Merge git://git.kernel.org/pub/scm/linux/kernel/git/cmetcalf/linux-tile
[sfrench/cifs-2.6.git] / fs / gfs2 / aops.c
1 /*
2  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
3  * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
4  *
5  * This copyrighted material is made available to anyone wishing to use,
6  * modify, copy, or redistribute it subject to the terms and conditions
7  * of the GNU General Public License version 2.
8  */
9
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/spinlock.h>
13 #include <linux/completion.h>
14 #include <linux/buffer_head.h>
15 #include <linux/pagemap.h>
16 #include <linux/pagevec.h>
17 #include <linux/mpage.h>
18 #include <linux/fs.h>
19 #include <linux/writeback.h>
20 #include <linux/swap.h>
21 #include <linux/gfs2_ondisk.h>
22 #include <linux/backing-dev.h>
23 #include <linux/uio.h>
24 #include <trace/events/writeback.h>
25
26 #include "gfs2.h"
27 #include "incore.h"
28 #include "bmap.h"
29 #include "glock.h"
30 #include "inode.h"
31 #include "log.h"
32 #include "meta_io.h"
33 #include "quota.h"
34 #include "trans.h"
35 #include "rgrp.h"
36 #include "super.h"
37 #include "util.h"
38 #include "glops.h"
39
40
41 static void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page,
42                                    unsigned int from, unsigned int to)
43 {
44         struct buffer_head *head = page_buffers(page);
45         unsigned int bsize = head->b_size;
46         struct buffer_head *bh;
47         unsigned int start, end;
48
49         for (bh = head, start = 0; bh != head || !start;
50              bh = bh->b_this_page, start = end) {
51                 end = start + bsize;
52                 if (end <= from || start >= to)
53                         continue;
54                 if (gfs2_is_jdata(ip))
55                         set_buffer_uptodate(bh);
56                 gfs2_trans_add_data(ip->i_gl, bh);
57         }
58 }
59
60 /**
61  * gfs2_get_block_noalloc - Fills in a buffer head with details about a block
62  * @inode: The inode
63  * @lblock: The block number to look up
64  * @bh_result: The buffer head to return the result in
65  * @create: Non-zero if we may add block to the file
66  *
67  * Returns: errno
68  */
69
70 static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock,
71                                   struct buffer_head *bh_result, int create)
72 {
73         int error;
74
75         error = gfs2_block_map(inode, lblock, bh_result, 0);
76         if (error)
77                 return error;
78         if (!buffer_mapped(bh_result))
79                 return -EIO;
80         return 0;
81 }
82
83 static int gfs2_get_block_direct(struct inode *inode, sector_t lblock,
84                                  struct buffer_head *bh_result, int create)
85 {
86         return gfs2_block_map(inode, lblock, bh_result, 0);
87 }
88
89 /**
90  * gfs2_writepage_common - Common bits of writepage
91  * @page: The page to be written
92  * @wbc: The writeback control
93  *
94  * Returns: 1 if writepage is ok, otherwise an error code or zero if no error.
95  */
96
97 static int gfs2_writepage_common(struct page *page,
98                                  struct writeback_control *wbc)
99 {
100         struct inode *inode = page->mapping->host;
101         struct gfs2_inode *ip = GFS2_I(inode);
102         struct gfs2_sbd *sdp = GFS2_SB(inode);
103         loff_t i_size = i_size_read(inode);
104         pgoff_t end_index = i_size >> PAGE_SHIFT;
105         unsigned offset;
106
107         if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
108                 goto out;
109         if (current->journal_info)
110                 goto redirty;
111         /* Is the page fully outside i_size? (truncate in progress) */
112         offset = i_size & (PAGE_SIZE-1);
113         if (page->index > end_index || (page->index == end_index && !offset)) {
114                 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
115                 goto out;
116         }
117         return 1;
118 redirty:
119         redirty_page_for_writepage(wbc, page);
120 out:
121         unlock_page(page);
122         return 0;
123 }
124
125 /**
126  * gfs2_writepage - Write page for writeback mappings
127  * @page: The page
128  * @wbc: The writeback control
129  *
130  */
131
132 static int gfs2_writepage(struct page *page, struct writeback_control *wbc)
133 {
134         int ret;
135
136         ret = gfs2_writepage_common(page, wbc);
137         if (ret <= 0)
138                 return ret;
139
140         return nobh_writepage(page, gfs2_get_block_noalloc, wbc);
141 }
142
143 /* This is the same as calling block_write_full_page, but it also
144  * writes pages outside of i_size
145  */
146 static int gfs2_write_full_page(struct page *page, get_block_t *get_block,
147                                 struct writeback_control *wbc)
148 {
149         struct inode * const inode = page->mapping->host;
150         loff_t i_size = i_size_read(inode);
151         const pgoff_t end_index = i_size >> PAGE_SHIFT;
152         unsigned offset;
153
154         /*
155          * The page straddles i_size.  It must be zeroed out on each and every
156          * writepage invocation because it may be mmapped.  "A file is mapped
157          * in multiples of the page size.  For a file that is not a multiple of
158          * the  page size, the remaining memory is zeroed when mapped, and
159          * writes to that region are not written out to the file."
160          */
161         offset = i_size & (PAGE_SIZE-1);
162         if (page->index == end_index && offset)
163                 zero_user_segment(page, offset, PAGE_SIZE);
164
165         return __block_write_full_page(inode, page, get_block, wbc,
166                                        end_buffer_async_write);
167 }
168
169 /**
170  * __gfs2_jdata_writepage - The core of jdata writepage
171  * @page: The page to write
172  * @wbc: The writeback control
173  *
174  * This is shared between writepage and writepages and implements the
175  * core of the writepage operation. If a transaction is required then
176  * PageChecked will have been set and the transaction will have
177  * already been started before this is called.
178  */
179
180 static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
181 {
182         struct inode *inode = page->mapping->host;
183         struct gfs2_inode *ip = GFS2_I(inode);
184         struct gfs2_sbd *sdp = GFS2_SB(inode);
185
186         if (PageChecked(page)) {
187                 ClearPageChecked(page);
188                 if (!page_has_buffers(page)) {
189                         create_empty_buffers(page, inode->i_sb->s_blocksize,
190                                              BIT(BH_Dirty)|BIT(BH_Uptodate));
191                 }
192                 gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize-1);
193         }
194         return gfs2_write_full_page(page, gfs2_get_block_noalloc, wbc);
195 }
196
197 /**
198  * gfs2_jdata_writepage - Write complete page
199  * @page: Page to write
200  * @wbc: The writeback control
201  *
202  * Returns: errno
203  *
204  */
205
206 static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
207 {
208         struct inode *inode = page->mapping->host;
209         struct gfs2_inode *ip = GFS2_I(inode);
210         struct gfs2_sbd *sdp = GFS2_SB(inode);
211         int ret;
212
213         if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
214                 goto out;
215         if (PageChecked(page) || current->journal_info)
216                 goto out_ignore;
217         ret = __gfs2_jdata_writepage(page, wbc);
218         return ret;
219
220 out_ignore:
221         redirty_page_for_writepage(wbc, page);
222 out:
223         unlock_page(page);
224         return 0;
225 }
226
227 /**
228  * gfs2_writepages - Write a bunch of dirty pages back to disk
229  * @mapping: The mapping to write
230  * @wbc: Write-back control
231  *
232  * Used for both ordered and writeback modes.
233  */
234 static int gfs2_writepages(struct address_space *mapping,
235                            struct writeback_control *wbc)
236 {
237         struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
238         int ret = mpage_writepages(mapping, wbc, gfs2_get_block_noalloc);
239
240         /*
241          * Even if we didn't write any pages here, we might still be holding
242          * dirty pages in the ail. We forcibly flush the ail because we don't
243          * want balance_dirty_pages() to loop indefinitely trying to write out
244          * pages held in the ail that it can't find.
245          */
246         if (ret == 0)
247                 set_bit(SDF_FORCE_AIL_FLUSH, &sdp->sd_flags);
248
249         return ret;
250 }
251
252 /**
253  * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages
254  * @mapping: The mapping
255  * @wbc: The writeback control
256  * @pvec: The vector of pages
257  * @nr_pages: The number of pages to write
258  * @end: End position
259  * @done_index: Page index
260  *
261  * Returns: non-zero if loop should terminate, zero otherwise
262  */
263
264 static int gfs2_write_jdata_pagevec(struct address_space *mapping,
265                                     struct writeback_control *wbc,
266                                     struct pagevec *pvec,
267                                     int nr_pages, pgoff_t end,
268                                     pgoff_t *done_index)
269 {
270         struct inode *inode = mapping->host;
271         struct gfs2_sbd *sdp = GFS2_SB(inode);
272         unsigned nrblocks = nr_pages * (PAGE_SIZE/inode->i_sb->s_blocksize);
273         int i;
274         int ret;
275
276         ret = gfs2_trans_begin(sdp, nrblocks, nrblocks);
277         if (ret < 0)
278                 return ret;
279
280         for(i = 0; i < nr_pages; i++) {
281                 struct page *page = pvec->pages[i];
282
283                 /*
284                  * At this point, the page may be truncated or
285                  * invalidated (changing page->mapping to NULL), or
286                  * even swizzled back from swapper_space to tmpfs file
287                  * mapping. However, page->index will not change
288                  * because we have a reference on the page.
289                  */
290                 if (page->index > end) {
291                         /*
292                          * can't be range_cyclic (1st pass) because
293                          * end == -1 in that case.
294                          */
295                         ret = 1;
296                         break;
297                 }
298
299                 *done_index = page->index;
300
301                 lock_page(page);
302
303                 if (unlikely(page->mapping != mapping)) {
304 continue_unlock:
305                         unlock_page(page);
306                         continue;
307                 }
308
309                 if (!PageDirty(page)) {
310                         /* someone wrote it for us */
311                         goto continue_unlock;
312                 }
313
314                 if (PageWriteback(page)) {
315                         if (wbc->sync_mode != WB_SYNC_NONE)
316                                 wait_on_page_writeback(page);
317                         else
318                                 goto continue_unlock;
319                 }
320
321                 BUG_ON(PageWriteback(page));
322                 if (!clear_page_dirty_for_io(page))
323                         goto continue_unlock;
324
325                 trace_wbc_writepage(wbc, inode_to_bdi(inode));
326
327                 ret = __gfs2_jdata_writepage(page, wbc);
328                 if (unlikely(ret)) {
329                         if (ret == AOP_WRITEPAGE_ACTIVATE) {
330                                 unlock_page(page);
331                                 ret = 0;
332                         } else {
333
334                                 /*
335                                  * done_index is set past this page,
336                                  * so media errors will not choke
337                                  * background writeout for the entire
338                                  * file. This has consequences for
339                                  * range_cyclic semantics (ie. it may
340                                  * not be suitable for data integrity
341                                  * writeout).
342                                  */
343                                 *done_index = page->index + 1;
344                                 ret = 1;
345                                 break;
346                         }
347                 }
348
349                 /*
350                  * We stop writing back only if we are not doing
351                  * integrity sync. In case of integrity sync we have to
352                  * keep going until we have written all the pages
353                  * we tagged for writeback prior to entering this loop.
354                  */
355                 if (--wbc->nr_to_write <= 0 && wbc->sync_mode == WB_SYNC_NONE) {
356                         ret = 1;
357                         break;
358                 }
359
360         }
361         gfs2_trans_end(sdp);
362         return ret;
363 }
364
365 /**
366  * gfs2_write_cache_jdata - Like write_cache_pages but different
367  * @mapping: The mapping to write
368  * @wbc: The writeback control
369  *
370  * The reason that we use our own function here is that we need to
371  * start transactions before we grab page locks. This allows us
372  * to get the ordering right.
373  */
374
375 static int gfs2_write_cache_jdata(struct address_space *mapping,
376                                   struct writeback_control *wbc)
377 {
378         int ret = 0;
379         int done = 0;
380         struct pagevec pvec;
381         int nr_pages;
382         pgoff_t uninitialized_var(writeback_index);
383         pgoff_t index;
384         pgoff_t end;
385         pgoff_t done_index;
386         int cycled;
387         int range_whole = 0;
388         int tag;
389
390         pagevec_init(&pvec, 0);
391         if (wbc->range_cyclic) {
392                 writeback_index = mapping->writeback_index; /* prev offset */
393                 index = writeback_index;
394                 if (index == 0)
395                         cycled = 1;
396                 else
397                         cycled = 0;
398                 end = -1;
399         } else {
400                 index = wbc->range_start >> PAGE_SHIFT;
401                 end = wbc->range_end >> PAGE_SHIFT;
402                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
403                         range_whole = 1;
404                 cycled = 1; /* ignore range_cyclic tests */
405         }
406         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
407                 tag = PAGECACHE_TAG_TOWRITE;
408         else
409                 tag = PAGECACHE_TAG_DIRTY;
410
411 retry:
412         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
413                 tag_pages_for_writeback(mapping, index, end);
414         done_index = index;
415         while (!done && (index <= end)) {
416                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
417                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
418                 if (nr_pages == 0)
419                         break;
420
421                 ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, end, &done_index);
422                 if (ret)
423                         done = 1;
424                 if (ret > 0)
425                         ret = 0;
426                 pagevec_release(&pvec);
427                 cond_resched();
428         }
429
430         if (!cycled && !done) {
431                 /*
432                  * range_cyclic:
433                  * We hit the last page and there is more work to be done: wrap
434                  * back to the start of the file
435                  */
436                 cycled = 1;
437                 index = 0;
438                 end = writeback_index - 1;
439                 goto retry;
440         }
441
442         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
443                 mapping->writeback_index = done_index;
444
445         return ret;
446 }
447
448
449 /**
450  * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk
451  * @mapping: The mapping to write
452  * @wbc: The writeback control
453  * 
454  */
455
456 static int gfs2_jdata_writepages(struct address_space *mapping,
457                                  struct writeback_control *wbc)
458 {
459         struct gfs2_inode *ip = GFS2_I(mapping->host);
460         struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
461         int ret;
462
463         ret = gfs2_write_cache_jdata(mapping, wbc);
464         if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) {
465                 gfs2_log_flush(sdp, ip->i_gl, NORMAL_FLUSH);
466                 ret = gfs2_write_cache_jdata(mapping, wbc);
467         }
468         return ret;
469 }
470
471 /**
472  * stuffed_readpage - Fill in a Linux page with stuffed file data
473  * @ip: the inode
474  * @page: the page
475  *
476  * Returns: errno
477  */
478
479 static int stuffed_readpage(struct gfs2_inode *ip, struct page *page)
480 {
481         struct buffer_head *dibh;
482         u64 dsize = i_size_read(&ip->i_inode);
483         void *kaddr;
484         int error;
485
486         /*
487          * Due to the order of unstuffing files and ->fault(), we can be
488          * asked for a zero page in the case of a stuffed file being extended,
489          * so we need to supply one here. It doesn't happen often.
490          */
491         if (unlikely(page->index)) {
492                 zero_user(page, 0, PAGE_SIZE);
493                 SetPageUptodate(page);
494                 return 0;
495         }
496
497         error = gfs2_meta_inode_buffer(ip, &dibh);
498         if (error)
499                 return error;
500
501         kaddr = kmap_atomic(page);
502         if (dsize > (dibh->b_size - sizeof(struct gfs2_dinode)))
503                 dsize = (dibh->b_size - sizeof(struct gfs2_dinode));
504         memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
505         memset(kaddr + dsize, 0, PAGE_SIZE - dsize);
506         kunmap_atomic(kaddr);
507         flush_dcache_page(page);
508         brelse(dibh);
509         SetPageUptodate(page);
510
511         return 0;
512 }
513
514
515 /**
516  * __gfs2_readpage - readpage
517  * @file: The file to read a page for
518  * @page: The page to read
519  *
520  * This is the core of gfs2's readpage. Its used by the internal file
521  * reading code as in that case we already hold the glock. Also its
522  * called by gfs2_readpage() once the required lock has been granted.
523  *
524  */
525
526 static int __gfs2_readpage(void *file, struct page *page)
527 {
528         struct gfs2_inode *ip = GFS2_I(page->mapping->host);
529         struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
530         int error;
531
532         if (gfs2_is_stuffed(ip)) {
533                 error = stuffed_readpage(ip, page);
534                 unlock_page(page);
535         } else {
536                 error = mpage_readpage(page, gfs2_block_map);
537         }
538
539         if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
540                 return -EIO;
541
542         return error;
543 }
544
545 /**
546  * gfs2_readpage - read a page of a file
547  * @file: The file to read
548  * @page: The page of the file
549  *
550  * This deals with the locking required. We have to unlock and
551  * relock the page in order to get the locking in the right
552  * order.
553  */
554
555 static int gfs2_readpage(struct file *file, struct page *page)
556 {
557         struct address_space *mapping = page->mapping;
558         struct gfs2_inode *ip = GFS2_I(mapping->host);
559         struct gfs2_holder gh;
560         int error;
561
562         unlock_page(page);
563         gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
564         error = gfs2_glock_nq(&gh);
565         if (unlikely(error))
566                 goto out;
567         error = AOP_TRUNCATED_PAGE;
568         lock_page(page);
569         if (page->mapping == mapping && !PageUptodate(page))
570                 error = __gfs2_readpage(file, page);
571         else
572                 unlock_page(page);
573         gfs2_glock_dq(&gh);
574 out:
575         gfs2_holder_uninit(&gh);
576         if (error && error != AOP_TRUNCATED_PAGE)
577                 lock_page(page);
578         return error;
579 }
580
581 /**
582  * gfs2_internal_read - read an internal file
583  * @ip: The gfs2 inode
584  * @buf: The buffer to fill
585  * @pos: The file position
586  * @size: The amount to read
587  *
588  */
589
590 int gfs2_internal_read(struct gfs2_inode *ip, char *buf, loff_t *pos,
591                        unsigned size)
592 {
593         struct address_space *mapping = ip->i_inode.i_mapping;
594         unsigned long index = *pos / PAGE_SIZE;
595         unsigned offset = *pos & (PAGE_SIZE - 1);
596         unsigned copied = 0;
597         unsigned amt;
598         struct page *page;
599         void *p;
600
601         do {
602                 amt = size - copied;
603                 if (offset + size > PAGE_SIZE)
604                         amt = PAGE_SIZE - offset;
605                 page = read_cache_page(mapping, index, __gfs2_readpage, NULL);
606                 if (IS_ERR(page))
607                         return PTR_ERR(page);
608                 p = kmap_atomic(page);
609                 memcpy(buf + copied, p + offset, amt);
610                 kunmap_atomic(p);
611                 put_page(page);
612                 copied += amt;
613                 index++;
614                 offset = 0;
615         } while(copied < size);
616         (*pos) += size;
617         return size;
618 }
619
620 /**
621  * gfs2_readpages - Read a bunch of pages at once
622  * @file: The file to read from
623  * @mapping: Address space info
624  * @pages: List of pages to read
625  * @nr_pages: Number of pages to read
626  *
627  * Some notes:
628  * 1. This is only for readahead, so we can simply ignore any things
629  *    which are slightly inconvenient (such as locking conflicts between
630  *    the page lock and the glock) and return having done no I/O. Its
631  *    obviously not something we'd want to do on too regular a basis.
632  *    Any I/O we ignore at this time will be done via readpage later.
633  * 2. We don't handle stuffed files here we let readpage do the honours.
634  * 3. mpage_readpages() does most of the heavy lifting in the common case.
635  * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places.
636  */
637
638 static int gfs2_readpages(struct file *file, struct address_space *mapping,
639                           struct list_head *pages, unsigned nr_pages)
640 {
641         struct inode *inode = mapping->host;
642         struct gfs2_inode *ip = GFS2_I(inode);
643         struct gfs2_sbd *sdp = GFS2_SB(inode);
644         struct gfs2_holder gh;
645         int ret;
646
647         gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
648         ret = gfs2_glock_nq(&gh);
649         if (unlikely(ret))
650                 goto out_uninit;
651         if (!gfs2_is_stuffed(ip))
652                 ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map);
653         gfs2_glock_dq(&gh);
654 out_uninit:
655         gfs2_holder_uninit(&gh);
656         if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
657                 ret = -EIO;
658         return ret;
659 }
660
661 /**
662  * gfs2_write_begin - Begin to write to a file
663  * @file: The file to write to
664  * @mapping: The mapping in which to write
665  * @pos: The file offset at which to start writing
666  * @len: Length of the write
667  * @flags: Various flags
668  * @pagep: Pointer to return the page
669  * @fsdata: Pointer to return fs data (unused by GFS2)
670  *
671  * Returns: errno
672  */
673
674 static int gfs2_write_begin(struct file *file, struct address_space *mapping,
675                             loff_t pos, unsigned len, unsigned flags,
676                             struct page **pagep, void **fsdata)
677 {
678         struct gfs2_inode *ip = GFS2_I(mapping->host);
679         struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
680         struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
681         unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
682         unsigned requested = 0;
683         int alloc_required;
684         int error = 0;
685         pgoff_t index = pos >> PAGE_SHIFT;
686         unsigned from = pos & (PAGE_SIZE - 1);
687         struct page *page;
688
689         gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
690         error = gfs2_glock_nq(&ip->i_gh);
691         if (unlikely(error))
692                 goto out_uninit;
693         if (&ip->i_inode == sdp->sd_rindex) {
694                 error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
695                                            GL_NOCACHE, &m_ip->i_gh);
696                 if (unlikely(error)) {
697                         gfs2_glock_dq(&ip->i_gh);
698                         goto out_uninit;
699                 }
700         }
701
702         alloc_required = gfs2_write_alloc_required(ip, pos, len);
703
704         if (alloc_required || gfs2_is_jdata(ip))
705                 gfs2_write_calc_reserv(ip, len, &data_blocks, &ind_blocks);
706
707         if (alloc_required) {
708                 struct gfs2_alloc_parms ap = { .aflags = 0, };
709                 requested = data_blocks + ind_blocks;
710                 ap.target = requested;
711                 error = gfs2_quota_lock_check(ip, &ap);
712                 if (error)
713                         goto out_unlock;
714
715                 error = gfs2_inplace_reserve(ip, &ap);
716                 if (error)
717                         goto out_qunlock;
718         }
719
720         rblocks = RES_DINODE + ind_blocks;
721         if (gfs2_is_jdata(ip))
722                 rblocks += data_blocks ? data_blocks : 1;
723         if (ind_blocks || data_blocks)
724                 rblocks += RES_STATFS + RES_QUOTA;
725         if (&ip->i_inode == sdp->sd_rindex)
726                 rblocks += 2 * RES_STATFS;
727         if (alloc_required)
728                 rblocks += gfs2_rg_blocks(ip, requested);
729
730         error = gfs2_trans_begin(sdp, rblocks,
731                                  PAGE_SIZE/sdp->sd_sb.sb_bsize);
732         if (error)
733                 goto out_trans_fail;
734
735         error = -ENOMEM;
736         flags |= AOP_FLAG_NOFS;
737         page = grab_cache_page_write_begin(mapping, index, flags);
738         *pagep = page;
739         if (unlikely(!page))
740                 goto out_endtrans;
741
742         if (gfs2_is_stuffed(ip)) {
743                 error = 0;
744                 if (pos + len > sdp->sd_sb.sb_bsize - sizeof(struct gfs2_dinode)) {
745                         error = gfs2_unstuff_dinode(ip, page);
746                         if (error == 0)
747                                 goto prepare_write;
748                 } else if (!PageUptodate(page)) {
749                         error = stuffed_readpage(ip, page);
750                 }
751                 goto out;
752         }
753
754 prepare_write:
755         error = __block_write_begin(page, from, len, gfs2_block_map);
756 out:
757         if (error == 0)
758                 return 0;
759
760         unlock_page(page);
761         put_page(page);
762
763         gfs2_trans_end(sdp);
764         if (pos + len > ip->i_inode.i_size)
765                 gfs2_trim_blocks(&ip->i_inode);
766         goto out_trans_fail;
767
768 out_endtrans:
769         gfs2_trans_end(sdp);
770 out_trans_fail:
771         if (alloc_required) {
772                 gfs2_inplace_release(ip);
773 out_qunlock:
774                 gfs2_quota_unlock(ip);
775         }
776 out_unlock:
777         if (&ip->i_inode == sdp->sd_rindex) {
778                 gfs2_glock_dq(&m_ip->i_gh);
779                 gfs2_holder_uninit(&m_ip->i_gh);
780         }
781         gfs2_glock_dq(&ip->i_gh);
782 out_uninit:
783         gfs2_holder_uninit(&ip->i_gh);
784         return error;
785 }
786
787 /**
788  * adjust_fs_space - Adjusts the free space available due to gfs2_grow
789  * @inode: the rindex inode
790  */
791 static void adjust_fs_space(struct inode *inode)
792 {
793         struct gfs2_sbd *sdp = inode->i_sb->s_fs_info;
794         struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
795         struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode);
796         struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
797         struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
798         struct buffer_head *m_bh, *l_bh;
799         u64 fs_total, new_free;
800
801         /* Total up the file system space, according to the latest rindex. */
802         fs_total = gfs2_ri_total(sdp);
803         if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0)
804                 return;
805
806         spin_lock(&sdp->sd_statfs_spin);
807         gfs2_statfs_change_in(m_sc, m_bh->b_data +
808                               sizeof(struct gfs2_dinode));
809         if (fs_total > (m_sc->sc_total + l_sc->sc_total))
810                 new_free = fs_total - (m_sc->sc_total + l_sc->sc_total);
811         else
812                 new_free = 0;
813         spin_unlock(&sdp->sd_statfs_spin);
814         fs_warn(sdp, "File system extended by %llu blocks.\n",
815                 (unsigned long long)new_free);
816         gfs2_statfs_change(sdp, new_free, new_free, 0);
817
818         if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0)
819                 goto out;
820         update_statfs(sdp, m_bh, l_bh);
821         brelse(l_bh);
822 out:
823         brelse(m_bh);
824 }
825
826 /**
827  * gfs2_stuffed_write_end - Write end for stuffed files
828  * @inode: The inode
829  * @dibh: The buffer_head containing the on-disk inode
830  * @pos: The file position
831  * @len: The length of the write
832  * @copied: How much was actually copied by the VFS
833  * @page: The page
834  *
835  * This copies the data from the page into the inode block after
836  * the inode data structure itself.
837  *
838  * Returns: errno
839  */
840 static int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh,
841                                   loff_t pos, unsigned len, unsigned copied,
842                                   struct page *page)
843 {
844         struct gfs2_inode *ip = GFS2_I(inode);
845         struct gfs2_sbd *sdp = GFS2_SB(inode);
846         struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
847         u64 to = pos + copied;
848         void *kaddr;
849         unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode);
850
851         BUG_ON((pos + len) > (dibh->b_size - sizeof(struct gfs2_dinode)));
852         kaddr = kmap_atomic(page);
853         memcpy(buf + pos, kaddr + pos, copied);
854         flush_dcache_page(page);
855         kunmap_atomic(kaddr);
856
857         WARN_ON(!PageUptodate(page));
858         unlock_page(page);
859         put_page(page);
860
861         if (copied) {
862                 if (inode->i_size < to)
863                         i_size_write(inode, to);
864                 mark_inode_dirty(inode);
865         }
866
867         if (inode == sdp->sd_rindex) {
868                 adjust_fs_space(inode);
869                 sdp->sd_rindex_uptodate = 0;
870         }
871
872         brelse(dibh);
873         gfs2_trans_end(sdp);
874         if (inode == sdp->sd_rindex) {
875                 gfs2_glock_dq(&m_ip->i_gh);
876                 gfs2_holder_uninit(&m_ip->i_gh);
877         }
878         gfs2_glock_dq(&ip->i_gh);
879         gfs2_holder_uninit(&ip->i_gh);
880         return copied;
881 }
882
883 /**
884  * gfs2_write_end
885  * @file: The file to write to
886  * @mapping: The address space to write to
887  * @pos: The file position
888  * @len: The length of the data
889  * @copied: How much was actually copied by the VFS
890  * @page: The page that has been written
891  * @fsdata: The fsdata (unused in GFS2)
892  *
893  * The main write_end function for GFS2. We have a separate one for
894  * stuffed files as they are slightly different, otherwise we just
895  * put our locking around the VFS provided functions.
896  *
897  * Returns: errno
898  */
899
900 static int gfs2_write_end(struct file *file, struct address_space *mapping,
901                           loff_t pos, unsigned len, unsigned copied,
902                           struct page *page, void *fsdata)
903 {
904         struct inode *inode = page->mapping->host;
905         struct gfs2_inode *ip = GFS2_I(inode);
906         struct gfs2_sbd *sdp = GFS2_SB(inode);
907         struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
908         struct buffer_head *dibh;
909         unsigned int from = pos & (PAGE_SIZE - 1);
910         unsigned int to = from + len;
911         int ret;
912         struct gfs2_trans *tr = current->journal_info;
913         BUG_ON(!tr);
914
915         BUG_ON(gfs2_glock_is_locked_by_me(ip->i_gl) == NULL);
916
917         ret = gfs2_meta_inode_buffer(ip, &dibh);
918         if (unlikely(ret)) {
919                 unlock_page(page);
920                 put_page(page);
921                 goto failed;
922         }
923
924         if (gfs2_is_stuffed(ip))
925                 return gfs2_stuffed_write_end(inode, dibh, pos, len, copied, page);
926
927         if (!gfs2_is_writeback(ip))
928                 gfs2_page_add_databufs(ip, page, from, to);
929
930         ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
931         if (tr->tr_num_buf_new)
932                 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
933         else
934                 gfs2_trans_add_meta(ip->i_gl, dibh);
935
936
937         if (inode == sdp->sd_rindex) {
938                 adjust_fs_space(inode);
939                 sdp->sd_rindex_uptodate = 0;
940         }
941
942         brelse(dibh);
943 failed:
944         gfs2_trans_end(sdp);
945         gfs2_inplace_release(ip);
946         if (ip->i_qadata && ip->i_qadata->qa_qd_num)
947                 gfs2_quota_unlock(ip);
948         if (inode == sdp->sd_rindex) {
949                 gfs2_glock_dq(&m_ip->i_gh);
950                 gfs2_holder_uninit(&m_ip->i_gh);
951         }
952         gfs2_glock_dq(&ip->i_gh);
953         gfs2_holder_uninit(&ip->i_gh);
954         return ret;
955 }
956
957 /**
958  * gfs2_set_page_dirty - Page dirtying function
959  * @page: The page to dirty
960  *
961  * Returns: 1 if it dirtyed the page, or 0 otherwise
962  */
963  
964 static int gfs2_set_page_dirty(struct page *page)
965 {
966         SetPageChecked(page);
967         return __set_page_dirty_buffers(page);
968 }
969
970 /**
971  * gfs2_bmap - Block map function
972  * @mapping: Address space info
973  * @lblock: The block to map
974  *
975  * Returns: The disk address for the block or 0 on hole or error
976  */
977
978 static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock)
979 {
980         struct gfs2_inode *ip = GFS2_I(mapping->host);
981         struct gfs2_holder i_gh;
982         sector_t dblock = 0;
983         int error;
984
985         error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
986         if (error)
987                 return 0;
988
989         if (!gfs2_is_stuffed(ip))
990                 dblock = generic_block_bmap(mapping, lblock, gfs2_block_map);
991
992         gfs2_glock_dq_uninit(&i_gh);
993
994         return dblock;
995 }
996
997 static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh)
998 {
999         struct gfs2_bufdata *bd;
1000
1001         lock_buffer(bh);
1002         gfs2_log_lock(sdp);
1003         clear_buffer_dirty(bh);
1004         bd = bh->b_private;
1005         if (bd) {
1006                 if (!list_empty(&bd->bd_list) && !buffer_pinned(bh))
1007                         list_del_init(&bd->bd_list);
1008                 else
1009                         gfs2_remove_from_journal(bh, REMOVE_JDATA);
1010         }
1011         bh->b_bdev = NULL;
1012         clear_buffer_mapped(bh);
1013         clear_buffer_req(bh);
1014         clear_buffer_new(bh);
1015         gfs2_log_unlock(sdp);
1016         unlock_buffer(bh);
1017 }
1018
1019 static void gfs2_invalidatepage(struct page *page, unsigned int offset,
1020                                 unsigned int length)
1021 {
1022         struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
1023         unsigned int stop = offset + length;
1024         int partial_page = (offset || length < PAGE_SIZE);
1025         struct buffer_head *bh, *head;
1026         unsigned long pos = 0;
1027
1028         BUG_ON(!PageLocked(page));
1029         if (!partial_page)
1030                 ClearPageChecked(page);
1031         if (!page_has_buffers(page))
1032                 goto out;
1033
1034         bh = head = page_buffers(page);
1035         do {
1036                 if (pos + bh->b_size > stop)
1037                         return;
1038
1039                 if (offset <= pos)
1040                         gfs2_discard(sdp, bh);
1041                 pos += bh->b_size;
1042                 bh = bh->b_this_page;
1043         } while (bh != head);
1044 out:
1045         if (!partial_page)
1046                 try_to_release_page(page, 0);
1047 }
1048
1049 /**
1050  * gfs2_ok_for_dio - check that dio is valid on this file
1051  * @ip: The inode
1052  * @offset: The offset at which we are reading or writing
1053  *
1054  * Returns: 0 (to ignore the i/o request and thus fall back to buffered i/o)
1055  *          1 (to accept the i/o request)
1056  */
1057 static int gfs2_ok_for_dio(struct gfs2_inode *ip, loff_t offset)
1058 {
1059         /*
1060          * Should we return an error here? I can't see that O_DIRECT for
1061          * a stuffed file makes any sense. For now we'll silently fall
1062          * back to buffered I/O
1063          */
1064         if (gfs2_is_stuffed(ip))
1065                 return 0;
1066
1067         if (offset >= i_size_read(&ip->i_inode))
1068                 return 0;
1069         return 1;
1070 }
1071
1072
1073
1074 static ssize_t gfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1075 {
1076         struct file *file = iocb->ki_filp;
1077         struct inode *inode = file->f_mapping->host;
1078         struct address_space *mapping = inode->i_mapping;
1079         struct gfs2_inode *ip = GFS2_I(inode);
1080         loff_t offset = iocb->ki_pos;
1081         struct gfs2_holder gh;
1082         int rv;
1083
1084         /*
1085          * Deferred lock, even if its a write, since we do no allocation
1086          * on this path. All we need change is atime, and this lock mode
1087          * ensures that other nodes have flushed their buffered read caches
1088          * (i.e. their page cache entries for this inode). We do not,
1089          * unfortunately have the option of only flushing a range like
1090          * the VFS does.
1091          */
1092         gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
1093         rv = gfs2_glock_nq(&gh);
1094         if (rv)
1095                 goto out_uninit;
1096         rv = gfs2_ok_for_dio(ip, offset);
1097         if (rv != 1)
1098                 goto out; /* dio not valid, fall back to buffered i/o */
1099
1100         /*
1101          * Now since we are holding a deferred (CW) lock at this point, you
1102          * might be wondering why this is ever needed. There is a case however
1103          * where we've granted a deferred local lock against a cached exclusive
1104          * glock. That is ok provided all granted local locks are deferred, but
1105          * it also means that it is possible to encounter pages which are
1106          * cached and possibly also mapped. So here we check for that and sort
1107          * them out ahead of the dio. The glock state machine will take care of
1108          * everything else.
1109          *
1110          * If in fact the cached glock state (gl->gl_state) is deferred (CW) in
1111          * the first place, mapping->nr_pages will always be zero.
1112          */
1113         if (mapping->nrpages) {
1114                 loff_t lstart = offset & ~(PAGE_SIZE - 1);
1115                 loff_t len = iov_iter_count(iter);
1116                 loff_t end = PAGE_ALIGN(offset + len) - 1;
1117
1118                 rv = 0;
1119                 if (len == 0)
1120                         goto out;
1121                 if (test_and_clear_bit(GIF_SW_PAGED, &ip->i_flags))
1122                         unmap_shared_mapping_range(ip->i_inode.i_mapping, offset, len);
1123                 rv = filemap_write_and_wait_range(mapping, lstart, end);
1124                 if (rv)
1125                         goto out;
1126                 if (iov_iter_rw(iter) == WRITE)
1127                         truncate_inode_pages_range(mapping, lstart, end);
1128         }
1129
1130         rv = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
1131                                   gfs2_get_block_direct, NULL, NULL, 0);
1132 out:
1133         gfs2_glock_dq(&gh);
1134 out_uninit:
1135         gfs2_holder_uninit(&gh);
1136         return rv;
1137 }
1138
1139 /**
1140  * gfs2_releasepage - free the metadata associated with a page
1141  * @page: the page that's being released
1142  * @gfp_mask: passed from Linux VFS, ignored by us
1143  *
1144  * Call try_to_free_buffers() if the buffers in this page can be
1145  * released.
1146  *
1147  * Returns: 0
1148  */
1149
1150 int gfs2_releasepage(struct page *page, gfp_t gfp_mask)
1151 {
1152         struct address_space *mapping = page->mapping;
1153         struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
1154         struct buffer_head *bh, *head;
1155         struct gfs2_bufdata *bd;
1156
1157         if (!page_has_buffers(page))
1158                 return 0;
1159
1160         /*
1161          * From xfs_vm_releasepage: mm accommodates an old ext3 case where
1162          * clean pages might not have had the dirty bit cleared.  Thus, it can
1163          * send actual dirty pages to ->releasepage() via shrink_active_list().
1164          *
1165          * As a workaround, we skip pages that contain dirty buffers below.
1166          * Once ->releasepage isn't called on dirty pages anymore, we can warn
1167          * on dirty buffers like we used to here again.
1168          */
1169
1170         gfs2_log_lock(sdp);
1171         spin_lock(&sdp->sd_ail_lock);
1172         head = bh = page_buffers(page);
1173         do {
1174                 if (atomic_read(&bh->b_count))
1175                         goto cannot_release;
1176                 bd = bh->b_private;
1177                 if (bd && bd->bd_tr)
1178                         goto cannot_release;
1179                 if (buffer_dirty(bh) || WARN_ON(buffer_pinned(bh)))
1180                         goto cannot_release;
1181                 bh = bh->b_this_page;
1182         } while(bh != head);
1183         spin_unlock(&sdp->sd_ail_lock);
1184
1185         head = bh = page_buffers(page);
1186         do {
1187                 bd = bh->b_private;
1188                 if (bd) {
1189                         gfs2_assert_warn(sdp, bd->bd_bh == bh);
1190                         if (!list_empty(&bd->bd_list))
1191                                 list_del_init(&bd->bd_list);
1192                         bd->bd_bh = NULL;
1193                         bh->b_private = NULL;
1194                         kmem_cache_free(gfs2_bufdata_cachep, bd);
1195                 }
1196
1197                 bh = bh->b_this_page;
1198         } while (bh != head);
1199         gfs2_log_unlock(sdp);
1200
1201         return try_to_free_buffers(page);
1202
1203 cannot_release:
1204         spin_unlock(&sdp->sd_ail_lock);
1205         gfs2_log_unlock(sdp);
1206         return 0;
1207 }
1208
1209 static const struct address_space_operations gfs2_writeback_aops = {
1210         .writepage = gfs2_writepage,
1211         .writepages = gfs2_writepages,
1212         .readpage = gfs2_readpage,
1213         .readpages = gfs2_readpages,
1214         .write_begin = gfs2_write_begin,
1215         .write_end = gfs2_write_end,
1216         .bmap = gfs2_bmap,
1217         .invalidatepage = gfs2_invalidatepage,
1218         .releasepage = gfs2_releasepage,
1219         .direct_IO = gfs2_direct_IO,
1220         .migratepage = buffer_migrate_page,
1221         .is_partially_uptodate = block_is_partially_uptodate,
1222         .error_remove_page = generic_error_remove_page,
1223 };
1224
1225 static const struct address_space_operations gfs2_ordered_aops = {
1226         .writepage = gfs2_writepage,
1227         .writepages = gfs2_writepages,
1228         .readpage = gfs2_readpage,
1229         .readpages = gfs2_readpages,
1230         .write_begin = gfs2_write_begin,
1231         .write_end = gfs2_write_end,
1232         .set_page_dirty = gfs2_set_page_dirty,
1233         .bmap = gfs2_bmap,
1234         .invalidatepage = gfs2_invalidatepage,
1235         .releasepage = gfs2_releasepage,
1236         .direct_IO = gfs2_direct_IO,
1237         .migratepage = buffer_migrate_page,
1238         .is_partially_uptodate = block_is_partially_uptodate,
1239         .error_remove_page = generic_error_remove_page,
1240 };
1241
1242 static const struct address_space_operations gfs2_jdata_aops = {
1243         .writepage = gfs2_jdata_writepage,
1244         .writepages = gfs2_jdata_writepages,
1245         .readpage = gfs2_readpage,
1246         .readpages = gfs2_readpages,
1247         .write_begin = gfs2_write_begin,
1248         .write_end = gfs2_write_end,
1249         .set_page_dirty = gfs2_set_page_dirty,
1250         .bmap = gfs2_bmap,
1251         .invalidatepage = gfs2_invalidatepage,
1252         .releasepage = gfs2_releasepage,
1253         .is_partially_uptodate = block_is_partially_uptodate,
1254         .error_remove_page = generic_error_remove_page,
1255 };
1256
1257 void gfs2_set_aops(struct inode *inode)
1258 {
1259         struct gfs2_inode *ip = GFS2_I(inode);
1260
1261         if (gfs2_is_writeback(ip))
1262                 inode->i_mapping->a_ops = &gfs2_writeback_aops;
1263         else if (gfs2_is_ordered(ip))
1264                 inode->i_mapping->a_ops = &gfs2_ordered_aops;
1265         else if (gfs2_is_jdata(ip))
1266                 inode->i_mapping->a_ops = &gfs2_jdata_aops;
1267         else
1268                 BUG();
1269 }
1270