Merge branch 'misc' into devel
[sfrench/cifs-2.6.git] / fs / jbd2 / journal.c
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39 #include <linux/seq_file.h>
40 #include <linux/math64.h>
41 #include <linux/hash.h>
42 #include <linux/log2.h>
43 #include <linux/vmalloc.h>
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
47
48 #include <asm/uaccess.h>
49 #include <asm/page.h>
50
51 EXPORT_SYMBOL(jbd2_journal_start);
52 EXPORT_SYMBOL(jbd2_journal_restart);
53 EXPORT_SYMBOL(jbd2_journal_extend);
54 EXPORT_SYMBOL(jbd2_journal_stop);
55 EXPORT_SYMBOL(jbd2_journal_lock_updates);
56 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
57 EXPORT_SYMBOL(jbd2_journal_get_write_access);
58 EXPORT_SYMBOL(jbd2_journal_get_create_access);
59 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
60 EXPORT_SYMBOL(jbd2_journal_set_triggers);
61 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
62 EXPORT_SYMBOL(jbd2_journal_release_buffer);
63 EXPORT_SYMBOL(jbd2_journal_forget);
64 #if 0
65 EXPORT_SYMBOL(journal_sync_buffer);
66 #endif
67 EXPORT_SYMBOL(jbd2_journal_flush);
68 EXPORT_SYMBOL(jbd2_journal_revoke);
69
70 EXPORT_SYMBOL(jbd2_journal_init_dev);
71 EXPORT_SYMBOL(jbd2_journal_init_inode);
72 EXPORT_SYMBOL(jbd2_journal_update_format);
73 EXPORT_SYMBOL(jbd2_journal_check_used_features);
74 EXPORT_SYMBOL(jbd2_journal_check_available_features);
75 EXPORT_SYMBOL(jbd2_journal_set_features);
76 EXPORT_SYMBOL(jbd2_journal_load);
77 EXPORT_SYMBOL(jbd2_journal_destroy);
78 EXPORT_SYMBOL(jbd2_journal_abort);
79 EXPORT_SYMBOL(jbd2_journal_errno);
80 EXPORT_SYMBOL(jbd2_journal_ack_err);
81 EXPORT_SYMBOL(jbd2_journal_clear_err);
82 EXPORT_SYMBOL(jbd2_log_wait_commit);
83 EXPORT_SYMBOL(jbd2_log_start_commit);
84 EXPORT_SYMBOL(jbd2_journal_start_commit);
85 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
86 EXPORT_SYMBOL(jbd2_journal_wipe);
87 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
88 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
89 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
90 EXPORT_SYMBOL(jbd2_journal_force_commit);
91 EXPORT_SYMBOL(jbd2_journal_file_inode);
92 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
93 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
94 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
95
96 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
97 static void __journal_abort_soft (journal_t *journal, int errno);
98 static int jbd2_journal_create_slab(size_t slab_size);
99
100 /*
101  * Helper function used to manage commit timeouts
102  */
103
104 static void commit_timeout(unsigned long __data)
105 {
106         struct task_struct * p = (struct task_struct *) __data;
107
108         wake_up_process(p);
109 }
110
111 /*
112  * kjournald2: The main thread function used to manage a logging device
113  * journal.
114  *
115  * This kernel thread is responsible for two things:
116  *
117  * 1) COMMIT:  Every so often we need to commit the current state of the
118  *    filesystem to disk.  The journal thread is responsible for writing
119  *    all of the metadata buffers to disk.
120  *
121  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
122  *    of the data in that part of the log has been rewritten elsewhere on
123  *    the disk.  Flushing these old buffers to reclaim space in the log is
124  *    known as checkpointing, and this thread is responsible for that job.
125  */
126
127 static int kjournald2(void *arg)
128 {
129         journal_t *journal = arg;
130         transaction_t *transaction;
131
132         /*
133          * Set up an interval timer which can be used to trigger a commit wakeup
134          * after the commit interval expires
135          */
136         setup_timer(&journal->j_commit_timer, commit_timeout,
137                         (unsigned long)current);
138
139         /* Record that the journal thread is running */
140         journal->j_task = current;
141         wake_up(&journal->j_wait_done_commit);
142
143         /*
144          * And now, wait forever for commit wakeup events.
145          */
146         spin_lock(&journal->j_state_lock);
147
148 loop:
149         if (journal->j_flags & JBD2_UNMOUNT)
150                 goto end_loop;
151
152         jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
153                 journal->j_commit_sequence, journal->j_commit_request);
154
155         if (journal->j_commit_sequence != journal->j_commit_request) {
156                 jbd_debug(1, "OK, requests differ\n");
157                 spin_unlock(&journal->j_state_lock);
158                 del_timer_sync(&journal->j_commit_timer);
159                 jbd2_journal_commit_transaction(journal);
160                 spin_lock(&journal->j_state_lock);
161                 goto loop;
162         }
163
164         wake_up(&journal->j_wait_done_commit);
165         if (freezing(current)) {
166                 /*
167                  * The simpler the better. Flushing journal isn't a
168                  * good idea, because that depends on threads that may
169                  * be already stopped.
170                  */
171                 jbd_debug(1, "Now suspending kjournald2\n");
172                 spin_unlock(&journal->j_state_lock);
173                 refrigerator();
174                 spin_lock(&journal->j_state_lock);
175         } else {
176                 /*
177                  * We assume on resume that commits are already there,
178                  * so we don't sleep
179                  */
180                 DEFINE_WAIT(wait);
181                 int should_sleep = 1;
182
183                 prepare_to_wait(&journal->j_wait_commit, &wait,
184                                 TASK_INTERRUPTIBLE);
185                 if (journal->j_commit_sequence != journal->j_commit_request)
186                         should_sleep = 0;
187                 transaction = journal->j_running_transaction;
188                 if (transaction && time_after_eq(jiffies,
189                                                 transaction->t_expires))
190                         should_sleep = 0;
191                 if (journal->j_flags & JBD2_UNMOUNT)
192                         should_sleep = 0;
193                 if (should_sleep) {
194                         spin_unlock(&journal->j_state_lock);
195                         schedule();
196                         spin_lock(&journal->j_state_lock);
197                 }
198                 finish_wait(&journal->j_wait_commit, &wait);
199         }
200
201         jbd_debug(1, "kjournald2 wakes\n");
202
203         /*
204          * Were we woken up by a commit wakeup event?
205          */
206         transaction = journal->j_running_transaction;
207         if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
208                 journal->j_commit_request = transaction->t_tid;
209                 jbd_debug(1, "woke because of timeout\n");
210         }
211         goto loop;
212
213 end_loop:
214         spin_unlock(&journal->j_state_lock);
215         del_timer_sync(&journal->j_commit_timer);
216         journal->j_task = NULL;
217         wake_up(&journal->j_wait_done_commit);
218         jbd_debug(1, "Journal thread exiting.\n");
219         return 0;
220 }
221
222 static int jbd2_journal_start_thread(journal_t *journal)
223 {
224         struct task_struct *t;
225
226         t = kthread_run(kjournald2, journal, "jbd2/%s",
227                         journal->j_devname);
228         if (IS_ERR(t))
229                 return PTR_ERR(t);
230
231         wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
232         return 0;
233 }
234
235 static void journal_kill_thread(journal_t *journal)
236 {
237         spin_lock(&journal->j_state_lock);
238         journal->j_flags |= JBD2_UNMOUNT;
239
240         while (journal->j_task) {
241                 wake_up(&journal->j_wait_commit);
242                 spin_unlock(&journal->j_state_lock);
243                 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
244                 spin_lock(&journal->j_state_lock);
245         }
246         spin_unlock(&journal->j_state_lock);
247 }
248
249 /*
250  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
251  *
252  * Writes a metadata buffer to a given disk block.  The actual IO is not
253  * performed but a new buffer_head is constructed which labels the data
254  * to be written with the correct destination disk block.
255  *
256  * Any magic-number escaping which needs to be done will cause a
257  * copy-out here.  If the buffer happens to start with the
258  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
259  * magic number is only written to the log for descripter blocks.  In
260  * this case, we copy the data and replace the first word with 0, and we
261  * return a result code which indicates that this buffer needs to be
262  * marked as an escaped buffer in the corresponding log descriptor
263  * block.  The missing word can then be restored when the block is read
264  * during recovery.
265  *
266  * If the source buffer has already been modified by a new transaction
267  * since we took the last commit snapshot, we use the frozen copy of
268  * that data for IO.  If we end up using the existing buffer_head's data
269  * for the write, then we *have* to lock the buffer to prevent anyone
270  * else from using and possibly modifying it while the IO is in
271  * progress.
272  *
273  * The function returns a pointer to the buffer_heads to be used for IO.
274  *
275  * We assume that the journal has already been locked in this function.
276  *
277  * Return value:
278  *  <0: Error
279  * >=0: Finished OK
280  *
281  * On success:
282  * Bit 0 set == escape performed on the data
283  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
284  */
285
286 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
287                                   struct journal_head  *jh_in,
288                                   struct journal_head **jh_out,
289                                   unsigned long long blocknr)
290 {
291         int need_copy_out = 0;
292         int done_copy_out = 0;
293         int do_escape = 0;
294         char *mapped_data;
295         struct buffer_head *new_bh;
296         struct journal_head *new_jh;
297         struct page *new_page;
298         unsigned int new_offset;
299         struct buffer_head *bh_in = jh2bh(jh_in);
300         journal_t *journal = transaction->t_journal;
301
302         /*
303          * The buffer really shouldn't be locked: only the current committing
304          * transaction is allowed to write it, so nobody else is allowed
305          * to do any IO.
306          *
307          * akpm: except if we're journalling data, and write() output is
308          * also part of a shared mapping, and another thread has
309          * decided to launch a writepage() against this buffer.
310          */
311         J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
312
313         new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
314         /* keep subsequent assertions sane */
315         new_bh->b_state = 0;
316         init_buffer(new_bh, NULL, NULL);
317         atomic_set(&new_bh->b_count, 1);
318         new_jh = jbd2_journal_add_journal_head(new_bh); /* This sleeps */
319
320         /*
321          * If a new transaction has already done a buffer copy-out, then
322          * we use that version of the data for the commit.
323          */
324         jbd_lock_bh_state(bh_in);
325 repeat:
326         if (jh_in->b_frozen_data) {
327                 done_copy_out = 1;
328                 new_page = virt_to_page(jh_in->b_frozen_data);
329                 new_offset = offset_in_page(jh_in->b_frozen_data);
330         } else {
331                 new_page = jh2bh(jh_in)->b_page;
332                 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
333         }
334
335         mapped_data = kmap_atomic(new_page, KM_USER0);
336         /*
337          * Fire data frozen trigger if data already wasn't frozen.  Do this
338          * before checking for escaping, as the trigger may modify the magic
339          * offset.  If a copy-out happens afterwards, it will have the correct
340          * data in the buffer.
341          */
342         if (!done_copy_out)
343                 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
344                                            jh_in->b_triggers);
345
346         /*
347          * Check for escaping
348          */
349         if (*((__be32 *)(mapped_data + new_offset)) ==
350                                 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
351                 need_copy_out = 1;
352                 do_escape = 1;
353         }
354         kunmap_atomic(mapped_data, KM_USER0);
355
356         /*
357          * Do we need to do a data copy?
358          */
359         if (need_copy_out && !done_copy_out) {
360                 char *tmp;
361
362                 jbd_unlock_bh_state(bh_in);
363                 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
364                 if (!tmp) {
365                         jbd2_journal_put_journal_head(new_jh);
366                         return -ENOMEM;
367                 }
368                 jbd_lock_bh_state(bh_in);
369                 if (jh_in->b_frozen_data) {
370                         jbd2_free(tmp, bh_in->b_size);
371                         goto repeat;
372                 }
373
374                 jh_in->b_frozen_data = tmp;
375                 mapped_data = kmap_atomic(new_page, KM_USER0);
376                 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
377                 kunmap_atomic(mapped_data, KM_USER0);
378
379                 new_page = virt_to_page(tmp);
380                 new_offset = offset_in_page(tmp);
381                 done_copy_out = 1;
382
383                 /*
384                  * This isn't strictly necessary, as we're using frozen
385                  * data for the escaping, but it keeps consistency with
386                  * b_frozen_data usage.
387                  */
388                 jh_in->b_frozen_triggers = jh_in->b_triggers;
389         }
390
391         /*
392          * Did we need to do an escaping?  Now we've done all the
393          * copying, we can finally do so.
394          */
395         if (do_escape) {
396                 mapped_data = kmap_atomic(new_page, KM_USER0);
397                 *((unsigned int *)(mapped_data + new_offset)) = 0;
398                 kunmap_atomic(mapped_data, KM_USER0);
399         }
400
401         set_bh_page(new_bh, new_page, new_offset);
402         new_jh->b_transaction = NULL;
403         new_bh->b_size = jh2bh(jh_in)->b_size;
404         new_bh->b_bdev = transaction->t_journal->j_dev;
405         new_bh->b_blocknr = blocknr;
406         set_buffer_mapped(new_bh);
407         set_buffer_dirty(new_bh);
408
409         *jh_out = new_jh;
410
411         /*
412          * The to-be-written buffer needs to get moved to the io queue,
413          * and the original buffer whose contents we are shadowing or
414          * copying is moved to the transaction's shadow queue.
415          */
416         JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
417         spin_lock(&journal->j_list_lock);
418         __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
419         spin_unlock(&journal->j_list_lock);
420         jbd_unlock_bh_state(bh_in);
421
422         JBUFFER_TRACE(new_jh, "file as BJ_IO");
423         jbd2_journal_file_buffer(new_jh, transaction, BJ_IO);
424
425         return do_escape | (done_copy_out << 1);
426 }
427
428 /*
429  * Allocation code for the journal file.  Manage the space left in the
430  * journal, so that we can begin checkpointing when appropriate.
431  */
432
433 /*
434  * __jbd2_log_space_left: Return the number of free blocks left in the journal.
435  *
436  * Called with the journal already locked.
437  *
438  * Called under j_state_lock
439  */
440
441 int __jbd2_log_space_left(journal_t *journal)
442 {
443         int left = journal->j_free;
444
445         assert_spin_locked(&journal->j_state_lock);
446
447         /*
448          * Be pessimistic here about the number of those free blocks which
449          * might be required for log descriptor control blocks.
450          */
451
452 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
453
454         left -= MIN_LOG_RESERVED_BLOCKS;
455
456         if (left <= 0)
457                 return 0;
458         left -= (left >> 3);
459         return left;
460 }
461
462 /*
463  * Called under j_state_lock.  Returns true if a transaction commit was started.
464  */
465 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
466 {
467         /*
468          * Are we already doing a recent enough commit?
469          */
470         if (!tid_geq(journal->j_commit_request, target)) {
471                 /*
472                  * We want a new commit: OK, mark the request and wakup the
473                  * commit thread.  We do _not_ do the commit ourselves.
474                  */
475
476                 journal->j_commit_request = target;
477                 jbd_debug(1, "JBD: requesting commit %d/%d\n",
478                           journal->j_commit_request,
479                           journal->j_commit_sequence);
480                 wake_up(&journal->j_wait_commit);
481                 return 1;
482         }
483         return 0;
484 }
485
486 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
487 {
488         int ret;
489
490         spin_lock(&journal->j_state_lock);
491         ret = __jbd2_log_start_commit(journal, tid);
492         spin_unlock(&journal->j_state_lock);
493         return ret;
494 }
495
496 /*
497  * Force and wait upon a commit if the calling process is not within
498  * transaction.  This is used for forcing out undo-protected data which contains
499  * bitmaps, when the fs is running out of space.
500  *
501  * We can only force the running transaction if we don't have an active handle;
502  * otherwise, we will deadlock.
503  *
504  * Returns true if a transaction was started.
505  */
506 int jbd2_journal_force_commit_nested(journal_t *journal)
507 {
508         transaction_t *transaction = NULL;
509         tid_t tid;
510
511         spin_lock(&journal->j_state_lock);
512         if (journal->j_running_transaction && !current->journal_info) {
513                 transaction = journal->j_running_transaction;
514                 __jbd2_log_start_commit(journal, transaction->t_tid);
515         } else if (journal->j_committing_transaction)
516                 transaction = journal->j_committing_transaction;
517
518         if (!transaction) {
519                 spin_unlock(&journal->j_state_lock);
520                 return 0;       /* Nothing to retry */
521         }
522
523         tid = transaction->t_tid;
524         spin_unlock(&journal->j_state_lock);
525         jbd2_log_wait_commit(journal, tid);
526         return 1;
527 }
528
529 /*
530  * Start a commit of the current running transaction (if any).  Returns true
531  * if a transaction is going to be committed (or is currently already
532  * committing), and fills its tid in at *ptid
533  */
534 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
535 {
536         int ret = 0;
537
538         spin_lock(&journal->j_state_lock);
539         if (journal->j_running_transaction) {
540                 tid_t tid = journal->j_running_transaction->t_tid;
541
542                 __jbd2_log_start_commit(journal, tid);
543                 /* There's a running transaction and we've just made sure
544                  * it's commit has been scheduled. */
545                 if (ptid)
546                         *ptid = tid;
547                 ret = 1;
548         } else if (journal->j_committing_transaction) {
549                 /*
550                  * If ext3_write_super() recently started a commit, then we
551                  * have to wait for completion of that transaction
552                  */
553                 if (ptid)
554                         *ptid = journal->j_committing_transaction->t_tid;
555                 ret = 1;
556         }
557         spin_unlock(&journal->j_state_lock);
558         return ret;
559 }
560
561 /*
562  * Wait for a specified commit to complete.
563  * The caller may not hold the journal lock.
564  */
565 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
566 {
567         int err = 0;
568
569 #ifdef CONFIG_JBD2_DEBUG
570         spin_lock(&journal->j_state_lock);
571         if (!tid_geq(journal->j_commit_request, tid)) {
572                 printk(KERN_EMERG
573                        "%s: error: j_commit_request=%d, tid=%d\n",
574                        __func__, journal->j_commit_request, tid);
575         }
576         spin_unlock(&journal->j_state_lock);
577 #endif
578         spin_lock(&journal->j_state_lock);
579         while (tid_gt(tid, journal->j_commit_sequence)) {
580                 jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
581                                   tid, journal->j_commit_sequence);
582                 wake_up(&journal->j_wait_commit);
583                 spin_unlock(&journal->j_state_lock);
584                 wait_event(journal->j_wait_done_commit,
585                                 !tid_gt(tid, journal->j_commit_sequence));
586                 spin_lock(&journal->j_state_lock);
587         }
588         spin_unlock(&journal->j_state_lock);
589
590         if (unlikely(is_journal_aborted(journal))) {
591                 printk(KERN_EMERG "journal commit I/O error\n");
592                 err = -EIO;
593         }
594         return err;
595 }
596
597 /*
598  * Log buffer allocation routines:
599  */
600
601 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
602 {
603         unsigned long blocknr;
604
605         spin_lock(&journal->j_state_lock);
606         J_ASSERT(journal->j_free > 1);
607
608         blocknr = journal->j_head;
609         journal->j_head++;
610         journal->j_free--;
611         if (journal->j_head == journal->j_last)
612                 journal->j_head = journal->j_first;
613         spin_unlock(&journal->j_state_lock);
614         return jbd2_journal_bmap(journal, blocknr, retp);
615 }
616
617 /*
618  * Conversion of logical to physical block numbers for the journal
619  *
620  * On external journals the journal blocks are identity-mapped, so
621  * this is a no-op.  If needed, we can use j_blk_offset - everything is
622  * ready.
623  */
624 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
625                  unsigned long long *retp)
626 {
627         int err = 0;
628         unsigned long long ret;
629
630         if (journal->j_inode) {
631                 ret = bmap(journal->j_inode, blocknr);
632                 if (ret)
633                         *retp = ret;
634                 else {
635                         printk(KERN_ALERT "%s: journal block not found "
636                                         "at offset %lu on %s\n",
637                                __func__, blocknr, journal->j_devname);
638                         err = -EIO;
639                         __journal_abort_soft(journal, err);
640                 }
641         } else {
642                 *retp = blocknr; /* +journal->j_blk_offset */
643         }
644         return err;
645 }
646
647 /*
648  * We play buffer_head aliasing tricks to write data/metadata blocks to
649  * the journal without copying their contents, but for journal
650  * descriptor blocks we do need to generate bona fide buffers.
651  *
652  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
653  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
654  * But we don't bother doing that, so there will be coherency problems with
655  * mmaps of blockdevs which hold live JBD-controlled filesystems.
656  */
657 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
658 {
659         struct buffer_head *bh;
660         unsigned long long blocknr;
661         int err;
662
663         err = jbd2_journal_next_log_block(journal, &blocknr);
664
665         if (err)
666                 return NULL;
667
668         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
669         if (!bh)
670                 return NULL;
671         lock_buffer(bh);
672         memset(bh->b_data, 0, journal->j_blocksize);
673         set_buffer_uptodate(bh);
674         unlock_buffer(bh);
675         BUFFER_TRACE(bh, "return this buffer");
676         return jbd2_journal_add_journal_head(bh);
677 }
678
679 struct jbd2_stats_proc_session {
680         journal_t *journal;
681         struct transaction_stats_s *stats;
682         int start;
683         int max;
684 };
685
686 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
687 {
688         return *pos ? NULL : SEQ_START_TOKEN;
689 }
690
691 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
692 {
693         return NULL;
694 }
695
696 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
697 {
698         struct jbd2_stats_proc_session *s = seq->private;
699
700         if (v != SEQ_START_TOKEN)
701                 return 0;
702         seq_printf(seq, "%lu transaction, each up to %u blocks\n",
703                         s->stats->ts_tid,
704                         s->journal->j_max_transaction_buffers);
705         if (s->stats->ts_tid == 0)
706                 return 0;
707         seq_printf(seq, "average: \n  %ums waiting for transaction\n",
708             jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
709         seq_printf(seq, "  %ums running transaction\n",
710             jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
711         seq_printf(seq, "  %ums transaction was being locked\n",
712             jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
713         seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
714             jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
715         seq_printf(seq, "  %ums logging transaction\n",
716             jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
717         seq_printf(seq, "  %lluus average transaction commit time\n",
718                    div_u64(s->journal->j_average_commit_time, 1000));
719         seq_printf(seq, "  %lu handles per transaction\n",
720             s->stats->run.rs_handle_count / s->stats->ts_tid);
721         seq_printf(seq, "  %lu blocks per transaction\n",
722             s->stats->run.rs_blocks / s->stats->ts_tid);
723         seq_printf(seq, "  %lu logged blocks per transaction\n",
724             s->stats->run.rs_blocks_logged / s->stats->ts_tid);
725         return 0;
726 }
727
728 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
729 {
730 }
731
732 static const struct seq_operations jbd2_seq_info_ops = {
733         .start  = jbd2_seq_info_start,
734         .next   = jbd2_seq_info_next,
735         .stop   = jbd2_seq_info_stop,
736         .show   = jbd2_seq_info_show,
737 };
738
739 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
740 {
741         journal_t *journal = PDE(inode)->data;
742         struct jbd2_stats_proc_session *s;
743         int rc, size;
744
745         s = kmalloc(sizeof(*s), GFP_KERNEL);
746         if (s == NULL)
747                 return -ENOMEM;
748         size = sizeof(struct transaction_stats_s);
749         s->stats = kmalloc(size, GFP_KERNEL);
750         if (s->stats == NULL) {
751                 kfree(s);
752                 return -ENOMEM;
753         }
754         spin_lock(&journal->j_history_lock);
755         memcpy(s->stats, &journal->j_stats, size);
756         s->journal = journal;
757         spin_unlock(&journal->j_history_lock);
758
759         rc = seq_open(file, &jbd2_seq_info_ops);
760         if (rc == 0) {
761                 struct seq_file *m = file->private_data;
762                 m->private = s;
763         } else {
764                 kfree(s->stats);
765                 kfree(s);
766         }
767         return rc;
768
769 }
770
771 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
772 {
773         struct seq_file *seq = file->private_data;
774         struct jbd2_stats_proc_session *s = seq->private;
775         kfree(s->stats);
776         kfree(s);
777         return seq_release(inode, file);
778 }
779
780 static const struct file_operations jbd2_seq_info_fops = {
781         .owner          = THIS_MODULE,
782         .open           = jbd2_seq_info_open,
783         .read           = seq_read,
784         .llseek         = seq_lseek,
785         .release        = jbd2_seq_info_release,
786 };
787
788 static struct proc_dir_entry *proc_jbd2_stats;
789
790 static void jbd2_stats_proc_init(journal_t *journal)
791 {
792         journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
793         if (journal->j_proc_entry) {
794                 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
795                                  &jbd2_seq_info_fops, journal);
796         }
797 }
798
799 static void jbd2_stats_proc_exit(journal_t *journal)
800 {
801         remove_proc_entry("info", journal->j_proc_entry);
802         remove_proc_entry(journal->j_devname, proc_jbd2_stats);
803 }
804
805 /*
806  * Management for journal control blocks: functions to create and
807  * destroy journal_t structures, and to initialise and read existing
808  * journal blocks from disk.  */
809
810 /* First: create and setup a journal_t object in memory.  We initialise
811  * very few fields yet: that has to wait until we have created the
812  * journal structures from from scratch, or loaded them from disk. */
813
814 static journal_t * journal_init_common (void)
815 {
816         journal_t *journal;
817         int err;
818
819         journal = kzalloc(sizeof(*journal), GFP_KERNEL);
820         if (!journal)
821                 goto fail;
822
823         init_waitqueue_head(&journal->j_wait_transaction_locked);
824         init_waitqueue_head(&journal->j_wait_logspace);
825         init_waitqueue_head(&journal->j_wait_done_commit);
826         init_waitqueue_head(&journal->j_wait_checkpoint);
827         init_waitqueue_head(&journal->j_wait_commit);
828         init_waitqueue_head(&journal->j_wait_updates);
829         mutex_init(&journal->j_barrier);
830         mutex_init(&journal->j_checkpoint_mutex);
831         spin_lock_init(&journal->j_revoke_lock);
832         spin_lock_init(&journal->j_list_lock);
833         spin_lock_init(&journal->j_state_lock);
834
835         journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
836         journal->j_min_batch_time = 0;
837         journal->j_max_batch_time = 15000; /* 15ms */
838
839         /* The journal is marked for error until we succeed with recovery! */
840         journal->j_flags = JBD2_ABORT;
841
842         /* Set up a default-sized revoke table for the new mount. */
843         err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
844         if (err) {
845                 kfree(journal);
846                 goto fail;
847         }
848
849         spin_lock_init(&journal->j_history_lock);
850
851         return journal;
852 fail:
853         return NULL;
854 }
855
856 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
857  *
858  * Create a journal structure assigned some fixed set of disk blocks to
859  * the journal.  We don't actually touch those disk blocks yet, but we
860  * need to set up all of the mapping information to tell the journaling
861  * system where the journal blocks are.
862  *
863  */
864
865 /**
866  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
867  *  @bdev: Block device on which to create the journal
868  *  @fs_dev: Device which hold journalled filesystem for this journal.
869  *  @start: Block nr Start of journal.
870  *  @len:  Length of the journal in blocks.
871  *  @blocksize: blocksize of journalling device
872  *
873  *  Returns: a newly created journal_t *
874  *
875  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
876  *  range of blocks on an arbitrary block device.
877  *
878  */
879 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
880                         struct block_device *fs_dev,
881                         unsigned long long start, int len, int blocksize)
882 {
883         journal_t *journal = journal_init_common();
884         struct buffer_head *bh;
885         char *p;
886         int n;
887
888         if (!journal)
889                 return NULL;
890
891         /* journal descriptor can store up to n blocks -bzzz */
892         journal->j_blocksize = blocksize;
893         jbd2_stats_proc_init(journal);
894         n = journal->j_blocksize / sizeof(journal_block_tag_t);
895         journal->j_wbufsize = n;
896         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
897         if (!journal->j_wbuf) {
898                 printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
899                         __func__);
900                 goto out_err;
901         }
902         journal->j_dev = bdev;
903         journal->j_fs_dev = fs_dev;
904         journal->j_blk_offset = start;
905         journal->j_maxlen = len;
906         bdevname(journal->j_dev, journal->j_devname);
907         p = journal->j_devname;
908         while ((p = strchr(p, '/')))
909                 *p = '!';
910
911         bh = __getblk(journal->j_dev, start, journal->j_blocksize);
912         if (!bh) {
913                 printk(KERN_ERR
914                        "%s: Cannot get buffer for journal superblock\n",
915                        __func__);
916                 goto out_err;
917         }
918         journal->j_sb_buffer = bh;
919         journal->j_superblock = (journal_superblock_t *)bh->b_data;
920
921         return journal;
922 out_err:
923         kfree(journal->j_wbuf);
924         jbd2_stats_proc_exit(journal);
925         kfree(journal);
926         return NULL;
927 }
928
929 /**
930  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
931  *  @inode: An inode to create the journal in
932  *
933  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
934  * the journal.  The inode must exist already, must support bmap() and
935  * must have all data blocks preallocated.
936  */
937 journal_t * jbd2_journal_init_inode (struct inode *inode)
938 {
939         struct buffer_head *bh;
940         journal_t *journal = journal_init_common();
941         char *p;
942         int err;
943         int n;
944         unsigned long long blocknr;
945
946         if (!journal)
947                 return NULL;
948
949         journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
950         journal->j_inode = inode;
951         bdevname(journal->j_dev, journal->j_devname);
952         p = journal->j_devname;
953         while ((p = strchr(p, '/')))
954                 *p = '!';
955         p = journal->j_devname + strlen(journal->j_devname);
956         sprintf(p, "-%lu", journal->j_inode->i_ino);
957         jbd_debug(1,
958                   "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
959                   journal, inode->i_sb->s_id, inode->i_ino,
960                   (long long) inode->i_size,
961                   inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
962
963         journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
964         journal->j_blocksize = inode->i_sb->s_blocksize;
965         jbd2_stats_proc_init(journal);
966
967         /* journal descriptor can store up to n blocks -bzzz */
968         n = journal->j_blocksize / sizeof(journal_block_tag_t);
969         journal->j_wbufsize = n;
970         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
971         if (!journal->j_wbuf) {
972                 printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
973                         __func__);
974                 goto out_err;
975         }
976
977         err = jbd2_journal_bmap(journal, 0, &blocknr);
978         /* If that failed, give up */
979         if (err) {
980                 printk(KERN_ERR "%s: Cannnot locate journal superblock\n",
981                        __func__);
982                 goto out_err;
983         }
984
985         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
986         if (!bh) {
987                 printk(KERN_ERR
988                        "%s: Cannot get buffer for journal superblock\n",
989                        __func__);
990                 goto out_err;
991         }
992         journal->j_sb_buffer = bh;
993         journal->j_superblock = (journal_superblock_t *)bh->b_data;
994
995         return journal;
996 out_err:
997         kfree(journal->j_wbuf);
998         jbd2_stats_proc_exit(journal);
999         kfree(journal);
1000         return NULL;
1001 }
1002
1003 /*
1004  * If the journal init or create aborts, we need to mark the journal
1005  * superblock as being NULL to prevent the journal destroy from writing
1006  * back a bogus superblock.
1007  */
1008 static void journal_fail_superblock (journal_t *journal)
1009 {
1010         struct buffer_head *bh = journal->j_sb_buffer;
1011         brelse(bh);
1012         journal->j_sb_buffer = NULL;
1013 }
1014
1015 /*
1016  * Given a journal_t structure, initialise the various fields for
1017  * startup of a new journaling session.  We use this both when creating
1018  * a journal, and after recovering an old journal to reset it for
1019  * subsequent use.
1020  */
1021
1022 static int journal_reset(journal_t *journal)
1023 {
1024         journal_superblock_t *sb = journal->j_superblock;
1025         unsigned long long first, last;
1026
1027         first = be32_to_cpu(sb->s_first);
1028         last = be32_to_cpu(sb->s_maxlen);
1029         if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1030                 printk(KERN_ERR "JBD: Journal too short (blocks %llu-%llu).\n",
1031                        first, last);
1032                 journal_fail_superblock(journal);
1033                 return -EINVAL;
1034         }
1035
1036         journal->j_first = first;
1037         journal->j_last = last;
1038
1039         journal->j_head = first;
1040         journal->j_tail = first;
1041         journal->j_free = last - first;
1042
1043         journal->j_tail_sequence = journal->j_transaction_sequence;
1044         journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1045         journal->j_commit_request = journal->j_commit_sequence;
1046
1047         journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1048
1049         /* Add the dynamic fields and write it to disk. */
1050         jbd2_journal_update_superblock(journal, 1);
1051         return jbd2_journal_start_thread(journal);
1052 }
1053
1054 /**
1055  * void jbd2_journal_update_superblock() - Update journal sb on disk.
1056  * @journal: The journal to update.
1057  * @wait: Set to '0' if you don't want to wait for IO completion.
1058  *
1059  * Update a journal's dynamic superblock fields and write it to disk,
1060  * optionally waiting for the IO to complete.
1061  */
1062 void jbd2_journal_update_superblock(journal_t *journal, int wait)
1063 {
1064         journal_superblock_t *sb = journal->j_superblock;
1065         struct buffer_head *bh = journal->j_sb_buffer;
1066
1067         /*
1068          * As a special case, if the on-disk copy is already marked as needing
1069          * no recovery (s_start == 0) and there are no outstanding transactions
1070          * in the filesystem, then we can safely defer the superblock update
1071          * until the next commit by setting JBD2_FLUSHED.  This avoids
1072          * attempting a write to a potential-readonly device.
1073          */
1074         if (sb->s_start == 0 && journal->j_tail_sequence ==
1075                                 journal->j_transaction_sequence) {
1076                 jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
1077                         "(start %ld, seq %d, errno %d)\n",
1078                         journal->j_tail, journal->j_tail_sequence,
1079                         journal->j_errno);
1080                 goto out;
1081         }
1082
1083         if (buffer_write_io_error(bh)) {
1084                 /*
1085                  * Oh, dear.  A previous attempt to write the journal
1086                  * superblock failed.  This could happen because the
1087                  * USB device was yanked out.  Or it could happen to
1088                  * be a transient write error and maybe the block will
1089                  * be remapped.  Nothing we can do but to retry the
1090                  * write and hope for the best.
1091                  */
1092                 printk(KERN_ERR "JBD2: previous I/O error detected "
1093                        "for journal superblock update for %s.\n",
1094                        journal->j_devname);
1095                 clear_buffer_write_io_error(bh);
1096                 set_buffer_uptodate(bh);
1097         }
1098
1099         spin_lock(&journal->j_state_lock);
1100         jbd_debug(1,"JBD: updating superblock (start %ld, seq %d, errno %d)\n",
1101                   journal->j_tail, journal->j_tail_sequence, journal->j_errno);
1102
1103         sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1104         sb->s_start    = cpu_to_be32(journal->j_tail);
1105         sb->s_errno    = cpu_to_be32(journal->j_errno);
1106         spin_unlock(&journal->j_state_lock);
1107
1108         BUFFER_TRACE(bh, "marking dirty");
1109         mark_buffer_dirty(bh);
1110         if (wait) {
1111                 sync_dirty_buffer(bh);
1112                 if (buffer_write_io_error(bh)) {
1113                         printk(KERN_ERR "JBD2: I/O error detected "
1114                                "when updating journal superblock for %s.\n",
1115                                journal->j_devname);
1116                         clear_buffer_write_io_error(bh);
1117                         set_buffer_uptodate(bh);
1118                 }
1119         } else
1120                 ll_rw_block(SWRITE, 1, &bh);
1121
1122 out:
1123         /* If we have just flushed the log (by marking s_start==0), then
1124          * any future commit will have to be careful to update the
1125          * superblock again to re-record the true start of the log. */
1126
1127         spin_lock(&journal->j_state_lock);
1128         if (sb->s_start)
1129                 journal->j_flags &= ~JBD2_FLUSHED;
1130         else
1131                 journal->j_flags |= JBD2_FLUSHED;
1132         spin_unlock(&journal->j_state_lock);
1133 }
1134
1135 /*
1136  * Read the superblock for a given journal, performing initial
1137  * validation of the format.
1138  */
1139
1140 static int journal_get_superblock(journal_t *journal)
1141 {
1142         struct buffer_head *bh;
1143         journal_superblock_t *sb;
1144         int err = -EIO;
1145
1146         bh = journal->j_sb_buffer;
1147
1148         J_ASSERT(bh != NULL);
1149         if (!buffer_uptodate(bh)) {
1150                 ll_rw_block(READ, 1, &bh);
1151                 wait_on_buffer(bh);
1152                 if (!buffer_uptodate(bh)) {
1153                         printk (KERN_ERR
1154                                 "JBD: IO error reading journal superblock\n");
1155                         goto out;
1156                 }
1157         }
1158
1159         sb = journal->j_superblock;
1160
1161         err = -EINVAL;
1162
1163         if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1164             sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1165                 printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1166                 goto out;
1167         }
1168
1169         switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1170         case JBD2_SUPERBLOCK_V1:
1171                 journal->j_format_version = 1;
1172                 break;
1173         case JBD2_SUPERBLOCK_V2:
1174                 journal->j_format_version = 2;
1175                 break;
1176         default:
1177                 printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1178                 goto out;
1179         }
1180
1181         if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1182                 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1183         else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1184                 printk (KERN_WARNING "JBD: journal file too short\n");
1185                 goto out;
1186         }
1187
1188         return 0;
1189
1190 out:
1191         journal_fail_superblock(journal);
1192         return err;
1193 }
1194
1195 /*
1196  * Load the on-disk journal superblock and read the key fields into the
1197  * journal_t.
1198  */
1199
1200 static int load_superblock(journal_t *journal)
1201 {
1202         int err;
1203         journal_superblock_t *sb;
1204
1205         err = journal_get_superblock(journal);
1206         if (err)
1207                 return err;
1208
1209         sb = journal->j_superblock;
1210
1211         journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1212         journal->j_tail = be32_to_cpu(sb->s_start);
1213         journal->j_first = be32_to_cpu(sb->s_first);
1214         journal->j_last = be32_to_cpu(sb->s_maxlen);
1215         journal->j_errno = be32_to_cpu(sb->s_errno);
1216
1217         return 0;
1218 }
1219
1220
1221 /**
1222  * int jbd2_journal_load() - Read journal from disk.
1223  * @journal: Journal to act on.
1224  *
1225  * Given a journal_t structure which tells us which disk blocks contain
1226  * a journal, read the journal from disk to initialise the in-memory
1227  * structures.
1228  */
1229 int jbd2_journal_load(journal_t *journal)
1230 {
1231         int err;
1232         journal_superblock_t *sb;
1233
1234         err = load_superblock(journal);
1235         if (err)
1236                 return err;
1237
1238         sb = journal->j_superblock;
1239         /* If this is a V2 superblock, then we have to check the
1240          * features flags on it. */
1241
1242         if (journal->j_format_version >= 2) {
1243                 if ((sb->s_feature_ro_compat &
1244                      ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1245                     (sb->s_feature_incompat &
1246                      ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1247                         printk (KERN_WARNING
1248                                 "JBD: Unrecognised features on journal\n");
1249                         return -EINVAL;
1250                 }
1251         }
1252
1253         /*
1254          * Create a slab for this blocksize
1255          */
1256         err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1257         if (err)
1258                 return err;
1259
1260         /* Let the recovery code check whether it needs to recover any
1261          * data from the journal. */
1262         if (jbd2_journal_recover(journal))
1263                 goto recovery_error;
1264
1265         if (journal->j_failed_commit) {
1266                 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1267                        "is corrupt.\n", journal->j_failed_commit,
1268                        journal->j_devname);
1269                 return -EIO;
1270         }
1271
1272         /* OK, we've finished with the dynamic journal bits:
1273          * reinitialise the dynamic contents of the superblock in memory
1274          * and reset them on disk. */
1275         if (journal_reset(journal))
1276                 goto recovery_error;
1277
1278         journal->j_flags &= ~JBD2_ABORT;
1279         journal->j_flags |= JBD2_LOADED;
1280         return 0;
1281
1282 recovery_error:
1283         printk (KERN_WARNING "JBD: recovery failed\n");
1284         return -EIO;
1285 }
1286
1287 /**
1288  * void jbd2_journal_destroy() - Release a journal_t structure.
1289  * @journal: Journal to act on.
1290  *
1291  * Release a journal_t structure once it is no longer in use by the
1292  * journaled object.
1293  * Return <0 if we couldn't clean up the journal.
1294  */
1295 int jbd2_journal_destroy(journal_t *journal)
1296 {
1297         int err = 0;
1298
1299         /* Wait for the commit thread to wake up and die. */
1300         journal_kill_thread(journal);
1301
1302         /* Force a final log commit */
1303         if (journal->j_running_transaction)
1304                 jbd2_journal_commit_transaction(journal);
1305
1306         /* Force any old transactions to disk */
1307
1308         /* Totally anal locking here... */
1309         spin_lock(&journal->j_list_lock);
1310         while (journal->j_checkpoint_transactions != NULL) {
1311                 spin_unlock(&journal->j_list_lock);
1312                 mutex_lock(&journal->j_checkpoint_mutex);
1313                 jbd2_log_do_checkpoint(journal);
1314                 mutex_unlock(&journal->j_checkpoint_mutex);
1315                 spin_lock(&journal->j_list_lock);
1316         }
1317
1318         J_ASSERT(journal->j_running_transaction == NULL);
1319         J_ASSERT(journal->j_committing_transaction == NULL);
1320         J_ASSERT(journal->j_checkpoint_transactions == NULL);
1321         spin_unlock(&journal->j_list_lock);
1322
1323         if (journal->j_sb_buffer) {
1324                 if (!is_journal_aborted(journal)) {
1325                         /* We can now mark the journal as empty. */
1326                         journal->j_tail = 0;
1327                         journal->j_tail_sequence =
1328                                 ++journal->j_transaction_sequence;
1329                         jbd2_journal_update_superblock(journal, 1);
1330                 } else {
1331                         err = -EIO;
1332                 }
1333                 brelse(journal->j_sb_buffer);
1334         }
1335
1336         if (journal->j_proc_entry)
1337                 jbd2_stats_proc_exit(journal);
1338         if (journal->j_inode)
1339                 iput(journal->j_inode);
1340         if (journal->j_revoke)
1341                 jbd2_journal_destroy_revoke(journal);
1342         kfree(journal->j_wbuf);
1343         kfree(journal);
1344
1345         return err;
1346 }
1347
1348
1349 /**
1350  *int jbd2_journal_check_used_features () - Check if features specified are used.
1351  * @journal: Journal to check.
1352  * @compat: bitmask of compatible features
1353  * @ro: bitmask of features that force read-only mount
1354  * @incompat: bitmask of incompatible features
1355  *
1356  * Check whether the journal uses all of a given set of
1357  * features.  Return true (non-zero) if it does.
1358  **/
1359
1360 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1361                                  unsigned long ro, unsigned long incompat)
1362 {
1363         journal_superblock_t *sb;
1364
1365         if (!compat && !ro && !incompat)
1366                 return 1;
1367         if (journal->j_format_version == 1)
1368                 return 0;
1369
1370         sb = journal->j_superblock;
1371
1372         if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1373             ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1374             ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1375                 return 1;
1376
1377         return 0;
1378 }
1379
1380 /**
1381  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1382  * @journal: Journal to check.
1383  * @compat: bitmask of compatible features
1384  * @ro: bitmask of features that force read-only mount
1385  * @incompat: bitmask of incompatible features
1386  *
1387  * Check whether the journaling code supports the use of
1388  * all of a given set of features on this journal.  Return true
1389  * (non-zero) if it can. */
1390
1391 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1392                                       unsigned long ro, unsigned long incompat)
1393 {
1394         journal_superblock_t *sb;
1395
1396         if (!compat && !ro && !incompat)
1397                 return 1;
1398
1399         sb = journal->j_superblock;
1400
1401         /* We can support any known requested features iff the
1402          * superblock is in version 2.  Otherwise we fail to support any
1403          * extended sb features. */
1404
1405         if (journal->j_format_version != 2)
1406                 return 0;
1407
1408         if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1409             (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1410             (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1411                 return 1;
1412
1413         return 0;
1414 }
1415
1416 /**
1417  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1418  * @journal: Journal to act on.
1419  * @compat: bitmask of compatible features
1420  * @ro: bitmask of features that force read-only mount
1421  * @incompat: bitmask of incompatible features
1422  *
1423  * Mark a given journal feature as present on the
1424  * superblock.  Returns true if the requested features could be set.
1425  *
1426  */
1427
1428 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1429                           unsigned long ro, unsigned long incompat)
1430 {
1431         journal_superblock_t *sb;
1432
1433         if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1434                 return 1;
1435
1436         if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1437                 return 0;
1438
1439         jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1440                   compat, ro, incompat);
1441
1442         sb = journal->j_superblock;
1443
1444         sb->s_feature_compat    |= cpu_to_be32(compat);
1445         sb->s_feature_ro_compat |= cpu_to_be32(ro);
1446         sb->s_feature_incompat  |= cpu_to_be32(incompat);
1447
1448         return 1;
1449 }
1450
1451 /*
1452  * jbd2_journal_clear_features () - Clear a given journal feature in the
1453  *                                  superblock
1454  * @journal: Journal to act on.
1455  * @compat: bitmask of compatible features
1456  * @ro: bitmask of features that force read-only mount
1457  * @incompat: bitmask of incompatible features
1458  *
1459  * Clear a given journal feature as present on the
1460  * superblock.
1461  */
1462 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1463                                 unsigned long ro, unsigned long incompat)
1464 {
1465         journal_superblock_t *sb;
1466
1467         jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1468                   compat, ro, incompat);
1469
1470         sb = journal->j_superblock;
1471
1472         sb->s_feature_compat    &= ~cpu_to_be32(compat);
1473         sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1474         sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1475 }
1476 EXPORT_SYMBOL(jbd2_journal_clear_features);
1477
1478 /**
1479  * int jbd2_journal_update_format () - Update on-disk journal structure.
1480  * @journal: Journal to act on.
1481  *
1482  * Given an initialised but unloaded journal struct, poke about in the
1483  * on-disk structure to update it to the most recent supported version.
1484  */
1485 int jbd2_journal_update_format (journal_t *journal)
1486 {
1487         journal_superblock_t *sb;
1488         int err;
1489
1490         err = journal_get_superblock(journal);
1491         if (err)
1492                 return err;
1493
1494         sb = journal->j_superblock;
1495
1496         switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1497         case JBD2_SUPERBLOCK_V2:
1498                 return 0;
1499         case JBD2_SUPERBLOCK_V1:
1500                 return journal_convert_superblock_v1(journal, sb);
1501         default:
1502                 break;
1503         }
1504         return -EINVAL;
1505 }
1506
1507 static int journal_convert_superblock_v1(journal_t *journal,
1508                                          journal_superblock_t *sb)
1509 {
1510         int offset, blocksize;
1511         struct buffer_head *bh;
1512
1513         printk(KERN_WARNING
1514                 "JBD: Converting superblock from version 1 to 2.\n");
1515
1516         /* Pre-initialise new fields to zero */
1517         offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1518         blocksize = be32_to_cpu(sb->s_blocksize);
1519         memset(&sb->s_feature_compat, 0, blocksize-offset);
1520
1521         sb->s_nr_users = cpu_to_be32(1);
1522         sb->s_header.h_blocktype = cpu_to_be32(JBD2_SUPERBLOCK_V2);
1523         journal->j_format_version = 2;
1524
1525         bh = journal->j_sb_buffer;
1526         BUFFER_TRACE(bh, "marking dirty");
1527         mark_buffer_dirty(bh);
1528         sync_dirty_buffer(bh);
1529         return 0;
1530 }
1531
1532
1533 /**
1534  * int jbd2_journal_flush () - Flush journal
1535  * @journal: Journal to act on.
1536  *
1537  * Flush all data for a given journal to disk and empty the journal.
1538  * Filesystems can use this when remounting readonly to ensure that
1539  * recovery does not need to happen on remount.
1540  */
1541
1542 int jbd2_journal_flush(journal_t *journal)
1543 {
1544         int err = 0;
1545         transaction_t *transaction = NULL;
1546         unsigned long old_tail;
1547
1548         spin_lock(&journal->j_state_lock);
1549
1550         /* Force everything buffered to the log... */
1551         if (journal->j_running_transaction) {
1552                 transaction = journal->j_running_transaction;
1553                 __jbd2_log_start_commit(journal, transaction->t_tid);
1554         } else if (journal->j_committing_transaction)
1555                 transaction = journal->j_committing_transaction;
1556
1557         /* Wait for the log commit to complete... */
1558         if (transaction) {
1559                 tid_t tid = transaction->t_tid;
1560
1561                 spin_unlock(&journal->j_state_lock);
1562                 jbd2_log_wait_commit(journal, tid);
1563         } else {
1564                 spin_unlock(&journal->j_state_lock);
1565         }
1566
1567         /* ...and flush everything in the log out to disk. */
1568         spin_lock(&journal->j_list_lock);
1569         while (!err && journal->j_checkpoint_transactions != NULL) {
1570                 spin_unlock(&journal->j_list_lock);
1571                 mutex_lock(&journal->j_checkpoint_mutex);
1572                 err = jbd2_log_do_checkpoint(journal);
1573                 mutex_unlock(&journal->j_checkpoint_mutex);
1574                 spin_lock(&journal->j_list_lock);
1575         }
1576         spin_unlock(&journal->j_list_lock);
1577
1578         if (is_journal_aborted(journal))
1579                 return -EIO;
1580
1581         jbd2_cleanup_journal_tail(journal);
1582
1583         /* Finally, mark the journal as really needing no recovery.
1584          * This sets s_start==0 in the underlying superblock, which is
1585          * the magic code for a fully-recovered superblock.  Any future
1586          * commits of data to the journal will restore the current
1587          * s_start value. */
1588         spin_lock(&journal->j_state_lock);
1589         old_tail = journal->j_tail;
1590         journal->j_tail = 0;
1591         spin_unlock(&journal->j_state_lock);
1592         jbd2_journal_update_superblock(journal, 1);
1593         spin_lock(&journal->j_state_lock);
1594         journal->j_tail = old_tail;
1595
1596         J_ASSERT(!journal->j_running_transaction);
1597         J_ASSERT(!journal->j_committing_transaction);
1598         J_ASSERT(!journal->j_checkpoint_transactions);
1599         J_ASSERT(journal->j_head == journal->j_tail);
1600         J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1601         spin_unlock(&journal->j_state_lock);
1602         return 0;
1603 }
1604
1605 /**
1606  * int jbd2_journal_wipe() - Wipe journal contents
1607  * @journal: Journal to act on.
1608  * @write: flag (see below)
1609  *
1610  * Wipe out all of the contents of a journal, safely.  This will produce
1611  * a warning if the journal contains any valid recovery information.
1612  * Must be called between journal_init_*() and jbd2_journal_load().
1613  *
1614  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1615  * we merely suppress recovery.
1616  */
1617
1618 int jbd2_journal_wipe(journal_t *journal, int write)
1619 {
1620         journal_superblock_t *sb;
1621         int err = 0;
1622
1623         J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1624
1625         err = load_superblock(journal);
1626         if (err)
1627                 return err;
1628
1629         sb = journal->j_superblock;
1630
1631         if (!journal->j_tail)
1632                 goto no_recovery;
1633
1634         printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1635                 write ? "Clearing" : "Ignoring");
1636
1637         err = jbd2_journal_skip_recovery(journal);
1638         if (write)
1639                 jbd2_journal_update_superblock(journal, 1);
1640
1641  no_recovery:
1642         return err;
1643 }
1644
1645 /*
1646  * Journal abort has very specific semantics, which we describe
1647  * for journal abort.
1648  *
1649  * Two internal functions, which provide abort to the jbd layer
1650  * itself are here.
1651  */
1652
1653 /*
1654  * Quick version for internal journal use (doesn't lock the journal).
1655  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1656  * and don't attempt to make any other journal updates.
1657  */
1658 void __jbd2_journal_abort_hard(journal_t *journal)
1659 {
1660         transaction_t *transaction;
1661
1662         if (journal->j_flags & JBD2_ABORT)
1663                 return;
1664
1665         printk(KERN_ERR "Aborting journal on device %s.\n",
1666                journal->j_devname);
1667
1668         spin_lock(&journal->j_state_lock);
1669         journal->j_flags |= JBD2_ABORT;
1670         transaction = journal->j_running_transaction;
1671         if (transaction)
1672                 __jbd2_log_start_commit(journal, transaction->t_tid);
1673         spin_unlock(&journal->j_state_lock);
1674 }
1675
1676 /* Soft abort: record the abort error status in the journal superblock,
1677  * but don't do any other IO. */
1678 static void __journal_abort_soft (journal_t *journal, int errno)
1679 {
1680         if (journal->j_flags & JBD2_ABORT)
1681                 return;
1682
1683         if (!journal->j_errno)
1684                 journal->j_errno = errno;
1685
1686         __jbd2_journal_abort_hard(journal);
1687
1688         if (errno)
1689                 jbd2_journal_update_superblock(journal, 1);
1690 }
1691
1692 /**
1693  * void jbd2_journal_abort () - Shutdown the journal immediately.
1694  * @journal: the journal to shutdown.
1695  * @errno:   an error number to record in the journal indicating
1696  *           the reason for the shutdown.
1697  *
1698  * Perform a complete, immediate shutdown of the ENTIRE
1699  * journal (not of a single transaction).  This operation cannot be
1700  * undone without closing and reopening the journal.
1701  *
1702  * The jbd2_journal_abort function is intended to support higher level error
1703  * recovery mechanisms such as the ext2/ext3 remount-readonly error
1704  * mode.
1705  *
1706  * Journal abort has very specific semantics.  Any existing dirty,
1707  * unjournaled buffers in the main filesystem will still be written to
1708  * disk by bdflush, but the journaling mechanism will be suspended
1709  * immediately and no further transaction commits will be honoured.
1710  *
1711  * Any dirty, journaled buffers will be written back to disk without
1712  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
1713  * filesystem, but we _do_ attempt to leave as much data as possible
1714  * behind for fsck to use for cleanup.
1715  *
1716  * Any attempt to get a new transaction handle on a journal which is in
1717  * ABORT state will just result in an -EROFS error return.  A
1718  * jbd2_journal_stop on an existing handle will return -EIO if we have
1719  * entered abort state during the update.
1720  *
1721  * Recursive transactions are not disturbed by journal abort until the
1722  * final jbd2_journal_stop, which will receive the -EIO error.
1723  *
1724  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
1725  * which will be recorded (if possible) in the journal superblock.  This
1726  * allows a client to record failure conditions in the middle of a
1727  * transaction without having to complete the transaction to record the
1728  * failure to disk.  ext3_error, for example, now uses this
1729  * functionality.
1730  *
1731  * Errors which originate from within the journaling layer will NOT
1732  * supply an errno; a null errno implies that absolutely no further
1733  * writes are done to the journal (unless there are any already in
1734  * progress).
1735  *
1736  */
1737
1738 void jbd2_journal_abort(journal_t *journal, int errno)
1739 {
1740         __journal_abort_soft(journal, errno);
1741 }
1742
1743 /**
1744  * int jbd2_journal_errno () - returns the journal's error state.
1745  * @journal: journal to examine.
1746  *
1747  * This is the errno number set with jbd2_journal_abort(), the last
1748  * time the journal was mounted - if the journal was stopped
1749  * without calling abort this will be 0.
1750  *
1751  * If the journal has been aborted on this mount time -EROFS will
1752  * be returned.
1753  */
1754 int jbd2_journal_errno(journal_t *journal)
1755 {
1756         int err;
1757
1758         spin_lock(&journal->j_state_lock);
1759         if (journal->j_flags & JBD2_ABORT)
1760                 err = -EROFS;
1761         else
1762                 err = journal->j_errno;
1763         spin_unlock(&journal->j_state_lock);
1764         return err;
1765 }
1766
1767 /**
1768  * int jbd2_journal_clear_err () - clears the journal's error state
1769  * @journal: journal to act on.
1770  *
1771  * An error must be cleared or acked to take a FS out of readonly
1772  * mode.
1773  */
1774 int jbd2_journal_clear_err(journal_t *journal)
1775 {
1776         int err = 0;
1777
1778         spin_lock(&journal->j_state_lock);
1779         if (journal->j_flags & JBD2_ABORT)
1780                 err = -EROFS;
1781         else
1782                 journal->j_errno = 0;
1783         spin_unlock(&journal->j_state_lock);
1784         return err;
1785 }
1786
1787 /**
1788  * void jbd2_journal_ack_err() - Ack journal err.
1789  * @journal: journal to act on.
1790  *
1791  * An error must be cleared or acked to take a FS out of readonly
1792  * mode.
1793  */
1794 void jbd2_journal_ack_err(journal_t *journal)
1795 {
1796         spin_lock(&journal->j_state_lock);
1797         if (journal->j_errno)
1798                 journal->j_flags |= JBD2_ACK_ERR;
1799         spin_unlock(&journal->j_state_lock);
1800 }
1801
1802 int jbd2_journal_blocks_per_page(struct inode *inode)
1803 {
1804         return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1805 }
1806
1807 /*
1808  * helper functions to deal with 32 or 64bit block numbers.
1809  */
1810 size_t journal_tag_bytes(journal_t *journal)
1811 {
1812         if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
1813                 return JBD2_TAG_SIZE64;
1814         else
1815                 return JBD2_TAG_SIZE32;
1816 }
1817
1818 /*
1819  * JBD memory management
1820  *
1821  * These functions are used to allocate block-sized chunks of memory
1822  * used for making copies of buffer_head data.  Very often it will be
1823  * page-sized chunks of data, but sometimes it will be in
1824  * sub-page-size chunks.  (For example, 16k pages on Power systems
1825  * with a 4k block file system.)  For blocks smaller than a page, we
1826  * use a SLAB allocator.  There are slab caches for each block size,
1827  * which are allocated at mount time, if necessary, and we only free
1828  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
1829  * this reason we don't need to a mutex to protect access to
1830  * jbd2_slab[] allocating or releasing memory; only in
1831  * jbd2_journal_create_slab().
1832  */
1833 #define JBD2_MAX_SLABS 8
1834 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
1835 static DECLARE_MUTEX(jbd2_slab_create_sem);
1836
1837 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
1838         "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
1839         "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
1840 };
1841
1842
1843 static void jbd2_journal_destroy_slabs(void)
1844 {
1845         int i;
1846
1847         for (i = 0; i < JBD2_MAX_SLABS; i++) {
1848                 if (jbd2_slab[i])
1849                         kmem_cache_destroy(jbd2_slab[i]);
1850                 jbd2_slab[i] = NULL;
1851         }
1852 }
1853
1854 static int jbd2_journal_create_slab(size_t size)
1855 {
1856         int i = order_base_2(size) - 10;
1857         size_t slab_size;
1858
1859         if (size == PAGE_SIZE)
1860                 return 0;
1861
1862         if (i >= JBD2_MAX_SLABS)
1863                 return -EINVAL;
1864
1865         if (unlikely(i < 0))
1866                 i = 0;
1867         down(&jbd2_slab_create_sem);
1868         if (jbd2_slab[i]) {
1869                 up(&jbd2_slab_create_sem);
1870                 return 0;       /* Already created */
1871         }
1872
1873         slab_size = 1 << (i+10);
1874         jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
1875                                          slab_size, 0, NULL);
1876         up(&jbd2_slab_create_sem);
1877         if (!jbd2_slab[i]) {
1878                 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
1879                 return -ENOMEM;
1880         }
1881         return 0;
1882 }
1883
1884 static struct kmem_cache *get_slab(size_t size)
1885 {
1886         int i = order_base_2(size) - 10;
1887
1888         BUG_ON(i >= JBD2_MAX_SLABS);
1889         if (unlikely(i < 0))
1890                 i = 0;
1891         BUG_ON(jbd2_slab[i] == NULL);
1892         return jbd2_slab[i];
1893 }
1894
1895 void *jbd2_alloc(size_t size, gfp_t flags)
1896 {
1897         void *ptr;
1898
1899         BUG_ON(size & (size-1)); /* Must be a power of 2 */
1900
1901         flags |= __GFP_REPEAT;
1902         if (size == PAGE_SIZE)
1903                 ptr = (void *)__get_free_pages(flags, 0);
1904         else if (size > PAGE_SIZE) {
1905                 int order = get_order(size);
1906
1907                 if (order < 3)
1908                         ptr = (void *)__get_free_pages(flags, order);
1909                 else
1910                         ptr = vmalloc(size);
1911         } else
1912                 ptr = kmem_cache_alloc(get_slab(size), flags);
1913
1914         /* Check alignment; SLUB has gotten this wrong in the past,
1915          * and this can lead to user data corruption! */
1916         BUG_ON(((unsigned long) ptr) & (size-1));
1917
1918         return ptr;
1919 }
1920
1921 void jbd2_free(void *ptr, size_t size)
1922 {
1923         if (size == PAGE_SIZE) {
1924                 free_pages((unsigned long)ptr, 0);
1925                 return;
1926         }
1927         if (size > PAGE_SIZE) {
1928                 int order = get_order(size);
1929
1930                 if (order < 3)
1931                         free_pages((unsigned long)ptr, order);
1932                 else
1933                         vfree(ptr);
1934                 return;
1935         }
1936         kmem_cache_free(get_slab(size), ptr);
1937 };
1938
1939 /*
1940  * Journal_head storage management
1941  */
1942 static struct kmem_cache *jbd2_journal_head_cache;
1943 #ifdef CONFIG_JBD2_DEBUG
1944 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
1945 #endif
1946
1947 static int journal_init_jbd2_journal_head_cache(void)
1948 {
1949         int retval;
1950
1951         J_ASSERT(jbd2_journal_head_cache == NULL);
1952         jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
1953                                 sizeof(struct journal_head),
1954                                 0,              /* offset */
1955                                 SLAB_TEMPORARY, /* flags */
1956                                 NULL);          /* ctor */
1957         retval = 0;
1958         if (!jbd2_journal_head_cache) {
1959                 retval = -ENOMEM;
1960                 printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
1961         }
1962         return retval;
1963 }
1964
1965 static void jbd2_journal_destroy_jbd2_journal_head_cache(void)
1966 {
1967         if (jbd2_journal_head_cache) {
1968                 kmem_cache_destroy(jbd2_journal_head_cache);
1969                 jbd2_journal_head_cache = NULL;
1970         }
1971 }
1972
1973 /*
1974  * journal_head splicing and dicing
1975  */
1976 static struct journal_head *journal_alloc_journal_head(void)
1977 {
1978         struct journal_head *ret;
1979         static unsigned long last_warning;
1980
1981 #ifdef CONFIG_JBD2_DEBUG
1982         atomic_inc(&nr_journal_heads);
1983 #endif
1984         ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
1985         if (!ret) {
1986                 jbd_debug(1, "out of memory for journal_head\n");
1987                 if (time_after(jiffies, last_warning + 5*HZ)) {
1988                         printk(KERN_NOTICE "ENOMEM in %s, retrying.\n",
1989                                __func__);
1990                         last_warning = jiffies;
1991                 }
1992                 while (!ret) {
1993                         yield();
1994                         ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
1995                 }
1996         }
1997         return ret;
1998 }
1999
2000 static void journal_free_journal_head(struct journal_head *jh)
2001 {
2002 #ifdef CONFIG_JBD2_DEBUG
2003         atomic_dec(&nr_journal_heads);
2004         memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2005 #endif
2006         kmem_cache_free(jbd2_journal_head_cache, jh);
2007 }
2008
2009 /*
2010  * A journal_head is attached to a buffer_head whenever JBD has an
2011  * interest in the buffer.
2012  *
2013  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2014  * is set.  This bit is tested in core kernel code where we need to take
2015  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2016  * there.
2017  *
2018  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2019  *
2020  * When a buffer has its BH_JBD bit set it is immune from being released by
2021  * core kernel code, mainly via ->b_count.
2022  *
2023  * A journal_head may be detached from its buffer_head when the journal_head's
2024  * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL.
2025  * Various places in JBD call jbd2_journal_remove_journal_head() to indicate that the
2026  * journal_head can be dropped if needed.
2027  *
2028  * Various places in the kernel want to attach a journal_head to a buffer_head
2029  * _before_ attaching the journal_head to a transaction.  To protect the
2030  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2031  * journal_head's b_jcount refcount by one.  The caller must call
2032  * jbd2_journal_put_journal_head() to undo this.
2033  *
2034  * So the typical usage would be:
2035  *
2036  *      (Attach a journal_head if needed.  Increments b_jcount)
2037  *      struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2038  *      ...
2039  *      jh->b_transaction = xxx;
2040  *      jbd2_journal_put_journal_head(jh);
2041  *
2042  * Now, the journal_head's b_jcount is zero, but it is safe from being released
2043  * because it has a non-zero b_transaction.
2044  */
2045
2046 /*
2047  * Give a buffer_head a journal_head.
2048  *
2049  * Doesn't need the journal lock.
2050  * May sleep.
2051  */
2052 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2053 {
2054         struct journal_head *jh;
2055         struct journal_head *new_jh = NULL;
2056
2057 repeat:
2058         if (!buffer_jbd(bh)) {
2059                 new_jh = journal_alloc_journal_head();
2060                 memset(new_jh, 0, sizeof(*new_jh));
2061         }
2062
2063         jbd_lock_bh_journal_head(bh);
2064         if (buffer_jbd(bh)) {
2065                 jh = bh2jh(bh);
2066         } else {
2067                 J_ASSERT_BH(bh,
2068                         (atomic_read(&bh->b_count) > 0) ||
2069                         (bh->b_page && bh->b_page->mapping));
2070
2071                 if (!new_jh) {
2072                         jbd_unlock_bh_journal_head(bh);
2073                         goto repeat;
2074                 }
2075
2076                 jh = new_jh;
2077                 new_jh = NULL;          /* We consumed it */
2078                 set_buffer_jbd(bh);
2079                 bh->b_private = jh;
2080                 jh->b_bh = bh;
2081                 get_bh(bh);
2082                 BUFFER_TRACE(bh, "added journal_head");
2083         }
2084         jh->b_jcount++;
2085         jbd_unlock_bh_journal_head(bh);
2086         if (new_jh)
2087                 journal_free_journal_head(new_jh);
2088         return bh->b_private;
2089 }
2090
2091 /*
2092  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2093  * having a journal_head, return NULL
2094  */
2095 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2096 {
2097         struct journal_head *jh = NULL;
2098
2099         jbd_lock_bh_journal_head(bh);
2100         if (buffer_jbd(bh)) {
2101                 jh = bh2jh(bh);
2102                 jh->b_jcount++;
2103         }
2104         jbd_unlock_bh_journal_head(bh);
2105         return jh;
2106 }
2107
2108 static void __journal_remove_journal_head(struct buffer_head *bh)
2109 {
2110         struct journal_head *jh = bh2jh(bh);
2111
2112         J_ASSERT_JH(jh, jh->b_jcount >= 0);
2113
2114         get_bh(bh);
2115         if (jh->b_jcount == 0) {
2116                 if (jh->b_transaction == NULL &&
2117                                 jh->b_next_transaction == NULL &&
2118                                 jh->b_cp_transaction == NULL) {
2119                         J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2120                         J_ASSERT_BH(bh, buffer_jbd(bh));
2121                         J_ASSERT_BH(bh, jh2bh(jh) == bh);
2122                         BUFFER_TRACE(bh, "remove journal_head");
2123                         if (jh->b_frozen_data) {
2124                                 printk(KERN_WARNING "%s: freeing "
2125                                                 "b_frozen_data\n",
2126                                                 __func__);
2127                                 jbd2_free(jh->b_frozen_data, bh->b_size);
2128                         }
2129                         if (jh->b_committed_data) {
2130                                 printk(KERN_WARNING "%s: freeing "
2131                                                 "b_committed_data\n",
2132                                                 __func__);
2133                                 jbd2_free(jh->b_committed_data, bh->b_size);
2134                         }
2135                         bh->b_private = NULL;
2136                         jh->b_bh = NULL;        /* debug, really */
2137                         clear_buffer_jbd(bh);
2138                         __brelse(bh);
2139                         journal_free_journal_head(jh);
2140                 } else {
2141                         BUFFER_TRACE(bh, "journal_head was locked");
2142                 }
2143         }
2144 }
2145
2146 /*
2147  * jbd2_journal_remove_journal_head(): if the buffer isn't attached to a transaction
2148  * and has a zero b_jcount then remove and release its journal_head.   If we did
2149  * see that the buffer is not used by any transaction we also "logically"
2150  * decrement ->b_count.
2151  *
2152  * We in fact take an additional increment on ->b_count as a convenience,
2153  * because the caller usually wants to do additional things with the bh
2154  * after calling here.
2155  * The caller of jbd2_journal_remove_journal_head() *must* run __brelse(bh) at some
2156  * time.  Once the caller has run __brelse(), the buffer is eligible for
2157  * reaping by try_to_free_buffers().
2158  */
2159 void jbd2_journal_remove_journal_head(struct buffer_head *bh)
2160 {
2161         jbd_lock_bh_journal_head(bh);
2162         __journal_remove_journal_head(bh);
2163         jbd_unlock_bh_journal_head(bh);
2164 }
2165
2166 /*
2167  * Drop a reference on the passed journal_head.  If it fell to zero then try to
2168  * release the journal_head from the buffer_head.
2169  */
2170 void jbd2_journal_put_journal_head(struct journal_head *jh)
2171 {
2172         struct buffer_head *bh = jh2bh(jh);
2173
2174         jbd_lock_bh_journal_head(bh);
2175         J_ASSERT_JH(jh, jh->b_jcount > 0);
2176         --jh->b_jcount;
2177         if (!jh->b_jcount && !jh->b_transaction) {
2178                 __journal_remove_journal_head(bh);
2179                 __brelse(bh);
2180         }
2181         jbd_unlock_bh_journal_head(bh);
2182 }
2183
2184 /*
2185  * Initialize jbd inode head
2186  */
2187 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2188 {
2189         jinode->i_transaction = NULL;
2190         jinode->i_next_transaction = NULL;
2191         jinode->i_vfs_inode = inode;
2192         jinode->i_flags = 0;
2193         INIT_LIST_HEAD(&jinode->i_list);
2194 }
2195
2196 /*
2197  * Function to be called before we start removing inode from memory (i.e.,
2198  * clear_inode() is a fine place to be called from). It removes inode from
2199  * transaction's lists.
2200  */
2201 void jbd2_journal_release_jbd_inode(journal_t *journal,
2202                                     struct jbd2_inode *jinode)
2203 {
2204         int writeout = 0;
2205
2206         if (!journal)
2207                 return;
2208 restart:
2209         spin_lock(&journal->j_list_lock);
2210         /* Is commit writing out inode - we have to wait */
2211         if (jinode->i_flags & JI_COMMIT_RUNNING) {
2212                 wait_queue_head_t *wq;
2213                 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2214                 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2215                 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2216                 spin_unlock(&journal->j_list_lock);
2217                 schedule();
2218                 finish_wait(wq, &wait.wait);
2219                 goto restart;
2220         }
2221
2222         /* Do we need to wait for data writeback? */
2223         if (journal->j_committing_transaction == jinode->i_transaction)
2224                 writeout = 1;
2225         if (jinode->i_transaction) {
2226                 list_del(&jinode->i_list);
2227                 jinode->i_transaction = NULL;
2228         }
2229         spin_unlock(&journal->j_list_lock);
2230 }
2231
2232 /*
2233  * debugfs tunables
2234  */
2235 #ifdef CONFIG_JBD2_DEBUG
2236 u8 jbd2_journal_enable_debug __read_mostly;
2237 EXPORT_SYMBOL(jbd2_journal_enable_debug);
2238
2239 #define JBD2_DEBUG_NAME "jbd2-debug"
2240
2241 static struct dentry *jbd2_debugfs_dir;
2242 static struct dentry *jbd2_debug;
2243
2244 static void __init jbd2_create_debugfs_entry(void)
2245 {
2246         jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL);
2247         if (jbd2_debugfs_dir)
2248                 jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME,
2249                                                S_IRUGO | S_IWUSR,
2250                                                jbd2_debugfs_dir,
2251                                                &jbd2_journal_enable_debug);
2252 }
2253
2254 static void __exit jbd2_remove_debugfs_entry(void)
2255 {
2256         debugfs_remove(jbd2_debug);
2257         debugfs_remove(jbd2_debugfs_dir);
2258 }
2259
2260 #else
2261
2262 static void __init jbd2_create_debugfs_entry(void)
2263 {
2264 }
2265
2266 static void __exit jbd2_remove_debugfs_entry(void)
2267 {
2268 }
2269
2270 #endif
2271
2272 #ifdef CONFIG_PROC_FS
2273
2274 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2275
2276 static void __init jbd2_create_jbd_stats_proc_entry(void)
2277 {
2278         proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2279 }
2280
2281 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2282 {
2283         if (proc_jbd2_stats)
2284                 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2285 }
2286
2287 #else
2288
2289 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2290 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2291
2292 #endif
2293
2294 struct kmem_cache *jbd2_handle_cache;
2295
2296 static int __init journal_init_handle_cache(void)
2297 {
2298         jbd2_handle_cache = kmem_cache_create("jbd2_journal_handle",
2299                                 sizeof(handle_t),
2300                                 0,              /* offset */
2301                                 SLAB_TEMPORARY, /* flags */
2302                                 NULL);          /* ctor */
2303         if (jbd2_handle_cache == NULL) {
2304                 printk(KERN_EMERG "JBD: failed to create handle cache\n");
2305                 return -ENOMEM;
2306         }
2307         return 0;
2308 }
2309
2310 static void jbd2_journal_destroy_handle_cache(void)
2311 {
2312         if (jbd2_handle_cache)
2313                 kmem_cache_destroy(jbd2_handle_cache);
2314 }
2315
2316 /*
2317  * Module startup and shutdown
2318  */
2319
2320 static int __init journal_init_caches(void)
2321 {
2322         int ret;
2323
2324         ret = jbd2_journal_init_revoke_caches();
2325         if (ret == 0)
2326                 ret = journal_init_jbd2_journal_head_cache();
2327         if (ret == 0)
2328                 ret = journal_init_handle_cache();
2329         return ret;
2330 }
2331
2332 static void jbd2_journal_destroy_caches(void)
2333 {
2334         jbd2_journal_destroy_revoke_caches();
2335         jbd2_journal_destroy_jbd2_journal_head_cache();
2336         jbd2_journal_destroy_handle_cache();
2337         jbd2_journal_destroy_slabs();
2338 }
2339
2340 static int __init journal_init(void)
2341 {
2342         int ret;
2343
2344         BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2345
2346         ret = journal_init_caches();
2347         if (ret == 0) {
2348                 jbd2_create_debugfs_entry();
2349                 jbd2_create_jbd_stats_proc_entry();
2350         } else {
2351                 jbd2_journal_destroy_caches();
2352         }
2353         return ret;
2354 }
2355
2356 static void __exit journal_exit(void)
2357 {
2358 #ifdef CONFIG_JBD2_DEBUG
2359         int n = atomic_read(&nr_journal_heads);
2360         if (n)
2361                 printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
2362 #endif
2363         jbd2_remove_debugfs_entry();
2364         jbd2_remove_jbd_stats_proc_entry();
2365         jbd2_journal_destroy_caches();
2366 }
2367
2368 /* 
2369  * jbd2_dev_to_name is a utility function used by the jbd2 and ext4 
2370  * tracing infrastructure to map a dev_t to a device name.
2371  *
2372  * The caller should use rcu_read_lock() in order to make sure the
2373  * device name stays valid until its done with it.  We use
2374  * rcu_read_lock() as well to make sure we're safe in case the caller
2375  * gets sloppy, and because rcu_read_lock() is cheap and can be safely
2376  * nested.
2377  */
2378 struct devname_cache {
2379         struct rcu_head rcu;
2380         dev_t           device;
2381         char            devname[BDEVNAME_SIZE];
2382 };
2383 #define CACHE_SIZE_BITS 6
2384 static struct devname_cache *devcache[1 << CACHE_SIZE_BITS];
2385 static DEFINE_SPINLOCK(devname_cache_lock);
2386
2387 static void free_devcache(struct rcu_head *rcu)
2388 {
2389         kfree(rcu);
2390 }
2391
2392 const char *jbd2_dev_to_name(dev_t device)
2393 {
2394         int     i = hash_32(device, CACHE_SIZE_BITS);
2395         char    *ret;
2396         struct block_device *bd;
2397         static struct devname_cache *new_dev;
2398
2399         rcu_read_lock();
2400         if (devcache[i] && devcache[i]->device == device) {
2401                 ret = devcache[i]->devname;
2402                 rcu_read_unlock();
2403                 return ret;
2404         }
2405         rcu_read_unlock();
2406
2407         new_dev = kmalloc(sizeof(struct devname_cache), GFP_KERNEL);
2408         if (!new_dev)
2409                 return "NODEV-ALLOCFAILURE"; /* Something non-NULL */
2410         spin_lock(&devname_cache_lock);
2411         if (devcache[i]) {
2412                 if (devcache[i]->device == device) {
2413                         kfree(new_dev);
2414                         ret = devcache[i]->devname;
2415                         spin_unlock(&devname_cache_lock);
2416                         return ret;
2417                 }
2418                 call_rcu(&devcache[i]->rcu, free_devcache);
2419         }
2420         devcache[i] = new_dev;
2421         devcache[i]->device = device;
2422         bd = bdget(device);
2423         if (bd) {
2424                 bdevname(bd, devcache[i]->devname);
2425                 bdput(bd);
2426         } else
2427                 __bdevname(device, devcache[i]->devname);
2428         ret = devcache[i]->devname;
2429         spin_unlock(&devname_cache_lock);
2430         return ret;
2431 }
2432 EXPORT_SYMBOL(jbd2_dev_to_name);
2433
2434 MODULE_LICENSE("GPL");
2435 module_init(journal_init);
2436 module_exit(journal_exit);
2437