435f0b26ac2038e4f8037b5b1f2e4d15dbc9b2d2
[sfrench/cifs-2.6.git] / fs / jbd2 / journal.c
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/math64.h>
40 #include <linux/hash.h>
41 #include <linux/log2.h>
42 #include <linux/vmalloc.h>
43 #include <linux/backing-dev.h>
44 #include <linux/bitops.h>
45 #include <linux/ratelimit.h>
46
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/jbd2.h>
49
50 #include <asm/uaccess.h>
51 #include <asm/page.h>
52
53 #ifdef CONFIG_JBD2_DEBUG
54 ushort jbd2_journal_enable_debug __read_mostly;
55 EXPORT_SYMBOL(jbd2_journal_enable_debug);
56
57 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
58 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
59 #endif
60
61 EXPORT_SYMBOL(jbd2_journal_extend);
62 EXPORT_SYMBOL(jbd2_journal_stop);
63 EXPORT_SYMBOL(jbd2_journal_lock_updates);
64 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
65 EXPORT_SYMBOL(jbd2_journal_get_write_access);
66 EXPORT_SYMBOL(jbd2_journal_get_create_access);
67 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
68 EXPORT_SYMBOL(jbd2_journal_set_triggers);
69 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
70 EXPORT_SYMBOL(jbd2_journal_forget);
71 #if 0
72 EXPORT_SYMBOL(journal_sync_buffer);
73 #endif
74 EXPORT_SYMBOL(jbd2_journal_flush);
75 EXPORT_SYMBOL(jbd2_journal_revoke);
76
77 EXPORT_SYMBOL(jbd2_journal_init_dev);
78 EXPORT_SYMBOL(jbd2_journal_init_inode);
79 EXPORT_SYMBOL(jbd2_journal_check_used_features);
80 EXPORT_SYMBOL(jbd2_journal_check_available_features);
81 EXPORT_SYMBOL(jbd2_journal_set_features);
82 EXPORT_SYMBOL(jbd2_journal_load);
83 EXPORT_SYMBOL(jbd2_journal_destroy);
84 EXPORT_SYMBOL(jbd2_journal_abort);
85 EXPORT_SYMBOL(jbd2_journal_errno);
86 EXPORT_SYMBOL(jbd2_journal_ack_err);
87 EXPORT_SYMBOL(jbd2_journal_clear_err);
88 EXPORT_SYMBOL(jbd2_log_wait_commit);
89 EXPORT_SYMBOL(jbd2_log_start_commit);
90 EXPORT_SYMBOL(jbd2_journal_start_commit);
91 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
92 EXPORT_SYMBOL(jbd2_journal_wipe);
93 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
94 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
95 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
96 EXPORT_SYMBOL(jbd2_journal_force_commit);
97 EXPORT_SYMBOL(jbd2_journal_file_inode);
98 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
99 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
100 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
101 EXPORT_SYMBOL(jbd2_inode_cache);
102
103 static void __journal_abort_soft (journal_t *journal, int errno);
104 static int jbd2_journal_create_slab(size_t slab_size);
105
106 #ifdef CONFIG_JBD2_DEBUG
107 void __jbd2_debug(int level, const char *file, const char *func,
108                   unsigned int line, const char *fmt, ...)
109 {
110         struct va_format vaf;
111         va_list args;
112
113         if (level > jbd2_journal_enable_debug)
114                 return;
115         va_start(args, fmt);
116         vaf.fmt = fmt;
117         vaf.va = &args;
118         printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf);
119         va_end(args);
120 }
121 EXPORT_SYMBOL(__jbd2_debug);
122 #endif
123
124 /* Checksumming functions */
125 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
126 {
127         if (!jbd2_journal_has_csum_v2or3_feature(j))
128                 return 1;
129
130         return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
131 }
132
133 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
134 {
135         __u32 csum;
136         __be32 old_csum;
137
138         old_csum = sb->s_checksum;
139         sb->s_checksum = 0;
140         csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
141         sb->s_checksum = old_csum;
142
143         return cpu_to_be32(csum);
144 }
145
146 static int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
147 {
148         if (!jbd2_journal_has_csum_v2or3(j))
149                 return 1;
150
151         return sb->s_checksum == jbd2_superblock_csum(j, sb);
152 }
153
154 static void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
155 {
156         if (!jbd2_journal_has_csum_v2or3(j))
157                 return;
158
159         sb->s_checksum = jbd2_superblock_csum(j, sb);
160 }
161
162 /*
163  * Helper function used to manage commit timeouts
164  */
165
166 static void commit_timeout(unsigned long __data)
167 {
168         struct task_struct * p = (struct task_struct *) __data;
169
170         wake_up_process(p);
171 }
172
173 /*
174  * kjournald2: The main thread function used to manage a logging device
175  * journal.
176  *
177  * This kernel thread is responsible for two things:
178  *
179  * 1) COMMIT:  Every so often we need to commit the current state of the
180  *    filesystem to disk.  The journal thread is responsible for writing
181  *    all of the metadata buffers to disk.
182  *
183  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
184  *    of the data in that part of the log has been rewritten elsewhere on
185  *    the disk.  Flushing these old buffers to reclaim space in the log is
186  *    known as checkpointing, and this thread is responsible for that job.
187  */
188
189 static int kjournald2(void *arg)
190 {
191         journal_t *journal = arg;
192         transaction_t *transaction;
193
194         /*
195          * Set up an interval timer which can be used to trigger a commit wakeup
196          * after the commit interval expires
197          */
198         setup_timer(&journal->j_commit_timer, commit_timeout,
199                         (unsigned long)current);
200
201         set_freezable();
202
203         /* Record that the journal thread is running */
204         journal->j_task = current;
205         wake_up(&journal->j_wait_done_commit);
206
207         /*
208          * And now, wait forever for commit wakeup events.
209          */
210         write_lock(&journal->j_state_lock);
211
212 loop:
213         if (journal->j_flags & JBD2_UNMOUNT)
214                 goto end_loop;
215
216         jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
217                 journal->j_commit_sequence, journal->j_commit_request);
218
219         if (journal->j_commit_sequence != journal->j_commit_request) {
220                 jbd_debug(1, "OK, requests differ\n");
221                 write_unlock(&journal->j_state_lock);
222                 del_timer_sync(&journal->j_commit_timer);
223                 jbd2_journal_commit_transaction(journal);
224                 write_lock(&journal->j_state_lock);
225                 goto loop;
226         }
227
228         wake_up(&journal->j_wait_done_commit);
229         if (freezing(current)) {
230                 /*
231                  * The simpler the better. Flushing journal isn't a
232                  * good idea, because that depends on threads that may
233                  * be already stopped.
234                  */
235                 jbd_debug(1, "Now suspending kjournald2\n");
236                 write_unlock(&journal->j_state_lock);
237                 try_to_freeze();
238                 write_lock(&journal->j_state_lock);
239         } else {
240                 /*
241                  * We assume on resume that commits are already there,
242                  * so we don't sleep
243                  */
244                 DEFINE_WAIT(wait);
245                 int should_sleep = 1;
246
247                 prepare_to_wait(&journal->j_wait_commit, &wait,
248                                 TASK_INTERRUPTIBLE);
249                 if (journal->j_commit_sequence != journal->j_commit_request)
250                         should_sleep = 0;
251                 transaction = journal->j_running_transaction;
252                 if (transaction && time_after_eq(jiffies,
253                                                 transaction->t_expires))
254                         should_sleep = 0;
255                 if (journal->j_flags & JBD2_UNMOUNT)
256                         should_sleep = 0;
257                 if (should_sleep) {
258                         write_unlock(&journal->j_state_lock);
259                         schedule();
260                         write_lock(&journal->j_state_lock);
261                 }
262                 finish_wait(&journal->j_wait_commit, &wait);
263         }
264
265         jbd_debug(1, "kjournald2 wakes\n");
266
267         /*
268          * Were we woken up by a commit wakeup event?
269          */
270         transaction = journal->j_running_transaction;
271         if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
272                 journal->j_commit_request = transaction->t_tid;
273                 jbd_debug(1, "woke because of timeout\n");
274         }
275         goto loop;
276
277 end_loop:
278         write_unlock(&journal->j_state_lock);
279         del_timer_sync(&journal->j_commit_timer);
280         journal->j_task = NULL;
281         wake_up(&journal->j_wait_done_commit);
282         jbd_debug(1, "Journal thread exiting.\n");
283         return 0;
284 }
285
286 static int jbd2_journal_start_thread(journal_t *journal)
287 {
288         struct task_struct *t;
289
290         t = kthread_run(kjournald2, journal, "jbd2/%s",
291                         journal->j_devname);
292         if (IS_ERR(t))
293                 return PTR_ERR(t);
294
295         wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
296         return 0;
297 }
298
299 static void journal_kill_thread(journal_t *journal)
300 {
301         write_lock(&journal->j_state_lock);
302         journal->j_flags |= JBD2_UNMOUNT;
303
304         while (journal->j_task) {
305                 write_unlock(&journal->j_state_lock);
306                 wake_up(&journal->j_wait_commit);
307                 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
308                 write_lock(&journal->j_state_lock);
309         }
310         write_unlock(&journal->j_state_lock);
311 }
312
313 /*
314  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
315  *
316  * Writes a metadata buffer to a given disk block.  The actual IO is not
317  * performed but a new buffer_head is constructed which labels the data
318  * to be written with the correct destination disk block.
319  *
320  * Any magic-number escaping which needs to be done will cause a
321  * copy-out here.  If the buffer happens to start with the
322  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
323  * magic number is only written to the log for descripter blocks.  In
324  * this case, we copy the data and replace the first word with 0, and we
325  * return a result code which indicates that this buffer needs to be
326  * marked as an escaped buffer in the corresponding log descriptor
327  * block.  The missing word can then be restored when the block is read
328  * during recovery.
329  *
330  * If the source buffer has already been modified by a new transaction
331  * since we took the last commit snapshot, we use the frozen copy of
332  * that data for IO. If we end up using the existing buffer_head's data
333  * for the write, then we have to make sure nobody modifies it while the
334  * IO is in progress. do_get_write_access() handles this.
335  *
336  * The function returns a pointer to the buffer_head to be used for IO.
337  * 
338  *
339  * Return value:
340  *  <0: Error
341  * >=0: Finished OK
342  *
343  * On success:
344  * Bit 0 set == escape performed on the data
345  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
346  */
347
348 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
349                                   struct journal_head  *jh_in,
350                                   struct buffer_head **bh_out,
351                                   sector_t blocknr)
352 {
353         int need_copy_out = 0;
354         int done_copy_out = 0;
355         int do_escape = 0;
356         char *mapped_data;
357         struct buffer_head *new_bh;
358         struct page *new_page;
359         unsigned int new_offset;
360         struct buffer_head *bh_in = jh2bh(jh_in);
361         journal_t *journal = transaction->t_journal;
362
363         /*
364          * The buffer really shouldn't be locked: only the current committing
365          * transaction is allowed to write it, so nobody else is allowed
366          * to do any IO.
367          *
368          * akpm: except if we're journalling data, and write() output is
369          * also part of a shared mapping, and another thread has
370          * decided to launch a writepage() against this buffer.
371          */
372         J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
373
374         new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
375
376         /* keep subsequent assertions sane */
377         atomic_set(&new_bh->b_count, 1);
378
379         jbd_lock_bh_state(bh_in);
380 repeat:
381         /*
382          * If a new transaction has already done a buffer copy-out, then
383          * we use that version of the data for the commit.
384          */
385         if (jh_in->b_frozen_data) {
386                 done_copy_out = 1;
387                 new_page = virt_to_page(jh_in->b_frozen_data);
388                 new_offset = offset_in_page(jh_in->b_frozen_data);
389         } else {
390                 new_page = jh2bh(jh_in)->b_page;
391                 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
392         }
393
394         mapped_data = kmap_atomic(new_page);
395         /*
396          * Fire data frozen trigger if data already wasn't frozen.  Do this
397          * before checking for escaping, as the trigger may modify the magic
398          * offset.  If a copy-out happens afterwards, it will have the correct
399          * data in the buffer.
400          */
401         if (!done_copy_out)
402                 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
403                                            jh_in->b_triggers);
404
405         /*
406          * Check for escaping
407          */
408         if (*((__be32 *)(mapped_data + new_offset)) ==
409                                 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
410                 need_copy_out = 1;
411                 do_escape = 1;
412         }
413         kunmap_atomic(mapped_data);
414
415         /*
416          * Do we need to do a data copy?
417          */
418         if (need_copy_out && !done_copy_out) {
419                 char *tmp;
420
421                 jbd_unlock_bh_state(bh_in);
422                 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
423                 if (!tmp) {
424                         brelse(new_bh);
425                         return -ENOMEM;
426                 }
427                 jbd_lock_bh_state(bh_in);
428                 if (jh_in->b_frozen_data) {
429                         jbd2_free(tmp, bh_in->b_size);
430                         goto repeat;
431                 }
432
433                 jh_in->b_frozen_data = tmp;
434                 mapped_data = kmap_atomic(new_page);
435                 memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
436                 kunmap_atomic(mapped_data);
437
438                 new_page = virt_to_page(tmp);
439                 new_offset = offset_in_page(tmp);
440                 done_copy_out = 1;
441
442                 /*
443                  * This isn't strictly necessary, as we're using frozen
444                  * data for the escaping, but it keeps consistency with
445                  * b_frozen_data usage.
446                  */
447                 jh_in->b_frozen_triggers = jh_in->b_triggers;
448         }
449
450         /*
451          * Did we need to do an escaping?  Now we've done all the
452          * copying, we can finally do so.
453          */
454         if (do_escape) {
455                 mapped_data = kmap_atomic(new_page);
456                 *((unsigned int *)(mapped_data + new_offset)) = 0;
457                 kunmap_atomic(mapped_data);
458         }
459
460         set_bh_page(new_bh, new_page, new_offset);
461         new_bh->b_size = bh_in->b_size;
462         new_bh->b_bdev = journal->j_dev;
463         new_bh->b_blocknr = blocknr;
464         new_bh->b_private = bh_in;
465         set_buffer_mapped(new_bh);
466         set_buffer_dirty(new_bh);
467
468         *bh_out = new_bh;
469
470         /*
471          * The to-be-written buffer needs to get moved to the io queue,
472          * and the original buffer whose contents we are shadowing or
473          * copying is moved to the transaction's shadow queue.
474          */
475         JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
476         spin_lock(&journal->j_list_lock);
477         __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
478         spin_unlock(&journal->j_list_lock);
479         set_buffer_shadow(bh_in);
480         jbd_unlock_bh_state(bh_in);
481
482         return do_escape | (done_copy_out << 1);
483 }
484
485 /*
486  * Allocation code for the journal file.  Manage the space left in the
487  * journal, so that we can begin checkpointing when appropriate.
488  */
489
490 /*
491  * Called with j_state_lock locked for writing.
492  * Returns true if a transaction commit was started.
493  */
494 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
495 {
496         /* Return if the txn has already requested to be committed */
497         if (journal->j_commit_request == target)
498                 return 0;
499
500         /*
501          * The only transaction we can possibly wait upon is the
502          * currently running transaction (if it exists).  Otherwise,
503          * the target tid must be an old one.
504          */
505         if (journal->j_running_transaction &&
506             journal->j_running_transaction->t_tid == target) {
507                 /*
508                  * We want a new commit: OK, mark the request and wakeup the
509                  * commit thread.  We do _not_ do the commit ourselves.
510                  */
511
512                 journal->j_commit_request = target;
513                 jbd_debug(1, "JBD2: requesting commit %d/%d\n",
514                           journal->j_commit_request,
515                           journal->j_commit_sequence);
516                 journal->j_running_transaction->t_requested = jiffies;
517                 wake_up(&journal->j_wait_commit);
518                 return 1;
519         } else if (!tid_geq(journal->j_commit_request, target))
520                 /* This should never happen, but if it does, preserve
521                    the evidence before kjournald goes into a loop and
522                    increments j_commit_sequence beyond all recognition. */
523                 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
524                           journal->j_commit_request,
525                           journal->j_commit_sequence,
526                           target, journal->j_running_transaction ? 
527                           journal->j_running_transaction->t_tid : 0);
528         return 0;
529 }
530
531 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
532 {
533         int ret;
534
535         write_lock(&journal->j_state_lock);
536         ret = __jbd2_log_start_commit(journal, tid);
537         write_unlock(&journal->j_state_lock);
538         return ret;
539 }
540
541 /*
542  * Force and wait any uncommitted transactions.  We can only force the running
543  * transaction if we don't have an active handle, otherwise, we will deadlock.
544  * Returns: <0 in case of error,
545  *           0 if nothing to commit,
546  *           1 if transaction was successfully committed.
547  */
548 static int __jbd2_journal_force_commit(journal_t *journal)
549 {
550         transaction_t *transaction = NULL;
551         tid_t tid;
552         int need_to_start = 0, ret = 0;
553
554         read_lock(&journal->j_state_lock);
555         if (journal->j_running_transaction && !current->journal_info) {
556                 transaction = journal->j_running_transaction;
557                 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
558                         need_to_start = 1;
559         } else if (journal->j_committing_transaction)
560                 transaction = journal->j_committing_transaction;
561
562         if (!transaction) {
563                 /* Nothing to commit */
564                 read_unlock(&journal->j_state_lock);
565                 return 0;
566         }
567         tid = transaction->t_tid;
568         read_unlock(&journal->j_state_lock);
569         if (need_to_start)
570                 jbd2_log_start_commit(journal, tid);
571         ret = jbd2_log_wait_commit(journal, tid);
572         if (!ret)
573                 ret = 1;
574
575         return ret;
576 }
577
578 /**
579  * Force and wait upon a commit if the calling process is not within
580  * transaction.  This is used for forcing out undo-protected data which contains
581  * bitmaps, when the fs is running out of space.
582  *
583  * @journal: journal to force
584  * Returns true if progress was made.
585  */
586 int jbd2_journal_force_commit_nested(journal_t *journal)
587 {
588         int ret;
589
590         ret = __jbd2_journal_force_commit(journal);
591         return ret > 0;
592 }
593
594 /**
595  * int journal_force_commit() - force any uncommitted transactions
596  * @journal: journal to force
597  *
598  * Caller want unconditional commit. We can only force the running transaction
599  * if we don't have an active handle, otherwise, we will deadlock.
600  */
601 int jbd2_journal_force_commit(journal_t *journal)
602 {
603         int ret;
604
605         J_ASSERT(!current->journal_info);
606         ret = __jbd2_journal_force_commit(journal);
607         if (ret > 0)
608                 ret = 0;
609         return ret;
610 }
611
612 /*
613  * Start a commit of the current running transaction (if any).  Returns true
614  * if a transaction is going to be committed (or is currently already
615  * committing), and fills its tid in at *ptid
616  */
617 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
618 {
619         int ret = 0;
620
621         write_lock(&journal->j_state_lock);
622         if (journal->j_running_transaction) {
623                 tid_t tid = journal->j_running_transaction->t_tid;
624
625                 __jbd2_log_start_commit(journal, tid);
626                 /* There's a running transaction and we've just made sure
627                  * it's commit has been scheduled. */
628                 if (ptid)
629                         *ptid = tid;
630                 ret = 1;
631         } else if (journal->j_committing_transaction) {
632                 /*
633                  * If commit has been started, then we have to wait for
634                  * completion of that transaction.
635                  */
636                 if (ptid)
637                         *ptid = journal->j_committing_transaction->t_tid;
638                 ret = 1;
639         }
640         write_unlock(&journal->j_state_lock);
641         return ret;
642 }
643
644 /*
645  * Return 1 if a given transaction has not yet sent barrier request
646  * connected with a transaction commit. If 0 is returned, transaction
647  * may or may not have sent the barrier. Used to avoid sending barrier
648  * twice in common cases.
649  */
650 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
651 {
652         int ret = 0;
653         transaction_t *commit_trans;
654
655         if (!(journal->j_flags & JBD2_BARRIER))
656                 return 0;
657         read_lock(&journal->j_state_lock);
658         /* Transaction already committed? */
659         if (tid_geq(journal->j_commit_sequence, tid))
660                 goto out;
661         commit_trans = journal->j_committing_transaction;
662         if (!commit_trans || commit_trans->t_tid != tid) {
663                 ret = 1;
664                 goto out;
665         }
666         /*
667          * Transaction is being committed and we already proceeded to
668          * submitting a flush to fs partition?
669          */
670         if (journal->j_fs_dev != journal->j_dev) {
671                 if (!commit_trans->t_need_data_flush ||
672                     commit_trans->t_state >= T_COMMIT_DFLUSH)
673                         goto out;
674         } else {
675                 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
676                         goto out;
677         }
678         ret = 1;
679 out:
680         read_unlock(&journal->j_state_lock);
681         return ret;
682 }
683 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
684
685 /*
686  * Wait for a specified commit to complete.
687  * The caller may not hold the journal lock.
688  */
689 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
690 {
691         int err = 0;
692
693         read_lock(&journal->j_state_lock);
694 #ifdef CONFIG_JBD2_DEBUG
695         if (!tid_geq(journal->j_commit_request, tid)) {
696                 printk(KERN_ERR
697                        "%s: error: j_commit_request=%d, tid=%d\n",
698                        __func__, journal->j_commit_request, tid);
699         }
700 #endif
701         while (tid_gt(tid, journal->j_commit_sequence)) {
702                 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
703                                   tid, journal->j_commit_sequence);
704                 read_unlock(&journal->j_state_lock);
705                 wake_up(&journal->j_wait_commit);
706                 wait_event(journal->j_wait_done_commit,
707                                 !tid_gt(tid, journal->j_commit_sequence));
708                 read_lock(&journal->j_state_lock);
709         }
710         read_unlock(&journal->j_state_lock);
711
712         if (unlikely(is_journal_aborted(journal)))
713                 err = -EIO;
714         return err;
715 }
716
717 /*
718  * When this function returns the transaction corresponding to tid
719  * will be completed.  If the transaction has currently running, start
720  * committing that transaction before waiting for it to complete.  If
721  * the transaction id is stale, it is by definition already completed,
722  * so just return SUCCESS.
723  */
724 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
725 {
726         int     need_to_wait = 1;
727
728         read_lock(&journal->j_state_lock);
729         if (journal->j_running_transaction &&
730             journal->j_running_transaction->t_tid == tid) {
731                 if (journal->j_commit_request != tid) {
732                         /* transaction not yet started, so request it */
733                         read_unlock(&journal->j_state_lock);
734                         jbd2_log_start_commit(journal, tid);
735                         goto wait_commit;
736                 }
737         } else if (!(journal->j_committing_transaction &&
738                      journal->j_committing_transaction->t_tid == tid))
739                 need_to_wait = 0;
740         read_unlock(&journal->j_state_lock);
741         if (!need_to_wait)
742                 return 0;
743 wait_commit:
744         return jbd2_log_wait_commit(journal, tid);
745 }
746 EXPORT_SYMBOL(jbd2_complete_transaction);
747
748 /*
749  * Log buffer allocation routines:
750  */
751
752 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
753 {
754         unsigned long blocknr;
755
756         write_lock(&journal->j_state_lock);
757         J_ASSERT(journal->j_free > 1);
758
759         blocknr = journal->j_head;
760         journal->j_head++;
761         journal->j_free--;
762         if (journal->j_head == journal->j_last)
763                 journal->j_head = journal->j_first;
764         write_unlock(&journal->j_state_lock);
765         return jbd2_journal_bmap(journal, blocknr, retp);
766 }
767
768 /*
769  * Conversion of logical to physical block numbers for the journal
770  *
771  * On external journals the journal blocks are identity-mapped, so
772  * this is a no-op.  If needed, we can use j_blk_offset - everything is
773  * ready.
774  */
775 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
776                  unsigned long long *retp)
777 {
778         int err = 0;
779         unsigned long long ret;
780
781         if (journal->j_inode) {
782                 ret = bmap(journal->j_inode, blocknr);
783                 if (ret)
784                         *retp = ret;
785                 else {
786                         printk(KERN_ALERT "%s: journal block not found "
787                                         "at offset %lu on %s\n",
788                                __func__, blocknr, journal->j_devname);
789                         err = -EIO;
790                         __journal_abort_soft(journal, err);
791                 }
792         } else {
793                 *retp = blocknr; /* +journal->j_blk_offset */
794         }
795         return err;
796 }
797
798 /*
799  * We play buffer_head aliasing tricks to write data/metadata blocks to
800  * the journal without copying their contents, but for journal
801  * descriptor blocks we do need to generate bona fide buffers.
802  *
803  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
804  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
805  * But we don't bother doing that, so there will be coherency problems with
806  * mmaps of blockdevs which hold live JBD-controlled filesystems.
807  */
808 struct buffer_head *
809 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
810 {
811         journal_t *journal = transaction->t_journal;
812         struct buffer_head *bh;
813         unsigned long long blocknr;
814         journal_header_t *header;
815         int err;
816
817         err = jbd2_journal_next_log_block(journal, &blocknr);
818
819         if (err)
820                 return NULL;
821
822         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
823         if (!bh)
824                 return NULL;
825         lock_buffer(bh);
826         memset(bh->b_data, 0, journal->j_blocksize);
827         header = (journal_header_t *)bh->b_data;
828         header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
829         header->h_blocktype = cpu_to_be32(type);
830         header->h_sequence = cpu_to_be32(transaction->t_tid);
831         set_buffer_uptodate(bh);
832         unlock_buffer(bh);
833         BUFFER_TRACE(bh, "return this buffer");
834         return bh;
835 }
836
837 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
838 {
839         struct jbd2_journal_block_tail *tail;
840         __u32 csum;
841
842         if (!jbd2_journal_has_csum_v2or3(j))
843                 return;
844
845         tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
846                         sizeof(struct jbd2_journal_block_tail));
847         tail->t_checksum = 0;
848         csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
849         tail->t_checksum = cpu_to_be32(csum);
850 }
851
852 /*
853  * Return tid of the oldest transaction in the journal and block in the journal
854  * where the transaction starts.
855  *
856  * If the journal is now empty, return which will be the next transaction ID
857  * we will write and where will that transaction start.
858  *
859  * The return value is 0 if journal tail cannot be pushed any further, 1 if
860  * it can.
861  */
862 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
863                               unsigned long *block)
864 {
865         transaction_t *transaction;
866         int ret;
867
868         read_lock(&journal->j_state_lock);
869         spin_lock(&journal->j_list_lock);
870         transaction = journal->j_checkpoint_transactions;
871         if (transaction) {
872                 *tid = transaction->t_tid;
873                 *block = transaction->t_log_start;
874         } else if ((transaction = journal->j_committing_transaction) != NULL) {
875                 *tid = transaction->t_tid;
876                 *block = transaction->t_log_start;
877         } else if ((transaction = journal->j_running_transaction) != NULL) {
878                 *tid = transaction->t_tid;
879                 *block = journal->j_head;
880         } else {
881                 *tid = journal->j_transaction_sequence;
882                 *block = journal->j_head;
883         }
884         ret = tid_gt(*tid, journal->j_tail_sequence);
885         spin_unlock(&journal->j_list_lock);
886         read_unlock(&journal->j_state_lock);
887
888         return ret;
889 }
890
891 /*
892  * Update information in journal structure and in on disk journal superblock
893  * about log tail. This function does not check whether information passed in
894  * really pushes log tail further. It's responsibility of the caller to make
895  * sure provided log tail information is valid (e.g. by holding
896  * j_checkpoint_mutex all the time between computing log tail and calling this
897  * function as is the case with jbd2_cleanup_journal_tail()).
898  *
899  * Requires j_checkpoint_mutex
900  */
901 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
902 {
903         unsigned long freed;
904         int ret;
905
906         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
907
908         /*
909          * We cannot afford for write to remain in drive's caches since as
910          * soon as we update j_tail, next transaction can start reusing journal
911          * space and if we lose sb update during power failure we'd replay
912          * old transaction with possibly newly overwritten data.
913          */
914         ret = jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA);
915         if (ret)
916                 goto out;
917
918         write_lock(&journal->j_state_lock);
919         freed = block - journal->j_tail;
920         if (block < journal->j_tail)
921                 freed += journal->j_last - journal->j_first;
922
923         trace_jbd2_update_log_tail(journal, tid, block, freed);
924         jbd_debug(1,
925                   "Cleaning journal tail from %d to %d (offset %lu), "
926                   "freeing %lu\n",
927                   journal->j_tail_sequence, tid, block, freed);
928
929         journal->j_free += freed;
930         journal->j_tail_sequence = tid;
931         journal->j_tail = block;
932         write_unlock(&journal->j_state_lock);
933
934 out:
935         return ret;
936 }
937
938 /*
939  * This is a variaon of __jbd2_update_log_tail which checks for validity of
940  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
941  * with other threads updating log tail.
942  */
943 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
944 {
945         mutex_lock(&journal->j_checkpoint_mutex);
946         if (tid_gt(tid, journal->j_tail_sequence))
947                 __jbd2_update_log_tail(journal, tid, block);
948         mutex_unlock(&journal->j_checkpoint_mutex);
949 }
950
951 struct jbd2_stats_proc_session {
952         journal_t *journal;
953         struct transaction_stats_s *stats;
954         int start;
955         int max;
956 };
957
958 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
959 {
960         return *pos ? NULL : SEQ_START_TOKEN;
961 }
962
963 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
964 {
965         return NULL;
966 }
967
968 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
969 {
970         struct jbd2_stats_proc_session *s = seq->private;
971
972         if (v != SEQ_START_TOKEN)
973                 return 0;
974         seq_printf(seq, "%lu transactions (%lu requested), "
975                    "each up to %u blocks\n",
976                    s->stats->ts_tid, s->stats->ts_requested,
977                    s->journal->j_max_transaction_buffers);
978         if (s->stats->ts_tid == 0)
979                 return 0;
980         seq_printf(seq, "average: \n  %ums waiting for transaction\n",
981             jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
982         seq_printf(seq, "  %ums request delay\n",
983             (s->stats->ts_requested == 0) ? 0 :
984             jiffies_to_msecs(s->stats->run.rs_request_delay /
985                              s->stats->ts_requested));
986         seq_printf(seq, "  %ums running transaction\n",
987             jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
988         seq_printf(seq, "  %ums transaction was being locked\n",
989             jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
990         seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
991             jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
992         seq_printf(seq, "  %ums logging transaction\n",
993             jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
994         seq_printf(seq, "  %lluus average transaction commit time\n",
995                    div_u64(s->journal->j_average_commit_time, 1000));
996         seq_printf(seq, "  %lu handles per transaction\n",
997             s->stats->run.rs_handle_count / s->stats->ts_tid);
998         seq_printf(seq, "  %lu blocks per transaction\n",
999             s->stats->run.rs_blocks / s->stats->ts_tid);
1000         seq_printf(seq, "  %lu logged blocks per transaction\n",
1001             s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1002         return 0;
1003 }
1004
1005 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1006 {
1007 }
1008
1009 static const struct seq_operations jbd2_seq_info_ops = {
1010         .start  = jbd2_seq_info_start,
1011         .next   = jbd2_seq_info_next,
1012         .stop   = jbd2_seq_info_stop,
1013         .show   = jbd2_seq_info_show,
1014 };
1015
1016 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1017 {
1018         journal_t *journal = PDE_DATA(inode);
1019         struct jbd2_stats_proc_session *s;
1020         int rc, size;
1021
1022         s = kmalloc(sizeof(*s), GFP_KERNEL);
1023         if (s == NULL)
1024                 return -ENOMEM;
1025         size = sizeof(struct transaction_stats_s);
1026         s->stats = kmalloc(size, GFP_KERNEL);
1027         if (s->stats == NULL) {
1028                 kfree(s);
1029                 return -ENOMEM;
1030         }
1031         spin_lock(&journal->j_history_lock);
1032         memcpy(s->stats, &journal->j_stats, size);
1033         s->journal = journal;
1034         spin_unlock(&journal->j_history_lock);
1035
1036         rc = seq_open(file, &jbd2_seq_info_ops);
1037         if (rc == 0) {
1038                 struct seq_file *m = file->private_data;
1039                 m->private = s;
1040         } else {
1041                 kfree(s->stats);
1042                 kfree(s);
1043         }
1044         return rc;
1045
1046 }
1047
1048 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1049 {
1050         struct seq_file *seq = file->private_data;
1051         struct jbd2_stats_proc_session *s = seq->private;
1052         kfree(s->stats);
1053         kfree(s);
1054         return seq_release(inode, file);
1055 }
1056
1057 static const struct file_operations jbd2_seq_info_fops = {
1058         .owner          = THIS_MODULE,
1059         .open           = jbd2_seq_info_open,
1060         .read           = seq_read,
1061         .llseek         = seq_lseek,
1062         .release        = jbd2_seq_info_release,
1063 };
1064
1065 static struct proc_dir_entry *proc_jbd2_stats;
1066
1067 static void jbd2_stats_proc_init(journal_t *journal)
1068 {
1069         journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1070         if (journal->j_proc_entry) {
1071                 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1072                                  &jbd2_seq_info_fops, journal);
1073         }
1074 }
1075
1076 static void jbd2_stats_proc_exit(journal_t *journal)
1077 {
1078         remove_proc_entry("info", journal->j_proc_entry);
1079         remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1080 }
1081
1082 /*
1083  * Management for journal control blocks: functions to create and
1084  * destroy journal_t structures, and to initialise and read existing
1085  * journal blocks from disk.  */
1086
1087 /* First: create and setup a journal_t object in memory.  We initialise
1088  * very few fields yet: that has to wait until we have created the
1089  * journal structures from from scratch, or loaded them from disk. */
1090
1091 static journal_t * journal_init_common (void)
1092 {
1093         journal_t *journal;
1094         int err;
1095
1096         journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1097         if (!journal)
1098                 return NULL;
1099
1100         init_waitqueue_head(&journal->j_wait_transaction_locked);
1101         init_waitqueue_head(&journal->j_wait_done_commit);
1102         init_waitqueue_head(&journal->j_wait_commit);
1103         init_waitqueue_head(&journal->j_wait_updates);
1104         init_waitqueue_head(&journal->j_wait_reserved);
1105         mutex_init(&journal->j_barrier);
1106         mutex_init(&journal->j_checkpoint_mutex);
1107         spin_lock_init(&journal->j_revoke_lock);
1108         spin_lock_init(&journal->j_list_lock);
1109         rwlock_init(&journal->j_state_lock);
1110
1111         journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1112         journal->j_min_batch_time = 0;
1113         journal->j_max_batch_time = 15000; /* 15ms */
1114         atomic_set(&journal->j_reserved_credits, 0);
1115
1116         /* The journal is marked for error until we succeed with recovery! */
1117         journal->j_flags = JBD2_ABORT;
1118
1119         /* Set up a default-sized revoke table for the new mount. */
1120         err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1121         if (err) {
1122                 kfree(journal);
1123                 return NULL;
1124         }
1125
1126         spin_lock_init(&journal->j_history_lock);
1127
1128         return journal;
1129 }
1130
1131 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1132  *
1133  * Create a journal structure assigned some fixed set of disk blocks to
1134  * the journal.  We don't actually touch those disk blocks yet, but we
1135  * need to set up all of the mapping information to tell the journaling
1136  * system where the journal blocks are.
1137  *
1138  */
1139
1140 /**
1141  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1142  *  @bdev: Block device on which to create the journal
1143  *  @fs_dev: Device which hold journalled filesystem for this journal.
1144  *  @start: Block nr Start of journal.
1145  *  @len:  Length of the journal in blocks.
1146  *  @blocksize: blocksize of journalling device
1147  *
1148  *  Returns: a newly created journal_t *
1149  *
1150  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1151  *  range of blocks on an arbitrary block device.
1152  *
1153  */
1154 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
1155                         struct block_device *fs_dev,
1156                         unsigned long long start, int len, int blocksize)
1157 {
1158         journal_t *journal = journal_init_common();
1159         struct buffer_head *bh;
1160         int n;
1161
1162         if (!journal)
1163                 return NULL;
1164
1165         /* journal descriptor can store up to n blocks -bzzz */
1166         journal->j_blocksize = blocksize;
1167         journal->j_dev = bdev;
1168         journal->j_fs_dev = fs_dev;
1169         journal->j_blk_offset = start;
1170         journal->j_maxlen = len;
1171         bdevname(journal->j_dev, journal->j_devname);
1172         strreplace(journal->j_devname, '/', '!');
1173         jbd2_stats_proc_init(journal);
1174         n = journal->j_blocksize / sizeof(journal_block_tag_t);
1175         journal->j_wbufsize = n;
1176         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1177         if (!journal->j_wbuf) {
1178                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1179                         __func__);
1180                 goto out_err;
1181         }
1182
1183         bh = __getblk(journal->j_dev, start, journal->j_blocksize);
1184         if (!bh) {
1185                 printk(KERN_ERR
1186                        "%s: Cannot get buffer for journal superblock\n",
1187                        __func__);
1188                 goto out_err;
1189         }
1190         journal->j_sb_buffer = bh;
1191         journal->j_superblock = (journal_superblock_t *)bh->b_data;
1192
1193         return journal;
1194 out_err:
1195         kfree(journal->j_wbuf);
1196         jbd2_stats_proc_exit(journal);
1197         kfree(journal);
1198         return NULL;
1199 }
1200
1201 /**
1202  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1203  *  @inode: An inode to create the journal in
1204  *
1205  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1206  * the journal.  The inode must exist already, must support bmap() and
1207  * must have all data blocks preallocated.
1208  */
1209 journal_t * jbd2_journal_init_inode (struct inode *inode)
1210 {
1211         struct buffer_head *bh;
1212         journal_t *journal = journal_init_common();
1213         char *p;
1214         int err;
1215         int n;
1216         unsigned long long blocknr;
1217
1218         if (!journal)
1219                 return NULL;
1220
1221         journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1222         journal->j_inode = inode;
1223         bdevname(journal->j_dev, journal->j_devname);
1224         p = strreplace(journal->j_devname, '/', '!');
1225         sprintf(p, "-%lu", journal->j_inode->i_ino);
1226         jbd_debug(1,
1227                   "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1228                   journal, inode->i_sb->s_id, inode->i_ino,
1229                   (long long) inode->i_size,
1230                   inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1231
1232         journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1233         journal->j_blocksize = inode->i_sb->s_blocksize;
1234         jbd2_stats_proc_init(journal);
1235
1236         /* journal descriptor can store up to n blocks -bzzz */
1237         n = journal->j_blocksize / sizeof(journal_block_tag_t);
1238         journal->j_wbufsize = n;
1239         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1240         if (!journal->j_wbuf) {
1241                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1242                         __func__);
1243                 goto out_err;
1244         }
1245
1246         err = jbd2_journal_bmap(journal, 0, &blocknr);
1247         /* If that failed, give up */
1248         if (err) {
1249                 printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1250                        __func__);
1251                 goto out_err;
1252         }
1253
1254         bh = getblk_unmovable(journal->j_dev, blocknr, journal->j_blocksize);
1255         if (!bh) {
1256                 printk(KERN_ERR
1257                        "%s: Cannot get buffer for journal superblock\n",
1258                        __func__);
1259                 goto out_err;
1260         }
1261         journal->j_sb_buffer = bh;
1262         journal->j_superblock = (journal_superblock_t *)bh->b_data;
1263
1264         return journal;
1265 out_err:
1266         kfree(journal->j_wbuf);
1267         jbd2_stats_proc_exit(journal);
1268         kfree(journal);
1269         return NULL;
1270 }
1271
1272 /*
1273  * If the journal init or create aborts, we need to mark the journal
1274  * superblock as being NULL to prevent the journal destroy from writing
1275  * back a bogus superblock.
1276  */
1277 static void journal_fail_superblock (journal_t *journal)
1278 {
1279         struct buffer_head *bh = journal->j_sb_buffer;
1280         brelse(bh);
1281         journal->j_sb_buffer = NULL;
1282 }
1283
1284 /*
1285  * Given a journal_t structure, initialise the various fields for
1286  * startup of a new journaling session.  We use this both when creating
1287  * a journal, and after recovering an old journal to reset it for
1288  * subsequent use.
1289  */
1290
1291 static int journal_reset(journal_t *journal)
1292 {
1293         journal_superblock_t *sb = journal->j_superblock;
1294         unsigned long long first, last;
1295
1296         first = be32_to_cpu(sb->s_first);
1297         last = be32_to_cpu(sb->s_maxlen);
1298         if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1299                 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1300                        first, last);
1301                 journal_fail_superblock(journal);
1302                 return -EINVAL;
1303         }
1304
1305         journal->j_first = first;
1306         journal->j_last = last;
1307
1308         journal->j_head = first;
1309         journal->j_tail = first;
1310         journal->j_free = last - first;
1311
1312         journal->j_tail_sequence = journal->j_transaction_sequence;
1313         journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1314         journal->j_commit_request = journal->j_commit_sequence;
1315
1316         journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1317
1318         /*
1319          * As a special case, if the on-disk copy is already marked as needing
1320          * no recovery (s_start == 0), then we can safely defer the superblock
1321          * update until the next commit by setting JBD2_FLUSHED.  This avoids
1322          * attempting a write to a potential-readonly device.
1323          */
1324         if (sb->s_start == 0) {
1325                 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1326                         "(start %ld, seq %d, errno %d)\n",
1327                         journal->j_tail, journal->j_tail_sequence,
1328                         journal->j_errno);
1329                 journal->j_flags |= JBD2_FLUSHED;
1330         } else {
1331                 /* Lock here to make assertions happy... */
1332                 mutex_lock(&journal->j_checkpoint_mutex);
1333                 /*
1334                  * Update log tail information. We use WRITE_FUA since new
1335                  * transaction will start reusing journal space and so we
1336                  * must make sure information about current log tail is on
1337                  * disk before that.
1338                  */
1339                 jbd2_journal_update_sb_log_tail(journal,
1340                                                 journal->j_tail_sequence,
1341                                                 journal->j_tail,
1342                                                 WRITE_FUA);
1343                 mutex_unlock(&journal->j_checkpoint_mutex);
1344         }
1345         return jbd2_journal_start_thread(journal);
1346 }
1347
1348 static int jbd2_write_superblock(journal_t *journal, int write_op)
1349 {
1350         struct buffer_head *bh = journal->j_sb_buffer;
1351         journal_superblock_t *sb = journal->j_superblock;
1352         int ret;
1353
1354         trace_jbd2_write_superblock(journal, write_op);
1355         if (!(journal->j_flags & JBD2_BARRIER))
1356                 write_op &= ~(REQ_FUA | REQ_FLUSH);
1357         lock_buffer(bh);
1358         if (buffer_write_io_error(bh)) {
1359                 /*
1360                  * Oh, dear.  A previous attempt to write the journal
1361                  * superblock failed.  This could happen because the
1362                  * USB device was yanked out.  Or it could happen to
1363                  * be a transient write error and maybe the block will
1364                  * be remapped.  Nothing we can do but to retry the
1365                  * write and hope for the best.
1366                  */
1367                 printk(KERN_ERR "JBD2: previous I/O error detected "
1368                        "for journal superblock update for %s.\n",
1369                        journal->j_devname);
1370                 clear_buffer_write_io_error(bh);
1371                 set_buffer_uptodate(bh);
1372         }
1373         jbd2_superblock_csum_set(journal, sb);
1374         get_bh(bh);
1375         bh->b_end_io = end_buffer_write_sync;
1376         ret = submit_bh(write_op, bh);
1377         wait_on_buffer(bh);
1378         if (buffer_write_io_error(bh)) {
1379                 clear_buffer_write_io_error(bh);
1380                 set_buffer_uptodate(bh);
1381                 ret = -EIO;
1382         }
1383         if (ret) {
1384                 printk(KERN_ERR "JBD2: Error %d detected when updating "
1385                        "journal superblock for %s.\n", ret,
1386                        journal->j_devname);
1387                 jbd2_journal_abort(journal, ret);
1388         }
1389
1390         return ret;
1391 }
1392
1393 /**
1394  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1395  * @journal: The journal to update.
1396  * @tail_tid: TID of the new transaction at the tail of the log
1397  * @tail_block: The first block of the transaction at the tail of the log
1398  * @write_op: With which operation should we write the journal sb
1399  *
1400  * Update a journal's superblock information about log tail and write it to
1401  * disk, waiting for the IO to complete.
1402  */
1403 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1404                                      unsigned long tail_block, int write_op)
1405 {
1406         journal_superblock_t *sb = journal->j_superblock;
1407         int ret;
1408
1409         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1410         jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1411                   tail_block, tail_tid);
1412
1413         sb->s_sequence = cpu_to_be32(tail_tid);
1414         sb->s_start    = cpu_to_be32(tail_block);
1415
1416         ret = jbd2_write_superblock(journal, write_op);
1417         if (ret)
1418                 goto out;
1419
1420         /* Log is no longer empty */
1421         write_lock(&journal->j_state_lock);
1422         WARN_ON(!sb->s_sequence);
1423         journal->j_flags &= ~JBD2_FLUSHED;
1424         write_unlock(&journal->j_state_lock);
1425
1426 out:
1427         return ret;
1428 }
1429
1430 /**
1431  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1432  * @journal: The journal to update.
1433  * @write_op: With which operation should we write the journal sb
1434  *
1435  * Update a journal's dynamic superblock fields to show that journal is empty.
1436  * Write updated superblock to disk waiting for IO to complete.
1437  */
1438 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1439 {
1440         journal_superblock_t *sb = journal->j_superblock;
1441
1442         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1443         read_lock(&journal->j_state_lock);
1444         /* Is it already empty? */
1445         if (sb->s_start == 0) {
1446                 read_unlock(&journal->j_state_lock);
1447                 return;
1448         }
1449         jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1450                   journal->j_tail_sequence);
1451
1452         sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1453         sb->s_start    = cpu_to_be32(0);
1454         read_unlock(&journal->j_state_lock);
1455
1456         jbd2_write_superblock(journal, write_op);
1457
1458         /* Log is no longer empty */
1459         write_lock(&journal->j_state_lock);
1460         journal->j_flags |= JBD2_FLUSHED;
1461         write_unlock(&journal->j_state_lock);
1462 }
1463
1464
1465 /**
1466  * jbd2_journal_update_sb_errno() - Update error in the journal.
1467  * @journal: The journal to update.
1468  *
1469  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1470  * to complete.
1471  */
1472 void jbd2_journal_update_sb_errno(journal_t *journal)
1473 {
1474         journal_superblock_t *sb = journal->j_superblock;
1475
1476         read_lock(&journal->j_state_lock);
1477         jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1478                   journal->j_errno);
1479         sb->s_errno    = cpu_to_be32(journal->j_errno);
1480         read_unlock(&journal->j_state_lock);
1481
1482         jbd2_write_superblock(journal, WRITE_FUA);
1483 }
1484 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1485
1486 /*
1487  * Read the superblock for a given journal, performing initial
1488  * validation of the format.
1489  */
1490 static int journal_get_superblock(journal_t *journal)
1491 {
1492         struct buffer_head *bh;
1493         journal_superblock_t *sb;
1494         int err = -EIO;
1495
1496         bh = journal->j_sb_buffer;
1497
1498         J_ASSERT(bh != NULL);
1499         if (!buffer_uptodate(bh)) {
1500                 ll_rw_block(READ, 1, &bh);
1501                 wait_on_buffer(bh);
1502                 if (!buffer_uptodate(bh)) {
1503                         printk(KERN_ERR
1504                                 "JBD2: IO error reading journal superblock\n");
1505                         goto out;
1506                 }
1507         }
1508
1509         if (buffer_verified(bh))
1510                 return 0;
1511
1512         sb = journal->j_superblock;
1513
1514         err = -EINVAL;
1515
1516         if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1517             sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1518                 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1519                 goto out;
1520         }
1521
1522         switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1523         case JBD2_SUPERBLOCK_V1:
1524                 journal->j_format_version = 1;
1525                 break;
1526         case JBD2_SUPERBLOCK_V2:
1527                 journal->j_format_version = 2;
1528                 break;
1529         default:
1530                 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1531                 goto out;
1532         }
1533
1534         if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1535                 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1536         else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1537                 printk(KERN_WARNING "JBD2: journal file too short\n");
1538                 goto out;
1539         }
1540
1541         if (be32_to_cpu(sb->s_first) == 0 ||
1542             be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1543                 printk(KERN_WARNING
1544                         "JBD2: Invalid start block of journal: %u\n",
1545                         be32_to_cpu(sb->s_first));
1546                 goto out;
1547         }
1548
1549         if (jbd2_has_feature_csum2(journal) &&
1550             jbd2_has_feature_csum3(journal)) {
1551                 /* Can't have checksum v2 and v3 at the same time! */
1552                 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1553                        "at the same time!\n");
1554                 goto out;
1555         }
1556
1557         if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1558             jbd2_has_feature_checksum(journal)) {
1559                 /* Can't have checksum v1 and v2 on at the same time! */
1560                 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1561                        "at the same time!\n");
1562                 goto out;
1563         }
1564
1565         if (!jbd2_verify_csum_type(journal, sb)) {
1566                 printk(KERN_ERR "JBD2: Unknown checksum type\n");
1567                 goto out;
1568         }
1569
1570         /* Load the checksum driver */
1571         if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1572                 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1573                 if (IS_ERR(journal->j_chksum_driver)) {
1574                         printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1575                         err = PTR_ERR(journal->j_chksum_driver);
1576                         journal->j_chksum_driver = NULL;
1577                         goto out;
1578                 }
1579         }
1580
1581         /* Check superblock checksum */
1582         if (!jbd2_superblock_csum_verify(journal, sb)) {
1583                 printk(KERN_ERR "JBD2: journal checksum error\n");
1584                 err = -EFSBADCRC;
1585                 goto out;
1586         }
1587
1588         /* Precompute checksum seed for all metadata */
1589         if (jbd2_journal_has_csum_v2or3(journal))
1590                 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1591                                                    sizeof(sb->s_uuid));
1592
1593         set_buffer_verified(bh);
1594
1595         return 0;
1596
1597 out:
1598         journal_fail_superblock(journal);
1599         return err;
1600 }
1601
1602 /*
1603  * Load the on-disk journal superblock and read the key fields into the
1604  * journal_t.
1605  */
1606
1607 static int load_superblock(journal_t *journal)
1608 {
1609         int err;
1610         journal_superblock_t *sb;
1611
1612         err = journal_get_superblock(journal);
1613         if (err)
1614                 return err;
1615
1616         sb = journal->j_superblock;
1617
1618         journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1619         journal->j_tail = be32_to_cpu(sb->s_start);
1620         journal->j_first = be32_to_cpu(sb->s_first);
1621         journal->j_last = be32_to_cpu(sb->s_maxlen);
1622         journal->j_errno = be32_to_cpu(sb->s_errno);
1623
1624         return 0;
1625 }
1626
1627
1628 /**
1629  * int jbd2_journal_load() - Read journal from disk.
1630  * @journal: Journal to act on.
1631  *
1632  * Given a journal_t structure which tells us which disk blocks contain
1633  * a journal, read the journal from disk to initialise the in-memory
1634  * structures.
1635  */
1636 int jbd2_journal_load(journal_t *journal)
1637 {
1638         int err;
1639         journal_superblock_t *sb;
1640
1641         err = load_superblock(journal);
1642         if (err)
1643                 return err;
1644
1645         sb = journal->j_superblock;
1646         /* If this is a V2 superblock, then we have to check the
1647          * features flags on it. */
1648
1649         if (journal->j_format_version >= 2) {
1650                 if ((sb->s_feature_ro_compat &
1651                      ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1652                     (sb->s_feature_incompat &
1653                      ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1654                         printk(KERN_WARNING
1655                                 "JBD2: Unrecognised features on journal\n");
1656                         return -EINVAL;
1657                 }
1658         }
1659
1660         /*
1661          * Create a slab for this blocksize
1662          */
1663         err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1664         if (err)
1665                 return err;
1666
1667         /* Let the recovery code check whether it needs to recover any
1668          * data from the journal. */
1669         if (jbd2_journal_recover(journal))
1670                 goto recovery_error;
1671
1672         if (journal->j_failed_commit) {
1673                 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1674                        "is corrupt.\n", journal->j_failed_commit,
1675                        journal->j_devname);
1676                 return -EFSCORRUPTED;
1677         }
1678
1679         /* OK, we've finished with the dynamic journal bits:
1680          * reinitialise the dynamic contents of the superblock in memory
1681          * and reset them on disk. */
1682         if (journal_reset(journal))
1683                 goto recovery_error;
1684
1685         journal->j_flags &= ~JBD2_ABORT;
1686         journal->j_flags |= JBD2_LOADED;
1687         return 0;
1688
1689 recovery_error:
1690         printk(KERN_WARNING "JBD2: recovery failed\n");
1691         return -EIO;
1692 }
1693
1694 /**
1695  * void jbd2_journal_destroy() - Release a journal_t structure.
1696  * @journal: Journal to act on.
1697  *
1698  * Release a journal_t structure once it is no longer in use by the
1699  * journaled object.
1700  * Return <0 if we couldn't clean up the journal.
1701  */
1702 int jbd2_journal_destroy(journal_t *journal)
1703 {
1704         int err = 0;
1705
1706         /* Wait for the commit thread to wake up and die. */
1707         journal_kill_thread(journal);
1708
1709         /* Force a final log commit */
1710         if (journal->j_running_transaction)
1711                 jbd2_journal_commit_transaction(journal);
1712
1713         /* Force any old transactions to disk */
1714
1715         /* Totally anal locking here... */
1716         spin_lock(&journal->j_list_lock);
1717         while (journal->j_checkpoint_transactions != NULL) {
1718                 spin_unlock(&journal->j_list_lock);
1719                 mutex_lock(&journal->j_checkpoint_mutex);
1720                 err = jbd2_log_do_checkpoint(journal);
1721                 mutex_unlock(&journal->j_checkpoint_mutex);
1722                 /*
1723                  * If checkpointing failed, just free the buffers to avoid
1724                  * looping forever
1725                  */
1726                 if (err) {
1727                         jbd2_journal_destroy_checkpoint(journal);
1728                         spin_lock(&journal->j_list_lock);
1729                         break;
1730                 }
1731                 spin_lock(&journal->j_list_lock);
1732         }
1733
1734         J_ASSERT(journal->j_running_transaction == NULL);
1735         J_ASSERT(journal->j_committing_transaction == NULL);
1736         J_ASSERT(journal->j_checkpoint_transactions == NULL);
1737         spin_unlock(&journal->j_list_lock);
1738
1739         if (journal->j_sb_buffer) {
1740                 if (!is_journal_aborted(journal)) {
1741                         mutex_lock(&journal->j_checkpoint_mutex);
1742
1743                         write_lock(&journal->j_state_lock);
1744                         journal->j_tail_sequence =
1745                                 ++journal->j_transaction_sequence;
1746                         write_unlock(&journal->j_state_lock);
1747
1748                         jbd2_mark_journal_empty(journal, WRITE_FLUSH_FUA);
1749                         mutex_unlock(&journal->j_checkpoint_mutex);
1750                 } else
1751                         err = -EIO;
1752                 brelse(journal->j_sb_buffer);
1753         }
1754
1755         if (journal->j_proc_entry)
1756                 jbd2_stats_proc_exit(journal);
1757         iput(journal->j_inode);
1758         if (journal->j_revoke)
1759                 jbd2_journal_destroy_revoke(journal);
1760         if (journal->j_chksum_driver)
1761                 crypto_free_shash(journal->j_chksum_driver);
1762         kfree(journal->j_wbuf);
1763         kfree(journal);
1764
1765         return err;
1766 }
1767
1768
1769 /**
1770  *int jbd2_journal_check_used_features () - Check if features specified are used.
1771  * @journal: Journal to check.
1772  * @compat: bitmask of compatible features
1773  * @ro: bitmask of features that force read-only mount
1774  * @incompat: bitmask of incompatible features
1775  *
1776  * Check whether the journal uses all of a given set of
1777  * features.  Return true (non-zero) if it does.
1778  **/
1779
1780 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1781                                  unsigned long ro, unsigned long incompat)
1782 {
1783         journal_superblock_t *sb;
1784
1785         if (!compat && !ro && !incompat)
1786                 return 1;
1787         /* Load journal superblock if it is not loaded yet. */
1788         if (journal->j_format_version == 0 &&
1789             journal_get_superblock(journal) != 0)
1790                 return 0;
1791         if (journal->j_format_version == 1)
1792                 return 0;
1793
1794         sb = journal->j_superblock;
1795
1796         if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1797             ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1798             ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1799                 return 1;
1800
1801         return 0;
1802 }
1803
1804 /**
1805  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1806  * @journal: Journal to check.
1807  * @compat: bitmask of compatible features
1808  * @ro: bitmask of features that force read-only mount
1809  * @incompat: bitmask of incompatible features
1810  *
1811  * Check whether the journaling code supports the use of
1812  * all of a given set of features on this journal.  Return true
1813  * (non-zero) if it can. */
1814
1815 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1816                                       unsigned long ro, unsigned long incompat)
1817 {
1818         if (!compat && !ro && !incompat)
1819                 return 1;
1820
1821         /* We can support any known requested features iff the
1822          * superblock is in version 2.  Otherwise we fail to support any
1823          * extended sb features. */
1824
1825         if (journal->j_format_version != 2)
1826                 return 0;
1827
1828         if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1829             (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1830             (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1831                 return 1;
1832
1833         return 0;
1834 }
1835
1836 /**
1837  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1838  * @journal: Journal to act on.
1839  * @compat: bitmask of compatible features
1840  * @ro: bitmask of features that force read-only mount
1841  * @incompat: bitmask of incompatible features
1842  *
1843  * Mark a given journal feature as present on the
1844  * superblock.  Returns true if the requested features could be set.
1845  *
1846  */
1847
1848 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1849                           unsigned long ro, unsigned long incompat)
1850 {
1851 #define INCOMPAT_FEATURE_ON(f) \
1852                 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1853 #define COMPAT_FEATURE_ON(f) \
1854                 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1855         journal_superblock_t *sb;
1856
1857         if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1858                 return 1;
1859
1860         if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1861                 return 0;
1862
1863         /* If enabling v2 checksums, turn on v3 instead */
1864         if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1865                 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1866                 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1867         }
1868
1869         /* Asking for checksumming v3 and v1?  Only give them v3. */
1870         if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1871             compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1872                 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1873
1874         jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1875                   compat, ro, incompat);
1876
1877         sb = journal->j_superblock;
1878
1879         /* If enabling v3 checksums, update superblock */
1880         if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1881                 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1882                 sb->s_feature_compat &=
1883                         ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1884
1885                 /* Load the checksum driver */
1886                 if (journal->j_chksum_driver == NULL) {
1887                         journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1888                                                                       0, 0);
1889                         if (IS_ERR(journal->j_chksum_driver)) {
1890                                 printk(KERN_ERR "JBD2: Cannot load crc32c "
1891                                        "driver.\n");
1892                                 journal->j_chksum_driver = NULL;
1893                                 return 0;
1894                         }
1895
1896                         /* Precompute checksum seed for all metadata */
1897                         journal->j_csum_seed = jbd2_chksum(journal, ~0,
1898                                                            sb->s_uuid,
1899                                                            sizeof(sb->s_uuid));
1900                 }
1901         }
1902
1903         /* If enabling v1 checksums, downgrade superblock */
1904         if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1905                 sb->s_feature_incompat &=
1906                         ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1907                                      JBD2_FEATURE_INCOMPAT_CSUM_V3);
1908
1909         sb->s_feature_compat    |= cpu_to_be32(compat);
1910         sb->s_feature_ro_compat |= cpu_to_be32(ro);
1911         sb->s_feature_incompat  |= cpu_to_be32(incompat);
1912
1913         return 1;
1914 #undef COMPAT_FEATURE_ON
1915 #undef INCOMPAT_FEATURE_ON
1916 }
1917
1918 /*
1919  * jbd2_journal_clear_features () - Clear a given journal feature in the
1920  *                                  superblock
1921  * @journal: Journal to act on.
1922  * @compat: bitmask of compatible features
1923  * @ro: bitmask of features that force read-only mount
1924  * @incompat: bitmask of incompatible features
1925  *
1926  * Clear a given journal feature as present on the
1927  * superblock.
1928  */
1929 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1930                                 unsigned long ro, unsigned long incompat)
1931 {
1932         journal_superblock_t *sb;
1933
1934         jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1935                   compat, ro, incompat);
1936
1937         sb = journal->j_superblock;
1938
1939         sb->s_feature_compat    &= ~cpu_to_be32(compat);
1940         sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1941         sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1942 }
1943 EXPORT_SYMBOL(jbd2_journal_clear_features);
1944
1945 /**
1946  * int jbd2_journal_flush () - Flush journal
1947  * @journal: Journal to act on.
1948  *
1949  * Flush all data for a given journal to disk and empty the journal.
1950  * Filesystems can use this when remounting readonly to ensure that
1951  * recovery does not need to happen on remount.
1952  */
1953
1954 int jbd2_journal_flush(journal_t *journal)
1955 {
1956         int err = 0;
1957         transaction_t *transaction = NULL;
1958
1959         write_lock(&journal->j_state_lock);
1960
1961         /* Force everything buffered to the log... */
1962         if (journal->j_running_transaction) {
1963                 transaction = journal->j_running_transaction;
1964                 __jbd2_log_start_commit(journal, transaction->t_tid);
1965         } else if (journal->j_committing_transaction)
1966                 transaction = journal->j_committing_transaction;
1967
1968         /* Wait for the log commit to complete... */
1969         if (transaction) {
1970                 tid_t tid = transaction->t_tid;
1971
1972                 write_unlock(&journal->j_state_lock);
1973                 jbd2_log_wait_commit(journal, tid);
1974         } else {
1975                 write_unlock(&journal->j_state_lock);
1976         }
1977
1978         /* ...and flush everything in the log out to disk. */
1979         spin_lock(&journal->j_list_lock);
1980         while (!err && journal->j_checkpoint_transactions != NULL) {
1981                 spin_unlock(&journal->j_list_lock);
1982                 mutex_lock(&journal->j_checkpoint_mutex);
1983                 err = jbd2_log_do_checkpoint(journal);
1984                 mutex_unlock(&journal->j_checkpoint_mutex);
1985                 spin_lock(&journal->j_list_lock);
1986         }
1987         spin_unlock(&journal->j_list_lock);
1988
1989         if (is_journal_aborted(journal))
1990                 return -EIO;
1991
1992         mutex_lock(&journal->j_checkpoint_mutex);
1993         if (!err) {
1994                 err = jbd2_cleanup_journal_tail(journal);
1995                 if (err < 0) {
1996                         mutex_unlock(&journal->j_checkpoint_mutex);
1997                         goto out;
1998                 }
1999                 err = 0;
2000         }
2001
2002         /* Finally, mark the journal as really needing no recovery.
2003          * This sets s_start==0 in the underlying superblock, which is
2004          * the magic code for a fully-recovered superblock.  Any future
2005          * commits of data to the journal will restore the current
2006          * s_start value. */
2007         jbd2_mark_journal_empty(journal, WRITE_FUA);
2008         mutex_unlock(&journal->j_checkpoint_mutex);
2009         write_lock(&journal->j_state_lock);
2010         J_ASSERT(!journal->j_running_transaction);
2011         J_ASSERT(!journal->j_committing_transaction);
2012         J_ASSERT(!journal->j_checkpoint_transactions);
2013         J_ASSERT(journal->j_head == journal->j_tail);
2014         J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2015         write_unlock(&journal->j_state_lock);
2016 out:
2017         return err;
2018 }
2019
2020 /**
2021  * int jbd2_journal_wipe() - Wipe journal contents
2022  * @journal: Journal to act on.
2023  * @write: flag (see below)
2024  *
2025  * Wipe out all of the contents of a journal, safely.  This will produce
2026  * a warning if the journal contains any valid recovery information.
2027  * Must be called between journal_init_*() and jbd2_journal_load().
2028  *
2029  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2030  * we merely suppress recovery.
2031  */
2032
2033 int jbd2_journal_wipe(journal_t *journal, int write)
2034 {
2035         int err = 0;
2036
2037         J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2038
2039         err = load_superblock(journal);
2040         if (err)
2041                 return err;
2042
2043         if (!journal->j_tail)
2044                 goto no_recovery;
2045
2046         printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2047                 write ? "Clearing" : "Ignoring");
2048
2049         err = jbd2_journal_skip_recovery(journal);
2050         if (write) {
2051                 /* Lock to make assertions happy... */
2052                 mutex_lock(&journal->j_checkpoint_mutex);
2053                 jbd2_mark_journal_empty(journal, WRITE_FUA);
2054                 mutex_unlock(&journal->j_checkpoint_mutex);
2055         }
2056
2057  no_recovery:
2058         return err;
2059 }
2060
2061 /*
2062  * Journal abort has very specific semantics, which we describe
2063  * for journal abort.
2064  *
2065  * Two internal functions, which provide abort to the jbd layer
2066  * itself are here.
2067  */
2068
2069 /*
2070  * Quick version for internal journal use (doesn't lock the journal).
2071  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2072  * and don't attempt to make any other journal updates.
2073  */
2074 void __jbd2_journal_abort_hard(journal_t *journal)
2075 {
2076         transaction_t *transaction;
2077
2078         if (journal->j_flags & JBD2_ABORT)
2079                 return;
2080
2081         printk(KERN_ERR "Aborting journal on device %s.\n",
2082                journal->j_devname);
2083
2084         write_lock(&journal->j_state_lock);
2085         journal->j_flags |= JBD2_ABORT;
2086         transaction = journal->j_running_transaction;
2087         if (transaction)
2088                 __jbd2_log_start_commit(journal, transaction->t_tid);
2089         write_unlock(&journal->j_state_lock);
2090 }
2091
2092 /* Soft abort: record the abort error status in the journal superblock,
2093  * but don't do any other IO. */
2094 static void __journal_abort_soft (journal_t *journal, int errno)
2095 {
2096         if (journal->j_flags & JBD2_ABORT)
2097                 return;
2098
2099         if (!journal->j_errno)
2100                 journal->j_errno = errno;
2101
2102         __jbd2_journal_abort_hard(journal);
2103
2104         if (errno) {
2105                 jbd2_journal_update_sb_errno(journal);
2106                 write_lock(&journal->j_state_lock);
2107                 journal->j_flags |= JBD2_REC_ERR;
2108                 write_unlock(&journal->j_state_lock);
2109         }
2110 }
2111
2112 /**
2113  * void jbd2_journal_abort () - Shutdown the journal immediately.
2114  * @journal: the journal to shutdown.
2115  * @errno:   an error number to record in the journal indicating
2116  *           the reason for the shutdown.
2117  *
2118  * Perform a complete, immediate shutdown of the ENTIRE
2119  * journal (not of a single transaction).  This operation cannot be
2120  * undone without closing and reopening the journal.
2121  *
2122  * The jbd2_journal_abort function is intended to support higher level error
2123  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2124  * mode.
2125  *
2126  * Journal abort has very specific semantics.  Any existing dirty,
2127  * unjournaled buffers in the main filesystem will still be written to
2128  * disk by bdflush, but the journaling mechanism will be suspended
2129  * immediately and no further transaction commits will be honoured.
2130  *
2131  * Any dirty, journaled buffers will be written back to disk without
2132  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2133  * filesystem, but we _do_ attempt to leave as much data as possible
2134  * behind for fsck to use for cleanup.
2135  *
2136  * Any attempt to get a new transaction handle on a journal which is in
2137  * ABORT state will just result in an -EROFS error return.  A
2138  * jbd2_journal_stop on an existing handle will return -EIO if we have
2139  * entered abort state during the update.
2140  *
2141  * Recursive transactions are not disturbed by journal abort until the
2142  * final jbd2_journal_stop, which will receive the -EIO error.
2143  *
2144  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2145  * which will be recorded (if possible) in the journal superblock.  This
2146  * allows a client to record failure conditions in the middle of a
2147  * transaction without having to complete the transaction to record the
2148  * failure to disk.  ext3_error, for example, now uses this
2149  * functionality.
2150  *
2151  * Errors which originate from within the journaling layer will NOT
2152  * supply an errno; a null errno implies that absolutely no further
2153  * writes are done to the journal (unless there are any already in
2154  * progress).
2155  *
2156  */
2157
2158 void jbd2_journal_abort(journal_t *journal, int errno)
2159 {
2160         __journal_abort_soft(journal, errno);
2161 }
2162
2163 /**
2164  * int jbd2_journal_errno () - returns the journal's error state.
2165  * @journal: journal to examine.
2166  *
2167  * This is the errno number set with jbd2_journal_abort(), the last
2168  * time the journal was mounted - if the journal was stopped
2169  * without calling abort this will be 0.
2170  *
2171  * If the journal has been aborted on this mount time -EROFS will
2172  * be returned.
2173  */
2174 int jbd2_journal_errno(journal_t *journal)
2175 {
2176         int err;
2177
2178         read_lock(&journal->j_state_lock);
2179         if (journal->j_flags & JBD2_ABORT)
2180                 err = -EROFS;
2181         else
2182                 err = journal->j_errno;
2183         read_unlock(&journal->j_state_lock);
2184         return err;
2185 }
2186
2187 /**
2188  * int jbd2_journal_clear_err () - clears the journal's error state
2189  * @journal: journal to act on.
2190  *
2191  * An error must be cleared or acked to take a FS out of readonly
2192  * mode.
2193  */
2194 int jbd2_journal_clear_err(journal_t *journal)
2195 {
2196         int err = 0;
2197
2198         write_lock(&journal->j_state_lock);
2199         if (journal->j_flags & JBD2_ABORT)
2200                 err = -EROFS;
2201         else
2202                 journal->j_errno = 0;
2203         write_unlock(&journal->j_state_lock);
2204         return err;
2205 }
2206
2207 /**
2208  * void jbd2_journal_ack_err() - Ack journal err.
2209  * @journal: journal to act on.
2210  *
2211  * An error must be cleared or acked to take a FS out of readonly
2212  * mode.
2213  */
2214 void jbd2_journal_ack_err(journal_t *journal)
2215 {
2216         write_lock(&journal->j_state_lock);
2217         if (journal->j_errno)
2218                 journal->j_flags |= JBD2_ACK_ERR;
2219         write_unlock(&journal->j_state_lock);
2220 }
2221
2222 int jbd2_journal_blocks_per_page(struct inode *inode)
2223 {
2224         return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2225 }
2226
2227 /*
2228  * helper functions to deal with 32 or 64bit block numbers.
2229  */
2230 size_t journal_tag_bytes(journal_t *journal)
2231 {
2232         size_t sz;
2233
2234         if (jbd2_has_feature_csum3(journal))
2235                 return sizeof(journal_block_tag3_t);
2236
2237         sz = sizeof(journal_block_tag_t);
2238
2239         if (jbd2_has_feature_csum2(journal))
2240                 sz += sizeof(__u16);
2241
2242         if (jbd2_has_feature_64bit(journal))
2243                 return sz;
2244         else
2245                 return sz - sizeof(__u32);
2246 }
2247
2248 /*
2249  * JBD memory management
2250  *
2251  * These functions are used to allocate block-sized chunks of memory
2252  * used for making copies of buffer_head data.  Very often it will be
2253  * page-sized chunks of data, but sometimes it will be in
2254  * sub-page-size chunks.  (For example, 16k pages on Power systems
2255  * with a 4k block file system.)  For blocks smaller than a page, we
2256  * use a SLAB allocator.  There are slab caches for each block size,
2257  * which are allocated at mount time, if necessary, and we only free
2258  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2259  * this reason we don't need to a mutex to protect access to
2260  * jbd2_slab[] allocating or releasing memory; only in
2261  * jbd2_journal_create_slab().
2262  */
2263 #define JBD2_MAX_SLABS 8
2264 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2265
2266 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2267         "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2268         "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2269 };
2270
2271
2272 static void jbd2_journal_destroy_slabs(void)
2273 {
2274         int i;
2275
2276         for (i = 0; i < JBD2_MAX_SLABS; i++) {
2277                 if (jbd2_slab[i])
2278                         kmem_cache_destroy(jbd2_slab[i]);
2279                 jbd2_slab[i] = NULL;
2280         }
2281 }
2282
2283 static int jbd2_journal_create_slab(size_t size)
2284 {
2285         static DEFINE_MUTEX(jbd2_slab_create_mutex);
2286         int i = order_base_2(size) - 10;
2287         size_t slab_size;
2288
2289         if (size == PAGE_SIZE)
2290                 return 0;
2291
2292         if (i >= JBD2_MAX_SLABS)
2293                 return -EINVAL;
2294
2295         if (unlikely(i < 0))
2296                 i = 0;
2297         mutex_lock(&jbd2_slab_create_mutex);
2298         if (jbd2_slab[i]) {
2299                 mutex_unlock(&jbd2_slab_create_mutex);
2300                 return 0;       /* Already created */
2301         }
2302
2303         slab_size = 1 << (i+10);
2304         jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2305                                          slab_size, 0, NULL);
2306         mutex_unlock(&jbd2_slab_create_mutex);
2307         if (!jbd2_slab[i]) {
2308                 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2309                 return -ENOMEM;
2310         }
2311         return 0;
2312 }
2313
2314 static struct kmem_cache *get_slab(size_t size)
2315 {
2316         int i = order_base_2(size) - 10;
2317
2318         BUG_ON(i >= JBD2_MAX_SLABS);
2319         if (unlikely(i < 0))
2320                 i = 0;
2321         BUG_ON(jbd2_slab[i] == NULL);
2322         return jbd2_slab[i];
2323 }
2324
2325 void *jbd2_alloc(size_t size, gfp_t flags)
2326 {
2327         void *ptr;
2328
2329         BUG_ON(size & (size-1)); /* Must be a power of 2 */
2330
2331         flags |= __GFP_REPEAT;
2332         if (size == PAGE_SIZE)
2333                 ptr = (void *)__get_free_pages(flags, 0);
2334         else if (size > PAGE_SIZE) {
2335                 int order = get_order(size);
2336
2337                 if (order < 3)
2338                         ptr = (void *)__get_free_pages(flags, order);
2339                 else
2340                         ptr = vmalloc(size);
2341         } else
2342                 ptr = kmem_cache_alloc(get_slab(size), flags);
2343
2344         /* Check alignment; SLUB has gotten this wrong in the past,
2345          * and this can lead to user data corruption! */
2346         BUG_ON(((unsigned long) ptr) & (size-1));
2347
2348         return ptr;
2349 }
2350
2351 void jbd2_free(void *ptr, size_t size)
2352 {
2353         if (size == PAGE_SIZE) {
2354                 free_pages((unsigned long)ptr, 0);
2355                 return;
2356         }
2357         if (size > PAGE_SIZE) {
2358                 int order = get_order(size);
2359
2360                 if (order < 3)
2361                         free_pages((unsigned long)ptr, order);
2362                 else
2363                         vfree(ptr);
2364                 return;
2365         }
2366         kmem_cache_free(get_slab(size), ptr);
2367 };
2368
2369 /*
2370  * Journal_head storage management
2371  */
2372 static struct kmem_cache *jbd2_journal_head_cache;
2373 #ifdef CONFIG_JBD2_DEBUG
2374 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2375 #endif
2376
2377 static int jbd2_journal_init_journal_head_cache(void)
2378 {
2379         int retval;
2380
2381         J_ASSERT(jbd2_journal_head_cache == NULL);
2382         jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2383                                 sizeof(struct journal_head),
2384                                 0,              /* offset */
2385                                 SLAB_TEMPORARY | SLAB_DESTROY_BY_RCU,
2386                                 NULL);          /* ctor */
2387         retval = 0;
2388         if (!jbd2_journal_head_cache) {
2389                 retval = -ENOMEM;
2390                 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2391         }
2392         return retval;
2393 }
2394
2395 static void jbd2_journal_destroy_journal_head_cache(void)
2396 {
2397         if (jbd2_journal_head_cache) {
2398                 kmem_cache_destroy(jbd2_journal_head_cache);
2399                 jbd2_journal_head_cache = NULL;
2400         }
2401 }
2402
2403 /*
2404  * journal_head splicing and dicing
2405  */
2406 static struct journal_head *journal_alloc_journal_head(void)
2407 {
2408         struct journal_head *ret;
2409
2410 #ifdef CONFIG_JBD2_DEBUG
2411         atomic_inc(&nr_journal_heads);
2412 #endif
2413         ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2414         if (!ret) {
2415                 jbd_debug(1, "out of memory for journal_head\n");
2416                 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2417                 ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2418                                 GFP_NOFS | __GFP_NOFAIL);
2419         }
2420         return ret;
2421 }
2422
2423 static void journal_free_journal_head(struct journal_head *jh)
2424 {
2425 #ifdef CONFIG_JBD2_DEBUG
2426         atomic_dec(&nr_journal_heads);
2427         memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2428 #endif
2429         kmem_cache_free(jbd2_journal_head_cache, jh);
2430 }
2431
2432 /*
2433  * A journal_head is attached to a buffer_head whenever JBD has an
2434  * interest in the buffer.
2435  *
2436  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2437  * is set.  This bit is tested in core kernel code where we need to take
2438  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2439  * there.
2440  *
2441  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2442  *
2443  * When a buffer has its BH_JBD bit set it is immune from being released by
2444  * core kernel code, mainly via ->b_count.
2445  *
2446  * A journal_head is detached from its buffer_head when the journal_head's
2447  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2448  * transaction (b_cp_transaction) hold their references to b_jcount.
2449  *
2450  * Various places in the kernel want to attach a journal_head to a buffer_head
2451  * _before_ attaching the journal_head to a transaction.  To protect the
2452  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2453  * journal_head's b_jcount refcount by one.  The caller must call
2454  * jbd2_journal_put_journal_head() to undo this.
2455  *
2456  * So the typical usage would be:
2457  *
2458  *      (Attach a journal_head if needed.  Increments b_jcount)
2459  *      struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2460  *      ...
2461  *      (Get another reference for transaction)
2462  *      jbd2_journal_grab_journal_head(bh);
2463  *      jh->b_transaction = xxx;
2464  *      (Put original reference)
2465  *      jbd2_journal_put_journal_head(jh);
2466  */
2467
2468 /*
2469  * Give a buffer_head a journal_head.
2470  *
2471  * May sleep.
2472  */
2473 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2474 {
2475         struct journal_head *jh;
2476         struct journal_head *new_jh = NULL;
2477
2478 repeat:
2479         if (!buffer_jbd(bh))
2480                 new_jh = journal_alloc_journal_head();
2481
2482         jbd_lock_bh_journal_head(bh);
2483         if (buffer_jbd(bh)) {
2484                 jh = bh2jh(bh);
2485         } else {
2486                 J_ASSERT_BH(bh,
2487                         (atomic_read(&bh->b_count) > 0) ||
2488                         (bh->b_page && bh->b_page->mapping));
2489
2490                 if (!new_jh) {
2491                         jbd_unlock_bh_journal_head(bh);
2492                         goto repeat;
2493                 }
2494
2495                 jh = new_jh;
2496                 new_jh = NULL;          /* We consumed it */
2497                 set_buffer_jbd(bh);
2498                 bh->b_private = jh;
2499                 jh->b_bh = bh;
2500                 get_bh(bh);
2501                 BUFFER_TRACE(bh, "added journal_head");
2502         }
2503         jh->b_jcount++;
2504         jbd_unlock_bh_journal_head(bh);
2505         if (new_jh)
2506                 journal_free_journal_head(new_jh);
2507         return bh->b_private;
2508 }
2509
2510 /*
2511  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2512  * having a journal_head, return NULL
2513  */
2514 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2515 {
2516         struct journal_head *jh = NULL;
2517
2518         jbd_lock_bh_journal_head(bh);
2519         if (buffer_jbd(bh)) {
2520                 jh = bh2jh(bh);
2521                 jh->b_jcount++;
2522         }
2523         jbd_unlock_bh_journal_head(bh);
2524         return jh;
2525 }
2526
2527 static void __journal_remove_journal_head(struct buffer_head *bh)
2528 {
2529         struct journal_head *jh = bh2jh(bh);
2530
2531         J_ASSERT_JH(jh, jh->b_jcount >= 0);
2532         J_ASSERT_JH(jh, jh->b_transaction == NULL);
2533         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2534         J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2535         J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2536         J_ASSERT_BH(bh, buffer_jbd(bh));
2537         J_ASSERT_BH(bh, jh2bh(jh) == bh);
2538         BUFFER_TRACE(bh, "remove journal_head");
2539         if (jh->b_frozen_data) {
2540                 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2541                 jbd2_free(jh->b_frozen_data, bh->b_size);
2542         }
2543         if (jh->b_committed_data) {
2544                 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2545                 jbd2_free(jh->b_committed_data, bh->b_size);
2546         }
2547         bh->b_private = NULL;
2548         jh->b_bh = NULL;        /* debug, really */
2549         clear_buffer_jbd(bh);
2550         journal_free_journal_head(jh);
2551 }
2552
2553 /*
2554  * Drop a reference on the passed journal_head.  If it fell to zero then
2555  * release the journal_head from the buffer_head.
2556  */
2557 void jbd2_journal_put_journal_head(struct journal_head *jh)
2558 {
2559         struct buffer_head *bh = jh2bh(jh);
2560
2561         jbd_lock_bh_journal_head(bh);
2562         J_ASSERT_JH(jh, jh->b_jcount > 0);
2563         --jh->b_jcount;
2564         if (!jh->b_jcount) {
2565                 __journal_remove_journal_head(bh);
2566                 jbd_unlock_bh_journal_head(bh);
2567                 __brelse(bh);
2568         } else
2569                 jbd_unlock_bh_journal_head(bh);
2570 }
2571
2572 /*
2573  * Initialize jbd inode head
2574  */
2575 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2576 {
2577         jinode->i_transaction = NULL;
2578         jinode->i_next_transaction = NULL;
2579         jinode->i_vfs_inode = inode;
2580         jinode->i_flags = 0;
2581         INIT_LIST_HEAD(&jinode->i_list);
2582 }
2583
2584 /*
2585  * Function to be called before we start removing inode from memory (i.e.,
2586  * clear_inode() is a fine place to be called from). It removes inode from
2587  * transaction's lists.
2588  */
2589 void jbd2_journal_release_jbd_inode(journal_t *journal,
2590                                     struct jbd2_inode *jinode)
2591 {
2592         if (!journal)
2593                 return;
2594 restart:
2595         spin_lock(&journal->j_list_lock);
2596         /* Is commit writing out inode - we have to wait */
2597         if (jinode->i_flags & JI_COMMIT_RUNNING) {
2598                 wait_queue_head_t *wq;
2599                 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2600                 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2601                 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2602                 spin_unlock(&journal->j_list_lock);
2603                 schedule();
2604                 finish_wait(wq, &wait.wait);
2605                 goto restart;
2606         }
2607
2608         if (jinode->i_transaction) {
2609                 list_del(&jinode->i_list);
2610                 jinode->i_transaction = NULL;
2611         }
2612         spin_unlock(&journal->j_list_lock);
2613 }
2614
2615
2616 #ifdef CONFIG_PROC_FS
2617
2618 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2619
2620 static void __init jbd2_create_jbd_stats_proc_entry(void)
2621 {
2622         proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2623 }
2624
2625 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2626 {
2627         if (proc_jbd2_stats)
2628                 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2629 }
2630
2631 #else
2632
2633 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2634 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2635
2636 #endif
2637
2638 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2639
2640 static int __init jbd2_journal_init_handle_cache(void)
2641 {
2642         jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2643         if (jbd2_handle_cache == NULL) {
2644                 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2645                 return -ENOMEM;
2646         }
2647         jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2648         if (jbd2_inode_cache == NULL) {
2649                 printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2650                 kmem_cache_destroy(jbd2_handle_cache);
2651                 return -ENOMEM;
2652         }
2653         return 0;
2654 }
2655
2656 static void jbd2_journal_destroy_handle_cache(void)
2657 {
2658         if (jbd2_handle_cache)
2659                 kmem_cache_destroy(jbd2_handle_cache);
2660         if (jbd2_inode_cache)
2661                 kmem_cache_destroy(jbd2_inode_cache);
2662
2663 }
2664
2665 /*
2666  * Module startup and shutdown
2667  */
2668
2669 static int __init journal_init_caches(void)
2670 {
2671         int ret;
2672
2673         ret = jbd2_journal_init_revoke_caches();
2674         if (ret == 0)
2675                 ret = jbd2_journal_init_journal_head_cache();
2676         if (ret == 0)
2677                 ret = jbd2_journal_init_handle_cache();
2678         if (ret == 0)
2679                 ret = jbd2_journal_init_transaction_cache();
2680         return ret;
2681 }
2682
2683 static void jbd2_journal_destroy_caches(void)
2684 {
2685         jbd2_journal_destroy_revoke_caches();
2686         jbd2_journal_destroy_journal_head_cache();
2687         jbd2_journal_destroy_handle_cache();
2688         jbd2_journal_destroy_transaction_cache();
2689         jbd2_journal_destroy_slabs();
2690 }
2691
2692 static int __init journal_init(void)
2693 {
2694         int ret;
2695
2696         BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2697
2698         ret = journal_init_caches();
2699         if (ret == 0) {
2700                 jbd2_create_jbd_stats_proc_entry();
2701         } else {
2702                 jbd2_journal_destroy_caches();
2703         }
2704         return ret;
2705 }
2706
2707 static void __exit journal_exit(void)
2708 {
2709 #ifdef CONFIG_JBD2_DEBUG
2710         int n = atomic_read(&nr_journal_heads);
2711         if (n)
2712                 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2713 #endif
2714         jbd2_remove_jbd_stats_proc_entry();
2715         jbd2_journal_destroy_caches();
2716 }
2717
2718 MODULE_LICENSE("GPL");
2719 module_init(journal_init);
2720 module_exit(journal_exit);
2721