Merge remote-tracking branch 'asoc/fix/rcar' into asoc-linus
[sfrench/cifs-2.6.git] / fs / jbd2 / transaction.c
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/bug.h>
31 #include <linux/module.h>
32 #include <linux/sched/mm.h>
33
34 #include <trace/events/jbd2.h>
35
36 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
37 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
38
39 static struct kmem_cache *transaction_cache;
40 int __init jbd2_journal_init_transaction_cache(void)
41 {
42         J_ASSERT(!transaction_cache);
43         transaction_cache = kmem_cache_create("jbd2_transaction_s",
44                                         sizeof(transaction_t),
45                                         0,
46                                         SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
47                                         NULL);
48         if (transaction_cache)
49                 return 0;
50         return -ENOMEM;
51 }
52
53 void jbd2_journal_destroy_transaction_cache(void)
54 {
55         if (transaction_cache) {
56                 kmem_cache_destroy(transaction_cache);
57                 transaction_cache = NULL;
58         }
59 }
60
61 void jbd2_journal_free_transaction(transaction_t *transaction)
62 {
63         if (unlikely(ZERO_OR_NULL_PTR(transaction)))
64                 return;
65         kmem_cache_free(transaction_cache, transaction);
66 }
67
68 /*
69  * jbd2_get_transaction: obtain a new transaction_t object.
70  *
71  * Simply allocate and initialise a new transaction.  Create it in
72  * RUNNING state and add it to the current journal (which should not
73  * have an existing running transaction: we only make a new transaction
74  * once we have started to commit the old one).
75  *
76  * Preconditions:
77  *      The journal MUST be locked.  We don't perform atomic mallocs on the
78  *      new transaction and we can't block without protecting against other
79  *      processes trying to touch the journal while it is in transition.
80  *
81  */
82
83 static transaction_t *
84 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
85 {
86         transaction->t_journal = journal;
87         transaction->t_state = T_RUNNING;
88         transaction->t_start_time = ktime_get();
89         transaction->t_tid = journal->j_transaction_sequence++;
90         transaction->t_expires = jiffies + journal->j_commit_interval;
91         spin_lock_init(&transaction->t_handle_lock);
92         atomic_set(&transaction->t_updates, 0);
93         atomic_set(&transaction->t_outstanding_credits,
94                    atomic_read(&journal->j_reserved_credits));
95         atomic_set(&transaction->t_handle_count, 0);
96         INIT_LIST_HEAD(&transaction->t_inode_list);
97         INIT_LIST_HEAD(&transaction->t_private_list);
98
99         /* Set up the commit timer for the new transaction. */
100         journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
101         add_timer(&journal->j_commit_timer);
102
103         J_ASSERT(journal->j_running_transaction == NULL);
104         journal->j_running_transaction = transaction;
105         transaction->t_max_wait = 0;
106         transaction->t_start = jiffies;
107         transaction->t_requested = 0;
108
109         return transaction;
110 }
111
112 /*
113  * Handle management.
114  *
115  * A handle_t is an object which represents a single atomic update to a
116  * filesystem, and which tracks all of the modifications which form part
117  * of that one update.
118  */
119
120 /*
121  * Update transaction's maximum wait time, if debugging is enabled.
122  *
123  * In order for t_max_wait to be reliable, it must be protected by a
124  * lock.  But doing so will mean that start_this_handle() can not be
125  * run in parallel on SMP systems, which limits our scalability.  So
126  * unless debugging is enabled, we no longer update t_max_wait, which
127  * means that maximum wait time reported by the jbd2_run_stats
128  * tracepoint will always be zero.
129  */
130 static inline void update_t_max_wait(transaction_t *transaction,
131                                      unsigned long ts)
132 {
133 #ifdef CONFIG_JBD2_DEBUG
134         if (jbd2_journal_enable_debug &&
135             time_after(transaction->t_start, ts)) {
136                 ts = jbd2_time_diff(ts, transaction->t_start);
137                 spin_lock(&transaction->t_handle_lock);
138                 if (ts > transaction->t_max_wait)
139                         transaction->t_max_wait = ts;
140                 spin_unlock(&transaction->t_handle_lock);
141         }
142 #endif
143 }
144
145 /*
146  * Wait until running transaction passes T_LOCKED state. Also starts the commit
147  * if needed. The function expects running transaction to exist and releases
148  * j_state_lock.
149  */
150 static void wait_transaction_locked(journal_t *journal)
151         __releases(journal->j_state_lock)
152 {
153         DEFINE_WAIT(wait);
154         int need_to_start;
155         tid_t tid = journal->j_running_transaction->t_tid;
156
157         prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
158                         TASK_UNINTERRUPTIBLE);
159         need_to_start = !tid_geq(journal->j_commit_request, tid);
160         read_unlock(&journal->j_state_lock);
161         if (need_to_start)
162                 jbd2_log_start_commit(journal, tid);
163         jbd2_might_wait_for_commit(journal);
164         schedule();
165         finish_wait(&journal->j_wait_transaction_locked, &wait);
166 }
167
168 static void sub_reserved_credits(journal_t *journal, int blocks)
169 {
170         atomic_sub(blocks, &journal->j_reserved_credits);
171         wake_up(&journal->j_wait_reserved);
172 }
173
174 /*
175  * Wait until we can add credits for handle to the running transaction.  Called
176  * with j_state_lock held for reading. Returns 0 if handle joined the running
177  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
178  * caller must retry.
179  */
180 static int add_transaction_credits(journal_t *journal, int blocks,
181                                    int rsv_blocks)
182 {
183         transaction_t *t = journal->j_running_transaction;
184         int needed;
185         int total = blocks + rsv_blocks;
186
187         /*
188          * If the current transaction is locked down for commit, wait
189          * for the lock to be released.
190          */
191         if (t->t_state == T_LOCKED) {
192                 wait_transaction_locked(journal);
193                 return 1;
194         }
195
196         /*
197          * If there is not enough space left in the log to write all
198          * potential buffers requested by this operation, we need to
199          * stall pending a log checkpoint to free some more log space.
200          */
201         needed = atomic_add_return(total, &t->t_outstanding_credits);
202         if (needed > journal->j_max_transaction_buffers) {
203                 /*
204                  * If the current transaction is already too large,
205                  * then start to commit it: we can then go back and
206                  * attach this handle to a new transaction.
207                  */
208                 atomic_sub(total, &t->t_outstanding_credits);
209
210                 /*
211                  * Is the number of reserved credits in the current transaction too
212                  * big to fit this handle? Wait until reserved credits are freed.
213                  */
214                 if (atomic_read(&journal->j_reserved_credits) + total >
215                     journal->j_max_transaction_buffers) {
216                         read_unlock(&journal->j_state_lock);
217                         jbd2_might_wait_for_commit(journal);
218                         wait_event(journal->j_wait_reserved,
219                                    atomic_read(&journal->j_reserved_credits) + total <=
220                                    journal->j_max_transaction_buffers);
221                         return 1;
222                 }
223
224                 wait_transaction_locked(journal);
225                 return 1;
226         }
227
228         /*
229          * The commit code assumes that it can get enough log space
230          * without forcing a checkpoint.  This is *critical* for
231          * correctness: a checkpoint of a buffer which is also
232          * associated with a committing transaction creates a deadlock,
233          * so commit simply cannot force through checkpoints.
234          *
235          * We must therefore ensure the necessary space in the journal
236          * *before* starting to dirty potentially checkpointed buffers
237          * in the new transaction.
238          */
239         if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
240                 atomic_sub(total, &t->t_outstanding_credits);
241                 read_unlock(&journal->j_state_lock);
242                 jbd2_might_wait_for_commit(journal);
243                 write_lock(&journal->j_state_lock);
244                 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
245                         __jbd2_log_wait_for_space(journal);
246                 write_unlock(&journal->j_state_lock);
247                 return 1;
248         }
249
250         /* No reservation? We are done... */
251         if (!rsv_blocks)
252                 return 0;
253
254         needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
255         /* We allow at most half of a transaction to be reserved */
256         if (needed > journal->j_max_transaction_buffers / 2) {
257                 sub_reserved_credits(journal, rsv_blocks);
258                 atomic_sub(total, &t->t_outstanding_credits);
259                 read_unlock(&journal->j_state_lock);
260                 jbd2_might_wait_for_commit(journal);
261                 wait_event(journal->j_wait_reserved,
262                          atomic_read(&journal->j_reserved_credits) + rsv_blocks
263                          <= journal->j_max_transaction_buffers / 2);
264                 return 1;
265         }
266         return 0;
267 }
268
269 /*
270  * start_this_handle: Given a handle, deal with any locking or stalling
271  * needed to make sure that there is enough journal space for the handle
272  * to begin.  Attach the handle to a transaction and set up the
273  * transaction's buffer credits.
274  */
275
276 static int start_this_handle(journal_t *journal, handle_t *handle,
277                              gfp_t gfp_mask)
278 {
279         transaction_t   *transaction, *new_transaction = NULL;
280         int             blocks = handle->h_buffer_credits;
281         int             rsv_blocks = 0;
282         unsigned long ts = jiffies;
283
284         if (handle->h_rsv_handle)
285                 rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
286
287         /*
288          * Limit the number of reserved credits to 1/2 of maximum transaction
289          * size and limit the number of total credits to not exceed maximum
290          * transaction size per operation.
291          */
292         if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
293             (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
294                 printk(KERN_ERR "JBD2: %s wants too many credits "
295                        "credits:%d rsv_credits:%d max:%d\n",
296                        current->comm, blocks, rsv_blocks,
297                        journal->j_max_transaction_buffers);
298                 WARN_ON(1);
299                 return -ENOSPC;
300         }
301
302 alloc_transaction:
303         if (!journal->j_running_transaction) {
304                 /*
305                  * If __GFP_FS is not present, then we may be being called from
306                  * inside the fs writeback layer, so we MUST NOT fail.
307                  */
308                 if ((gfp_mask & __GFP_FS) == 0)
309                         gfp_mask |= __GFP_NOFAIL;
310                 new_transaction = kmem_cache_zalloc(transaction_cache,
311                                                     gfp_mask);
312                 if (!new_transaction)
313                         return -ENOMEM;
314         }
315
316         jbd_debug(3, "New handle %p going live.\n", handle);
317
318         /*
319          * We need to hold j_state_lock until t_updates has been incremented,
320          * for proper journal barrier handling
321          */
322 repeat:
323         read_lock(&journal->j_state_lock);
324         BUG_ON(journal->j_flags & JBD2_UNMOUNT);
325         if (is_journal_aborted(journal) ||
326             (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
327                 read_unlock(&journal->j_state_lock);
328                 jbd2_journal_free_transaction(new_transaction);
329                 return -EROFS;
330         }
331
332         /*
333          * Wait on the journal's transaction barrier if necessary. Specifically
334          * we allow reserved handles to proceed because otherwise commit could
335          * deadlock on page writeback not being able to complete.
336          */
337         if (!handle->h_reserved && journal->j_barrier_count) {
338                 read_unlock(&journal->j_state_lock);
339                 wait_event(journal->j_wait_transaction_locked,
340                                 journal->j_barrier_count == 0);
341                 goto repeat;
342         }
343
344         if (!journal->j_running_transaction) {
345                 read_unlock(&journal->j_state_lock);
346                 if (!new_transaction)
347                         goto alloc_transaction;
348                 write_lock(&journal->j_state_lock);
349                 if (!journal->j_running_transaction &&
350                     (handle->h_reserved || !journal->j_barrier_count)) {
351                         jbd2_get_transaction(journal, new_transaction);
352                         new_transaction = NULL;
353                 }
354                 write_unlock(&journal->j_state_lock);
355                 goto repeat;
356         }
357
358         transaction = journal->j_running_transaction;
359
360         if (!handle->h_reserved) {
361                 /* We may have dropped j_state_lock - restart in that case */
362                 if (add_transaction_credits(journal, blocks, rsv_blocks))
363                         goto repeat;
364         } else {
365                 /*
366                  * We have handle reserved so we are allowed to join T_LOCKED
367                  * transaction and we don't have to check for transaction size
368                  * and journal space.
369                  */
370                 sub_reserved_credits(journal, blocks);
371                 handle->h_reserved = 0;
372         }
373
374         /* OK, account for the buffers that this operation expects to
375          * use and add the handle to the running transaction. 
376          */
377         update_t_max_wait(transaction, ts);
378         handle->h_transaction = transaction;
379         handle->h_requested_credits = blocks;
380         handle->h_start_jiffies = jiffies;
381         atomic_inc(&transaction->t_updates);
382         atomic_inc(&transaction->t_handle_count);
383         jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
384                   handle, blocks,
385                   atomic_read(&transaction->t_outstanding_credits),
386                   jbd2_log_space_left(journal));
387         read_unlock(&journal->j_state_lock);
388         current->journal_info = handle;
389
390         rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
391         jbd2_journal_free_transaction(new_transaction);
392         /*
393          * Ensure that no allocations done while the transaction is open are
394          * going to recurse back to the fs layer.
395          */
396         handle->saved_alloc_context = memalloc_nofs_save();
397         return 0;
398 }
399
400 /* Allocate a new handle.  This should probably be in a slab... */
401 static handle_t *new_handle(int nblocks)
402 {
403         handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
404         if (!handle)
405                 return NULL;
406         handle->h_buffer_credits = nblocks;
407         handle->h_ref = 1;
408
409         return handle;
410 }
411
412 /**
413  * handle_t *jbd2_journal_start() - Obtain a new handle.
414  * @journal: Journal to start transaction on.
415  * @nblocks: number of block buffer we might modify
416  *
417  * We make sure that the transaction can guarantee at least nblocks of
418  * modified buffers in the log.  We block until the log can guarantee
419  * that much space. Additionally, if rsv_blocks > 0, we also create another
420  * handle with rsv_blocks reserved blocks in the journal. This handle is
421  * is stored in h_rsv_handle. It is not attached to any particular transaction
422  * and thus doesn't block transaction commit. If the caller uses this reserved
423  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
424  * on the parent handle will dispose the reserved one. Reserved handle has to
425  * be converted to a normal handle using jbd2_journal_start_reserved() before
426  * it can be used.
427  *
428  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
429  * on failure.
430  */
431 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
432                               gfp_t gfp_mask, unsigned int type,
433                               unsigned int line_no)
434 {
435         handle_t *handle = journal_current_handle();
436         int err;
437
438         if (!journal)
439                 return ERR_PTR(-EROFS);
440
441         if (handle) {
442                 J_ASSERT(handle->h_transaction->t_journal == journal);
443                 handle->h_ref++;
444                 return handle;
445         }
446
447         handle = new_handle(nblocks);
448         if (!handle)
449                 return ERR_PTR(-ENOMEM);
450         if (rsv_blocks) {
451                 handle_t *rsv_handle;
452
453                 rsv_handle = new_handle(rsv_blocks);
454                 if (!rsv_handle) {
455                         jbd2_free_handle(handle);
456                         return ERR_PTR(-ENOMEM);
457                 }
458                 rsv_handle->h_reserved = 1;
459                 rsv_handle->h_journal = journal;
460                 handle->h_rsv_handle = rsv_handle;
461         }
462
463         err = start_this_handle(journal, handle, gfp_mask);
464         if (err < 0) {
465                 if (handle->h_rsv_handle)
466                         jbd2_free_handle(handle->h_rsv_handle);
467                 jbd2_free_handle(handle);
468                 return ERR_PTR(err);
469         }
470         handle->h_type = type;
471         handle->h_line_no = line_no;
472         trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
473                                 handle->h_transaction->t_tid, type,
474                                 line_no, nblocks);
475
476         return handle;
477 }
478 EXPORT_SYMBOL(jbd2__journal_start);
479
480
481 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
482 {
483         return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
484 }
485 EXPORT_SYMBOL(jbd2_journal_start);
486
487 void jbd2_journal_free_reserved(handle_t *handle)
488 {
489         journal_t *journal = handle->h_journal;
490
491         WARN_ON(!handle->h_reserved);
492         sub_reserved_credits(journal, handle->h_buffer_credits);
493         jbd2_free_handle(handle);
494 }
495 EXPORT_SYMBOL(jbd2_journal_free_reserved);
496
497 /**
498  * int jbd2_journal_start_reserved(handle_t *handle) - start reserved handle
499  * @handle: handle to start
500  *
501  * Start handle that has been previously reserved with jbd2_journal_reserve().
502  * This attaches @handle to the running transaction (or creates one if there's
503  * not transaction running). Unlike jbd2_journal_start() this function cannot
504  * block on journal commit, checkpointing, or similar stuff. It can block on
505  * memory allocation or frozen journal though.
506  *
507  * Return 0 on success, non-zero on error - handle is freed in that case.
508  */
509 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
510                                 unsigned int line_no)
511 {
512         journal_t *journal = handle->h_journal;
513         int ret = -EIO;
514
515         if (WARN_ON(!handle->h_reserved)) {
516                 /* Someone passed in normal handle? Just stop it. */
517                 jbd2_journal_stop(handle);
518                 return ret;
519         }
520         /*
521          * Usefulness of mixing of reserved and unreserved handles is
522          * questionable. So far nobody seems to need it so just error out.
523          */
524         if (WARN_ON(current->journal_info)) {
525                 jbd2_journal_free_reserved(handle);
526                 return ret;
527         }
528
529         handle->h_journal = NULL;
530         /*
531          * GFP_NOFS is here because callers are likely from writeback or
532          * similarly constrained call sites
533          */
534         ret = start_this_handle(journal, handle, GFP_NOFS);
535         if (ret < 0) {
536                 jbd2_journal_free_reserved(handle);
537                 return ret;
538         }
539         handle->h_type = type;
540         handle->h_line_no = line_no;
541         return 0;
542 }
543 EXPORT_SYMBOL(jbd2_journal_start_reserved);
544
545 /**
546  * int jbd2_journal_extend() - extend buffer credits.
547  * @handle:  handle to 'extend'
548  * @nblocks: nr blocks to try to extend by.
549  *
550  * Some transactions, such as large extends and truncates, can be done
551  * atomically all at once or in several stages.  The operation requests
552  * a credit for a number of buffer modifications in advance, but can
553  * extend its credit if it needs more.
554  *
555  * jbd2_journal_extend tries to give the running handle more buffer credits.
556  * It does not guarantee that allocation - this is a best-effort only.
557  * The calling process MUST be able to deal cleanly with a failure to
558  * extend here.
559  *
560  * Return 0 on success, non-zero on failure.
561  *
562  * return code < 0 implies an error
563  * return code > 0 implies normal transaction-full status.
564  */
565 int jbd2_journal_extend(handle_t *handle, int nblocks)
566 {
567         transaction_t *transaction = handle->h_transaction;
568         journal_t *journal;
569         int result;
570         int wanted;
571
572         if (is_handle_aborted(handle))
573                 return -EROFS;
574         journal = transaction->t_journal;
575
576         result = 1;
577
578         read_lock(&journal->j_state_lock);
579
580         /* Don't extend a locked-down transaction! */
581         if (transaction->t_state != T_RUNNING) {
582                 jbd_debug(3, "denied handle %p %d blocks: "
583                           "transaction not running\n", handle, nblocks);
584                 goto error_out;
585         }
586
587         spin_lock(&transaction->t_handle_lock);
588         wanted = atomic_add_return(nblocks,
589                                    &transaction->t_outstanding_credits);
590
591         if (wanted > journal->j_max_transaction_buffers) {
592                 jbd_debug(3, "denied handle %p %d blocks: "
593                           "transaction too large\n", handle, nblocks);
594                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
595                 goto unlock;
596         }
597
598         if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
599             jbd2_log_space_left(journal)) {
600                 jbd_debug(3, "denied handle %p %d blocks: "
601                           "insufficient log space\n", handle, nblocks);
602                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
603                 goto unlock;
604         }
605
606         trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
607                                  transaction->t_tid,
608                                  handle->h_type, handle->h_line_no,
609                                  handle->h_buffer_credits,
610                                  nblocks);
611
612         handle->h_buffer_credits += nblocks;
613         handle->h_requested_credits += nblocks;
614         result = 0;
615
616         jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
617 unlock:
618         spin_unlock(&transaction->t_handle_lock);
619 error_out:
620         read_unlock(&journal->j_state_lock);
621         return result;
622 }
623
624
625 /**
626  * int jbd2_journal_restart() - restart a handle .
627  * @handle:  handle to restart
628  * @nblocks: nr credits requested
629  *
630  * Restart a handle for a multi-transaction filesystem
631  * operation.
632  *
633  * If the jbd2_journal_extend() call above fails to grant new buffer credits
634  * to a running handle, a call to jbd2_journal_restart will commit the
635  * handle's transaction so far and reattach the handle to a new
636  * transaction capable of guaranteeing the requested number of
637  * credits. We preserve reserved handle if there's any attached to the
638  * passed in handle.
639  */
640 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
641 {
642         transaction_t *transaction = handle->h_transaction;
643         journal_t *journal;
644         tid_t           tid;
645         int             need_to_start, ret;
646
647         /* If we've had an abort of any type, don't even think about
648          * actually doing the restart! */
649         if (is_handle_aborted(handle))
650                 return 0;
651         journal = transaction->t_journal;
652
653         /*
654          * First unlink the handle from its current transaction, and start the
655          * commit on that.
656          */
657         J_ASSERT(atomic_read(&transaction->t_updates) > 0);
658         J_ASSERT(journal_current_handle() == handle);
659
660         read_lock(&journal->j_state_lock);
661         spin_lock(&transaction->t_handle_lock);
662         atomic_sub(handle->h_buffer_credits,
663                    &transaction->t_outstanding_credits);
664         if (handle->h_rsv_handle) {
665                 sub_reserved_credits(journal,
666                                      handle->h_rsv_handle->h_buffer_credits);
667         }
668         if (atomic_dec_and_test(&transaction->t_updates))
669                 wake_up(&journal->j_wait_updates);
670         tid = transaction->t_tid;
671         spin_unlock(&transaction->t_handle_lock);
672         handle->h_transaction = NULL;
673         current->journal_info = NULL;
674
675         jbd_debug(2, "restarting handle %p\n", handle);
676         need_to_start = !tid_geq(journal->j_commit_request, tid);
677         read_unlock(&journal->j_state_lock);
678         if (need_to_start)
679                 jbd2_log_start_commit(journal, tid);
680
681         rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
682         handle->h_buffer_credits = nblocks;
683         /*
684          * Restore the original nofs context because the journal restart
685          * is basically the same thing as journal stop and start.
686          * start_this_handle will start a new nofs context.
687          */
688         memalloc_nofs_restore(handle->saved_alloc_context);
689         ret = start_this_handle(journal, handle, gfp_mask);
690         return ret;
691 }
692 EXPORT_SYMBOL(jbd2__journal_restart);
693
694
695 int jbd2_journal_restart(handle_t *handle, int nblocks)
696 {
697         return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
698 }
699 EXPORT_SYMBOL(jbd2_journal_restart);
700
701 /**
702  * void jbd2_journal_lock_updates () - establish a transaction barrier.
703  * @journal:  Journal to establish a barrier on.
704  *
705  * This locks out any further updates from being started, and blocks
706  * until all existing updates have completed, returning only once the
707  * journal is in a quiescent state with no updates running.
708  *
709  * The journal lock should not be held on entry.
710  */
711 void jbd2_journal_lock_updates(journal_t *journal)
712 {
713         DEFINE_WAIT(wait);
714
715         jbd2_might_wait_for_commit(journal);
716
717         write_lock(&journal->j_state_lock);
718         ++journal->j_barrier_count;
719
720         /* Wait until there are no reserved handles */
721         if (atomic_read(&journal->j_reserved_credits)) {
722                 write_unlock(&journal->j_state_lock);
723                 wait_event(journal->j_wait_reserved,
724                            atomic_read(&journal->j_reserved_credits) == 0);
725                 write_lock(&journal->j_state_lock);
726         }
727
728         /* Wait until there are no running updates */
729         while (1) {
730                 transaction_t *transaction = journal->j_running_transaction;
731
732                 if (!transaction)
733                         break;
734
735                 spin_lock(&transaction->t_handle_lock);
736                 prepare_to_wait(&journal->j_wait_updates, &wait,
737                                 TASK_UNINTERRUPTIBLE);
738                 if (!atomic_read(&transaction->t_updates)) {
739                         spin_unlock(&transaction->t_handle_lock);
740                         finish_wait(&journal->j_wait_updates, &wait);
741                         break;
742                 }
743                 spin_unlock(&transaction->t_handle_lock);
744                 write_unlock(&journal->j_state_lock);
745                 schedule();
746                 finish_wait(&journal->j_wait_updates, &wait);
747                 write_lock(&journal->j_state_lock);
748         }
749         write_unlock(&journal->j_state_lock);
750
751         /*
752          * We have now established a barrier against other normal updates, but
753          * we also need to barrier against other jbd2_journal_lock_updates() calls
754          * to make sure that we serialise special journal-locked operations
755          * too.
756          */
757         mutex_lock(&journal->j_barrier);
758 }
759
760 /**
761  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
762  * @journal:  Journal to release the barrier on.
763  *
764  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
765  *
766  * Should be called without the journal lock held.
767  */
768 void jbd2_journal_unlock_updates (journal_t *journal)
769 {
770         J_ASSERT(journal->j_barrier_count != 0);
771
772         mutex_unlock(&journal->j_barrier);
773         write_lock(&journal->j_state_lock);
774         --journal->j_barrier_count;
775         write_unlock(&journal->j_state_lock);
776         wake_up(&journal->j_wait_transaction_locked);
777 }
778
779 static void warn_dirty_buffer(struct buffer_head *bh)
780 {
781         printk(KERN_WARNING
782                "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
783                "There's a risk of filesystem corruption in case of system "
784                "crash.\n",
785                bh->b_bdev, (unsigned long long)bh->b_blocknr);
786 }
787
788 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
789 static void jbd2_freeze_jh_data(struct journal_head *jh)
790 {
791         struct page *page;
792         int offset;
793         char *source;
794         struct buffer_head *bh = jh2bh(jh);
795
796         J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
797         page = bh->b_page;
798         offset = offset_in_page(bh->b_data);
799         source = kmap_atomic(page);
800         /* Fire data frozen trigger just before we copy the data */
801         jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
802         memcpy(jh->b_frozen_data, source + offset, bh->b_size);
803         kunmap_atomic(source);
804
805         /*
806          * Now that the frozen data is saved off, we need to store any matching
807          * triggers.
808          */
809         jh->b_frozen_triggers = jh->b_triggers;
810 }
811
812 /*
813  * If the buffer is already part of the current transaction, then there
814  * is nothing we need to do.  If it is already part of a prior
815  * transaction which we are still committing to disk, then we need to
816  * make sure that we do not overwrite the old copy: we do copy-out to
817  * preserve the copy going to disk.  We also account the buffer against
818  * the handle's metadata buffer credits (unless the buffer is already
819  * part of the transaction, that is).
820  *
821  */
822 static int
823 do_get_write_access(handle_t *handle, struct journal_head *jh,
824                         int force_copy)
825 {
826         struct buffer_head *bh;
827         transaction_t *transaction = handle->h_transaction;
828         journal_t *journal;
829         int error;
830         char *frozen_buffer = NULL;
831         unsigned long start_lock, time_lock;
832
833         if (is_handle_aborted(handle))
834                 return -EROFS;
835         journal = transaction->t_journal;
836
837         jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
838
839         JBUFFER_TRACE(jh, "entry");
840 repeat:
841         bh = jh2bh(jh);
842
843         /* @@@ Need to check for errors here at some point. */
844
845         start_lock = jiffies;
846         lock_buffer(bh);
847         jbd_lock_bh_state(bh);
848
849         /* If it takes too long to lock the buffer, trace it */
850         time_lock = jbd2_time_diff(start_lock, jiffies);
851         if (time_lock > HZ/10)
852                 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
853                         jiffies_to_msecs(time_lock));
854
855         /* We now hold the buffer lock so it is safe to query the buffer
856          * state.  Is the buffer dirty?
857          *
858          * If so, there are two possibilities.  The buffer may be
859          * non-journaled, and undergoing a quite legitimate writeback.
860          * Otherwise, it is journaled, and we don't expect dirty buffers
861          * in that state (the buffers should be marked JBD_Dirty
862          * instead.)  So either the IO is being done under our own
863          * control and this is a bug, or it's a third party IO such as
864          * dump(8) (which may leave the buffer scheduled for read ---
865          * ie. locked but not dirty) or tune2fs (which may actually have
866          * the buffer dirtied, ugh.)  */
867
868         if (buffer_dirty(bh)) {
869                 /*
870                  * First question: is this buffer already part of the current
871                  * transaction or the existing committing transaction?
872                  */
873                 if (jh->b_transaction) {
874                         J_ASSERT_JH(jh,
875                                 jh->b_transaction == transaction ||
876                                 jh->b_transaction ==
877                                         journal->j_committing_transaction);
878                         if (jh->b_next_transaction)
879                                 J_ASSERT_JH(jh, jh->b_next_transaction ==
880                                                         transaction);
881                         warn_dirty_buffer(bh);
882                 }
883                 /*
884                  * In any case we need to clean the dirty flag and we must
885                  * do it under the buffer lock to be sure we don't race
886                  * with running write-out.
887                  */
888                 JBUFFER_TRACE(jh, "Journalling dirty buffer");
889                 clear_buffer_dirty(bh);
890                 set_buffer_jbddirty(bh);
891         }
892
893         unlock_buffer(bh);
894
895         error = -EROFS;
896         if (is_handle_aborted(handle)) {
897                 jbd_unlock_bh_state(bh);
898                 goto out;
899         }
900         error = 0;
901
902         /*
903          * The buffer is already part of this transaction if b_transaction or
904          * b_next_transaction points to it
905          */
906         if (jh->b_transaction == transaction ||
907             jh->b_next_transaction == transaction)
908                 goto done;
909
910         /*
911          * this is the first time this transaction is touching this buffer,
912          * reset the modified flag
913          */
914        jh->b_modified = 0;
915
916         /*
917          * If the buffer is not journaled right now, we need to make sure it
918          * doesn't get written to disk before the caller actually commits the
919          * new data
920          */
921         if (!jh->b_transaction) {
922                 JBUFFER_TRACE(jh, "no transaction");
923                 J_ASSERT_JH(jh, !jh->b_next_transaction);
924                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
925                 /*
926                  * Make sure all stores to jh (b_modified, b_frozen_data) are
927                  * visible before attaching it to the running transaction.
928                  * Paired with barrier in jbd2_write_access_granted()
929                  */
930                 smp_wmb();
931                 spin_lock(&journal->j_list_lock);
932                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
933                 spin_unlock(&journal->j_list_lock);
934                 goto done;
935         }
936         /*
937          * If there is already a copy-out version of this buffer, then we don't
938          * need to make another one
939          */
940         if (jh->b_frozen_data) {
941                 JBUFFER_TRACE(jh, "has frozen data");
942                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
943                 goto attach_next;
944         }
945
946         JBUFFER_TRACE(jh, "owned by older transaction");
947         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
948         J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
949
950         /*
951          * There is one case we have to be very careful about.  If the
952          * committing transaction is currently writing this buffer out to disk
953          * and has NOT made a copy-out, then we cannot modify the buffer
954          * contents at all right now.  The essence of copy-out is that it is
955          * the extra copy, not the primary copy, which gets journaled.  If the
956          * primary copy is already going to disk then we cannot do copy-out
957          * here.
958          */
959         if (buffer_shadow(bh)) {
960                 JBUFFER_TRACE(jh, "on shadow: sleep");
961                 jbd_unlock_bh_state(bh);
962                 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
963                 goto repeat;
964         }
965
966         /*
967          * Only do the copy if the currently-owning transaction still needs it.
968          * If buffer isn't on BJ_Metadata list, the committing transaction is
969          * past that stage (here we use the fact that BH_Shadow is set under
970          * bh_state lock together with refiling to BJ_Shadow list and at this
971          * point we know the buffer doesn't have BH_Shadow set).
972          *
973          * Subtle point, though: if this is a get_undo_access, then we will be
974          * relying on the frozen_data to contain the new value of the
975          * committed_data record after the transaction, so we HAVE to force the
976          * frozen_data copy in that case.
977          */
978         if (jh->b_jlist == BJ_Metadata || force_copy) {
979                 JBUFFER_TRACE(jh, "generate frozen data");
980                 if (!frozen_buffer) {
981                         JBUFFER_TRACE(jh, "allocate memory for buffer");
982                         jbd_unlock_bh_state(bh);
983                         frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
984                                                    GFP_NOFS | __GFP_NOFAIL);
985                         goto repeat;
986                 }
987                 jh->b_frozen_data = frozen_buffer;
988                 frozen_buffer = NULL;
989                 jbd2_freeze_jh_data(jh);
990         }
991 attach_next:
992         /*
993          * Make sure all stores to jh (b_modified, b_frozen_data) are visible
994          * before attaching it to the running transaction. Paired with barrier
995          * in jbd2_write_access_granted()
996          */
997         smp_wmb();
998         jh->b_next_transaction = transaction;
999
1000 done:
1001         jbd_unlock_bh_state(bh);
1002
1003         /*
1004          * If we are about to journal a buffer, then any revoke pending on it is
1005          * no longer valid
1006          */
1007         jbd2_journal_cancel_revoke(handle, jh);
1008
1009 out:
1010         if (unlikely(frozen_buffer))    /* It's usually NULL */
1011                 jbd2_free(frozen_buffer, bh->b_size);
1012
1013         JBUFFER_TRACE(jh, "exit");
1014         return error;
1015 }
1016
1017 /* Fast check whether buffer is already attached to the required transaction */
1018 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1019                                                         bool undo)
1020 {
1021         struct journal_head *jh;
1022         bool ret = false;
1023
1024         /* Dirty buffers require special handling... */
1025         if (buffer_dirty(bh))
1026                 return false;
1027
1028         /*
1029          * RCU protects us from dereferencing freed pages. So the checks we do
1030          * are guaranteed not to oops. However the jh slab object can get freed
1031          * & reallocated while we work with it. So we have to be careful. When
1032          * we see jh attached to the running transaction, we know it must stay
1033          * so until the transaction is committed. Thus jh won't be freed and
1034          * will be attached to the same bh while we run.  However it can
1035          * happen jh gets freed, reallocated, and attached to the transaction
1036          * just after we get pointer to it from bh. So we have to be careful
1037          * and recheck jh still belongs to our bh before we return success.
1038          */
1039         rcu_read_lock();
1040         if (!buffer_jbd(bh))
1041                 goto out;
1042         /* This should be bh2jh() but that doesn't work with inline functions */
1043         jh = READ_ONCE(bh->b_private);
1044         if (!jh)
1045                 goto out;
1046         /* For undo access buffer must have data copied */
1047         if (undo && !jh->b_committed_data)
1048                 goto out;
1049         if (jh->b_transaction != handle->h_transaction &&
1050             jh->b_next_transaction != handle->h_transaction)
1051                 goto out;
1052         /*
1053          * There are two reasons for the barrier here:
1054          * 1) Make sure to fetch b_bh after we did previous checks so that we
1055          * detect when jh went through free, realloc, attach to transaction
1056          * while we were checking. Paired with implicit barrier in that path.
1057          * 2) So that access to bh done after jbd2_write_access_granted()
1058          * doesn't get reordered and see inconsistent state of concurrent
1059          * do_get_write_access().
1060          */
1061         smp_mb();
1062         if (unlikely(jh->b_bh != bh))
1063                 goto out;
1064         ret = true;
1065 out:
1066         rcu_read_unlock();
1067         return ret;
1068 }
1069
1070 /**
1071  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1072  * @handle: transaction to add buffer modifications to
1073  * @bh:     bh to be used for metadata writes
1074  *
1075  * Returns an error code or 0 on success.
1076  *
1077  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1078  * because we're write()ing a buffer which is also part of a shared mapping.
1079  */
1080
1081 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1082 {
1083         struct journal_head *jh;
1084         int rc;
1085
1086         if (jbd2_write_access_granted(handle, bh, false))
1087                 return 0;
1088
1089         jh = jbd2_journal_add_journal_head(bh);
1090         /* We do not want to get caught playing with fields which the
1091          * log thread also manipulates.  Make sure that the buffer
1092          * completes any outstanding IO before proceeding. */
1093         rc = do_get_write_access(handle, jh, 0);
1094         jbd2_journal_put_journal_head(jh);
1095         return rc;
1096 }
1097
1098
1099 /*
1100  * When the user wants to journal a newly created buffer_head
1101  * (ie. getblk() returned a new buffer and we are going to populate it
1102  * manually rather than reading off disk), then we need to keep the
1103  * buffer_head locked until it has been completely filled with new
1104  * data.  In this case, we should be able to make the assertion that
1105  * the bh is not already part of an existing transaction.
1106  *
1107  * The buffer should already be locked by the caller by this point.
1108  * There is no lock ranking violation: it was a newly created,
1109  * unlocked buffer beforehand. */
1110
1111 /**
1112  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1113  * @handle: transaction to new buffer to
1114  * @bh: new buffer.
1115  *
1116  * Call this if you create a new bh.
1117  */
1118 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1119 {
1120         transaction_t *transaction = handle->h_transaction;
1121         journal_t *journal;
1122         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1123         int err;
1124
1125         jbd_debug(5, "journal_head %p\n", jh);
1126         err = -EROFS;
1127         if (is_handle_aborted(handle))
1128                 goto out;
1129         journal = transaction->t_journal;
1130         err = 0;
1131
1132         JBUFFER_TRACE(jh, "entry");
1133         /*
1134          * The buffer may already belong to this transaction due to pre-zeroing
1135          * in the filesystem's new_block code.  It may also be on the previous,
1136          * committing transaction's lists, but it HAS to be in Forget state in
1137          * that case: the transaction must have deleted the buffer for it to be
1138          * reused here.
1139          */
1140         jbd_lock_bh_state(bh);
1141         J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1142                 jh->b_transaction == NULL ||
1143                 (jh->b_transaction == journal->j_committing_transaction &&
1144                           jh->b_jlist == BJ_Forget)));
1145
1146         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1147         J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1148
1149         if (jh->b_transaction == NULL) {
1150                 /*
1151                  * Previous jbd2_journal_forget() could have left the buffer
1152                  * with jbddirty bit set because it was being committed. When
1153                  * the commit finished, we've filed the buffer for
1154                  * checkpointing and marked it dirty. Now we are reallocating
1155                  * the buffer so the transaction freeing it must have
1156                  * committed and so it's safe to clear the dirty bit.
1157                  */
1158                 clear_buffer_dirty(jh2bh(jh));
1159                 /* first access by this transaction */
1160                 jh->b_modified = 0;
1161
1162                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1163                 spin_lock(&journal->j_list_lock);
1164                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1165                 spin_unlock(&journal->j_list_lock);
1166         } else if (jh->b_transaction == journal->j_committing_transaction) {
1167                 /* first access by this transaction */
1168                 jh->b_modified = 0;
1169
1170                 JBUFFER_TRACE(jh, "set next transaction");
1171                 spin_lock(&journal->j_list_lock);
1172                 jh->b_next_transaction = transaction;
1173                 spin_unlock(&journal->j_list_lock);
1174         }
1175         jbd_unlock_bh_state(bh);
1176
1177         /*
1178          * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1179          * blocks which contain freed but then revoked metadata.  We need
1180          * to cancel the revoke in case we end up freeing it yet again
1181          * and the reallocating as data - this would cause a second revoke,
1182          * which hits an assertion error.
1183          */
1184         JBUFFER_TRACE(jh, "cancelling revoke");
1185         jbd2_journal_cancel_revoke(handle, jh);
1186 out:
1187         jbd2_journal_put_journal_head(jh);
1188         return err;
1189 }
1190
1191 /**
1192  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1193  *     non-rewindable consequences
1194  * @handle: transaction
1195  * @bh: buffer to undo
1196  *
1197  * Sometimes there is a need to distinguish between metadata which has
1198  * been committed to disk and that which has not.  The ext3fs code uses
1199  * this for freeing and allocating space, we have to make sure that we
1200  * do not reuse freed space until the deallocation has been committed,
1201  * since if we overwrote that space we would make the delete
1202  * un-rewindable in case of a crash.
1203  *
1204  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1205  * buffer for parts of non-rewindable operations such as delete
1206  * operations on the bitmaps.  The journaling code must keep a copy of
1207  * the buffer's contents prior to the undo_access call until such time
1208  * as we know that the buffer has definitely been committed to disk.
1209  *
1210  * We never need to know which transaction the committed data is part
1211  * of, buffers touched here are guaranteed to be dirtied later and so
1212  * will be committed to a new transaction in due course, at which point
1213  * we can discard the old committed data pointer.
1214  *
1215  * Returns error number or 0 on success.
1216  */
1217 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1218 {
1219         int err;
1220         struct journal_head *jh;
1221         char *committed_data = NULL;
1222
1223         JBUFFER_TRACE(jh, "entry");
1224         if (jbd2_write_access_granted(handle, bh, true))
1225                 return 0;
1226
1227         jh = jbd2_journal_add_journal_head(bh);
1228         /*
1229          * Do this first --- it can drop the journal lock, so we want to
1230          * make sure that obtaining the committed_data is done
1231          * atomically wrt. completion of any outstanding commits.
1232          */
1233         err = do_get_write_access(handle, jh, 1);
1234         if (err)
1235                 goto out;
1236
1237 repeat:
1238         if (!jh->b_committed_data)
1239                 committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1240                                             GFP_NOFS|__GFP_NOFAIL);
1241
1242         jbd_lock_bh_state(bh);
1243         if (!jh->b_committed_data) {
1244                 /* Copy out the current buffer contents into the
1245                  * preserved, committed copy. */
1246                 JBUFFER_TRACE(jh, "generate b_committed data");
1247                 if (!committed_data) {
1248                         jbd_unlock_bh_state(bh);
1249                         goto repeat;
1250                 }
1251
1252                 jh->b_committed_data = committed_data;
1253                 committed_data = NULL;
1254                 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1255         }
1256         jbd_unlock_bh_state(bh);
1257 out:
1258         jbd2_journal_put_journal_head(jh);
1259         if (unlikely(committed_data))
1260                 jbd2_free(committed_data, bh->b_size);
1261         return err;
1262 }
1263
1264 /**
1265  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1266  * @bh: buffer to trigger on
1267  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1268  *
1269  * Set any triggers on this journal_head.  This is always safe, because
1270  * triggers for a committing buffer will be saved off, and triggers for
1271  * a running transaction will match the buffer in that transaction.
1272  *
1273  * Call with NULL to clear the triggers.
1274  */
1275 void jbd2_journal_set_triggers(struct buffer_head *bh,
1276                                struct jbd2_buffer_trigger_type *type)
1277 {
1278         struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1279
1280         if (WARN_ON(!jh))
1281                 return;
1282         jh->b_triggers = type;
1283         jbd2_journal_put_journal_head(jh);
1284 }
1285
1286 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1287                                 struct jbd2_buffer_trigger_type *triggers)
1288 {
1289         struct buffer_head *bh = jh2bh(jh);
1290
1291         if (!triggers || !triggers->t_frozen)
1292                 return;
1293
1294         triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1295 }
1296
1297 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1298                                struct jbd2_buffer_trigger_type *triggers)
1299 {
1300         if (!triggers || !triggers->t_abort)
1301                 return;
1302
1303         triggers->t_abort(triggers, jh2bh(jh));
1304 }
1305
1306 /**
1307  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1308  * @handle: transaction to add buffer to.
1309  * @bh: buffer to mark
1310  *
1311  * mark dirty metadata which needs to be journaled as part of the current
1312  * transaction.
1313  *
1314  * The buffer must have previously had jbd2_journal_get_write_access()
1315  * called so that it has a valid journal_head attached to the buffer
1316  * head.
1317  *
1318  * The buffer is placed on the transaction's metadata list and is marked
1319  * as belonging to the transaction.
1320  *
1321  * Returns error number or 0 on success.
1322  *
1323  * Special care needs to be taken if the buffer already belongs to the
1324  * current committing transaction (in which case we should have frozen
1325  * data present for that commit).  In that case, we don't relink the
1326  * buffer: that only gets done when the old transaction finally
1327  * completes its commit.
1328  */
1329 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1330 {
1331         transaction_t *transaction = handle->h_transaction;
1332         journal_t *journal;
1333         struct journal_head *jh;
1334         int ret = 0;
1335
1336         if (is_handle_aborted(handle))
1337                 return -EROFS;
1338         if (!buffer_jbd(bh)) {
1339                 ret = -EUCLEAN;
1340                 goto out;
1341         }
1342         /*
1343          * We don't grab jh reference here since the buffer must be part
1344          * of the running transaction.
1345          */
1346         jh = bh2jh(bh);
1347         /*
1348          * This and the following assertions are unreliable since we may see jh
1349          * in inconsistent state unless we grab bh_state lock. But this is
1350          * crucial to catch bugs so let's do a reliable check until the
1351          * lockless handling is fully proven.
1352          */
1353         if (jh->b_transaction != transaction &&
1354             jh->b_next_transaction != transaction) {
1355                 jbd_lock_bh_state(bh);
1356                 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1357                                 jh->b_next_transaction == transaction);
1358                 jbd_unlock_bh_state(bh);
1359         }
1360         if (jh->b_modified == 1) {
1361                 /* If it's in our transaction it must be in BJ_Metadata list. */
1362                 if (jh->b_transaction == transaction &&
1363                     jh->b_jlist != BJ_Metadata) {
1364                         jbd_lock_bh_state(bh);
1365                         J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1366                                         jh->b_jlist == BJ_Metadata);
1367                         jbd_unlock_bh_state(bh);
1368                 }
1369                 goto out;
1370         }
1371
1372         journal = transaction->t_journal;
1373         jbd_debug(5, "journal_head %p\n", jh);
1374         JBUFFER_TRACE(jh, "entry");
1375
1376         jbd_lock_bh_state(bh);
1377
1378         if (jh->b_modified == 0) {
1379                 /*
1380                  * This buffer's got modified and becoming part
1381                  * of the transaction. This needs to be done
1382                  * once a transaction -bzzz
1383                  */
1384                 jh->b_modified = 1;
1385                 if (handle->h_buffer_credits <= 0) {
1386                         ret = -ENOSPC;
1387                         goto out_unlock_bh;
1388                 }
1389                 handle->h_buffer_credits--;
1390         }
1391
1392         /*
1393          * fastpath, to avoid expensive locking.  If this buffer is already
1394          * on the running transaction's metadata list there is nothing to do.
1395          * Nobody can take it off again because there is a handle open.
1396          * I _think_ we're OK here with SMP barriers - a mistaken decision will
1397          * result in this test being false, so we go in and take the locks.
1398          */
1399         if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1400                 JBUFFER_TRACE(jh, "fastpath");
1401                 if (unlikely(jh->b_transaction !=
1402                              journal->j_running_transaction)) {
1403                         printk(KERN_ERR "JBD2: %s: "
1404                                "jh->b_transaction (%llu, %p, %u) != "
1405                                "journal->j_running_transaction (%p, %u)\n",
1406                                journal->j_devname,
1407                                (unsigned long long) bh->b_blocknr,
1408                                jh->b_transaction,
1409                                jh->b_transaction ? jh->b_transaction->t_tid : 0,
1410                                journal->j_running_transaction,
1411                                journal->j_running_transaction ?
1412                                journal->j_running_transaction->t_tid : 0);
1413                         ret = -EINVAL;
1414                 }
1415                 goto out_unlock_bh;
1416         }
1417
1418         set_buffer_jbddirty(bh);
1419
1420         /*
1421          * Metadata already on the current transaction list doesn't
1422          * need to be filed.  Metadata on another transaction's list must
1423          * be committing, and will be refiled once the commit completes:
1424          * leave it alone for now.
1425          */
1426         if (jh->b_transaction != transaction) {
1427                 JBUFFER_TRACE(jh, "already on other transaction");
1428                 if (unlikely(((jh->b_transaction !=
1429                                journal->j_committing_transaction)) ||
1430                              (jh->b_next_transaction != transaction))) {
1431                         printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1432                                "bad jh for block %llu: "
1433                                "transaction (%p, %u), "
1434                                "jh->b_transaction (%p, %u), "
1435                                "jh->b_next_transaction (%p, %u), jlist %u\n",
1436                                journal->j_devname,
1437                                (unsigned long long) bh->b_blocknr,
1438                                transaction, transaction->t_tid,
1439                                jh->b_transaction,
1440                                jh->b_transaction ?
1441                                jh->b_transaction->t_tid : 0,
1442                                jh->b_next_transaction,
1443                                jh->b_next_transaction ?
1444                                jh->b_next_transaction->t_tid : 0,
1445                                jh->b_jlist);
1446                         WARN_ON(1);
1447                         ret = -EINVAL;
1448                 }
1449                 /* And this case is illegal: we can't reuse another
1450                  * transaction's data buffer, ever. */
1451                 goto out_unlock_bh;
1452         }
1453
1454         /* That test should have eliminated the following case: */
1455         J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1456
1457         JBUFFER_TRACE(jh, "file as BJ_Metadata");
1458         spin_lock(&journal->j_list_lock);
1459         __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1460         spin_unlock(&journal->j_list_lock);
1461 out_unlock_bh:
1462         jbd_unlock_bh_state(bh);
1463 out:
1464         JBUFFER_TRACE(jh, "exit");
1465         return ret;
1466 }
1467
1468 /**
1469  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1470  * @handle: transaction handle
1471  * @bh:     bh to 'forget'
1472  *
1473  * We can only do the bforget if there are no commits pending against the
1474  * buffer.  If the buffer is dirty in the current running transaction we
1475  * can safely unlink it.
1476  *
1477  * bh may not be a journalled buffer at all - it may be a non-JBD
1478  * buffer which came off the hashtable.  Check for this.
1479  *
1480  * Decrements bh->b_count by one.
1481  *
1482  * Allow this call even if the handle has aborted --- it may be part of
1483  * the caller's cleanup after an abort.
1484  */
1485 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1486 {
1487         transaction_t *transaction = handle->h_transaction;
1488         journal_t *journal;
1489         struct journal_head *jh;
1490         int drop_reserve = 0;
1491         int err = 0;
1492         int was_modified = 0;
1493
1494         if (is_handle_aborted(handle))
1495                 return -EROFS;
1496         journal = transaction->t_journal;
1497
1498         BUFFER_TRACE(bh, "entry");
1499
1500         jbd_lock_bh_state(bh);
1501
1502         if (!buffer_jbd(bh))
1503                 goto not_jbd;
1504         jh = bh2jh(bh);
1505
1506         /* Critical error: attempting to delete a bitmap buffer, maybe?
1507          * Don't do any jbd operations, and return an error. */
1508         if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1509                          "inconsistent data on disk")) {
1510                 err = -EIO;
1511                 goto not_jbd;
1512         }
1513
1514         /* keep track of whether or not this transaction modified us */
1515         was_modified = jh->b_modified;
1516
1517         /*
1518          * The buffer's going from the transaction, we must drop
1519          * all references -bzzz
1520          */
1521         jh->b_modified = 0;
1522
1523         if (jh->b_transaction == transaction) {
1524                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1525
1526                 /* If we are forgetting a buffer which is already part
1527                  * of this transaction, then we can just drop it from
1528                  * the transaction immediately. */
1529                 clear_buffer_dirty(bh);
1530                 clear_buffer_jbddirty(bh);
1531
1532                 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1533
1534                 /*
1535                  * we only want to drop a reference if this transaction
1536                  * modified the buffer
1537                  */
1538                 if (was_modified)
1539                         drop_reserve = 1;
1540
1541                 /*
1542                  * We are no longer going to journal this buffer.
1543                  * However, the commit of this transaction is still
1544                  * important to the buffer: the delete that we are now
1545                  * processing might obsolete an old log entry, so by
1546                  * committing, we can satisfy the buffer's checkpoint.
1547                  *
1548                  * So, if we have a checkpoint on the buffer, we should
1549                  * now refile the buffer on our BJ_Forget list so that
1550                  * we know to remove the checkpoint after we commit.
1551                  */
1552
1553                 spin_lock(&journal->j_list_lock);
1554                 if (jh->b_cp_transaction) {
1555                         __jbd2_journal_temp_unlink_buffer(jh);
1556                         __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1557                 } else {
1558                         __jbd2_journal_unfile_buffer(jh);
1559                         if (!buffer_jbd(bh)) {
1560                                 spin_unlock(&journal->j_list_lock);
1561                                 jbd_unlock_bh_state(bh);
1562                                 __bforget(bh);
1563                                 goto drop;
1564                         }
1565                 }
1566                 spin_unlock(&journal->j_list_lock);
1567         } else if (jh->b_transaction) {
1568                 J_ASSERT_JH(jh, (jh->b_transaction ==
1569                                  journal->j_committing_transaction));
1570                 /* However, if the buffer is still owned by a prior
1571                  * (committing) transaction, we can't drop it yet... */
1572                 JBUFFER_TRACE(jh, "belongs to older transaction");
1573                 /* ... but we CAN drop it from the new transaction if we
1574                  * have also modified it since the original commit. */
1575
1576                 if (jh->b_next_transaction) {
1577                         J_ASSERT(jh->b_next_transaction == transaction);
1578                         spin_lock(&journal->j_list_lock);
1579                         jh->b_next_transaction = NULL;
1580                         spin_unlock(&journal->j_list_lock);
1581
1582                         /*
1583                          * only drop a reference if this transaction modified
1584                          * the buffer
1585                          */
1586                         if (was_modified)
1587                                 drop_reserve = 1;
1588                 }
1589         }
1590
1591 not_jbd:
1592         jbd_unlock_bh_state(bh);
1593         __brelse(bh);
1594 drop:
1595         if (drop_reserve) {
1596                 /* no need to reserve log space for this block -bzzz */
1597                 handle->h_buffer_credits++;
1598         }
1599         return err;
1600 }
1601
1602 /**
1603  * int jbd2_journal_stop() - complete a transaction
1604  * @handle: transaction to complete.
1605  *
1606  * All done for a particular handle.
1607  *
1608  * There is not much action needed here.  We just return any remaining
1609  * buffer credits to the transaction and remove the handle.  The only
1610  * complication is that we need to start a commit operation if the
1611  * filesystem is marked for synchronous update.
1612  *
1613  * jbd2_journal_stop itself will not usually return an error, but it may
1614  * do so in unusual circumstances.  In particular, expect it to
1615  * return -EIO if a jbd2_journal_abort has been executed since the
1616  * transaction began.
1617  */
1618 int jbd2_journal_stop(handle_t *handle)
1619 {
1620         transaction_t *transaction = handle->h_transaction;
1621         journal_t *journal;
1622         int err = 0, wait_for_commit = 0;
1623         tid_t tid;
1624         pid_t pid;
1625
1626         if (!transaction) {
1627                 /*
1628                  * Handle is already detached from the transaction so
1629                  * there is nothing to do other than decrease a refcount,
1630                  * or free the handle if refcount drops to zero
1631                  */
1632                 if (--handle->h_ref > 0) {
1633                         jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1634                                                          handle->h_ref);
1635                         return err;
1636                 } else {
1637                         if (handle->h_rsv_handle)
1638                                 jbd2_free_handle(handle->h_rsv_handle);
1639                         goto free_and_exit;
1640                 }
1641         }
1642         journal = transaction->t_journal;
1643
1644         J_ASSERT(journal_current_handle() == handle);
1645
1646         if (is_handle_aborted(handle))
1647                 err = -EIO;
1648         else
1649                 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1650
1651         if (--handle->h_ref > 0) {
1652                 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1653                           handle->h_ref);
1654                 return err;
1655         }
1656
1657         jbd_debug(4, "Handle %p going down\n", handle);
1658         trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1659                                 transaction->t_tid,
1660                                 handle->h_type, handle->h_line_no,
1661                                 jiffies - handle->h_start_jiffies,
1662                                 handle->h_sync, handle->h_requested_credits,
1663                                 (handle->h_requested_credits -
1664                                  handle->h_buffer_credits));
1665
1666         /*
1667          * Implement synchronous transaction batching.  If the handle
1668          * was synchronous, don't force a commit immediately.  Let's
1669          * yield and let another thread piggyback onto this
1670          * transaction.  Keep doing that while new threads continue to
1671          * arrive.  It doesn't cost much - we're about to run a commit
1672          * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1673          * operations by 30x or more...
1674          *
1675          * We try and optimize the sleep time against what the
1676          * underlying disk can do, instead of having a static sleep
1677          * time.  This is useful for the case where our storage is so
1678          * fast that it is more optimal to go ahead and force a flush
1679          * and wait for the transaction to be committed than it is to
1680          * wait for an arbitrary amount of time for new writers to
1681          * join the transaction.  We achieve this by measuring how
1682          * long it takes to commit a transaction, and compare it with
1683          * how long this transaction has been running, and if run time
1684          * < commit time then we sleep for the delta and commit.  This
1685          * greatly helps super fast disks that would see slowdowns as
1686          * more threads started doing fsyncs.
1687          *
1688          * But don't do this if this process was the most recent one
1689          * to perform a synchronous write.  We do this to detect the
1690          * case where a single process is doing a stream of sync
1691          * writes.  No point in waiting for joiners in that case.
1692          *
1693          * Setting max_batch_time to 0 disables this completely.
1694          */
1695         pid = current->pid;
1696         if (handle->h_sync && journal->j_last_sync_writer != pid &&
1697             journal->j_max_batch_time) {
1698                 u64 commit_time, trans_time;
1699
1700                 journal->j_last_sync_writer = pid;
1701
1702                 read_lock(&journal->j_state_lock);
1703                 commit_time = journal->j_average_commit_time;
1704                 read_unlock(&journal->j_state_lock);
1705
1706                 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1707                                                    transaction->t_start_time));
1708
1709                 commit_time = max_t(u64, commit_time,
1710                                     1000*journal->j_min_batch_time);
1711                 commit_time = min_t(u64, commit_time,
1712                                     1000*journal->j_max_batch_time);
1713
1714                 if (trans_time < commit_time) {
1715                         ktime_t expires = ktime_add_ns(ktime_get(),
1716                                                        commit_time);
1717                         set_current_state(TASK_UNINTERRUPTIBLE);
1718                         schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1719                 }
1720         }
1721
1722         if (handle->h_sync)
1723                 transaction->t_synchronous_commit = 1;
1724         current->journal_info = NULL;
1725         atomic_sub(handle->h_buffer_credits,
1726                    &transaction->t_outstanding_credits);
1727
1728         /*
1729          * If the handle is marked SYNC, we need to set another commit
1730          * going!  We also want to force a commit if the current
1731          * transaction is occupying too much of the log, or if the
1732          * transaction is too old now.
1733          */
1734         if (handle->h_sync ||
1735             (atomic_read(&transaction->t_outstanding_credits) >
1736              journal->j_max_transaction_buffers) ||
1737             time_after_eq(jiffies, transaction->t_expires)) {
1738                 /* Do this even for aborted journals: an abort still
1739                  * completes the commit thread, it just doesn't write
1740                  * anything to disk. */
1741
1742                 jbd_debug(2, "transaction too old, requesting commit for "
1743                                         "handle %p\n", handle);
1744                 /* This is non-blocking */
1745                 jbd2_log_start_commit(journal, transaction->t_tid);
1746
1747                 /*
1748                  * Special case: JBD2_SYNC synchronous updates require us
1749                  * to wait for the commit to complete.
1750                  */
1751                 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1752                         wait_for_commit = 1;
1753         }
1754
1755         /*
1756          * Once we drop t_updates, if it goes to zero the transaction
1757          * could start committing on us and eventually disappear.  So
1758          * once we do this, we must not dereference transaction
1759          * pointer again.
1760          */
1761         tid = transaction->t_tid;
1762         if (atomic_dec_and_test(&transaction->t_updates)) {
1763                 wake_up(&journal->j_wait_updates);
1764                 if (journal->j_barrier_count)
1765                         wake_up(&journal->j_wait_transaction_locked);
1766         }
1767
1768         rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
1769
1770         if (wait_for_commit)
1771                 err = jbd2_log_wait_commit(journal, tid);
1772
1773         if (handle->h_rsv_handle)
1774                 jbd2_journal_free_reserved(handle->h_rsv_handle);
1775 free_and_exit:
1776         /*
1777          * Scope of the GFP_NOFS context is over here and so we can restore the
1778          * original alloc context.
1779          */
1780         memalloc_nofs_restore(handle->saved_alloc_context);
1781         jbd2_free_handle(handle);
1782         return err;
1783 }
1784
1785 /*
1786  *
1787  * List management code snippets: various functions for manipulating the
1788  * transaction buffer lists.
1789  *
1790  */
1791
1792 /*
1793  * Append a buffer to a transaction list, given the transaction's list head
1794  * pointer.
1795  *
1796  * j_list_lock is held.
1797  *
1798  * jbd_lock_bh_state(jh2bh(jh)) is held.
1799  */
1800
1801 static inline void
1802 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1803 {
1804         if (!*list) {
1805                 jh->b_tnext = jh->b_tprev = jh;
1806                 *list = jh;
1807         } else {
1808                 /* Insert at the tail of the list to preserve order */
1809                 struct journal_head *first = *list, *last = first->b_tprev;
1810                 jh->b_tprev = last;
1811                 jh->b_tnext = first;
1812                 last->b_tnext = first->b_tprev = jh;
1813         }
1814 }
1815
1816 /*
1817  * Remove a buffer from a transaction list, given the transaction's list
1818  * head pointer.
1819  *
1820  * Called with j_list_lock held, and the journal may not be locked.
1821  *
1822  * jbd_lock_bh_state(jh2bh(jh)) is held.
1823  */
1824
1825 static inline void
1826 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1827 {
1828         if (*list == jh) {
1829                 *list = jh->b_tnext;
1830                 if (*list == jh)
1831                         *list = NULL;
1832         }
1833         jh->b_tprev->b_tnext = jh->b_tnext;
1834         jh->b_tnext->b_tprev = jh->b_tprev;
1835 }
1836
1837 /*
1838  * Remove a buffer from the appropriate transaction list.
1839  *
1840  * Note that this function can *change* the value of
1841  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1842  * t_reserved_list.  If the caller is holding onto a copy of one of these
1843  * pointers, it could go bad.  Generally the caller needs to re-read the
1844  * pointer from the transaction_t.
1845  *
1846  * Called under j_list_lock.
1847  */
1848 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1849 {
1850         struct journal_head **list = NULL;
1851         transaction_t *transaction;
1852         struct buffer_head *bh = jh2bh(jh);
1853
1854         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1855         transaction = jh->b_transaction;
1856         if (transaction)
1857                 assert_spin_locked(&transaction->t_journal->j_list_lock);
1858
1859         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1860         if (jh->b_jlist != BJ_None)
1861                 J_ASSERT_JH(jh, transaction != NULL);
1862
1863         switch (jh->b_jlist) {
1864         case BJ_None:
1865                 return;
1866         case BJ_Metadata:
1867                 transaction->t_nr_buffers--;
1868                 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1869                 list = &transaction->t_buffers;
1870                 break;
1871         case BJ_Forget:
1872                 list = &transaction->t_forget;
1873                 break;
1874         case BJ_Shadow:
1875                 list = &transaction->t_shadow_list;
1876                 break;
1877         case BJ_Reserved:
1878                 list = &transaction->t_reserved_list;
1879                 break;
1880         }
1881
1882         __blist_del_buffer(list, jh);
1883         jh->b_jlist = BJ_None;
1884         if (transaction && is_journal_aborted(transaction->t_journal))
1885                 clear_buffer_jbddirty(bh);
1886         else if (test_clear_buffer_jbddirty(bh))
1887                 mark_buffer_dirty(bh);  /* Expose it to the VM */
1888 }
1889
1890 /*
1891  * Remove buffer from all transactions.
1892  *
1893  * Called with bh_state lock and j_list_lock
1894  *
1895  * jh and bh may be already freed when this function returns.
1896  */
1897 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1898 {
1899         __jbd2_journal_temp_unlink_buffer(jh);
1900         jh->b_transaction = NULL;
1901         jbd2_journal_put_journal_head(jh);
1902 }
1903
1904 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1905 {
1906         struct buffer_head *bh = jh2bh(jh);
1907
1908         /* Get reference so that buffer cannot be freed before we unlock it */
1909         get_bh(bh);
1910         jbd_lock_bh_state(bh);
1911         spin_lock(&journal->j_list_lock);
1912         __jbd2_journal_unfile_buffer(jh);
1913         spin_unlock(&journal->j_list_lock);
1914         jbd_unlock_bh_state(bh);
1915         __brelse(bh);
1916 }
1917
1918 /*
1919  * Called from jbd2_journal_try_to_free_buffers().
1920  *
1921  * Called under jbd_lock_bh_state(bh)
1922  */
1923 static void
1924 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1925 {
1926         struct journal_head *jh;
1927
1928         jh = bh2jh(bh);
1929
1930         if (buffer_locked(bh) || buffer_dirty(bh))
1931                 goto out;
1932
1933         if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
1934                 goto out;
1935
1936         spin_lock(&journal->j_list_lock);
1937         if (jh->b_cp_transaction != NULL) {
1938                 /* written-back checkpointed metadata buffer */
1939                 JBUFFER_TRACE(jh, "remove from checkpoint list");
1940                 __jbd2_journal_remove_checkpoint(jh);
1941         }
1942         spin_unlock(&journal->j_list_lock);
1943 out:
1944         return;
1945 }
1946
1947 /**
1948  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1949  * @journal: journal for operation
1950  * @page: to try and free
1951  * @gfp_mask: we use the mask to detect how hard should we try to release
1952  * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit
1953  * code to release the buffers.
1954  *
1955  *
1956  * For all the buffers on this page,
1957  * if they are fully written out ordered data, move them onto BUF_CLEAN
1958  * so try_to_free_buffers() can reap them.
1959  *
1960  * This function returns non-zero if we wish try_to_free_buffers()
1961  * to be called. We do this if the page is releasable by try_to_free_buffers().
1962  * We also do it if the page has locked or dirty buffers and the caller wants
1963  * us to perform sync or async writeout.
1964  *
1965  * This complicates JBD locking somewhat.  We aren't protected by the
1966  * BKL here.  We wish to remove the buffer from its committing or
1967  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1968  *
1969  * This may *change* the value of transaction_t->t_datalist, so anyone
1970  * who looks at t_datalist needs to lock against this function.
1971  *
1972  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1973  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1974  * will come out of the lock with the buffer dirty, which makes it
1975  * ineligible for release here.
1976  *
1977  * Who else is affected by this?  hmm...  Really the only contender
1978  * is do_get_write_access() - it could be looking at the buffer while
1979  * journal_try_to_free_buffer() is changing its state.  But that
1980  * cannot happen because we never reallocate freed data as metadata
1981  * while the data is part of a transaction.  Yes?
1982  *
1983  * Return 0 on failure, 1 on success
1984  */
1985 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1986                                 struct page *page, gfp_t gfp_mask)
1987 {
1988         struct buffer_head *head;
1989         struct buffer_head *bh;
1990         int ret = 0;
1991
1992         J_ASSERT(PageLocked(page));
1993
1994         head = page_buffers(page);
1995         bh = head;
1996         do {
1997                 struct journal_head *jh;
1998
1999                 /*
2000                  * We take our own ref against the journal_head here to avoid
2001                  * having to add tons of locking around each instance of
2002                  * jbd2_journal_put_journal_head().
2003                  */
2004                 jh = jbd2_journal_grab_journal_head(bh);
2005                 if (!jh)
2006                         continue;
2007
2008                 jbd_lock_bh_state(bh);
2009                 __journal_try_to_free_buffer(journal, bh);
2010                 jbd2_journal_put_journal_head(jh);
2011                 jbd_unlock_bh_state(bh);
2012                 if (buffer_jbd(bh))
2013                         goto busy;
2014         } while ((bh = bh->b_this_page) != head);
2015
2016         ret = try_to_free_buffers(page);
2017
2018 busy:
2019         return ret;
2020 }
2021
2022 /*
2023  * This buffer is no longer needed.  If it is on an older transaction's
2024  * checkpoint list we need to record it on this transaction's forget list
2025  * to pin this buffer (and hence its checkpointing transaction) down until
2026  * this transaction commits.  If the buffer isn't on a checkpoint list, we
2027  * release it.
2028  * Returns non-zero if JBD no longer has an interest in the buffer.
2029  *
2030  * Called under j_list_lock.
2031  *
2032  * Called under jbd_lock_bh_state(bh).
2033  */
2034 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2035 {
2036         int may_free = 1;
2037         struct buffer_head *bh = jh2bh(jh);
2038
2039         if (jh->b_cp_transaction) {
2040                 JBUFFER_TRACE(jh, "on running+cp transaction");
2041                 __jbd2_journal_temp_unlink_buffer(jh);
2042                 /*
2043                  * We don't want to write the buffer anymore, clear the
2044                  * bit so that we don't confuse checks in
2045                  * __journal_file_buffer
2046                  */
2047                 clear_buffer_dirty(bh);
2048                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2049                 may_free = 0;
2050         } else {
2051                 JBUFFER_TRACE(jh, "on running transaction");
2052                 __jbd2_journal_unfile_buffer(jh);
2053         }
2054         return may_free;
2055 }
2056
2057 /*
2058  * jbd2_journal_invalidatepage
2059  *
2060  * This code is tricky.  It has a number of cases to deal with.
2061  *
2062  * There are two invariants which this code relies on:
2063  *
2064  * i_size must be updated on disk before we start calling invalidatepage on the
2065  * data.
2066  *
2067  *  This is done in ext3 by defining an ext3_setattr method which
2068  *  updates i_size before truncate gets going.  By maintaining this
2069  *  invariant, we can be sure that it is safe to throw away any buffers
2070  *  attached to the current transaction: once the transaction commits,
2071  *  we know that the data will not be needed.
2072  *
2073  *  Note however that we can *not* throw away data belonging to the
2074  *  previous, committing transaction!
2075  *
2076  * Any disk blocks which *are* part of the previous, committing
2077  * transaction (and which therefore cannot be discarded immediately) are
2078  * not going to be reused in the new running transaction
2079  *
2080  *  The bitmap committed_data images guarantee this: any block which is
2081  *  allocated in one transaction and removed in the next will be marked
2082  *  as in-use in the committed_data bitmap, so cannot be reused until
2083  *  the next transaction to delete the block commits.  This means that
2084  *  leaving committing buffers dirty is quite safe: the disk blocks
2085  *  cannot be reallocated to a different file and so buffer aliasing is
2086  *  not possible.
2087  *
2088  *
2089  * The above applies mainly to ordered data mode.  In writeback mode we
2090  * don't make guarantees about the order in which data hits disk --- in
2091  * particular we don't guarantee that new dirty data is flushed before
2092  * transaction commit --- so it is always safe just to discard data
2093  * immediately in that mode.  --sct
2094  */
2095
2096 /*
2097  * The journal_unmap_buffer helper function returns zero if the buffer
2098  * concerned remains pinned as an anonymous buffer belonging to an older
2099  * transaction.
2100  *
2101  * We're outside-transaction here.  Either or both of j_running_transaction
2102  * and j_committing_transaction may be NULL.
2103  */
2104 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2105                                 int partial_page)
2106 {
2107         transaction_t *transaction;
2108         struct journal_head *jh;
2109         int may_free = 1;
2110
2111         BUFFER_TRACE(bh, "entry");
2112
2113         /*
2114          * It is safe to proceed here without the j_list_lock because the
2115          * buffers cannot be stolen by try_to_free_buffers as long as we are
2116          * holding the page lock. --sct
2117          */
2118
2119         if (!buffer_jbd(bh))
2120                 goto zap_buffer_unlocked;
2121
2122         /* OK, we have data buffer in journaled mode */
2123         write_lock(&journal->j_state_lock);
2124         jbd_lock_bh_state(bh);
2125         spin_lock(&journal->j_list_lock);
2126
2127         jh = jbd2_journal_grab_journal_head(bh);
2128         if (!jh)
2129                 goto zap_buffer_no_jh;
2130
2131         /*
2132          * We cannot remove the buffer from checkpoint lists until the
2133          * transaction adding inode to orphan list (let's call it T)
2134          * is committed.  Otherwise if the transaction changing the
2135          * buffer would be cleaned from the journal before T is
2136          * committed, a crash will cause that the correct contents of
2137          * the buffer will be lost.  On the other hand we have to
2138          * clear the buffer dirty bit at latest at the moment when the
2139          * transaction marking the buffer as freed in the filesystem
2140          * structures is committed because from that moment on the
2141          * block can be reallocated and used by a different page.
2142          * Since the block hasn't been freed yet but the inode has
2143          * already been added to orphan list, it is safe for us to add
2144          * the buffer to BJ_Forget list of the newest transaction.
2145          *
2146          * Also we have to clear buffer_mapped flag of a truncated buffer
2147          * because the buffer_head may be attached to the page straddling
2148          * i_size (can happen only when blocksize < pagesize) and thus the
2149          * buffer_head can be reused when the file is extended again. So we end
2150          * up keeping around invalidated buffers attached to transactions'
2151          * BJ_Forget list just to stop checkpointing code from cleaning up
2152          * the transaction this buffer was modified in.
2153          */
2154         transaction = jh->b_transaction;
2155         if (transaction == NULL) {
2156                 /* First case: not on any transaction.  If it
2157                  * has no checkpoint link, then we can zap it:
2158                  * it's a writeback-mode buffer so we don't care
2159                  * if it hits disk safely. */
2160                 if (!jh->b_cp_transaction) {
2161                         JBUFFER_TRACE(jh, "not on any transaction: zap");
2162                         goto zap_buffer;
2163                 }
2164
2165                 if (!buffer_dirty(bh)) {
2166                         /* bdflush has written it.  We can drop it now */
2167                         __jbd2_journal_remove_checkpoint(jh);
2168                         goto zap_buffer;
2169                 }
2170
2171                 /* OK, it must be in the journal but still not
2172                  * written fully to disk: it's metadata or
2173                  * journaled data... */
2174
2175                 if (journal->j_running_transaction) {
2176                         /* ... and once the current transaction has
2177                          * committed, the buffer won't be needed any
2178                          * longer. */
2179                         JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2180                         may_free = __dispose_buffer(jh,
2181                                         journal->j_running_transaction);
2182                         goto zap_buffer;
2183                 } else {
2184                         /* There is no currently-running transaction. So the
2185                          * orphan record which we wrote for this file must have
2186                          * passed into commit.  We must attach this buffer to
2187                          * the committing transaction, if it exists. */
2188                         if (journal->j_committing_transaction) {
2189                                 JBUFFER_TRACE(jh, "give to committing trans");
2190                                 may_free = __dispose_buffer(jh,
2191                                         journal->j_committing_transaction);
2192                                 goto zap_buffer;
2193                         } else {
2194                                 /* The orphan record's transaction has
2195                                  * committed.  We can cleanse this buffer */
2196                                 clear_buffer_jbddirty(bh);
2197                                 __jbd2_journal_remove_checkpoint(jh);
2198                                 goto zap_buffer;
2199                         }
2200                 }
2201         } else if (transaction == journal->j_committing_transaction) {
2202                 JBUFFER_TRACE(jh, "on committing transaction");
2203                 /*
2204                  * The buffer is committing, we simply cannot touch
2205                  * it. If the page is straddling i_size we have to wait
2206                  * for commit and try again.
2207                  */
2208                 if (partial_page) {
2209                         jbd2_journal_put_journal_head(jh);
2210                         spin_unlock(&journal->j_list_lock);
2211                         jbd_unlock_bh_state(bh);
2212                         write_unlock(&journal->j_state_lock);
2213                         return -EBUSY;
2214                 }
2215                 /*
2216                  * OK, buffer won't be reachable after truncate. We just set
2217                  * j_next_transaction to the running transaction (if there is
2218                  * one) and mark buffer as freed so that commit code knows it
2219                  * should clear dirty bits when it is done with the buffer.
2220                  */
2221                 set_buffer_freed(bh);
2222                 if (journal->j_running_transaction && buffer_jbddirty(bh))
2223                         jh->b_next_transaction = journal->j_running_transaction;
2224                 jbd2_journal_put_journal_head(jh);
2225                 spin_unlock(&journal->j_list_lock);
2226                 jbd_unlock_bh_state(bh);
2227                 write_unlock(&journal->j_state_lock);
2228                 return 0;
2229         } else {
2230                 /* Good, the buffer belongs to the running transaction.
2231                  * We are writing our own transaction's data, not any
2232                  * previous one's, so it is safe to throw it away
2233                  * (remember that we expect the filesystem to have set
2234                  * i_size already for this truncate so recovery will not
2235                  * expose the disk blocks we are discarding here.) */
2236                 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2237                 JBUFFER_TRACE(jh, "on running transaction");
2238                 may_free = __dispose_buffer(jh, transaction);
2239         }
2240
2241 zap_buffer:
2242         /*
2243          * This is tricky. Although the buffer is truncated, it may be reused
2244          * if blocksize < pagesize and it is attached to the page straddling
2245          * EOF. Since the buffer might have been added to BJ_Forget list of the
2246          * running transaction, journal_get_write_access() won't clear
2247          * b_modified and credit accounting gets confused. So clear b_modified
2248          * here.
2249          */
2250         jh->b_modified = 0;
2251         jbd2_journal_put_journal_head(jh);
2252 zap_buffer_no_jh:
2253         spin_unlock(&journal->j_list_lock);
2254         jbd_unlock_bh_state(bh);
2255         write_unlock(&journal->j_state_lock);
2256 zap_buffer_unlocked:
2257         clear_buffer_dirty(bh);
2258         J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2259         clear_buffer_mapped(bh);
2260         clear_buffer_req(bh);
2261         clear_buffer_new(bh);
2262         clear_buffer_delay(bh);
2263         clear_buffer_unwritten(bh);
2264         bh->b_bdev = NULL;
2265         return may_free;
2266 }
2267
2268 /**
2269  * void jbd2_journal_invalidatepage()
2270  * @journal: journal to use for flush...
2271  * @page:    page to flush
2272  * @offset:  start of the range to invalidate
2273  * @length:  length of the range to invalidate
2274  *
2275  * Reap page buffers containing data after in the specified range in page.
2276  * Can return -EBUSY if buffers are part of the committing transaction and
2277  * the page is straddling i_size. Caller then has to wait for current commit
2278  * and try again.
2279  */
2280 int jbd2_journal_invalidatepage(journal_t *journal,
2281                                 struct page *page,
2282                                 unsigned int offset,
2283                                 unsigned int length)
2284 {
2285         struct buffer_head *head, *bh, *next;
2286         unsigned int stop = offset + length;
2287         unsigned int curr_off = 0;
2288         int partial_page = (offset || length < PAGE_SIZE);
2289         int may_free = 1;
2290         int ret = 0;
2291
2292         if (!PageLocked(page))
2293                 BUG();
2294         if (!page_has_buffers(page))
2295                 return 0;
2296
2297         BUG_ON(stop > PAGE_SIZE || stop < length);
2298
2299         /* We will potentially be playing with lists other than just the
2300          * data lists (especially for journaled data mode), so be
2301          * cautious in our locking. */
2302
2303         head = bh = page_buffers(page);
2304         do {
2305                 unsigned int next_off = curr_off + bh->b_size;
2306                 next = bh->b_this_page;
2307
2308                 if (next_off > stop)
2309                         return 0;
2310
2311                 if (offset <= curr_off) {
2312                         /* This block is wholly outside the truncation point */
2313                         lock_buffer(bh);
2314                         ret = journal_unmap_buffer(journal, bh, partial_page);
2315                         unlock_buffer(bh);
2316                         if (ret < 0)
2317                                 return ret;
2318                         may_free &= ret;
2319                 }
2320                 curr_off = next_off;
2321                 bh = next;
2322
2323         } while (bh != head);
2324
2325         if (!partial_page) {
2326                 if (may_free && try_to_free_buffers(page))
2327                         J_ASSERT(!page_has_buffers(page));
2328         }
2329         return 0;
2330 }
2331
2332 /*
2333  * File a buffer on the given transaction list.
2334  */
2335 void __jbd2_journal_file_buffer(struct journal_head *jh,
2336                         transaction_t *transaction, int jlist)
2337 {
2338         struct journal_head **list = NULL;
2339         int was_dirty = 0;
2340         struct buffer_head *bh = jh2bh(jh);
2341
2342         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2343         assert_spin_locked(&transaction->t_journal->j_list_lock);
2344
2345         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2346         J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2347                                 jh->b_transaction == NULL);
2348
2349         if (jh->b_transaction && jh->b_jlist == jlist)
2350                 return;
2351
2352         if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2353             jlist == BJ_Shadow || jlist == BJ_Forget) {
2354                 /*
2355                  * For metadata buffers, we track dirty bit in buffer_jbddirty
2356                  * instead of buffer_dirty. We should not see a dirty bit set
2357                  * here because we clear it in do_get_write_access but e.g.
2358                  * tune2fs can modify the sb and set the dirty bit at any time
2359                  * so we try to gracefully handle that.
2360                  */
2361                 if (buffer_dirty(bh))
2362                         warn_dirty_buffer(bh);
2363                 if (test_clear_buffer_dirty(bh) ||
2364                     test_clear_buffer_jbddirty(bh))
2365                         was_dirty = 1;
2366         }
2367
2368         if (jh->b_transaction)
2369                 __jbd2_journal_temp_unlink_buffer(jh);
2370         else
2371                 jbd2_journal_grab_journal_head(bh);
2372         jh->b_transaction = transaction;
2373
2374         switch (jlist) {
2375         case BJ_None:
2376                 J_ASSERT_JH(jh, !jh->b_committed_data);
2377                 J_ASSERT_JH(jh, !jh->b_frozen_data);
2378                 return;
2379         case BJ_Metadata:
2380                 transaction->t_nr_buffers++;
2381                 list = &transaction->t_buffers;
2382                 break;
2383         case BJ_Forget:
2384                 list = &transaction->t_forget;
2385                 break;
2386         case BJ_Shadow:
2387                 list = &transaction->t_shadow_list;
2388                 break;
2389         case BJ_Reserved:
2390                 list = &transaction->t_reserved_list;
2391                 break;
2392         }
2393
2394         __blist_add_buffer(list, jh);
2395         jh->b_jlist = jlist;
2396
2397         if (was_dirty)
2398                 set_buffer_jbddirty(bh);
2399 }
2400
2401 void jbd2_journal_file_buffer(struct journal_head *jh,
2402                                 transaction_t *transaction, int jlist)
2403 {
2404         jbd_lock_bh_state(jh2bh(jh));
2405         spin_lock(&transaction->t_journal->j_list_lock);
2406         __jbd2_journal_file_buffer(jh, transaction, jlist);
2407         spin_unlock(&transaction->t_journal->j_list_lock);
2408         jbd_unlock_bh_state(jh2bh(jh));
2409 }
2410
2411 /*
2412  * Remove a buffer from its current buffer list in preparation for
2413  * dropping it from its current transaction entirely.  If the buffer has
2414  * already started to be used by a subsequent transaction, refile the
2415  * buffer on that transaction's metadata list.
2416  *
2417  * Called under j_list_lock
2418  * Called under jbd_lock_bh_state(jh2bh(jh))
2419  *
2420  * jh and bh may be already free when this function returns
2421  */
2422 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2423 {
2424         int was_dirty, jlist;
2425         struct buffer_head *bh = jh2bh(jh);
2426
2427         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2428         if (jh->b_transaction)
2429                 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2430
2431         /* If the buffer is now unused, just drop it. */
2432         if (jh->b_next_transaction == NULL) {
2433                 __jbd2_journal_unfile_buffer(jh);
2434                 return;
2435         }
2436
2437         /*
2438          * It has been modified by a later transaction: add it to the new
2439          * transaction's metadata list.
2440          */
2441
2442         was_dirty = test_clear_buffer_jbddirty(bh);
2443         __jbd2_journal_temp_unlink_buffer(jh);
2444         /*
2445          * We set b_transaction here because b_next_transaction will inherit
2446          * our jh reference and thus __jbd2_journal_file_buffer() must not
2447          * take a new one.
2448          */
2449         jh->b_transaction = jh->b_next_transaction;
2450         jh->b_next_transaction = NULL;
2451         if (buffer_freed(bh))
2452                 jlist = BJ_Forget;
2453         else if (jh->b_modified)
2454                 jlist = BJ_Metadata;
2455         else
2456                 jlist = BJ_Reserved;
2457         __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2458         J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2459
2460         if (was_dirty)
2461                 set_buffer_jbddirty(bh);
2462 }
2463
2464 /*
2465  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2466  * bh reference so that we can safely unlock bh.
2467  *
2468  * The jh and bh may be freed by this call.
2469  */
2470 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2471 {
2472         struct buffer_head *bh = jh2bh(jh);
2473
2474         /* Get reference so that buffer cannot be freed before we unlock it */
2475         get_bh(bh);
2476         jbd_lock_bh_state(bh);
2477         spin_lock(&journal->j_list_lock);
2478         __jbd2_journal_refile_buffer(jh);
2479         jbd_unlock_bh_state(bh);
2480         spin_unlock(&journal->j_list_lock);
2481         __brelse(bh);
2482 }
2483
2484 /*
2485  * File inode in the inode list of the handle's transaction
2486  */
2487 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2488                                    unsigned long flags)
2489 {
2490         transaction_t *transaction = handle->h_transaction;
2491         journal_t *journal;
2492
2493         if (is_handle_aborted(handle))
2494                 return -EROFS;
2495         journal = transaction->t_journal;
2496
2497         jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2498                         transaction->t_tid);
2499
2500         /*
2501          * First check whether inode isn't already on the transaction's
2502          * lists without taking the lock. Note that this check is safe
2503          * without the lock as we cannot race with somebody removing inode
2504          * from the transaction. The reason is that we remove inode from the
2505          * transaction only in journal_release_jbd_inode() and when we commit
2506          * the transaction. We are guarded from the first case by holding
2507          * a reference to the inode. We are safe against the second case
2508          * because if jinode->i_transaction == transaction, commit code
2509          * cannot touch the transaction because we hold reference to it,
2510          * and if jinode->i_next_transaction == transaction, commit code
2511          * will only file the inode where we want it.
2512          */
2513         if ((jinode->i_transaction == transaction ||
2514             jinode->i_next_transaction == transaction) &&
2515             (jinode->i_flags & flags) == flags)
2516                 return 0;
2517
2518         spin_lock(&journal->j_list_lock);
2519         jinode->i_flags |= flags;
2520         /* Is inode already attached where we need it? */
2521         if (jinode->i_transaction == transaction ||
2522             jinode->i_next_transaction == transaction)
2523                 goto done;
2524
2525         /*
2526          * We only ever set this variable to 1 so the test is safe. Since
2527          * t_need_data_flush is likely to be set, we do the test to save some
2528          * cacheline bouncing
2529          */
2530         if (!transaction->t_need_data_flush)
2531                 transaction->t_need_data_flush = 1;
2532         /* On some different transaction's list - should be
2533          * the committing one */
2534         if (jinode->i_transaction) {
2535                 J_ASSERT(jinode->i_next_transaction == NULL);
2536                 J_ASSERT(jinode->i_transaction ==
2537                                         journal->j_committing_transaction);
2538                 jinode->i_next_transaction = transaction;
2539                 goto done;
2540         }
2541         /* Not on any transaction list... */
2542         J_ASSERT(!jinode->i_next_transaction);
2543         jinode->i_transaction = transaction;
2544         list_add(&jinode->i_list, &transaction->t_inode_list);
2545 done:
2546         spin_unlock(&journal->j_list_lock);
2547
2548         return 0;
2549 }
2550
2551 int jbd2_journal_inode_add_write(handle_t *handle, struct jbd2_inode *jinode)
2552 {
2553         return jbd2_journal_file_inode(handle, jinode,
2554                                        JI_WRITE_DATA | JI_WAIT_DATA);
2555 }
2556
2557 int jbd2_journal_inode_add_wait(handle_t *handle, struct jbd2_inode *jinode)
2558 {
2559         return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA);
2560 }
2561
2562 /*
2563  * File truncate and transaction commit interact with each other in a
2564  * non-trivial way.  If a transaction writing data block A is
2565  * committing, we cannot discard the data by truncate until we have
2566  * written them.  Otherwise if we crashed after the transaction with
2567  * write has committed but before the transaction with truncate has
2568  * committed, we could see stale data in block A.  This function is a
2569  * helper to solve this problem.  It starts writeout of the truncated
2570  * part in case it is in the committing transaction.
2571  *
2572  * Filesystem code must call this function when inode is journaled in
2573  * ordered mode before truncation happens and after the inode has been
2574  * placed on orphan list with the new inode size. The second condition
2575  * avoids the race that someone writes new data and we start
2576  * committing the transaction after this function has been called but
2577  * before a transaction for truncate is started (and furthermore it
2578  * allows us to optimize the case where the addition to orphan list
2579  * happens in the same transaction as write --- we don't have to write
2580  * any data in such case).
2581  */
2582 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2583                                         struct jbd2_inode *jinode,
2584                                         loff_t new_size)
2585 {
2586         transaction_t *inode_trans, *commit_trans;
2587         int ret = 0;
2588
2589         /* This is a quick check to avoid locking if not necessary */
2590         if (!jinode->i_transaction)
2591                 goto out;
2592         /* Locks are here just to force reading of recent values, it is
2593          * enough that the transaction was not committing before we started
2594          * a transaction adding the inode to orphan list */
2595         read_lock(&journal->j_state_lock);
2596         commit_trans = journal->j_committing_transaction;
2597         read_unlock(&journal->j_state_lock);
2598         spin_lock(&journal->j_list_lock);
2599         inode_trans = jinode->i_transaction;
2600         spin_unlock(&journal->j_list_lock);
2601         if (inode_trans == commit_trans) {
2602                 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2603                         new_size, LLONG_MAX);
2604                 if (ret)
2605                         jbd2_journal_abort(journal, ret);
2606         }
2607 out:
2608         return ret;
2609 }