Merge branch 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / fs / jbd2 / transaction.c
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29
30 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
31
32 /*
33  * jbd2_get_transaction: obtain a new transaction_t object.
34  *
35  * Simply allocate and initialise a new transaction.  Create it in
36  * RUNNING state and add it to the current journal (which should not
37  * have an existing running transaction: we only make a new transaction
38  * once we have started to commit the old one).
39  *
40  * Preconditions:
41  *      The journal MUST be locked.  We don't perform atomic mallocs on the
42  *      new transaction and we can't block without protecting against other
43  *      processes trying to touch the journal while it is in transition.
44  *
45  */
46
47 static transaction_t *
48 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
49 {
50         transaction->t_journal = journal;
51         transaction->t_state = T_RUNNING;
52         transaction->t_start_time = ktime_get();
53         transaction->t_tid = journal->j_transaction_sequence++;
54         transaction->t_expires = jiffies + journal->j_commit_interval;
55         spin_lock_init(&transaction->t_handle_lock);
56         INIT_LIST_HEAD(&transaction->t_inode_list);
57         INIT_LIST_HEAD(&transaction->t_private_list);
58
59         /* Set up the commit timer for the new transaction. */
60         journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
61         add_timer(&journal->j_commit_timer);
62
63         J_ASSERT(journal->j_running_transaction == NULL);
64         journal->j_running_transaction = transaction;
65         transaction->t_max_wait = 0;
66         transaction->t_start = jiffies;
67
68         return transaction;
69 }
70
71 /*
72  * Handle management.
73  *
74  * A handle_t is an object which represents a single atomic update to a
75  * filesystem, and which tracks all of the modifications which form part
76  * of that one update.
77  */
78
79 /*
80  * start_this_handle: Given a handle, deal with any locking or stalling
81  * needed to make sure that there is enough journal space for the handle
82  * to begin.  Attach the handle to a transaction and set up the
83  * transaction's buffer credits.
84  */
85
86 static int start_this_handle(journal_t *journal, handle_t *handle)
87 {
88         transaction_t *transaction;
89         int needed;
90         int nblocks = handle->h_buffer_credits;
91         transaction_t *new_transaction = NULL;
92         int ret = 0;
93         unsigned long ts = jiffies;
94
95         if (nblocks > journal->j_max_transaction_buffers) {
96                 printk(KERN_ERR "JBD: %s wants too many credits (%d > %d)\n",
97                        current->comm, nblocks,
98                        journal->j_max_transaction_buffers);
99                 ret = -ENOSPC;
100                 goto out;
101         }
102
103 alloc_transaction:
104         if (!journal->j_running_transaction) {
105                 new_transaction = kzalloc(sizeof(*new_transaction),
106                                                 GFP_NOFS|__GFP_NOFAIL);
107                 if (!new_transaction) {
108                         ret = -ENOMEM;
109                         goto out;
110                 }
111         }
112
113         jbd_debug(3, "New handle %p going live.\n", handle);
114
115 repeat:
116
117         /*
118          * We need to hold j_state_lock until t_updates has been incremented,
119          * for proper journal barrier handling
120          */
121         spin_lock(&journal->j_state_lock);
122 repeat_locked:
123         if (is_journal_aborted(journal) ||
124             (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
125                 spin_unlock(&journal->j_state_lock);
126                 ret = -EROFS;
127                 goto out;
128         }
129
130         /* Wait on the journal's transaction barrier if necessary */
131         if (journal->j_barrier_count) {
132                 spin_unlock(&journal->j_state_lock);
133                 wait_event(journal->j_wait_transaction_locked,
134                                 journal->j_barrier_count == 0);
135                 goto repeat;
136         }
137
138         if (!journal->j_running_transaction) {
139                 if (!new_transaction) {
140                         spin_unlock(&journal->j_state_lock);
141                         goto alloc_transaction;
142                 }
143                 jbd2_get_transaction(journal, new_transaction);
144                 new_transaction = NULL;
145         }
146
147         transaction = journal->j_running_transaction;
148
149         /*
150          * If the current transaction is locked down for commit, wait for the
151          * lock to be released.
152          */
153         if (transaction->t_state == T_LOCKED) {
154                 DEFINE_WAIT(wait);
155
156                 prepare_to_wait(&journal->j_wait_transaction_locked,
157                                         &wait, TASK_UNINTERRUPTIBLE);
158                 spin_unlock(&journal->j_state_lock);
159                 schedule();
160                 finish_wait(&journal->j_wait_transaction_locked, &wait);
161                 goto repeat;
162         }
163
164         /*
165          * If there is not enough space left in the log to write all potential
166          * buffers requested by this operation, we need to stall pending a log
167          * checkpoint to free some more log space.
168          */
169         spin_lock(&transaction->t_handle_lock);
170         needed = transaction->t_outstanding_credits + nblocks;
171
172         if (needed > journal->j_max_transaction_buffers) {
173                 /*
174                  * If the current transaction is already too large, then start
175                  * to commit it: we can then go back and attach this handle to
176                  * a new transaction.
177                  */
178                 DEFINE_WAIT(wait);
179
180                 jbd_debug(2, "Handle %p starting new commit...\n", handle);
181                 spin_unlock(&transaction->t_handle_lock);
182                 prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
183                                 TASK_UNINTERRUPTIBLE);
184                 __jbd2_log_start_commit(journal, transaction->t_tid);
185                 spin_unlock(&journal->j_state_lock);
186                 schedule();
187                 finish_wait(&journal->j_wait_transaction_locked, &wait);
188                 goto repeat;
189         }
190
191         /*
192          * The commit code assumes that it can get enough log space
193          * without forcing a checkpoint.  This is *critical* for
194          * correctness: a checkpoint of a buffer which is also
195          * associated with a committing transaction creates a deadlock,
196          * so commit simply cannot force through checkpoints.
197          *
198          * We must therefore ensure the necessary space in the journal
199          * *before* starting to dirty potentially checkpointed buffers
200          * in the new transaction.
201          *
202          * The worst part is, any transaction currently committing can
203          * reduce the free space arbitrarily.  Be careful to account for
204          * those buffers when checkpointing.
205          */
206
207         /*
208          * @@@ AKPM: This seems rather over-defensive.  We're giving commit
209          * a _lot_ of headroom: 1/4 of the journal plus the size of
210          * the committing transaction.  Really, we only need to give it
211          * committing_transaction->t_outstanding_credits plus "enough" for
212          * the log control blocks.
213          * Also, this test is inconsitent with the matching one in
214          * jbd2_journal_extend().
215          */
216         if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) {
217                 jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle);
218                 spin_unlock(&transaction->t_handle_lock);
219                 __jbd2_log_wait_for_space(journal);
220                 goto repeat_locked;
221         }
222
223         /* OK, account for the buffers that this operation expects to
224          * use and add the handle to the running transaction. */
225
226         if (time_after(transaction->t_start, ts)) {
227                 ts = jbd2_time_diff(ts, transaction->t_start);
228                 if (ts > transaction->t_max_wait)
229                         transaction->t_max_wait = ts;
230         }
231
232         handle->h_transaction = transaction;
233         transaction->t_outstanding_credits += nblocks;
234         transaction->t_updates++;
235         transaction->t_handle_count++;
236         jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n",
237                   handle, nblocks, transaction->t_outstanding_credits,
238                   __jbd2_log_space_left(journal));
239         spin_unlock(&transaction->t_handle_lock);
240         spin_unlock(&journal->j_state_lock);
241
242         lock_map_acquire(&handle->h_lockdep_map);
243 out:
244         if (unlikely(new_transaction))          /* It's usually NULL */
245                 kfree(new_transaction);
246         return ret;
247 }
248
249 static struct lock_class_key jbd2_handle_key;
250
251 /* Allocate a new handle.  This should probably be in a slab... */
252 static handle_t *new_handle(int nblocks)
253 {
254         handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
255         if (!handle)
256                 return NULL;
257         memset(handle, 0, sizeof(*handle));
258         handle->h_buffer_credits = nblocks;
259         handle->h_ref = 1;
260
261         lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
262                                                 &jbd2_handle_key, 0);
263
264         return handle;
265 }
266
267 /**
268  * handle_t *jbd2_journal_start() - Obtain a new handle.
269  * @journal: Journal to start transaction on.
270  * @nblocks: number of block buffer we might modify
271  *
272  * We make sure that the transaction can guarantee at least nblocks of
273  * modified buffers in the log.  We block until the log can guarantee
274  * that much space.
275  *
276  * This function is visible to journal users (like ext3fs), so is not
277  * called with the journal already locked.
278  *
279  * Return a pointer to a newly allocated handle, or NULL on failure
280  */
281 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
282 {
283         handle_t *handle = journal_current_handle();
284         int err;
285
286         if (!journal)
287                 return ERR_PTR(-EROFS);
288
289         if (handle) {
290                 J_ASSERT(handle->h_transaction->t_journal == journal);
291                 handle->h_ref++;
292                 return handle;
293         }
294
295         handle = new_handle(nblocks);
296         if (!handle)
297                 return ERR_PTR(-ENOMEM);
298
299         current->journal_info = handle;
300
301         err = start_this_handle(journal, handle);
302         if (err < 0) {
303                 jbd2_free_handle(handle);
304                 current->journal_info = NULL;
305                 handle = ERR_PTR(err);
306                 goto out;
307         }
308 out:
309         return handle;
310 }
311
312 /**
313  * int jbd2_journal_extend() - extend buffer credits.
314  * @handle:  handle to 'extend'
315  * @nblocks: nr blocks to try to extend by.
316  *
317  * Some transactions, such as large extends and truncates, can be done
318  * atomically all at once or in several stages.  The operation requests
319  * a credit for a number of buffer modications in advance, but can
320  * extend its credit if it needs more.
321  *
322  * jbd2_journal_extend tries to give the running handle more buffer credits.
323  * It does not guarantee that allocation - this is a best-effort only.
324  * The calling process MUST be able to deal cleanly with a failure to
325  * extend here.
326  *
327  * Return 0 on success, non-zero on failure.
328  *
329  * return code < 0 implies an error
330  * return code > 0 implies normal transaction-full status.
331  */
332 int jbd2_journal_extend(handle_t *handle, int nblocks)
333 {
334         transaction_t *transaction = handle->h_transaction;
335         journal_t *journal = transaction->t_journal;
336         int result;
337         int wanted;
338
339         result = -EIO;
340         if (is_handle_aborted(handle))
341                 goto out;
342
343         result = 1;
344
345         spin_lock(&journal->j_state_lock);
346
347         /* Don't extend a locked-down transaction! */
348         if (handle->h_transaction->t_state != T_RUNNING) {
349                 jbd_debug(3, "denied handle %p %d blocks: "
350                           "transaction not running\n", handle, nblocks);
351                 goto error_out;
352         }
353
354         spin_lock(&transaction->t_handle_lock);
355         wanted = transaction->t_outstanding_credits + nblocks;
356
357         if (wanted > journal->j_max_transaction_buffers) {
358                 jbd_debug(3, "denied handle %p %d blocks: "
359                           "transaction too large\n", handle, nblocks);
360                 goto unlock;
361         }
362
363         if (wanted > __jbd2_log_space_left(journal)) {
364                 jbd_debug(3, "denied handle %p %d blocks: "
365                           "insufficient log space\n", handle, nblocks);
366                 goto unlock;
367         }
368
369         handle->h_buffer_credits += nblocks;
370         transaction->t_outstanding_credits += nblocks;
371         result = 0;
372
373         jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
374 unlock:
375         spin_unlock(&transaction->t_handle_lock);
376 error_out:
377         spin_unlock(&journal->j_state_lock);
378 out:
379         return result;
380 }
381
382
383 /**
384  * int jbd2_journal_restart() - restart a handle .
385  * @handle:  handle to restart
386  * @nblocks: nr credits requested
387  *
388  * Restart a handle for a multi-transaction filesystem
389  * operation.
390  *
391  * If the jbd2_journal_extend() call above fails to grant new buffer credits
392  * to a running handle, a call to jbd2_journal_restart will commit the
393  * handle's transaction so far and reattach the handle to a new
394  * transaction capabable of guaranteeing the requested number of
395  * credits.
396  */
397
398 int jbd2_journal_restart(handle_t *handle, int nblocks)
399 {
400         transaction_t *transaction = handle->h_transaction;
401         journal_t *journal = transaction->t_journal;
402         int ret;
403
404         /* If we've had an abort of any type, don't even think about
405          * actually doing the restart! */
406         if (is_handle_aborted(handle))
407                 return 0;
408
409         /*
410          * First unlink the handle from its current transaction, and start the
411          * commit on that.
412          */
413         J_ASSERT(transaction->t_updates > 0);
414         J_ASSERT(journal_current_handle() == handle);
415
416         spin_lock(&journal->j_state_lock);
417         spin_lock(&transaction->t_handle_lock);
418         transaction->t_outstanding_credits -= handle->h_buffer_credits;
419         transaction->t_updates--;
420
421         if (!transaction->t_updates)
422                 wake_up(&journal->j_wait_updates);
423         spin_unlock(&transaction->t_handle_lock);
424
425         jbd_debug(2, "restarting handle %p\n", handle);
426         __jbd2_log_start_commit(journal, transaction->t_tid);
427         spin_unlock(&journal->j_state_lock);
428
429         lock_map_release(&handle->h_lockdep_map);
430         handle->h_buffer_credits = nblocks;
431         ret = start_this_handle(journal, handle);
432         return ret;
433 }
434
435
436 /**
437  * void jbd2_journal_lock_updates () - establish a transaction barrier.
438  * @journal:  Journal to establish a barrier on.
439  *
440  * This locks out any further updates from being started, and blocks
441  * until all existing updates have completed, returning only once the
442  * journal is in a quiescent state with no updates running.
443  *
444  * The journal lock should not be held on entry.
445  */
446 void jbd2_journal_lock_updates(journal_t *journal)
447 {
448         DEFINE_WAIT(wait);
449
450         spin_lock(&journal->j_state_lock);
451         ++journal->j_barrier_count;
452
453         /* Wait until there are no running updates */
454         while (1) {
455                 transaction_t *transaction = journal->j_running_transaction;
456
457                 if (!transaction)
458                         break;
459
460                 spin_lock(&transaction->t_handle_lock);
461                 if (!transaction->t_updates) {
462                         spin_unlock(&transaction->t_handle_lock);
463                         break;
464                 }
465                 prepare_to_wait(&journal->j_wait_updates, &wait,
466                                 TASK_UNINTERRUPTIBLE);
467                 spin_unlock(&transaction->t_handle_lock);
468                 spin_unlock(&journal->j_state_lock);
469                 schedule();
470                 finish_wait(&journal->j_wait_updates, &wait);
471                 spin_lock(&journal->j_state_lock);
472         }
473         spin_unlock(&journal->j_state_lock);
474
475         /*
476          * We have now established a barrier against other normal updates, but
477          * we also need to barrier against other jbd2_journal_lock_updates() calls
478          * to make sure that we serialise special journal-locked operations
479          * too.
480          */
481         mutex_lock(&journal->j_barrier);
482 }
483
484 /**
485  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
486  * @journal:  Journal to release the barrier on.
487  *
488  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
489  *
490  * Should be called without the journal lock held.
491  */
492 void jbd2_journal_unlock_updates (journal_t *journal)
493 {
494         J_ASSERT(journal->j_barrier_count != 0);
495
496         mutex_unlock(&journal->j_barrier);
497         spin_lock(&journal->j_state_lock);
498         --journal->j_barrier_count;
499         spin_unlock(&journal->j_state_lock);
500         wake_up(&journal->j_wait_transaction_locked);
501 }
502
503 static void warn_dirty_buffer(struct buffer_head *bh)
504 {
505         char b[BDEVNAME_SIZE];
506
507         printk(KERN_WARNING
508                "JBD: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
509                "There's a risk of filesystem corruption in case of system "
510                "crash.\n",
511                bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
512 }
513
514 /*
515  * If the buffer is already part of the current transaction, then there
516  * is nothing we need to do.  If it is already part of a prior
517  * transaction which we are still committing to disk, then we need to
518  * make sure that we do not overwrite the old copy: we do copy-out to
519  * preserve the copy going to disk.  We also account the buffer against
520  * the handle's metadata buffer credits (unless the buffer is already
521  * part of the transaction, that is).
522  *
523  */
524 static int
525 do_get_write_access(handle_t *handle, struct journal_head *jh,
526                         int force_copy)
527 {
528         struct buffer_head *bh;
529         transaction_t *transaction;
530         journal_t *journal;
531         int error;
532         char *frozen_buffer = NULL;
533         int need_copy = 0;
534
535         if (is_handle_aborted(handle))
536                 return -EROFS;
537
538         transaction = handle->h_transaction;
539         journal = transaction->t_journal;
540
541         jbd_debug(5, "buffer_head %p, force_copy %d\n", jh, force_copy);
542
543         JBUFFER_TRACE(jh, "entry");
544 repeat:
545         bh = jh2bh(jh);
546
547         /* @@@ Need to check for errors here at some point. */
548
549         lock_buffer(bh);
550         jbd_lock_bh_state(bh);
551
552         /* We now hold the buffer lock so it is safe to query the buffer
553          * state.  Is the buffer dirty?
554          *
555          * If so, there are two possibilities.  The buffer may be
556          * non-journaled, and undergoing a quite legitimate writeback.
557          * Otherwise, it is journaled, and we don't expect dirty buffers
558          * in that state (the buffers should be marked JBD_Dirty
559          * instead.)  So either the IO is being done under our own
560          * control and this is a bug, or it's a third party IO such as
561          * dump(8) (which may leave the buffer scheduled for read ---
562          * ie. locked but not dirty) or tune2fs (which may actually have
563          * the buffer dirtied, ugh.)  */
564
565         if (buffer_dirty(bh)) {
566                 /*
567                  * First question: is this buffer already part of the current
568                  * transaction or the existing committing transaction?
569                  */
570                 if (jh->b_transaction) {
571                         J_ASSERT_JH(jh,
572                                 jh->b_transaction == transaction ||
573                                 jh->b_transaction ==
574                                         journal->j_committing_transaction);
575                         if (jh->b_next_transaction)
576                                 J_ASSERT_JH(jh, jh->b_next_transaction ==
577                                                         transaction);
578                         warn_dirty_buffer(bh);
579                 }
580                 /*
581                  * In any case we need to clean the dirty flag and we must
582                  * do it under the buffer lock to be sure we don't race
583                  * with running write-out.
584                  */
585                 JBUFFER_TRACE(jh, "Journalling dirty buffer");
586                 clear_buffer_dirty(bh);
587                 set_buffer_jbddirty(bh);
588         }
589
590         unlock_buffer(bh);
591
592         error = -EROFS;
593         if (is_handle_aborted(handle)) {
594                 jbd_unlock_bh_state(bh);
595                 goto out;
596         }
597         error = 0;
598
599         /*
600          * The buffer is already part of this transaction if b_transaction or
601          * b_next_transaction points to it
602          */
603         if (jh->b_transaction == transaction ||
604             jh->b_next_transaction == transaction)
605                 goto done;
606
607         /*
608          * this is the first time this transaction is touching this buffer,
609          * reset the modified flag
610          */
611        jh->b_modified = 0;
612
613         /*
614          * If there is already a copy-out version of this buffer, then we don't
615          * need to make another one
616          */
617         if (jh->b_frozen_data) {
618                 JBUFFER_TRACE(jh, "has frozen data");
619                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
620                 jh->b_next_transaction = transaction;
621                 goto done;
622         }
623
624         /* Is there data here we need to preserve? */
625
626         if (jh->b_transaction && jh->b_transaction != transaction) {
627                 JBUFFER_TRACE(jh, "owned by older transaction");
628                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
629                 J_ASSERT_JH(jh, jh->b_transaction ==
630                                         journal->j_committing_transaction);
631
632                 /* There is one case we have to be very careful about.
633                  * If the committing transaction is currently writing
634                  * this buffer out to disk and has NOT made a copy-out,
635                  * then we cannot modify the buffer contents at all
636                  * right now.  The essence of copy-out is that it is the
637                  * extra copy, not the primary copy, which gets
638                  * journaled.  If the primary copy is already going to
639                  * disk then we cannot do copy-out here. */
640
641                 if (jh->b_jlist == BJ_Shadow) {
642                         DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow);
643                         wait_queue_head_t *wqh;
644
645                         wqh = bit_waitqueue(&bh->b_state, BH_Unshadow);
646
647                         JBUFFER_TRACE(jh, "on shadow: sleep");
648                         jbd_unlock_bh_state(bh);
649                         /* commit wakes up all shadow buffers after IO */
650                         for ( ; ; ) {
651                                 prepare_to_wait(wqh, &wait.wait,
652                                                 TASK_UNINTERRUPTIBLE);
653                                 if (jh->b_jlist != BJ_Shadow)
654                                         break;
655                                 schedule();
656                         }
657                         finish_wait(wqh, &wait.wait);
658                         goto repeat;
659                 }
660
661                 /* Only do the copy if the currently-owning transaction
662                  * still needs it.  If it is on the Forget list, the
663                  * committing transaction is past that stage.  The
664                  * buffer had better remain locked during the kmalloc,
665                  * but that should be true --- we hold the journal lock
666                  * still and the buffer is already on the BUF_JOURNAL
667                  * list so won't be flushed.
668                  *
669                  * Subtle point, though: if this is a get_undo_access,
670                  * then we will be relying on the frozen_data to contain
671                  * the new value of the committed_data record after the
672                  * transaction, so we HAVE to force the frozen_data copy
673                  * in that case. */
674
675                 if (jh->b_jlist != BJ_Forget || force_copy) {
676                         JBUFFER_TRACE(jh, "generate frozen data");
677                         if (!frozen_buffer) {
678                                 JBUFFER_TRACE(jh, "allocate memory for buffer");
679                                 jbd_unlock_bh_state(bh);
680                                 frozen_buffer =
681                                         jbd2_alloc(jh2bh(jh)->b_size,
682                                                          GFP_NOFS);
683                                 if (!frozen_buffer) {
684                                         printk(KERN_EMERG
685                                                "%s: OOM for frozen_buffer\n",
686                                                __func__);
687                                         JBUFFER_TRACE(jh, "oom!");
688                                         error = -ENOMEM;
689                                         jbd_lock_bh_state(bh);
690                                         goto done;
691                                 }
692                                 goto repeat;
693                         }
694                         jh->b_frozen_data = frozen_buffer;
695                         frozen_buffer = NULL;
696                         need_copy = 1;
697                 }
698                 jh->b_next_transaction = transaction;
699         }
700
701
702         /*
703          * Finally, if the buffer is not journaled right now, we need to make
704          * sure it doesn't get written to disk before the caller actually
705          * commits the new data
706          */
707         if (!jh->b_transaction) {
708                 JBUFFER_TRACE(jh, "no transaction");
709                 J_ASSERT_JH(jh, !jh->b_next_transaction);
710                 jh->b_transaction = transaction;
711                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
712                 spin_lock(&journal->j_list_lock);
713                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
714                 spin_unlock(&journal->j_list_lock);
715         }
716
717 done:
718         if (need_copy) {
719                 struct page *page;
720                 int offset;
721                 char *source;
722
723                 J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
724                             "Possible IO failure.\n");
725                 page = jh2bh(jh)->b_page;
726                 offset = ((unsigned long) jh2bh(jh)->b_data) & ~PAGE_MASK;
727                 source = kmap_atomic(page, KM_USER0);
728                 /* Fire data frozen trigger just before we copy the data */
729                 jbd2_buffer_frozen_trigger(jh, source + offset,
730                                            jh->b_triggers);
731                 memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
732                 kunmap_atomic(source, KM_USER0);
733
734                 /*
735                  * Now that the frozen data is saved off, we need to store
736                  * any matching triggers.
737                  */
738                 jh->b_frozen_triggers = jh->b_triggers;
739         }
740         jbd_unlock_bh_state(bh);
741
742         /*
743          * If we are about to journal a buffer, then any revoke pending on it is
744          * no longer valid
745          */
746         jbd2_journal_cancel_revoke(handle, jh);
747
748 out:
749         if (unlikely(frozen_buffer))    /* It's usually NULL */
750                 jbd2_free(frozen_buffer, bh->b_size);
751
752         JBUFFER_TRACE(jh, "exit");
753         return error;
754 }
755
756 /**
757  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
758  * @handle: transaction to add buffer modifications to
759  * @bh:     bh to be used for metadata writes
760  * @credits: variable that will receive credits for the buffer
761  *
762  * Returns an error code or 0 on success.
763  *
764  * In full data journalling mode the buffer may be of type BJ_AsyncData,
765  * because we're write()ing a buffer which is also part of a shared mapping.
766  */
767
768 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
769 {
770         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
771         int rc;
772
773         /* We do not want to get caught playing with fields which the
774          * log thread also manipulates.  Make sure that the buffer
775          * completes any outstanding IO before proceeding. */
776         rc = do_get_write_access(handle, jh, 0);
777         jbd2_journal_put_journal_head(jh);
778         return rc;
779 }
780
781
782 /*
783  * When the user wants to journal a newly created buffer_head
784  * (ie. getblk() returned a new buffer and we are going to populate it
785  * manually rather than reading off disk), then we need to keep the
786  * buffer_head locked until it has been completely filled with new
787  * data.  In this case, we should be able to make the assertion that
788  * the bh is not already part of an existing transaction.
789  *
790  * The buffer should already be locked by the caller by this point.
791  * There is no lock ranking violation: it was a newly created,
792  * unlocked buffer beforehand. */
793
794 /**
795  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
796  * @handle: transaction to new buffer to
797  * @bh: new buffer.
798  *
799  * Call this if you create a new bh.
800  */
801 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
802 {
803         transaction_t *transaction = handle->h_transaction;
804         journal_t *journal = transaction->t_journal;
805         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
806         int err;
807
808         jbd_debug(5, "journal_head %p\n", jh);
809         err = -EROFS;
810         if (is_handle_aborted(handle))
811                 goto out;
812         err = 0;
813
814         JBUFFER_TRACE(jh, "entry");
815         /*
816          * The buffer may already belong to this transaction due to pre-zeroing
817          * in the filesystem's new_block code.  It may also be on the previous,
818          * committing transaction's lists, but it HAS to be in Forget state in
819          * that case: the transaction must have deleted the buffer for it to be
820          * reused here.
821          */
822         jbd_lock_bh_state(bh);
823         spin_lock(&journal->j_list_lock);
824         J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
825                 jh->b_transaction == NULL ||
826                 (jh->b_transaction == journal->j_committing_transaction &&
827                           jh->b_jlist == BJ_Forget)));
828
829         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
830         J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
831
832         if (jh->b_transaction == NULL) {
833                 /*
834                  * Previous jbd2_journal_forget() could have left the buffer
835                  * with jbddirty bit set because it was being committed. When
836                  * the commit finished, we've filed the buffer for
837                  * checkpointing and marked it dirty. Now we are reallocating
838                  * the buffer so the transaction freeing it must have
839                  * committed and so it's safe to clear the dirty bit.
840                  */
841                 clear_buffer_dirty(jh2bh(jh));
842                 jh->b_transaction = transaction;
843
844                 /* first access by this transaction */
845                 jh->b_modified = 0;
846
847                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
848                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
849         } else if (jh->b_transaction == journal->j_committing_transaction) {
850                 /* first access by this transaction */
851                 jh->b_modified = 0;
852
853                 JBUFFER_TRACE(jh, "set next transaction");
854                 jh->b_next_transaction = transaction;
855         }
856         spin_unlock(&journal->j_list_lock);
857         jbd_unlock_bh_state(bh);
858
859         /*
860          * akpm: I added this.  ext3_alloc_branch can pick up new indirect
861          * blocks which contain freed but then revoked metadata.  We need
862          * to cancel the revoke in case we end up freeing it yet again
863          * and the reallocating as data - this would cause a second revoke,
864          * which hits an assertion error.
865          */
866         JBUFFER_TRACE(jh, "cancelling revoke");
867         jbd2_journal_cancel_revoke(handle, jh);
868         jbd2_journal_put_journal_head(jh);
869 out:
870         return err;
871 }
872
873 /**
874  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
875  *     non-rewindable consequences
876  * @handle: transaction
877  * @bh: buffer to undo
878  * @credits: store the number of taken credits here (if not NULL)
879  *
880  * Sometimes there is a need to distinguish between metadata which has
881  * been committed to disk and that which has not.  The ext3fs code uses
882  * this for freeing and allocating space, we have to make sure that we
883  * do not reuse freed space until the deallocation has been committed,
884  * since if we overwrote that space we would make the delete
885  * un-rewindable in case of a crash.
886  *
887  * To deal with that, jbd2_journal_get_undo_access requests write access to a
888  * buffer for parts of non-rewindable operations such as delete
889  * operations on the bitmaps.  The journaling code must keep a copy of
890  * the buffer's contents prior to the undo_access call until such time
891  * as we know that the buffer has definitely been committed to disk.
892  *
893  * We never need to know which transaction the committed data is part
894  * of, buffers touched here are guaranteed to be dirtied later and so
895  * will be committed to a new transaction in due course, at which point
896  * we can discard the old committed data pointer.
897  *
898  * Returns error number or 0 on success.
899  */
900 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
901 {
902         int err;
903         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
904         char *committed_data = NULL;
905
906         JBUFFER_TRACE(jh, "entry");
907
908         /*
909          * Do this first --- it can drop the journal lock, so we want to
910          * make sure that obtaining the committed_data is done
911          * atomically wrt. completion of any outstanding commits.
912          */
913         err = do_get_write_access(handle, jh, 1);
914         if (err)
915                 goto out;
916
917 repeat:
918         if (!jh->b_committed_data) {
919                 committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
920                 if (!committed_data) {
921                         printk(KERN_EMERG "%s: No memory for committed data\n",
922                                 __func__);
923                         err = -ENOMEM;
924                         goto out;
925                 }
926         }
927
928         jbd_lock_bh_state(bh);
929         if (!jh->b_committed_data) {
930                 /* Copy out the current buffer contents into the
931                  * preserved, committed copy. */
932                 JBUFFER_TRACE(jh, "generate b_committed data");
933                 if (!committed_data) {
934                         jbd_unlock_bh_state(bh);
935                         goto repeat;
936                 }
937
938                 jh->b_committed_data = committed_data;
939                 committed_data = NULL;
940                 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
941         }
942         jbd_unlock_bh_state(bh);
943 out:
944         jbd2_journal_put_journal_head(jh);
945         if (unlikely(committed_data))
946                 jbd2_free(committed_data, bh->b_size);
947         return err;
948 }
949
950 /**
951  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
952  * @bh: buffer to trigger on
953  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
954  *
955  * Set any triggers on this journal_head.  This is always safe, because
956  * triggers for a committing buffer will be saved off, and triggers for
957  * a running transaction will match the buffer in that transaction.
958  *
959  * Call with NULL to clear the triggers.
960  */
961 void jbd2_journal_set_triggers(struct buffer_head *bh,
962                                struct jbd2_buffer_trigger_type *type)
963 {
964         struct journal_head *jh = bh2jh(bh);
965
966         jh->b_triggers = type;
967 }
968
969 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
970                                 struct jbd2_buffer_trigger_type *triggers)
971 {
972         struct buffer_head *bh = jh2bh(jh);
973
974         if (!triggers || !triggers->t_frozen)
975                 return;
976
977         triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
978 }
979
980 void jbd2_buffer_abort_trigger(struct journal_head *jh,
981                                struct jbd2_buffer_trigger_type *triggers)
982 {
983         if (!triggers || !triggers->t_abort)
984                 return;
985
986         triggers->t_abort(triggers, jh2bh(jh));
987 }
988
989
990
991 /**
992  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
993  * @handle: transaction to add buffer to.
994  * @bh: buffer to mark
995  *
996  * mark dirty metadata which needs to be journaled as part of the current
997  * transaction.
998  *
999  * The buffer is placed on the transaction's metadata list and is marked
1000  * as belonging to the transaction.
1001  *
1002  * Returns error number or 0 on success.
1003  *
1004  * Special care needs to be taken if the buffer already belongs to the
1005  * current committing transaction (in which case we should have frozen
1006  * data present for that commit).  In that case, we don't relink the
1007  * buffer: that only gets done when the old transaction finally
1008  * completes its commit.
1009  */
1010 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1011 {
1012         transaction_t *transaction = handle->h_transaction;
1013         journal_t *journal = transaction->t_journal;
1014         struct journal_head *jh = bh2jh(bh);
1015
1016         jbd_debug(5, "journal_head %p\n", jh);
1017         JBUFFER_TRACE(jh, "entry");
1018         if (is_handle_aborted(handle))
1019                 goto out;
1020
1021         jbd_lock_bh_state(bh);
1022
1023         if (jh->b_modified == 0) {
1024                 /*
1025                  * This buffer's got modified and becoming part
1026                  * of the transaction. This needs to be done
1027                  * once a transaction -bzzz
1028                  */
1029                 jh->b_modified = 1;
1030                 J_ASSERT_JH(jh, handle->h_buffer_credits > 0);
1031                 handle->h_buffer_credits--;
1032         }
1033
1034         /*
1035          * fastpath, to avoid expensive locking.  If this buffer is already
1036          * on the running transaction's metadata list there is nothing to do.
1037          * Nobody can take it off again because there is a handle open.
1038          * I _think_ we're OK here with SMP barriers - a mistaken decision will
1039          * result in this test being false, so we go in and take the locks.
1040          */
1041         if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1042                 JBUFFER_TRACE(jh, "fastpath");
1043                 J_ASSERT_JH(jh, jh->b_transaction ==
1044                                         journal->j_running_transaction);
1045                 goto out_unlock_bh;
1046         }
1047
1048         set_buffer_jbddirty(bh);
1049
1050         /*
1051          * Metadata already on the current transaction list doesn't
1052          * need to be filed.  Metadata on another transaction's list must
1053          * be committing, and will be refiled once the commit completes:
1054          * leave it alone for now.
1055          */
1056         if (jh->b_transaction != transaction) {
1057                 JBUFFER_TRACE(jh, "already on other transaction");
1058                 J_ASSERT_JH(jh, jh->b_transaction ==
1059                                         journal->j_committing_transaction);
1060                 J_ASSERT_JH(jh, jh->b_next_transaction == transaction);
1061                 /* And this case is illegal: we can't reuse another
1062                  * transaction's data buffer, ever. */
1063                 goto out_unlock_bh;
1064         }
1065
1066         /* That test should have eliminated the following case: */
1067         J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1068
1069         JBUFFER_TRACE(jh, "file as BJ_Metadata");
1070         spin_lock(&journal->j_list_lock);
1071         __jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata);
1072         spin_unlock(&journal->j_list_lock);
1073 out_unlock_bh:
1074         jbd_unlock_bh_state(bh);
1075 out:
1076         JBUFFER_TRACE(jh, "exit");
1077         return 0;
1078 }
1079
1080 /*
1081  * jbd2_journal_release_buffer: undo a get_write_access without any buffer
1082  * updates, if the update decided in the end that it didn't need access.
1083  *
1084  */
1085 void
1086 jbd2_journal_release_buffer(handle_t *handle, struct buffer_head *bh)
1087 {
1088         BUFFER_TRACE(bh, "entry");
1089 }
1090
1091 /**
1092  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1093  * @handle: transaction handle
1094  * @bh:     bh to 'forget'
1095  *
1096  * We can only do the bforget if there are no commits pending against the
1097  * buffer.  If the buffer is dirty in the current running transaction we
1098  * can safely unlink it.
1099  *
1100  * bh may not be a journalled buffer at all - it may be a non-JBD
1101  * buffer which came off the hashtable.  Check for this.
1102  *
1103  * Decrements bh->b_count by one.
1104  *
1105  * Allow this call even if the handle has aborted --- it may be part of
1106  * the caller's cleanup after an abort.
1107  */
1108 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1109 {
1110         transaction_t *transaction = handle->h_transaction;
1111         journal_t *journal = transaction->t_journal;
1112         struct journal_head *jh;
1113         int drop_reserve = 0;
1114         int err = 0;
1115         int was_modified = 0;
1116
1117         BUFFER_TRACE(bh, "entry");
1118
1119         jbd_lock_bh_state(bh);
1120         spin_lock(&journal->j_list_lock);
1121
1122         if (!buffer_jbd(bh))
1123                 goto not_jbd;
1124         jh = bh2jh(bh);
1125
1126         /* Critical error: attempting to delete a bitmap buffer, maybe?
1127          * Don't do any jbd operations, and return an error. */
1128         if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1129                          "inconsistent data on disk")) {
1130                 err = -EIO;
1131                 goto not_jbd;
1132         }
1133
1134         /* keep track of wether or not this transaction modified us */
1135         was_modified = jh->b_modified;
1136
1137         /*
1138          * The buffer's going from the transaction, we must drop
1139          * all references -bzzz
1140          */
1141         jh->b_modified = 0;
1142
1143         if (jh->b_transaction == handle->h_transaction) {
1144                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1145
1146                 /* If we are forgetting a buffer which is already part
1147                  * of this transaction, then we can just drop it from
1148                  * the transaction immediately. */
1149                 clear_buffer_dirty(bh);
1150                 clear_buffer_jbddirty(bh);
1151
1152                 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1153
1154                 /*
1155                  * we only want to drop a reference if this transaction
1156                  * modified the buffer
1157                  */
1158                 if (was_modified)
1159                         drop_reserve = 1;
1160
1161                 /*
1162                  * We are no longer going to journal this buffer.
1163                  * However, the commit of this transaction is still
1164                  * important to the buffer: the delete that we are now
1165                  * processing might obsolete an old log entry, so by
1166                  * committing, we can satisfy the buffer's checkpoint.
1167                  *
1168                  * So, if we have a checkpoint on the buffer, we should
1169                  * now refile the buffer on our BJ_Forget list so that
1170                  * we know to remove the checkpoint after we commit.
1171                  */
1172
1173                 if (jh->b_cp_transaction) {
1174                         __jbd2_journal_temp_unlink_buffer(jh);
1175                         __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1176                 } else {
1177                         __jbd2_journal_unfile_buffer(jh);
1178                         jbd2_journal_remove_journal_head(bh);
1179                         __brelse(bh);
1180                         if (!buffer_jbd(bh)) {
1181                                 spin_unlock(&journal->j_list_lock);
1182                                 jbd_unlock_bh_state(bh);
1183                                 __bforget(bh);
1184                                 goto drop;
1185                         }
1186                 }
1187         } else if (jh->b_transaction) {
1188                 J_ASSERT_JH(jh, (jh->b_transaction ==
1189                                  journal->j_committing_transaction));
1190                 /* However, if the buffer is still owned by a prior
1191                  * (committing) transaction, we can't drop it yet... */
1192                 JBUFFER_TRACE(jh, "belongs to older transaction");
1193                 /* ... but we CAN drop it from the new transaction if we
1194                  * have also modified it since the original commit. */
1195
1196                 if (jh->b_next_transaction) {
1197                         J_ASSERT(jh->b_next_transaction == transaction);
1198                         jh->b_next_transaction = NULL;
1199
1200                         /*
1201                          * only drop a reference if this transaction modified
1202                          * the buffer
1203                          */
1204                         if (was_modified)
1205                                 drop_reserve = 1;
1206                 }
1207         }
1208
1209 not_jbd:
1210         spin_unlock(&journal->j_list_lock);
1211         jbd_unlock_bh_state(bh);
1212         __brelse(bh);
1213 drop:
1214         if (drop_reserve) {
1215                 /* no need to reserve log space for this block -bzzz */
1216                 handle->h_buffer_credits++;
1217         }
1218         return err;
1219 }
1220
1221 /**
1222  * int jbd2_journal_stop() - complete a transaction
1223  * @handle: tranaction to complete.
1224  *
1225  * All done for a particular handle.
1226  *
1227  * There is not much action needed here.  We just return any remaining
1228  * buffer credits to the transaction and remove the handle.  The only
1229  * complication is that we need to start a commit operation if the
1230  * filesystem is marked for synchronous update.
1231  *
1232  * jbd2_journal_stop itself will not usually return an error, but it may
1233  * do so in unusual circumstances.  In particular, expect it to
1234  * return -EIO if a jbd2_journal_abort has been executed since the
1235  * transaction began.
1236  */
1237 int jbd2_journal_stop(handle_t *handle)
1238 {
1239         transaction_t *transaction = handle->h_transaction;
1240         journal_t *journal = transaction->t_journal;
1241         int err;
1242         pid_t pid;
1243
1244         J_ASSERT(journal_current_handle() == handle);
1245
1246         if (is_handle_aborted(handle))
1247                 err = -EIO;
1248         else {
1249                 J_ASSERT(transaction->t_updates > 0);
1250                 err = 0;
1251         }
1252
1253         if (--handle->h_ref > 0) {
1254                 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1255                           handle->h_ref);
1256                 return err;
1257         }
1258
1259         jbd_debug(4, "Handle %p going down\n", handle);
1260
1261         /*
1262          * Implement synchronous transaction batching.  If the handle
1263          * was synchronous, don't force a commit immediately.  Let's
1264          * yield and let another thread piggyback onto this
1265          * transaction.  Keep doing that while new threads continue to
1266          * arrive.  It doesn't cost much - we're about to run a commit
1267          * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1268          * operations by 30x or more...
1269          *
1270          * We try and optimize the sleep time against what the
1271          * underlying disk can do, instead of having a static sleep
1272          * time.  This is useful for the case where our storage is so
1273          * fast that it is more optimal to go ahead and force a flush
1274          * and wait for the transaction to be committed than it is to
1275          * wait for an arbitrary amount of time for new writers to
1276          * join the transaction.  We achieve this by measuring how
1277          * long it takes to commit a transaction, and compare it with
1278          * how long this transaction has been running, and if run time
1279          * < commit time then we sleep for the delta and commit.  This
1280          * greatly helps super fast disks that would see slowdowns as
1281          * more threads started doing fsyncs.
1282          *
1283          * But don't do this if this process was the most recent one
1284          * to perform a synchronous write.  We do this to detect the
1285          * case where a single process is doing a stream of sync
1286          * writes.  No point in waiting for joiners in that case.
1287          */
1288         pid = current->pid;
1289         if (handle->h_sync && journal->j_last_sync_writer != pid) {
1290                 u64 commit_time, trans_time;
1291
1292                 journal->j_last_sync_writer = pid;
1293
1294                 spin_lock(&journal->j_state_lock);
1295                 commit_time = journal->j_average_commit_time;
1296                 spin_unlock(&journal->j_state_lock);
1297
1298                 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1299                                                    transaction->t_start_time));
1300
1301                 commit_time = max_t(u64, commit_time,
1302                                     1000*journal->j_min_batch_time);
1303                 commit_time = min_t(u64, commit_time,
1304                                     1000*journal->j_max_batch_time);
1305
1306                 if (trans_time < commit_time) {
1307                         ktime_t expires = ktime_add_ns(ktime_get(),
1308                                                        commit_time);
1309                         set_current_state(TASK_UNINTERRUPTIBLE);
1310                         schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1311                 }
1312         }
1313
1314         if (handle->h_sync)
1315                 transaction->t_synchronous_commit = 1;
1316         current->journal_info = NULL;
1317         spin_lock(&transaction->t_handle_lock);
1318         transaction->t_outstanding_credits -= handle->h_buffer_credits;
1319         transaction->t_updates--;
1320         if (!transaction->t_updates) {
1321                 wake_up(&journal->j_wait_updates);
1322                 if (journal->j_barrier_count)
1323                         wake_up(&journal->j_wait_transaction_locked);
1324         }
1325
1326         /*
1327          * If the handle is marked SYNC, we need to set another commit
1328          * going!  We also want to force a commit if the current
1329          * transaction is occupying too much of the log, or if the
1330          * transaction is too old now.
1331          */
1332         if (handle->h_sync ||
1333                         transaction->t_outstanding_credits >
1334                                 journal->j_max_transaction_buffers ||
1335                         time_after_eq(jiffies, transaction->t_expires)) {
1336                 /* Do this even for aborted journals: an abort still
1337                  * completes the commit thread, it just doesn't write
1338                  * anything to disk. */
1339                 tid_t tid = transaction->t_tid;
1340
1341                 spin_unlock(&transaction->t_handle_lock);
1342                 jbd_debug(2, "transaction too old, requesting commit for "
1343                                         "handle %p\n", handle);
1344                 /* This is non-blocking */
1345                 jbd2_log_start_commit(journal, transaction->t_tid);
1346
1347                 /*
1348                  * Special case: JBD2_SYNC synchronous updates require us
1349                  * to wait for the commit to complete.
1350                  */
1351                 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1352                         err = jbd2_log_wait_commit(journal, tid);
1353         } else {
1354                 spin_unlock(&transaction->t_handle_lock);
1355         }
1356
1357         lock_map_release(&handle->h_lockdep_map);
1358
1359         jbd2_free_handle(handle);
1360         return err;
1361 }
1362
1363 /**
1364  * int jbd2_journal_force_commit() - force any uncommitted transactions
1365  * @journal: journal to force
1366  *
1367  * For synchronous operations: force any uncommitted transactions
1368  * to disk.  May seem kludgy, but it reuses all the handle batching
1369  * code in a very simple manner.
1370  */
1371 int jbd2_journal_force_commit(journal_t *journal)
1372 {
1373         handle_t *handle;
1374         int ret;
1375
1376         handle = jbd2_journal_start(journal, 1);
1377         if (IS_ERR(handle)) {
1378                 ret = PTR_ERR(handle);
1379         } else {
1380                 handle->h_sync = 1;
1381                 ret = jbd2_journal_stop(handle);
1382         }
1383         return ret;
1384 }
1385
1386 /*
1387  *
1388  * List management code snippets: various functions for manipulating the
1389  * transaction buffer lists.
1390  *
1391  */
1392
1393 /*
1394  * Append a buffer to a transaction list, given the transaction's list head
1395  * pointer.
1396  *
1397  * j_list_lock is held.
1398  *
1399  * jbd_lock_bh_state(jh2bh(jh)) is held.
1400  */
1401
1402 static inline void
1403 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1404 {
1405         if (!*list) {
1406                 jh->b_tnext = jh->b_tprev = jh;
1407                 *list = jh;
1408         } else {
1409                 /* Insert at the tail of the list to preserve order */
1410                 struct journal_head *first = *list, *last = first->b_tprev;
1411                 jh->b_tprev = last;
1412                 jh->b_tnext = first;
1413                 last->b_tnext = first->b_tprev = jh;
1414         }
1415 }
1416
1417 /*
1418  * Remove a buffer from a transaction list, given the transaction's list
1419  * head pointer.
1420  *
1421  * Called with j_list_lock held, and the journal may not be locked.
1422  *
1423  * jbd_lock_bh_state(jh2bh(jh)) is held.
1424  */
1425
1426 static inline void
1427 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1428 {
1429         if (*list == jh) {
1430                 *list = jh->b_tnext;
1431                 if (*list == jh)
1432                         *list = NULL;
1433         }
1434         jh->b_tprev->b_tnext = jh->b_tnext;
1435         jh->b_tnext->b_tprev = jh->b_tprev;
1436 }
1437
1438 /*
1439  * Remove a buffer from the appropriate transaction list.
1440  *
1441  * Note that this function can *change* the value of
1442  * bh->b_transaction->t_buffers, t_forget, t_iobuf_list, t_shadow_list,
1443  * t_log_list or t_reserved_list.  If the caller is holding onto a copy of one
1444  * of these pointers, it could go bad.  Generally the caller needs to re-read
1445  * the pointer from the transaction_t.
1446  *
1447  * Called under j_list_lock.  The journal may not be locked.
1448  */
1449 void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1450 {
1451         struct journal_head **list = NULL;
1452         transaction_t *transaction;
1453         struct buffer_head *bh = jh2bh(jh);
1454
1455         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1456         transaction = jh->b_transaction;
1457         if (transaction)
1458                 assert_spin_locked(&transaction->t_journal->j_list_lock);
1459
1460         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1461         if (jh->b_jlist != BJ_None)
1462                 J_ASSERT_JH(jh, transaction != NULL);
1463
1464         switch (jh->b_jlist) {
1465         case BJ_None:
1466                 return;
1467         case BJ_Metadata:
1468                 transaction->t_nr_buffers--;
1469                 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1470                 list = &transaction->t_buffers;
1471                 break;
1472         case BJ_Forget:
1473                 list = &transaction->t_forget;
1474                 break;
1475         case BJ_IO:
1476                 list = &transaction->t_iobuf_list;
1477                 break;
1478         case BJ_Shadow:
1479                 list = &transaction->t_shadow_list;
1480                 break;
1481         case BJ_LogCtl:
1482                 list = &transaction->t_log_list;
1483                 break;
1484         case BJ_Reserved:
1485                 list = &transaction->t_reserved_list;
1486                 break;
1487         }
1488
1489         __blist_del_buffer(list, jh);
1490         jh->b_jlist = BJ_None;
1491         if (test_clear_buffer_jbddirty(bh))
1492                 mark_buffer_dirty(bh);  /* Expose it to the VM */
1493 }
1494
1495 void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1496 {
1497         __jbd2_journal_temp_unlink_buffer(jh);
1498         jh->b_transaction = NULL;
1499 }
1500
1501 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1502 {
1503         jbd_lock_bh_state(jh2bh(jh));
1504         spin_lock(&journal->j_list_lock);
1505         __jbd2_journal_unfile_buffer(jh);
1506         spin_unlock(&journal->j_list_lock);
1507         jbd_unlock_bh_state(jh2bh(jh));
1508 }
1509
1510 /*
1511  * Called from jbd2_journal_try_to_free_buffers().
1512  *
1513  * Called under jbd_lock_bh_state(bh)
1514  */
1515 static void
1516 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1517 {
1518         struct journal_head *jh;
1519
1520         jh = bh2jh(bh);
1521
1522         if (buffer_locked(bh) || buffer_dirty(bh))
1523                 goto out;
1524
1525         if (jh->b_next_transaction != NULL)
1526                 goto out;
1527
1528         spin_lock(&journal->j_list_lock);
1529         if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) {
1530                 /* written-back checkpointed metadata buffer */
1531                 if (jh->b_jlist == BJ_None) {
1532                         JBUFFER_TRACE(jh, "remove from checkpoint list");
1533                         __jbd2_journal_remove_checkpoint(jh);
1534                         jbd2_journal_remove_journal_head(bh);
1535                         __brelse(bh);
1536                 }
1537         }
1538         spin_unlock(&journal->j_list_lock);
1539 out:
1540         return;
1541 }
1542
1543 /**
1544  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1545  * @journal: journal for operation
1546  * @page: to try and free
1547  * @gfp_mask: we use the mask to detect how hard should we try to release
1548  * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1549  * release the buffers.
1550  *
1551  *
1552  * For all the buffers on this page,
1553  * if they are fully written out ordered data, move them onto BUF_CLEAN
1554  * so try_to_free_buffers() can reap them.
1555  *
1556  * This function returns non-zero if we wish try_to_free_buffers()
1557  * to be called. We do this if the page is releasable by try_to_free_buffers().
1558  * We also do it if the page has locked or dirty buffers and the caller wants
1559  * us to perform sync or async writeout.
1560  *
1561  * This complicates JBD locking somewhat.  We aren't protected by the
1562  * BKL here.  We wish to remove the buffer from its committing or
1563  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1564  *
1565  * This may *change* the value of transaction_t->t_datalist, so anyone
1566  * who looks at t_datalist needs to lock against this function.
1567  *
1568  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1569  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1570  * will come out of the lock with the buffer dirty, which makes it
1571  * ineligible for release here.
1572  *
1573  * Who else is affected by this?  hmm...  Really the only contender
1574  * is do_get_write_access() - it could be looking at the buffer while
1575  * journal_try_to_free_buffer() is changing its state.  But that
1576  * cannot happen because we never reallocate freed data as metadata
1577  * while the data is part of a transaction.  Yes?
1578  *
1579  * Return 0 on failure, 1 on success
1580  */
1581 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1582                                 struct page *page, gfp_t gfp_mask)
1583 {
1584         struct buffer_head *head;
1585         struct buffer_head *bh;
1586         int ret = 0;
1587
1588         J_ASSERT(PageLocked(page));
1589
1590         head = page_buffers(page);
1591         bh = head;
1592         do {
1593                 struct journal_head *jh;
1594
1595                 /*
1596                  * We take our own ref against the journal_head here to avoid
1597                  * having to add tons of locking around each instance of
1598                  * jbd2_journal_remove_journal_head() and
1599                  * jbd2_journal_put_journal_head().
1600                  */
1601                 jh = jbd2_journal_grab_journal_head(bh);
1602                 if (!jh)
1603                         continue;
1604
1605                 jbd_lock_bh_state(bh);
1606                 __journal_try_to_free_buffer(journal, bh);
1607                 jbd2_journal_put_journal_head(jh);
1608                 jbd_unlock_bh_state(bh);
1609                 if (buffer_jbd(bh))
1610                         goto busy;
1611         } while ((bh = bh->b_this_page) != head);
1612
1613         ret = try_to_free_buffers(page);
1614
1615 busy:
1616         return ret;
1617 }
1618
1619 /*
1620  * This buffer is no longer needed.  If it is on an older transaction's
1621  * checkpoint list we need to record it on this transaction's forget list
1622  * to pin this buffer (and hence its checkpointing transaction) down until
1623  * this transaction commits.  If the buffer isn't on a checkpoint list, we
1624  * release it.
1625  * Returns non-zero if JBD no longer has an interest in the buffer.
1626  *
1627  * Called under j_list_lock.
1628  *
1629  * Called under jbd_lock_bh_state(bh).
1630  */
1631 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1632 {
1633         int may_free = 1;
1634         struct buffer_head *bh = jh2bh(jh);
1635
1636         __jbd2_journal_unfile_buffer(jh);
1637
1638         if (jh->b_cp_transaction) {
1639                 JBUFFER_TRACE(jh, "on running+cp transaction");
1640                 /*
1641                  * We don't want to write the buffer anymore, clear the
1642                  * bit so that we don't confuse checks in
1643                  * __journal_file_buffer
1644                  */
1645                 clear_buffer_dirty(bh);
1646                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1647                 may_free = 0;
1648         } else {
1649                 JBUFFER_TRACE(jh, "on running transaction");
1650                 jbd2_journal_remove_journal_head(bh);
1651                 __brelse(bh);
1652         }
1653         return may_free;
1654 }
1655
1656 /*
1657  * jbd2_journal_invalidatepage
1658  *
1659  * This code is tricky.  It has a number of cases to deal with.
1660  *
1661  * There are two invariants which this code relies on:
1662  *
1663  * i_size must be updated on disk before we start calling invalidatepage on the
1664  * data.
1665  *
1666  *  This is done in ext3 by defining an ext3_setattr method which
1667  *  updates i_size before truncate gets going.  By maintaining this
1668  *  invariant, we can be sure that it is safe to throw away any buffers
1669  *  attached to the current transaction: once the transaction commits,
1670  *  we know that the data will not be needed.
1671  *
1672  *  Note however that we can *not* throw away data belonging to the
1673  *  previous, committing transaction!
1674  *
1675  * Any disk blocks which *are* part of the previous, committing
1676  * transaction (and which therefore cannot be discarded immediately) are
1677  * not going to be reused in the new running transaction
1678  *
1679  *  The bitmap committed_data images guarantee this: any block which is
1680  *  allocated in one transaction and removed in the next will be marked
1681  *  as in-use in the committed_data bitmap, so cannot be reused until
1682  *  the next transaction to delete the block commits.  This means that
1683  *  leaving committing buffers dirty is quite safe: the disk blocks
1684  *  cannot be reallocated to a different file and so buffer aliasing is
1685  *  not possible.
1686  *
1687  *
1688  * The above applies mainly to ordered data mode.  In writeback mode we
1689  * don't make guarantees about the order in which data hits disk --- in
1690  * particular we don't guarantee that new dirty data is flushed before
1691  * transaction commit --- so it is always safe just to discard data
1692  * immediately in that mode.  --sct
1693  */
1694
1695 /*
1696  * The journal_unmap_buffer helper function returns zero if the buffer
1697  * concerned remains pinned as an anonymous buffer belonging to an older
1698  * transaction.
1699  *
1700  * We're outside-transaction here.  Either or both of j_running_transaction
1701  * and j_committing_transaction may be NULL.
1702  */
1703 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh)
1704 {
1705         transaction_t *transaction;
1706         struct journal_head *jh;
1707         int may_free = 1;
1708         int ret;
1709
1710         BUFFER_TRACE(bh, "entry");
1711
1712         /*
1713          * It is safe to proceed here without the j_list_lock because the
1714          * buffers cannot be stolen by try_to_free_buffers as long as we are
1715          * holding the page lock. --sct
1716          */
1717
1718         if (!buffer_jbd(bh))
1719                 goto zap_buffer_unlocked;
1720
1721         /* OK, we have data buffer in journaled mode */
1722         spin_lock(&journal->j_state_lock);
1723         jbd_lock_bh_state(bh);
1724         spin_lock(&journal->j_list_lock);
1725
1726         jh = jbd2_journal_grab_journal_head(bh);
1727         if (!jh)
1728                 goto zap_buffer_no_jh;
1729
1730         /*
1731          * We cannot remove the buffer from checkpoint lists until the
1732          * transaction adding inode to orphan list (let's call it T)
1733          * is committed.  Otherwise if the transaction changing the
1734          * buffer would be cleaned from the journal before T is
1735          * committed, a crash will cause that the correct contents of
1736          * the buffer will be lost.  On the other hand we have to
1737          * clear the buffer dirty bit at latest at the moment when the
1738          * transaction marking the buffer as freed in the filesystem
1739          * structures is committed because from that moment on the
1740          * buffer can be reallocated and used by a different page.
1741          * Since the block hasn't been freed yet but the inode has
1742          * already been added to orphan list, it is safe for us to add
1743          * the buffer to BJ_Forget list of the newest transaction.
1744          */
1745         transaction = jh->b_transaction;
1746         if (transaction == NULL) {
1747                 /* First case: not on any transaction.  If it
1748                  * has no checkpoint link, then we can zap it:
1749                  * it's a writeback-mode buffer so we don't care
1750                  * if it hits disk safely. */
1751                 if (!jh->b_cp_transaction) {
1752                         JBUFFER_TRACE(jh, "not on any transaction: zap");
1753                         goto zap_buffer;
1754                 }
1755
1756                 if (!buffer_dirty(bh)) {
1757                         /* bdflush has written it.  We can drop it now */
1758                         goto zap_buffer;
1759                 }
1760
1761                 /* OK, it must be in the journal but still not
1762                  * written fully to disk: it's metadata or
1763                  * journaled data... */
1764
1765                 if (journal->j_running_transaction) {
1766                         /* ... and once the current transaction has
1767                          * committed, the buffer won't be needed any
1768                          * longer. */
1769                         JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
1770                         ret = __dispose_buffer(jh,
1771                                         journal->j_running_transaction);
1772                         jbd2_journal_put_journal_head(jh);
1773                         spin_unlock(&journal->j_list_lock);
1774                         jbd_unlock_bh_state(bh);
1775                         spin_unlock(&journal->j_state_lock);
1776                         return ret;
1777                 } else {
1778                         /* There is no currently-running transaction. So the
1779                          * orphan record which we wrote for this file must have
1780                          * passed into commit.  We must attach this buffer to
1781                          * the committing transaction, if it exists. */
1782                         if (journal->j_committing_transaction) {
1783                                 JBUFFER_TRACE(jh, "give to committing trans");
1784                                 ret = __dispose_buffer(jh,
1785                                         journal->j_committing_transaction);
1786                                 jbd2_journal_put_journal_head(jh);
1787                                 spin_unlock(&journal->j_list_lock);
1788                                 jbd_unlock_bh_state(bh);
1789                                 spin_unlock(&journal->j_state_lock);
1790                                 return ret;
1791                         } else {
1792                                 /* The orphan record's transaction has
1793                                  * committed.  We can cleanse this buffer */
1794                                 clear_buffer_jbddirty(bh);
1795                                 goto zap_buffer;
1796                         }
1797                 }
1798         } else if (transaction == journal->j_committing_transaction) {
1799                 JBUFFER_TRACE(jh, "on committing transaction");
1800                 /*
1801                  * The buffer is committing, we simply cannot touch
1802                  * it. So we just set j_next_transaction to the
1803                  * running transaction (if there is one) and mark
1804                  * buffer as freed so that commit code knows it should
1805                  * clear dirty bits when it is done with the buffer.
1806                  */
1807                 set_buffer_freed(bh);
1808                 if (journal->j_running_transaction && buffer_jbddirty(bh))
1809                         jh->b_next_transaction = journal->j_running_transaction;
1810                 jbd2_journal_put_journal_head(jh);
1811                 spin_unlock(&journal->j_list_lock);
1812                 jbd_unlock_bh_state(bh);
1813                 spin_unlock(&journal->j_state_lock);
1814                 return 0;
1815         } else {
1816                 /* Good, the buffer belongs to the running transaction.
1817                  * We are writing our own transaction's data, not any
1818                  * previous one's, so it is safe to throw it away
1819                  * (remember that we expect the filesystem to have set
1820                  * i_size already for this truncate so recovery will not
1821                  * expose the disk blocks we are discarding here.) */
1822                 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
1823                 JBUFFER_TRACE(jh, "on running transaction");
1824                 may_free = __dispose_buffer(jh, transaction);
1825         }
1826
1827 zap_buffer:
1828         jbd2_journal_put_journal_head(jh);
1829 zap_buffer_no_jh:
1830         spin_unlock(&journal->j_list_lock);
1831         jbd_unlock_bh_state(bh);
1832         spin_unlock(&journal->j_state_lock);
1833 zap_buffer_unlocked:
1834         clear_buffer_dirty(bh);
1835         J_ASSERT_BH(bh, !buffer_jbddirty(bh));
1836         clear_buffer_mapped(bh);
1837         clear_buffer_req(bh);
1838         clear_buffer_new(bh);
1839         bh->b_bdev = NULL;
1840         return may_free;
1841 }
1842
1843 /**
1844  * void jbd2_journal_invalidatepage()
1845  * @journal: journal to use for flush...
1846  * @page:    page to flush
1847  * @offset:  length of page to invalidate.
1848  *
1849  * Reap page buffers containing data after offset in page.
1850  *
1851  */
1852 void jbd2_journal_invalidatepage(journal_t *journal,
1853                       struct page *page,
1854                       unsigned long offset)
1855 {
1856         struct buffer_head *head, *bh, *next;
1857         unsigned int curr_off = 0;
1858         int may_free = 1;
1859
1860         if (!PageLocked(page))
1861                 BUG();
1862         if (!page_has_buffers(page))
1863                 return;
1864
1865         /* We will potentially be playing with lists other than just the
1866          * data lists (especially for journaled data mode), so be
1867          * cautious in our locking. */
1868
1869         head = bh = page_buffers(page);
1870         do {
1871                 unsigned int next_off = curr_off + bh->b_size;
1872                 next = bh->b_this_page;
1873
1874                 if (offset <= curr_off) {
1875                         /* This block is wholly outside the truncation point */
1876                         lock_buffer(bh);
1877                         may_free &= journal_unmap_buffer(journal, bh);
1878                         unlock_buffer(bh);
1879                 }
1880                 curr_off = next_off;
1881                 bh = next;
1882
1883         } while (bh != head);
1884
1885         if (!offset) {
1886                 if (may_free && try_to_free_buffers(page))
1887                         J_ASSERT(!page_has_buffers(page));
1888         }
1889 }
1890
1891 /*
1892  * File a buffer on the given transaction list.
1893  */
1894 void __jbd2_journal_file_buffer(struct journal_head *jh,
1895                         transaction_t *transaction, int jlist)
1896 {
1897         struct journal_head **list = NULL;
1898         int was_dirty = 0;
1899         struct buffer_head *bh = jh2bh(jh);
1900
1901         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1902         assert_spin_locked(&transaction->t_journal->j_list_lock);
1903
1904         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1905         J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1906                                 jh->b_transaction == NULL);
1907
1908         if (jh->b_transaction && jh->b_jlist == jlist)
1909                 return;
1910
1911         if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
1912             jlist == BJ_Shadow || jlist == BJ_Forget) {
1913                 /*
1914                  * For metadata buffers, we track dirty bit in buffer_jbddirty
1915                  * instead of buffer_dirty. We should not see a dirty bit set
1916                  * here because we clear it in do_get_write_access but e.g.
1917                  * tune2fs can modify the sb and set the dirty bit at any time
1918                  * so we try to gracefully handle that.
1919                  */
1920                 if (buffer_dirty(bh))
1921                         warn_dirty_buffer(bh);
1922                 if (test_clear_buffer_dirty(bh) ||
1923                     test_clear_buffer_jbddirty(bh))
1924                         was_dirty = 1;
1925         }
1926
1927         if (jh->b_transaction)
1928                 __jbd2_journal_temp_unlink_buffer(jh);
1929         jh->b_transaction = transaction;
1930
1931         switch (jlist) {
1932         case BJ_None:
1933                 J_ASSERT_JH(jh, !jh->b_committed_data);
1934                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1935                 return;
1936         case BJ_Metadata:
1937                 transaction->t_nr_buffers++;
1938                 list = &transaction->t_buffers;
1939                 break;
1940         case BJ_Forget:
1941                 list = &transaction->t_forget;
1942                 break;
1943         case BJ_IO:
1944                 list = &transaction->t_iobuf_list;
1945                 break;
1946         case BJ_Shadow:
1947                 list = &transaction->t_shadow_list;
1948                 break;
1949         case BJ_LogCtl:
1950                 list = &transaction->t_log_list;
1951                 break;
1952         case BJ_Reserved:
1953                 list = &transaction->t_reserved_list;
1954                 break;
1955         }
1956
1957         __blist_add_buffer(list, jh);
1958         jh->b_jlist = jlist;
1959
1960         if (was_dirty)
1961                 set_buffer_jbddirty(bh);
1962 }
1963
1964 void jbd2_journal_file_buffer(struct journal_head *jh,
1965                                 transaction_t *transaction, int jlist)
1966 {
1967         jbd_lock_bh_state(jh2bh(jh));
1968         spin_lock(&transaction->t_journal->j_list_lock);
1969         __jbd2_journal_file_buffer(jh, transaction, jlist);
1970         spin_unlock(&transaction->t_journal->j_list_lock);
1971         jbd_unlock_bh_state(jh2bh(jh));
1972 }
1973
1974 /*
1975  * Remove a buffer from its current buffer list in preparation for
1976  * dropping it from its current transaction entirely.  If the buffer has
1977  * already started to be used by a subsequent transaction, refile the
1978  * buffer on that transaction's metadata list.
1979  *
1980  * Called under journal->j_list_lock
1981  *
1982  * Called under jbd_lock_bh_state(jh2bh(jh))
1983  */
1984 void __jbd2_journal_refile_buffer(struct journal_head *jh)
1985 {
1986         int was_dirty, jlist;
1987         struct buffer_head *bh = jh2bh(jh);
1988
1989         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1990         if (jh->b_transaction)
1991                 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
1992
1993         /* If the buffer is now unused, just drop it. */
1994         if (jh->b_next_transaction == NULL) {
1995                 __jbd2_journal_unfile_buffer(jh);
1996                 return;
1997         }
1998
1999         /*
2000          * It has been modified by a later transaction: add it to the new
2001          * transaction's metadata list.
2002          */
2003
2004         was_dirty = test_clear_buffer_jbddirty(bh);
2005         __jbd2_journal_temp_unlink_buffer(jh);
2006         jh->b_transaction = jh->b_next_transaction;
2007         jh->b_next_transaction = NULL;
2008         if (buffer_freed(bh))
2009                 jlist = BJ_Forget;
2010         else if (jh->b_modified)
2011                 jlist = BJ_Metadata;
2012         else
2013                 jlist = BJ_Reserved;
2014         __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2015         J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2016
2017         if (was_dirty)
2018                 set_buffer_jbddirty(bh);
2019 }
2020
2021 /*
2022  * For the unlocked version of this call, also make sure that any
2023  * hanging journal_head is cleaned up if necessary.
2024  *
2025  * __jbd2_journal_refile_buffer is usually called as part of a single locked
2026  * operation on a buffer_head, in which the caller is probably going to
2027  * be hooking the journal_head onto other lists.  In that case it is up
2028  * to the caller to remove the journal_head if necessary.  For the
2029  * unlocked jbd2_journal_refile_buffer call, the caller isn't going to be
2030  * doing anything else to the buffer so we need to do the cleanup
2031  * ourselves to avoid a jh leak.
2032  *
2033  * *** The journal_head may be freed by this call! ***
2034  */
2035 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2036 {
2037         struct buffer_head *bh = jh2bh(jh);
2038
2039         jbd_lock_bh_state(bh);
2040         spin_lock(&journal->j_list_lock);
2041
2042         __jbd2_journal_refile_buffer(jh);
2043         jbd_unlock_bh_state(bh);
2044         jbd2_journal_remove_journal_head(bh);
2045
2046         spin_unlock(&journal->j_list_lock);
2047         __brelse(bh);
2048 }
2049
2050 /*
2051  * File inode in the inode list of the handle's transaction
2052  */
2053 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2054 {
2055         transaction_t *transaction = handle->h_transaction;
2056         journal_t *journal = transaction->t_journal;
2057
2058         if (is_handle_aborted(handle))
2059                 return -EIO;
2060
2061         jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2062                         transaction->t_tid);
2063
2064         /*
2065          * First check whether inode isn't already on the transaction's
2066          * lists without taking the lock. Note that this check is safe
2067          * without the lock as we cannot race with somebody removing inode
2068          * from the transaction. The reason is that we remove inode from the
2069          * transaction only in journal_release_jbd_inode() and when we commit
2070          * the transaction. We are guarded from the first case by holding
2071          * a reference to the inode. We are safe against the second case
2072          * because if jinode->i_transaction == transaction, commit code
2073          * cannot touch the transaction because we hold reference to it,
2074          * and if jinode->i_next_transaction == transaction, commit code
2075          * will only file the inode where we want it.
2076          */
2077         if (jinode->i_transaction == transaction ||
2078             jinode->i_next_transaction == transaction)
2079                 return 0;
2080
2081         spin_lock(&journal->j_list_lock);
2082
2083         if (jinode->i_transaction == transaction ||
2084             jinode->i_next_transaction == transaction)
2085                 goto done;
2086
2087         /* On some different transaction's list - should be
2088          * the committing one */
2089         if (jinode->i_transaction) {
2090                 J_ASSERT(jinode->i_next_transaction == NULL);
2091                 J_ASSERT(jinode->i_transaction ==
2092                                         journal->j_committing_transaction);
2093                 jinode->i_next_transaction = transaction;
2094                 goto done;
2095         }
2096         /* Not on any transaction list... */
2097         J_ASSERT(!jinode->i_next_transaction);
2098         jinode->i_transaction = transaction;
2099         list_add(&jinode->i_list, &transaction->t_inode_list);
2100 done:
2101         spin_unlock(&journal->j_list_lock);
2102
2103         return 0;
2104 }
2105
2106 /*
2107  * File truncate and transaction commit interact with each other in a
2108  * non-trivial way.  If a transaction writing data block A is
2109  * committing, we cannot discard the data by truncate until we have
2110  * written them.  Otherwise if we crashed after the transaction with
2111  * write has committed but before the transaction with truncate has
2112  * committed, we could see stale data in block A.  This function is a
2113  * helper to solve this problem.  It starts writeout of the truncated
2114  * part in case it is in the committing transaction.
2115  *
2116  * Filesystem code must call this function when inode is journaled in
2117  * ordered mode before truncation happens and after the inode has been
2118  * placed on orphan list with the new inode size. The second condition
2119  * avoids the race that someone writes new data and we start
2120  * committing the transaction after this function has been called but
2121  * before a transaction for truncate is started (and furthermore it
2122  * allows us to optimize the case where the addition to orphan list
2123  * happens in the same transaction as write --- we don't have to write
2124  * any data in such case).
2125  */
2126 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2127                                         struct jbd2_inode *jinode,
2128                                         loff_t new_size)
2129 {
2130         transaction_t *inode_trans, *commit_trans;
2131         int ret = 0;
2132
2133         /* This is a quick check to avoid locking if not necessary */
2134         if (!jinode->i_transaction)
2135                 goto out;
2136         /* Locks are here just to force reading of recent values, it is
2137          * enough that the transaction was not committing before we started
2138          * a transaction adding the inode to orphan list */
2139         spin_lock(&journal->j_state_lock);
2140         commit_trans = journal->j_committing_transaction;
2141         spin_unlock(&journal->j_state_lock);
2142         spin_lock(&journal->j_list_lock);
2143         inode_trans = jinode->i_transaction;
2144         spin_unlock(&journal->j_list_lock);
2145         if (inode_trans == commit_trans) {
2146                 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2147                         new_size, LLONG_MAX);
2148                 if (ret)
2149                         jbd2_journal_abort(journal, ret);
2150         }
2151 out:
2152         return ret;
2153 }