struct nfs4_cached_acl *acl;
3269         int ret = -ENOENT;
3270
3271         spin_lock(&inode->i_lock);
3272         acl = nfsi->nfs4_acl;
3273         if (acl == NULL)
3274                 goto out;
3275         if (buf == NULL) /* user is just asking for length */
3276                 goto out_len;
3277         if (acl->cached == 0)
3278                 goto out;
3279         ret = -ERANGE; /* see getxattr(2) man page */
3280         if (acl->len > buflen)
3281                 goto out;
3282         memcpy(buf, acl->data, acl->len);
3283 out_len:
3284         ret = acl->len;
3285 out:
3286         spin_unlock(&inode->i_lock);
3287         return ret;
3288 }
3289
3290 static void nfs4_write_cached_acl(struct inode *inode, const char *buf, size_t acl_len)
3291 {
3292         struct nfs4_cached_acl *acl;
3293
3294         if (buf && acl_len <= PAGE_SIZE) {
3295                 acl = kmalloc(sizeof(*acl) + acl_len, GFP_KERNEL);
3296                 if (acl == NULL)
3297                         goto out;
3298                 acl->cached = 1;
3299                 memcpy(acl->data, buf, acl_len);
3300         } else {
3301                 acl = kmalloc(sizeof(*acl), GFP_KERNEL);
3302                 if (acl == NULL)