Merge branch 'linus' into core/printk
[sfrench/cifs-2.6.git] / fs / jbd / journal.c
1 /*
2  * linux/fs/jbd/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39
40 #include <asm/uaccess.h>
41 #include <asm/page.h>
42
43 EXPORT_SYMBOL(journal_start);
44 EXPORT_SYMBOL(journal_restart);
45 EXPORT_SYMBOL(journal_extend);
46 EXPORT_SYMBOL(journal_stop);
47 EXPORT_SYMBOL(journal_lock_updates);
48 EXPORT_SYMBOL(journal_unlock_updates);
49 EXPORT_SYMBOL(journal_get_write_access);
50 EXPORT_SYMBOL(journal_get_create_access);
51 EXPORT_SYMBOL(journal_get_undo_access);
52 EXPORT_SYMBOL(journal_dirty_data);
53 EXPORT_SYMBOL(journal_dirty_metadata);
54 EXPORT_SYMBOL(journal_release_buffer);
55 EXPORT_SYMBOL(journal_forget);
56 #if 0
57 EXPORT_SYMBOL(journal_sync_buffer);
58 #endif
59 EXPORT_SYMBOL(journal_flush);
60 EXPORT_SYMBOL(journal_revoke);
61
62 EXPORT_SYMBOL(journal_init_dev);
63 EXPORT_SYMBOL(journal_init_inode);
64 EXPORT_SYMBOL(journal_update_format);
65 EXPORT_SYMBOL(journal_check_used_features);
66 EXPORT_SYMBOL(journal_check_available_features);
67 EXPORT_SYMBOL(journal_set_features);
68 EXPORT_SYMBOL(journal_create);
69 EXPORT_SYMBOL(journal_load);
70 EXPORT_SYMBOL(journal_destroy);
71 EXPORT_SYMBOL(journal_abort);
72 EXPORT_SYMBOL(journal_errno);
73 EXPORT_SYMBOL(journal_ack_err);
74 EXPORT_SYMBOL(journal_clear_err);
75 EXPORT_SYMBOL(log_wait_commit);
76 EXPORT_SYMBOL(journal_start_commit);
77 EXPORT_SYMBOL(journal_force_commit_nested);
78 EXPORT_SYMBOL(journal_wipe);
79 EXPORT_SYMBOL(journal_blocks_per_page);
80 EXPORT_SYMBOL(journal_invalidatepage);
81 EXPORT_SYMBOL(journal_try_to_free_buffers);
82 EXPORT_SYMBOL(journal_force_commit);
83
84 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
85 static void __journal_abort_soft (journal_t *journal, int errno);
86
87 /*
88  * Helper function used to manage commit timeouts
89  */
90
91 static void commit_timeout(unsigned long __data)
92 {
93         struct task_struct * p = (struct task_struct *) __data;
94
95         wake_up_process(p);
96 }
97
98 /*
99  * kjournald: The main thread function used to manage a logging device
100  * journal.
101  *
102  * This kernel thread is responsible for two things:
103  *
104  * 1) COMMIT:  Every so often we need to commit the current state of the
105  *    filesystem to disk.  The journal thread is responsible for writing
106  *    all of the metadata buffers to disk.
107  *
108  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
109  *    of the data in that part of the log has been rewritten elsewhere on
110  *    the disk.  Flushing these old buffers to reclaim space in the log is
111  *    known as checkpointing, and this thread is responsible for that job.
112  */
113
114 static int kjournald(void *arg)
115 {
116         journal_t *journal = arg;
117         transaction_t *transaction;
118
119         /*
120          * Set up an interval timer which can be used to trigger a commit wakeup
121          * after the commit interval expires
122          */
123         setup_timer(&journal->j_commit_timer, commit_timeout,
124                         (unsigned long)current);
125
126         /* Record that the journal thread is running */
127         journal->j_task = current;
128         wake_up(&journal->j_wait_done_commit);
129
130         printk(KERN_INFO "kjournald starting.  Commit interval %ld seconds\n",
131                         journal->j_commit_interval / HZ);
132
133         /*
134          * And now, wait forever for commit wakeup events.
135          */
136         spin_lock(&journal->j_state_lock);
137
138 loop:
139         if (journal->j_flags & JFS_UNMOUNT)
140                 goto end_loop;
141
142         jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
143                 journal->j_commit_sequence, journal->j_commit_request);
144
145         if (journal->j_commit_sequence != journal->j_commit_request) {
146                 jbd_debug(1, "OK, requests differ\n");
147                 spin_unlock(&journal->j_state_lock);
148                 del_timer_sync(&journal->j_commit_timer);
149                 journal_commit_transaction(journal);
150                 spin_lock(&journal->j_state_lock);
151                 goto loop;
152         }
153
154         wake_up(&journal->j_wait_done_commit);
155         if (freezing(current)) {
156                 /*
157                  * The simpler the better. Flushing journal isn't a
158                  * good idea, because that depends on threads that may
159                  * be already stopped.
160                  */
161                 jbd_debug(1, "Now suspending kjournald\n");
162                 spin_unlock(&journal->j_state_lock);
163                 refrigerator();
164                 spin_lock(&journal->j_state_lock);
165         } else {
166                 /*
167                  * We assume on resume that commits are already there,
168                  * so we don't sleep
169                  */
170                 DEFINE_WAIT(wait);
171                 int should_sleep = 1;
172
173                 prepare_to_wait(&journal->j_wait_commit, &wait,
174                                 TASK_INTERRUPTIBLE);
175                 if (journal->j_commit_sequence != journal->j_commit_request)
176                         should_sleep = 0;
177                 transaction = journal->j_running_transaction;
178                 if (transaction && time_after_eq(jiffies,
179                                                 transaction->t_expires))
180                         should_sleep = 0;
181                 if (journal->j_flags & JFS_UNMOUNT)
182                         should_sleep = 0;
183                 if (should_sleep) {
184                         spin_unlock(&journal->j_state_lock);
185                         schedule();
186                         spin_lock(&journal->j_state_lock);
187                 }
188                 finish_wait(&journal->j_wait_commit, &wait);
189         }
190
191         jbd_debug(1, "kjournald wakes\n");
192
193         /*
194          * Were we woken up by a commit wakeup event?
195          */
196         transaction = journal->j_running_transaction;
197         if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
198                 journal->j_commit_request = transaction->t_tid;
199                 jbd_debug(1, "woke because of timeout\n");
200         }
201         goto loop;
202
203 end_loop:
204         spin_unlock(&journal->j_state_lock);
205         del_timer_sync(&journal->j_commit_timer);
206         journal->j_task = NULL;
207         wake_up(&journal->j_wait_done_commit);
208         jbd_debug(1, "Journal thread exiting.\n");
209         return 0;
210 }
211
212 static int journal_start_thread(journal_t *journal)
213 {
214         struct task_struct *t;
215
216         t = kthread_run(kjournald, journal, "kjournald");
217         if (IS_ERR(t))
218                 return PTR_ERR(t);
219
220         wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
221         return 0;
222 }
223
224 static void journal_kill_thread(journal_t *journal)
225 {
226         spin_lock(&journal->j_state_lock);
227         journal->j_flags |= JFS_UNMOUNT;
228
229         while (journal->j_task) {
230                 wake_up(&journal->j_wait_commit);
231                 spin_unlock(&journal->j_state_lock);
232                 wait_event(journal->j_wait_done_commit,
233                                 journal->j_task == NULL);
234                 spin_lock(&journal->j_state_lock);
235         }
236         spin_unlock(&journal->j_state_lock);
237 }
238
239 /*
240  * journal_write_metadata_buffer: write a metadata buffer to the journal.
241  *
242  * Writes a metadata buffer to a given disk block.  The actual IO is not
243  * performed but a new buffer_head is constructed which labels the data
244  * to be written with the correct destination disk block.
245  *
246  * Any magic-number escaping which needs to be done will cause a
247  * copy-out here.  If the buffer happens to start with the
248  * JFS_MAGIC_NUMBER, then we can't write it to the log directly: the
249  * magic number is only written to the log for descripter blocks.  In
250  * this case, we copy the data and replace the first word with 0, and we
251  * return a result code which indicates that this buffer needs to be
252  * marked as an escaped buffer in the corresponding log descriptor
253  * block.  The missing word can then be restored when the block is read
254  * during recovery.
255  *
256  * If the source buffer has already been modified by a new transaction
257  * since we took the last commit snapshot, we use the frozen copy of
258  * that data for IO.  If we end up using the existing buffer_head's data
259  * for the write, then we *have* to lock the buffer to prevent anyone
260  * else from using and possibly modifying it while the IO is in
261  * progress.
262  *
263  * The function returns a pointer to the buffer_heads to be used for IO.
264  *
265  * We assume that the journal has already been locked in this function.
266  *
267  * Return value:
268  *  <0: Error
269  * >=0: Finished OK
270  *
271  * On success:
272  * Bit 0 set == escape performed on the data
273  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
274  */
275
276 int journal_write_metadata_buffer(transaction_t *transaction,
277                                   struct journal_head  *jh_in,
278                                   struct journal_head **jh_out,
279                                   unsigned long blocknr)
280 {
281         int need_copy_out = 0;
282         int done_copy_out = 0;
283         int do_escape = 0;
284         char *mapped_data;
285         struct buffer_head *new_bh;
286         struct journal_head *new_jh;
287         struct page *new_page;
288         unsigned int new_offset;
289         struct buffer_head *bh_in = jh2bh(jh_in);
290
291         /*
292          * The buffer really shouldn't be locked: only the current committing
293          * transaction is allowed to write it, so nobody else is allowed
294          * to do any IO.
295          *
296          * akpm: except if we're journalling data, and write() output is
297          * also part of a shared mapping, and another thread has
298          * decided to launch a writepage() against this buffer.
299          */
300         J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
301
302         new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
303
304         /*
305          * If a new transaction has already done a buffer copy-out, then
306          * we use that version of the data for the commit.
307          */
308         jbd_lock_bh_state(bh_in);
309 repeat:
310         if (jh_in->b_frozen_data) {
311                 done_copy_out = 1;
312                 new_page = virt_to_page(jh_in->b_frozen_data);
313                 new_offset = offset_in_page(jh_in->b_frozen_data);
314         } else {
315                 new_page = jh2bh(jh_in)->b_page;
316                 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
317         }
318
319         mapped_data = kmap_atomic(new_page, KM_USER0);
320         /*
321          * Check for escaping
322          */
323         if (*((__be32 *)(mapped_data + new_offset)) ==
324                                 cpu_to_be32(JFS_MAGIC_NUMBER)) {
325                 need_copy_out = 1;
326                 do_escape = 1;
327         }
328         kunmap_atomic(mapped_data, KM_USER0);
329
330         /*
331          * Do we need to do a data copy?
332          */
333         if (need_copy_out && !done_copy_out) {
334                 char *tmp;
335
336                 jbd_unlock_bh_state(bh_in);
337                 tmp = jbd_alloc(bh_in->b_size, GFP_NOFS);
338                 jbd_lock_bh_state(bh_in);
339                 if (jh_in->b_frozen_data) {
340                         jbd_free(tmp, bh_in->b_size);
341                         goto repeat;
342                 }
343
344                 jh_in->b_frozen_data = tmp;
345                 mapped_data = kmap_atomic(new_page, KM_USER0);
346                 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
347                 kunmap_atomic(mapped_data, KM_USER0);
348
349                 new_page = virt_to_page(tmp);
350                 new_offset = offset_in_page(tmp);
351                 done_copy_out = 1;
352         }
353
354         /*
355          * Did we need to do an escaping?  Now we've done all the
356          * copying, we can finally do so.
357          */
358         if (do_escape) {
359                 mapped_data = kmap_atomic(new_page, KM_USER0);
360                 *((unsigned int *)(mapped_data + new_offset)) = 0;
361                 kunmap_atomic(mapped_data, KM_USER0);
362         }
363
364         /* keep subsequent assertions sane */
365         new_bh->b_state = 0;
366         init_buffer(new_bh, NULL, NULL);
367         atomic_set(&new_bh->b_count, 1);
368         jbd_unlock_bh_state(bh_in);
369
370         new_jh = journal_add_journal_head(new_bh);      /* This sleeps */
371
372         set_bh_page(new_bh, new_page, new_offset);
373         new_jh->b_transaction = NULL;
374         new_bh->b_size = jh2bh(jh_in)->b_size;
375         new_bh->b_bdev = transaction->t_journal->j_dev;
376         new_bh->b_blocknr = blocknr;
377         set_buffer_mapped(new_bh);
378         set_buffer_dirty(new_bh);
379
380         *jh_out = new_jh;
381
382         /*
383          * The to-be-written buffer needs to get moved to the io queue,
384          * and the original buffer whose contents we are shadowing or
385          * copying is moved to the transaction's shadow queue.
386          */
387         JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
388         journal_file_buffer(jh_in, transaction, BJ_Shadow);
389         JBUFFER_TRACE(new_jh, "file as BJ_IO");
390         journal_file_buffer(new_jh, transaction, BJ_IO);
391
392         return do_escape | (done_copy_out << 1);
393 }
394
395 /*
396  * Allocation code for the journal file.  Manage the space left in the
397  * journal, so that we can begin checkpointing when appropriate.
398  */
399
400 /*
401  * __log_space_left: Return the number of free blocks left in the journal.
402  *
403  * Called with the journal already locked.
404  *
405  * Called under j_state_lock
406  */
407
408 int __log_space_left(journal_t *journal)
409 {
410         int left = journal->j_free;
411
412         assert_spin_locked(&journal->j_state_lock);
413
414         /*
415          * Be pessimistic here about the number of those free blocks which
416          * might be required for log descriptor control blocks.
417          */
418
419 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
420
421         left -= MIN_LOG_RESERVED_BLOCKS;
422
423         if (left <= 0)
424                 return 0;
425         left -= (left >> 3);
426         return left;
427 }
428
429 /*
430  * Called under j_state_lock.  Returns true if a transaction commit was started.
431  */
432 int __log_start_commit(journal_t *journal, tid_t target)
433 {
434         /*
435          * Are we already doing a recent enough commit?
436          */
437         if (!tid_geq(journal->j_commit_request, target)) {
438                 /*
439                  * We want a new commit: OK, mark the request and wakup the
440                  * commit thread.  We do _not_ do the commit ourselves.
441                  */
442
443                 journal->j_commit_request = target;
444                 jbd_debug(1, "JBD: requesting commit %d/%d\n",
445                           journal->j_commit_request,
446                           journal->j_commit_sequence);
447                 wake_up(&journal->j_wait_commit);
448                 return 1;
449         }
450         return 0;
451 }
452
453 int log_start_commit(journal_t *journal, tid_t tid)
454 {
455         int ret;
456
457         spin_lock(&journal->j_state_lock);
458         ret = __log_start_commit(journal, tid);
459         spin_unlock(&journal->j_state_lock);
460         return ret;
461 }
462
463 /*
464  * Force and wait upon a commit if the calling process is not within
465  * transaction.  This is used for forcing out undo-protected data which contains
466  * bitmaps, when the fs is running out of space.
467  *
468  * We can only force the running transaction if we don't have an active handle;
469  * otherwise, we will deadlock.
470  *
471  * Returns true if a transaction was started.
472  */
473 int journal_force_commit_nested(journal_t *journal)
474 {
475         transaction_t *transaction = NULL;
476         tid_t tid;
477
478         spin_lock(&journal->j_state_lock);
479         if (journal->j_running_transaction && !current->journal_info) {
480                 transaction = journal->j_running_transaction;
481                 __log_start_commit(journal, transaction->t_tid);
482         } else if (journal->j_committing_transaction)
483                 transaction = journal->j_committing_transaction;
484
485         if (!transaction) {
486                 spin_unlock(&journal->j_state_lock);
487                 return 0;       /* Nothing to retry */
488         }
489
490         tid = transaction->t_tid;
491         spin_unlock(&journal->j_state_lock);
492         log_wait_commit(journal, tid);
493         return 1;
494 }
495
496 /*
497  * Start a commit of the current running transaction (if any).  Returns true
498  * if a transaction is going to be committed (or is currently already
499  * committing), and fills its tid in at *ptid
500  */
501 int journal_start_commit(journal_t *journal, tid_t *ptid)
502 {
503         int ret = 0;
504
505         spin_lock(&journal->j_state_lock);
506         if (journal->j_running_transaction) {
507                 tid_t tid = journal->j_running_transaction->t_tid;
508
509                 __log_start_commit(journal, tid);
510                 /* There's a running transaction and we've just made sure
511                  * it's commit has been scheduled. */
512                 if (ptid)
513                         *ptid = tid;
514                 ret = 1;
515         } else if (journal->j_committing_transaction) {
516                 /*
517                  * If ext3_write_super() recently started a commit, then we
518                  * have to wait for completion of that transaction
519                  */
520                 if (ptid)
521                         *ptid = journal->j_committing_transaction->t_tid;
522                 ret = 1;
523         }
524         spin_unlock(&journal->j_state_lock);
525         return ret;
526 }
527
528 /*
529  * Wait for a specified commit to complete.
530  * The caller may not hold the journal lock.
531  */
532 int log_wait_commit(journal_t *journal, tid_t tid)
533 {
534         int err = 0;
535
536 #ifdef CONFIG_JBD_DEBUG
537         spin_lock(&journal->j_state_lock);
538         if (!tid_geq(journal->j_commit_request, tid)) {
539                 printk(KERN_EMERG
540                        "%s: error: j_commit_request=%d, tid=%d\n",
541                        __func__, journal->j_commit_request, tid);
542         }
543         spin_unlock(&journal->j_state_lock);
544 #endif
545         spin_lock(&journal->j_state_lock);
546         while (tid_gt(tid, journal->j_commit_sequence)) {
547                 jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
548                                   tid, journal->j_commit_sequence);
549                 wake_up(&journal->j_wait_commit);
550                 spin_unlock(&journal->j_state_lock);
551                 wait_event(journal->j_wait_done_commit,
552                                 !tid_gt(tid, journal->j_commit_sequence));
553                 spin_lock(&journal->j_state_lock);
554         }
555         spin_unlock(&journal->j_state_lock);
556
557         if (unlikely(is_journal_aborted(journal))) {
558                 printk(KERN_EMERG "journal commit I/O error\n");
559                 err = -EIO;
560         }
561         return err;
562 }
563
564 /*
565  * Log buffer allocation routines:
566  */
567
568 int journal_next_log_block(journal_t *journal, unsigned long *retp)
569 {
570         unsigned long blocknr;
571
572         spin_lock(&journal->j_state_lock);
573         J_ASSERT(journal->j_free > 1);
574
575         blocknr = journal->j_head;
576         journal->j_head++;
577         journal->j_free--;
578         if (journal->j_head == journal->j_last)
579                 journal->j_head = journal->j_first;
580         spin_unlock(&journal->j_state_lock);
581         return journal_bmap(journal, blocknr, retp);
582 }
583
584 /*
585  * Conversion of logical to physical block numbers for the journal
586  *
587  * On external journals the journal blocks are identity-mapped, so
588  * this is a no-op.  If needed, we can use j_blk_offset - everything is
589  * ready.
590  */
591 int journal_bmap(journal_t *journal, unsigned long blocknr,
592                  unsigned long *retp)
593 {
594         int err = 0;
595         unsigned long ret;
596
597         if (journal->j_inode) {
598                 ret = bmap(journal->j_inode, blocknr);
599                 if (ret)
600                         *retp = ret;
601                 else {
602                         char b[BDEVNAME_SIZE];
603
604                         printk(KERN_ALERT "%s: journal block not found "
605                                         "at offset %lu on %s\n",
606                                 __func__,
607                                 blocknr,
608                                 bdevname(journal->j_dev, b));
609                         err = -EIO;
610                         __journal_abort_soft(journal, err);
611                 }
612         } else {
613                 *retp = blocknr; /* +journal->j_blk_offset */
614         }
615         return err;
616 }
617
618 /*
619  * We play buffer_head aliasing tricks to write data/metadata blocks to
620  * the journal without copying their contents, but for journal
621  * descriptor blocks we do need to generate bona fide buffers.
622  *
623  * After the caller of journal_get_descriptor_buffer() has finished modifying
624  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
625  * But we don't bother doing that, so there will be coherency problems with
626  * mmaps of blockdevs which hold live JBD-controlled filesystems.
627  */
628 struct journal_head *journal_get_descriptor_buffer(journal_t *journal)
629 {
630         struct buffer_head *bh;
631         unsigned long blocknr;
632         int err;
633
634         err = journal_next_log_block(journal, &blocknr);
635
636         if (err)
637                 return NULL;
638
639         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
640         lock_buffer(bh);
641         memset(bh->b_data, 0, journal->j_blocksize);
642         set_buffer_uptodate(bh);
643         unlock_buffer(bh);
644         BUFFER_TRACE(bh, "return this buffer");
645         return journal_add_journal_head(bh);
646 }
647
648 /*
649  * Management for journal control blocks: functions to create and
650  * destroy journal_t structures, and to initialise and read existing
651  * journal blocks from disk.  */
652
653 /* First: create and setup a journal_t object in memory.  We initialise
654  * very few fields yet: that has to wait until we have created the
655  * journal structures from from scratch, or loaded them from disk. */
656
657 static journal_t * journal_init_common (void)
658 {
659         journal_t *journal;
660         int err;
661
662         journal = kzalloc(sizeof(*journal), GFP_KERNEL);
663         if (!journal)
664                 goto fail;
665
666         init_waitqueue_head(&journal->j_wait_transaction_locked);
667         init_waitqueue_head(&journal->j_wait_logspace);
668         init_waitqueue_head(&journal->j_wait_done_commit);
669         init_waitqueue_head(&journal->j_wait_checkpoint);
670         init_waitqueue_head(&journal->j_wait_commit);
671         init_waitqueue_head(&journal->j_wait_updates);
672         mutex_init(&journal->j_barrier);
673         mutex_init(&journal->j_checkpoint_mutex);
674         spin_lock_init(&journal->j_revoke_lock);
675         spin_lock_init(&journal->j_list_lock);
676         spin_lock_init(&journal->j_state_lock);
677
678         journal->j_commit_interval = (HZ * JBD_DEFAULT_MAX_COMMIT_AGE);
679
680         /* The journal is marked for error until we succeed with recovery! */
681         journal->j_flags = JFS_ABORT;
682
683         /* Set up a default-sized revoke table for the new mount. */
684         err = journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
685         if (err) {
686                 kfree(journal);
687                 goto fail;
688         }
689         return journal;
690 fail:
691         return NULL;
692 }
693
694 /* journal_init_dev and journal_init_inode:
695  *
696  * Create a journal structure assigned some fixed set of disk blocks to
697  * the journal.  We don't actually touch those disk blocks yet, but we
698  * need to set up all of the mapping information to tell the journaling
699  * system where the journal blocks are.
700  *
701  */
702
703 /**
704  *  journal_t * journal_init_dev() - creates and initialises a journal structure
705  *  @bdev: Block device on which to create the journal
706  *  @fs_dev: Device which hold journalled filesystem for this journal.
707  *  @start: Block nr Start of journal.
708  *  @len:  Length of the journal in blocks.
709  *  @blocksize: blocksize of journalling device
710  *
711  *  Returns: a newly created journal_t *
712  *
713  *  journal_init_dev creates a journal which maps a fixed contiguous
714  *  range of blocks on an arbitrary block device.
715  *
716  */
717 journal_t * journal_init_dev(struct block_device *bdev,
718                         struct block_device *fs_dev,
719                         int start, int len, int blocksize)
720 {
721         journal_t *journal = journal_init_common();
722         struct buffer_head *bh;
723         int n;
724
725         if (!journal)
726                 return NULL;
727
728         /* journal descriptor can store up to n blocks -bzzz */
729         journal->j_blocksize = blocksize;
730         n = journal->j_blocksize / sizeof(journal_block_tag_t);
731         journal->j_wbufsize = n;
732         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
733         if (!journal->j_wbuf) {
734                 printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
735                         __func__);
736                 kfree(journal);
737                 journal = NULL;
738                 goto out;
739         }
740         journal->j_dev = bdev;
741         journal->j_fs_dev = fs_dev;
742         journal->j_blk_offset = start;
743         journal->j_maxlen = len;
744
745         bh = __getblk(journal->j_dev, start, journal->j_blocksize);
746         J_ASSERT(bh != NULL);
747         journal->j_sb_buffer = bh;
748         journal->j_superblock = (journal_superblock_t *)bh->b_data;
749 out:
750         return journal;
751 }
752
753 /**
754  *  journal_t * journal_init_inode () - creates a journal which maps to a inode.
755  *  @inode: An inode to create the journal in
756  *
757  * journal_init_inode creates a journal which maps an on-disk inode as
758  * the journal.  The inode must exist already, must support bmap() and
759  * must have all data blocks preallocated.
760  */
761 journal_t * journal_init_inode (struct inode *inode)
762 {
763         struct buffer_head *bh;
764         journal_t *journal = journal_init_common();
765         int err;
766         int n;
767         unsigned long blocknr;
768
769         if (!journal)
770                 return NULL;
771
772         journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
773         journal->j_inode = inode;
774         jbd_debug(1,
775                   "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
776                   journal, inode->i_sb->s_id, inode->i_ino,
777                   (long long) inode->i_size,
778                   inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
779
780         journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
781         journal->j_blocksize = inode->i_sb->s_blocksize;
782
783         /* journal descriptor can store up to n blocks -bzzz */
784         n = journal->j_blocksize / sizeof(journal_block_tag_t);
785         journal->j_wbufsize = n;
786         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
787         if (!journal->j_wbuf) {
788                 printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
789                         __func__);
790                 kfree(journal);
791                 return NULL;
792         }
793
794         err = journal_bmap(journal, 0, &blocknr);
795         /* If that failed, give up */
796         if (err) {
797                 printk(KERN_ERR "%s: Cannnot locate journal superblock\n",
798                        __func__);
799                 kfree(journal);
800                 return NULL;
801         }
802
803         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
804         J_ASSERT(bh != NULL);
805         journal->j_sb_buffer = bh;
806         journal->j_superblock = (journal_superblock_t *)bh->b_data;
807
808         return journal;
809 }
810
811 /*
812  * If the journal init or create aborts, we need to mark the journal
813  * superblock as being NULL to prevent the journal destroy from writing
814  * back a bogus superblock.
815  */
816 static void journal_fail_superblock (journal_t *journal)
817 {
818         struct buffer_head *bh = journal->j_sb_buffer;
819         brelse(bh);
820         journal->j_sb_buffer = NULL;
821 }
822
823 /*
824  * Given a journal_t structure, initialise the various fields for
825  * startup of a new journaling session.  We use this both when creating
826  * a journal, and after recovering an old journal to reset it for
827  * subsequent use.
828  */
829
830 static int journal_reset(journal_t *journal)
831 {
832         journal_superblock_t *sb = journal->j_superblock;
833         unsigned long first, last;
834
835         first = be32_to_cpu(sb->s_first);
836         last = be32_to_cpu(sb->s_maxlen);
837
838         journal->j_first = first;
839         journal->j_last = last;
840
841         journal->j_head = first;
842         journal->j_tail = first;
843         journal->j_free = last - first;
844
845         journal->j_tail_sequence = journal->j_transaction_sequence;
846         journal->j_commit_sequence = journal->j_transaction_sequence - 1;
847         journal->j_commit_request = journal->j_commit_sequence;
848
849         journal->j_max_transaction_buffers = journal->j_maxlen / 4;
850
851         /* Add the dynamic fields and write it to disk. */
852         journal_update_superblock(journal, 1);
853         return journal_start_thread(journal);
854 }
855
856 /**
857  * int journal_create() - Initialise the new journal file
858  * @journal: Journal to create. This structure must have been initialised
859  *
860  * Given a journal_t structure which tells us which disk blocks we can
861  * use, create a new journal superblock and initialise all of the
862  * journal fields from scratch.
863  **/
864 int journal_create(journal_t *journal)
865 {
866         unsigned long blocknr;
867         struct buffer_head *bh;
868         journal_superblock_t *sb;
869         int i, err;
870
871         if (journal->j_maxlen < JFS_MIN_JOURNAL_BLOCKS) {
872                 printk (KERN_ERR "Journal length (%d blocks) too short.\n",
873                         journal->j_maxlen);
874                 journal_fail_superblock(journal);
875                 return -EINVAL;
876         }
877
878         if (journal->j_inode == NULL) {
879                 /*
880                  * We don't know what block to start at!
881                  */
882                 printk(KERN_EMERG
883                        "%s: creation of journal on external device!\n",
884                        __func__);
885                 BUG();
886         }
887
888         /* Zero out the entire journal on disk.  We cannot afford to
889            have any blocks on disk beginning with JFS_MAGIC_NUMBER. */
890         jbd_debug(1, "JBD: Zeroing out journal blocks...\n");
891         for (i = 0; i < journal->j_maxlen; i++) {
892                 err = journal_bmap(journal, i, &blocknr);
893                 if (err)
894                         return err;
895                 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
896                 lock_buffer(bh);
897                 memset (bh->b_data, 0, journal->j_blocksize);
898                 BUFFER_TRACE(bh, "marking dirty");
899                 mark_buffer_dirty(bh);
900                 BUFFER_TRACE(bh, "marking uptodate");
901                 set_buffer_uptodate(bh);
902                 unlock_buffer(bh);
903                 __brelse(bh);
904         }
905
906         sync_blockdev(journal->j_dev);
907         jbd_debug(1, "JBD: journal cleared.\n");
908
909         /* OK, fill in the initial static fields in the new superblock */
910         sb = journal->j_superblock;
911
912         sb->s_header.h_magic     = cpu_to_be32(JFS_MAGIC_NUMBER);
913         sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
914
915         sb->s_blocksize = cpu_to_be32(journal->j_blocksize);
916         sb->s_maxlen    = cpu_to_be32(journal->j_maxlen);
917         sb->s_first     = cpu_to_be32(1);
918
919         journal->j_transaction_sequence = 1;
920
921         journal->j_flags &= ~JFS_ABORT;
922         journal->j_format_version = 2;
923
924         return journal_reset(journal);
925 }
926
927 /**
928  * void journal_update_superblock() - Update journal sb on disk.
929  * @journal: The journal to update.
930  * @wait: Set to '0' if you don't want to wait for IO completion.
931  *
932  * Update a journal's dynamic superblock fields and write it to disk,
933  * optionally waiting for the IO to complete.
934  */
935 void journal_update_superblock(journal_t *journal, int wait)
936 {
937         journal_superblock_t *sb = journal->j_superblock;
938         struct buffer_head *bh = journal->j_sb_buffer;
939
940         /*
941          * As a special case, if the on-disk copy is already marked as needing
942          * no recovery (s_start == 0) and there are no outstanding transactions
943          * in the filesystem, then we can safely defer the superblock update
944          * until the next commit by setting JFS_FLUSHED.  This avoids
945          * attempting a write to a potential-readonly device.
946          */
947         if (sb->s_start == 0 && journal->j_tail_sequence ==
948                                 journal->j_transaction_sequence) {
949                 jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
950                         "(start %ld, seq %d, errno %d)\n",
951                         journal->j_tail, journal->j_tail_sequence,
952                         journal->j_errno);
953                 goto out;
954         }
955
956         spin_lock(&journal->j_state_lock);
957         jbd_debug(1,"JBD: updating superblock (start %ld, seq %d, errno %d)\n",
958                   journal->j_tail, journal->j_tail_sequence, journal->j_errno);
959
960         sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
961         sb->s_start    = cpu_to_be32(journal->j_tail);
962         sb->s_errno    = cpu_to_be32(journal->j_errno);
963         spin_unlock(&journal->j_state_lock);
964
965         BUFFER_TRACE(bh, "marking dirty");
966         mark_buffer_dirty(bh);
967         if (wait)
968                 sync_dirty_buffer(bh);
969         else
970                 ll_rw_block(SWRITE, 1, &bh);
971
972 out:
973         /* If we have just flushed the log (by marking s_start==0), then
974          * any future commit will have to be careful to update the
975          * superblock again to re-record the true start of the log. */
976
977         spin_lock(&journal->j_state_lock);
978         if (sb->s_start)
979                 journal->j_flags &= ~JFS_FLUSHED;
980         else
981                 journal->j_flags |= JFS_FLUSHED;
982         spin_unlock(&journal->j_state_lock);
983 }
984
985 /*
986  * Read the superblock for a given journal, performing initial
987  * validation of the format.
988  */
989
990 static int journal_get_superblock(journal_t *journal)
991 {
992         struct buffer_head *bh;
993         journal_superblock_t *sb;
994         int err = -EIO;
995
996         bh = journal->j_sb_buffer;
997
998         J_ASSERT(bh != NULL);
999         if (!buffer_uptodate(bh)) {
1000                 ll_rw_block(READ, 1, &bh);
1001                 wait_on_buffer(bh);
1002                 if (!buffer_uptodate(bh)) {
1003                         printk (KERN_ERR
1004                                 "JBD: IO error reading journal superblock\n");
1005                         goto out;
1006                 }
1007         }
1008
1009         sb = journal->j_superblock;
1010
1011         err = -EINVAL;
1012
1013         if (sb->s_header.h_magic != cpu_to_be32(JFS_MAGIC_NUMBER) ||
1014             sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1015                 printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1016                 goto out;
1017         }
1018
1019         switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1020         case JFS_SUPERBLOCK_V1:
1021                 journal->j_format_version = 1;
1022                 break;
1023         case JFS_SUPERBLOCK_V2:
1024                 journal->j_format_version = 2;
1025                 break;
1026         default:
1027                 printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1028                 goto out;
1029         }
1030
1031         if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1032                 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1033         else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1034                 printk (KERN_WARNING "JBD: journal file too short\n");
1035                 goto out;
1036         }
1037
1038         return 0;
1039
1040 out:
1041         journal_fail_superblock(journal);
1042         return err;
1043 }
1044
1045 /*
1046  * Load the on-disk journal superblock and read the key fields into the
1047  * journal_t.
1048  */
1049
1050 static int load_superblock(journal_t *journal)
1051 {
1052         int err;
1053         journal_superblock_t *sb;
1054
1055         err = journal_get_superblock(journal);
1056         if (err)
1057                 return err;
1058
1059         sb = journal->j_superblock;
1060
1061         journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1062         journal->j_tail = be32_to_cpu(sb->s_start);
1063         journal->j_first = be32_to_cpu(sb->s_first);
1064         journal->j_last = be32_to_cpu(sb->s_maxlen);
1065         journal->j_errno = be32_to_cpu(sb->s_errno);
1066
1067         return 0;
1068 }
1069
1070
1071 /**
1072  * int journal_load() - Read journal from disk.
1073  * @journal: Journal to act on.
1074  *
1075  * Given a journal_t structure which tells us which disk blocks contain
1076  * a journal, read the journal from disk to initialise the in-memory
1077  * structures.
1078  */
1079 int journal_load(journal_t *journal)
1080 {
1081         int err;
1082         journal_superblock_t *sb;
1083
1084         err = load_superblock(journal);
1085         if (err)
1086                 return err;
1087
1088         sb = journal->j_superblock;
1089         /* If this is a V2 superblock, then we have to check the
1090          * features flags on it. */
1091
1092         if (journal->j_format_version >= 2) {
1093                 if ((sb->s_feature_ro_compat &
1094                      ~cpu_to_be32(JFS_KNOWN_ROCOMPAT_FEATURES)) ||
1095                     (sb->s_feature_incompat &
1096                      ~cpu_to_be32(JFS_KNOWN_INCOMPAT_FEATURES))) {
1097                         printk (KERN_WARNING
1098                                 "JBD: Unrecognised features on journal\n");
1099                         return -EINVAL;
1100                 }
1101         }
1102
1103         /* Let the recovery code check whether it needs to recover any
1104          * data from the journal. */
1105         if (journal_recover(journal))
1106                 goto recovery_error;
1107
1108         /* OK, we've finished with the dynamic journal bits:
1109          * reinitialise the dynamic contents of the superblock in memory
1110          * and reset them on disk. */
1111         if (journal_reset(journal))
1112                 goto recovery_error;
1113
1114         journal->j_flags &= ~JFS_ABORT;
1115         journal->j_flags |= JFS_LOADED;
1116         return 0;
1117
1118 recovery_error:
1119         printk (KERN_WARNING "JBD: recovery failed\n");
1120         return -EIO;
1121 }
1122
1123 /**
1124  * void journal_destroy() - Release a journal_t structure.
1125  * @journal: Journal to act on.
1126  *
1127  * Release a journal_t structure once it is no longer in use by the
1128  * journaled object.
1129  * Return <0 if we couldn't clean up the journal.
1130  */
1131 int journal_destroy(journal_t *journal)
1132 {
1133         int err = 0;
1134
1135         /* Wait for the commit thread to wake up and die. */
1136         journal_kill_thread(journal);
1137
1138         /* Force a final log commit */
1139         if (journal->j_running_transaction)
1140                 journal_commit_transaction(journal);
1141
1142         /* Force any old transactions to disk */
1143
1144         /* Totally anal locking here... */
1145         spin_lock(&journal->j_list_lock);
1146         while (journal->j_checkpoint_transactions != NULL) {
1147                 spin_unlock(&journal->j_list_lock);
1148                 log_do_checkpoint(journal);
1149                 spin_lock(&journal->j_list_lock);
1150         }
1151
1152         J_ASSERT(journal->j_running_transaction == NULL);
1153         J_ASSERT(journal->j_committing_transaction == NULL);
1154         J_ASSERT(journal->j_checkpoint_transactions == NULL);
1155         spin_unlock(&journal->j_list_lock);
1156
1157         if (journal->j_sb_buffer) {
1158                 if (!is_journal_aborted(journal)) {
1159                         /* We can now mark the journal as empty. */
1160                         journal->j_tail = 0;
1161                         journal->j_tail_sequence =
1162                                 ++journal->j_transaction_sequence;
1163                         journal_update_superblock(journal, 1);
1164                 } else {
1165                         err = -EIO;
1166                 }
1167                 brelse(journal->j_sb_buffer);
1168         }
1169
1170         if (journal->j_inode)
1171                 iput(journal->j_inode);
1172         if (journal->j_revoke)
1173                 journal_destroy_revoke(journal);
1174         kfree(journal->j_wbuf);
1175         kfree(journal);
1176
1177         return err;
1178 }
1179
1180
1181 /**
1182  *int journal_check_used_features () - Check if features specified are used.
1183  * @journal: Journal to check.
1184  * @compat: bitmask of compatible features
1185  * @ro: bitmask of features that force read-only mount
1186  * @incompat: bitmask of incompatible features
1187  *
1188  * Check whether the journal uses all of a given set of
1189  * features.  Return true (non-zero) if it does.
1190  **/
1191
1192 int journal_check_used_features (journal_t *journal, unsigned long compat,
1193                                  unsigned long ro, unsigned long incompat)
1194 {
1195         journal_superblock_t *sb;
1196
1197         if (!compat && !ro && !incompat)
1198                 return 1;
1199         if (journal->j_format_version == 1)
1200                 return 0;
1201
1202         sb = journal->j_superblock;
1203
1204         if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1205             ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1206             ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1207                 return 1;
1208
1209         return 0;
1210 }
1211
1212 /**
1213  * int journal_check_available_features() - Check feature set in journalling layer
1214  * @journal: Journal to check.
1215  * @compat: bitmask of compatible features
1216  * @ro: bitmask of features that force read-only mount
1217  * @incompat: bitmask of incompatible features
1218  *
1219  * Check whether the journaling code supports the use of
1220  * all of a given set of features on this journal.  Return true
1221  * (non-zero) if it can. */
1222
1223 int journal_check_available_features (journal_t *journal, unsigned long compat,
1224                                       unsigned long ro, unsigned long incompat)
1225 {
1226         journal_superblock_t *sb;
1227
1228         if (!compat && !ro && !incompat)
1229                 return 1;
1230
1231         sb = journal->j_superblock;
1232
1233         /* We can support any known requested features iff the
1234          * superblock is in version 2.  Otherwise we fail to support any
1235          * extended sb features. */
1236
1237         if (journal->j_format_version != 2)
1238                 return 0;
1239
1240         if ((compat   & JFS_KNOWN_COMPAT_FEATURES) == compat &&
1241             (ro       & JFS_KNOWN_ROCOMPAT_FEATURES) == ro &&
1242             (incompat & JFS_KNOWN_INCOMPAT_FEATURES) == incompat)
1243                 return 1;
1244
1245         return 0;
1246 }
1247
1248 /**
1249  * int journal_set_features () - Mark a given journal feature in the superblock
1250  * @journal: Journal to act on.
1251  * @compat: bitmask of compatible features
1252  * @ro: bitmask of features that force read-only mount
1253  * @incompat: bitmask of incompatible features
1254  *
1255  * Mark a given journal feature as present on the
1256  * superblock.  Returns true if the requested features could be set.
1257  *
1258  */
1259
1260 int journal_set_features (journal_t *journal, unsigned long compat,
1261                           unsigned long ro, unsigned long incompat)
1262 {
1263         journal_superblock_t *sb;
1264
1265         if (journal_check_used_features(journal, compat, ro, incompat))
1266                 return 1;
1267
1268         if (!journal_check_available_features(journal, compat, ro, incompat))
1269                 return 0;
1270
1271         jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1272                   compat, ro, incompat);
1273
1274         sb = journal->j_superblock;
1275
1276         sb->s_feature_compat    |= cpu_to_be32(compat);
1277         sb->s_feature_ro_compat |= cpu_to_be32(ro);
1278         sb->s_feature_incompat  |= cpu_to_be32(incompat);
1279
1280         return 1;
1281 }
1282
1283
1284 /**
1285  * int journal_update_format () - Update on-disk journal structure.
1286  * @journal: Journal to act on.
1287  *
1288  * Given an initialised but unloaded journal struct, poke about in the
1289  * on-disk structure to update it to the most recent supported version.
1290  */
1291 int journal_update_format (journal_t *journal)
1292 {
1293         journal_superblock_t *sb;
1294         int err;
1295
1296         err = journal_get_superblock(journal);
1297         if (err)
1298                 return err;
1299
1300         sb = journal->j_superblock;
1301
1302         switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1303         case JFS_SUPERBLOCK_V2:
1304                 return 0;
1305         case JFS_SUPERBLOCK_V1:
1306                 return journal_convert_superblock_v1(journal, sb);
1307         default:
1308                 break;
1309         }
1310         return -EINVAL;
1311 }
1312
1313 static int journal_convert_superblock_v1(journal_t *journal,
1314                                          journal_superblock_t *sb)
1315 {
1316         int offset, blocksize;
1317         struct buffer_head *bh;
1318
1319         printk(KERN_WARNING
1320                 "JBD: Converting superblock from version 1 to 2.\n");
1321
1322         /* Pre-initialise new fields to zero */
1323         offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1324         blocksize = be32_to_cpu(sb->s_blocksize);
1325         memset(&sb->s_feature_compat, 0, blocksize-offset);
1326
1327         sb->s_nr_users = cpu_to_be32(1);
1328         sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
1329         journal->j_format_version = 2;
1330
1331         bh = journal->j_sb_buffer;
1332         BUFFER_TRACE(bh, "marking dirty");
1333         mark_buffer_dirty(bh);
1334         sync_dirty_buffer(bh);
1335         return 0;
1336 }
1337
1338
1339 /**
1340  * int journal_flush () - Flush journal
1341  * @journal: Journal to act on.
1342  *
1343  * Flush all data for a given journal to disk and empty the journal.
1344  * Filesystems can use this when remounting readonly to ensure that
1345  * recovery does not need to happen on remount.
1346  */
1347
1348 int journal_flush(journal_t *journal)
1349 {
1350         int err = 0;
1351         transaction_t *transaction = NULL;
1352         unsigned long old_tail;
1353
1354         spin_lock(&journal->j_state_lock);
1355
1356         /* Force everything buffered to the log... */
1357         if (journal->j_running_transaction) {
1358                 transaction = journal->j_running_transaction;
1359                 __log_start_commit(journal, transaction->t_tid);
1360         } else if (journal->j_committing_transaction)
1361                 transaction = journal->j_committing_transaction;
1362
1363         /* Wait for the log commit to complete... */
1364         if (transaction) {
1365                 tid_t tid = transaction->t_tid;
1366
1367                 spin_unlock(&journal->j_state_lock);
1368                 log_wait_commit(journal, tid);
1369         } else {
1370                 spin_unlock(&journal->j_state_lock);
1371         }
1372
1373         /* ...and flush everything in the log out to disk. */
1374         spin_lock(&journal->j_list_lock);
1375         while (!err && journal->j_checkpoint_transactions != NULL) {
1376                 spin_unlock(&journal->j_list_lock);
1377                 mutex_lock(&journal->j_checkpoint_mutex);
1378                 err = log_do_checkpoint(journal);
1379                 mutex_unlock(&journal->j_checkpoint_mutex);
1380                 spin_lock(&journal->j_list_lock);
1381         }
1382         spin_unlock(&journal->j_list_lock);
1383
1384         if (is_journal_aborted(journal))
1385                 return -EIO;
1386
1387         cleanup_journal_tail(journal);
1388
1389         /* Finally, mark the journal as really needing no recovery.
1390          * This sets s_start==0 in the underlying superblock, which is
1391          * the magic code for a fully-recovered superblock.  Any future
1392          * commits of data to the journal will restore the current
1393          * s_start value. */
1394         spin_lock(&journal->j_state_lock);
1395         old_tail = journal->j_tail;
1396         journal->j_tail = 0;
1397         spin_unlock(&journal->j_state_lock);
1398         journal_update_superblock(journal, 1);
1399         spin_lock(&journal->j_state_lock);
1400         journal->j_tail = old_tail;
1401
1402         J_ASSERT(!journal->j_running_transaction);
1403         J_ASSERT(!journal->j_committing_transaction);
1404         J_ASSERT(!journal->j_checkpoint_transactions);
1405         J_ASSERT(journal->j_head == journal->j_tail);
1406         J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1407         spin_unlock(&journal->j_state_lock);
1408         return 0;
1409 }
1410
1411 /**
1412  * int journal_wipe() - Wipe journal contents
1413  * @journal: Journal to act on.
1414  * @write: flag (see below)
1415  *
1416  * Wipe out all of the contents of a journal, safely.  This will produce
1417  * a warning if the journal contains any valid recovery information.
1418  * Must be called between journal_init_*() and journal_load().
1419  *
1420  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1421  * we merely suppress recovery.
1422  */
1423
1424 int journal_wipe(journal_t *journal, int write)
1425 {
1426         journal_superblock_t *sb;
1427         int err = 0;
1428
1429         J_ASSERT (!(journal->j_flags & JFS_LOADED));
1430
1431         err = load_superblock(journal);
1432         if (err)
1433                 return err;
1434
1435         sb = journal->j_superblock;
1436
1437         if (!journal->j_tail)
1438                 goto no_recovery;
1439
1440         printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1441                 write ? "Clearing" : "Ignoring");
1442
1443         err = journal_skip_recovery(journal);
1444         if (write)
1445                 journal_update_superblock(journal, 1);
1446
1447  no_recovery:
1448         return err;
1449 }
1450
1451 /*
1452  * journal_dev_name: format a character string to describe on what
1453  * device this journal is present.
1454  */
1455
1456 static const char *journal_dev_name(journal_t *journal, char *buffer)
1457 {
1458         struct block_device *bdev;
1459
1460         if (journal->j_inode)
1461                 bdev = journal->j_inode->i_sb->s_bdev;
1462         else
1463                 bdev = journal->j_dev;
1464
1465         return bdevname(bdev, buffer);
1466 }
1467
1468 /*
1469  * Journal abort has very specific semantics, which we describe
1470  * for journal abort.
1471  *
1472  * Two internal function, which provide abort to te jbd layer
1473  * itself are here.
1474  */
1475
1476 /*
1477  * Quick version for internal journal use (doesn't lock the journal).
1478  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1479  * and don't attempt to make any other journal updates.
1480  */
1481 static void __journal_abort_hard(journal_t *journal)
1482 {
1483         transaction_t *transaction;
1484         char b[BDEVNAME_SIZE];
1485
1486         if (journal->j_flags & JFS_ABORT)
1487                 return;
1488
1489         printk(KERN_ERR "Aborting journal on device %s.\n",
1490                 journal_dev_name(journal, b));
1491
1492         spin_lock(&journal->j_state_lock);
1493         journal->j_flags |= JFS_ABORT;
1494         transaction = journal->j_running_transaction;
1495         if (transaction)
1496                 __log_start_commit(journal, transaction->t_tid);
1497         spin_unlock(&journal->j_state_lock);
1498 }
1499
1500 /* Soft abort: record the abort error status in the journal superblock,
1501  * but don't do any other IO. */
1502 static void __journal_abort_soft (journal_t *journal, int errno)
1503 {
1504         if (journal->j_flags & JFS_ABORT)
1505                 return;
1506
1507         if (!journal->j_errno)
1508                 journal->j_errno = errno;
1509
1510         __journal_abort_hard(journal);
1511
1512         if (errno)
1513                 journal_update_superblock(journal, 1);
1514 }
1515
1516 /**
1517  * void journal_abort () - Shutdown the journal immediately.
1518  * @journal: the journal to shutdown.
1519  * @errno:   an error number to record in the journal indicating
1520  *           the reason for the shutdown.
1521  *
1522  * Perform a complete, immediate shutdown of the ENTIRE
1523  * journal (not of a single transaction).  This operation cannot be
1524  * undone without closing and reopening the journal.
1525  *
1526  * The journal_abort function is intended to support higher level error
1527  * recovery mechanisms such as the ext2/ext3 remount-readonly error
1528  * mode.
1529  *
1530  * Journal abort has very specific semantics.  Any existing dirty,
1531  * unjournaled buffers in the main filesystem will still be written to
1532  * disk by bdflush, but the journaling mechanism will be suspended
1533  * immediately and no further transaction commits will be honoured.
1534  *
1535  * Any dirty, journaled buffers will be written back to disk without
1536  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
1537  * filesystem, but we _do_ attempt to leave as much data as possible
1538  * behind for fsck to use for cleanup.
1539  *
1540  * Any attempt to get a new transaction handle on a journal which is in
1541  * ABORT state will just result in an -EROFS error return.  A
1542  * journal_stop on an existing handle will return -EIO if we have
1543  * entered abort state during the update.
1544  *
1545  * Recursive transactions are not disturbed by journal abort until the
1546  * final journal_stop, which will receive the -EIO error.
1547  *
1548  * Finally, the journal_abort call allows the caller to supply an errno
1549  * which will be recorded (if possible) in the journal superblock.  This
1550  * allows a client to record failure conditions in the middle of a
1551  * transaction without having to complete the transaction to record the
1552  * failure to disk.  ext3_error, for example, now uses this
1553  * functionality.
1554  *
1555  * Errors which originate from within the journaling layer will NOT
1556  * supply an errno; a null errno implies that absolutely no further
1557  * writes are done to the journal (unless there are any already in
1558  * progress).
1559  *
1560  */
1561
1562 void journal_abort(journal_t *journal, int errno)
1563 {
1564         __journal_abort_soft(journal, errno);
1565 }
1566
1567 /**
1568  * int journal_errno () - returns the journal's error state.
1569  * @journal: journal to examine.
1570  *
1571  * This is the errno numbet set with journal_abort(), the last
1572  * time the journal was mounted - if the journal was stopped
1573  * without calling abort this will be 0.
1574  *
1575  * If the journal has been aborted on this mount time -EROFS will
1576  * be returned.
1577  */
1578 int journal_errno(journal_t *journal)
1579 {
1580         int err;
1581
1582         spin_lock(&journal->j_state_lock);
1583         if (journal->j_flags & JFS_ABORT)
1584                 err = -EROFS;
1585         else
1586                 err = journal->j_errno;
1587         spin_unlock(&journal->j_state_lock);
1588         return err;
1589 }
1590
1591 /**
1592  * int journal_clear_err () - clears the journal's error state
1593  * @journal: journal to act on.
1594  *
1595  * An error must be cleared or Acked to take a FS out of readonly
1596  * mode.
1597  */
1598 int journal_clear_err(journal_t *journal)
1599 {
1600         int err = 0;
1601
1602         spin_lock(&journal->j_state_lock);
1603         if (journal->j_flags & JFS_ABORT)
1604                 err = -EROFS;
1605         else
1606                 journal->j_errno = 0;
1607         spin_unlock(&journal->j_state_lock);
1608         return err;
1609 }
1610
1611 /**
1612  * void journal_ack_err() - Ack journal err.
1613  * @journal: journal to act on.
1614  *
1615  * An error must be cleared or Acked to take a FS out of readonly
1616  * mode.
1617  */
1618 void journal_ack_err(journal_t *journal)
1619 {
1620         spin_lock(&journal->j_state_lock);
1621         if (journal->j_errno)
1622                 journal->j_flags |= JFS_ACK_ERR;
1623         spin_unlock(&journal->j_state_lock);
1624 }
1625
1626 int journal_blocks_per_page(struct inode *inode)
1627 {
1628         return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1629 }
1630
1631 /*
1632  * Journal_head storage management
1633  */
1634 static struct kmem_cache *journal_head_cache;
1635 #ifdef CONFIG_JBD_DEBUG
1636 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
1637 #endif
1638
1639 static int journal_init_journal_head_cache(void)
1640 {
1641         int retval;
1642
1643         J_ASSERT(journal_head_cache == NULL);
1644         journal_head_cache = kmem_cache_create("journal_head",
1645                                 sizeof(struct journal_head),
1646                                 0,              /* offset */
1647                                 SLAB_TEMPORARY, /* flags */
1648                                 NULL);          /* ctor */
1649         retval = 0;
1650         if (!journal_head_cache) {
1651                 retval = -ENOMEM;
1652                 printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
1653         }
1654         return retval;
1655 }
1656
1657 static void journal_destroy_journal_head_cache(void)
1658 {
1659         if (journal_head_cache) {
1660                 kmem_cache_destroy(journal_head_cache);
1661                 journal_head_cache = NULL;
1662         }
1663 }
1664
1665 /*
1666  * journal_head splicing and dicing
1667  */
1668 static struct journal_head *journal_alloc_journal_head(void)
1669 {
1670         struct journal_head *ret;
1671         static unsigned long last_warning;
1672
1673 #ifdef CONFIG_JBD_DEBUG
1674         atomic_inc(&nr_journal_heads);
1675 #endif
1676         ret = kmem_cache_alloc(journal_head_cache, GFP_NOFS);
1677         if (ret == NULL) {
1678                 jbd_debug(1, "out of memory for journal_head\n");
1679                 if (time_after(jiffies, last_warning + 5*HZ)) {
1680                         printk(KERN_NOTICE "ENOMEM in %s, retrying.\n",
1681                                __func__);
1682                         last_warning = jiffies;
1683                 }
1684                 while (ret == NULL) {
1685                         yield();
1686                         ret = kmem_cache_alloc(journal_head_cache, GFP_NOFS);
1687                 }
1688         }
1689         return ret;
1690 }
1691
1692 static void journal_free_journal_head(struct journal_head *jh)
1693 {
1694 #ifdef CONFIG_JBD_DEBUG
1695         atomic_dec(&nr_journal_heads);
1696         memset(jh, JBD_POISON_FREE, sizeof(*jh));
1697 #endif
1698         kmem_cache_free(journal_head_cache, jh);
1699 }
1700
1701 /*
1702  * A journal_head is attached to a buffer_head whenever JBD has an
1703  * interest in the buffer.
1704  *
1705  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
1706  * is set.  This bit is tested in core kernel code where we need to take
1707  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
1708  * there.
1709  *
1710  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
1711  *
1712  * When a buffer has its BH_JBD bit set it is immune from being released by
1713  * core kernel code, mainly via ->b_count.
1714  *
1715  * A journal_head may be detached from its buffer_head when the journal_head's
1716  * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL.
1717  * Various places in JBD call journal_remove_journal_head() to indicate that the
1718  * journal_head can be dropped if needed.
1719  *
1720  * Various places in the kernel want to attach a journal_head to a buffer_head
1721  * _before_ attaching the journal_head to a transaction.  To protect the
1722  * journal_head in this situation, journal_add_journal_head elevates the
1723  * journal_head's b_jcount refcount by one.  The caller must call
1724  * journal_put_journal_head() to undo this.
1725  *
1726  * So the typical usage would be:
1727  *
1728  *      (Attach a journal_head if needed.  Increments b_jcount)
1729  *      struct journal_head *jh = journal_add_journal_head(bh);
1730  *      ...
1731  *      jh->b_transaction = xxx;
1732  *      journal_put_journal_head(jh);
1733  *
1734  * Now, the journal_head's b_jcount is zero, but it is safe from being released
1735  * because it has a non-zero b_transaction.
1736  */
1737
1738 /*
1739  * Give a buffer_head a journal_head.
1740  *
1741  * Doesn't need the journal lock.
1742  * May sleep.
1743  */
1744 struct journal_head *journal_add_journal_head(struct buffer_head *bh)
1745 {
1746         struct journal_head *jh;
1747         struct journal_head *new_jh = NULL;
1748
1749 repeat:
1750         if (!buffer_jbd(bh)) {
1751                 new_jh = journal_alloc_journal_head();
1752                 memset(new_jh, 0, sizeof(*new_jh));
1753         }
1754
1755         jbd_lock_bh_journal_head(bh);
1756         if (buffer_jbd(bh)) {
1757                 jh = bh2jh(bh);
1758         } else {
1759                 J_ASSERT_BH(bh,
1760                         (atomic_read(&bh->b_count) > 0) ||
1761                         (bh->b_page && bh->b_page->mapping));
1762
1763                 if (!new_jh) {
1764                         jbd_unlock_bh_journal_head(bh);
1765                         goto repeat;
1766                 }
1767
1768                 jh = new_jh;
1769                 new_jh = NULL;          /* We consumed it */
1770                 set_buffer_jbd(bh);
1771                 bh->b_private = jh;
1772                 jh->b_bh = bh;
1773                 get_bh(bh);
1774                 BUFFER_TRACE(bh, "added journal_head");
1775         }
1776         jh->b_jcount++;
1777         jbd_unlock_bh_journal_head(bh);
1778         if (new_jh)
1779                 journal_free_journal_head(new_jh);
1780         return bh->b_private;
1781 }
1782
1783 /*
1784  * Grab a ref against this buffer_head's journal_head.  If it ended up not
1785  * having a journal_head, return NULL
1786  */
1787 struct journal_head *journal_grab_journal_head(struct buffer_head *bh)
1788 {
1789         struct journal_head *jh = NULL;
1790
1791         jbd_lock_bh_journal_head(bh);
1792         if (buffer_jbd(bh)) {
1793                 jh = bh2jh(bh);
1794                 jh->b_jcount++;
1795         }
1796         jbd_unlock_bh_journal_head(bh);
1797         return jh;
1798 }
1799
1800 static void __journal_remove_journal_head(struct buffer_head *bh)
1801 {
1802         struct journal_head *jh = bh2jh(bh);
1803
1804         J_ASSERT_JH(jh, jh->b_jcount >= 0);
1805
1806         get_bh(bh);
1807         if (jh->b_jcount == 0) {
1808                 if (jh->b_transaction == NULL &&
1809                                 jh->b_next_transaction == NULL &&
1810                                 jh->b_cp_transaction == NULL) {
1811                         J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
1812                         J_ASSERT_BH(bh, buffer_jbd(bh));
1813                         J_ASSERT_BH(bh, jh2bh(jh) == bh);
1814                         BUFFER_TRACE(bh, "remove journal_head");
1815                         if (jh->b_frozen_data) {
1816                                 printk(KERN_WARNING "%s: freeing "
1817                                                 "b_frozen_data\n",
1818                                                 __func__);
1819                                 jbd_free(jh->b_frozen_data, bh->b_size);
1820                         }
1821                         if (jh->b_committed_data) {
1822                                 printk(KERN_WARNING "%s: freeing "
1823                                                 "b_committed_data\n",
1824                                                 __func__);
1825                                 jbd_free(jh->b_committed_data, bh->b_size);
1826                         }
1827                         bh->b_private = NULL;
1828                         jh->b_bh = NULL;        /* debug, really */
1829                         clear_buffer_jbd(bh);
1830                         __brelse(bh);
1831                         journal_free_journal_head(jh);
1832                 } else {
1833                         BUFFER_TRACE(bh, "journal_head was locked");
1834                 }
1835         }
1836 }
1837
1838 /*
1839  * journal_remove_journal_head(): if the buffer isn't attached to a transaction
1840  * and has a zero b_jcount then remove and release its journal_head.   If we did
1841  * see that the buffer is not used by any transaction we also "logically"
1842  * decrement ->b_count.
1843  *
1844  * We in fact take an additional increment on ->b_count as a convenience,
1845  * because the caller usually wants to do additional things with the bh
1846  * after calling here.
1847  * The caller of journal_remove_journal_head() *must* run __brelse(bh) at some
1848  * time.  Once the caller has run __brelse(), the buffer is eligible for
1849  * reaping by try_to_free_buffers().
1850  */
1851 void journal_remove_journal_head(struct buffer_head *bh)
1852 {
1853         jbd_lock_bh_journal_head(bh);
1854         __journal_remove_journal_head(bh);
1855         jbd_unlock_bh_journal_head(bh);
1856 }
1857
1858 /*
1859  * Drop a reference on the passed journal_head.  If it fell to zero then try to
1860  * release the journal_head from the buffer_head.
1861  */
1862 void journal_put_journal_head(struct journal_head *jh)
1863 {
1864         struct buffer_head *bh = jh2bh(jh);
1865
1866         jbd_lock_bh_journal_head(bh);
1867         J_ASSERT_JH(jh, jh->b_jcount > 0);
1868         --jh->b_jcount;
1869         if (!jh->b_jcount && !jh->b_transaction) {
1870                 __journal_remove_journal_head(bh);
1871                 __brelse(bh);
1872         }
1873         jbd_unlock_bh_journal_head(bh);
1874 }
1875
1876 /*
1877  * debugfs tunables
1878  */
1879 #ifdef CONFIG_JBD_DEBUG
1880
1881 u8 journal_enable_debug __read_mostly;
1882 EXPORT_SYMBOL(journal_enable_debug);
1883
1884 static struct dentry *jbd_debugfs_dir;
1885 static struct dentry *jbd_debug;
1886
1887 static void __init jbd_create_debugfs_entry(void)
1888 {
1889         jbd_debugfs_dir = debugfs_create_dir("jbd", NULL);
1890         if (jbd_debugfs_dir)
1891                 jbd_debug = debugfs_create_u8("jbd-debug", S_IRUGO,
1892                                                jbd_debugfs_dir,
1893                                                &journal_enable_debug);
1894 }
1895
1896 static void __exit jbd_remove_debugfs_entry(void)
1897 {
1898         debugfs_remove(jbd_debug);
1899         debugfs_remove(jbd_debugfs_dir);
1900 }
1901
1902 #else
1903
1904 static inline void jbd_create_debugfs_entry(void)
1905 {
1906 }
1907
1908 static inline void jbd_remove_debugfs_entry(void)
1909 {
1910 }
1911
1912 #endif
1913
1914 struct kmem_cache *jbd_handle_cache;
1915
1916 static int __init journal_init_handle_cache(void)
1917 {
1918         jbd_handle_cache = kmem_cache_create("journal_handle",
1919                                 sizeof(handle_t),
1920                                 0,              /* offset */
1921                                 SLAB_TEMPORARY, /* flags */
1922                                 NULL);          /* ctor */
1923         if (jbd_handle_cache == NULL) {
1924                 printk(KERN_EMERG "JBD: failed to create handle cache\n");
1925                 return -ENOMEM;
1926         }
1927         return 0;
1928 }
1929
1930 static void journal_destroy_handle_cache(void)
1931 {
1932         if (jbd_handle_cache)
1933                 kmem_cache_destroy(jbd_handle_cache);
1934 }
1935
1936 /*
1937  * Module startup and shutdown
1938  */
1939
1940 static int __init journal_init_caches(void)
1941 {
1942         int ret;
1943
1944         ret = journal_init_revoke_caches();
1945         if (ret == 0)
1946                 ret = journal_init_journal_head_cache();
1947         if (ret == 0)
1948                 ret = journal_init_handle_cache();
1949         return ret;
1950 }
1951
1952 static void journal_destroy_caches(void)
1953 {
1954         journal_destroy_revoke_caches();
1955         journal_destroy_journal_head_cache();
1956         journal_destroy_handle_cache();
1957 }
1958
1959 static int __init journal_init(void)
1960 {
1961         int ret;
1962
1963         BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
1964
1965         ret = journal_init_caches();
1966         if (ret != 0)
1967                 journal_destroy_caches();
1968         jbd_create_debugfs_entry();
1969         return ret;
1970 }
1971
1972 static void __exit journal_exit(void)
1973 {
1974 #ifdef CONFIG_JBD_DEBUG
1975         int n = atomic_read(&nr_journal_heads);
1976         if (n)
1977                 printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
1978 #endif
1979         jbd_remove_debugfs_entry();
1980         journal_destroy_caches();
1981 }
1982
1983 MODULE_LICENSE("GPL");
1984 module_init(journal_init);
1985 module_exit(journal_exit);
1986