Merge tag 'media/v4.14-2' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[sfrench/cifs-2.6.git] / fs / hugetlbfs / inode.c
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h>         /* remove ASAP */
15 #include <linux/falloc.h>
16 #include <linux/fs.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
39
40 #include <linux/uaccess.h>
41
42 static const struct super_operations hugetlbfs_ops;
43 static const struct address_space_operations hugetlbfs_aops;
44 const struct file_operations hugetlbfs_file_operations;
45 static const struct inode_operations hugetlbfs_dir_inode_operations;
46 static const struct inode_operations hugetlbfs_inode_operations;
47
48 struct hugetlbfs_config {
49         struct hstate           *hstate;
50         long                    max_hpages;
51         long                    nr_inodes;
52         long                    min_hpages;
53         kuid_t                  uid;
54         kgid_t                  gid;
55         umode_t                 mode;
56 };
57
58 struct hugetlbfs_inode_info {
59         struct shared_policy policy;
60         struct inode vfs_inode;
61 };
62
63 static inline struct hugetlbfs_inode_info *HUGETLBFS_I(struct inode *inode)
64 {
65         return container_of(inode, struct hugetlbfs_inode_info, vfs_inode);
66 }
67
68 int sysctl_hugetlb_shm_group;
69
70 enum {
71         Opt_size, Opt_nr_inodes,
72         Opt_mode, Opt_uid, Opt_gid,
73         Opt_pagesize, Opt_min_size,
74         Opt_err,
75 };
76
77 static const match_table_t tokens = {
78         {Opt_size,      "size=%s"},
79         {Opt_nr_inodes, "nr_inodes=%s"},
80         {Opt_mode,      "mode=%o"},
81         {Opt_uid,       "uid=%u"},
82         {Opt_gid,       "gid=%u"},
83         {Opt_pagesize,  "pagesize=%s"},
84         {Opt_min_size,  "min_size=%s"},
85         {Opt_err,       NULL},
86 };
87
88 #ifdef CONFIG_NUMA
89 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
90                                         struct inode *inode, pgoff_t index)
91 {
92         vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
93                                                         index);
94 }
95
96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
97 {
98         mpol_cond_put(vma->vm_policy);
99 }
100 #else
101 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
102                                         struct inode *inode, pgoff_t index)
103 {
104 }
105
106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
107 {
108 }
109 #endif
110
111 static void huge_pagevec_release(struct pagevec *pvec)
112 {
113         int i;
114
115         for (i = 0; i < pagevec_count(pvec); ++i)
116                 put_page(pvec->pages[i]);
117
118         pagevec_reinit(pvec);
119 }
120
121 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
122 {
123         struct inode *inode = file_inode(file);
124         loff_t len, vma_len;
125         int ret;
126         struct hstate *h = hstate_file(file);
127
128         /*
129          * vma address alignment (but not the pgoff alignment) has
130          * already been checked by prepare_hugepage_range.  If you add
131          * any error returns here, do so after setting VM_HUGETLB, so
132          * is_vm_hugetlb_page tests below unmap_region go the right
133          * way when do_mmap_pgoff unwinds (may be important on powerpc
134          * and ia64).
135          */
136         vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
137         vma->vm_ops = &hugetlb_vm_ops;
138
139         /*
140          * Offset passed to mmap (before page shift) could have been
141          * negative when represented as a (l)off_t.
142          */
143         if (((loff_t)vma->vm_pgoff << PAGE_SHIFT) < 0)
144                 return -EINVAL;
145
146         if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
147                 return -EINVAL;
148
149         vma_len = (loff_t)(vma->vm_end - vma->vm_start);
150         len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
151         /* check for overflow */
152         if (len < vma_len)
153                 return -EINVAL;
154
155         inode_lock(inode);
156         file_accessed(file);
157
158         ret = -ENOMEM;
159         if (hugetlb_reserve_pages(inode,
160                                 vma->vm_pgoff >> huge_page_order(h),
161                                 len >> huge_page_shift(h), vma,
162                                 vma->vm_flags))
163                 goto out;
164
165         ret = 0;
166         if (vma->vm_flags & VM_WRITE && inode->i_size < len)
167                 i_size_write(inode, len);
168 out:
169         inode_unlock(inode);
170
171         return ret;
172 }
173
174 /*
175  * Called under down_write(mmap_sem).
176  */
177
178 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
179 static unsigned long
180 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
181                 unsigned long len, unsigned long pgoff, unsigned long flags)
182 {
183         struct mm_struct *mm = current->mm;
184         struct vm_area_struct *vma;
185         struct hstate *h = hstate_file(file);
186         struct vm_unmapped_area_info info;
187
188         if (len & ~huge_page_mask(h))
189                 return -EINVAL;
190         if (len > TASK_SIZE)
191                 return -ENOMEM;
192
193         if (flags & MAP_FIXED) {
194                 if (prepare_hugepage_range(file, addr, len))
195                         return -EINVAL;
196                 return addr;
197         }
198
199         if (addr) {
200                 addr = ALIGN(addr, huge_page_size(h));
201                 vma = find_vma(mm, addr);
202                 if (TASK_SIZE - len >= addr &&
203                     (!vma || addr + len <= vm_start_gap(vma)))
204                         return addr;
205         }
206
207         info.flags = 0;
208         info.length = len;
209         info.low_limit = TASK_UNMAPPED_BASE;
210         info.high_limit = TASK_SIZE;
211         info.align_mask = PAGE_MASK & ~huge_page_mask(h);
212         info.align_offset = 0;
213         return vm_unmapped_area(&info);
214 }
215 #endif
216
217 static size_t
218 hugetlbfs_read_actor(struct page *page, unsigned long offset,
219                         struct iov_iter *to, unsigned long size)
220 {
221         size_t copied = 0;
222         int i, chunksize;
223
224         /* Find which 4k chunk and offset with in that chunk */
225         i = offset >> PAGE_SHIFT;
226         offset = offset & ~PAGE_MASK;
227
228         while (size) {
229                 size_t n;
230                 chunksize = PAGE_SIZE;
231                 if (offset)
232                         chunksize -= offset;
233                 if (chunksize > size)
234                         chunksize = size;
235                 n = copy_page_to_iter(&page[i], offset, chunksize, to);
236                 copied += n;
237                 if (n != chunksize)
238                         return copied;
239                 offset = 0;
240                 size -= chunksize;
241                 i++;
242         }
243         return copied;
244 }
245
246 /*
247  * Support for read() - Find the page attached to f_mapping and copy out the
248  * data. Its *very* similar to do_generic_mapping_read(), we can't use that
249  * since it has PAGE_SIZE assumptions.
250  */
251 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
252 {
253         struct file *file = iocb->ki_filp;
254         struct hstate *h = hstate_file(file);
255         struct address_space *mapping = file->f_mapping;
256         struct inode *inode = mapping->host;
257         unsigned long index = iocb->ki_pos >> huge_page_shift(h);
258         unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
259         unsigned long end_index;
260         loff_t isize;
261         ssize_t retval = 0;
262
263         while (iov_iter_count(to)) {
264                 struct page *page;
265                 size_t nr, copied;
266
267                 /* nr is the maximum number of bytes to copy from this page */
268                 nr = huge_page_size(h);
269                 isize = i_size_read(inode);
270                 if (!isize)
271                         break;
272                 end_index = (isize - 1) >> huge_page_shift(h);
273                 if (index > end_index)
274                         break;
275                 if (index == end_index) {
276                         nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
277                         if (nr <= offset)
278                                 break;
279                 }
280                 nr = nr - offset;
281
282                 /* Find the page */
283                 page = find_lock_page(mapping, index);
284                 if (unlikely(page == NULL)) {
285                         /*
286                          * We have a HOLE, zero out the user-buffer for the
287                          * length of the hole or request.
288                          */
289                         copied = iov_iter_zero(nr, to);
290                 } else {
291                         unlock_page(page);
292
293                         /*
294                          * We have the page, copy it to user space buffer.
295                          */
296                         copied = hugetlbfs_read_actor(page, offset, to, nr);
297                         put_page(page);
298                 }
299                 offset += copied;
300                 retval += copied;
301                 if (copied != nr && iov_iter_count(to)) {
302                         if (!retval)
303                                 retval = -EFAULT;
304                         break;
305                 }
306                 index += offset >> huge_page_shift(h);
307                 offset &= ~huge_page_mask(h);
308         }
309         iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
310         return retval;
311 }
312
313 static int hugetlbfs_write_begin(struct file *file,
314                         struct address_space *mapping,
315                         loff_t pos, unsigned len, unsigned flags,
316                         struct page **pagep, void **fsdata)
317 {
318         return -EINVAL;
319 }
320
321 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
322                         loff_t pos, unsigned len, unsigned copied,
323                         struct page *page, void *fsdata)
324 {
325         BUG();
326         return -EINVAL;
327 }
328
329 static void remove_huge_page(struct page *page)
330 {
331         ClearPageDirty(page);
332         ClearPageUptodate(page);
333         delete_from_page_cache(page);
334 }
335
336 static void
337 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end)
338 {
339         struct vm_area_struct *vma;
340
341         /*
342          * end == 0 indicates that the entire range after
343          * start should be unmapped.
344          */
345         vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
346                 unsigned long v_offset;
347                 unsigned long v_end;
348
349                 /*
350                  * Can the expression below overflow on 32-bit arches?
351                  * No, because the interval tree returns us only those vmas
352                  * which overlap the truncated area starting at pgoff,
353                  * and no vma on a 32-bit arch can span beyond the 4GB.
354                  */
355                 if (vma->vm_pgoff < start)
356                         v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
357                 else
358                         v_offset = 0;
359
360                 if (!end)
361                         v_end = vma->vm_end;
362                 else {
363                         v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
364                                                         + vma->vm_start;
365                         if (v_end > vma->vm_end)
366                                 v_end = vma->vm_end;
367                 }
368
369                 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
370                                                                         NULL);
371         }
372 }
373
374 /*
375  * remove_inode_hugepages handles two distinct cases: truncation and hole
376  * punch.  There are subtle differences in operation for each case.
377  *
378  * truncation is indicated by end of range being LLONG_MAX
379  *      In this case, we first scan the range and release found pages.
380  *      After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
381  *      maps and global counts.  Page faults can not race with truncation
382  *      in this routine.  hugetlb_no_page() prevents page faults in the
383  *      truncated range.  It checks i_size before allocation, and again after
384  *      with the page table lock for the page held.  The same lock must be
385  *      acquired to unmap a page.
386  * hole punch is indicated if end is not LLONG_MAX
387  *      In the hole punch case we scan the range and release found pages.
388  *      Only when releasing a page is the associated region/reserv map
389  *      deleted.  The region/reserv map for ranges without associated
390  *      pages are not modified.  Page faults can race with hole punch.
391  *      This is indicated if we find a mapped page.
392  * Note: If the passed end of range value is beyond the end of file, but
393  * not LLONG_MAX this routine still performs a hole punch operation.
394  */
395 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
396                                    loff_t lend)
397 {
398         struct hstate *h = hstate_inode(inode);
399         struct address_space *mapping = &inode->i_data;
400         const pgoff_t start = lstart >> huge_page_shift(h);
401         const pgoff_t end = lend >> huge_page_shift(h);
402         struct vm_area_struct pseudo_vma;
403         struct pagevec pvec;
404         pgoff_t next, index;
405         int i, freed = 0;
406         bool truncate_op = (lend == LLONG_MAX);
407
408         memset(&pseudo_vma, 0, sizeof(struct vm_area_struct));
409         pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
410         pagevec_init(&pvec, 0);
411         next = start;
412         while (next < end) {
413                 /*
414                  * When no more pages are found, we are done.
415                  */
416                 if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1))
417                         break;
418
419                 for (i = 0; i < pagevec_count(&pvec); ++i) {
420                         struct page *page = pvec.pages[i];
421                         u32 hash;
422
423                         index = page->index;
424                         hash = hugetlb_fault_mutex_hash(h, current->mm,
425                                                         &pseudo_vma,
426                                                         mapping, index, 0);
427                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
428
429                         /*
430                          * If page is mapped, it was faulted in after being
431                          * unmapped in caller.  Unmap (again) now after taking
432                          * the fault mutex.  The mutex will prevent faults
433                          * until we finish removing the page.
434                          *
435                          * This race can only happen in the hole punch case.
436                          * Getting here in a truncate operation is a bug.
437                          */
438                         if (unlikely(page_mapped(page))) {
439                                 BUG_ON(truncate_op);
440
441                                 i_mmap_lock_write(mapping);
442                                 hugetlb_vmdelete_list(&mapping->i_mmap,
443                                         index * pages_per_huge_page(h),
444                                         (index + 1) * pages_per_huge_page(h));
445                                 i_mmap_unlock_write(mapping);
446                         }
447
448                         lock_page(page);
449                         /*
450                          * We must free the huge page and remove from page
451                          * cache (remove_huge_page) BEFORE removing the
452                          * region/reserve map (hugetlb_unreserve_pages).  In
453                          * rare out of memory conditions, removal of the
454                          * region/reserve map could fail. Correspondingly,
455                          * the subpool and global reserve usage count can need
456                          * to be adjusted.
457                          */
458                         VM_BUG_ON(PagePrivate(page));
459                         remove_huge_page(page);
460                         freed++;
461                         if (!truncate_op) {
462                                 if (unlikely(hugetlb_unreserve_pages(inode,
463                                                         index, index + 1, 1)))
464                                         hugetlb_fix_reserve_counts(inode);
465                         }
466
467                         unlock_page(page);
468                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
469                 }
470                 huge_pagevec_release(&pvec);
471                 cond_resched();
472         }
473
474         if (truncate_op)
475                 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
476 }
477
478 static void hugetlbfs_evict_inode(struct inode *inode)
479 {
480         struct resv_map *resv_map;
481
482         remove_inode_hugepages(inode, 0, LLONG_MAX);
483         resv_map = (struct resv_map *)inode->i_mapping->private_data;
484         /* root inode doesn't have the resv_map, so we should check it */
485         if (resv_map)
486                 resv_map_release(&resv_map->refs);
487         clear_inode(inode);
488 }
489
490 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
491 {
492         pgoff_t pgoff;
493         struct address_space *mapping = inode->i_mapping;
494         struct hstate *h = hstate_inode(inode);
495
496         BUG_ON(offset & ~huge_page_mask(h));
497         pgoff = offset >> PAGE_SHIFT;
498
499         i_size_write(inode, offset);
500         i_mmap_lock_write(mapping);
501         if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
502                 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
503         i_mmap_unlock_write(mapping);
504         remove_inode_hugepages(inode, offset, LLONG_MAX);
505         return 0;
506 }
507
508 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
509 {
510         struct hstate *h = hstate_inode(inode);
511         loff_t hpage_size = huge_page_size(h);
512         loff_t hole_start, hole_end;
513
514         /*
515          * For hole punch round up the beginning offset of the hole and
516          * round down the end.
517          */
518         hole_start = round_up(offset, hpage_size);
519         hole_end = round_down(offset + len, hpage_size);
520
521         if (hole_end > hole_start) {
522                 struct address_space *mapping = inode->i_mapping;
523
524                 inode_lock(inode);
525                 i_mmap_lock_write(mapping);
526                 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
527                         hugetlb_vmdelete_list(&mapping->i_mmap,
528                                                 hole_start >> PAGE_SHIFT,
529                                                 hole_end  >> PAGE_SHIFT);
530                 i_mmap_unlock_write(mapping);
531                 remove_inode_hugepages(inode, hole_start, hole_end);
532                 inode_unlock(inode);
533         }
534
535         return 0;
536 }
537
538 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
539                                 loff_t len)
540 {
541         struct inode *inode = file_inode(file);
542         struct address_space *mapping = inode->i_mapping;
543         struct hstate *h = hstate_inode(inode);
544         struct vm_area_struct pseudo_vma;
545         struct mm_struct *mm = current->mm;
546         loff_t hpage_size = huge_page_size(h);
547         unsigned long hpage_shift = huge_page_shift(h);
548         pgoff_t start, index, end;
549         int error;
550         u32 hash;
551
552         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
553                 return -EOPNOTSUPP;
554
555         if (mode & FALLOC_FL_PUNCH_HOLE)
556                 return hugetlbfs_punch_hole(inode, offset, len);
557
558         /*
559          * Default preallocate case.
560          * For this range, start is rounded down and end is rounded up
561          * as well as being converted to page offsets.
562          */
563         start = offset >> hpage_shift;
564         end = (offset + len + hpage_size - 1) >> hpage_shift;
565
566         inode_lock(inode);
567
568         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
569         error = inode_newsize_ok(inode, offset + len);
570         if (error)
571                 goto out;
572
573         /*
574          * Initialize a pseudo vma as this is required by the huge page
575          * allocation routines.  If NUMA is configured, use page index
576          * as input to create an allocation policy.
577          */
578         memset(&pseudo_vma, 0, sizeof(struct vm_area_struct));
579         pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
580         pseudo_vma.vm_file = file;
581
582         for (index = start; index < end; index++) {
583                 /*
584                  * This is supposed to be the vaddr where the page is being
585                  * faulted in, but we have no vaddr here.
586                  */
587                 struct page *page;
588                 unsigned long addr;
589                 int avoid_reserve = 0;
590
591                 cond_resched();
592
593                 /*
594                  * fallocate(2) manpage permits EINTR; we may have been
595                  * interrupted because we are using up too much memory.
596                  */
597                 if (signal_pending(current)) {
598                         error = -EINTR;
599                         break;
600                 }
601
602                 /* Set numa allocation policy based on index */
603                 hugetlb_set_vma_policy(&pseudo_vma, inode, index);
604
605                 /* addr is the offset within the file (zero based) */
606                 addr = index * hpage_size;
607
608                 /* mutex taken here, fault path and hole punch */
609                 hash = hugetlb_fault_mutex_hash(h, mm, &pseudo_vma, mapping,
610                                                 index, addr);
611                 mutex_lock(&hugetlb_fault_mutex_table[hash]);
612
613                 /* See if already present in mapping to avoid alloc/free */
614                 page = find_get_page(mapping, index);
615                 if (page) {
616                         put_page(page);
617                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
618                         hugetlb_drop_vma_policy(&pseudo_vma);
619                         continue;
620                 }
621
622                 /* Allocate page and add to page cache */
623                 page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve);
624                 hugetlb_drop_vma_policy(&pseudo_vma);
625                 if (IS_ERR(page)) {
626                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
627                         error = PTR_ERR(page);
628                         goto out;
629                 }
630                 clear_huge_page(page, addr, pages_per_huge_page(h));
631                 __SetPageUptodate(page);
632                 error = huge_add_to_page_cache(page, mapping, index);
633                 if (unlikely(error)) {
634                         put_page(page);
635                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
636                         goto out;
637                 }
638
639                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
640
641                 /*
642                  * page_put due to reference from alloc_huge_page()
643                  * unlock_page because locked by add_to_page_cache()
644                  */
645                 put_page(page);
646                 unlock_page(page);
647         }
648
649         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
650                 i_size_write(inode, offset + len);
651         inode->i_ctime = current_time(inode);
652 out:
653         inode_unlock(inode);
654         return error;
655 }
656
657 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
658 {
659         struct inode *inode = d_inode(dentry);
660         struct hstate *h = hstate_inode(inode);
661         int error;
662         unsigned int ia_valid = attr->ia_valid;
663
664         BUG_ON(!inode);
665
666         error = setattr_prepare(dentry, attr);
667         if (error)
668                 return error;
669
670         if (ia_valid & ATTR_SIZE) {
671                 error = -EINVAL;
672                 if (attr->ia_size & ~huge_page_mask(h))
673                         return -EINVAL;
674                 error = hugetlb_vmtruncate(inode, attr->ia_size);
675                 if (error)
676                         return error;
677         }
678
679         setattr_copy(inode, attr);
680         mark_inode_dirty(inode);
681         return 0;
682 }
683
684 static struct inode *hugetlbfs_get_root(struct super_block *sb,
685                                         struct hugetlbfs_config *config)
686 {
687         struct inode *inode;
688
689         inode = new_inode(sb);
690         if (inode) {
691                 inode->i_ino = get_next_ino();
692                 inode->i_mode = S_IFDIR | config->mode;
693                 inode->i_uid = config->uid;
694                 inode->i_gid = config->gid;
695                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
696                 inode->i_op = &hugetlbfs_dir_inode_operations;
697                 inode->i_fop = &simple_dir_operations;
698                 /* directory inodes start off with i_nlink == 2 (for "." entry) */
699                 inc_nlink(inode);
700                 lockdep_annotate_inode_mutex_key(inode);
701         }
702         return inode;
703 }
704
705 /*
706  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
707  * be taken from reclaim -- unlike regular filesystems. This needs an
708  * annotation because huge_pmd_share() does an allocation under hugetlb's
709  * i_mmap_rwsem.
710  */
711 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
712
713 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
714                                         struct inode *dir,
715                                         umode_t mode, dev_t dev)
716 {
717         struct inode *inode;
718         struct resv_map *resv_map;
719
720         resv_map = resv_map_alloc();
721         if (!resv_map)
722                 return NULL;
723
724         inode = new_inode(sb);
725         if (inode) {
726                 inode->i_ino = get_next_ino();
727                 inode_init_owner(inode, dir, mode);
728                 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
729                                 &hugetlbfs_i_mmap_rwsem_key);
730                 inode->i_mapping->a_ops = &hugetlbfs_aops;
731                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
732                 inode->i_mapping->private_data = resv_map;
733                 switch (mode & S_IFMT) {
734                 default:
735                         init_special_inode(inode, mode, dev);
736                         break;
737                 case S_IFREG:
738                         inode->i_op = &hugetlbfs_inode_operations;
739                         inode->i_fop = &hugetlbfs_file_operations;
740                         break;
741                 case S_IFDIR:
742                         inode->i_op = &hugetlbfs_dir_inode_operations;
743                         inode->i_fop = &simple_dir_operations;
744
745                         /* directory inodes start off with i_nlink == 2 (for "." entry) */
746                         inc_nlink(inode);
747                         break;
748                 case S_IFLNK:
749                         inode->i_op = &page_symlink_inode_operations;
750                         inode_nohighmem(inode);
751                         break;
752                 }
753                 lockdep_annotate_inode_mutex_key(inode);
754         } else
755                 kref_put(&resv_map->refs, resv_map_release);
756
757         return inode;
758 }
759
760 /*
761  * File creation. Allocate an inode, and we're done..
762  */
763 static int hugetlbfs_mknod(struct inode *dir,
764                         struct dentry *dentry, umode_t mode, dev_t dev)
765 {
766         struct inode *inode;
767         int error = -ENOSPC;
768
769         inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
770         if (inode) {
771                 dir->i_ctime = dir->i_mtime = current_time(dir);
772                 d_instantiate(dentry, inode);
773                 dget(dentry);   /* Extra count - pin the dentry in core */
774                 error = 0;
775         }
776         return error;
777 }
778
779 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
780 {
781         int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
782         if (!retval)
783                 inc_nlink(dir);
784         return retval;
785 }
786
787 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl)
788 {
789         return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
790 }
791
792 static int hugetlbfs_symlink(struct inode *dir,
793                         struct dentry *dentry, const char *symname)
794 {
795         struct inode *inode;
796         int error = -ENOSPC;
797
798         inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
799         if (inode) {
800                 int l = strlen(symname)+1;
801                 error = page_symlink(inode, symname, l);
802                 if (!error) {
803                         d_instantiate(dentry, inode);
804                         dget(dentry);
805                 } else
806                         iput(inode);
807         }
808         dir->i_ctime = dir->i_mtime = current_time(dir);
809
810         return error;
811 }
812
813 /*
814  * mark the head page dirty
815  */
816 static int hugetlbfs_set_page_dirty(struct page *page)
817 {
818         struct page *head = compound_head(page);
819
820         SetPageDirty(head);
821         return 0;
822 }
823
824 static int hugetlbfs_migrate_page(struct address_space *mapping,
825                                 struct page *newpage, struct page *page,
826                                 enum migrate_mode mode)
827 {
828         int rc;
829
830         rc = migrate_huge_page_move_mapping(mapping, newpage, page);
831         if (rc != MIGRATEPAGE_SUCCESS)
832                 return rc;
833         if (mode != MIGRATE_SYNC_NO_COPY)
834                 migrate_page_copy(newpage, page);
835         else
836                 migrate_page_states(newpage, page);
837
838         return MIGRATEPAGE_SUCCESS;
839 }
840
841 static int hugetlbfs_error_remove_page(struct address_space *mapping,
842                                 struct page *page)
843 {
844         struct inode *inode = mapping->host;
845
846         remove_huge_page(page);
847         hugetlb_fix_reserve_counts(inode);
848         return 0;
849 }
850
851 /*
852  * Display the mount options in /proc/mounts.
853  */
854 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
855 {
856         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
857         struct hugepage_subpool *spool = sbinfo->spool;
858         unsigned long hpage_size = huge_page_size(sbinfo->hstate);
859         unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
860         char mod;
861
862         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
863                 seq_printf(m, ",uid=%u",
864                            from_kuid_munged(&init_user_ns, sbinfo->uid));
865         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
866                 seq_printf(m, ",gid=%u",
867                            from_kgid_munged(&init_user_ns, sbinfo->gid));
868         if (sbinfo->mode != 0755)
869                 seq_printf(m, ",mode=%o", sbinfo->mode);
870         if (sbinfo->max_inodes != -1)
871                 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
872
873         hpage_size /= 1024;
874         mod = 'K';
875         if (hpage_size >= 1024) {
876                 hpage_size /= 1024;
877                 mod = 'M';
878         }
879         seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
880         if (spool) {
881                 if (spool->max_hpages != -1)
882                         seq_printf(m, ",size=%llu",
883                                    (unsigned long long)spool->max_hpages << hpage_shift);
884                 if (spool->min_hpages != -1)
885                         seq_printf(m, ",min_size=%llu",
886                                    (unsigned long long)spool->min_hpages << hpage_shift);
887         }
888         return 0;
889 }
890
891 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
892 {
893         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
894         struct hstate *h = hstate_inode(d_inode(dentry));
895
896         buf->f_type = HUGETLBFS_MAGIC;
897         buf->f_bsize = huge_page_size(h);
898         if (sbinfo) {
899                 spin_lock(&sbinfo->stat_lock);
900                 /* If no limits set, just report 0 for max/free/used
901                  * blocks, like simple_statfs() */
902                 if (sbinfo->spool) {
903                         long free_pages;
904
905                         spin_lock(&sbinfo->spool->lock);
906                         buf->f_blocks = sbinfo->spool->max_hpages;
907                         free_pages = sbinfo->spool->max_hpages
908                                 - sbinfo->spool->used_hpages;
909                         buf->f_bavail = buf->f_bfree = free_pages;
910                         spin_unlock(&sbinfo->spool->lock);
911                         buf->f_files = sbinfo->max_inodes;
912                         buf->f_ffree = sbinfo->free_inodes;
913                 }
914                 spin_unlock(&sbinfo->stat_lock);
915         }
916         buf->f_namelen = NAME_MAX;
917         return 0;
918 }
919
920 static void hugetlbfs_put_super(struct super_block *sb)
921 {
922         struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
923
924         if (sbi) {
925                 sb->s_fs_info = NULL;
926
927                 if (sbi->spool)
928                         hugepage_put_subpool(sbi->spool);
929
930                 kfree(sbi);
931         }
932 }
933
934 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
935 {
936         if (sbinfo->free_inodes >= 0) {
937                 spin_lock(&sbinfo->stat_lock);
938                 if (unlikely(!sbinfo->free_inodes)) {
939                         spin_unlock(&sbinfo->stat_lock);
940                         return 0;
941                 }
942                 sbinfo->free_inodes--;
943                 spin_unlock(&sbinfo->stat_lock);
944         }
945
946         return 1;
947 }
948
949 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
950 {
951         if (sbinfo->free_inodes >= 0) {
952                 spin_lock(&sbinfo->stat_lock);
953                 sbinfo->free_inodes++;
954                 spin_unlock(&sbinfo->stat_lock);
955         }
956 }
957
958
959 static struct kmem_cache *hugetlbfs_inode_cachep;
960
961 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
962 {
963         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
964         struct hugetlbfs_inode_info *p;
965
966         if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
967                 return NULL;
968         p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
969         if (unlikely(!p)) {
970                 hugetlbfs_inc_free_inodes(sbinfo);
971                 return NULL;
972         }
973
974         /*
975          * Any time after allocation, hugetlbfs_destroy_inode can be called
976          * for the inode.  mpol_free_shared_policy is unconditionally called
977          * as part of hugetlbfs_destroy_inode.  So, initialize policy here
978          * in case of a quick call to destroy.
979          *
980          * Note that the policy is initialized even if we are creating a
981          * private inode.  This simplifies hugetlbfs_destroy_inode.
982          */
983         mpol_shared_policy_init(&p->policy, NULL);
984
985         return &p->vfs_inode;
986 }
987
988 static void hugetlbfs_i_callback(struct rcu_head *head)
989 {
990         struct inode *inode = container_of(head, struct inode, i_rcu);
991         kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
992 }
993
994 static void hugetlbfs_destroy_inode(struct inode *inode)
995 {
996         hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
997         mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
998         call_rcu(&inode->i_rcu, hugetlbfs_i_callback);
999 }
1000
1001 static const struct address_space_operations hugetlbfs_aops = {
1002         .write_begin    = hugetlbfs_write_begin,
1003         .write_end      = hugetlbfs_write_end,
1004         .set_page_dirty = hugetlbfs_set_page_dirty,
1005         .migratepage    = hugetlbfs_migrate_page,
1006         .error_remove_page      = hugetlbfs_error_remove_page,
1007 };
1008
1009
1010 static void init_once(void *foo)
1011 {
1012         struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1013
1014         inode_init_once(&ei->vfs_inode);
1015 }
1016
1017 const struct file_operations hugetlbfs_file_operations = {
1018         .read_iter              = hugetlbfs_read_iter,
1019         .mmap                   = hugetlbfs_file_mmap,
1020         .fsync                  = noop_fsync,
1021         .get_unmapped_area      = hugetlb_get_unmapped_area,
1022         .llseek                 = default_llseek,
1023         .fallocate              = hugetlbfs_fallocate,
1024 };
1025
1026 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1027         .create         = hugetlbfs_create,
1028         .lookup         = simple_lookup,
1029         .link           = simple_link,
1030         .unlink         = simple_unlink,
1031         .symlink        = hugetlbfs_symlink,
1032         .mkdir          = hugetlbfs_mkdir,
1033         .rmdir          = simple_rmdir,
1034         .mknod          = hugetlbfs_mknod,
1035         .rename         = simple_rename,
1036         .setattr        = hugetlbfs_setattr,
1037 };
1038
1039 static const struct inode_operations hugetlbfs_inode_operations = {
1040         .setattr        = hugetlbfs_setattr,
1041 };
1042
1043 static const struct super_operations hugetlbfs_ops = {
1044         .alloc_inode    = hugetlbfs_alloc_inode,
1045         .destroy_inode  = hugetlbfs_destroy_inode,
1046         .evict_inode    = hugetlbfs_evict_inode,
1047         .statfs         = hugetlbfs_statfs,
1048         .put_super      = hugetlbfs_put_super,
1049         .show_options   = hugetlbfs_show_options,
1050 };
1051
1052 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
1053
1054 /*
1055  * Convert size option passed from command line to number of huge pages
1056  * in the pool specified by hstate.  Size option could be in bytes
1057  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1058  */
1059 static long
1060 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1061                          enum hugetlbfs_size_type val_type)
1062 {
1063         if (val_type == NO_SIZE)
1064                 return -1;
1065
1066         if (val_type == SIZE_PERCENT) {
1067                 size_opt <<= huge_page_shift(h);
1068                 size_opt *= h->max_huge_pages;
1069                 do_div(size_opt, 100);
1070         }
1071
1072         size_opt >>= huge_page_shift(h);
1073         return size_opt;
1074 }
1075
1076 static int
1077 hugetlbfs_parse_options(char *options, struct hugetlbfs_config *pconfig)
1078 {
1079         char *p, *rest;
1080         substring_t args[MAX_OPT_ARGS];
1081         int option;
1082         unsigned long long max_size_opt = 0, min_size_opt = 0;
1083         enum hugetlbfs_size_type max_val_type = NO_SIZE, min_val_type = NO_SIZE;
1084
1085         if (!options)
1086                 return 0;
1087
1088         while ((p = strsep(&options, ",")) != NULL) {
1089                 int token;
1090                 if (!*p)
1091                         continue;
1092
1093                 token = match_token(p, tokens, args);
1094                 switch (token) {
1095                 case Opt_uid:
1096                         if (match_int(&args[0], &option))
1097                                 goto bad_val;
1098                         pconfig->uid = make_kuid(current_user_ns(), option);
1099                         if (!uid_valid(pconfig->uid))
1100                                 goto bad_val;
1101                         break;
1102
1103                 case Opt_gid:
1104                         if (match_int(&args[0], &option))
1105                                 goto bad_val;
1106                         pconfig->gid = make_kgid(current_user_ns(), option);
1107                         if (!gid_valid(pconfig->gid))
1108                                 goto bad_val;
1109                         break;
1110
1111                 case Opt_mode:
1112                         if (match_octal(&args[0], &option))
1113                                 goto bad_val;
1114                         pconfig->mode = option & 01777U;
1115                         break;
1116
1117                 case Opt_size: {
1118                         /* memparse() will accept a K/M/G without a digit */
1119                         if (!isdigit(*args[0].from))
1120                                 goto bad_val;
1121                         max_size_opt = memparse(args[0].from, &rest);
1122                         max_val_type = SIZE_STD;
1123                         if (*rest == '%')
1124                                 max_val_type = SIZE_PERCENT;
1125                         break;
1126                 }
1127
1128                 case Opt_nr_inodes:
1129                         /* memparse() will accept a K/M/G without a digit */
1130                         if (!isdigit(*args[0].from))
1131                                 goto bad_val;
1132                         pconfig->nr_inodes = memparse(args[0].from, &rest);
1133                         break;
1134
1135                 case Opt_pagesize: {
1136                         unsigned long ps;
1137                         ps = memparse(args[0].from, &rest);
1138                         pconfig->hstate = size_to_hstate(ps);
1139                         if (!pconfig->hstate) {
1140                                 pr_err("Unsupported page size %lu MB\n",
1141                                         ps >> 20);
1142                                 return -EINVAL;
1143                         }
1144                         break;
1145                 }
1146
1147                 case Opt_min_size: {
1148                         /* memparse() will accept a K/M/G without a digit */
1149                         if (!isdigit(*args[0].from))
1150                                 goto bad_val;
1151                         min_size_opt = memparse(args[0].from, &rest);
1152                         min_val_type = SIZE_STD;
1153                         if (*rest == '%')
1154                                 min_val_type = SIZE_PERCENT;
1155                         break;
1156                 }
1157
1158                 default:
1159                         pr_err("Bad mount option: \"%s\"\n", p);
1160                         return -EINVAL;
1161                         break;
1162                 }
1163         }
1164
1165         /*
1166          * Use huge page pool size (in hstate) to convert the size
1167          * options to number of huge pages.  If NO_SIZE, -1 is returned.
1168          */
1169         pconfig->max_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
1170                                                 max_size_opt, max_val_type);
1171         pconfig->min_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
1172                                                 min_size_opt, min_val_type);
1173
1174         /*
1175          * If max_size was specified, then min_size must be smaller
1176          */
1177         if (max_val_type > NO_SIZE &&
1178             pconfig->min_hpages > pconfig->max_hpages) {
1179                 pr_err("minimum size can not be greater than maximum size\n");
1180                 return -EINVAL;
1181         }
1182
1183         return 0;
1184
1185 bad_val:
1186         pr_err("Bad value '%s' for mount option '%s'\n", args[0].from, p);
1187         return -EINVAL;
1188 }
1189
1190 static int
1191 hugetlbfs_fill_super(struct super_block *sb, void *data, int silent)
1192 {
1193         int ret;
1194         struct hugetlbfs_config config;
1195         struct hugetlbfs_sb_info *sbinfo;
1196
1197         config.max_hpages = -1; /* No limit on size by default */
1198         config.nr_inodes = -1; /* No limit on number of inodes by default */
1199         config.uid = current_fsuid();
1200         config.gid = current_fsgid();
1201         config.mode = 0755;
1202         config.hstate = &default_hstate;
1203         config.min_hpages = -1; /* No default minimum size */
1204         ret = hugetlbfs_parse_options(data, &config);
1205         if (ret)
1206                 return ret;
1207
1208         sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1209         if (!sbinfo)
1210                 return -ENOMEM;
1211         sb->s_fs_info = sbinfo;
1212         sbinfo->hstate = config.hstate;
1213         spin_lock_init(&sbinfo->stat_lock);
1214         sbinfo->max_inodes = config.nr_inodes;
1215         sbinfo->free_inodes = config.nr_inodes;
1216         sbinfo->spool = NULL;
1217         sbinfo->uid = config.uid;
1218         sbinfo->gid = config.gid;
1219         sbinfo->mode = config.mode;
1220
1221         /*
1222          * Allocate and initialize subpool if maximum or minimum size is
1223          * specified.  Any needed reservations (for minimim size) are taken
1224          * taken when the subpool is created.
1225          */
1226         if (config.max_hpages != -1 || config.min_hpages != -1) {
1227                 sbinfo->spool = hugepage_new_subpool(config.hstate,
1228                                                         config.max_hpages,
1229                                                         config.min_hpages);
1230                 if (!sbinfo->spool)
1231                         goto out_free;
1232         }
1233         sb->s_maxbytes = MAX_LFS_FILESIZE;
1234         sb->s_blocksize = huge_page_size(config.hstate);
1235         sb->s_blocksize_bits = huge_page_shift(config.hstate);
1236         sb->s_magic = HUGETLBFS_MAGIC;
1237         sb->s_op = &hugetlbfs_ops;
1238         sb->s_time_gran = 1;
1239         sb->s_root = d_make_root(hugetlbfs_get_root(sb, &config));
1240         if (!sb->s_root)
1241                 goto out_free;
1242         return 0;
1243 out_free:
1244         kfree(sbinfo->spool);
1245         kfree(sbinfo);
1246         return -ENOMEM;
1247 }
1248
1249 static struct dentry *hugetlbfs_mount(struct file_system_type *fs_type,
1250         int flags, const char *dev_name, void *data)
1251 {
1252         return mount_nodev(fs_type, flags, data, hugetlbfs_fill_super);
1253 }
1254
1255 static struct file_system_type hugetlbfs_fs_type = {
1256         .name           = "hugetlbfs",
1257         .mount          = hugetlbfs_mount,
1258         .kill_sb        = kill_litter_super,
1259 };
1260
1261 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1262
1263 static int can_do_hugetlb_shm(void)
1264 {
1265         kgid_t shm_group;
1266         shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1267         return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1268 }
1269
1270 static int get_hstate_idx(int page_size_log)
1271 {
1272         struct hstate *h = hstate_sizelog(page_size_log);
1273
1274         if (!h)
1275                 return -1;
1276         return h - hstates;
1277 }
1278
1279 static const struct dentry_operations anon_ops = {
1280         .d_dname = simple_dname
1281 };
1282
1283 /*
1284  * Note that size should be aligned to proper hugepage size in caller side,
1285  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1286  */
1287 struct file *hugetlb_file_setup(const char *name, size_t size,
1288                                 vm_flags_t acctflag, struct user_struct **user,
1289                                 int creat_flags, int page_size_log)
1290 {
1291         struct file *file = ERR_PTR(-ENOMEM);
1292         struct inode *inode;
1293         struct path path;
1294         struct super_block *sb;
1295         struct qstr quick_string;
1296         int hstate_idx;
1297
1298         hstate_idx = get_hstate_idx(page_size_log);
1299         if (hstate_idx < 0)
1300                 return ERR_PTR(-ENODEV);
1301
1302         *user = NULL;
1303         if (!hugetlbfs_vfsmount[hstate_idx])
1304                 return ERR_PTR(-ENOENT);
1305
1306         if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1307                 *user = current_user();
1308                 if (user_shm_lock(size, *user)) {
1309                         task_lock(current);
1310                         pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1311                                 current->comm, current->pid);
1312                         task_unlock(current);
1313                 } else {
1314                         *user = NULL;
1315                         return ERR_PTR(-EPERM);
1316                 }
1317         }
1318
1319         sb = hugetlbfs_vfsmount[hstate_idx]->mnt_sb;
1320         quick_string.name = name;
1321         quick_string.len = strlen(quick_string.name);
1322         quick_string.hash = 0;
1323         path.dentry = d_alloc_pseudo(sb, &quick_string);
1324         if (!path.dentry)
1325                 goto out_shm_unlock;
1326
1327         d_set_d_op(path.dentry, &anon_ops);
1328         path.mnt = mntget(hugetlbfs_vfsmount[hstate_idx]);
1329         file = ERR_PTR(-ENOSPC);
1330         inode = hugetlbfs_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0);
1331         if (!inode)
1332                 goto out_dentry;
1333         if (creat_flags == HUGETLB_SHMFS_INODE)
1334                 inode->i_flags |= S_PRIVATE;
1335
1336         file = ERR_PTR(-ENOMEM);
1337         if (hugetlb_reserve_pages(inode, 0,
1338                         size >> huge_page_shift(hstate_inode(inode)), NULL,
1339                         acctflag))
1340                 goto out_inode;
1341
1342         d_instantiate(path.dentry, inode);
1343         inode->i_size = size;
1344         clear_nlink(inode);
1345
1346         file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
1347                         &hugetlbfs_file_operations);
1348         if (IS_ERR(file))
1349                 goto out_dentry; /* inode is already attached */
1350
1351         return file;
1352
1353 out_inode:
1354         iput(inode);
1355 out_dentry:
1356         path_put(&path);
1357 out_shm_unlock:
1358         if (*user) {
1359                 user_shm_unlock(size, *user);
1360                 *user = NULL;
1361         }
1362         return file;
1363 }
1364
1365 static int __init init_hugetlbfs_fs(void)
1366 {
1367         struct hstate *h;
1368         int error;
1369         int i;
1370
1371         if (!hugepages_supported()) {
1372                 pr_info("disabling because there are no supported hugepage sizes\n");
1373                 return -ENOTSUPP;
1374         }
1375
1376         error = -ENOMEM;
1377         hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1378                                         sizeof(struct hugetlbfs_inode_info),
1379                                         0, SLAB_ACCOUNT, init_once);
1380         if (hugetlbfs_inode_cachep == NULL)
1381                 goto out2;
1382
1383         error = register_filesystem(&hugetlbfs_fs_type);
1384         if (error)
1385                 goto out;
1386
1387         i = 0;
1388         for_each_hstate(h) {
1389                 char buf[50];
1390                 unsigned ps_kb = 1U << (h->order + PAGE_SHIFT - 10);
1391
1392                 snprintf(buf, sizeof(buf), "pagesize=%uK", ps_kb);
1393                 hugetlbfs_vfsmount[i] = kern_mount_data(&hugetlbfs_fs_type,
1394                                                         buf);
1395
1396                 if (IS_ERR(hugetlbfs_vfsmount[i])) {
1397                         pr_err("Cannot mount internal hugetlbfs for "
1398                                 "page size %uK", ps_kb);
1399                         error = PTR_ERR(hugetlbfs_vfsmount[i]);
1400                         hugetlbfs_vfsmount[i] = NULL;
1401                 }
1402                 i++;
1403         }
1404         /* Non default hstates are optional */
1405         if (!IS_ERR_OR_NULL(hugetlbfs_vfsmount[default_hstate_idx]))
1406                 return 0;
1407
1408  out:
1409         kmem_cache_destroy(hugetlbfs_inode_cachep);
1410  out2:
1411         return error;
1412 }
1413 fs_initcall(init_hugetlbfs_fs)