gfs2: use pagevec_lookup_range_tag()
[sfrench/cifs-2.6.git] / fs / gfs2 / aops.c
1 /*
2  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
3  * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
4  *
5  * This copyrighted material is made available to anyone wishing to use,
6  * modify, copy, or redistribute it subject to the terms and conditions
7  * of the GNU General Public License version 2.
8  */
9
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/spinlock.h>
13 #include <linux/completion.h>
14 #include <linux/buffer_head.h>
15 #include <linux/pagemap.h>
16 #include <linux/pagevec.h>
17 #include <linux/mpage.h>
18 #include <linux/fs.h>
19 #include <linux/writeback.h>
20 #include <linux/swap.h>
21 #include <linux/gfs2_ondisk.h>
22 #include <linux/backing-dev.h>
23 #include <linux/uio.h>
24 #include <trace/events/writeback.h>
25
26 #include "gfs2.h"
27 #include "incore.h"
28 #include "bmap.h"
29 #include "glock.h"
30 #include "inode.h"
31 #include "log.h"
32 #include "meta_io.h"
33 #include "quota.h"
34 #include "trans.h"
35 #include "rgrp.h"
36 #include "super.h"
37 #include "util.h"
38 #include "glops.h"
39
40
41 static void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page,
42                                    unsigned int from, unsigned int to)
43 {
44         struct buffer_head *head = page_buffers(page);
45         unsigned int bsize = head->b_size;
46         struct buffer_head *bh;
47         unsigned int start, end;
48
49         for (bh = head, start = 0; bh != head || !start;
50              bh = bh->b_this_page, start = end) {
51                 end = start + bsize;
52                 if (end <= from || start >= to)
53                         continue;
54                 if (gfs2_is_jdata(ip))
55                         set_buffer_uptodate(bh);
56                 gfs2_trans_add_data(ip->i_gl, bh);
57         }
58 }
59
60 /**
61  * gfs2_get_block_noalloc - Fills in a buffer head with details about a block
62  * @inode: The inode
63  * @lblock: The block number to look up
64  * @bh_result: The buffer head to return the result in
65  * @create: Non-zero if we may add block to the file
66  *
67  * Returns: errno
68  */
69
70 static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock,
71                                   struct buffer_head *bh_result, int create)
72 {
73         int error;
74
75         error = gfs2_block_map(inode, lblock, bh_result, 0);
76         if (error)
77                 return error;
78         if (!buffer_mapped(bh_result))
79                 return -EIO;
80         return 0;
81 }
82
83 static int gfs2_get_block_direct(struct inode *inode, sector_t lblock,
84                                  struct buffer_head *bh_result, int create)
85 {
86         return gfs2_block_map(inode, lblock, bh_result, 0);
87 }
88
89 /**
90  * gfs2_writepage_common - Common bits of writepage
91  * @page: The page to be written
92  * @wbc: The writeback control
93  *
94  * Returns: 1 if writepage is ok, otherwise an error code or zero if no error.
95  */
96
97 static int gfs2_writepage_common(struct page *page,
98                                  struct writeback_control *wbc)
99 {
100         struct inode *inode = page->mapping->host;
101         struct gfs2_inode *ip = GFS2_I(inode);
102         struct gfs2_sbd *sdp = GFS2_SB(inode);
103         loff_t i_size = i_size_read(inode);
104         pgoff_t end_index = i_size >> PAGE_SHIFT;
105         unsigned offset;
106
107         if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
108                 goto out;
109         if (current->journal_info)
110                 goto redirty;
111         /* Is the page fully outside i_size? (truncate in progress) */
112         offset = i_size & (PAGE_SIZE-1);
113         if (page->index > end_index || (page->index == end_index && !offset)) {
114                 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
115                 goto out;
116         }
117         return 1;
118 redirty:
119         redirty_page_for_writepage(wbc, page);
120 out:
121         unlock_page(page);
122         return 0;
123 }
124
125 /**
126  * gfs2_writepage - Write page for writeback mappings
127  * @page: The page
128  * @wbc: The writeback control
129  *
130  */
131
132 static int gfs2_writepage(struct page *page, struct writeback_control *wbc)
133 {
134         int ret;
135
136         ret = gfs2_writepage_common(page, wbc);
137         if (ret <= 0)
138                 return ret;
139
140         return nobh_writepage(page, gfs2_get_block_noalloc, wbc);
141 }
142
143 /* This is the same as calling block_write_full_page, but it also
144  * writes pages outside of i_size
145  */
146 static int gfs2_write_full_page(struct page *page, get_block_t *get_block,
147                                 struct writeback_control *wbc)
148 {
149         struct inode * const inode = page->mapping->host;
150         loff_t i_size = i_size_read(inode);
151         const pgoff_t end_index = i_size >> PAGE_SHIFT;
152         unsigned offset;
153
154         /*
155          * The page straddles i_size.  It must be zeroed out on each and every
156          * writepage invocation because it may be mmapped.  "A file is mapped
157          * in multiples of the page size.  For a file that is not a multiple of
158          * the  page size, the remaining memory is zeroed when mapped, and
159          * writes to that region are not written out to the file."
160          */
161         offset = i_size & (PAGE_SIZE-1);
162         if (page->index == end_index && offset)
163                 zero_user_segment(page, offset, PAGE_SIZE);
164
165         return __block_write_full_page(inode, page, get_block, wbc,
166                                        end_buffer_async_write);
167 }
168
169 /**
170  * __gfs2_jdata_writepage - The core of jdata writepage
171  * @page: The page to write
172  * @wbc: The writeback control
173  *
174  * This is shared between writepage and writepages and implements the
175  * core of the writepage operation. If a transaction is required then
176  * PageChecked will have been set and the transaction will have
177  * already been started before this is called.
178  */
179
180 static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
181 {
182         struct inode *inode = page->mapping->host;
183         struct gfs2_inode *ip = GFS2_I(inode);
184         struct gfs2_sbd *sdp = GFS2_SB(inode);
185
186         if (PageChecked(page)) {
187                 ClearPageChecked(page);
188                 if (!page_has_buffers(page)) {
189                         create_empty_buffers(page, inode->i_sb->s_blocksize,
190                                              BIT(BH_Dirty)|BIT(BH_Uptodate));
191                 }
192                 gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize-1);
193         }
194         return gfs2_write_full_page(page, gfs2_get_block_noalloc, wbc);
195 }
196
197 /**
198  * gfs2_jdata_writepage - Write complete page
199  * @page: Page to write
200  * @wbc: The writeback control
201  *
202  * Returns: errno
203  *
204  */
205
206 static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
207 {
208         struct inode *inode = page->mapping->host;
209         struct gfs2_inode *ip = GFS2_I(inode);
210         struct gfs2_sbd *sdp = GFS2_SB(inode);
211         int ret;
212
213         if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
214                 goto out;
215         if (PageChecked(page) || current->journal_info)
216                 goto out_ignore;
217         ret = __gfs2_jdata_writepage(page, wbc);
218         return ret;
219
220 out_ignore:
221         redirty_page_for_writepage(wbc, page);
222 out:
223         unlock_page(page);
224         return 0;
225 }
226
227 /**
228  * gfs2_writepages - Write a bunch of dirty pages back to disk
229  * @mapping: The mapping to write
230  * @wbc: Write-back control
231  *
232  * Used for both ordered and writeback modes.
233  */
234 static int gfs2_writepages(struct address_space *mapping,
235                            struct writeback_control *wbc)
236 {
237         struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
238         int ret = mpage_writepages(mapping, wbc, gfs2_get_block_noalloc);
239
240         /*
241          * Even if we didn't write any pages here, we might still be holding
242          * dirty pages in the ail. We forcibly flush the ail because we don't
243          * want balance_dirty_pages() to loop indefinitely trying to write out
244          * pages held in the ail that it can't find.
245          */
246         if (ret == 0)
247                 set_bit(SDF_FORCE_AIL_FLUSH, &sdp->sd_flags);
248
249         return ret;
250 }
251
252 /**
253  * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages
254  * @mapping: The mapping
255  * @wbc: The writeback control
256  * @pvec: The vector of pages
257  * @nr_pages: The number of pages to write
258  * @end: End position
259  * @done_index: Page index
260  *
261  * Returns: non-zero if loop should terminate, zero otherwise
262  */
263
264 static int gfs2_write_jdata_pagevec(struct address_space *mapping,
265                                     struct writeback_control *wbc,
266                                     struct pagevec *pvec,
267                                     int nr_pages, pgoff_t end,
268                                     pgoff_t *done_index)
269 {
270         struct inode *inode = mapping->host;
271         struct gfs2_sbd *sdp = GFS2_SB(inode);
272         unsigned nrblocks = nr_pages * (PAGE_SIZE/inode->i_sb->s_blocksize);
273         int i;
274         int ret;
275
276         ret = gfs2_trans_begin(sdp, nrblocks, nrblocks);
277         if (ret < 0)
278                 return ret;
279
280         for(i = 0; i < nr_pages; i++) {
281                 struct page *page = pvec->pages[i];
282
283                 *done_index = page->index;
284
285                 lock_page(page);
286
287                 if (unlikely(page->mapping != mapping)) {
288 continue_unlock:
289                         unlock_page(page);
290                         continue;
291                 }
292
293                 if (!PageDirty(page)) {
294                         /* someone wrote it for us */
295                         goto continue_unlock;
296                 }
297
298                 if (PageWriteback(page)) {
299                         if (wbc->sync_mode != WB_SYNC_NONE)
300                                 wait_on_page_writeback(page);
301                         else
302                                 goto continue_unlock;
303                 }
304
305                 BUG_ON(PageWriteback(page));
306                 if (!clear_page_dirty_for_io(page))
307                         goto continue_unlock;
308
309                 trace_wbc_writepage(wbc, inode_to_bdi(inode));
310
311                 ret = __gfs2_jdata_writepage(page, wbc);
312                 if (unlikely(ret)) {
313                         if (ret == AOP_WRITEPAGE_ACTIVATE) {
314                                 unlock_page(page);
315                                 ret = 0;
316                         } else {
317
318                                 /*
319                                  * done_index is set past this page,
320                                  * so media errors will not choke
321                                  * background writeout for the entire
322                                  * file. This has consequences for
323                                  * range_cyclic semantics (ie. it may
324                                  * not be suitable for data integrity
325                                  * writeout).
326                                  */
327                                 *done_index = page->index + 1;
328                                 ret = 1;
329                                 break;
330                         }
331                 }
332
333                 /*
334                  * We stop writing back only if we are not doing
335                  * integrity sync. In case of integrity sync we have to
336                  * keep going until we have written all the pages
337                  * we tagged for writeback prior to entering this loop.
338                  */
339                 if (--wbc->nr_to_write <= 0 && wbc->sync_mode == WB_SYNC_NONE) {
340                         ret = 1;
341                         break;
342                 }
343
344         }
345         gfs2_trans_end(sdp);
346         return ret;
347 }
348
349 /**
350  * gfs2_write_cache_jdata - Like write_cache_pages but different
351  * @mapping: The mapping to write
352  * @wbc: The writeback control
353  *
354  * The reason that we use our own function here is that we need to
355  * start transactions before we grab page locks. This allows us
356  * to get the ordering right.
357  */
358
359 static int gfs2_write_cache_jdata(struct address_space *mapping,
360                                   struct writeback_control *wbc)
361 {
362         int ret = 0;
363         int done = 0;
364         struct pagevec pvec;
365         int nr_pages;
366         pgoff_t uninitialized_var(writeback_index);
367         pgoff_t index;
368         pgoff_t end;
369         pgoff_t done_index;
370         int cycled;
371         int range_whole = 0;
372         int tag;
373
374         pagevec_init(&pvec, 0);
375         if (wbc->range_cyclic) {
376                 writeback_index = mapping->writeback_index; /* prev offset */
377                 index = writeback_index;
378                 if (index == 0)
379                         cycled = 1;
380                 else
381                         cycled = 0;
382                 end = -1;
383         } else {
384                 index = wbc->range_start >> PAGE_SHIFT;
385                 end = wbc->range_end >> PAGE_SHIFT;
386                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
387                         range_whole = 1;
388                 cycled = 1; /* ignore range_cyclic tests */
389         }
390         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
391                 tag = PAGECACHE_TAG_TOWRITE;
392         else
393                 tag = PAGECACHE_TAG_DIRTY;
394
395 retry:
396         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
397                 tag_pages_for_writeback(mapping, index, end);
398         done_index = index;
399         while (!done && (index <= end)) {
400                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
401                                 tag, PAGEVEC_SIZE);
402                 if (nr_pages == 0)
403                         break;
404
405                 ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, end, &done_index);
406                 if (ret)
407                         done = 1;
408                 if (ret > 0)
409                         ret = 0;
410                 pagevec_release(&pvec);
411                 cond_resched();
412         }
413
414         if (!cycled && !done) {
415                 /*
416                  * range_cyclic:
417                  * We hit the last page and there is more work to be done: wrap
418                  * back to the start of the file
419                  */
420                 cycled = 1;
421                 index = 0;
422                 end = writeback_index - 1;
423                 goto retry;
424         }
425
426         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
427                 mapping->writeback_index = done_index;
428
429         return ret;
430 }
431
432
433 /**
434  * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk
435  * @mapping: The mapping to write
436  * @wbc: The writeback control
437  * 
438  */
439
440 static int gfs2_jdata_writepages(struct address_space *mapping,
441                                  struct writeback_control *wbc)
442 {
443         struct gfs2_inode *ip = GFS2_I(mapping->host);
444         struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
445         int ret;
446
447         ret = gfs2_write_cache_jdata(mapping, wbc);
448         if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) {
449                 gfs2_log_flush(sdp, ip->i_gl, NORMAL_FLUSH);
450                 ret = gfs2_write_cache_jdata(mapping, wbc);
451         }
452         return ret;
453 }
454
455 /**
456  * stuffed_readpage - Fill in a Linux page with stuffed file data
457  * @ip: the inode
458  * @page: the page
459  *
460  * Returns: errno
461  */
462
463 static int stuffed_readpage(struct gfs2_inode *ip, struct page *page)
464 {
465         struct buffer_head *dibh;
466         u64 dsize = i_size_read(&ip->i_inode);
467         void *kaddr;
468         int error;
469
470         /*
471          * Due to the order of unstuffing files and ->fault(), we can be
472          * asked for a zero page in the case of a stuffed file being extended,
473          * so we need to supply one here. It doesn't happen often.
474          */
475         if (unlikely(page->index)) {
476                 zero_user(page, 0, PAGE_SIZE);
477                 SetPageUptodate(page);
478                 return 0;
479         }
480
481         error = gfs2_meta_inode_buffer(ip, &dibh);
482         if (error)
483                 return error;
484
485         kaddr = kmap_atomic(page);
486         if (dsize > (dibh->b_size - sizeof(struct gfs2_dinode)))
487                 dsize = (dibh->b_size - sizeof(struct gfs2_dinode));
488         memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
489         memset(kaddr + dsize, 0, PAGE_SIZE - dsize);
490         kunmap_atomic(kaddr);
491         flush_dcache_page(page);
492         brelse(dibh);
493         SetPageUptodate(page);
494
495         return 0;
496 }
497
498
499 /**
500  * __gfs2_readpage - readpage
501  * @file: The file to read a page for
502  * @page: The page to read
503  *
504  * This is the core of gfs2's readpage. Its used by the internal file
505  * reading code as in that case we already hold the glock. Also its
506  * called by gfs2_readpage() once the required lock has been granted.
507  *
508  */
509
510 static int __gfs2_readpage(void *file, struct page *page)
511 {
512         struct gfs2_inode *ip = GFS2_I(page->mapping->host);
513         struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
514         int error;
515
516         if (gfs2_is_stuffed(ip)) {
517                 error = stuffed_readpage(ip, page);
518                 unlock_page(page);
519         } else {
520                 error = mpage_readpage(page, gfs2_block_map);
521         }
522
523         if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
524                 return -EIO;
525
526         return error;
527 }
528
529 /**
530  * gfs2_readpage - read a page of a file
531  * @file: The file to read
532  * @page: The page of the file
533  *
534  * This deals with the locking required. We have to unlock and
535  * relock the page in order to get the locking in the right
536  * order.
537  */
538
539 static int gfs2_readpage(struct file *file, struct page *page)
540 {
541         struct address_space *mapping = page->mapping;
542         struct gfs2_inode *ip = GFS2_I(mapping->host);
543         struct gfs2_holder gh;
544         int error;
545
546         unlock_page(page);
547         gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
548         error = gfs2_glock_nq(&gh);
549         if (unlikely(error))
550                 goto out;
551         error = AOP_TRUNCATED_PAGE;
552         lock_page(page);
553         if (page->mapping == mapping && !PageUptodate(page))
554                 error = __gfs2_readpage(file, page);
555         else
556                 unlock_page(page);
557         gfs2_glock_dq(&gh);
558 out:
559         gfs2_holder_uninit(&gh);
560         if (error && error != AOP_TRUNCATED_PAGE)
561                 lock_page(page);
562         return error;
563 }
564
565 /**
566  * gfs2_internal_read - read an internal file
567  * @ip: The gfs2 inode
568  * @buf: The buffer to fill
569  * @pos: The file position
570  * @size: The amount to read
571  *
572  */
573
574 int gfs2_internal_read(struct gfs2_inode *ip, char *buf, loff_t *pos,
575                        unsigned size)
576 {
577         struct address_space *mapping = ip->i_inode.i_mapping;
578         unsigned long index = *pos / PAGE_SIZE;
579         unsigned offset = *pos & (PAGE_SIZE - 1);
580         unsigned copied = 0;
581         unsigned amt;
582         struct page *page;
583         void *p;
584
585         do {
586                 amt = size - copied;
587                 if (offset + size > PAGE_SIZE)
588                         amt = PAGE_SIZE - offset;
589                 page = read_cache_page(mapping, index, __gfs2_readpage, NULL);
590                 if (IS_ERR(page))
591                         return PTR_ERR(page);
592                 p = kmap_atomic(page);
593                 memcpy(buf + copied, p + offset, amt);
594                 kunmap_atomic(p);
595                 put_page(page);
596                 copied += amt;
597                 index++;
598                 offset = 0;
599         } while(copied < size);
600         (*pos) += size;
601         return size;
602 }
603
604 /**
605  * gfs2_readpages - Read a bunch of pages at once
606  * @file: The file to read from
607  * @mapping: Address space info
608  * @pages: List of pages to read
609  * @nr_pages: Number of pages to read
610  *
611  * Some notes:
612  * 1. This is only for readahead, so we can simply ignore any things
613  *    which are slightly inconvenient (such as locking conflicts between
614  *    the page lock and the glock) and return having done no I/O. Its
615  *    obviously not something we'd want to do on too regular a basis.
616  *    Any I/O we ignore at this time will be done via readpage later.
617  * 2. We don't handle stuffed files here we let readpage do the honours.
618  * 3. mpage_readpages() does most of the heavy lifting in the common case.
619  * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places.
620  */
621
622 static int gfs2_readpages(struct file *file, struct address_space *mapping,
623                           struct list_head *pages, unsigned nr_pages)
624 {
625         struct inode *inode = mapping->host;
626         struct gfs2_inode *ip = GFS2_I(inode);
627         struct gfs2_sbd *sdp = GFS2_SB(inode);
628         struct gfs2_holder gh;
629         int ret;
630
631         gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
632         ret = gfs2_glock_nq(&gh);
633         if (unlikely(ret))
634                 goto out_uninit;
635         if (!gfs2_is_stuffed(ip))
636                 ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map);
637         gfs2_glock_dq(&gh);
638 out_uninit:
639         gfs2_holder_uninit(&gh);
640         if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
641                 ret = -EIO;
642         return ret;
643 }
644
645 /**
646  * gfs2_write_begin - Begin to write to a file
647  * @file: The file to write to
648  * @mapping: The mapping in which to write
649  * @pos: The file offset at which to start writing
650  * @len: Length of the write
651  * @flags: Various flags
652  * @pagep: Pointer to return the page
653  * @fsdata: Pointer to return fs data (unused by GFS2)
654  *
655  * Returns: errno
656  */
657
658 static int gfs2_write_begin(struct file *file, struct address_space *mapping,
659                             loff_t pos, unsigned len, unsigned flags,
660                             struct page **pagep, void **fsdata)
661 {
662         struct gfs2_inode *ip = GFS2_I(mapping->host);
663         struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
664         struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
665         unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
666         unsigned requested = 0;
667         int alloc_required;
668         int error = 0;
669         pgoff_t index = pos >> PAGE_SHIFT;
670         unsigned from = pos & (PAGE_SIZE - 1);
671         struct page *page;
672
673         gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
674         error = gfs2_glock_nq(&ip->i_gh);
675         if (unlikely(error))
676                 goto out_uninit;
677         if (&ip->i_inode == sdp->sd_rindex) {
678                 error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
679                                            GL_NOCACHE, &m_ip->i_gh);
680                 if (unlikely(error)) {
681                         gfs2_glock_dq(&ip->i_gh);
682                         goto out_uninit;
683                 }
684         }
685
686         alloc_required = gfs2_write_alloc_required(ip, pos, len);
687
688         if (alloc_required || gfs2_is_jdata(ip))
689                 gfs2_write_calc_reserv(ip, len, &data_blocks, &ind_blocks);
690
691         if (alloc_required) {
692                 struct gfs2_alloc_parms ap = { .aflags = 0, };
693                 requested = data_blocks + ind_blocks;
694                 ap.target = requested;
695                 error = gfs2_quota_lock_check(ip, &ap);
696                 if (error)
697                         goto out_unlock;
698
699                 error = gfs2_inplace_reserve(ip, &ap);
700                 if (error)
701                         goto out_qunlock;
702         }
703
704         rblocks = RES_DINODE + ind_blocks;
705         if (gfs2_is_jdata(ip))
706                 rblocks += data_blocks ? data_blocks : 1;
707         if (ind_blocks || data_blocks)
708                 rblocks += RES_STATFS + RES_QUOTA;
709         if (&ip->i_inode == sdp->sd_rindex)
710                 rblocks += 2 * RES_STATFS;
711         if (alloc_required)
712                 rblocks += gfs2_rg_blocks(ip, requested);
713
714         error = gfs2_trans_begin(sdp, rblocks,
715                                  PAGE_SIZE/sdp->sd_sb.sb_bsize);
716         if (error)
717                 goto out_trans_fail;
718
719         error = -ENOMEM;
720         flags |= AOP_FLAG_NOFS;
721         page = grab_cache_page_write_begin(mapping, index, flags);
722         *pagep = page;
723         if (unlikely(!page))
724                 goto out_endtrans;
725
726         if (gfs2_is_stuffed(ip)) {
727                 error = 0;
728                 if (pos + len > sdp->sd_sb.sb_bsize - sizeof(struct gfs2_dinode)) {
729                         error = gfs2_unstuff_dinode(ip, page);
730                         if (error == 0)
731                                 goto prepare_write;
732                 } else if (!PageUptodate(page)) {
733                         error = stuffed_readpage(ip, page);
734                 }
735                 goto out;
736         }
737
738 prepare_write:
739         error = __block_write_begin(page, from, len, gfs2_block_map);
740 out:
741         if (error == 0)
742                 return 0;
743
744         unlock_page(page);
745         put_page(page);
746
747         gfs2_trans_end(sdp);
748         if (pos + len > ip->i_inode.i_size)
749                 gfs2_trim_blocks(&ip->i_inode);
750         goto out_trans_fail;
751
752 out_endtrans:
753         gfs2_trans_end(sdp);
754 out_trans_fail:
755         if (alloc_required) {
756                 gfs2_inplace_release(ip);
757 out_qunlock:
758                 gfs2_quota_unlock(ip);
759         }
760 out_unlock:
761         if (&ip->i_inode == sdp->sd_rindex) {
762                 gfs2_glock_dq(&m_ip->i_gh);
763                 gfs2_holder_uninit(&m_ip->i_gh);
764         }
765         gfs2_glock_dq(&ip->i_gh);
766 out_uninit:
767         gfs2_holder_uninit(&ip->i_gh);
768         return error;
769 }
770
771 /**
772  * adjust_fs_space - Adjusts the free space available due to gfs2_grow
773  * @inode: the rindex inode
774  */
775 static void adjust_fs_space(struct inode *inode)
776 {
777         struct gfs2_sbd *sdp = inode->i_sb->s_fs_info;
778         struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
779         struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode);
780         struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
781         struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
782         struct buffer_head *m_bh, *l_bh;
783         u64 fs_total, new_free;
784
785         /* Total up the file system space, according to the latest rindex. */
786         fs_total = gfs2_ri_total(sdp);
787         if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0)
788                 return;
789
790         spin_lock(&sdp->sd_statfs_spin);
791         gfs2_statfs_change_in(m_sc, m_bh->b_data +
792                               sizeof(struct gfs2_dinode));
793         if (fs_total > (m_sc->sc_total + l_sc->sc_total))
794                 new_free = fs_total - (m_sc->sc_total + l_sc->sc_total);
795         else
796                 new_free = 0;
797         spin_unlock(&sdp->sd_statfs_spin);
798         fs_warn(sdp, "File system extended by %llu blocks.\n",
799                 (unsigned long long)new_free);
800         gfs2_statfs_change(sdp, new_free, new_free, 0);
801
802         if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0)
803                 goto out;
804         update_statfs(sdp, m_bh, l_bh);
805         brelse(l_bh);
806 out:
807         brelse(m_bh);
808 }
809
810 /**
811  * gfs2_stuffed_write_end - Write end for stuffed files
812  * @inode: The inode
813  * @dibh: The buffer_head containing the on-disk inode
814  * @pos: The file position
815  * @len: The length of the write
816  * @copied: How much was actually copied by the VFS
817  * @page: The page
818  *
819  * This copies the data from the page into the inode block after
820  * the inode data structure itself.
821  *
822  * Returns: errno
823  */
824 static int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh,
825                                   loff_t pos, unsigned len, unsigned copied,
826                                   struct page *page)
827 {
828         struct gfs2_inode *ip = GFS2_I(inode);
829         struct gfs2_sbd *sdp = GFS2_SB(inode);
830         struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
831         u64 to = pos + copied;
832         void *kaddr;
833         unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode);
834
835         BUG_ON((pos + len) > (dibh->b_size - sizeof(struct gfs2_dinode)));
836         kaddr = kmap_atomic(page);
837         memcpy(buf + pos, kaddr + pos, copied);
838         flush_dcache_page(page);
839         kunmap_atomic(kaddr);
840
841         WARN_ON(!PageUptodate(page));
842         unlock_page(page);
843         put_page(page);
844
845         if (copied) {
846                 if (inode->i_size < to)
847                         i_size_write(inode, to);
848                 mark_inode_dirty(inode);
849         }
850
851         if (inode == sdp->sd_rindex) {
852                 adjust_fs_space(inode);
853                 sdp->sd_rindex_uptodate = 0;
854         }
855
856         brelse(dibh);
857         gfs2_trans_end(sdp);
858         if (inode == sdp->sd_rindex) {
859                 gfs2_glock_dq(&m_ip->i_gh);
860                 gfs2_holder_uninit(&m_ip->i_gh);
861         }
862         gfs2_glock_dq(&ip->i_gh);
863         gfs2_holder_uninit(&ip->i_gh);
864         return copied;
865 }
866
867 /**
868  * gfs2_write_end
869  * @file: The file to write to
870  * @mapping: The address space to write to
871  * @pos: The file position
872  * @len: The length of the data
873  * @copied: How much was actually copied by the VFS
874  * @page: The page that has been written
875  * @fsdata: The fsdata (unused in GFS2)
876  *
877  * The main write_end function for GFS2. We have a separate one for
878  * stuffed files as they are slightly different, otherwise we just
879  * put our locking around the VFS provided functions.
880  *
881  * Returns: errno
882  */
883
884 static int gfs2_write_end(struct file *file, struct address_space *mapping,
885                           loff_t pos, unsigned len, unsigned copied,
886                           struct page *page, void *fsdata)
887 {
888         struct inode *inode = page->mapping->host;
889         struct gfs2_inode *ip = GFS2_I(inode);
890         struct gfs2_sbd *sdp = GFS2_SB(inode);
891         struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
892         struct buffer_head *dibh;
893         unsigned int from = pos & (PAGE_SIZE - 1);
894         unsigned int to = from + len;
895         int ret;
896         struct gfs2_trans *tr = current->journal_info;
897         BUG_ON(!tr);
898
899         BUG_ON(gfs2_glock_is_locked_by_me(ip->i_gl) == NULL);
900
901         ret = gfs2_meta_inode_buffer(ip, &dibh);
902         if (unlikely(ret)) {
903                 unlock_page(page);
904                 put_page(page);
905                 goto failed;
906         }
907
908         if (gfs2_is_stuffed(ip))
909                 return gfs2_stuffed_write_end(inode, dibh, pos, len, copied, page);
910
911         if (!gfs2_is_writeback(ip))
912                 gfs2_page_add_databufs(ip, page, from, to);
913
914         ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
915         if (tr->tr_num_buf_new)
916                 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
917         else
918                 gfs2_trans_add_meta(ip->i_gl, dibh);
919
920
921         if (inode == sdp->sd_rindex) {
922                 adjust_fs_space(inode);
923                 sdp->sd_rindex_uptodate = 0;
924         }
925
926         brelse(dibh);
927 failed:
928         gfs2_trans_end(sdp);
929         gfs2_inplace_release(ip);
930         if (ip->i_qadata && ip->i_qadata->qa_qd_num)
931                 gfs2_quota_unlock(ip);
932         if (inode == sdp->sd_rindex) {
933                 gfs2_glock_dq(&m_ip->i_gh);
934                 gfs2_holder_uninit(&m_ip->i_gh);
935         }
936         gfs2_glock_dq(&ip->i_gh);
937         gfs2_holder_uninit(&ip->i_gh);
938         return ret;
939 }
940
941 /**
942  * gfs2_set_page_dirty - Page dirtying function
943  * @page: The page to dirty
944  *
945  * Returns: 1 if it dirtyed the page, or 0 otherwise
946  */
947  
948 static int gfs2_set_page_dirty(struct page *page)
949 {
950         SetPageChecked(page);
951         return __set_page_dirty_buffers(page);
952 }
953
954 /**
955  * gfs2_bmap - Block map function
956  * @mapping: Address space info
957  * @lblock: The block to map
958  *
959  * Returns: The disk address for the block or 0 on hole or error
960  */
961
962 static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock)
963 {
964         struct gfs2_inode *ip = GFS2_I(mapping->host);
965         struct gfs2_holder i_gh;
966         sector_t dblock = 0;
967         int error;
968
969         error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
970         if (error)
971                 return 0;
972
973         if (!gfs2_is_stuffed(ip))
974                 dblock = generic_block_bmap(mapping, lblock, gfs2_block_map);
975
976         gfs2_glock_dq_uninit(&i_gh);
977
978         return dblock;
979 }
980
981 static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh)
982 {
983         struct gfs2_bufdata *bd;
984
985         lock_buffer(bh);
986         gfs2_log_lock(sdp);
987         clear_buffer_dirty(bh);
988         bd = bh->b_private;
989         if (bd) {
990                 if (!list_empty(&bd->bd_list) && !buffer_pinned(bh))
991                         list_del_init(&bd->bd_list);
992                 else
993                         gfs2_remove_from_journal(bh, REMOVE_JDATA);
994         }
995         bh->b_bdev = NULL;
996         clear_buffer_mapped(bh);
997         clear_buffer_req(bh);
998         clear_buffer_new(bh);
999         gfs2_log_unlock(sdp);
1000         unlock_buffer(bh);
1001 }
1002
1003 static void gfs2_invalidatepage(struct page *page, unsigned int offset,
1004                                 unsigned int length)
1005 {
1006         struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
1007         unsigned int stop = offset + length;
1008         int partial_page = (offset || length < PAGE_SIZE);
1009         struct buffer_head *bh, *head;
1010         unsigned long pos = 0;
1011
1012         BUG_ON(!PageLocked(page));
1013         if (!partial_page)
1014                 ClearPageChecked(page);
1015         if (!page_has_buffers(page))
1016                 goto out;
1017
1018         bh = head = page_buffers(page);
1019         do {
1020                 if (pos + bh->b_size > stop)
1021                         return;
1022
1023                 if (offset <= pos)
1024                         gfs2_discard(sdp, bh);
1025                 pos += bh->b_size;
1026                 bh = bh->b_this_page;
1027         } while (bh != head);
1028 out:
1029         if (!partial_page)
1030                 try_to_release_page(page, 0);
1031 }
1032
1033 /**
1034  * gfs2_ok_for_dio - check that dio is valid on this file
1035  * @ip: The inode
1036  * @offset: The offset at which we are reading or writing
1037  *
1038  * Returns: 0 (to ignore the i/o request and thus fall back to buffered i/o)
1039  *          1 (to accept the i/o request)
1040  */
1041 static int gfs2_ok_for_dio(struct gfs2_inode *ip, loff_t offset)
1042 {
1043         /*
1044          * Should we return an error here? I can't see that O_DIRECT for
1045          * a stuffed file makes any sense. For now we'll silently fall
1046          * back to buffered I/O
1047          */
1048         if (gfs2_is_stuffed(ip))
1049                 return 0;
1050
1051         if (offset >= i_size_read(&ip->i_inode))
1052                 return 0;
1053         return 1;
1054 }
1055
1056
1057
1058 static ssize_t gfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1059 {
1060         struct file *file = iocb->ki_filp;
1061         struct inode *inode = file->f_mapping->host;
1062         struct address_space *mapping = inode->i_mapping;
1063         struct gfs2_inode *ip = GFS2_I(inode);
1064         loff_t offset = iocb->ki_pos;
1065         struct gfs2_holder gh;
1066         int rv;
1067
1068         /*
1069          * Deferred lock, even if its a write, since we do no allocation
1070          * on this path. All we need change is atime, and this lock mode
1071          * ensures that other nodes have flushed their buffered read caches
1072          * (i.e. their page cache entries for this inode). We do not,
1073          * unfortunately have the option of only flushing a range like
1074          * the VFS does.
1075          */
1076         gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
1077         rv = gfs2_glock_nq(&gh);
1078         if (rv)
1079                 goto out_uninit;
1080         rv = gfs2_ok_for_dio(ip, offset);
1081         if (rv != 1)
1082                 goto out; /* dio not valid, fall back to buffered i/o */
1083
1084         /*
1085          * Now since we are holding a deferred (CW) lock at this point, you
1086          * might be wondering why this is ever needed. There is a case however
1087          * where we've granted a deferred local lock against a cached exclusive
1088          * glock. That is ok provided all granted local locks are deferred, but
1089          * it also means that it is possible to encounter pages which are
1090          * cached and possibly also mapped. So here we check for that and sort
1091          * them out ahead of the dio. The glock state machine will take care of
1092          * everything else.
1093          *
1094          * If in fact the cached glock state (gl->gl_state) is deferred (CW) in
1095          * the first place, mapping->nr_pages will always be zero.
1096          */
1097         if (mapping->nrpages) {
1098                 loff_t lstart = offset & ~(PAGE_SIZE - 1);
1099                 loff_t len = iov_iter_count(iter);
1100                 loff_t end = PAGE_ALIGN(offset + len) - 1;
1101
1102                 rv = 0;
1103                 if (len == 0)
1104                         goto out;
1105                 if (test_and_clear_bit(GIF_SW_PAGED, &ip->i_flags))
1106                         unmap_shared_mapping_range(ip->i_inode.i_mapping, offset, len);
1107                 rv = filemap_write_and_wait_range(mapping, lstart, end);
1108                 if (rv)
1109                         goto out;
1110                 if (iov_iter_rw(iter) == WRITE)
1111                         truncate_inode_pages_range(mapping, lstart, end);
1112         }
1113
1114         rv = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
1115                                   gfs2_get_block_direct, NULL, NULL, 0);
1116 out:
1117         gfs2_glock_dq(&gh);
1118 out_uninit:
1119         gfs2_holder_uninit(&gh);
1120         return rv;
1121 }
1122
1123 /**
1124  * gfs2_releasepage - free the metadata associated with a page
1125  * @page: the page that's being released
1126  * @gfp_mask: passed from Linux VFS, ignored by us
1127  *
1128  * Call try_to_free_buffers() if the buffers in this page can be
1129  * released.
1130  *
1131  * Returns: 0
1132  */
1133
1134 int gfs2_releasepage(struct page *page, gfp_t gfp_mask)
1135 {
1136         struct address_space *mapping = page->mapping;
1137         struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
1138         struct buffer_head *bh, *head;
1139         struct gfs2_bufdata *bd;
1140
1141         if (!page_has_buffers(page))
1142                 return 0;
1143
1144         /*
1145          * From xfs_vm_releasepage: mm accommodates an old ext3 case where
1146          * clean pages might not have had the dirty bit cleared.  Thus, it can
1147          * send actual dirty pages to ->releasepage() via shrink_active_list().
1148          *
1149          * As a workaround, we skip pages that contain dirty buffers below.
1150          * Once ->releasepage isn't called on dirty pages anymore, we can warn
1151          * on dirty buffers like we used to here again.
1152          */
1153
1154         gfs2_log_lock(sdp);
1155         spin_lock(&sdp->sd_ail_lock);
1156         head = bh = page_buffers(page);
1157         do {
1158                 if (atomic_read(&bh->b_count))
1159                         goto cannot_release;
1160                 bd = bh->b_private;
1161                 if (bd && bd->bd_tr)
1162                         goto cannot_release;
1163                 if (buffer_dirty(bh) || WARN_ON(buffer_pinned(bh)))
1164                         goto cannot_release;
1165                 bh = bh->b_this_page;
1166         } while(bh != head);
1167         spin_unlock(&sdp->sd_ail_lock);
1168
1169         head = bh = page_buffers(page);
1170         do {
1171                 bd = bh->b_private;
1172                 if (bd) {
1173                         gfs2_assert_warn(sdp, bd->bd_bh == bh);
1174                         if (!list_empty(&bd->bd_list))
1175                                 list_del_init(&bd->bd_list);
1176                         bd->bd_bh = NULL;
1177                         bh->b_private = NULL;
1178                         kmem_cache_free(gfs2_bufdata_cachep, bd);
1179                 }
1180
1181                 bh = bh->b_this_page;
1182         } while (bh != head);
1183         gfs2_log_unlock(sdp);
1184
1185         return try_to_free_buffers(page);
1186
1187 cannot_release:
1188         spin_unlock(&sdp->sd_ail_lock);
1189         gfs2_log_unlock(sdp);
1190         return 0;
1191 }
1192
1193 static const struct address_space_operations gfs2_writeback_aops = {
1194         .writepage = gfs2_writepage,
1195         .writepages = gfs2_writepages,
1196         .readpage = gfs2_readpage,
1197         .readpages = gfs2_readpages,
1198         .write_begin = gfs2_write_begin,
1199         .write_end = gfs2_write_end,
1200         .bmap = gfs2_bmap,
1201         .invalidatepage = gfs2_invalidatepage,
1202         .releasepage = gfs2_releasepage,
1203         .direct_IO = gfs2_direct_IO,
1204         .migratepage = buffer_migrate_page,
1205         .is_partially_uptodate = block_is_partially_uptodate,
1206         .error_remove_page = generic_error_remove_page,
1207 };
1208
1209 static const struct address_space_operations gfs2_ordered_aops = {
1210         .writepage = gfs2_writepage,
1211         .writepages = gfs2_writepages,
1212         .readpage = gfs2_readpage,
1213         .readpages = gfs2_readpages,
1214         .write_begin = gfs2_write_begin,
1215         .write_end = gfs2_write_end,
1216         .set_page_dirty = gfs2_set_page_dirty,
1217         .bmap = gfs2_bmap,
1218         .invalidatepage = gfs2_invalidatepage,
1219         .releasepage = gfs2_releasepage,
1220         .direct_IO = gfs2_direct_IO,
1221         .migratepage = buffer_migrate_page,
1222         .is_partially_uptodate = block_is_partially_uptodate,
1223         .error_remove_page = generic_error_remove_page,
1224 };
1225
1226 static const struct address_space_operations gfs2_jdata_aops = {
1227         .writepage = gfs2_jdata_writepage,
1228         .writepages = gfs2_jdata_writepages,
1229         .readpage = gfs2_readpage,
1230         .readpages = gfs2_readpages,
1231         .write_begin = gfs2_write_begin,
1232         .write_end = gfs2_write_end,
1233         .set_page_dirty = gfs2_set_page_dirty,
1234         .bmap = gfs2_bmap,
1235         .invalidatepage = gfs2_invalidatepage,
1236         .releasepage = gfs2_releasepage,
1237         .is_partially_uptodate = block_is_partially_uptodate,
1238         .error_remove_page = generic_error_remove_page,
1239 };
1240
1241 void gfs2_set_aops(struct inode *inode)
1242 {
1243         struct gfs2_inode *ip = GFS2_I(inode);
1244
1245         if (gfs2_is_writeback(ip))
1246                 inode->i_mapping->a_ops = &gfs2_writeback_aops;
1247         else if (gfs2_is_ordered(ip))
1248                 inode->i_mapping->a_ops = &gfs2_ordered_aops;
1249         else if (gfs2_is_jdata(ip))
1250                 inode->i_mapping->a_ops = &gfs2_jdata_aops;
1251         else
1252                 BUG();
1253 }
1254