Merge remote-tracking branches 'spi/topic/spidev', 'spi/topic/spidev-test', 'spi...
[sfrench/cifs-2.6.git] / fs / namei.c
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * Some corrections by tytso.
9  */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <linux/bitops.h>
39 #include <linux/init_task.h>
40 #include <linux/uaccess.h>
41
42 #include "internal.h"
43 #include "mount.h"
44
45 /* [Feb-1997 T. Schoebel-Theuer]
46  * Fundamental changes in the pathname lookup mechanisms (namei)
47  * were necessary because of omirr.  The reason is that omirr needs
48  * to know the _real_ pathname, not the user-supplied one, in case
49  * of symlinks (and also when transname replacements occur).
50  *
51  * The new code replaces the old recursive symlink resolution with
52  * an iterative one (in case of non-nested symlink chains).  It does
53  * this with calls to <fs>_follow_link().
54  * As a side effect, dir_namei(), _namei() and follow_link() are now 
55  * replaced with a single function lookup_dentry() that can handle all 
56  * the special cases of the former code.
57  *
58  * With the new dcache, the pathname is stored at each inode, at least as
59  * long as the refcount of the inode is positive.  As a side effect, the
60  * size of the dcache depends on the inode cache and thus is dynamic.
61  *
62  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
63  * resolution to correspond with current state of the code.
64  *
65  * Note that the symlink resolution is not *completely* iterative.
66  * There is still a significant amount of tail- and mid- recursion in
67  * the algorithm.  Also, note that <fs>_readlink() is not used in
68  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
69  * may return different results than <fs>_follow_link().  Many virtual
70  * filesystems (including /proc) exhibit this behavior.
71  */
72
73 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
74  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
75  * and the name already exists in form of a symlink, try to create the new
76  * name indicated by the symlink. The old code always complained that the
77  * name already exists, due to not following the symlink even if its target
78  * is nonexistent.  The new semantics affects also mknod() and link() when
79  * the name is a symlink pointing to a non-existent name.
80  *
81  * I don't know which semantics is the right one, since I have no access
82  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
83  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
84  * "old" one. Personally, I think the new semantics is much more logical.
85  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
86  * file does succeed in both HP-UX and SunOs, but not in Solaris
87  * and in the old Linux semantics.
88  */
89
90 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
91  * semantics.  See the comments in "open_namei" and "do_link" below.
92  *
93  * [10-Sep-98 Alan Modra] Another symlink change.
94  */
95
96 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
97  *      inside the path - always follow.
98  *      in the last component in creation/removal/renaming - never follow.
99  *      if LOOKUP_FOLLOW passed - follow.
100  *      if the pathname has trailing slashes - follow.
101  *      otherwise - don't follow.
102  * (applied in that order).
103  *
104  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
105  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
106  * During the 2.4 we need to fix the userland stuff depending on it -
107  * hopefully we will be able to get rid of that wart in 2.5. So far only
108  * XEmacs seems to be relying on it...
109  */
110 /*
111  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
112  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
113  * any extra contention...
114  */
115
116 /* In order to reduce some races, while at the same time doing additional
117  * checking and hopefully speeding things up, we copy filenames to the
118  * kernel data space before using them..
119  *
120  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
121  * PATH_MAX includes the nul terminator --RR.
122  */
123
124 #define EMBEDDED_NAME_MAX       (PATH_MAX - offsetof(struct filename, iname))
125
126 struct filename *
127 getname_flags(const char __user *filename, int flags, int *empty)
128 {
129         struct filename *result;
130         char *kname;
131         int len;
132
133         result = audit_reusename(filename);
134         if (result)
135                 return result;
136
137         result = __getname();
138         if (unlikely(!result))
139                 return ERR_PTR(-ENOMEM);
140
141         /*
142          * First, try to embed the struct filename inside the names_cache
143          * allocation
144          */
145         kname = (char *)result->iname;
146         result->name = kname;
147
148         len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
149         if (unlikely(len < 0)) {
150                 __putname(result);
151                 return ERR_PTR(len);
152         }
153
154         /*
155          * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
156          * separate struct filename so we can dedicate the entire
157          * names_cache allocation for the pathname, and re-do the copy from
158          * userland.
159          */
160         if (unlikely(len == EMBEDDED_NAME_MAX)) {
161                 const size_t size = offsetof(struct filename, iname[1]);
162                 kname = (char *)result;
163
164                 /*
165                  * size is chosen that way we to guarantee that
166                  * result->iname[0] is within the same object and that
167                  * kname can't be equal to result->iname, no matter what.
168                  */
169                 result = kzalloc(size, GFP_KERNEL);
170                 if (unlikely(!result)) {
171                         __putname(kname);
172                         return ERR_PTR(-ENOMEM);
173                 }
174                 result->name = kname;
175                 len = strncpy_from_user(kname, filename, PATH_MAX);
176                 if (unlikely(len < 0)) {
177                         __putname(kname);
178                         kfree(result);
179                         return ERR_PTR(len);
180                 }
181                 if (unlikely(len == PATH_MAX)) {
182                         __putname(kname);
183                         kfree(result);
184                         return ERR_PTR(-ENAMETOOLONG);
185                 }
186         }
187
188         result->refcnt = 1;
189         /* The empty path is special. */
190         if (unlikely(!len)) {
191                 if (empty)
192                         *empty = 1;
193                 if (!(flags & LOOKUP_EMPTY)) {
194                         putname(result);
195                         return ERR_PTR(-ENOENT);
196                 }
197         }
198
199         result->uptr = filename;
200         result->aname = NULL;
201         audit_getname(result);
202         return result;
203 }
204
205 struct filename *
206 getname(const char __user * filename)
207 {
208         return getname_flags(filename, 0, NULL);
209 }
210
211 struct filename *
212 getname_kernel(const char * filename)
213 {
214         struct filename *result;
215         int len = strlen(filename) + 1;
216
217         result = __getname();
218         if (unlikely(!result))
219                 return ERR_PTR(-ENOMEM);
220
221         if (len <= EMBEDDED_NAME_MAX) {
222                 result->name = (char *)result->iname;
223         } else if (len <= PATH_MAX) {
224                 struct filename *tmp;
225
226                 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
227                 if (unlikely(!tmp)) {
228                         __putname(result);
229                         return ERR_PTR(-ENOMEM);
230                 }
231                 tmp->name = (char *)result;
232                 result = tmp;
233         } else {
234                 __putname(result);
235                 return ERR_PTR(-ENAMETOOLONG);
236         }
237         memcpy((char *)result->name, filename, len);
238         result->uptr = NULL;
239         result->aname = NULL;
240         result->refcnt = 1;
241         audit_getname(result);
242
243         return result;
244 }
245
246 void putname(struct filename *name)
247 {
248         BUG_ON(name->refcnt <= 0);
249
250         if (--name->refcnt > 0)
251                 return;
252
253         if (name->name != name->iname) {
254                 __putname(name->name);
255                 kfree(name);
256         } else
257                 __putname(name);
258 }
259
260 static int check_acl(struct inode *inode, int mask)
261 {
262 #ifdef CONFIG_FS_POSIX_ACL
263         struct posix_acl *acl;
264
265         if (mask & MAY_NOT_BLOCK) {
266                 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
267                 if (!acl)
268                         return -EAGAIN;
269                 /* no ->get_acl() calls in RCU mode... */
270                 if (is_uncached_acl(acl))
271                         return -ECHILD;
272                 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
273         }
274
275         acl = get_acl(inode, ACL_TYPE_ACCESS);
276         if (IS_ERR(acl))
277                 return PTR_ERR(acl);
278         if (acl) {
279                 int error = posix_acl_permission(inode, acl, mask);
280                 posix_acl_release(acl);
281                 return error;
282         }
283 #endif
284
285         return -EAGAIN;
286 }
287
288 /*
289  * This does the basic permission checking
290  */
291 static int acl_permission_check(struct inode *inode, int mask)
292 {
293         unsigned int mode = inode->i_mode;
294
295         if (likely(uid_eq(current_fsuid(), inode->i_uid)))
296                 mode >>= 6;
297         else {
298                 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
299                         int error = check_acl(inode, mask);
300                         if (error != -EAGAIN)
301                                 return error;
302                 }
303
304                 if (in_group_p(inode->i_gid))
305                         mode >>= 3;
306         }
307
308         /*
309          * If the DACs are ok we don't need any capability check.
310          */
311         if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
312                 return 0;
313         return -EACCES;
314 }
315
316 /**
317  * generic_permission -  check for access rights on a Posix-like filesystem
318  * @inode:      inode to check access rights for
319  * @mask:       right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
320  *
321  * Used to check for read/write/execute permissions on a file.
322  * We use "fsuid" for this, letting us set arbitrary permissions
323  * for filesystem access without changing the "normal" uids which
324  * are used for other things.
325  *
326  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
327  * request cannot be satisfied (eg. requires blocking or too much complexity).
328  * It would then be called again in ref-walk mode.
329  */
330 int generic_permission(struct inode *inode, int mask)
331 {
332         int ret;
333
334         /*
335          * Do the basic permission checks.
336          */
337         ret = acl_permission_check(inode, mask);
338         if (ret != -EACCES)
339                 return ret;
340
341         if (S_ISDIR(inode->i_mode)) {
342                 /* DACs are overridable for directories */
343                 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
344                         return 0;
345                 if (!(mask & MAY_WRITE))
346                         if (capable_wrt_inode_uidgid(inode,
347                                                      CAP_DAC_READ_SEARCH))
348                                 return 0;
349                 return -EACCES;
350         }
351         /*
352          * Read/write DACs are always overridable.
353          * Executable DACs are overridable when there is
354          * at least one exec bit set.
355          */
356         if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
357                 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
358                         return 0;
359
360         /*
361          * Searching includes executable on directories, else just read.
362          */
363         mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
364         if (mask == MAY_READ)
365                 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
366                         return 0;
367
368         return -EACCES;
369 }
370 EXPORT_SYMBOL(generic_permission);
371
372 /*
373  * We _really_ want to just do "generic_permission()" without
374  * even looking at the inode->i_op values. So we keep a cache
375  * flag in inode->i_opflags, that says "this has not special
376  * permission function, use the fast case".
377  */
378 static inline int do_inode_permission(struct inode *inode, int mask)
379 {
380         if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
381                 if (likely(inode->i_op->permission))
382                         return inode->i_op->permission(inode, mask);
383
384                 /* This gets set once for the inode lifetime */
385                 spin_lock(&inode->i_lock);
386                 inode->i_opflags |= IOP_FASTPERM;
387                 spin_unlock(&inode->i_lock);
388         }
389         return generic_permission(inode, mask);
390 }
391
392 /**
393  * __inode_permission - Check for access rights to a given inode
394  * @inode: Inode to check permission on
395  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
396  *
397  * Check for read/write/execute permissions on an inode.
398  *
399  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
400  *
401  * This does not check for a read-only file system.  You probably want
402  * inode_permission().
403  */
404 int __inode_permission(struct inode *inode, int mask)
405 {
406         int retval;
407
408         if (unlikely(mask & MAY_WRITE)) {
409                 /*
410                  * Nobody gets write access to an immutable file.
411                  */
412                 if (IS_IMMUTABLE(inode))
413                         return -EPERM;
414
415                 /*
416                  * Updating mtime will likely cause i_uid and i_gid to be
417                  * written back improperly if their true value is unknown
418                  * to the vfs.
419                  */
420                 if (HAS_UNMAPPED_ID(inode))
421                         return -EACCES;
422         }
423
424         retval = do_inode_permission(inode, mask);
425         if (retval)
426                 return retval;
427
428         retval = devcgroup_inode_permission(inode, mask);
429         if (retval)
430                 return retval;
431
432         return security_inode_permission(inode, mask);
433 }
434 EXPORT_SYMBOL(__inode_permission);
435
436 /**
437  * sb_permission - Check superblock-level permissions
438  * @sb: Superblock of inode to check permission on
439  * @inode: Inode to check permission on
440  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
441  *
442  * Separate out file-system wide checks from inode-specific permission checks.
443  */
444 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
445 {
446         if (unlikely(mask & MAY_WRITE)) {
447                 umode_t mode = inode->i_mode;
448
449                 /* Nobody gets write access to a read-only fs. */
450                 if ((sb->s_flags & MS_RDONLY) &&
451                     (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
452                         return -EROFS;
453         }
454         return 0;
455 }
456
457 /**
458  * inode_permission - Check for access rights to a given inode
459  * @inode: Inode to check permission on
460  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
461  *
462  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
463  * this, letting us set arbitrary permissions for filesystem access without
464  * changing the "normal" UIDs which are used for other things.
465  *
466  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
467  */
468 int inode_permission(struct inode *inode, int mask)
469 {
470         int retval;
471
472         retval = sb_permission(inode->i_sb, inode, mask);
473         if (retval)
474                 return retval;
475         return __inode_permission(inode, mask);
476 }
477 EXPORT_SYMBOL(inode_permission);
478
479 /**
480  * path_get - get a reference to a path
481  * @path: path to get the reference to
482  *
483  * Given a path increment the reference count to the dentry and the vfsmount.
484  */
485 void path_get(const struct path *path)
486 {
487         mntget(path->mnt);
488         dget(path->dentry);
489 }
490 EXPORT_SYMBOL(path_get);
491
492 /**
493  * path_put - put a reference to a path
494  * @path: path to put the reference to
495  *
496  * Given a path decrement the reference count to the dentry and the vfsmount.
497  */
498 void path_put(const struct path *path)
499 {
500         dput(path->dentry);
501         mntput(path->mnt);
502 }
503 EXPORT_SYMBOL(path_put);
504
505 #define EMBEDDED_LEVELS 2
506 struct nameidata {
507         struct path     path;
508         struct qstr     last;
509         struct path     root;
510         struct inode    *inode; /* path.dentry.d_inode */
511         unsigned int    flags;
512         unsigned        seq, m_seq;
513         int             last_type;
514         unsigned        depth;
515         int             total_link_count;
516         struct saved {
517                 struct path link;
518                 struct delayed_call done;
519                 const char *name;
520                 unsigned seq;
521         } *stack, internal[EMBEDDED_LEVELS];
522         struct filename *name;
523         struct nameidata *saved;
524         struct inode    *link_inode;
525         unsigned        root_seq;
526         int             dfd;
527 };
528
529 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
530 {
531         struct nameidata *old = current->nameidata;
532         p->stack = p->internal;
533         p->dfd = dfd;
534         p->name = name;
535         p->total_link_count = old ? old->total_link_count : 0;
536         p->saved = old;
537         current->nameidata = p;
538 }
539
540 static void restore_nameidata(void)
541 {
542         struct nameidata *now = current->nameidata, *old = now->saved;
543
544         current->nameidata = old;
545         if (old)
546                 old->total_link_count = now->total_link_count;
547         if (now->stack != now->internal)
548                 kfree(now->stack);
549 }
550
551 static int __nd_alloc_stack(struct nameidata *nd)
552 {
553         struct saved *p;
554
555         if (nd->flags & LOOKUP_RCU) {
556                 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
557                                   GFP_ATOMIC);
558                 if (unlikely(!p))
559                         return -ECHILD;
560         } else {
561                 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
562                                   GFP_KERNEL);
563                 if (unlikely(!p))
564                         return -ENOMEM;
565         }
566         memcpy(p, nd->internal, sizeof(nd->internal));
567         nd->stack = p;
568         return 0;
569 }
570
571 /**
572  * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
573  * @path: nameidate to verify
574  *
575  * Rename can sometimes move a file or directory outside of a bind
576  * mount, path_connected allows those cases to be detected.
577  */
578 static bool path_connected(const struct path *path)
579 {
580         struct vfsmount *mnt = path->mnt;
581
582         /* Only bind mounts can have disconnected paths */
583         if (mnt->mnt_root == mnt->mnt_sb->s_root)
584                 return true;
585
586         return is_subdir(path->dentry, mnt->mnt_root);
587 }
588
589 static inline int nd_alloc_stack(struct nameidata *nd)
590 {
591         if (likely(nd->depth != EMBEDDED_LEVELS))
592                 return 0;
593         if (likely(nd->stack != nd->internal))
594                 return 0;
595         return __nd_alloc_stack(nd);
596 }
597
598 static void drop_links(struct nameidata *nd)
599 {
600         int i = nd->depth;
601         while (i--) {
602                 struct saved *last = nd->stack + i;
603                 do_delayed_call(&last->done);
604                 clear_delayed_call(&last->done);
605         }
606 }
607
608 static void terminate_walk(struct nameidata *nd)
609 {
610         drop_links(nd);
611         if (!(nd->flags & LOOKUP_RCU)) {
612                 int i;
613                 path_put(&nd->path);
614                 for (i = 0; i < nd->depth; i++)
615                         path_put(&nd->stack[i].link);
616                 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
617                         path_put(&nd->root);
618                         nd->root.mnt = NULL;
619                 }
620         } else {
621                 nd->flags &= ~LOOKUP_RCU;
622                 if (!(nd->flags & LOOKUP_ROOT))
623                         nd->root.mnt = NULL;
624                 rcu_read_unlock();
625         }
626         nd->depth = 0;
627 }
628
629 /* path_put is needed afterwards regardless of success or failure */
630 static bool legitimize_path(struct nameidata *nd,
631                             struct path *path, unsigned seq)
632 {
633         int res = __legitimize_mnt(path->mnt, nd->m_seq);
634         if (unlikely(res)) {
635                 if (res > 0)
636                         path->mnt = NULL;
637                 path->dentry = NULL;
638                 return false;
639         }
640         if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
641                 path->dentry = NULL;
642                 return false;
643         }
644         return !read_seqcount_retry(&path->dentry->d_seq, seq);
645 }
646
647 static bool legitimize_links(struct nameidata *nd)
648 {
649         int i;
650         for (i = 0; i < nd->depth; i++) {
651                 struct saved *last = nd->stack + i;
652                 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
653                         drop_links(nd);
654                         nd->depth = i + 1;
655                         return false;
656                 }
657         }
658         return true;
659 }
660
661 /*
662  * Path walking has 2 modes, rcu-walk and ref-walk (see
663  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
664  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
665  * normal reference counts on dentries and vfsmounts to transition to ref-walk
666  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
667  * got stuck, so ref-walk may continue from there. If this is not successful
668  * (eg. a seqcount has changed), then failure is returned and it's up to caller
669  * to restart the path walk from the beginning in ref-walk mode.
670  */
671
672 /**
673  * unlazy_walk - try to switch to ref-walk mode.
674  * @nd: nameidata pathwalk data
675  * Returns: 0 on success, -ECHILD on failure
676  *
677  * unlazy_walk attempts to legitimize the current nd->path and nd->root
678  * for ref-walk mode.
679  * Must be called from rcu-walk context.
680  * Nothing should touch nameidata between unlazy_walk() failure and
681  * terminate_walk().
682  */
683 static int unlazy_walk(struct nameidata *nd)
684 {
685         struct dentry *parent = nd->path.dentry;
686
687         BUG_ON(!(nd->flags & LOOKUP_RCU));
688
689         nd->flags &= ~LOOKUP_RCU;
690         if (unlikely(!legitimize_links(nd)))
691                 goto out2;
692         if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
693                 goto out1;
694         if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
695                 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq)))
696                         goto out;
697         }
698         rcu_read_unlock();
699         BUG_ON(nd->inode != parent->d_inode);
700         return 0;
701
702 out2:
703         nd->path.mnt = NULL;
704         nd->path.dentry = NULL;
705 out1:
706         if (!(nd->flags & LOOKUP_ROOT))
707                 nd->root.mnt = NULL;
708 out:
709         rcu_read_unlock();
710         return -ECHILD;
711 }
712
713 /**
714  * unlazy_child - try to switch to ref-walk mode.
715  * @nd: nameidata pathwalk data
716  * @dentry: child of nd->path.dentry
717  * @seq: seq number to check dentry against
718  * Returns: 0 on success, -ECHILD on failure
719  *
720  * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
721  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
722  * @nd.  Must be called from rcu-walk context.
723  * Nothing should touch nameidata between unlazy_child() failure and
724  * terminate_walk().
725  */
726 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
727 {
728         BUG_ON(!(nd->flags & LOOKUP_RCU));
729
730         nd->flags &= ~LOOKUP_RCU;
731         if (unlikely(!legitimize_links(nd)))
732                 goto out2;
733         if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
734                 goto out2;
735         if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
736                 goto out1;
737
738         /*
739          * We need to move both the parent and the dentry from the RCU domain
740          * to be properly refcounted. And the sequence number in the dentry
741          * validates *both* dentry counters, since we checked the sequence
742          * number of the parent after we got the child sequence number. So we
743          * know the parent must still be valid if the child sequence number is
744          */
745         if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
746                 goto out;
747         if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) {
748                 rcu_read_unlock();
749                 dput(dentry);
750                 goto drop_root_mnt;
751         }
752         /*
753          * Sequence counts matched. Now make sure that the root is
754          * still valid and get it if required.
755          */
756         if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
757                 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
758                         rcu_read_unlock();
759                         dput(dentry);
760                         return -ECHILD;
761                 }
762         }
763
764         rcu_read_unlock();
765         return 0;
766
767 out2:
768         nd->path.mnt = NULL;
769 out1:
770         nd->path.dentry = NULL;
771 out:
772         rcu_read_unlock();
773 drop_root_mnt:
774         if (!(nd->flags & LOOKUP_ROOT))
775                 nd->root.mnt = NULL;
776         return -ECHILD;
777 }
778
779 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
780 {
781         if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
782                 return dentry->d_op->d_revalidate(dentry, flags);
783         else
784                 return 1;
785 }
786
787 /**
788  * complete_walk - successful completion of path walk
789  * @nd:  pointer nameidata
790  *
791  * If we had been in RCU mode, drop out of it and legitimize nd->path.
792  * Revalidate the final result, unless we'd already done that during
793  * the path walk or the filesystem doesn't ask for it.  Return 0 on
794  * success, -error on failure.  In case of failure caller does not
795  * need to drop nd->path.
796  */
797 static int complete_walk(struct nameidata *nd)
798 {
799         struct dentry *dentry = nd->path.dentry;
800         int status;
801
802         if (nd->flags & LOOKUP_RCU) {
803                 if (!(nd->flags & LOOKUP_ROOT))
804                         nd->root.mnt = NULL;
805                 if (unlikely(unlazy_walk(nd)))
806                         return -ECHILD;
807         }
808
809         if (likely(!(nd->flags & LOOKUP_JUMPED)))
810                 return 0;
811
812         if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
813                 return 0;
814
815         status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
816         if (status > 0)
817                 return 0;
818
819         if (!status)
820                 status = -ESTALE;
821
822         return status;
823 }
824
825 static void set_root(struct nameidata *nd)
826 {
827         struct fs_struct *fs = current->fs;
828
829         if (nd->flags & LOOKUP_RCU) {
830                 unsigned seq;
831
832                 do {
833                         seq = read_seqcount_begin(&fs->seq);
834                         nd->root = fs->root;
835                         nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
836                 } while (read_seqcount_retry(&fs->seq, seq));
837         } else {
838                 get_fs_root(fs, &nd->root);
839         }
840 }
841
842 static void path_put_conditional(struct path *path, struct nameidata *nd)
843 {
844         dput(path->dentry);
845         if (path->mnt != nd->path.mnt)
846                 mntput(path->mnt);
847 }
848
849 static inline void path_to_nameidata(const struct path *path,
850                                         struct nameidata *nd)
851 {
852         if (!(nd->flags & LOOKUP_RCU)) {
853                 dput(nd->path.dentry);
854                 if (nd->path.mnt != path->mnt)
855                         mntput(nd->path.mnt);
856         }
857         nd->path.mnt = path->mnt;
858         nd->path.dentry = path->dentry;
859 }
860
861 static int nd_jump_root(struct nameidata *nd)
862 {
863         if (nd->flags & LOOKUP_RCU) {
864                 struct dentry *d;
865                 nd->path = nd->root;
866                 d = nd->path.dentry;
867                 nd->inode = d->d_inode;
868                 nd->seq = nd->root_seq;
869                 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
870                         return -ECHILD;
871         } else {
872                 path_put(&nd->path);
873                 nd->path = nd->root;
874                 path_get(&nd->path);
875                 nd->inode = nd->path.dentry->d_inode;
876         }
877         nd->flags |= LOOKUP_JUMPED;
878         return 0;
879 }
880
881 /*
882  * Helper to directly jump to a known parsed path from ->get_link,
883  * caller must have taken a reference to path beforehand.
884  */
885 void nd_jump_link(struct path *path)
886 {
887         struct nameidata *nd = current->nameidata;
888         path_put(&nd->path);
889
890         nd->path = *path;
891         nd->inode = nd->path.dentry->d_inode;
892         nd->flags |= LOOKUP_JUMPED;
893 }
894
895 static inline void put_link(struct nameidata *nd)
896 {
897         struct saved *last = nd->stack + --nd->depth;
898         do_delayed_call(&last->done);
899         if (!(nd->flags & LOOKUP_RCU))
900                 path_put(&last->link);
901 }
902
903 int sysctl_protected_symlinks __read_mostly = 0;
904 int sysctl_protected_hardlinks __read_mostly = 0;
905
906 /**
907  * may_follow_link - Check symlink following for unsafe situations
908  * @nd: nameidata pathwalk data
909  *
910  * In the case of the sysctl_protected_symlinks sysctl being enabled,
911  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
912  * in a sticky world-writable directory. This is to protect privileged
913  * processes from failing races against path names that may change out
914  * from under them by way of other users creating malicious symlinks.
915  * It will permit symlinks to be followed only when outside a sticky
916  * world-writable directory, or when the uid of the symlink and follower
917  * match, or when the directory owner matches the symlink's owner.
918  *
919  * Returns 0 if following the symlink is allowed, -ve on error.
920  */
921 static inline int may_follow_link(struct nameidata *nd)
922 {
923         const struct inode *inode;
924         const struct inode *parent;
925         kuid_t puid;
926
927         if (!sysctl_protected_symlinks)
928                 return 0;
929
930         /* Allowed if owner and follower match. */
931         inode = nd->link_inode;
932         if (uid_eq(current_cred()->fsuid, inode->i_uid))
933                 return 0;
934
935         /* Allowed if parent directory not sticky and world-writable. */
936         parent = nd->inode;
937         if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
938                 return 0;
939
940         /* Allowed if parent directory and link owner match. */
941         puid = parent->i_uid;
942         if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
943                 return 0;
944
945         if (nd->flags & LOOKUP_RCU)
946                 return -ECHILD;
947
948         audit_log_link_denied("follow_link", &nd->stack[0].link);
949         return -EACCES;
950 }
951
952 /**
953  * safe_hardlink_source - Check for safe hardlink conditions
954  * @inode: the source inode to hardlink from
955  *
956  * Return false if at least one of the following conditions:
957  *    - inode is not a regular file
958  *    - inode is setuid
959  *    - inode is setgid and group-exec
960  *    - access failure for read and write
961  *
962  * Otherwise returns true.
963  */
964 static bool safe_hardlink_source(struct inode *inode)
965 {
966         umode_t mode = inode->i_mode;
967
968         /* Special files should not get pinned to the filesystem. */
969         if (!S_ISREG(mode))
970                 return false;
971
972         /* Setuid files should not get pinned to the filesystem. */
973         if (mode & S_ISUID)
974                 return false;
975
976         /* Executable setgid files should not get pinned to the filesystem. */
977         if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
978                 return false;
979
980         /* Hardlinking to unreadable or unwritable sources is dangerous. */
981         if (inode_permission(inode, MAY_READ | MAY_WRITE))
982                 return false;
983
984         return true;
985 }
986
987 /**
988  * may_linkat - Check permissions for creating a hardlink
989  * @link: the source to hardlink from
990  *
991  * Block hardlink when all of:
992  *  - sysctl_protected_hardlinks enabled
993  *  - fsuid does not match inode
994  *  - hardlink source is unsafe (see safe_hardlink_source() above)
995  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
996  *
997  * Returns 0 if successful, -ve on error.
998  */
999 static int may_linkat(struct path *link)
1000 {
1001         struct inode *inode;
1002
1003         if (!sysctl_protected_hardlinks)
1004                 return 0;
1005
1006         inode = link->dentry->d_inode;
1007
1008         /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1009          * otherwise, it must be a safe source.
1010          */
1011         if (inode_owner_or_capable(inode) || safe_hardlink_source(inode))
1012                 return 0;
1013
1014         audit_log_link_denied("linkat", link);
1015         return -EPERM;
1016 }
1017
1018 static __always_inline
1019 const char *get_link(struct nameidata *nd)
1020 {
1021         struct saved *last = nd->stack + nd->depth - 1;
1022         struct dentry *dentry = last->link.dentry;
1023         struct inode *inode = nd->link_inode;
1024         int error;
1025         const char *res;
1026
1027         if (!(nd->flags & LOOKUP_RCU)) {
1028                 touch_atime(&last->link);
1029                 cond_resched();
1030         } else if (atime_needs_update_rcu(&last->link, inode)) {
1031                 if (unlikely(unlazy_walk(nd)))
1032                         return ERR_PTR(-ECHILD);
1033                 touch_atime(&last->link);
1034         }
1035
1036         error = security_inode_follow_link(dentry, inode,
1037                                            nd->flags & LOOKUP_RCU);
1038         if (unlikely(error))
1039                 return ERR_PTR(error);
1040
1041         nd->last_type = LAST_BIND;
1042         res = inode->i_link;
1043         if (!res) {
1044                 const char * (*get)(struct dentry *, struct inode *,
1045                                 struct delayed_call *);
1046                 get = inode->i_op->get_link;
1047                 if (nd->flags & LOOKUP_RCU) {
1048                         res = get(NULL, inode, &last->done);
1049                         if (res == ERR_PTR(-ECHILD)) {
1050                                 if (unlikely(unlazy_walk(nd)))
1051                                         return ERR_PTR(-ECHILD);
1052                                 res = get(dentry, inode, &last->done);
1053                         }
1054                 } else {
1055                         res = get(dentry, inode, &last->done);
1056                 }
1057                 if (IS_ERR_OR_NULL(res))
1058                         return res;
1059         }
1060         if (*res == '/') {
1061                 if (!nd->root.mnt)
1062                         set_root(nd);
1063                 if (unlikely(nd_jump_root(nd)))
1064                         return ERR_PTR(-ECHILD);
1065                 while (unlikely(*++res == '/'))
1066                         ;
1067         }
1068         if (!*res)
1069                 res = NULL;
1070         return res;
1071 }
1072
1073 /*
1074  * follow_up - Find the mountpoint of path's vfsmount
1075  *
1076  * Given a path, find the mountpoint of its source file system.
1077  * Replace @path with the path of the mountpoint in the parent mount.
1078  * Up is towards /.
1079  *
1080  * Return 1 if we went up a level and 0 if we were already at the
1081  * root.
1082  */
1083 int follow_up(struct path *path)
1084 {
1085         struct mount *mnt = real_mount(path->mnt);
1086         struct mount *parent;
1087         struct dentry *mountpoint;
1088
1089         read_seqlock_excl(&mount_lock);
1090         parent = mnt->mnt_parent;
1091         if (parent == mnt) {
1092                 read_sequnlock_excl(&mount_lock);
1093                 return 0;
1094         }
1095         mntget(&parent->mnt);
1096         mountpoint = dget(mnt->mnt_mountpoint);
1097         read_sequnlock_excl(&mount_lock);
1098         dput(path->dentry);
1099         path->dentry = mountpoint;
1100         mntput(path->mnt);
1101         path->mnt = &parent->mnt;
1102         return 1;
1103 }
1104 EXPORT_SYMBOL(follow_up);
1105
1106 /*
1107  * Perform an automount
1108  * - return -EISDIR to tell follow_managed() to stop and return the path we
1109  *   were called with.
1110  */
1111 static int follow_automount(struct path *path, struct nameidata *nd,
1112                             bool *need_mntput)
1113 {
1114         struct vfsmount *mnt;
1115         int err;
1116
1117         if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1118                 return -EREMOTE;
1119
1120         /* We don't want to mount if someone's just doing a stat -
1121          * unless they're stat'ing a directory and appended a '/' to
1122          * the name.
1123          *
1124          * We do, however, want to mount if someone wants to open or
1125          * create a file of any type under the mountpoint, wants to
1126          * traverse through the mountpoint or wants to open the
1127          * mounted directory.  Also, autofs may mark negative dentries
1128          * as being automount points.  These will need the attentions
1129          * of the daemon to instantiate them before they can be used.
1130          */
1131         if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1132                            LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1133             path->dentry->d_inode)
1134                 return -EISDIR;
1135
1136         if (path->dentry->d_sb->s_user_ns != &init_user_ns)
1137                 return -EACCES;
1138
1139         nd->total_link_count++;
1140         if (nd->total_link_count >= 40)
1141                 return -ELOOP;
1142
1143         mnt = path->dentry->d_op->d_automount(path);
1144         if (IS_ERR(mnt)) {
1145                 /*
1146                  * The filesystem is allowed to return -EISDIR here to indicate
1147                  * it doesn't want to automount.  For instance, autofs would do
1148                  * this so that its userspace daemon can mount on this dentry.
1149                  *
1150                  * However, we can only permit this if it's a terminal point in
1151                  * the path being looked up; if it wasn't then the remainder of
1152                  * the path is inaccessible and we should say so.
1153                  */
1154                 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1155                         return -EREMOTE;
1156                 return PTR_ERR(mnt);
1157         }
1158
1159         if (!mnt) /* mount collision */
1160                 return 0;
1161
1162         if (!*need_mntput) {
1163                 /* lock_mount() may release path->mnt on error */
1164                 mntget(path->mnt);
1165                 *need_mntput = true;
1166         }
1167         err = finish_automount(mnt, path);
1168
1169         switch (err) {
1170         case -EBUSY:
1171                 /* Someone else made a mount here whilst we were busy */
1172                 return 0;
1173         case 0:
1174                 path_put(path);
1175                 path->mnt = mnt;
1176                 path->dentry = dget(mnt->mnt_root);
1177                 return 0;
1178         default:
1179                 return err;
1180         }
1181
1182 }
1183
1184 /*
1185  * Handle a dentry that is managed in some way.
1186  * - Flagged for transit management (autofs)
1187  * - Flagged as mountpoint
1188  * - Flagged as automount point
1189  *
1190  * This may only be called in refwalk mode.
1191  *
1192  * Serialization is taken care of in namespace.c
1193  */
1194 static int follow_managed(struct path *path, struct nameidata *nd)
1195 {
1196         struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1197         unsigned managed;
1198         bool need_mntput = false;
1199         int ret = 0;
1200
1201         /* Given that we're not holding a lock here, we retain the value in a
1202          * local variable for each dentry as we look at it so that we don't see
1203          * the components of that value change under us */
1204         while (managed = ACCESS_ONCE(path->dentry->d_flags),
1205                managed &= DCACHE_MANAGED_DENTRY,
1206                unlikely(managed != 0)) {
1207                 /* Allow the filesystem to manage the transit without i_mutex
1208                  * being held. */
1209                 if (managed & DCACHE_MANAGE_TRANSIT) {
1210                         BUG_ON(!path->dentry->d_op);
1211                         BUG_ON(!path->dentry->d_op->d_manage);
1212                         ret = path->dentry->d_op->d_manage(path, false);
1213                         if (ret < 0)
1214                                 break;
1215                 }
1216
1217                 /* Transit to a mounted filesystem. */
1218                 if (managed & DCACHE_MOUNTED) {
1219                         struct vfsmount *mounted = lookup_mnt(path);
1220                         if (mounted) {
1221                                 dput(path->dentry);
1222                                 if (need_mntput)
1223                                         mntput(path->mnt);
1224                                 path->mnt = mounted;
1225                                 path->dentry = dget(mounted->mnt_root);
1226                                 need_mntput = true;
1227                                 continue;
1228                         }
1229
1230                         /* Something is mounted on this dentry in another
1231                          * namespace and/or whatever was mounted there in this
1232                          * namespace got unmounted before lookup_mnt() could
1233                          * get it */
1234                 }
1235
1236                 /* Handle an automount point */
1237                 if (managed & DCACHE_NEED_AUTOMOUNT) {
1238                         ret = follow_automount(path, nd, &need_mntput);
1239                         if (ret < 0)
1240                                 break;
1241                         continue;
1242                 }
1243
1244                 /* We didn't change the current path point */
1245                 break;
1246         }
1247
1248         if (need_mntput && path->mnt == mnt)
1249                 mntput(path->mnt);
1250         if (ret == -EISDIR || !ret)
1251                 ret = 1;
1252         if (need_mntput)
1253                 nd->flags |= LOOKUP_JUMPED;
1254         if (unlikely(ret < 0))
1255                 path_put_conditional(path, nd);
1256         return ret;
1257 }
1258
1259 int follow_down_one(struct path *path)
1260 {
1261         struct vfsmount *mounted;
1262
1263         mounted = lookup_mnt(path);
1264         if (mounted) {
1265                 dput(path->dentry);
1266                 mntput(path->mnt);
1267                 path->mnt = mounted;
1268                 path->dentry = dget(mounted->mnt_root);
1269                 return 1;
1270         }
1271         return 0;
1272 }
1273 EXPORT_SYMBOL(follow_down_one);
1274
1275 static inline int managed_dentry_rcu(const struct path *path)
1276 {
1277         return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1278                 path->dentry->d_op->d_manage(path, true) : 0;
1279 }
1280
1281 /*
1282  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1283  * we meet a managed dentry that would need blocking.
1284  */
1285 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1286                                struct inode **inode, unsigned *seqp)
1287 {
1288         for (;;) {
1289                 struct mount *mounted;
1290                 /*
1291                  * Don't forget we might have a non-mountpoint managed dentry
1292                  * that wants to block transit.
1293                  */
1294                 switch (managed_dentry_rcu(path)) {
1295                 case -ECHILD:
1296                 default:
1297                         return false;
1298                 case -EISDIR:
1299                         return true;
1300                 case 0:
1301                         break;
1302                 }
1303
1304                 if (!d_mountpoint(path->dentry))
1305                         return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1306
1307                 mounted = __lookup_mnt(path->mnt, path->dentry);
1308                 if (!mounted)
1309                         break;
1310                 path->mnt = &mounted->mnt;
1311                 path->dentry = mounted->mnt.mnt_root;
1312                 nd->flags |= LOOKUP_JUMPED;
1313                 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1314                 /*
1315                  * Update the inode too. We don't need to re-check the
1316                  * dentry sequence number here after this d_inode read,
1317                  * because a mount-point is always pinned.
1318                  */
1319                 *inode = path->dentry->d_inode;
1320         }
1321         return !read_seqretry(&mount_lock, nd->m_seq) &&
1322                 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1323 }
1324
1325 static int follow_dotdot_rcu(struct nameidata *nd)
1326 {
1327         struct inode *inode = nd->inode;
1328
1329         while (1) {
1330                 if (path_equal(&nd->path, &nd->root))
1331                         break;
1332                 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1333                         struct dentry *old = nd->path.dentry;
1334                         struct dentry *parent = old->d_parent;
1335                         unsigned seq;
1336
1337                         inode = parent->d_inode;
1338                         seq = read_seqcount_begin(&parent->d_seq);
1339                         if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1340                                 return -ECHILD;
1341                         nd->path.dentry = parent;
1342                         nd->seq = seq;
1343                         if (unlikely(!path_connected(&nd->path)))
1344                                 return -ENOENT;
1345                         break;
1346                 } else {
1347                         struct mount *mnt = real_mount(nd->path.mnt);
1348                         struct mount *mparent = mnt->mnt_parent;
1349                         struct dentry *mountpoint = mnt->mnt_mountpoint;
1350                         struct inode *inode2 = mountpoint->d_inode;
1351                         unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1352                         if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1353                                 return -ECHILD;
1354                         if (&mparent->mnt == nd->path.mnt)
1355                                 break;
1356                         /* we know that mountpoint was pinned */
1357                         nd->path.dentry = mountpoint;
1358                         nd->path.mnt = &mparent->mnt;
1359                         inode = inode2;
1360                         nd->seq = seq;
1361                 }
1362         }
1363         while (unlikely(d_mountpoint(nd->path.dentry))) {
1364                 struct mount *mounted;
1365                 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1366                 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1367                         return -ECHILD;
1368                 if (!mounted)
1369                         break;
1370                 nd->path.mnt = &mounted->mnt;
1371                 nd->path.dentry = mounted->mnt.mnt_root;
1372                 inode = nd->path.dentry->d_inode;
1373                 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1374         }
1375         nd->inode = inode;
1376         return 0;
1377 }
1378
1379 /*
1380  * Follow down to the covering mount currently visible to userspace.  At each
1381  * point, the filesystem owning that dentry may be queried as to whether the
1382  * caller is permitted to proceed or not.
1383  */
1384 int follow_down(struct path *path)
1385 {
1386         unsigned managed;
1387         int ret;
1388
1389         while (managed = ACCESS_ONCE(path->dentry->d_flags),
1390                unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1391                 /* Allow the filesystem to manage the transit without i_mutex
1392                  * being held.
1393                  *
1394                  * We indicate to the filesystem if someone is trying to mount
1395                  * something here.  This gives autofs the chance to deny anyone
1396                  * other than its daemon the right to mount on its
1397                  * superstructure.
1398                  *
1399                  * The filesystem may sleep at this point.
1400                  */
1401                 if (managed & DCACHE_MANAGE_TRANSIT) {
1402                         BUG_ON(!path->dentry->d_op);
1403                         BUG_ON(!path->dentry->d_op->d_manage);
1404                         ret = path->dentry->d_op->d_manage(path, false);
1405                         if (ret < 0)
1406                                 return ret == -EISDIR ? 0 : ret;
1407                 }
1408
1409                 /* Transit to a mounted filesystem. */
1410                 if (managed & DCACHE_MOUNTED) {
1411                         struct vfsmount *mounted = lookup_mnt(path);
1412                         if (!mounted)
1413                                 break;
1414                         dput(path->dentry);
1415                         mntput(path->mnt);
1416                         path->mnt = mounted;
1417                         path->dentry = dget(mounted->mnt_root);
1418                         continue;
1419                 }
1420
1421                 /* Don't handle automount points here */
1422                 break;
1423         }
1424         return 0;
1425 }
1426 EXPORT_SYMBOL(follow_down);
1427
1428 /*
1429  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1430  */
1431 static void follow_mount(struct path *path)
1432 {
1433         while (d_mountpoint(path->dentry)) {
1434                 struct vfsmount *mounted = lookup_mnt(path);
1435                 if (!mounted)
1436                         break;
1437                 dput(path->dentry);
1438                 mntput(path->mnt);
1439                 path->mnt = mounted;
1440                 path->dentry = dget(mounted->mnt_root);
1441         }
1442 }
1443
1444 static int path_parent_directory(struct path *path)
1445 {
1446         struct dentry *old = path->dentry;
1447         /* rare case of legitimate dget_parent()... */
1448         path->dentry = dget_parent(path->dentry);
1449         dput(old);
1450         if (unlikely(!path_connected(path)))
1451                 return -ENOENT;
1452         return 0;
1453 }
1454
1455 static int follow_dotdot(struct nameidata *nd)
1456 {
1457         while(1) {
1458                 if (nd->path.dentry == nd->root.dentry &&
1459                     nd->path.mnt == nd->root.mnt) {
1460                         break;
1461                 }
1462                 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1463                         int ret = path_parent_directory(&nd->path);
1464                         if (ret)
1465                                 return ret;
1466                         break;
1467                 }
1468                 if (!follow_up(&nd->path))
1469                         break;
1470         }
1471         follow_mount(&nd->path);
1472         nd->inode = nd->path.dentry->d_inode;
1473         return 0;
1474 }
1475
1476 /*
1477  * This looks up the name in dcache and possibly revalidates the found dentry.
1478  * NULL is returned if the dentry does not exist in the cache.
1479  */
1480 static struct dentry *lookup_dcache(const struct qstr *name,
1481                                     struct dentry *dir,
1482                                     unsigned int flags)
1483 {
1484         struct dentry *dentry = d_lookup(dir, name);
1485         if (dentry) {
1486                 int error = d_revalidate(dentry, flags);
1487                 if (unlikely(error <= 0)) {
1488                         if (!error)
1489                                 d_invalidate(dentry);
1490                         dput(dentry);
1491                         return ERR_PTR(error);
1492                 }
1493         }
1494         return dentry;
1495 }
1496
1497 /*
1498  * Call i_op->lookup on the dentry.  The dentry must be negative and
1499  * unhashed.
1500  *
1501  * dir->d_inode->i_mutex must be held
1502  */
1503 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1504                                   unsigned int flags)
1505 {
1506         struct dentry *old;
1507
1508         /* Don't create child dentry for a dead directory. */
1509         if (unlikely(IS_DEADDIR(dir))) {
1510                 dput(dentry);
1511                 return ERR_PTR(-ENOENT);
1512         }
1513
1514         old = dir->i_op->lookup(dir, dentry, flags);
1515         if (unlikely(old)) {
1516                 dput(dentry);
1517                 dentry = old;
1518         }
1519         return dentry;
1520 }
1521
1522 static struct dentry *__lookup_hash(const struct qstr *name,
1523                 struct dentry *base, unsigned int flags)
1524 {
1525         struct dentry *dentry = lookup_dcache(name, base, flags);
1526
1527         if (dentry)
1528                 return dentry;
1529
1530         dentry = d_alloc(base, name);
1531         if (unlikely(!dentry))
1532                 return ERR_PTR(-ENOMEM);
1533
1534         return lookup_real(base->d_inode, dentry, flags);
1535 }
1536
1537 static int lookup_fast(struct nameidata *nd,
1538                        struct path *path, struct inode **inode,
1539                        unsigned *seqp)
1540 {
1541         struct vfsmount *mnt = nd->path.mnt;
1542         struct dentry *dentry, *parent = nd->path.dentry;
1543         int status = 1;
1544         int err;
1545
1546         /*
1547          * Rename seqlock is not required here because in the off chance
1548          * of a false negative due to a concurrent rename, the caller is
1549          * going to fall back to non-racy lookup.
1550          */
1551         if (nd->flags & LOOKUP_RCU) {
1552                 unsigned seq;
1553                 bool negative;
1554                 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1555                 if (unlikely(!dentry)) {
1556                         if (unlazy_walk(nd))
1557                                 return -ECHILD;
1558                         return 0;
1559                 }
1560
1561                 /*
1562                  * This sequence count validates that the inode matches
1563                  * the dentry name information from lookup.
1564                  */
1565                 *inode = d_backing_inode(dentry);
1566                 negative = d_is_negative(dentry);
1567                 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1568                         return -ECHILD;
1569
1570                 /*
1571                  * This sequence count validates that the parent had no
1572                  * changes while we did the lookup of the dentry above.
1573                  *
1574                  * The memory barrier in read_seqcount_begin of child is
1575                  *  enough, we can use __read_seqcount_retry here.
1576                  */
1577                 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1578                         return -ECHILD;
1579
1580                 *seqp = seq;
1581                 status = d_revalidate(dentry, nd->flags);
1582                 if (likely(status > 0)) {
1583                         /*
1584                          * Note: do negative dentry check after revalidation in
1585                          * case that drops it.
1586                          */
1587                         if (unlikely(negative))
1588                                 return -ENOENT;
1589                         path->mnt = mnt;
1590                         path->dentry = dentry;
1591                         if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1592                                 return 1;
1593                 }
1594                 if (unlazy_child(nd, dentry, seq))
1595                         return -ECHILD;
1596                 if (unlikely(status == -ECHILD))
1597                         /* we'd been told to redo it in non-rcu mode */
1598                         status = d_revalidate(dentry, nd->flags);
1599         } else {
1600                 dentry = __d_lookup(parent, &nd->last);
1601                 if (unlikely(!dentry))
1602                         return 0;
1603                 status = d_revalidate(dentry, nd->flags);
1604         }
1605         if (unlikely(status <= 0)) {
1606                 if (!status)
1607                         d_invalidate(dentry);
1608                 dput(dentry);
1609                 return status;
1610         }
1611         if (unlikely(d_is_negative(dentry))) {
1612                 dput(dentry);
1613                 return -ENOENT;
1614         }
1615
1616         path->mnt = mnt;
1617         path->dentry = dentry;
1618         err = follow_managed(path, nd);
1619         if (likely(err > 0))
1620                 *inode = d_backing_inode(path->dentry);
1621         return err;
1622 }
1623
1624 /* Fast lookup failed, do it the slow way */
1625 static struct dentry *lookup_slow(const struct qstr *name,
1626                                   struct dentry *dir,
1627                                   unsigned int flags)
1628 {
1629         struct dentry *dentry = ERR_PTR(-ENOENT), *old;
1630         struct inode *inode = dir->d_inode;
1631         DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1632
1633         inode_lock_shared(inode);
1634         /* Don't go there if it's already dead */
1635         if (unlikely(IS_DEADDIR(inode)))
1636                 goto out;
1637 again:
1638         dentry = d_alloc_parallel(dir, name, &wq);
1639         if (IS_ERR(dentry))
1640                 goto out;
1641         if (unlikely(!d_in_lookup(dentry))) {
1642                 if (!(flags & LOOKUP_NO_REVAL)) {
1643                         int error = d_revalidate(dentry, flags);
1644                         if (unlikely(error <= 0)) {
1645                                 if (!error) {
1646                                         d_invalidate(dentry);
1647                                         dput(dentry);
1648                                         goto again;
1649                                 }
1650                                 dput(dentry);
1651                                 dentry = ERR_PTR(error);
1652                         }
1653                 }
1654         } else {
1655                 old = inode->i_op->lookup(inode, dentry, flags);
1656                 d_lookup_done(dentry);
1657                 if (unlikely(old)) {
1658                         dput(dentry);
1659                         dentry = old;
1660                 }
1661         }
1662 out:
1663         inode_unlock_shared(inode);
1664         return dentry;
1665 }
1666
1667 static inline int may_lookup(struct nameidata *nd)
1668 {
1669         if (nd->flags & LOOKUP_RCU) {
1670                 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1671                 if (err != -ECHILD)
1672                         return err;
1673                 if (unlazy_walk(nd))
1674                         return -ECHILD;
1675         }
1676         return inode_permission(nd->inode, MAY_EXEC);
1677 }
1678
1679 static inline int handle_dots(struct nameidata *nd, int type)
1680 {
1681         if (type == LAST_DOTDOT) {
1682                 if (!nd->root.mnt)
1683                         set_root(nd);
1684                 if (nd->flags & LOOKUP_RCU) {
1685                         return follow_dotdot_rcu(nd);
1686                 } else
1687                         return follow_dotdot(nd);
1688         }
1689         return 0;
1690 }
1691
1692 static int pick_link(struct nameidata *nd, struct path *link,
1693                      struct inode *inode, unsigned seq)
1694 {
1695         int error;
1696         struct saved *last;
1697         if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1698                 path_to_nameidata(link, nd);
1699                 return -ELOOP;
1700         }
1701         if (!(nd->flags & LOOKUP_RCU)) {
1702                 if (link->mnt == nd->path.mnt)
1703                         mntget(link->mnt);
1704         }
1705         error = nd_alloc_stack(nd);
1706         if (unlikely(error)) {
1707                 if (error == -ECHILD) {
1708                         if (unlikely(!legitimize_path(nd, link, seq))) {
1709                                 drop_links(nd);
1710                                 nd->depth = 0;
1711                                 nd->flags &= ~LOOKUP_RCU;
1712                                 nd->path.mnt = NULL;
1713                                 nd->path.dentry = NULL;
1714                                 if (!(nd->flags & LOOKUP_ROOT))
1715                                         nd->root.mnt = NULL;
1716                                 rcu_read_unlock();
1717                         } else if (likely(unlazy_walk(nd)) == 0)
1718                                 error = nd_alloc_stack(nd);
1719                 }
1720                 if (error) {
1721                         path_put(link);
1722                         return error;
1723                 }
1724         }
1725
1726         last = nd->stack + nd->depth++;
1727         last->link = *link;
1728         clear_delayed_call(&last->done);
1729         nd->link_inode = inode;
1730         last->seq = seq;
1731         return 1;
1732 }
1733
1734 enum {WALK_FOLLOW = 1, WALK_MORE = 2};
1735
1736 /*
1737  * Do we need to follow links? We _really_ want to be able
1738  * to do this check without having to look at inode->i_op,
1739  * so we keep a cache of "no, this doesn't need follow_link"
1740  * for the common case.
1741  */
1742 static inline int step_into(struct nameidata *nd, struct path *path,
1743                             int flags, struct inode *inode, unsigned seq)
1744 {
1745         if (!(flags & WALK_MORE) && nd->depth)
1746                 put_link(nd);
1747         if (likely(!d_is_symlink(path->dentry)) ||
1748            !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
1749                 /* not a symlink or should not follow */
1750                 path_to_nameidata(path, nd);
1751                 nd->inode = inode;
1752                 nd->seq = seq;
1753                 return 0;
1754         }
1755         /* make sure that d_is_symlink above matches inode */
1756         if (nd->flags & LOOKUP_RCU) {
1757                 if (read_seqcount_retry(&path->dentry->d_seq, seq))
1758                         return -ECHILD;
1759         }
1760         return pick_link(nd, path, inode, seq);
1761 }
1762
1763 static int walk_component(struct nameidata *nd, int flags)
1764 {
1765         struct path path;
1766         struct inode *inode;
1767         unsigned seq;
1768         int err;
1769         /*
1770          * "." and ".." are special - ".." especially so because it has
1771          * to be able to know about the current root directory and
1772          * parent relationships.
1773          */
1774         if (unlikely(nd->last_type != LAST_NORM)) {
1775                 err = handle_dots(nd, nd->last_type);
1776                 if (!(flags & WALK_MORE) && nd->depth)
1777                         put_link(nd);
1778                 return err;
1779         }
1780         err = lookup_fast(nd, &path, &inode, &seq);
1781         if (unlikely(err <= 0)) {
1782                 if (err < 0)
1783                         return err;
1784                 path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1785                                           nd->flags);
1786                 if (IS_ERR(path.dentry))
1787                         return PTR_ERR(path.dentry);
1788
1789                 path.mnt = nd->path.mnt;
1790                 err = follow_managed(&path, nd);
1791                 if (unlikely(err < 0))
1792                         return err;
1793
1794                 if (unlikely(d_is_negative(path.dentry))) {
1795                         path_to_nameidata(&path, nd);
1796                         return -ENOENT;
1797                 }
1798
1799                 seq = 0;        /* we are already out of RCU mode */
1800                 inode = d_backing_inode(path.dentry);
1801         }
1802
1803         return step_into(nd, &path, flags, inode, seq);
1804 }
1805
1806 /*
1807  * We can do the critical dentry name comparison and hashing
1808  * operations one word at a time, but we are limited to:
1809  *
1810  * - Architectures with fast unaligned word accesses. We could
1811  *   do a "get_unaligned()" if this helps and is sufficiently
1812  *   fast.
1813  *
1814  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1815  *   do not trap on the (extremely unlikely) case of a page
1816  *   crossing operation.
1817  *
1818  * - Furthermore, we need an efficient 64-bit compile for the
1819  *   64-bit case in order to generate the "number of bytes in
1820  *   the final mask". Again, that could be replaced with a
1821  *   efficient population count instruction or similar.
1822  */
1823 #ifdef CONFIG_DCACHE_WORD_ACCESS
1824
1825 #include <asm/word-at-a-time.h>
1826
1827 #ifdef HASH_MIX
1828
1829 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1830
1831 #elif defined(CONFIG_64BIT)
1832 /*
1833  * Register pressure in the mixing function is an issue, particularly
1834  * on 32-bit x86, but almost any function requires one state value and
1835  * one temporary.  Instead, use a function designed for two state values
1836  * and no temporaries.
1837  *
1838  * This function cannot create a collision in only two iterations, so
1839  * we have two iterations to achieve avalanche.  In those two iterations,
1840  * we have six layers of mixing, which is enough to spread one bit's
1841  * influence out to 2^6 = 64 state bits.
1842  *
1843  * Rotate constants are scored by considering either 64 one-bit input
1844  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1845  * probability of that delta causing a change to each of the 128 output
1846  * bits, using a sample of random initial states.
1847  *
1848  * The Shannon entropy of the computed probabilities is then summed
1849  * to produce a score.  Ideally, any input change has a 50% chance of
1850  * toggling any given output bit.
1851  *
1852  * Mixing scores (in bits) for (12,45):
1853  * Input delta: 1-bit      2-bit
1854  * 1 round:     713.3    42542.6
1855  * 2 rounds:   2753.7   140389.8
1856  * 3 rounds:   5954.1   233458.2
1857  * 4 rounds:   7862.6   256672.2
1858  * Perfect:    8192     258048
1859  *            (64*128) (64*63/2 * 128)
1860  */
1861 #define HASH_MIX(x, y, a)       \
1862         (       x ^= (a),       \
1863         y ^= x, x = rol64(x,12),\
1864         x += y, y = rol64(y,45),\
1865         y *= 9                  )
1866
1867 /*
1868  * Fold two longs into one 32-bit hash value.  This must be fast, but
1869  * latency isn't quite as critical, as there is a fair bit of additional
1870  * work done before the hash value is used.
1871  */
1872 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1873 {
1874         y ^= x * GOLDEN_RATIO_64;
1875         y *= GOLDEN_RATIO_64;
1876         return y >> 32;
1877 }
1878
1879 #else   /* 32-bit case */
1880
1881 /*
1882  * Mixing scores (in bits) for (7,20):
1883  * Input delta: 1-bit      2-bit
1884  * 1 round:     330.3     9201.6
1885  * 2 rounds:   1246.4    25475.4
1886  * 3 rounds:   1907.1    31295.1
1887  * 4 rounds:   2042.3    31718.6
1888  * Perfect:    2048      31744
1889  *            (32*64)   (32*31/2 * 64)
1890  */
1891 #define HASH_MIX(x, y, a)       \
1892         (       x ^= (a),       \
1893         y ^= x, x = rol32(x, 7),\
1894         x += y, y = rol32(y,20),\
1895         y *= 9                  )
1896
1897 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1898 {
1899         /* Use arch-optimized multiply if one exists */
1900         return __hash_32(y ^ __hash_32(x));
1901 }
1902
1903 #endif
1904
1905 /*
1906  * Return the hash of a string of known length.  This is carfully
1907  * designed to match hash_name(), which is the more critical function.
1908  * In particular, we must end by hashing a final word containing 0..7
1909  * payload bytes, to match the way that hash_name() iterates until it
1910  * finds the delimiter after the name.
1911  */
1912 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1913 {
1914         unsigned long a, x = 0, y = (unsigned long)salt;
1915
1916         for (;;) {
1917                 if (!len)
1918                         goto done;
1919                 a = load_unaligned_zeropad(name);
1920                 if (len < sizeof(unsigned long))
1921                         break;
1922                 HASH_MIX(x, y, a);
1923                 name += sizeof(unsigned long);
1924                 len -= sizeof(unsigned long);
1925         }
1926         x ^= a & bytemask_from_count(len);
1927 done:
1928         return fold_hash(x, y);
1929 }
1930 EXPORT_SYMBOL(full_name_hash);
1931
1932 /* Return the "hash_len" (hash and length) of a null-terminated string */
1933 u64 hashlen_string(const void *salt, const char *name)
1934 {
1935         unsigned long a = 0, x = 0, y = (unsigned long)salt;
1936         unsigned long adata, mask, len;
1937         const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1938
1939         len = 0;
1940         goto inside;
1941
1942         do {
1943                 HASH_MIX(x, y, a);
1944                 len += sizeof(unsigned long);
1945 inside:
1946                 a = load_unaligned_zeropad(name+len);
1947         } while (!has_zero(a, &adata, &constants));
1948
1949         adata = prep_zero_mask(a, adata, &constants);
1950         mask = create_zero_mask(adata);
1951         x ^= a & zero_bytemask(mask);
1952
1953         return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1954 }
1955 EXPORT_SYMBOL(hashlen_string);
1956
1957 /*
1958  * Calculate the length and hash of the path component, and
1959  * return the "hash_len" as the result.
1960  */
1961 static inline u64 hash_name(const void *salt, const char *name)
1962 {
1963         unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
1964         unsigned long adata, bdata, mask, len;
1965         const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1966
1967         len = 0;
1968         goto inside;
1969
1970         do {
1971                 HASH_MIX(x, y, a);
1972                 len += sizeof(unsigned long);
1973 inside:
1974                 a = load_unaligned_zeropad(name+len);
1975                 b = a ^ REPEAT_BYTE('/');
1976         } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1977
1978         adata = prep_zero_mask(a, adata, &constants);
1979         bdata = prep_zero_mask(b, bdata, &constants);
1980         mask = create_zero_mask(adata | bdata);
1981         x ^= a & zero_bytemask(mask);
1982
1983         return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1984 }
1985
1986 #else   /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
1987
1988 /* Return the hash of a string of known length */
1989 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1990 {
1991         unsigned long hash = init_name_hash(salt);
1992         while (len--)
1993                 hash = partial_name_hash((unsigned char)*name++, hash);
1994         return end_name_hash(hash);
1995 }
1996 EXPORT_SYMBOL(full_name_hash);
1997
1998 /* Return the "hash_len" (hash and length) of a null-terminated string */
1999 u64 hashlen_string(const void *salt, const char *name)
2000 {
2001         unsigned long hash = init_name_hash(salt);
2002         unsigned long len = 0, c;
2003
2004         c = (unsigned char)*name;
2005         while (c) {
2006                 len++;
2007                 hash = partial_name_hash(c, hash);
2008                 c = (unsigned char)name[len];
2009         }
2010         return hashlen_create(end_name_hash(hash), len);
2011 }
2012 EXPORT_SYMBOL(hashlen_string);
2013
2014 /*
2015  * We know there's a real path component here of at least
2016  * one character.
2017  */
2018 static inline u64 hash_name(const void *salt, const char *name)
2019 {
2020         unsigned long hash = init_name_hash(salt);
2021         unsigned long len = 0, c;
2022
2023         c = (unsigned char)*name;
2024         do {
2025                 len++;
2026                 hash = partial_name_hash(c, hash);
2027                 c = (unsigned char)name[len];
2028         } while (c && c != '/');
2029         return hashlen_create(end_name_hash(hash), len);
2030 }
2031
2032 #endif
2033
2034 /*
2035  * Name resolution.
2036  * This is the basic name resolution function, turning a pathname into
2037  * the final dentry. We expect 'base' to be positive and a directory.
2038  *
2039  * Returns 0 and nd will have valid dentry and mnt on success.
2040  * Returns error and drops reference to input namei data on failure.
2041  */
2042 static int link_path_walk(const char *name, struct nameidata *nd)
2043 {
2044         int err;
2045
2046         while (*name=='/')
2047                 name++;
2048         if (!*name)
2049                 return 0;
2050
2051         /* At this point we know we have a real path component. */
2052         for(;;) {
2053                 u64 hash_len;
2054                 int type;
2055
2056                 err = may_lookup(nd);
2057                 if (err)
2058                         return err;
2059
2060                 hash_len = hash_name(nd->path.dentry, name);
2061
2062                 type = LAST_NORM;
2063                 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2064                         case 2:
2065                                 if (name[1] == '.') {
2066                                         type = LAST_DOTDOT;
2067                                         nd->flags |= LOOKUP_JUMPED;
2068                                 }
2069                                 break;
2070                         case 1:
2071                                 type = LAST_DOT;
2072                 }
2073                 if (likely(type == LAST_NORM)) {
2074                         struct dentry *parent = nd->path.dentry;
2075                         nd->flags &= ~LOOKUP_JUMPED;
2076                         if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2077                                 struct qstr this = { { .hash_len = hash_len }, .name = name };
2078                                 err = parent->d_op->d_hash(parent, &this);
2079                                 if (err < 0)
2080                                         return err;
2081                                 hash_len = this.hash_len;
2082                                 name = this.name;
2083                         }
2084                 }
2085
2086                 nd->last.hash_len = hash_len;
2087                 nd->last.name = name;
2088                 nd->last_type = type;
2089
2090                 name += hashlen_len(hash_len);
2091                 if (!*name)
2092                         goto OK;
2093                 /*
2094                  * If it wasn't NUL, we know it was '/'. Skip that
2095                  * slash, and continue until no more slashes.
2096                  */
2097                 do {
2098                         name++;
2099                 } while (unlikely(*name == '/'));
2100                 if (unlikely(!*name)) {
2101 OK:
2102                         /* pathname body, done */
2103                         if (!nd->depth)
2104                                 return 0;
2105                         name = nd->stack[nd->depth - 1].name;
2106                         /* trailing symlink, done */
2107                         if (!name)
2108                                 return 0;
2109                         /* last component of nested symlink */
2110                         err = walk_component(nd, WALK_FOLLOW);
2111                 } else {
2112                         /* not the last component */
2113                         err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2114                 }
2115                 if (err < 0)
2116                         return err;
2117
2118                 if (err) {
2119                         const char *s = get_link(nd);
2120
2121                         if (IS_ERR(s))
2122                                 return PTR_ERR(s);
2123                         err = 0;
2124                         if (unlikely(!s)) {
2125                                 /* jumped */
2126                                 put_link(nd);
2127                         } else {
2128                                 nd->stack[nd->depth - 1].name = name;
2129                                 name = s;
2130                                 continue;
2131                         }
2132                 }
2133                 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2134                         if (nd->flags & LOOKUP_RCU) {
2135                                 if (unlazy_walk(nd))
2136                                         return -ECHILD;
2137                         }
2138                         return -ENOTDIR;
2139                 }
2140         }
2141 }
2142
2143 static const char *path_init(struct nameidata *nd, unsigned flags)
2144 {
2145         int retval = 0;
2146         const char *s = nd->name->name;
2147
2148         if (!*s)
2149                 flags &= ~LOOKUP_RCU;
2150
2151         nd->last_type = LAST_ROOT; /* if there are only slashes... */
2152         nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2153         nd->depth = 0;
2154         if (flags & LOOKUP_ROOT) {
2155                 struct dentry *root = nd->root.dentry;
2156                 struct inode *inode = root->d_inode;
2157                 if (*s) {
2158                         if (!d_can_lookup(root))
2159                                 return ERR_PTR(-ENOTDIR);
2160                         retval = inode_permission(inode, MAY_EXEC);
2161                         if (retval)
2162                                 return ERR_PTR(retval);
2163                 }
2164                 nd->path = nd->root;
2165                 nd->inode = inode;
2166                 if (flags & LOOKUP_RCU) {
2167                         rcu_read_lock();
2168                         nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2169                         nd->root_seq = nd->seq;
2170                         nd->m_seq = read_seqbegin(&mount_lock);
2171                 } else {
2172                         path_get(&nd->path);
2173                 }
2174                 return s;
2175         }
2176
2177         nd->root.mnt = NULL;
2178         nd->path.mnt = NULL;
2179         nd->path.dentry = NULL;
2180
2181         nd->m_seq = read_seqbegin(&mount_lock);
2182         if (*s == '/') {
2183                 if (flags & LOOKUP_RCU)
2184                         rcu_read_lock();
2185                 set_root(nd);
2186                 if (likely(!nd_jump_root(nd)))
2187                         return s;
2188                 nd->root.mnt = NULL;
2189                 rcu_read_unlock();
2190                 return ERR_PTR(-ECHILD);
2191         } else if (nd->dfd == AT_FDCWD) {
2192                 if (flags & LOOKUP_RCU) {
2193                         struct fs_struct *fs = current->fs;
2194                         unsigned seq;
2195
2196                         rcu_read_lock();
2197
2198                         do {
2199                                 seq = read_seqcount_begin(&fs->seq);
2200                                 nd->path = fs->pwd;
2201                                 nd->inode = nd->path.dentry->d_inode;
2202                                 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2203                         } while (read_seqcount_retry(&fs->seq, seq));
2204                 } else {
2205                         get_fs_pwd(current->fs, &nd->path);
2206                         nd->inode = nd->path.dentry->d_inode;
2207                 }
2208                 return s;
2209         } else {
2210                 /* Caller must check execute permissions on the starting path component */
2211                 struct fd f = fdget_raw(nd->dfd);
2212                 struct dentry *dentry;
2213
2214                 if (!f.file)
2215                         return ERR_PTR(-EBADF);
2216
2217                 dentry = f.file->f_path.dentry;
2218
2219                 if (*s) {
2220                         if (!d_can_lookup(dentry)) {
2221                                 fdput(f);
2222                                 return ERR_PTR(-ENOTDIR);
2223                         }
2224                 }
2225
2226                 nd->path = f.file->f_path;
2227                 if (flags & LOOKUP_RCU) {
2228                         rcu_read_lock();
2229                         nd->inode = nd->path.dentry->d_inode;
2230                         nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2231                 } else {
2232                         path_get(&nd->path);
2233                         nd->inode = nd->path.dentry->d_inode;
2234                 }
2235                 fdput(f);
2236                 return s;
2237         }
2238 }
2239
2240 static const char *trailing_symlink(struct nameidata *nd)
2241 {
2242         const char *s;
2243         int error = may_follow_link(nd);
2244         if (unlikely(error))
2245                 return ERR_PTR(error);
2246         nd->flags |= LOOKUP_PARENT;
2247         nd->stack[0].name = NULL;
2248         s = get_link(nd);
2249         return s ? s : "";
2250 }
2251
2252 static inline int lookup_last(struct nameidata *nd)
2253 {
2254         if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2255                 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2256
2257         nd->flags &= ~LOOKUP_PARENT;
2258         return walk_component(nd, 0);
2259 }
2260
2261 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2262 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2263 {
2264         const char *s = path_init(nd, flags);
2265         int err;
2266
2267         if (IS_ERR(s))
2268                 return PTR_ERR(s);
2269         while (!(err = link_path_walk(s, nd))
2270                 && ((err = lookup_last(nd)) > 0)) {
2271                 s = trailing_symlink(nd);
2272                 if (IS_ERR(s)) {
2273                         err = PTR_ERR(s);
2274                         break;
2275                 }
2276         }
2277         if (!err)
2278                 err = complete_walk(nd);
2279
2280         if (!err && nd->flags & LOOKUP_DIRECTORY)
2281                 if (!d_can_lookup(nd->path.dentry))
2282                         err = -ENOTDIR;
2283         if (!err) {
2284                 *path = nd->path;
2285                 nd->path.mnt = NULL;
2286                 nd->path.dentry = NULL;
2287         }
2288         terminate_walk(nd);
2289         return err;
2290 }
2291
2292 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2293                            struct path *path, struct path *root)
2294 {
2295         int retval;
2296         struct nameidata nd;
2297         if (IS_ERR(name))
2298                 return PTR_ERR(name);
2299         if (unlikely(root)) {
2300                 nd.root = *root;
2301                 flags |= LOOKUP_ROOT;
2302         }
2303         set_nameidata(&nd, dfd, name);
2304         retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2305         if (unlikely(retval == -ECHILD))
2306                 retval = path_lookupat(&nd, flags, path);
2307         if (unlikely(retval == -ESTALE))
2308                 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2309
2310         if (likely(!retval))
2311                 audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2312         restore_nameidata();
2313         putname(name);
2314         return retval;
2315 }
2316
2317 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2318 static int path_parentat(struct nameidata *nd, unsigned flags,
2319                                 struct path *parent)
2320 {
2321         const char *s = path_init(nd, flags);
2322         int err;
2323         if (IS_ERR(s))
2324                 return PTR_ERR(s);
2325         err = link_path_walk(s, nd);
2326         if (!err)
2327                 err = complete_walk(nd);
2328         if (!err) {
2329                 *parent = nd->path;
2330                 nd->path.mnt = NULL;
2331                 nd->path.dentry = NULL;
2332         }
2333         terminate_walk(nd);
2334         return err;
2335 }
2336
2337 static struct filename *filename_parentat(int dfd, struct filename *name,
2338                                 unsigned int flags, struct path *parent,
2339                                 struct qstr *last, int *type)
2340 {
2341         int retval;
2342         struct nameidata nd;
2343
2344         if (IS_ERR(name))
2345                 return name;
2346         set_nameidata(&nd, dfd, name);
2347         retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2348         if (unlikely(retval == -ECHILD))
2349                 retval = path_parentat(&nd, flags, parent);
2350         if (unlikely(retval == -ESTALE))
2351                 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2352         if (likely(!retval)) {
2353                 *last = nd.last;
2354                 *type = nd.last_type;
2355                 audit_inode(name, parent->dentry, LOOKUP_PARENT);
2356         } else {
2357                 putname(name);
2358                 name = ERR_PTR(retval);
2359         }
2360         restore_nameidata();
2361         return name;
2362 }
2363
2364 /* does lookup, returns the object with parent locked */
2365 struct dentry *kern_path_locked(const char *name, struct path *path)
2366 {
2367         struct filename *filename;
2368         struct dentry *d;
2369         struct qstr last;
2370         int type;
2371
2372         filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2373                                     &last, &type);
2374         if (IS_ERR(filename))
2375                 return ERR_CAST(filename);
2376         if (unlikely(type != LAST_NORM)) {
2377                 path_put(path);
2378                 putname(filename);
2379                 return ERR_PTR(-EINVAL);
2380         }
2381         inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2382         d = __lookup_hash(&last, path->dentry, 0);
2383         if (IS_ERR(d)) {
2384                 inode_unlock(path->dentry->d_inode);
2385                 path_put(path);
2386         }
2387         putname(filename);
2388         return d;
2389 }
2390
2391 int kern_path(const char *name, unsigned int flags, struct path *path)
2392 {
2393         return filename_lookup(AT_FDCWD, getname_kernel(name),
2394                                flags, path, NULL);
2395 }
2396 EXPORT_SYMBOL(kern_path);
2397
2398 /**
2399  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2400  * @dentry:  pointer to dentry of the base directory
2401  * @mnt: pointer to vfs mount of the base directory
2402  * @name: pointer to file name
2403  * @flags: lookup flags
2404  * @path: pointer to struct path to fill
2405  */
2406 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2407                     const char *name, unsigned int flags,
2408                     struct path *path)
2409 {
2410         struct path root = {.mnt = mnt, .dentry = dentry};
2411         /* the first argument of filename_lookup() is ignored with root */
2412         return filename_lookup(AT_FDCWD, getname_kernel(name),
2413                                flags , path, &root);
2414 }
2415 EXPORT_SYMBOL(vfs_path_lookup);
2416
2417 /**
2418  * lookup_one_len - filesystem helper to lookup single pathname component
2419  * @name:       pathname component to lookup
2420  * @base:       base directory to lookup from
2421  * @len:        maximum length @len should be interpreted to
2422  *
2423  * Note that this routine is purely a helper for filesystem usage and should
2424  * not be called by generic code.
2425  *
2426  * The caller must hold base->i_mutex.
2427  */
2428 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2429 {
2430         struct qstr this;
2431         unsigned int c;
2432         int err;
2433
2434         WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2435
2436         this.name = name;
2437         this.len = len;
2438         this.hash = full_name_hash(base, name, len);
2439         if (!len)
2440                 return ERR_PTR(-EACCES);
2441
2442         if (unlikely(name[0] == '.')) {
2443                 if (len < 2 || (len == 2 && name[1] == '.'))
2444                         return ERR_PTR(-EACCES);
2445         }
2446
2447         while (len--) {
2448                 c = *(const unsigned char *)name++;
2449                 if (c == '/' || c == '\0')
2450                         return ERR_PTR(-EACCES);
2451         }
2452         /*
2453          * See if the low-level filesystem might want
2454          * to use its own hash..
2455          */
2456         if (base->d_flags & DCACHE_OP_HASH) {
2457                 int err = base->d_op->d_hash(base, &this);
2458                 if (err < 0)
2459                         return ERR_PTR(err);
2460         }
2461
2462         err = inode_permission(base->d_inode, MAY_EXEC);
2463         if (err)
2464                 return ERR_PTR(err);
2465
2466         return __lookup_hash(&this, base, 0);
2467 }
2468 EXPORT_SYMBOL(lookup_one_len);
2469
2470 /**
2471  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2472  * @name:       pathname component to lookup
2473  * @base:       base directory to lookup from
2474  * @len:        maximum length @len should be interpreted to
2475  *
2476  * Note that this routine is purely a helper for filesystem usage and should
2477  * not be called by generic code.
2478  *
2479  * Unlike lookup_one_len, it should be called without the parent
2480  * i_mutex held, and will take the i_mutex itself if necessary.
2481  */
2482 struct dentry *lookup_one_len_unlocked(const char *name,
2483                                        struct dentry *base, int len)
2484 {
2485         struct qstr this;
2486         unsigned int c;
2487         int err;
2488         struct dentry *ret;
2489
2490         this.name = name;
2491         this.len = len;
2492         this.hash = full_name_hash(base, name, len);
2493         if (!len)
2494                 return ERR_PTR(-EACCES);
2495
2496         if (unlikely(name[0] == '.')) {
2497                 if (len < 2 || (len == 2 && name[1] == '.'))
2498                         return ERR_PTR(-EACCES);
2499         }
2500
2501         while (len--) {
2502                 c = *(const unsigned char *)name++;
2503                 if (c == '/' || c == '\0')
2504                         return ERR_PTR(-EACCES);
2505         }
2506         /*
2507          * See if the low-level filesystem might want
2508          * to use its own hash..
2509          */
2510         if (base->d_flags & DCACHE_OP_HASH) {
2511                 int err = base->d_op->d_hash(base, &this);
2512                 if (err < 0)
2513                         return ERR_PTR(err);
2514         }
2515
2516         err = inode_permission(base->d_inode, MAY_EXEC);
2517         if (err)
2518                 return ERR_PTR(err);
2519
2520         ret = lookup_dcache(&this, base, 0);
2521         if (!ret)
2522                 ret = lookup_slow(&this, base, 0);
2523         return ret;
2524 }
2525 EXPORT_SYMBOL(lookup_one_len_unlocked);
2526
2527 #ifdef CONFIG_UNIX98_PTYS
2528 int path_pts(struct path *path)
2529 {
2530         /* Find something mounted on "pts" in the same directory as
2531          * the input path.
2532          */
2533         struct dentry *child, *parent;
2534         struct qstr this;
2535         int ret;
2536
2537         ret = path_parent_directory(path);
2538         if (ret)
2539                 return ret;
2540
2541         parent = path->dentry;
2542         this.name = "pts";
2543         this.len = 3;
2544         child = d_hash_and_lookup(parent, &this);
2545         if (!child)
2546                 return -ENOENT;
2547
2548         path->dentry = child;
2549         dput(parent);
2550         follow_mount(path);
2551         return 0;
2552 }
2553 #endif
2554
2555 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2556                  struct path *path, int *empty)
2557 {
2558         return filename_lookup(dfd, getname_flags(name, flags, empty),
2559                                flags, path, NULL);
2560 }
2561 EXPORT_SYMBOL(user_path_at_empty);
2562
2563 /**
2564  * mountpoint_last - look up last component for umount
2565  * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2566  *
2567  * This is a special lookup_last function just for umount. In this case, we
2568  * need to resolve the path without doing any revalidation.
2569  *
2570  * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2571  * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2572  * in almost all cases, this lookup will be served out of the dcache. The only
2573  * cases where it won't are if nd->last refers to a symlink or the path is
2574  * bogus and it doesn't exist.
2575  *
2576  * Returns:
2577  * -error: if there was an error during lookup. This includes -ENOENT if the
2578  *         lookup found a negative dentry.
2579  *
2580  * 0:      if we successfully resolved nd->last and found it to not to be a
2581  *         symlink that needs to be followed.
2582  *
2583  * 1:      if we successfully resolved nd->last and found it to be a symlink
2584  *         that needs to be followed.
2585  */
2586 static int
2587 mountpoint_last(struct nameidata *nd)
2588 {
2589         int error = 0;
2590         struct dentry *dir = nd->path.dentry;
2591         struct path path;
2592
2593         /* If we're in rcuwalk, drop out of it to handle last component */
2594         if (nd->flags & LOOKUP_RCU) {
2595                 if (unlazy_walk(nd))
2596                         return -ECHILD;
2597         }
2598
2599         nd->flags &= ~LOOKUP_PARENT;
2600
2601         if (unlikely(nd->last_type != LAST_NORM)) {
2602                 error = handle_dots(nd, nd->last_type);
2603                 if (error)
2604                         return error;
2605                 path.dentry = dget(nd->path.dentry);
2606         } else {
2607                 path.dentry = d_lookup(dir, &nd->last);
2608                 if (!path.dentry) {
2609                         /*
2610                          * No cached dentry. Mounted dentries are pinned in the
2611                          * cache, so that means that this dentry is probably
2612                          * a symlink or the path doesn't actually point
2613                          * to a mounted dentry.
2614                          */
2615                         path.dentry = lookup_slow(&nd->last, dir,
2616                                              nd->flags | LOOKUP_NO_REVAL);
2617                         if (IS_ERR(path.dentry))
2618                                 return PTR_ERR(path.dentry);
2619                 }
2620         }
2621         if (d_is_negative(path.dentry)) {
2622                 dput(path.dentry);
2623                 return -ENOENT;
2624         }
2625         path.mnt = nd->path.mnt;
2626         return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0);
2627 }
2628
2629 /**
2630  * path_mountpoint - look up a path to be umounted
2631  * @nd:         lookup context
2632  * @flags:      lookup flags
2633  * @path:       pointer to container for result
2634  *
2635  * Look up the given name, but don't attempt to revalidate the last component.
2636  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2637  */
2638 static int
2639 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2640 {
2641         const char *s = path_init(nd, flags);
2642         int err;
2643         if (IS_ERR(s))
2644                 return PTR_ERR(s);
2645         while (!(err = link_path_walk(s, nd)) &&
2646                 (err = mountpoint_last(nd)) > 0) {
2647                 s = trailing_symlink(nd);
2648                 if (IS_ERR(s)) {
2649                         err = PTR_ERR(s);
2650                         break;
2651                 }
2652         }
2653         if (!err) {
2654                 *path = nd->path;
2655                 nd->path.mnt = NULL;
2656                 nd->path.dentry = NULL;
2657                 follow_mount(path);
2658         }
2659         terminate_walk(nd);
2660         return err;
2661 }
2662
2663 static int
2664 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2665                         unsigned int flags)
2666 {
2667         struct nameidata nd;
2668         int error;
2669         if (IS_ERR(name))
2670                 return PTR_ERR(name);
2671         set_nameidata(&nd, dfd, name);
2672         error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2673         if (unlikely(error == -ECHILD))
2674                 error = path_mountpoint(&nd, flags, path);
2675         if (unlikely(error == -ESTALE))
2676                 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2677         if (likely(!error))
2678                 audit_inode(name, path->dentry, 0);
2679         restore_nameidata();
2680         putname(name);
2681         return error;
2682 }
2683
2684 /**
2685  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2686  * @dfd:        directory file descriptor
2687  * @name:       pathname from userland
2688  * @flags:      lookup flags
2689  * @path:       pointer to container to hold result
2690  *
2691  * A umount is a special case for path walking. We're not actually interested
2692  * in the inode in this situation, and ESTALE errors can be a problem. We
2693  * simply want track down the dentry and vfsmount attached at the mountpoint
2694  * and avoid revalidating the last component.
2695  *
2696  * Returns 0 and populates "path" on success.
2697  */
2698 int
2699 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2700                         struct path *path)
2701 {
2702         return filename_mountpoint(dfd, getname(name), path, flags);
2703 }
2704
2705 int
2706 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2707                         unsigned int flags)
2708 {
2709         return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2710 }
2711 EXPORT_SYMBOL(kern_path_mountpoint);
2712
2713 int __check_sticky(struct inode *dir, struct inode *inode)
2714 {
2715         kuid_t fsuid = current_fsuid();
2716
2717         if (uid_eq(inode->i_uid, fsuid))
2718                 return 0;
2719         if (uid_eq(dir->i_uid, fsuid))
2720                 return 0;
2721         return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2722 }
2723 EXPORT_SYMBOL(__check_sticky);
2724
2725 /*
2726  *      Check whether we can remove a link victim from directory dir, check
2727  *  whether the type of victim is right.
2728  *  1. We can't do it if dir is read-only (done in permission())
2729  *  2. We should have write and exec permissions on dir
2730  *  3. We can't remove anything from append-only dir
2731  *  4. We can't do anything with immutable dir (done in permission())
2732  *  5. If the sticky bit on dir is set we should either
2733  *      a. be owner of dir, or
2734  *      b. be owner of victim, or
2735  *      c. have CAP_FOWNER capability
2736  *  6. If the victim is append-only or immutable we can't do antyhing with
2737  *     links pointing to it.
2738  *  7. If the victim has an unknown uid or gid we can't change the inode.
2739  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2740  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2741  * 10. We can't remove a root or mountpoint.
2742  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2743  *     nfs_async_unlink().
2744  */
2745 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2746 {
2747         struct inode *inode = d_backing_inode(victim);
2748         int error;
2749
2750         if (d_is_negative(victim))
2751                 return -ENOENT;
2752         BUG_ON(!inode);
2753
2754         BUG_ON(victim->d_parent->d_inode != dir);
2755         audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2756
2757         error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2758         if (error)
2759                 return error;
2760         if (IS_APPEND(dir))
2761                 return -EPERM;
2762
2763         if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2764             IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2765                 return -EPERM;
2766         if (isdir) {
2767                 if (!d_is_dir(victim))
2768                         return -ENOTDIR;
2769                 if (IS_ROOT(victim))
2770                         return -EBUSY;
2771         } else if (d_is_dir(victim))
2772                 return -EISDIR;
2773         if (IS_DEADDIR(dir))
2774                 return -ENOENT;
2775         if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2776                 return -EBUSY;
2777         return 0;
2778 }
2779
2780 /*      Check whether we can create an object with dentry child in directory
2781  *  dir.
2782  *  1. We can't do it if child already exists (open has special treatment for
2783  *     this case, but since we are inlined it's OK)
2784  *  2. We can't do it if dir is read-only (done in permission())
2785  *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2786  *  4. We should have write and exec permissions on dir
2787  *  5. We can't do it if dir is immutable (done in permission())
2788  */
2789 static inline int may_create(struct inode *dir, struct dentry *child)
2790 {
2791         struct user_namespace *s_user_ns;
2792         audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2793         if (child->d_inode)
2794                 return -EEXIST;
2795         if (IS_DEADDIR(dir))
2796                 return -ENOENT;
2797         s_user_ns = dir->i_sb->s_user_ns;
2798         if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2799             !kgid_has_mapping(s_user_ns, current_fsgid()))
2800                 return -EOVERFLOW;
2801         return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2802 }
2803
2804 /*
2805  * p1 and p2 should be directories on the same fs.
2806  */
2807 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2808 {
2809         struct dentry *p;
2810
2811         if (p1 == p2) {
2812                 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2813                 return NULL;
2814         }
2815
2816         mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2817
2818         p = d_ancestor(p2, p1);
2819         if (p) {
2820                 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2821                 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2822                 return p;
2823         }
2824
2825         p = d_ancestor(p1, p2);
2826         if (p) {
2827                 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2828                 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2829                 return p;
2830         }
2831
2832         inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2833         inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2834         return NULL;
2835 }
2836 EXPORT_SYMBOL(lock_rename);
2837
2838 void unlock_rename(struct dentry *p1, struct dentry *p2)
2839 {
2840         inode_unlock(p1->d_inode);
2841         if (p1 != p2) {
2842                 inode_unlock(p2->d_inode);
2843                 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2844         }
2845 }
2846 EXPORT_SYMBOL(unlock_rename);
2847
2848 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2849                 bool want_excl)
2850 {
2851         int error = may_create(dir, dentry);
2852         if (error)
2853                 return error;
2854
2855         if (!dir->i_op->create)
2856                 return -EACCES; /* shouldn't it be ENOSYS? */
2857         mode &= S_IALLUGO;
2858         mode |= S_IFREG;
2859         error = security_inode_create(dir, dentry, mode);
2860         if (error)
2861                 return error;
2862         error = dir->i_op->create(dir, dentry, mode, want_excl);
2863         if (!error)
2864                 fsnotify_create(dir, dentry);
2865         return error;
2866 }
2867 EXPORT_SYMBOL(vfs_create);
2868
2869 bool may_open_dev(const struct path *path)
2870 {
2871         return !(path->mnt->mnt_flags & MNT_NODEV) &&
2872                 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2873 }
2874
2875 static int may_open(const struct path *path, int acc_mode, int flag)
2876 {
2877         struct dentry *dentry = path->dentry;
2878         struct inode *inode = dentry->d_inode;
2879         int error;
2880
2881         if (!inode)
2882                 return -ENOENT;
2883
2884         switch (inode->i_mode & S_IFMT) {
2885         case S_IFLNK:
2886                 return -ELOOP;
2887         case S_IFDIR:
2888                 if (acc_mode & MAY_WRITE)
2889                         return -EISDIR;
2890                 break;
2891         case S_IFBLK:
2892         case S_IFCHR:
2893                 if (!may_open_dev(path))
2894                         return -EACCES;
2895                 /*FALLTHRU*/
2896         case S_IFIFO:
2897         case S_IFSOCK:
2898                 flag &= ~O_TRUNC;
2899                 break;
2900         }
2901
2902         error = inode_permission(inode, MAY_OPEN | acc_mode);
2903         if (error)
2904                 return error;
2905
2906         /*
2907          * An append-only file must be opened in append mode for writing.
2908          */
2909         if (IS_APPEND(inode)) {
2910                 if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2911                         return -EPERM;
2912                 if (flag & O_TRUNC)
2913                         return -EPERM;
2914         }
2915
2916         /* O_NOATIME can only be set by the owner or superuser */
2917         if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2918                 return -EPERM;
2919
2920         return 0;
2921 }
2922
2923 static int handle_truncate(struct file *filp)
2924 {
2925         const struct path *path = &filp->f_path;
2926         struct inode *inode = path->dentry->d_inode;
2927         int error = get_write_access(inode);
2928         if (error)
2929                 return error;
2930         /*
2931          * Refuse to truncate files with mandatory locks held on them.
2932          */
2933         error = locks_verify_locked(filp);
2934         if (!error)
2935                 error = security_path_truncate(path);
2936         if (!error) {
2937                 error = do_truncate(path->dentry, 0,
2938                                     ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2939                                     filp);
2940         }
2941         put_write_access(inode);
2942         return error;
2943 }
2944
2945 static inline int open_to_namei_flags(int flag)
2946 {
2947         if ((flag & O_ACCMODE) == 3)
2948                 flag--;
2949         return flag;
2950 }
2951
2952 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
2953 {
2954         struct user_namespace *s_user_ns;
2955         int error = security_path_mknod(dir, dentry, mode, 0);
2956         if (error)
2957                 return error;
2958
2959         s_user_ns = dir->dentry->d_sb->s_user_ns;
2960         if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2961             !kgid_has_mapping(s_user_ns, current_fsgid()))
2962                 return -EOVERFLOW;
2963
2964         error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2965         if (error)
2966                 return error;
2967
2968         return security_inode_create(dir->dentry->d_inode, dentry, mode);
2969 }
2970
2971 /*
2972  * Attempt to atomically look up, create and open a file from a negative
2973  * dentry.
2974  *
2975  * Returns 0 if successful.  The file will have been created and attached to
2976  * @file by the filesystem calling finish_open().
2977  *
2978  * Returns 1 if the file was looked up only or didn't need creating.  The
2979  * caller will need to perform the open themselves.  @path will have been
2980  * updated to point to the new dentry.  This may be negative.
2981  *
2982  * Returns an error code otherwise.
2983  */
2984 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2985                         struct path *path, struct file *file,
2986                         const struct open_flags *op,
2987                         int open_flag, umode_t mode,
2988                         int *opened)
2989 {
2990         struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2991         struct inode *dir =  nd->path.dentry->d_inode;
2992         int error;
2993
2994         if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */
2995                 open_flag &= ~O_TRUNC;
2996
2997         if (nd->flags & LOOKUP_DIRECTORY)
2998                 open_flag |= O_DIRECTORY;
2999
3000         file->f_path.dentry = DENTRY_NOT_SET;
3001         file->f_path.mnt = nd->path.mnt;
3002         error = dir->i_op->atomic_open(dir, dentry, file,
3003                                        open_to_namei_flags(open_flag),
3004                                        mode, opened);
3005         d_lookup_done(dentry);
3006         if (!error) {
3007                 /*
3008                  * We didn't have the inode before the open, so check open
3009                  * permission here.
3010                  */
3011                 int acc_mode = op->acc_mode;
3012                 if (*opened & FILE_CREATED) {
3013                         WARN_ON(!(open_flag & O_CREAT));
3014                         fsnotify_create(dir, dentry);
3015                         acc_mode = 0;
3016                 }
3017                 error = may_open(&file->f_path, acc_mode, open_flag);
3018                 if (WARN_ON(error > 0))
3019                         error = -EINVAL;
3020         } else if (error > 0) {
3021                 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3022                         error = -EIO;
3023                 } else {
3024                         if (file->f_path.dentry) {
3025                                 dput(dentry);
3026                                 dentry = file->f_path.dentry;
3027                         }
3028                         if (*opened & FILE_CREATED)
3029                                 fsnotify_create(dir, dentry);
3030                         if (unlikely(d_is_negative(dentry))) {
3031                                 error = -ENOENT;
3032                         } else {
3033                                 path->dentry = dentry;
3034                                 path->mnt = nd->path.mnt;
3035                                 return 1;
3036                         }
3037                 }
3038         }
3039         dput(dentry);
3040         return error;
3041 }
3042
3043 /*
3044  * Look up and maybe create and open the last component.
3045  *
3046  * Must be called with i_mutex held on parent.
3047  *
3048  * Returns 0 if the file was successfully atomically created (if necessary) and
3049  * opened.  In this case the file will be returned attached to @file.
3050  *
3051  * Returns 1 if the file was not completely opened at this time, though lookups
3052  * and creations will have been performed and the dentry returned in @path will
3053  * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
3054  * specified then a negative dentry may be returned.
3055  *
3056  * An error code is returned otherwise.
3057  *
3058  * FILE_CREATE will be set in @*opened if the dentry was created and will be
3059  * cleared otherwise prior to returning.
3060  */
3061 static int lookup_open(struct nameidata *nd, struct path *path,
3062                         struct file *file,
3063                         const struct open_flags *op,
3064                         bool got_write, int *opened)
3065 {
3066         struct dentry *dir = nd->path.dentry;
3067         struct inode *dir_inode = dir->d_inode;
3068         int open_flag = op->open_flag;
3069         struct dentry *dentry;
3070         int error, create_error = 0;
3071         umode_t mode = op->mode;
3072         DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3073
3074         if (unlikely(IS_DEADDIR(dir_inode)))
3075                 return -ENOENT;
3076
3077         *opened &= ~FILE_CREATED;
3078         dentry = d_lookup(dir, &nd->last);
3079         for (;;) {
3080                 if (!dentry) {
3081                         dentry = d_alloc_parallel(dir, &nd->last, &wq);
3082                         if (IS_ERR(dentry))
3083                                 return PTR_ERR(dentry);
3084                 }
3085                 if (d_in_lookup(dentry))
3086                         break;
3087
3088                 error = d_revalidate(dentry, nd->flags);
3089                 if (likely(error > 0))
3090                         break;
3091                 if (error)
3092                         goto out_dput;
3093                 d_invalidate(dentry);
3094                 dput(dentry);
3095                 dentry = NULL;
3096         }
3097         if (dentry->d_inode) {
3098                 /* Cached positive dentry: will open in f_op->open */
3099                 goto out_no_open;
3100         }
3101
3102         /*
3103          * Checking write permission is tricky, bacuse we don't know if we are
3104          * going to actually need it: O_CREAT opens should work as long as the
3105          * file exists.  But checking existence breaks atomicity.  The trick is
3106          * to check access and if not granted clear O_CREAT from the flags.
3107          *
3108          * Another problem is returing the "right" error value (e.g. for an
3109          * O_EXCL open we want to return EEXIST not EROFS).
3110          */
3111         if (open_flag & O_CREAT) {
3112                 if (!IS_POSIXACL(dir->d_inode))
3113                         mode &= ~current_umask();
3114                 if (unlikely(!got_write)) {
3115                         create_error = -EROFS;
3116                         open_flag &= ~O_CREAT;
3117                         if (open_flag & (O_EXCL | O_TRUNC))
3118                                 goto no_open;
3119                         /* No side effects, safe to clear O_CREAT */
3120                 } else {
3121                         create_error = may_o_create(&nd->path, dentry, mode);
3122                         if (create_error) {
3123                                 open_flag &= ~O_CREAT;
3124                                 if (open_flag & O_EXCL)
3125                                         goto no_open;
3126                         }
3127                 }
3128         } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3129                    unlikely(!got_write)) {
3130                 /*
3131                  * No O_CREATE -> atomicity not a requirement -> fall
3132                  * back to lookup + open
3133                  */
3134                 goto no_open;
3135         }
3136
3137         if (dir_inode->i_op->atomic_open) {
3138                 error = atomic_open(nd, dentry, path, file, op, open_flag,
3139                                     mode, opened);
3140                 if (unlikely(error == -ENOENT) && create_error)
3141                         error = create_error;
3142                 return error;
3143         }
3144
3145 no_open:
3146         if (d_in_lookup(dentry)) {
3147                 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3148                                                              nd->flags);
3149                 d_lookup_done(dentry);
3150                 if (unlikely(res)) {
3151                         if (IS_ERR(res)) {
3152                                 error = PTR_ERR(res);
3153                                 goto out_dput;
3154                         }
3155                         dput(dentry);
3156                         dentry = res;
3157                 }
3158         }
3159
3160         /* Negative dentry, just create the file */
3161         if (!dentry->d_inode && (open_flag & O_CREAT)) {
3162                 *opened |= FILE_CREATED;
3163                 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3164                 if (!dir_inode->i_op->create) {
3165                         error = -EACCES;
3166                         goto out_dput;
3167                 }
3168                 error = dir_inode->i_op->create(dir_inode, dentry, mode,
3169                                                 open_flag & O_EXCL);
3170                 if (error)
3171                         goto out_dput;
3172                 fsnotify_create(dir_inode, dentry);
3173         }
3174         if (unlikely(create_error) && !dentry->d_inode) {
3175                 error = create_error;
3176                 goto out_dput;
3177         }
3178 out_no_open:
3179         path->dentry = dentry;
3180         path->mnt = nd->path.mnt;
3181         return 1;
3182
3183 out_dput:
3184         dput(dentry);
3185         return error;
3186 }
3187
3188 /*
3189  * Handle the last step of open()
3190  */
3191 static int do_last(struct nameidata *nd,
3192                    struct file *file, const struct open_flags *op,
3193                    int *opened)
3194 {
3195         struct dentry *dir = nd->path.dentry;
3196         int open_flag = op->open_flag;
3197         bool will_truncate = (open_flag & O_TRUNC) != 0;
3198         bool got_write = false;
3199         int acc_mode = op->acc_mode;
3200         unsigned seq;
3201         struct inode *inode;
3202         struct path path;
3203         int error;
3204
3205         nd->flags &= ~LOOKUP_PARENT;
3206         nd->flags |= op->intent;
3207
3208         if (nd->last_type != LAST_NORM) {
3209                 error = handle_dots(nd, nd->last_type);
3210                 if (unlikely(error))
3211                         return error;
3212                 goto finish_open;
3213         }
3214
3215         if (!(open_flag & O_CREAT)) {
3216                 if (nd->last.name[nd->last.len])
3217                         nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3218                 /* we _can_ be in RCU mode here */
3219                 error = lookup_fast(nd, &path, &inode, &seq);
3220                 if (likely(error > 0))
3221                         goto finish_lookup;
3222
3223                 if (error < 0)
3224                         return error;
3225
3226                 BUG_ON(nd->inode != dir->d_inode);
3227                 BUG_ON(nd->flags & LOOKUP_RCU);
3228         } else {
3229                 /* create side of things */
3230                 /*
3231                  * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3232                  * has been cleared when we got to the last component we are
3233                  * about to look up
3234                  */
3235                 error = complete_walk(nd);
3236                 if (error)
3237                         return error;
3238
3239                 audit_inode(nd->name, dir, LOOKUP_PARENT);
3240                 /* trailing slashes? */
3241                 if (unlikely(nd->last.name[nd->last.len]))
3242                         return -EISDIR;
3243         }
3244
3245         if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3246                 error = mnt_want_write(nd->path.mnt);
3247                 if (!error)
3248                         got_write = true;
3249                 /*
3250                  * do _not_ fail yet - we might not need that or fail with
3251                  * a different error; let lookup_open() decide; we'll be
3252                  * dropping this one anyway.
3253                  */
3254         }
3255         if (open_flag & O_CREAT)
3256                 inode_lock(dir->d_inode);
3257         else
3258                 inode_lock_shared(dir->d_inode);
3259         error = lookup_open(nd, &path, file, op, got_write, opened);
3260         if (open_flag & O_CREAT)
3261                 inode_unlock(dir->d_inode);
3262         else
3263                 inode_unlock_shared(dir->d_inode);
3264
3265         if (error <= 0) {
3266                 if (error)
3267                         goto out;
3268
3269                 if ((*opened & FILE_CREATED) ||
3270                     !S_ISREG(file_inode(file)->i_mode))
3271                         will_truncate = false;
3272
3273                 audit_inode(nd->name, file->f_path.dentry, 0);
3274                 goto opened;
3275         }
3276
3277         if (*opened & FILE_CREATED) {
3278                 /* Don't check for write permission, don't truncate */
3279                 open_flag &= ~O_TRUNC;
3280                 will_truncate = false;
3281                 acc_mode = 0;
3282                 path_to_nameidata(&path, nd);
3283                 goto finish_open_created;
3284         }
3285
3286         /*
3287          * If atomic_open() acquired write access it is dropped now due to
3288          * possible mount and symlink following (this might be optimized away if
3289          * necessary...)
3290          */
3291         if (got_write) {
3292                 mnt_drop_write(nd->path.mnt);
3293                 got_write = false;
3294         }
3295
3296         error = follow_managed(&path, nd);
3297         if (unlikely(error < 0))
3298                 return error;
3299
3300         if (unlikely(d_is_negative(path.dentry))) {
3301                 path_to_nameidata(&path, nd);
3302                 return -ENOENT;
3303         }
3304
3305         /*
3306          * create/update audit record if it already exists.
3307          */
3308         audit_inode(nd->name, path.dentry, 0);
3309
3310         if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3311                 path_to_nameidata(&path, nd);
3312                 return -EEXIST;
3313         }
3314
3315         seq = 0;        /* out of RCU mode, so the value doesn't matter */
3316         inode = d_backing_inode(path.dentry);
3317 finish_lookup:
3318         error = step_into(nd, &path, 0, inode, seq);
3319         if (unlikely(error))
3320                 return error;
3321 finish_open:
3322         /* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3323         error = complete_walk(nd);
3324         if (error)
3325                 return error;
3326         audit_inode(nd->name, nd->path.dentry, 0);
3327         error = -EISDIR;
3328         if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3329                 goto out;
3330         error = -ENOTDIR;
3331         if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3332                 goto out;
3333         if (!d_is_reg(nd->path.dentry))
3334                 will_truncate = false;
3335
3336         if (will_truncate) {
3337                 error = mnt_want_write(nd->path.mnt);
3338                 if (error)
3339                         goto out;
3340                 got_write = true;
3341         }
3342 finish_open_created:
3343         error = may_open(&nd->path, acc_mode, open_flag);
3344         if (error)
3345                 goto out;
3346         BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3347         error = vfs_open(&nd->path, file, current_cred());
3348         if (error)
3349                 goto out;
3350         *opened |= FILE_OPENED;
3351 opened:
3352         error = open_check_o_direct(file);
3353         if (!error)
3354                 error = ima_file_check(file, op->acc_mode, *opened);
3355         if (!error && will_truncate)
3356                 error = handle_truncate(file);
3357 out:
3358         if (unlikely(error) && (*opened & FILE_OPENED))
3359                 fput(file);
3360         if (unlikely(error > 0)) {
3361                 WARN_ON(1);
3362                 error = -EINVAL;
3363         }
3364         if (got_write)
3365                 mnt_drop_write(nd->path.mnt);
3366         return error;
3367 }
3368
3369 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3370 {
3371         static const struct qstr name = QSTR_INIT("/", 1);
3372         struct dentry *child = NULL;
3373         struct inode *dir = dentry->d_inode;
3374         struct inode *inode;
3375         int error;
3376
3377         /* we want directory to be writable */
3378         error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3379         if (error)
3380                 goto out_err;
3381         error = -EOPNOTSUPP;
3382         if (!dir->i_op->tmpfile)
3383                 goto out_err;
3384         error = -ENOMEM;
3385         child = d_alloc(dentry, &name);
3386         if (unlikely(!child))
3387                 goto out_err;
3388         error = dir->i_op->tmpfile(dir, child, mode);
3389         if (error)
3390                 goto out_err;
3391         error = -ENOENT;
3392         inode = child->d_inode;
3393         if (unlikely(!inode))
3394                 goto out_err;
3395         if (!(open_flag & O_EXCL)) {
3396                 spin_lock(&inode->i_lock);
3397                 inode->i_state |= I_LINKABLE;
3398                 spin_unlock(&inode->i_lock);
3399         }
3400         return child;
3401
3402 out_err:
3403         dput(child);
3404         return ERR_PTR(error);
3405 }
3406 EXPORT_SYMBOL(vfs_tmpfile);
3407
3408 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3409                 const struct open_flags *op,
3410                 struct file *file, int *opened)
3411 {
3412         struct dentry *child;
3413         struct path path;
3414         int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3415         if (unlikely(error))
3416                 return error;
3417         error = mnt_want_write(path.mnt);
3418         if (unlikely(error))
3419                 goto out;
3420         child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3421         error = PTR_ERR(child);
3422         if (unlikely(IS_ERR(child)))
3423                 goto out2;
3424         dput(path.dentry);
3425         path.dentry = child;
3426         audit_inode(nd->name, child, 0);
3427         /* Don't check for other permissions, the inode was just created */
3428         error = may_open(&path, 0, op->open_flag);
3429         if (error)
3430                 goto out2;
3431         file->f_path.mnt = path.mnt;
3432         error = finish_open(file, child, NULL, opened);
3433         if (error)
3434                 goto out2;
3435         error = open_check_o_direct(file);
3436         if (error)
3437                 fput(file);
3438 out2:
3439         mnt_drop_write(path.mnt);
3440 out:
3441         path_put(&path);
3442         return error;
3443 }
3444
3445 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3446 {
3447         struct path path;
3448         int error = path_lookupat(nd, flags, &path);
3449         if (!error) {
3450                 audit_inode(nd->name, path.dentry, 0);
3451                 error = vfs_open(&path, file, current_cred());
3452                 path_put(&path);
3453         }
3454         return error;
3455 }
3456
3457 static struct file *path_openat(struct nameidata *nd,
3458                         const struct open_flags *op, unsigned flags)
3459 {
3460         const char *s;
3461         struct file *file;
3462         int opened = 0;
3463         int error;
3464
3465         file = get_empty_filp();
3466         if (IS_ERR(file))
3467                 return file;
3468
3469         file->f_flags = op->open_flag;
3470
3471         if (unlikely(file->f_flags & __O_TMPFILE)) {
3472                 error = do_tmpfile(nd, flags, op, file, &opened);
3473                 goto out2;
3474         }
3475
3476         if (unlikely(file->f_flags & O_PATH)) {
3477                 error = do_o_path(nd, flags, file);
3478                 if (!error)
3479                         opened |= FILE_OPENED;
3480                 goto out2;
3481         }
3482
3483         s = path_init(nd, flags);
3484         if (IS_ERR(s)) {
3485                 put_filp(file);
3486                 return ERR_CAST(s);
3487         }
3488         while (!(error = link_path_walk(s, nd)) &&
3489                 (error = do_last(nd, file, op, &opened)) > 0) {
3490                 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3491                 s = trailing_symlink(nd);
3492                 if (IS_ERR(s)) {
3493                         error = PTR_ERR(s);
3494                         break;
3495                 }
3496         }
3497         terminate_walk(nd);
3498 out2:
3499         if (!(opened & FILE_OPENED)) {
3500                 BUG_ON(!error);
3501                 put_filp(file);
3502         }
3503         if (unlikely(error)) {
3504                 if (error == -EOPENSTALE) {
3505                         if (flags & LOOKUP_RCU)
3506                                 error = -ECHILD;
3507                         else
3508                                 error = -ESTALE;
3509                 }
3510                 file = ERR_PTR(error);
3511         }
3512         return file;
3513 }
3514
3515 struct file *do_filp_open(int dfd, struct filename *pathname,
3516                 const struct open_flags *op)
3517 {
3518         struct nameidata nd;
3519         int flags = op->lookup_flags;
3520         struct file *filp;
3521
3522         set_nameidata(&nd, dfd, pathname);
3523         filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3524         if (unlikely(filp == ERR_PTR(-ECHILD)))
3525                 filp = path_openat(&nd, op, flags);
3526         if (unlikely(filp == ERR_PTR(-ESTALE)))
3527                 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3528         restore_nameidata();
3529         return filp;
3530 }
3531
3532 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3533                 const char *name, const struct open_flags *op)
3534 {
3535         struct nameidata nd;
3536         struct file *file;
3537         struct filename *filename;
3538         int flags = op->lookup_flags | LOOKUP_ROOT;
3539
3540         nd.root.mnt = mnt;
3541         nd.root.dentry = dentry;
3542
3543         if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3544                 return ERR_PTR(-ELOOP);
3545
3546         filename = getname_kernel(name);
3547         if (IS_ERR(filename))
3548                 return ERR_CAST(filename);
3549
3550         set_nameidata(&nd, -1, filename);
3551         file = path_openat(&nd, op, flags | LOOKUP_RCU);
3552         if (unlikely(file == ERR_PTR(-ECHILD)))
3553                 file = path_openat(&nd, op, flags);
3554         if (unlikely(file == ERR_PTR(-ESTALE)))
3555                 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3556         restore_nameidata();
3557         putname(filename);
3558         return file;
3559 }
3560
3561 static struct dentry *filename_create(int dfd, struct filename *name,
3562                                 struct path *path, unsigned int lookup_flags)
3563 {
3564         struct dentry *dentry = ERR_PTR(-EEXIST);
3565         struct qstr last;
3566         int type;
3567         int err2;
3568         int error;
3569         bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3570
3571         /*
3572          * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3573          * other flags passed in are ignored!
3574          */
3575         lookup_flags &= LOOKUP_REVAL;
3576
3577         name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3578         if (IS_ERR(name))
3579                 return ERR_CAST(name);
3580
3581         /*
3582          * Yucky last component or no last component at all?
3583          * (foo/., foo/.., /////)
3584          */
3585         if (unlikely(type != LAST_NORM))
3586                 goto out;
3587
3588         /* don't fail immediately if it's r/o, at least try to report other errors */
3589         err2 = mnt_want_write(path->mnt);
3590         /*
3591          * Do the final lookup.
3592          */
3593         lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3594         inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3595         dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3596         if (IS_ERR(dentry))
3597                 goto unlock;
3598
3599         error = -EEXIST;
3600         if (d_is_positive(dentry))
3601                 goto fail;
3602
3603         /*
3604          * Special case - lookup gave negative, but... we had foo/bar/
3605          * From the vfs_mknod() POV we just have a negative dentry -
3606          * all is fine. Let's be bastards - you had / on the end, you've
3607          * been asking for (non-existent) directory. -ENOENT for you.
3608          */
3609         if (unlikely(!is_dir && last.name[last.len])) {
3610                 error = -ENOENT;
3611                 goto fail;
3612         }
3613         if (unlikely(err2)) {
3614                 error = err2;
3615                 goto fail;
3616         }
3617         putname(name);
3618         return dentry;
3619 fail:
3620         dput(dentry);
3621         dentry = ERR_PTR(error);
3622 unlock:
3623         inode_unlock(path->dentry->d_inode);
3624         if (!err2)
3625                 mnt_drop_write(path->mnt);
3626 out:
3627         path_put(path);
3628         putname(name);
3629         return dentry;
3630 }
3631
3632 struct dentry *kern_path_create(int dfd, const char *pathname,
3633                                 struct path *path, unsigned int lookup_flags)
3634 {
3635         return filename_create(dfd, getname_kernel(pathname),
3636                                 path, lookup_flags);
3637 }
3638 EXPORT_SYMBOL(kern_path_create);
3639
3640 void done_path_create(struct path *path, struct dentry *dentry)
3641 {
3642         dput(dentry);
3643         inode_unlock(path->dentry->d_inode);
3644         mnt_drop_write(path->mnt);
3645         path_put(path);
3646 }
3647 EXPORT_SYMBOL(done_path_create);
3648
3649 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3650                                 struct path *path, unsigned int lookup_flags)
3651 {
3652         return filename_create(dfd, getname(pathname), path, lookup_flags);
3653 }
3654 EXPORT_SYMBOL(user_path_create);
3655
3656 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3657 {
3658         int error = may_create(dir, dentry);
3659
3660         if (error)
3661                 return error;
3662
3663         if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3664                 return -EPERM;
3665
3666         if (!dir->i_op->mknod)
3667                 return -EPERM;
3668
3669         error = devcgroup_inode_mknod(mode, dev);
3670         if (error)
3671                 return error;
3672
3673         error = security_inode_mknod(dir, dentry, mode, dev);
3674         if (error)
3675                 return error;
3676
3677         error = dir->i_op->mknod(dir, dentry, mode, dev);
3678         if (!error)
3679                 fsnotify_create(dir, dentry);
3680         return error;
3681 }
3682 EXPORT_SYMBOL(vfs_mknod);
3683
3684 static int may_mknod(umode_t mode)
3685 {
3686         switch (mode & S_IFMT) {
3687         case S_IFREG:
3688         case S_IFCHR:
3689         case S_IFBLK:
3690         case S_IFIFO:
3691         case S_IFSOCK:
3692         case 0: /* zero mode translates to S_IFREG */
3693                 return 0;
3694         case S_IFDIR:
3695                 return -EPERM;
3696         default:
3697                 return -EINVAL;
3698         }
3699 }
3700
3701 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3702                 unsigned, dev)
3703 {
3704         struct dentry *dentry;
3705         struct path path;
3706         int error;
3707         unsigned int lookup_flags = 0;
3708
3709         error = may_mknod(mode);
3710         if (error)
3711                 return error;
3712 retry:
3713         dentry = user_path_create(dfd, filename, &path, lookup_flags);
3714         if (IS_ERR(dentry))
3715                 return PTR_ERR(dentry);
3716
3717         if (!IS_POSIXACL(path.dentry->d_inode))
3718                 mode &= ~current_umask();
3719         error = security_path_mknod(&path, dentry, mode, dev);
3720         if (error)
3721                 goto out;
3722         switch (mode & S_IFMT) {
3723                 case 0: case S_IFREG:
3724                         error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3725                         if (!error)
3726                                 ima_post_path_mknod(dentry);
3727                         break;
3728                 case S_IFCHR: case S_IFBLK:
3729                         error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3730                                         new_decode_dev(dev));
3731                         break;
3732                 case S_IFIFO: case S_IFSOCK:
3733                         error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3734                         break;
3735         }
3736 out:
3737         done_path_create(&path, dentry);
3738         if (retry_estale(error, lookup_flags)) {
3739                 lookup_flags |= LOOKUP_REVAL;
3740                 goto retry;
3741         }
3742         return error;
3743 }
3744
3745 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3746 {
3747         return sys_mknodat(AT_FDCWD, filename, mode, dev);
3748 }
3749
3750 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3751 {
3752         int error = may_create(dir, dentry);
3753         unsigned max_links = dir->i_sb->s_max_links;
3754
3755         if (error)
3756                 return error;
3757
3758         if (!dir->i_op->mkdir)
3759                 return -EPERM;
3760
3761         mode &= (S_IRWXUGO|S_ISVTX);
3762         error = security_inode_mkdir(dir, dentry, mode);
3763         if (error)
3764                 return error;
3765
3766         if (max_links && dir->i_nlink >= max_links)
3767                 return -EMLINK;
3768
3769         error = dir->i_op->mkdir(dir, dentry, mode);
3770         if (!error)
3771                 fsnotify_mkdir(dir, dentry);
3772         return error;
3773 }
3774 EXPORT_SYMBOL(vfs_mkdir);
3775
3776 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3777 {
3778         struct dentry *dentry;
3779         struct path path;
3780         int error;
3781         unsigned int lookup_flags = LOOKUP_DIRECTORY;
3782
3783 retry:
3784         dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3785         if (IS_ERR(dentry))
3786                 return PTR_ERR(dentry);
3787
3788         if (!IS_POSIXACL(path.dentry->d_inode))
3789                 mode &= ~current_umask();
3790         error = security_path_mkdir(&path, dentry, mode);
3791         if (!error)
3792                 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3793         done_path_create(&path, dentry);
3794         if (retry_estale(error, lookup_flags)) {
3795                 lookup_flags |= LOOKUP_REVAL;
3796                 goto retry;
3797         }
3798         return error;
3799 }
3800
3801 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3802 {
3803         return sys_mkdirat(AT_FDCWD, pathname, mode);
3804 }
3805
3806 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3807 {
3808         int error = may_delete(dir, dentry, 1);
3809
3810         if (error)
3811                 return error;
3812
3813         if (!dir->i_op->rmdir)
3814                 return -EPERM;
3815
3816         dget(dentry);
3817         inode_lock(dentry->d_inode);
3818
3819         error = -EBUSY;
3820         if (is_local_mountpoint(dentry))
3821                 goto out;
3822
3823         error = security_inode_rmdir(dir, dentry);
3824         if (error)
3825                 goto out;
3826
3827         shrink_dcache_parent(dentry);
3828         error = dir->i_op->rmdir(dir, dentry);
3829         if (error)
3830                 goto out;
3831
3832         dentry->d_inode->i_flags |= S_DEAD;
3833         dont_mount(dentry);
3834         detach_mounts(dentry);
3835
3836 out:
3837         inode_unlock(dentry->d_inode);
3838         dput(dentry);
3839         if (!error)
3840                 d_delete(dentry);
3841         return error;
3842 }
3843 EXPORT_SYMBOL(vfs_rmdir);
3844
3845 static long do_rmdir(int dfd, const char __user *pathname)
3846 {
3847         int error = 0;
3848         struct filename *name;
3849         struct dentry *dentry;
3850         struct path path;
3851         struct qstr last;
3852         int type;
3853         unsigned int lookup_flags = 0;
3854 retry:
3855         name = filename_parentat(dfd, getname(pathname), lookup_flags,
3856                                 &path, &last, &type);
3857         if (IS_ERR(name))
3858                 return PTR_ERR(name);
3859
3860         switch (type) {
3861         case LAST_DOTDOT:
3862                 error = -ENOTEMPTY;
3863                 goto exit1;
3864         case LAST_DOT:
3865                 error = -EINVAL;
3866                 goto exit1;
3867         case LAST_ROOT:
3868                 error = -EBUSY;
3869                 goto exit1;
3870         }
3871
3872         error = mnt_want_write(path.mnt);
3873         if (error)
3874                 goto exit1;
3875
3876         inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3877         dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3878         error = PTR_ERR(dentry);
3879         if (IS_ERR(dentry))
3880                 goto exit2;
3881         if (!dentry->d_inode) {
3882                 error = -ENOENT;
3883                 goto exit3;
3884         }
3885         error = security_path_rmdir(&path, dentry);
3886         if (error)
3887                 goto exit3;
3888         error = vfs_rmdir(path.dentry->d_inode, dentry);
3889 exit3:
3890         dput(dentry);
3891 exit2:
3892         inode_unlock(path.dentry->d_inode);
3893         mnt_drop_write(path.mnt);
3894 exit1:
3895         path_put(&path);
3896         putname(name);
3897         if (retry_estale(error, lookup_flags)) {
3898                 lookup_flags |= LOOKUP_REVAL;
3899                 goto retry;
3900         }
3901         return error;
3902 }
3903
3904 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3905 {
3906         return do_rmdir(AT_FDCWD, pathname);
3907 }
3908
3909 /**
3910  * vfs_unlink - unlink a filesystem object
3911  * @dir:        parent directory
3912  * @dentry:     victim
3913  * @delegated_inode: returns victim inode, if the inode is delegated.
3914  *
3915  * The caller must hold dir->i_mutex.
3916  *
3917  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3918  * return a reference to the inode in delegated_inode.  The caller
3919  * should then break the delegation on that inode and retry.  Because
3920  * breaking a delegation may take a long time, the caller should drop
3921  * dir->i_mutex before doing so.
3922  *
3923  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3924  * be appropriate for callers that expect the underlying filesystem not
3925  * to be NFS exported.
3926  */
3927 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3928 {
3929         struct inode *target = dentry->d_inode;
3930         int error = may_delete(dir, dentry, 0);
3931
3932         if (error)
3933                 return error;
3934
3935         if (!dir->i_op->unlink)
3936                 return -EPERM;
3937
3938         inode_lock(target);
3939         if (is_local_mountpoint(dentry))
3940                 error = -EBUSY;
3941         else {
3942                 error = security_inode_unlink(dir, dentry);
3943                 if (!error) {
3944                         error = try_break_deleg(target, delegated_inode);
3945                         if (error)
3946                                 goto out;
3947                         error = dir->i_op->unlink(dir, dentry);
3948                         if (!error) {
3949                                 dont_mount(dentry);
3950                                 detach_mounts(dentry);
3951                         }
3952                 }
3953         }
3954 out:
3955         inode_unlock(target);
3956
3957         /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3958         if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3959                 fsnotify_link_count(target);
3960                 d_delete(dentry);
3961         }
3962
3963         return error;
3964 }
3965 EXPORT_SYMBOL(vfs_unlink);
3966
3967 /*
3968  * Make sure that the actual truncation of the file will occur outside its
3969  * directory's i_mutex.  Truncate can take a long time if there is a lot of
3970  * writeout happening, and we don't want to prevent access to the directory
3971  * while waiting on the I/O.
3972  */
3973 static long do_unlinkat(int dfd, const char __user *pathname)
3974 {
3975         int error;
3976         struct filename *name;
3977         struct dentry *dentry;
3978         struct path path;
3979         struct qstr last;
3980         int type;
3981         struct inode *inode = NULL;
3982         struct inode *delegated_inode = NULL;
3983         unsigned int lookup_flags = 0;
3984 retry:
3985         name = filename_parentat(dfd, getname(pathname), lookup_flags,
3986                                 &path, &last, &type);
3987         if (IS_ERR(name))
3988                 return PTR_ERR(name);
3989
3990         error = -EISDIR;
3991         if (type != LAST_NORM)
3992                 goto exit1;
3993
3994         error = mnt_want_write(path.mnt);
3995         if (error)
3996                 goto exit1;
3997 retry_deleg:
3998         inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3999         dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4000         error = PTR_ERR(dentry);
4001         if (!IS_ERR(dentry)) {
4002                 /* Why not before? Because we want correct error value */
4003                 if (last.name[last.len])
4004                         goto slashes;
4005                 inode = dentry->d_inode;
4006                 if (d_is_negative(dentry))
4007                         goto slashes;
4008                 ihold(inode);
4009                 error = security_path_unlink(&path, dentry);
4010                 if (error)
4011                         goto exit2;
4012                 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4013 exit2:
4014                 dput(dentry);
4015         }
4016         inode_unlock(path.dentry->d_inode);
4017         if (inode)
4018                 iput(inode);    /* truncate the inode here */
4019         inode = NULL;
4020         if (delegated_inode) {
4021                 error = break_deleg_wait(&delegated_inode);
4022                 if (!error)
4023                         goto retry_deleg;
4024         }
4025         mnt_drop_write(path.mnt);
4026 exit1:
4027         path_put(&path);
4028         putname(name);
4029         if (retry_estale(error, lookup_flags)) {
4030                 lookup_flags |= LOOKUP_REVAL;
4031                 inode = NULL;
4032                 goto retry;
4033         }
4034         return error;
4035
4036 slashes:
4037         if (d_is_negative(dentry))
4038                 error = -ENOENT;
4039         else if (d_is_dir(dentry))
4040                 error = -EISDIR;
4041         else
4042                 error = -ENOTDIR;
4043         goto exit2;
4044 }
4045
4046 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4047 {
4048         if ((flag & ~AT_REMOVEDIR) != 0)
4049                 return -EINVAL;
4050
4051         if (flag & AT_REMOVEDIR)
4052                 return do_rmdir(dfd, pathname);
4053
4054         return do_unlinkat(dfd, pathname);
4055 }
4056
4057 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4058 {
4059         return do_unlinkat(AT_FDCWD, pathname);
4060 }
4061
4062 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4063 {
4064         int error = may_create(dir, dentry);
4065
4066         if (error)
4067                 return error;
4068
4069         if (!dir->i_op->symlink)
4070                 return -EPERM;
4071
4072         error = security_inode_symlink(dir, dentry, oldname);
4073         if (error)
4074                 return error;
4075
4076         error = dir->i_op->symlink(dir, dentry, oldname);
4077         if (!error)
4078                 fsnotify_create(dir, dentry);
4079         return error;
4080 }
4081 EXPORT_SYMBOL(vfs_symlink);
4082
4083 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4084                 int, newdfd, const char __user *, newname)
4085 {
4086         int error;
4087         struct filename *from;
4088         struct dentry *dentry;
4089         struct path path;
4090         unsigned int lookup_flags = 0;
4091
4092         from = getname(oldname);
4093         if (IS_ERR(from))
4094                 return PTR_ERR(from);
4095 retry:
4096         dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4097         error = PTR_ERR(dentry);
4098         if (IS_ERR(dentry))
4099                 goto out_putname;
4100
4101         error = security_path_symlink(&path, dentry, from->name);
4102         if (!error)
4103                 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4104         done_path_create(&path, dentry);
4105         if (retry_estale(error, lookup_flags)) {
4106                 lookup_flags |= LOOKUP_REVAL;
4107                 goto retry;
4108         }
4109 out_putname:
4110         putname(from);
4111         return error;
4112 }
4113
4114 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4115 {
4116         return sys_symlinkat(oldname, AT_FDCWD, newname);
4117 }
4118
4119 /**
4120  * vfs_link - create a new link
4121  * @old_dentry: object to be linked
4122  * @dir:        new parent
4123  * @new_dentry: where to create the new link
4124  * @delegated_inode: returns inode needing a delegation break
4125  *
4126  * The caller must hold dir->i_mutex
4127  *
4128  * If vfs_link discovers a delegation on the to-be-linked file in need
4129  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4130  * inode in delegated_inode.  The caller should then break the delegation
4131  * and retry.  Because breaking a delegation may take a long time, the
4132  * caller should drop the i_mutex before doing so.
4133  *
4134  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4135  * be appropriate for callers that expect the underlying filesystem not
4136  * to be NFS exported.
4137  */
4138 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4139 {
4140         struct inode *inode = old_dentry->d_inode;
4141         unsigned max_links = dir->i_sb->s_max_links;
4142         int error;
4143
4144         if (!inode)
4145                 return -ENOENT;
4146
4147         error = may_create(dir, new_dentry);
4148         if (error)
4149                 return error;
4150
4151         if (dir->i_sb != inode->i_sb)
4152                 return -EXDEV;
4153
4154         /*
4155          * A link to an append-only or immutable file cannot be created.
4156          */
4157         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4158                 return -EPERM;
4159         /*
4160          * Updating the link count will likely cause i_uid and i_gid to
4161          * be writen back improperly if their true value is unknown to
4162          * the vfs.
4163          */
4164         if (HAS_UNMAPPED_ID(inode))
4165                 return -EPERM;
4166         if (!dir->i_op->link)
4167                 return -EPERM;
4168         if (S_ISDIR(inode->i_mode))
4169                 return -EPERM;
4170
4171         error = security_inode_link(old_dentry, dir, new_dentry);
4172         if (error)
4173                 return error;
4174
4175         inode_lock(inode);
4176         /* Make sure we don't allow creating hardlink to an unlinked file */
4177         if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4178                 error =  -ENOENT;
4179         else if (max_links && inode->i_nlink >= max_links)
4180                 error = -EMLINK;
4181         else {
4182                 error = try_break_deleg(inode, delegated_inode);
4183                 if (!error)
4184                         error = dir->i_op->link(old_dentry, dir, new_dentry);
4185         }
4186
4187         if (!error && (inode->i_state & I_LINKABLE)) {
4188                 spin_lock(&inode->i_lock);
4189                 inode->i_state &= ~I_LINKABLE;
4190                 spin_unlock(&inode->i_lock);
4191         }
4192         inode_unlock(inode);
4193         if (!error)
4194                 fsnotify_link(dir, inode, new_dentry);
4195         return error;
4196 }
4197 EXPORT_SYMBOL(vfs_link);
4198
4199 /*
4200  * Hardlinks are often used in delicate situations.  We avoid
4201  * security-related surprises by not following symlinks on the
4202  * newname.  --KAB
4203  *
4204  * We don't follow them on the oldname either to be compatible
4205  * with linux 2.0, and to avoid hard-linking to directories
4206  * and other special files.  --ADM
4207  */
4208 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4209                 int, newdfd, const char __user *, newname, int, flags)
4210 {
4211         struct dentry *new_dentry;
4212         struct path old_path, new_path;
4213         struct inode *delegated_inode = NULL;
4214         int how = 0;
4215         int error;
4216
4217         if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4218                 return -EINVAL;
4219         /*
4220          * To use null names we require CAP_DAC_READ_SEARCH
4221          * This ensures that not everyone will be able to create
4222          * handlink using the passed filedescriptor.
4223          */
4224         if (flags & AT_EMPTY_PATH) {
4225                 if (!capable(CAP_DAC_READ_SEARCH))
4226                         return -ENOENT;
4227                 how = LOOKUP_EMPTY;
4228         }
4229
4230         if (flags & AT_SYMLINK_FOLLOW)
4231                 how |= LOOKUP_FOLLOW;
4232 retry:
4233         error = user_path_at(olddfd, oldname, how, &old_path);
4234         if (error)
4235                 return error;
4236
4237         new_dentry = user_path_create(newdfd, newname, &new_path,
4238                                         (how & LOOKUP_REVAL));
4239         error = PTR_ERR(new_dentry);
4240         if (IS_ERR(new_dentry))
4241                 goto out;
4242
4243         error = -EXDEV;
4244         if (old_path.mnt != new_path.mnt)
4245                 goto out_dput;
4246         error = may_linkat(&old_path);
4247         if (unlikely(error))
4248                 goto out_dput;
4249         error = security_path_link(old_path.dentry, &new_path, new_dentry);
4250         if (error)
4251                 goto out_dput;
4252         error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4253 out_dput:
4254         done_path_create(&new_path, new_dentry);
4255         if (delegated_inode) {
4256                 error = break_deleg_wait(&delegated_inode);
4257                 if (!error) {
4258                         path_put(&old_path);
4259                         goto retry;
4260                 }
4261         }
4262         if (retry_estale(error, how)) {
4263                 path_put(&old_path);
4264                 how |= LOOKUP_REVAL;
4265                 goto retry;
4266         }
4267 out:
4268         path_put(&old_path);
4269
4270         return error;
4271 }
4272
4273 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4274 {
4275         return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4276 }
4277
4278 /**
4279  * vfs_rename - rename a filesystem object
4280  * @old_dir:    parent of source
4281  * @old_dentry: source
4282  * @new_dir:    parent of destination
4283  * @new_dentry: destination
4284  * @delegated_inode: returns an inode needing a delegation break
4285  * @flags:      rename flags
4286  *
4287  * The caller must hold multiple mutexes--see lock_rename()).
4288  *
4289  * If vfs_rename discovers a delegation in need of breaking at either
4290  * the source or destination, it will return -EWOULDBLOCK and return a
4291  * reference to the inode in delegated_inode.  The caller should then
4292  * break the delegation and retry.  Because breaking a delegation may
4293  * take a long time, the caller should drop all locks before doing
4294  * so.
4295  *
4296  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4297  * be appropriate for callers that expect the underlying filesystem not
4298  * to be NFS exported.
4299  *
4300  * The worst of all namespace operations - renaming directory. "Perverted"
4301  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4302  * Problems:
4303  *      a) we can get into loop creation.
4304  *      b) race potential - two innocent renames can create a loop together.
4305  *         That's where 4.4 screws up. Current fix: serialization on
4306  *         sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4307  *         story.
4308  *      c) we have to lock _four_ objects - parents and victim (if it exists),
4309  *         and source (if it is not a directory).
4310  *         And that - after we got ->i_mutex on parents (until then we don't know
4311  *         whether the target exists).  Solution: try to be smart with locking
4312  *         order for inodes.  We rely on the fact that tree topology may change
4313  *         only under ->s_vfs_rename_mutex _and_ that parent of the object we
4314  *         move will be locked.  Thus we can rank directories by the tree
4315  *         (ancestors first) and rank all non-directories after them.
4316  *         That works since everybody except rename does "lock parent, lookup,
4317  *         lock child" and rename is under ->s_vfs_rename_mutex.
4318  *         HOWEVER, it relies on the assumption that any object with ->lookup()
4319  *         has no more than 1 dentry.  If "hybrid" objects will ever appear,
4320  *         we'd better make sure that there's no link(2) for them.
4321  *      d) conversion from fhandle to dentry may come in the wrong moment - when
4322  *         we are removing the target. Solution: we will have to grab ->i_mutex
4323  *         in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4324  *         ->i_mutex on parents, which works but leads to some truly excessive
4325  *         locking].
4326  */
4327 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4328                struct inode *new_dir, struct dentry *new_dentry,
4329                struct inode **delegated_inode, unsigned int flags)
4330 {
4331         int error;
4332         bool is_dir = d_is_dir(old_dentry);
4333         const unsigned char *old_name;
4334         struct inode *source = old_dentry->d_inode;
4335         struct inode *target = new_dentry->d_inode;
4336         bool new_is_dir = false;
4337         unsigned max_links = new_dir->i_sb->s_max_links;
4338
4339         if (source == target)
4340                 return 0;
4341
4342         error = may_delete(old_dir, old_dentry, is_dir);
4343         if (error)
4344                 return error;
4345
4346         if (!target) {
4347                 error = may_create(new_dir, new_dentry);
4348         } else {
4349                 new_is_dir = d_is_dir(new_dentry);
4350
4351                 if (!(flags & RENAME_EXCHANGE))
4352                         error = may_delete(new_dir, new_dentry, is_dir);
4353                 else
4354                         error = may_delete(new_dir, new_dentry, new_is_dir);
4355         }
4356         if (error)
4357                 return error;
4358
4359         if (!old_dir->i_op->rename)
4360                 return -EPERM;
4361
4362         /*
4363          * If we are going to change the parent - check write permissions,
4364          * we'll need to flip '..'.
4365          */
4366         if (new_dir != old_dir) {
4367                 if (is_dir) {
4368                         error = inode_permission(source, MAY_WRITE);
4369                         if (error)
4370                                 return error;
4371                 }
4372                 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4373                         error = inode_permission(target, MAY_WRITE);
4374                         if (error)
4375                                 return error;
4376                 }
4377         }
4378
4379         error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4380                                       flags);
4381         if (error)
4382                 return error;
4383
4384         old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4385         dget(new_dentry);
4386         if (!is_dir || (flags & RENAME_EXCHANGE))
4387                 lock_two_nondirectories(source, target);
4388         else if (target)
4389                 inode_lock(target);
4390
4391         error = -EBUSY;
4392         if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4393                 goto out;
4394
4395         if (max_links && new_dir != old_dir) {
4396                 error = -EMLINK;
4397                 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4398                         goto out;
4399                 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4400                     old_dir->i_nlink >= max_links)
4401                         goto out;
4402         }
4403         if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4404                 shrink_dcache_parent(new_dentry);
4405         if (!is_dir) {
4406                 error = try_break_deleg(source, delegated_inode);
4407                 if (error)
4408                         goto out;
4409         }
4410         if (target && !new_is_dir) {
4411                 error = try_break_deleg(target, delegated_inode);
4412                 if (error)
4413                         goto out;
4414         }
4415         error = old_dir->i_op->rename(old_dir, old_dentry,
4416                                        new_dir, new_dentry, flags);
4417         if (error)
4418                 goto out;
4419
4420         if (!(flags & RENAME_EXCHANGE) && target) {
4421                 if (is_dir)
4422                         target->i_flags |= S_DEAD;
4423                 dont_mount(new_dentry);
4424                 detach_mounts(new_dentry);
4425         }
4426         if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4427                 if (!(flags & RENAME_EXCHANGE))
4428                         d_move(old_dentry, new_dentry);
4429                 else
4430                         d_exchange(old_dentry, new_dentry);
4431         }
4432 out:
4433         if (!is_dir || (flags & RENAME_EXCHANGE))
4434                 unlock_two_nondirectories(source, target);
4435         else if (target)
4436                 inode_unlock(target);
4437         dput(new_dentry);
4438         if (!error) {
4439                 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4440                               !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4441                 if (flags & RENAME_EXCHANGE) {
4442                         fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4443                                       new_is_dir, NULL, new_dentry);
4444                 }
4445         }
4446         fsnotify_oldname_free(old_name);
4447
4448         return error;
4449 }
4450 EXPORT_SYMBOL(vfs_rename);
4451
4452 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4453                 int, newdfd, const char __user *, newname, unsigned int, flags)
4454 {
4455         struct dentry *old_dentry, *new_dentry;
4456         struct dentry *trap;
4457         struct path old_path, new_path;
4458         struct qstr old_last, new_last;
4459         int old_type, new_type;
4460         struct inode *delegated_inode = NULL;
4461         struct filename *from;
4462         struct filename *to;
4463         unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4464         bool should_retry = false;
4465         int error;
4466
4467         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4468                 return -EINVAL;
4469
4470         if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4471             (flags & RENAME_EXCHANGE))
4472                 return -EINVAL;
4473
4474         if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4475                 return -EPERM;
4476
4477         if (flags & RENAME_EXCHANGE)
4478                 target_flags = 0;
4479
4480 retry:
4481         from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4482                                 &old_path, &old_last, &old_type);
4483         if (IS_ERR(from)) {
4484                 error = PTR_ERR(from);
4485                 goto exit;
4486         }
4487
4488         to = filename_parentat(newdfd, getname(newname), lookup_flags,
4489                                 &new_path, &new_last, &new_type);
4490         if (IS_ERR(to)) {
4491                 error = PTR_ERR(to);
4492                 goto exit1;
4493         }
4494
4495         error = -EXDEV;
4496         if (old_path.mnt != new_path.mnt)
4497                 goto exit2;
4498
4499         error = -EBUSY;
4500         if (old_type != LAST_NORM)
4501                 goto exit2;
4502
4503         if (flags & RENAME_NOREPLACE)
4504                 error = -EEXIST;
4505         if (new_type != LAST_NORM)
4506                 goto exit2;
4507
4508         error = mnt_want_write(old_path.mnt);
4509         if (error)
4510                 goto exit2;
4511
4512 retry_deleg:
4513         trap = lock_rename(new_path.dentry, old_path.dentry);
4514
4515         old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4516         error = PTR_ERR(old_dentry);
4517         if (IS_ERR(old_dentry))
4518                 goto exit3;
4519         /* source must exist */
4520         error = -ENOENT;
4521         if (d_is_negative(old_dentry))
4522                 goto exit4;
4523         new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4524         error = PTR_ERR(new_dentry);
4525         if (IS_ERR(new_dentry))
4526                 goto exit4;
4527         error = -EEXIST;
4528         if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4529                 goto exit5;
4530         if (flags & RENAME_EXCHANGE) {
4531                 error = -ENOENT;
4532                 if (d_is_negative(new_dentry))
4533                         goto exit5;
4534
4535                 if (!d_is_dir(new_dentry)) {
4536                         error = -ENOTDIR;
4537                         if (new_last.name[new_last.len])
4538                                 goto exit5;
4539                 }
4540         }
4541         /* unless the source is a directory trailing slashes give -ENOTDIR */
4542         if (!d_is_dir(old_dentry)) {
4543                 error = -ENOTDIR;
4544                 if (old_last.name[old_last.len])
4545                         goto exit5;
4546                 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4547                         goto exit5;
4548         }
4549         /* source should not be ancestor of target */
4550         error = -EINVAL;
4551         if (old_dentry == trap)
4552                 goto exit5;
4553         /* target should not be an ancestor of source */
4554         if (!(flags & RENAME_EXCHANGE))
4555                 error = -ENOTEMPTY;
4556         if (new_dentry == trap)
4557                 goto exit5;
4558
4559         error = security_path_rename(&old_path, old_dentry,
4560                                      &new_path, new_dentry, flags);
4561         if (error)
4562                 goto exit5;
4563         error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4564                            new_path.dentry->d_inode, new_dentry,
4565                            &delegated_inode, flags);
4566 exit5:
4567         dput(new_dentry);
4568 exit4:
4569         dput(old_dentry);
4570 exit3:
4571         unlock_rename(new_path.dentry, old_path.dentry);
4572         if (delegated_inode) {
4573                 error = break_deleg_wait(&delegated_inode);
4574                 if (!error)
4575                         goto retry_deleg;
4576         }
4577         mnt_drop_write(old_path.mnt);
4578 exit2:
4579         if (retry_estale(error, lookup_flags))
4580                 should_retry = true;
4581         path_put(&new_path);
4582         putname(to);
4583 exit1:
4584         path_put(&old_path);
4585         putname(from);
4586         if (should_retry) {
4587                 should_retry = false;
4588                 lookup_flags |= LOOKUP_REVAL;
4589                 goto retry;
4590         }
4591 exit:
4592         return error;
4593 }
4594
4595 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4596                 int, newdfd, const char __user *, newname)
4597 {
4598         return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4599 }
4600
4601 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4602 {
4603         return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4604 }
4605
4606 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4607 {
4608         int error = may_create(dir, dentry);
4609         if (error)
4610                 return error;
4611
4612         if (!dir->i_op->mknod)
4613                 return -EPERM;
4614
4615         return dir->i_op->mknod(dir, dentry,
4616                                 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4617 }
4618 EXPORT_SYMBOL(vfs_whiteout);
4619
4620 int readlink_copy(char __user *buffer, int buflen, const char *link)
4621 {
4622         int len = PTR_ERR(link);
4623         if (IS_ERR(link))
4624                 goto out;
4625
4626         len = strlen(link);
4627         if (len > (unsigned) buflen)
4628                 len = buflen;
4629         if (copy_to_user(buffer, link, len))
4630                 len = -EFAULT;
4631 out:
4632         return len;
4633 }
4634
4635 /*
4636  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
4637  * have ->get_link() not calling nd_jump_link().  Using (or not using) it
4638  * for any given inode is up to filesystem.
4639  */
4640 static int generic_readlink(struct dentry *dentry, char __user *buffer,
4641                             int buflen)
4642 {
4643         DEFINE_DELAYED_CALL(done);
4644         struct inode *inode = d_inode(dentry);
4645         const char *link = inode->i_link;
4646         int res;
4647
4648         if (!link) {
4649                 link = inode->i_op->get_link(dentry, inode, &done);
4650                 if (IS_ERR(link))
4651                         return PTR_ERR(link);
4652         }
4653         res = readlink_copy(buffer, buflen, link);
4654         do_delayed_call(&done);
4655         return res;
4656 }
4657
4658 /**
4659  * vfs_readlink - copy symlink body into userspace buffer
4660  * @dentry: dentry on which to get symbolic link
4661  * @buffer: user memory pointer
4662  * @buflen: size of buffer
4663  *
4664  * Does not touch atime.  That's up to the caller if necessary
4665  *
4666  * Does not call security hook.
4667  */
4668 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4669 {
4670         struct inode *inode = d_inode(dentry);
4671
4672         if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4673                 if (unlikely(inode->i_op->readlink))
4674                         return inode->i_op->readlink(dentry, buffer, buflen);
4675
4676                 if (!d_is_symlink(dentry))
4677                         return -EINVAL;
4678
4679                 spin_lock(&inode->i_lock);
4680                 inode->i_opflags |= IOP_DEFAULT_READLINK;
4681                 spin_unlock(&inode->i_lock);
4682         }
4683
4684         return generic_readlink(dentry, buffer, buflen);
4685 }
4686 EXPORT_SYMBOL(vfs_readlink);
4687
4688 /**
4689  * vfs_get_link - get symlink body
4690  * @dentry: dentry on which to get symbolic link
4691  * @done: caller needs to free returned data with this
4692  *
4693  * Calls security hook and i_op->get_link() on the supplied inode.
4694  *
4695  * It does not touch atime.  That's up to the caller if necessary.
4696  *
4697  * Does not work on "special" symlinks like /proc/$$/fd/N
4698  */
4699 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4700 {
4701         const char *res = ERR_PTR(-EINVAL);
4702         struct inode *inode = d_inode(dentry);
4703
4704         if (d_is_symlink(dentry)) {
4705                 res = ERR_PTR(security_inode_readlink(dentry));
4706                 if (!res)
4707                         res = inode->i_op->get_link(dentry, inode, done);
4708         }
4709         return res;
4710 }
4711 EXPORT_SYMBOL(vfs_get_link);
4712
4713 /* get the link contents into pagecache */
4714 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4715                           struct delayed_call *callback)
4716 {
4717         char *kaddr;
4718         struct page *page;
4719         struct address_space *mapping = inode->i_mapping;
4720
4721         if (!dentry) {
4722                 page = find_get_page(mapping, 0);
4723                 if (!page)
4724                         return ERR_PTR(-ECHILD);
4725                 if (!PageUptodate(page)) {
4726                         put_page(page);
4727                         return ERR_PTR(-ECHILD);
4728                 }
4729         } else {
4730                 page = read_mapping_page(mapping, 0, NULL);
4731                 if (IS_ERR(page))
4732                         return (char*)page;
4733         }
4734         set_delayed_call(callback, page_put_link, page);
4735         BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4736         kaddr = page_address(page);
4737         nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4738         return kaddr;
4739 }
4740
4741 EXPORT_SYMBOL(page_get_link);
4742
4743 void page_put_link(void *arg)
4744 {
4745         put_page(arg);
4746 }
4747 EXPORT_SYMBOL(page_put_link);
4748
4749 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4750 {
4751         DEFINE_DELAYED_CALL(done);
4752         int res = readlink_copy(buffer, buflen,
4753                                 page_get_link(dentry, d_inode(dentry),
4754                                               &done));
4755         do_delayed_call(&done);
4756         return res;
4757 }
4758 EXPORT_SYMBOL(page_readlink);
4759
4760 /*
4761  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4762  */
4763 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4764 {
4765         struct address_space *mapping = inode->i_mapping;
4766         struct page *page;
4767         void *fsdata;
4768         int err;
4769         unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4770         if (nofs)
4771                 flags |= AOP_FLAG_NOFS;
4772
4773 retry:
4774         err = pagecache_write_begin(NULL, mapping, 0, len-1,
4775                                 flags, &page, &fsdata);
4776         if (err)
4777                 goto fail;
4778
4779         memcpy(page_address(page), symname, len-1);
4780
4781         err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4782                                                         page, fsdata);
4783         if (err < 0)
4784                 goto fail;
4785         if (err < len-1)
4786                 goto retry;
4787
4788         mark_inode_dirty(inode);
4789         return 0;
4790 fail:
4791         return err;
4792 }
4793 EXPORT_SYMBOL(__page_symlink);
4794
4795 int page_symlink(struct inode *inode, const char *symname, int len)
4796 {
4797         return __page_symlink(inode, symname, len,
4798                         !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4799 }
4800 EXPORT_SYMBOL(page_symlink);
4801
4802 const struct inode_operations page_symlink_inode_operations = {
4803         .get_link       = page_get_link,
4804 };
4805 EXPORT_SYMBOL(page_symlink_inode_operations);