btrfs: add compression interface in (get/put)_workspace
[sfrench/cifs-2.6.git] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
32
33 /*
34  * 4MB minimal write chunk size
35  */
36 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_SHIFT - 10))
37
38 struct wb_completion {
39         atomic_t                cnt;
40 };
41
42 /*
43  * Passed into wb_writeback(), essentially a subset of writeback_control
44  */
45 struct wb_writeback_work {
46         long nr_pages;
47         struct super_block *sb;
48         unsigned long *older_than_this;
49         enum writeback_sync_modes sync_mode;
50         unsigned int tagged_writepages:1;
51         unsigned int for_kupdate:1;
52         unsigned int range_cyclic:1;
53         unsigned int for_background:1;
54         unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
55         unsigned int auto_free:1;       /* free on completion */
56         enum wb_reason reason;          /* why was writeback initiated? */
57
58         struct list_head list;          /* pending work list */
59         struct wb_completion *done;     /* set if the caller waits */
60 };
61
62 /*
63  * If one wants to wait for one or more wb_writeback_works, each work's
64  * ->done should be set to a wb_completion defined using the following
65  * macro.  Once all work items are issued with wb_queue_work(), the caller
66  * can wait for the completion of all using wb_wait_for_completion().  Work
67  * items which are waited upon aren't freed automatically on completion.
68  */
69 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl)                              \
70         struct wb_completion cmpl = {                                   \
71                 .cnt            = ATOMIC_INIT(1),                       \
72         }
73
74
75 /*
76  * If an inode is constantly having its pages dirtied, but then the
77  * updates stop dirtytime_expire_interval seconds in the past, it's
78  * possible for the worst case time between when an inode has its
79  * timestamps updated and when they finally get written out to be two
80  * dirtytime_expire_intervals.  We set the default to 12 hours (in
81  * seconds), which means most of the time inodes will have their
82  * timestamps written to disk after 12 hours, but in the worst case a
83  * few inodes might not their timestamps updated for 24 hours.
84  */
85 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
86
87 static inline struct inode *wb_inode(struct list_head *head)
88 {
89         return list_entry(head, struct inode, i_io_list);
90 }
91
92 /*
93  * Include the creation of the trace points after defining the
94  * wb_writeback_work structure and inline functions so that the definition
95  * remains local to this file.
96  */
97 #define CREATE_TRACE_POINTS
98 #include <trace/events/writeback.h>
99
100 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
101
102 static bool wb_io_lists_populated(struct bdi_writeback *wb)
103 {
104         if (wb_has_dirty_io(wb)) {
105                 return false;
106         } else {
107                 set_bit(WB_has_dirty_io, &wb->state);
108                 WARN_ON_ONCE(!wb->avg_write_bandwidth);
109                 atomic_long_add(wb->avg_write_bandwidth,
110                                 &wb->bdi->tot_write_bandwidth);
111                 return true;
112         }
113 }
114
115 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
116 {
117         if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
118             list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
119                 clear_bit(WB_has_dirty_io, &wb->state);
120                 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
121                                         &wb->bdi->tot_write_bandwidth) < 0);
122         }
123 }
124
125 /**
126  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
127  * @inode: inode to be moved
128  * @wb: target bdi_writeback
129  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
130  *
131  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
132  * Returns %true if @inode is the first occupant of the !dirty_time IO
133  * lists; otherwise, %false.
134  */
135 static bool inode_io_list_move_locked(struct inode *inode,
136                                       struct bdi_writeback *wb,
137                                       struct list_head *head)
138 {
139         assert_spin_locked(&wb->list_lock);
140
141         list_move(&inode->i_io_list, head);
142
143         /* dirty_time doesn't count as dirty_io until expiration */
144         if (head != &wb->b_dirty_time)
145                 return wb_io_lists_populated(wb);
146
147         wb_io_lists_depopulated(wb);
148         return false;
149 }
150
151 /**
152  * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
153  * @inode: inode to be removed
154  * @wb: bdi_writeback @inode is being removed from
155  *
156  * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
157  * clear %WB_has_dirty_io if all are empty afterwards.
158  */
159 static void inode_io_list_del_locked(struct inode *inode,
160                                      struct bdi_writeback *wb)
161 {
162         assert_spin_locked(&wb->list_lock);
163
164         list_del_init(&inode->i_io_list);
165         wb_io_lists_depopulated(wb);
166 }
167
168 static void wb_wakeup(struct bdi_writeback *wb)
169 {
170         spin_lock_bh(&wb->work_lock);
171         if (test_bit(WB_registered, &wb->state))
172                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
173         spin_unlock_bh(&wb->work_lock);
174 }
175
176 static void finish_writeback_work(struct bdi_writeback *wb,
177                                   struct wb_writeback_work *work)
178 {
179         struct wb_completion *done = work->done;
180
181         if (work->auto_free)
182                 kfree(work);
183         if (done && atomic_dec_and_test(&done->cnt))
184                 wake_up_all(&wb->bdi->wb_waitq);
185 }
186
187 static void wb_queue_work(struct bdi_writeback *wb,
188                           struct wb_writeback_work *work)
189 {
190         trace_writeback_queue(wb, work);
191
192         if (work->done)
193                 atomic_inc(&work->done->cnt);
194
195         spin_lock_bh(&wb->work_lock);
196
197         if (test_bit(WB_registered, &wb->state)) {
198                 list_add_tail(&work->list, &wb->work_list);
199                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
200         } else
201                 finish_writeback_work(wb, work);
202
203         spin_unlock_bh(&wb->work_lock);
204 }
205
206 /**
207  * wb_wait_for_completion - wait for completion of bdi_writeback_works
208  * @bdi: bdi work items were issued to
209  * @done: target wb_completion
210  *
211  * Wait for one or more work items issued to @bdi with their ->done field
212  * set to @done, which should have been defined with
213  * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
214  * work items are completed.  Work items which are waited upon aren't freed
215  * automatically on completion.
216  */
217 static void wb_wait_for_completion(struct backing_dev_info *bdi,
218                                    struct wb_completion *done)
219 {
220         atomic_dec(&done->cnt);         /* put down the initial count */
221         wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
222 }
223
224 #ifdef CONFIG_CGROUP_WRITEBACK
225
226 /* parameters for foreign inode detection, see wb_detach_inode() */
227 #define WB_FRN_TIME_SHIFT       13      /* 1s = 2^13, upto 8 secs w/ 16bit */
228 #define WB_FRN_TIME_AVG_SHIFT   3       /* avg = avg * 7/8 + new * 1/8 */
229 #define WB_FRN_TIME_CUT_DIV     2       /* ignore rounds < avg / 2 */
230 #define WB_FRN_TIME_PERIOD      (2 * (1 << WB_FRN_TIME_SHIFT))  /* 2s */
231
232 #define WB_FRN_HIST_SLOTS       16      /* inode->i_wb_frn_history is 16bit */
233 #define WB_FRN_HIST_UNIT        (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
234                                         /* each slot's duration is 2s / 16 */
235 #define WB_FRN_HIST_THR_SLOTS   (WB_FRN_HIST_SLOTS / 2)
236                                         /* if foreign slots >= 8, switch */
237 #define WB_FRN_HIST_MAX_SLOTS   (WB_FRN_HIST_THR_SLOTS / 2 + 1)
238                                         /* one round can affect upto 5 slots */
239
240 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
241 static struct workqueue_struct *isw_wq;
242
243 void __inode_attach_wb(struct inode *inode, struct page *page)
244 {
245         struct backing_dev_info *bdi = inode_to_bdi(inode);
246         struct bdi_writeback *wb = NULL;
247
248         if (inode_cgwb_enabled(inode)) {
249                 struct cgroup_subsys_state *memcg_css;
250
251                 if (page) {
252                         memcg_css = mem_cgroup_css_from_page(page);
253                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
254                 } else {
255                         /* must pin memcg_css, see wb_get_create() */
256                         memcg_css = task_get_css(current, memory_cgrp_id);
257                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
258                         css_put(memcg_css);
259                 }
260         }
261
262         if (!wb)
263                 wb = &bdi->wb;
264
265         /*
266          * There may be multiple instances of this function racing to
267          * update the same inode.  Use cmpxchg() to tell the winner.
268          */
269         if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
270                 wb_put(wb);
271 }
272
273 /**
274  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
275  * @inode: inode of interest with i_lock held
276  *
277  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
278  * held on entry and is released on return.  The returned wb is guaranteed
279  * to stay @inode's associated wb until its list_lock is released.
280  */
281 static struct bdi_writeback *
282 locked_inode_to_wb_and_lock_list(struct inode *inode)
283         __releases(&inode->i_lock)
284         __acquires(&wb->list_lock)
285 {
286         while (true) {
287                 struct bdi_writeback *wb = inode_to_wb(inode);
288
289                 /*
290                  * inode_to_wb() association is protected by both
291                  * @inode->i_lock and @wb->list_lock but list_lock nests
292                  * outside i_lock.  Drop i_lock and verify that the
293                  * association hasn't changed after acquiring list_lock.
294                  */
295                 wb_get(wb);
296                 spin_unlock(&inode->i_lock);
297                 spin_lock(&wb->list_lock);
298
299                 /* i_wb may have changed inbetween, can't use inode_to_wb() */
300                 if (likely(wb == inode->i_wb)) {
301                         wb_put(wb);     /* @inode already has ref */
302                         return wb;
303                 }
304
305                 spin_unlock(&wb->list_lock);
306                 wb_put(wb);
307                 cpu_relax();
308                 spin_lock(&inode->i_lock);
309         }
310 }
311
312 /**
313  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
314  * @inode: inode of interest
315  *
316  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
317  * on entry.
318  */
319 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
320         __acquires(&wb->list_lock)
321 {
322         spin_lock(&inode->i_lock);
323         return locked_inode_to_wb_and_lock_list(inode);
324 }
325
326 struct inode_switch_wbs_context {
327         struct inode            *inode;
328         struct bdi_writeback    *new_wb;
329
330         struct rcu_head         rcu_head;
331         struct work_struct      work;
332 };
333
334 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
335 {
336         down_write(&bdi->wb_switch_rwsem);
337 }
338
339 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
340 {
341         up_write(&bdi->wb_switch_rwsem);
342 }
343
344 static void inode_switch_wbs_work_fn(struct work_struct *work)
345 {
346         struct inode_switch_wbs_context *isw =
347                 container_of(work, struct inode_switch_wbs_context, work);
348         struct inode *inode = isw->inode;
349         struct backing_dev_info *bdi = inode_to_bdi(inode);
350         struct address_space *mapping = inode->i_mapping;
351         struct bdi_writeback *old_wb = inode->i_wb;
352         struct bdi_writeback *new_wb = isw->new_wb;
353         XA_STATE(xas, &mapping->i_pages, 0);
354         struct page *page;
355         bool switched = false;
356
357         /*
358          * If @inode switches cgwb membership while sync_inodes_sb() is
359          * being issued, sync_inodes_sb() might miss it.  Synchronize.
360          */
361         down_read(&bdi->wb_switch_rwsem);
362
363         /*
364          * By the time control reaches here, RCU grace period has passed
365          * since I_WB_SWITCH assertion and all wb stat update transactions
366          * between unlocked_inode_to_wb_begin/end() are guaranteed to be
367          * synchronizing against the i_pages lock.
368          *
369          * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
370          * gives us exclusion against all wb related operations on @inode
371          * including IO list manipulations and stat updates.
372          */
373         if (old_wb < new_wb) {
374                 spin_lock(&old_wb->list_lock);
375                 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
376         } else {
377                 spin_lock(&new_wb->list_lock);
378                 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
379         }
380         spin_lock(&inode->i_lock);
381         xa_lock_irq(&mapping->i_pages);
382
383         /*
384          * Once I_FREEING is visible under i_lock, the eviction path owns
385          * the inode and we shouldn't modify ->i_io_list.
386          */
387         if (unlikely(inode->i_state & I_FREEING))
388                 goto skip_switch;
389
390         /*
391          * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
392          * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
393          * pages actually under writeback.
394          */
395         xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
396                 if (PageDirty(page)) {
397                         dec_wb_stat(old_wb, WB_RECLAIMABLE);
398                         inc_wb_stat(new_wb, WB_RECLAIMABLE);
399                 }
400         }
401
402         xas_set(&xas, 0);
403         xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
404                 WARN_ON_ONCE(!PageWriteback(page));
405                 dec_wb_stat(old_wb, WB_WRITEBACK);
406                 inc_wb_stat(new_wb, WB_WRITEBACK);
407         }
408
409         wb_get(new_wb);
410
411         /*
412          * Transfer to @new_wb's IO list if necessary.  The specific list
413          * @inode was on is ignored and the inode is put on ->b_dirty which
414          * is always correct including from ->b_dirty_time.  The transfer
415          * preserves @inode->dirtied_when ordering.
416          */
417         if (!list_empty(&inode->i_io_list)) {
418                 struct inode *pos;
419
420                 inode_io_list_del_locked(inode, old_wb);
421                 inode->i_wb = new_wb;
422                 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
423                         if (time_after_eq(inode->dirtied_when,
424                                           pos->dirtied_when))
425                                 break;
426                 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
427         } else {
428                 inode->i_wb = new_wb;
429         }
430
431         /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
432         inode->i_wb_frn_winner = 0;
433         inode->i_wb_frn_avg_time = 0;
434         inode->i_wb_frn_history = 0;
435         switched = true;
436 skip_switch:
437         /*
438          * Paired with load_acquire in unlocked_inode_to_wb_begin() and
439          * ensures that the new wb is visible if they see !I_WB_SWITCH.
440          */
441         smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
442
443         xa_unlock_irq(&mapping->i_pages);
444         spin_unlock(&inode->i_lock);
445         spin_unlock(&new_wb->list_lock);
446         spin_unlock(&old_wb->list_lock);
447
448         up_read(&bdi->wb_switch_rwsem);
449
450         if (switched) {
451                 wb_wakeup(new_wb);
452                 wb_put(old_wb);
453         }
454         wb_put(new_wb);
455
456         iput(inode);
457         kfree(isw);
458
459         atomic_dec(&isw_nr_in_flight);
460 }
461
462 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
463 {
464         struct inode_switch_wbs_context *isw = container_of(rcu_head,
465                                 struct inode_switch_wbs_context, rcu_head);
466
467         /* needs to grab bh-unsafe locks, bounce to work item */
468         INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
469         queue_work(isw_wq, &isw->work);
470 }
471
472 /**
473  * inode_switch_wbs - change the wb association of an inode
474  * @inode: target inode
475  * @new_wb_id: ID of the new wb
476  *
477  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
478  * switching is performed asynchronously and may fail silently.
479  */
480 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
481 {
482         struct backing_dev_info *bdi = inode_to_bdi(inode);
483         struct cgroup_subsys_state *memcg_css;
484         struct inode_switch_wbs_context *isw;
485
486         /* noop if seems to be already in progress */
487         if (inode->i_state & I_WB_SWITCH)
488                 return;
489
490         /*
491          * Avoid starting new switches while sync_inodes_sb() is in
492          * progress.  Otherwise, if the down_write protected issue path
493          * blocks heavily, we might end up starting a large number of
494          * switches which will block on the rwsem.
495          */
496         if (!down_read_trylock(&bdi->wb_switch_rwsem))
497                 return;
498
499         isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
500         if (!isw)
501                 goto out_unlock;
502
503         /* find and pin the new wb */
504         rcu_read_lock();
505         memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
506         if (memcg_css)
507                 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
508         rcu_read_unlock();
509         if (!isw->new_wb)
510                 goto out_free;
511
512         /* while holding I_WB_SWITCH, no one else can update the association */
513         spin_lock(&inode->i_lock);
514         if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
515             inode->i_state & (I_WB_SWITCH | I_FREEING) ||
516             inode_to_wb(inode) == isw->new_wb) {
517                 spin_unlock(&inode->i_lock);
518                 goto out_free;
519         }
520         inode->i_state |= I_WB_SWITCH;
521         __iget(inode);
522         spin_unlock(&inode->i_lock);
523
524         isw->inode = inode;
525
526         atomic_inc(&isw_nr_in_flight);
527
528         /*
529          * In addition to synchronizing among switchers, I_WB_SWITCH tells
530          * the RCU protected stat update paths to grab the i_page
531          * lock so that stat transfer can synchronize against them.
532          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
533          */
534         call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
535         goto out_unlock;
536
537 out_free:
538         if (isw->new_wb)
539                 wb_put(isw->new_wb);
540         kfree(isw);
541 out_unlock:
542         up_read(&bdi->wb_switch_rwsem);
543 }
544
545 /**
546  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
547  * @wbc: writeback_control of interest
548  * @inode: target inode
549  *
550  * @inode is locked and about to be written back under the control of @wbc.
551  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
552  * writeback completion, wbc_detach_inode() should be called.  This is used
553  * to track the cgroup writeback context.
554  */
555 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
556                                  struct inode *inode)
557 {
558         if (!inode_cgwb_enabled(inode)) {
559                 spin_unlock(&inode->i_lock);
560                 return;
561         }
562
563         wbc->wb = inode_to_wb(inode);
564         wbc->inode = inode;
565
566         wbc->wb_id = wbc->wb->memcg_css->id;
567         wbc->wb_lcand_id = inode->i_wb_frn_winner;
568         wbc->wb_tcand_id = 0;
569         wbc->wb_bytes = 0;
570         wbc->wb_lcand_bytes = 0;
571         wbc->wb_tcand_bytes = 0;
572
573         wb_get(wbc->wb);
574         spin_unlock(&inode->i_lock);
575
576         /*
577          * A dying wb indicates that the memcg-blkcg mapping has changed
578          * and a new wb is already serving the memcg.  Switch immediately.
579          */
580         if (unlikely(wb_dying(wbc->wb)))
581                 inode_switch_wbs(inode, wbc->wb_id);
582 }
583
584 /**
585  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
586  * @wbc: writeback_control of the just finished writeback
587  *
588  * To be called after a writeback attempt of an inode finishes and undoes
589  * wbc_attach_and_unlock_inode().  Can be called under any context.
590  *
591  * As concurrent write sharing of an inode is expected to be very rare and
592  * memcg only tracks page ownership on first-use basis severely confining
593  * the usefulness of such sharing, cgroup writeback tracks ownership
594  * per-inode.  While the support for concurrent write sharing of an inode
595  * is deemed unnecessary, an inode being written to by different cgroups at
596  * different points in time is a lot more common, and, more importantly,
597  * charging only by first-use can too readily lead to grossly incorrect
598  * behaviors (single foreign page can lead to gigabytes of writeback to be
599  * incorrectly attributed).
600  *
601  * To resolve this issue, cgroup writeback detects the majority dirtier of
602  * an inode and transfers the ownership to it.  To avoid unnnecessary
603  * oscillation, the detection mechanism keeps track of history and gives
604  * out the switch verdict only if the foreign usage pattern is stable over
605  * a certain amount of time and/or writeback attempts.
606  *
607  * On each writeback attempt, @wbc tries to detect the majority writer
608  * using Boyer-Moore majority vote algorithm.  In addition to the byte
609  * count from the majority voting, it also counts the bytes written for the
610  * current wb and the last round's winner wb (max of last round's current
611  * wb, the winner from two rounds ago, and the last round's majority
612  * candidate).  Keeping track of the historical winner helps the algorithm
613  * to semi-reliably detect the most active writer even when it's not the
614  * absolute majority.
615  *
616  * Once the winner of the round is determined, whether the winner is
617  * foreign or not and how much IO time the round consumed is recorded in
618  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
619  * over a certain threshold, the switch verdict is given.
620  */
621 void wbc_detach_inode(struct writeback_control *wbc)
622 {
623         struct bdi_writeback *wb = wbc->wb;
624         struct inode *inode = wbc->inode;
625         unsigned long avg_time, max_bytes, max_time;
626         u16 history;
627         int max_id;
628
629         if (!wb)
630                 return;
631
632         history = inode->i_wb_frn_history;
633         avg_time = inode->i_wb_frn_avg_time;
634
635         /* pick the winner of this round */
636         if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
637             wbc->wb_bytes >= wbc->wb_tcand_bytes) {
638                 max_id = wbc->wb_id;
639                 max_bytes = wbc->wb_bytes;
640         } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
641                 max_id = wbc->wb_lcand_id;
642                 max_bytes = wbc->wb_lcand_bytes;
643         } else {
644                 max_id = wbc->wb_tcand_id;
645                 max_bytes = wbc->wb_tcand_bytes;
646         }
647
648         /*
649          * Calculate the amount of IO time the winner consumed and fold it
650          * into the running average kept per inode.  If the consumed IO
651          * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
652          * deciding whether to switch or not.  This is to prevent one-off
653          * small dirtiers from skewing the verdict.
654          */
655         max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
656                                 wb->avg_write_bandwidth);
657         if (avg_time)
658                 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
659                             (avg_time >> WB_FRN_TIME_AVG_SHIFT);
660         else
661                 avg_time = max_time;    /* immediate catch up on first run */
662
663         if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
664                 int slots;
665
666                 /*
667                  * The switch verdict is reached if foreign wb's consume
668                  * more than a certain proportion of IO time in a
669                  * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
670                  * history mask where each bit represents one sixteenth of
671                  * the period.  Determine the number of slots to shift into
672                  * history from @max_time.
673                  */
674                 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
675                             (unsigned long)WB_FRN_HIST_MAX_SLOTS);
676                 history <<= slots;
677                 if (wbc->wb_id != max_id)
678                         history |= (1U << slots) - 1;
679
680                 /*
681                  * Switch if the current wb isn't the consistent winner.
682                  * If there are multiple closely competing dirtiers, the
683                  * inode may switch across them repeatedly over time, which
684                  * is okay.  The main goal is avoiding keeping an inode on
685                  * the wrong wb for an extended period of time.
686                  */
687                 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
688                         inode_switch_wbs(inode, max_id);
689         }
690
691         /*
692          * Multiple instances of this function may race to update the
693          * following fields but we don't mind occassional inaccuracies.
694          */
695         inode->i_wb_frn_winner = max_id;
696         inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
697         inode->i_wb_frn_history = history;
698
699         wb_put(wbc->wb);
700         wbc->wb = NULL;
701 }
702
703 /**
704  * wbc_account_io - account IO issued during writeback
705  * @wbc: writeback_control of the writeback in progress
706  * @page: page being written out
707  * @bytes: number of bytes being written out
708  *
709  * @bytes from @page are about to written out during the writeback
710  * controlled by @wbc.  Keep the book for foreign inode detection.  See
711  * wbc_detach_inode().
712  */
713 void wbc_account_io(struct writeback_control *wbc, struct page *page,
714                     size_t bytes)
715 {
716         int id;
717
718         /*
719          * pageout() path doesn't attach @wbc to the inode being written
720          * out.  This is intentional as we don't want the function to block
721          * behind a slow cgroup.  Ultimately, we want pageout() to kick off
722          * regular writeback instead of writing things out itself.
723          */
724         if (!wbc->wb)
725                 return;
726
727         id = mem_cgroup_css_from_page(page)->id;
728
729         if (id == wbc->wb_id) {
730                 wbc->wb_bytes += bytes;
731                 return;
732         }
733
734         if (id == wbc->wb_lcand_id)
735                 wbc->wb_lcand_bytes += bytes;
736
737         /* Boyer-Moore majority vote algorithm */
738         if (!wbc->wb_tcand_bytes)
739                 wbc->wb_tcand_id = id;
740         if (id == wbc->wb_tcand_id)
741                 wbc->wb_tcand_bytes += bytes;
742         else
743                 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
744 }
745 EXPORT_SYMBOL_GPL(wbc_account_io);
746
747 /**
748  * inode_congested - test whether an inode is congested
749  * @inode: inode to test for congestion (may be NULL)
750  * @cong_bits: mask of WB_[a]sync_congested bits to test
751  *
752  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
753  * bits to test and the return value is the mask of set bits.
754  *
755  * If cgroup writeback is enabled for @inode, the congestion state is
756  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
757  * associated with @inode is congested; otherwise, the root wb's congestion
758  * state is used.
759  *
760  * @inode is allowed to be NULL as this function is often called on
761  * mapping->host which is NULL for the swapper space.
762  */
763 int inode_congested(struct inode *inode, int cong_bits)
764 {
765         /*
766          * Once set, ->i_wb never becomes NULL while the inode is alive.
767          * Start transaction iff ->i_wb is visible.
768          */
769         if (inode && inode_to_wb_is_valid(inode)) {
770                 struct bdi_writeback *wb;
771                 struct wb_lock_cookie lock_cookie = {};
772                 bool congested;
773
774                 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
775                 congested = wb_congested(wb, cong_bits);
776                 unlocked_inode_to_wb_end(inode, &lock_cookie);
777                 return congested;
778         }
779
780         return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
781 }
782 EXPORT_SYMBOL_GPL(inode_congested);
783
784 /**
785  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
786  * @wb: target bdi_writeback to split @nr_pages to
787  * @nr_pages: number of pages to write for the whole bdi
788  *
789  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
790  * relation to the total write bandwidth of all wb's w/ dirty inodes on
791  * @wb->bdi.
792  */
793 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
794 {
795         unsigned long this_bw = wb->avg_write_bandwidth;
796         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
797
798         if (nr_pages == LONG_MAX)
799                 return LONG_MAX;
800
801         /*
802          * This may be called on clean wb's and proportional distribution
803          * may not make sense, just use the original @nr_pages in those
804          * cases.  In general, we wanna err on the side of writing more.
805          */
806         if (!tot_bw || this_bw >= tot_bw)
807                 return nr_pages;
808         else
809                 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
810 }
811
812 /**
813  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
814  * @bdi: target backing_dev_info
815  * @base_work: wb_writeback_work to issue
816  * @skip_if_busy: skip wb's which already have writeback in progress
817  *
818  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
819  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
820  * distributed to the busy wbs according to each wb's proportion in the
821  * total active write bandwidth of @bdi.
822  */
823 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
824                                   struct wb_writeback_work *base_work,
825                                   bool skip_if_busy)
826 {
827         struct bdi_writeback *last_wb = NULL;
828         struct bdi_writeback *wb = list_entry(&bdi->wb_list,
829                                               struct bdi_writeback, bdi_node);
830
831         might_sleep();
832 restart:
833         rcu_read_lock();
834         list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
835                 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
836                 struct wb_writeback_work fallback_work;
837                 struct wb_writeback_work *work;
838                 long nr_pages;
839
840                 if (last_wb) {
841                         wb_put(last_wb);
842                         last_wb = NULL;
843                 }
844
845                 /* SYNC_ALL writes out I_DIRTY_TIME too */
846                 if (!wb_has_dirty_io(wb) &&
847                     (base_work->sync_mode == WB_SYNC_NONE ||
848                      list_empty(&wb->b_dirty_time)))
849                         continue;
850                 if (skip_if_busy && writeback_in_progress(wb))
851                         continue;
852
853                 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
854
855                 work = kmalloc(sizeof(*work), GFP_ATOMIC);
856                 if (work) {
857                         *work = *base_work;
858                         work->nr_pages = nr_pages;
859                         work->auto_free = 1;
860                         wb_queue_work(wb, work);
861                         continue;
862                 }
863
864                 /* alloc failed, execute synchronously using on-stack fallback */
865                 work = &fallback_work;
866                 *work = *base_work;
867                 work->nr_pages = nr_pages;
868                 work->auto_free = 0;
869                 work->done = &fallback_work_done;
870
871                 wb_queue_work(wb, work);
872
873                 /*
874                  * Pin @wb so that it stays on @bdi->wb_list.  This allows
875                  * continuing iteration from @wb after dropping and
876                  * regrabbing rcu read lock.
877                  */
878                 wb_get(wb);
879                 last_wb = wb;
880
881                 rcu_read_unlock();
882                 wb_wait_for_completion(bdi, &fallback_work_done);
883                 goto restart;
884         }
885         rcu_read_unlock();
886
887         if (last_wb)
888                 wb_put(last_wb);
889 }
890
891 /**
892  * cgroup_writeback_umount - flush inode wb switches for umount
893  *
894  * This function is called when a super_block is about to be destroyed and
895  * flushes in-flight inode wb switches.  An inode wb switch goes through
896  * RCU and then workqueue, so the two need to be flushed in order to ensure
897  * that all previously scheduled switches are finished.  As wb switches are
898  * rare occurrences and synchronize_rcu() can take a while, perform
899  * flushing iff wb switches are in flight.
900  */
901 void cgroup_writeback_umount(void)
902 {
903         if (atomic_read(&isw_nr_in_flight)) {
904                 synchronize_rcu();
905                 flush_workqueue(isw_wq);
906         }
907 }
908
909 static int __init cgroup_writeback_init(void)
910 {
911         isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
912         if (!isw_wq)
913                 return -ENOMEM;
914         return 0;
915 }
916 fs_initcall(cgroup_writeback_init);
917
918 #else   /* CONFIG_CGROUP_WRITEBACK */
919
920 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
921 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
922
923 static struct bdi_writeback *
924 locked_inode_to_wb_and_lock_list(struct inode *inode)
925         __releases(&inode->i_lock)
926         __acquires(&wb->list_lock)
927 {
928         struct bdi_writeback *wb = inode_to_wb(inode);
929
930         spin_unlock(&inode->i_lock);
931         spin_lock(&wb->list_lock);
932         return wb;
933 }
934
935 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
936         __acquires(&wb->list_lock)
937 {
938         struct bdi_writeback *wb = inode_to_wb(inode);
939
940         spin_lock(&wb->list_lock);
941         return wb;
942 }
943
944 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
945 {
946         return nr_pages;
947 }
948
949 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
950                                   struct wb_writeback_work *base_work,
951                                   bool skip_if_busy)
952 {
953         might_sleep();
954
955         if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
956                 base_work->auto_free = 0;
957                 wb_queue_work(&bdi->wb, base_work);
958         }
959 }
960
961 #endif  /* CONFIG_CGROUP_WRITEBACK */
962
963 /*
964  * Add in the number of potentially dirty inodes, because each inode
965  * write can dirty pagecache in the underlying blockdev.
966  */
967 static unsigned long get_nr_dirty_pages(void)
968 {
969         return global_node_page_state(NR_FILE_DIRTY) +
970                 global_node_page_state(NR_UNSTABLE_NFS) +
971                 get_nr_dirty_inodes();
972 }
973
974 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
975 {
976         if (!wb_has_dirty_io(wb))
977                 return;
978
979         /*
980          * All callers of this function want to start writeback of all
981          * dirty pages. Places like vmscan can call this at a very
982          * high frequency, causing pointless allocations of tons of
983          * work items and keeping the flusher threads busy retrieving
984          * that work. Ensure that we only allow one of them pending and
985          * inflight at the time.
986          */
987         if (test_bit(WB_start_all, &wb->state) ||
988             test_and_set_bit(WB_start_all, &wb->state))
989                 return;
990
991         wb->start_all_reason = reason;
992         wb_wakeup(wb);
993 }
994
995 /**
996  * wb_start_background_writeback - start background writeback
997  * @wb: bdi_writback to write from
998  *
999  * Description:
1000  *   This makes sure WB_SYNC_NONE background writeback happens. When
1001  *   this function returns, it is only guaranteed that for given wb
1002  *   some IO is happening if we are over background dirty threshold.
1003  *   Caller need not hold sb s_umount semaphore.
1004  */
1005 void wb_start_background_writeback(struct bdi_writeback *wb)
1006 {
1007         /*
1008          * We just wake up the flusher thread. It will perform background
1009          * writeback as soon as there is no other work to do.
1010          */
1011         trace_writeback_wake_background(wb);
1012         wb_wakeup(wb);
1013 }
1014
1015 /*
1016  * Remove the inode from the writeback list it is on.
1017  */
1018 void inode_io_list_del(struct inode *inode)
1019 {
1020         struct bdi_writeback *wb;
1021
1022         wb = inode_to_wb_and_lock_list(inode);
1023         inode_io_list_del_locked(inode, wb);
1024         spin_unlock(&wb->list_lock);
1025 }
1026
1027 /*
1028  * mark an inode as under writeback on the sb
1029  */
1030 void sb_mark_inode_writeback(struct inode *inode)
1031 {
1032         struct super_block *sb = inode->i_sb;
1033         unsigned long flags;
1034
1035         if (list_empty(&inode->i_wb_list)) {
1036                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1037                 if (list_empty(&inode->i_wb_list)) {
1038                         list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1039                         trace_sb_mark_inode_writeback(inode);
1040                 }
1041                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1042         }
1043 }
1044
1045 /*
1046  * clear an inode as under writeback on the sb
1047  */
1048 void sb_clear_inode_writeback(struct inode *inode)
1049 {
1050         struct super_block *sb = inode->i_sb;
1051         unsigned long flags;
1052
1053         if (!list_empty(&inode->i_wb_list)) {
1054                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1055                 if (!list_empty(&inode->i_wb_list)) {
1056                         list_del_init(&inode->i_wb_list);
1057                         trace_sb_clear_inode_writeback(inode);
1058                 }
1059                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1060         }
1061 }
1062
1063 /*
1064  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1065  * furthest end of its superblock's dirty-inode list.
1066  *
1067  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1068  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1069  * the case then the inode must have been redirtied while it was being written
1070  * out and we don't reset its dirtied_when.
1071  */
1072 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1073 {
1074         if (!list_empty(&wb->b_dirty)) {
1075                 struct inode *tail;
1076
1077                 tail = wb_inode(wb->b_dirty.next);
1078                 if (time_before(inode->dirtied_when, tail->dirtied_when))
1079                         inode->dirtied_when = jiffies;
1080         }
1081         inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1082 }
1083
1084 /*
1085  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1086  */
1087 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1088 {
1089         inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1090 }
1091
1092 static void inode_sync_complete(struct inode *inode)
1093 {
1094         inode->i_state &= ~I_SYNC;
1095         /* If inode is clean an unused, put it into LRU now... */
1096         inode_add_lru(inode);
1097         /* Waiters must see I_SYNC cleared before being woken up */
1098         smp_mb();
1099         wake_up_bit(&inode->i_state, __I_SYNC);
1100 }
1101
1102 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1103 {
1104         bool ret = time_after(inode->dirtied_when, t);
1105 #ifndef CONFIG_64BIT
1106         /*
1107          * For inodes being constantly redirtied, dirtied_when can get stuck.
1108          * It _appears_ to be in the future, but is actually in distant past.
1109          * This test is necessary to prevent such wrapped-around relative times
1110          * from permanently stopping the whole bdi writeback.
1111          */
1112         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1113 #endif
1114         return ret;
1115 }
1116
1117 #define EXPIRE_DIRTY_ATIME 0x0001
1118
1119 /*
1120  * Move expired (dirtied before work->older_than_this) dirty inodes from
1121  * @delaying_queue to @dispatch_queue.
1122  */
1123 static int move_expired_inodes(struct list_head *delaying_queue,
1124                                struct list_head *dispatch_queue,
1125                                int flags,
1126                                struct wb_writeback_work *work)
1127 {
1128         unsigned long *older_than_this = NULL;
1129         unsigned long expire_time;
1130         LIST_HEAD(tmp);
1131         struct list_head *pos, *node;
1132         struct super_block *sb = NULL;
1133         struct inode *inode;
1134         int do_sb_sort = 0;
1135         int moved = 0;
1136
1137         if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1138                 older_than_this = work->older_than_this;
1139         else if (!work->for_sync) {
1140                 expire_time = jiffies - (dirtytime_expire_interval * HZ);
1141                 older_than_this = &expire_time;
1142         }
1143         while (!list_empty(delaying_queue)) {
1144                 inode = wb_inode(delaying_queue->prev);
1145                 if (older_than_this &&
1146                     inode_dirtied_after(inode, *older_than_this))
1147                         break;
1148                 list_move(&inode->i_io_list, &tmp);
1149                 moved++;
1150                 if (flags & EXPIRE_DIRTY_ATIME)
1151                         set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1152                 if (sb_is_blkdev_sb(inode->i_sb))
1153                         continue;
1154                 if (sb && sb != inode->i_sb)
1155                         do_sb_sort = 1;
1156                 sb = inode->i_sb;
1157         }
1158
1159         /* just one sb in list, splice to dispatch_queue and we're done */
1160         if (!do_sb_sort) {
1161                 list_splice(&tmp, dispatch_queue);
1162                 goto out;
1163         }
1164
1165         /* Move inodes from one superblock together */
1166         while (!list_empty(&tmp)) {
1167                 sb = wb_inode(tmp.prev)->i_sb;
1168                 list_for_each_prev_safe(pos, node, &tmp) {
1169                         inode = wb_inode(pos);
1170                         if (inode->i_sb == sb)
1171                                 list_move(&inode->i_io_list, dispatch_queue);
1172                 }
1173         }
1174 out:
1175         return moved;
1176 }
1177
1178 /*
1179  * Queue all expired dirty inodes for io, eldest first.
1180  * Before
1181  *         newly dirtied     b_dirty    b_io    b_more_io
1182  *         =============>    gf         edc     BA
1183  * After
1184  *         newly dirtied     b_dirty    b_io    b_more_io
1185  *         =============>    g          fBAedc
1186  *                                           |
1187  *                                           +--> dequeue for IO
1188  */
1189 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1190 {
1191         int moved;
1192
1193         assert_spin_locked(&wb->list_lock);
1194         list_splice_init(&wb->b_more_io, &wb->b_io);
1195         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1196         moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1197                                      EXPIRE_DIRTY_ATIME, work);
1198         if (moved)
1199                 wb_io_lists_populated(wb);
1200         trace_writeback_queue_io(wb, work, moved);
1201 }
1202
1203 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1204 {
1205         int ret;
1206
1207         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1208                 trace_writeback_write_inode_start(inode, wbc);
1209                 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1210                 trace_writeback_write_inode(inode, wbc);
1211                 return ret;
1212         }
1213         return 0;
1214 }
1215
1216 /*
1217  * Wait for writeback on an inode to complete. Called with i_lock held.
1218  * Caller must make sure inode cannot go away when we drop i_lock.
1219  */
1220 static void __inode_wait_for_writeback(struct inode *inode)
1221         __releases(inode->i_lock)
1222         __acquires(inode->i_lock)
1223 {
1224         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1225         wait_queue_head_t *wqh;
1226
1227         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1228         while (inode->i_state & I_SYNC) {
1229                 spin_unlock(&inode->i_lock);
1230                 __wait_on_bit(wqh, &wq, bit_wait,
1231                               TASK_UNINTERRUPTIBLE);
1232                 spin_lock(&inode->i_lock);
1233         }
1234 }
1235
1236 /*
1237  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1238  */
1239 void inode_wait_for_writeback(struct inode *inode)
1240 {
1241         spin_lock(&inode->i_lock);
1242         __inode_wait_for_writeback(inode);
1243         spin_unlock(&inode->i_lock);
1244 }
1245
1246 /*
1247  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1248  * held and drops it. It is aimed for callers not holding any inode reference
1249  * so once i_lock is dropped, inode can go away.
1250  */
1251 static void inode_sleep_on_writeback(struct inode *inode)
1252         __releases(inode->i_lock)
1253 {
1254         DEFINE_WAIT(wait);
1255         wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1256         int sleep;
1257
1258         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1259         sleep = inode->i_state & I_SYNC;
1260         spin_unlock(&inode->i_lock);
1261         if (sleep)
1262                 schedule();
1263         finish_wait(wqh, &wait);
1264 }
1265
1266 /*
1267  * Find proper writeback list for the inode depending on its current state and
1268  * possibly also change of its state while we were doing writeback.  Here we
1269  * handle things such as livelock prevention or fairness of writeback among
1270  * inodes. This function can be called only by flusher thread - noone else
1271  * processes all inodes in writeback lists and requeueing inodes behind flusher
1272  * thread's back can have unexpected consequences.
1273  */
1274 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1275                           struct writeback_control *wbc)
1276 {
1277         if (inode->i_state & I_FREEING)
1278                 return;
1279
1280         /*
1281          * Sync livelock prevention. Each inode is tagged and synced in one
1282          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1283          * the dirty time to prevent enqueue and sync it again.
1284          */
1285         if ((inode->i_state & I_DIRTY) &&
1286             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1287                 inode->dirtied_when = jiffies;
1288
1289         if (wbc->pages_skipped) {
1290                 /*
1291                  * writeback is not making progress due to locked
1292                  * buffers. Skip this inode for now.
1293                  */
1294                 redirty_tail(inode, wb);
1295                 return;
1296         }
1297
1298         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1299                 /*
1300                  * We didn't write back all the pages.  nfs_writepages()
1301                  * sometimes bales out without doing anything.
1302                  */
1303                 if (wbc->nr_to_write <= 0) {
1304                         /* Slice used up. Queue for next turn. */
1305                         requeue_io(inode, wb);
1306                 } else {
1307                         /*
1308                          * Writeback blocked by something other than
1309                          * congestion. Delay the inode for some time to
1310                          * avoid spinning on the CPU (100% iowait)
1311                          * retrying writeback of the dirty page/inode
1312                          * that cannot be performed immediately.
1313                          */
1314                         redirty_tail(inode, wb);
1315                 }
1316         } else if (inode->i_state & I_DIRTY) {
1317                 /*
1318                  * Filesystems can dirty the inode during writeback operations,
1319                  * such as delayed allocation during submission or metadata
1320                  * updates after data IO completion.
1321                  */
1322                 redirty_tail(inode, wb);
1323         } else if (inode->i_state & I_DIRTY_TIME) {
1324                 inode->dirtied_when = jiffies;
1325                 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1326         } else {
1327                 /* The inode is clean. Remove from writeback lists. */
1328                 inode_io_list_del_locked(inode, wb);
1329         }
1330 }
1331
1332 /*
1333  * Write out an inode and its dirty pages. Do not update the writeback list
1334  * linkage. That is left to the caller. The caller is also responsible for
1335  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1336  */
1337 static int
1338 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1339 {
1340         struct address_space *mapping = inode->i_mapping;
1341         long nr_to_write = wbc->nr_to_write;
1342         unsigned dirty;
1343         int ret;
1344
1345         WARN_ON(!(inode->i_state & I_SYNC));
1346
1347         trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1348
1349         ret = do_writepages(mapping, wbc);
1350
1351         /*
1352          * Make sure to wait on the data before writing out the metadata.
1353          * This is important for filesystems that modify metadata on data
1354          * I/O completion. We don't do it for sync(2) writeback because it has a
1355          * separate, external IO completion path and ->sync_fs for guaranteeing
1356          * inode metadata is written back correctly.
1357          */
1358         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1359                 int err = filemap_fdatawait(mapping);
1360                 if (ret == 0)
1361                         ret = err;
1362         }
1363
1364         /*
1365          * Some filesystems may redirty the inode during the writeback
1366          * due to delalloc, clear dirty metadata flags right before
1367          * write_inode()
1368          */
1369         spin_lock(&inode->i_lock);
1370
1371         dirty = inode->i_state & I_DIRTY;
1372         if (inode->i_state & I_DIRTY_TIME) {
1373                 if ((dirty & I_DIRTY_INODE) ||
1374                     wbc->sync_mode == WB_SYNC_ALL ||
1375                     unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1376                     unlikely(time_after(jiffies,
1377                                         (inode->dirtied_time_when +
1378                                          dirtytime_expire_interval * HZ)))) {
1379                         dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1380                         trace_writeback_lazytime(inode);
1381                 }
1382         } else
1383                 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1384         inode->i_state &= ~dirty;
1385
1386         /*
1387          * Paired with smp_mb() in __mark_inode_dirty().  This allows
1388          * __mark_inode_dirty() to test i_state without grabbing i_lock -
1389          * either they see the I_DIRTY bits cleared or we see the dirtied
1390          * inode.
1391          *
1392          * I_DIRTY_PAGES is always cleared together above even if @mapping
1393          * still has dirty pages.  The flag is reinstated after smp_mb() if
1394          * necessary.  This guarantees that either __mark_inode_dirty()
1395          * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1396          */
1397         smp_mb();
1398
1399         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1400                 inode->i_state |= I_DIRTY_PAGES;
1401
1402         spin_unlock(&inode->i_lock);
1403
1404         if (dirty & I_DIRTY_TIME)
1405                 mark_inode_dirty_sync(inode);
1406         /* Don't write the inode if only I_DIRTY_PAGES was set */
1407         if (dirty & ~I_DIRTY_PAGES) {
1408                 int err = write_inode(inode, wbc);
1409                 if (ret == 0)
1410                         ret = err;
1411         }
1412         trace_writeback_single_inode(inode, wbc, nr_to_write);
1413         return ret;
1414 }
1415
1416 /*
1417  * Write out an inode's dirty pages. Either the caller has an active reference
1418  * on the inode or the inode has I_WILL_FREE set.
1419  *
1420  * This function is designed to be called for writing back one inode which
1421  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1422  * and does more profound writeback list handling in writeback_sb_inodes().
1423  */
1424 static int writeback_single_inode(struct inode *inode,
1425                                   struct writeback_control *wbc)
1426 {
1427         struct bdi_writeback *wb;
1428         int ret = 0;
1429
1430         spin_lock(&inode->i_lock);
1431         if (!atomic_read(&inode->i_count))
1432                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1433         else
1434                 WARN_ON(inode->i_state & I_WILL_FREE);
1435
1436         if (inode->i_state & I_SYNC) {
1437                 if (wbc->sync_mode != WB_SYNC_ALL)
1438                         goto out;
1439                 /*
1440                  * It's a data-integrity sync. We must wait. Since callers hold
1441                  * inode reference or inode has I_WILL_FREE set, it cannot go
1442                  * away under us.
1443                  */
1444                 __inode_wait_for_writeback(inode);
1445         }
1446         WARN_ON(inode->i_state & I_SYNC);
1447         /*
1448          * Skip inode if it is clean and we have no outstanding writeback in
1449          * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1450          * function since flusher thread may be doing for example sync in
1451          * parallel and if we move the inode, it could get skipped. So here we
1452          * make sure inode is on some writeback list and leave it there unless
1453          * we have completely cleaned the inode.
1454          */
1455         if (!(inode->i_state & I_DIRTY_ALL) &&
1456             (wbc->sync_mode != WB_SYNC_ALL ||
1457              !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1458                 goto out;
1459         inode->i_state |= I_SYNC;
1460         wbc_attach_and_unlock_inode(wbc, inode);
1461
1462         ret = __writeback_single_inode(inode, wbc);
1463
1464         wbc_detach_inode(wbc);
1465
1466         wb = inode_to_wb_and_lock_list(inode);
1467         spin_lock(&inode->i_lock);
1468         /*
1469          * If inode is clean, remove it from writeback lists. Otherwise don't
1470          * touch it. See comment above for explanation.
1471          */
1472         if (!(inode->i_state & I_DIRTY_ALL))
1473                 inode_io_list_del_locked(inode, wb);
1474         spin_unlock(&wb->list_lock);
1475         inode_sync_complete(inode);
1476 out:
1477         spin_unlock(&inode->i_lock);
1478         return ret;
1479 }
1480
1481 static long writeback_chunk_size(struct bdi_writeback *wb,
1482                                  struct wb_writeback_work *work)
1483 {
1484         long pages;
1485
1486         /*
1487          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1488          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1489          * here avoids calling into writeback_inodes_wb() more than once.
1490          *
1491          * The intended call sequence for WB_SYNC_ALL writeback is:
1492          *
1493          *      wb_writeback()
1494          *          writeback_sb_inodes()       <== called only once
1495          *              write_cache_pages()     <== called once for each inode
1496          *                   (quickly) tag currently dirty pages
1497          *                   (maybe slowly) sync all tagged pages
1498          */
1499         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1500                 pages = LONG_MAX;
1501         else {
1502                 pages = min(wb->avg_write_bandwidth / 2,
1503                             global_wb_domain.dirty_limit / DIRTY_SCOPE);
1504                 pages = min(pages, work->nr_pages);
1505                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1506                                    MIN_WRITEBACK_PAGES);
1507         }
1508
1509         return pages;
1510 }
1511
1512 /*
1513  * Write a portion of b_io inodes which belong to @sb.
1514  *
1515  * Return the number of pages and/or inodes written.
1516  *
1517  * NOTE! This is called with wb->list_lock held, and will
1518  * unlock and relock that for each inode it ends up doing
1519  * IO for.
1520  */
1521 static long writeback_sb_inodes(struct super_block *sb,
1522                                 struct bdi_writeback *wb,
1523                                 struct wb_writeback_work *work)
1524 {
1525         struct writeback_control wbc = {
1526                 .sync_mode              = work->sync_mode,
1527                 .tagged_writepages      = work->tagged_writepages,
1528                 .for_kupdate            = work->for_kupdate,
1529                 .for_background         = work->for_background,
1530                 .for_sync               = work->for_sync,
1531                 .range_cyclic           = work->range_cyclic,
1532                 .range_start            = 0,
1533                 .range_end              = LLONG_MAX,
1534         };
1535         unsigned long start_time = jiffies;
1536         long write_chunk;
1537         long wrote = 0;  /* count both pages and inodes */
1538
1539         while (!list_empty(&wb->b_io)) {
1540                 struct inode *inode = wb_inode(wb->b_io.prev);
1541                 struct bdi_writeback *tmp_wb;
1542
1543                 if (inode->i_sb != sb) {
1544                         if (work->sb) {
1545                                 /*
1546                                  * We only want to write back data for this
1547                                  * superblock, move all inodes not belonging
1548                                  * to it back onto the dirty list.
1549                                  */
1550                                 redirty_tail(inode, wb);
1551                                 continue;
1552                         }
1553
1554                         /*
1555                          * The inode belongs to a different superblock.
1556                          * Bounce back to the caller to unpin this and
1557                          * pin the next superblock.
1558                          */
1559                         break;
1560                 }
1561
1562                 /*
1563                  * Don't bother with new inodes or inodes being freed, first
1564                  * kind does not need periodic writeout yet, and for the latter
1565                  * kind writeout is handled by the freer.
1566                  */
1567                 spin_lock(&inode->i_lock);
1568                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1569                         spin_unlock(&inode->i_lock);
1570                         redirty_tail(inode, wb);
1571                         continue;
1572                 }
1573                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1574                         /*
1575                          * If this inode is locked for writeback and we are not
1576                          * doing writeback-for-data-integrity, move it to
1577                          * b_more_io so that writeback can proceed with the
1578                          * other inodes on s_io.
1579                          *
1580                          * We'll have another go at writing back this inode
1581                          * when we completed a full scan of b_io.
1582                          */
1583                         spin_unlock(&inode->i_lock);
1584                         requeue_io(inode, wb);
1585                         trace_writeback_sb_inodes_requeue(inode);
1586                         continue;
1587                 }
1588                 spin_unlock(&wb->list_lock);
1589
1590                 /*
1591                  * We already requeued the inode if it had I_SYNC set and we
1592                  * are doing WB_SYNC_NONE writeback. So this catches only the
1593                  * WB_SYNC_ALL case.
1594                  */
1595                 if (inode->i_state & I_SYNC) {
1596                         /* Wait for I_SYNC. This function drops i_lock... */
1597                         inode_sleep_on_writeback(inode);
1598                         /* Inode may be gone, start again */
1599                         spin_lock(&wb->list_lock);
1600                         continue;
1601                 }
1602                 inode->i_state |= I_SYNC;
1603                 wbc_attach_and_unlock_inode(&wbc, inode);
1604
1605                 write_chunk = writeback_chunk_size(wb, work);
1606                 wbc.nr_to_write = write_chunk;
1607                 wbc.pages_skipped = 0;
1608
1609                 /*
1610                  * We use I_SYNC to pin the inode in memory. While it is set
1611                  * evict_inode() will wait so the inode cannot be freed.
1612                  */
1613                 __writeback_single_inode(inode, &wbc);
1614
1615                 wbc_detach_inode(&wbc);
1616                 work->nr_pages -= write_chunk - wbc.nr_to_write;
1617                 wrote += write_chunk - wbc.nr_to_write;
1618
1619                 if (need_resched()) {
1620                         /*
1621                          * We're trying to balance between building up a nice
1622                          * long list of IOs to improve our merge rate, and
1623                          * getting those IOs out quickly for anyone throttling
1624                          * in balance_dirty_pages().  cond_resched() doesn't
1625                          * unplug, so get our IOs out the door before we
1626                          * give up the CPU.
1627                          */
1628                         blk_flush_plug(current);
1629                         cond_resched();
1630                 }
1631
1632                 /*
1633                  * Requeue @inode if still dirty.  Be careful as @inode may
1634                  * have been switched to another wb in the meantime.
1635                  */
1636                 tmp_wb = inode_to_wb_and_lock_list(inode);
1637                 spin_lock(&inode->i_lock);
1638                 if (!(inode->i_state & I_DIRTY_ALL))
1639                         wrote++;
1640                 requeue_inode(inode, tmp_wb, &wbc);
1641                 inode_sync_complete(inode);
1642                 spin_unlock(&inode->i_lock);
1643
1644                 if (unlikely(tmp_wb != wb)) {
1645                         spin_unlock(&tmp_wb->list_lock);
1646                         spin_lock(&wb->list_lock);
1647                 }
1648
1649                 /*
1650                  * bail out to wb_writeback() often enough to check
1651                  * background threshold and other termination conditions.
1652                  */
1653                 if (wrote) {
1654                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1655                                 break;
1656                         if (work->nr_pages <= 0)
1657                                 break;
1658                 }
1659         }
1660         return wrote;
1661 }
1662
1663 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1664                                   struct wb_writeback_work *work)
1665 {
1666         unsigned long start_time = jiffies;
1667         long wrote = 0;
1668
1669         while (!list_empty(&wb->b_io)) {
1670                 struct inode *inode = wb_inode(wb->b_io.prev);
1671                 struct super_block *sb = inode->i_sb;
1672
1673                 if (!trylock_super(sb)) {
1674                         /*
1675                          * trylock_super() may fail consistently due to
1676                          * s_umount being grabbed by someone else. Don't use
1677                          * requeue_io() to avoid busy retrying the inode/sb.
1678                          */
1679                         redirty_tail(inode, wb);
1680                         continue;
1681                 }
1682                 wrote += writeback_sb_inodes(sb, wb, work);
1683                 up_read(&sb->s_umount);
1684
1685                 /* refer to the same tests at the end of writeback_sb_inodes */
1686                 if (wrote) {
1687                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1688                                 break;
1689                         if (work->nr_pages <= 0)
1690                                 break;
1691                 }
1692         }
1693         /* Leave any unwritten inodes on b_io */
1694         return wrote;
1695 }
1696
1697 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1698                                 enum wb_reason reason)
1699 {
1700         struct wb_writeback_work work = {
1701                 .nr_pages       = nr_pages,
1702                 .sync_mode      = WB_SYNC_NONE,
1703                 .range_cyclic   = 1,
1704                 .reason         = reason,
1705         };
1706         struct blk_plug plug;
1707
1708         blk_start_plug(&plug);
1709         spin_lock(&wb->list_lock);
1710         if (list_empty(&wb->b_io))
1711                 queue_io(wb, &work);
1712         __writeback_inodes_wb(wb, &work);
1713         spin_unlock(&wb->list_lock);
1714         blk_finish_plug(&plug);
1715
1716         return nr_pages - work.nr_pages;
1717 }
1718
1719 /*
1720  * Explicit flushing or periodic writeback of "old" data.
1721  *
1722  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1723  * dirtying-time in the inode's address_space.  So this periodic writeback code
1724  * just walks the superblock inode list, writing back any inodes which are
1725  * older than a specific point in time.
1726  *
1727  * Try to run once per dirty_writeback_interval.  But if a writeback event
1728  * takes longer than a dirty_writeback_interval interval, then leave a
1729  * one-second gap.
1730  *
1731  * older_than_this takes precedence over nr_to_write.  So we'll only write back
1732  * all dirty pages if they are all attached to "old" mappings.
1733  */
1734 static long wb_writeback(struct bdi_writeback *wb,
1735                          struct wb_writeback_work *work)
1736 {
1737         unsigned long wb_start = jiffies;
1738         long nr_pages = work->nr_pages;
1739         unsigned long oldest_jif;
1740         struct inode *inode;
1741         long progress;
1742         struct blk_plug plug;
1743
1744         oldest_jif = jiffies;
1745         work->older_than_this = &oldest_jif;
1746
1747         blk_start_plug(&plug);
1748         spin_lock(&wb->list_lock);
1749         for (;;) {
1750                 /*
1751                  * Stop writeback when nr_pages has been consumed
1752                  */
1753                 if (work->nr_pages <= 0)
1754                         break;
1755
1756                 /*
1757                  * Background writeout and kupdate-style writeback may
1758                  * run forever. Stop them if there is other work to do
1759                  * so that e.g. sync can proceed. They'll be restarted
1760                  * after the other works are all done.
1761                  */
1762                 if ((work->for_background || work->for_kupdate) &&
1763                     !list_empty(&wb->work_list))
1764                         break;
1765
1766                 /*
1767                  * For background writeout, stop when we are below the
1768                  * background dirty threshold
1769                  */
1770                 if (work->for_background && !wb_over_bg_thresh(wb))
1771                         break;
1772
1773                 /*
1774                  * Kupdate and background works are special and we want to
1775                  * include all inodes that need writing. Livelock avoidance is
1776                  * handled by these works yielding to any other work so we are
1777                  * safe.
1778                  */
1779                 if (work->for_kupdate) {
1780                         oldest_jif = jiffies -
1781                                 msecs_to_jiffies(dirty_expire_interval * 10);
1782                 } else if (work->for_background)
1783                         oldest_jif = jiffies;
1784
1785                 trace_writeback_start(wb, work);
1786                 if (list_empty(&wb->b_io))
1787                         queue_io(wb, work);
1788                 if (work->sb)
1789                         progress = writeback_sb_inodes(work->sb, wb, work);
1790                 else
1791                         progress = __writeback_inodes_wb(wb, work);
1792                 trace_writeback_written(wb, work);
1793
1794                 wb_update_bandwidth(wb, wb_start);
1795
1796                 /*
1797                  * Did we write something? Try for more
1798                  *
1799                  * Dirty inodes are moved to b_io for writeback in batches.
1800                  * The completion of the current batch does not necessarily
1801                  * mean the overall work is done. So we keep looping as long
1802                  * as made some progress on cleaning pages or inodes.
1803                  */
1804                 if (progress)
1805                         continue;
1806                 /*
1807                  * No more inodes for IO, bail
1808                  */
1809                 if (list_empty(&wb->b_more_io))
1810                         break;
1811                 /*
1812                  * Nothing written. Wait for some inode to
1813                  * become available for writeback. Otherwise
1814                  * we'll just busyloop.
1815                  */
1816                 trace_writeback_wait(wb, work);
1817                 inode = wb_inode(wb->b_more_io.prev);
1818                 spin_lock(&inode->i_lock);
1819                 spin_unlock(&wb->list_lock);
1820                 /* This function drops i_lock... */
1821                 inode_sleep_on_writeback(inode);
1822                 spin_lock(&wb->list_lock);
1823         }
1824         spin_unlock(&wb->list_lock);
1825         blk_finish_plug(&plug);
1826
1827         return nr_pages - work->nr_pages;
1828 }
1829
1830 /*
1831  * Return the next wb_writeback_work struct that hasn't been processed yet.
1832  */
1833 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1834 {
1835         struct wb_writeback_work *work = NULL;
1836
1837         spin_lock_bh(&wb->work_lock);
1838         if (!list_empty(&wb->work_list)) {
1839                 work = list_entry(wb->work_list.next,
1840                                   struct wb_writeback_work, list);
1841                 list_del_init(&work->list);
1842         }
1843         spin_unlock_bh(&wb->work_lock);
1844         return work;
1845 }
1846
1847 static long wb_check_background_flush(struct bdi_writeback *wb)
1848 {
1849         if (wb_over_bg_thresh(wb)) {
1850
1851                 struct wb_writeback_work work = {
1852                         .nr_pages       = LONG_MAX,
1853                         .sync_mode      = WB_SYNC_NONE,
1854                         .for_background = 1,
1855                         .range_cyclic   = 1,
1856                         .reason         = WB_REASON_BACKGROUND,
1857                 };
1858
1859                 return wb_writeback(wb, &work);
1860         }
1861
1862         return 0;
1863 }
1864
1865 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1866 {
1867         unsigned long expired;
1868         long nr_pages;
1869
1870         /*
1871          * When set to zero, disable periodic writeback
1872          */
1873         if (!dirty_writeback_interval)
1874                 return 0;
1875
1876         expired = wb->last_old_flush +
1877                         msecs_to_jiffies(dirty_writeback_interval * 10);
1878         if (time_before(jiffies, expired))
1879                 return 0;
1880
1881         wb->last_old_flush = jiffies;
1882         nr_pages = get_nr_dirty_pages();
1883
1884         if (nr_pages) {
1885                 struct wb_writeback_work work = {
1886                         .nr_pages       = nr_pages,
1887                         .sync_mode      = WB_SYNC_NONE,
1888                         .for_kupdate    = 1,
1889                         .range_cyclic   = 1,
1890                         .reason         = WB_REASON_PERIODIC,
1891                 };
1892
1893                 return wb_writeback(wb, &work);
1894         }
1895
1896         return 0;
1897 }
1898
1899 static long wb_check_start_all(struct bdi_writeback *wb)
1900 {
1901         long nr_pages;
1902
1903         if (!test_bit(WB_start_all, &wb->state))
1904                 return 0;
1905
1906         nr_pages = get_nr_dirty_pages();
1907         if (nr_pages) {
1908                 struct wb_writeback_work work = {
1909                         .nr_pages       = wb_split_bdi_pages(wb, nr_pages),
1910                         .sync_mode      = WB_SYNC_NONE,
1911                         .range_cyclic   = 1,
1912                         .reason         = wb->start_all_reason,
1913                 };
1914
1915                 nr_pages = wb_writeback(wb, &work);
1916         }
1917
1918         clear_bit(WB_start_all, &wb->state);
1919         return nr_pages;
1920 }
1921
1922
1923 /*
1924  * Retrieve work items and do the writeback they describe
1925  */
1926 static long wb_do_writeback(struct bdi_writeback *wb)
1927 {
1928         struct wb_writeback_work *work;
1929         long wrote = 0;
1930
1931         set_bit(WB_writeback_running, &wb->state);
1932         while ((work = get_next_work_item(wb)) != NULL) {
1933                 trace_writeback_exec(wb, work);
1934                 wrote += wb_writeback(wb, work);
1935                 finish_writeback_work(wb, work);
1936         }
1937
1938         /*
1939          * Check for a flush-everything request
1940          */
1941         wrote += wb_check_start_all(wb);
1942
1943         /*
1944          * Check for periodic writeback, kupdated() style
1945          */
1946         wrote += wb_check_old_data_flush(wb);
1947         wrote += wb_check_background_flush(wb);
1948         clear_bit(WB_writeback_running, &wb->state);
1949
1950         return wrote;
1951 }
1952
1953 /*
1954  * Handle writeback of dirty data for the device backed by this bdi. Also
1955  * reschedules periodically and does kupdated style flushing.
1956  */
1957 void wb_workfn(struct work_struct *work)
1958 {
1959         struct bdi_writeback *wb = container_of(to_delayed_work(work),
1960                                                 struct bdi_writeback, dwork);
1961         long pages_written;
1962
1963         set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1964         current->flags |= PF_SWAPWRITE;
1965
1966         if (likely(!current_is_workqueue_rescuer() ||
1967                    !test_bit(WB_registered, &wb->state))) {
1968                 /*
1969                  * The normal path.  Keep writing back @wb until its
1970                  * work_list is empty.  Note that this path is also taken
1971                  * if @wb is shutting down even when we're running off the
1972                  * rescuer as work_list needs to be drained.
1973                  */
1974                 do {
1975                         pages_written = wb_do_writeback(wb);
1976                         trace_writeback_pages_written(pages_written);
1977                 } while (!list_empty(&wb->work_list));
1978         } else {
1979                 /*
1980                  * bdi_wq can't get enough workers and we're running off
1981                  * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1982                  * enough for efficient IO.
1983                  */
1984                 pages_written = writeback_inodes_wb(wb, 1024,
1985                                                     WB_REASON_FORKER_THREAD);
1986                 trace_writeback_pages_written(pages_written);
1987         }
1988
1989         if (!list_empty(&wb->work_list))
1990                 wb_wakeup(wb);
1991         else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1992                 wb_wakeup_delayed(wb);
1993
1994         current->flags &= ~PF_SWAPWRITE;
1995 }
1996
1997 /*
1998  * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
1999  * write back the whole world.
2000  */
2001 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2002                                          enum wb_reason reason)
2003 {
2004         struct bdi_writeback *wb;
2005
2006         if (!bdi_has_dirty_io(bdi))
2007                 return;
2008
2009         list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2010                 wb_start_writeback(wb, reason);
2011 }
2012
2013 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2014                                 enum wb_reason reason)
2015 {
2016         rcu_read_lock();
2017         __wakeup_flusher_threads_bdi(bdi, reason);
2018         rcu_read_unlock();
2019 }
2020
2021 /*
2022  * Wakeup the flusher threads to start writeback of all currently dirty pages
2023  */
2024 void wakeup_flusher_threads(enum wb_reason reason)
2025 {
2026         struct backing_dev_info *bdi;
2027
2028         /*
2029          * If we are expecting writeback progress we must submit plugged IO.
2030          */
2031         if (blk_needs_flush_plug(current))
2032                 blk_schedule_flush_plug(current);
2033
2034         rcu_read_lock();
2035         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2036                 __wakeup_flusher_threads_bdi(bdi, reason);
2037         rcu_read_unlock();
2038 }
2039
2040 /*
2041  * Wake up bdi's periodically to make sure dirtytime inodes gets
2042  * written back periodically.  We deliberately do *not* check the
2043  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2044  * kernel to be constantly waking up once there are any dirtytime
2045  * inodes on the system.  So instead we define a separate delayed work
2046  * function which gets called much more rarely.  (By default, only
2047  * once every 12 hours.)
2048  *
2049  * If there is any other write activity going on in the file system,
2050  * this function won't be necessary.  But if the only thing that has
2051  * happened on the file system is a dirtytime inode caused by an atime
2052  * update, we need this infrastructure below to make sure that inode
2053  * eventually gets pushed out to disk.
2054  */
2055 static void wakeup_dirtytime_writeback(struct work_struct *w);
2056 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2057
2058 static void wakeup_dirtytime_writeback(struct work_struct *w)
2059 {
2060         struct backing_dev_info *bdi;
2061
2062         rcu_read_lock();
2063         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2064                 struct bdi_writeback *wb;
2065
2066                 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2067                         if (!list_empty(&wb->b_dirty_time))
2068                                 wb_wakeup(wb);
2069         }
2070         rcu_read_unlock();
2071         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2072 }
2073
2074 static int __init start_dirtytime_writeback(void)
2075 {
2076         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2077         return 0;
2078 }
2079 __initcall(start_dirtytime_writeback);
2080
2081 int dirtytime_interval_handler(struct ctl_table *table, int write,
2082                                void __user *buffer, size_t *lenp, loff_t *ppos)
2083 {
2084         int ret;
2085
2086         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2087         if (ret == 0 && write)
2088                 mod_delayed_work(system_wq, &dirtytime_work, 0);
2089         return ret;
2090 }
2091
2092 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2093 {
2094         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2095                 struct dentry *dentry;
2096                 const char *name = "?";
2097
2098                 dentry = d_find_alias(inode);
2099                 if (dentry) {
2100                         spin_lock(&dentry->d_lock);
2101                         name = (const char *) dentry->d_name.name;
2102                 }
2103                 printk(KERN_DEBUG
2104                        "%s(%d): dirtied inode %lu (%s) on %s\n",
2105                        current->comm, task_pid_nr(current), inode->i_ino,
2106                        name, inode->i_sb->s_id);
2107                 if (dentry) {
2108                         spin_unlock(&dentry->d_lock);
2109                         dput(dentry);
2110                 }
2111         }
2112 }
2113
2114 /**
2115  * __mark_inode_dirty - internal function
2116  *
2117  * @inode: inode to mark
2118  * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2119  *
2120  * Mark an inode as dirty. Callers should use mark_inode_dirty or
2121  * mark_inode_dirty_sync.
2122  *
2123  * Put the inode on the super block's dirty list.
2124  *
2125  * CAREFUL! We mark it dirty unconditionally, but move it onto the
2126  * dirty list only if it is hashed or if it refers to a blockdev.
2127  * If it was not hashed, it will never be added to the dirty list
2128  * even if it is later hashed, as it will have been marked dirty already.
2129  *
2130  * In short, make sure you hash any inodes _before_ you start marking
2131  * them dirty.
2132  *
2133  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2134  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2135  * the kernel-internal blockdev inode represents the dirtying time of the
2136  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2137  * page->mapping->host, so the page-dirtying time is recorded in the internal
2138  * blockdev inode.
2139  */
2140 void __mark_inode_dirty(struct inode *inode, int flags)
2141 {
2142         struct super_block *sb = inode->i_sb;
2143         int dirtytime;
2144
2145         trace_writeback_mark_inode_dirty(inode, flags);
2146
2147         /*
2148          * Don't do this for I_DIRTY_PAGES - that doesn't actually
2149          * dirty the inode itself
2150          */
2151         if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) {
2152                 trace_writeback_dirty_inode_start(inode, flags);
2153
2154                 if (sb->s_op->dirty_inode)
2155                         sb->s_op->dirty_inode(inode, flags);
2156
2157                 trace_writeback_dirty_inode(inode, flags);
2158         }
2159         if (flags & I_DIRTY_INODE)
2160                 flags &= ~I_DIRTY_TIME;
2161         dirtytime = flags & I_DIRTY_TIME;
2162
2163         /*
2164          * Paired with smp_mb() in __writeback_single_inode() for the
2165          * following lockless i_state test.  See there for details.
2166          */
2167         smp_mb();
2168
2169         if (((inode->i_state & flags) == flags) ||
2170             (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2171                 return;
2172
2173         if (unlikely(block_dump))
2174                 block_dump___mark_inode_dirty(inode);
2175
2176         spin_lock(&inode->i_lock);
2177         if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2178                 goto out_unlock_inode;
2179         if ((inode->i_state & flags) != flags) {
2180                 const int was_dirty = inode->i_state & I_DIRTY;
2181
2182                 inode_attach_wb(inode, NULL);
2183
2184                 if (flags & I_DIRTY_INODE)
2185                         inode->i_state &= ~I_DIRTY_TIME;
2186                 inode->i_state |= flags;
2187
2188                 /*
2189                  * If the inode is being synced, just update its dirty state.
2190                  * The unlocker will place the inode on the appropriate
2191                  * superblock list, based upon its state.
2192                  */
2193                 if (inode->i_state & I_SYNC)
2194                         goto out_unlock_inode;
2195
2196                 /*
2197                  * Only add valid (hashed) inodes to the superblock's
2198                  * dirty list.  Add blockdev inodes as well.
2199                  */
2200                 if (!S_ISBLK(inode->i_mode)) {
2201                         if (inode_unhashed(inode))
2202                                 goto out_unlock_inode;
2203                 }
2204                 if (inode->i_state & I_FREEING)
2205                         goto out_unlock_inode;
2206
2207                 /*
2208                  * If the inode was already on b_dirty/b_io/b_more_io, don't
2209                  * reposition it (that would break b_dirty time-ordering).
2210                  */
2211                 if (!was_dirty) {
2212                         struct bdi_writeback *wb;
2213                         struct list_head *dirty_list;
2214                         bool wakeup_bdi = false;
2215
2216                         wb = locked_inode_to_wb_and_lock_list(inode);
2217
2218                         WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2219                              !test_bit(WB_registered, &wb->state),
2220                              "bdi-%s not registered\n", wb->bdi->name);
2221
2222                         inode->dirtied_when = jiffies;
2223                         if (dirtytime)
2224                                 inode->dirtied_time_when = jiffies;
2225
2226                         if (inode->i_state & I_DIRTY)
2227                                 dirty_list = &wb->b_dirty;
2228                         else
2229                                 dirty_list = &wb->b_dirty_time;
2230
2231                         wakeup_bdi = inode_io_list_move_locked(inode, wb,
2232                                                                dirty_list);
2233
2234                         spin_unlock(&wb->list_lock);
2235                         trace_writeback_dirty_inode_enqueue(inode);
2236
2237                         /*
2238                          * If this is the first dirty inode for this bdi,
2239                          * we have to wake-up the corresponding bdi thread
2240                          * to make sure background write-back happens
2241                          * later.
2242                          */
2243                         if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2244                                 wb_wakeup_delayed(wb);
2245                         return;
2246                 }
2247         }
2248 out_unlock_inode:
2249         spin_unlock(&inode->i_lock);
2250 }
2251 EXPORT_SYMBOL(__mark_inode_dirty);
2252
2253 /*
2254  * The @s_sync_lock is used to serialise concurrent sync operations
2255  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2256  * Concurrent callers will block on the s_sync_lock rather than doing contending
2257  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2258  * has been issued up to the time this function is enter is guaranteed to be
2259  * completed by the time we have gained the lock and waited for all IO that is
2260  * in progress regardless of the order callers are granted the lock.
2261  */
2262 static void wait_sb_inodes(struct super_block *sb)
2263 {
2264         LIST_HEAD(sync_list);
2265
2266         /*
2267          * We need to be protected against the filesystem going from
2268          * r/o to r/w or vice versa.
2269          */
2270         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2271
2272         mutex_lock(&sb->s_sync_lock);
2273
2274         /*
2275          * Splice the writeback list onto a temporary list to avoid waiting on
2276          * inodes that have started writeback after this point.
2277          *
2278          * Use rcu_read_lock() to keep the inodes around until we have a
2279          * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2280          * the local list because inodes can be dropped from either by writeback
2281          * completion.
2282          */
2283         rcu_read_lock();
2284         spin_lock_irq(&sb->s_inode_wblist_lock);
2285         list_splice_init(&sb->s_inodes_wb, &sync_list);
2286
2287         /*
2288          * Data integrity sync. Must wait for all pages under writeback, because
2289          * there may have been pages dirtied before our sync call, but which had
2290          * writeout started before we write it out.  In which case, the inode
2291          * may not be on the dirty list, but we still have to wait for that
2292          * writeout.
2293          */
2294         while (!list_empty(&sync_list)) {
2295                 struct inode *inode = list_first_entry(&sync_list, struct inode,
2296                                                        i_wb_list);
2297                 struct address_space *mapping = inode->i_mapping;
2298
2299                 /*
2300                  * Move each inode back to the wb list before we drop the lock
2301                  * to preserve consistency between i_wb_list and the mapping
2302                  * writeback tag. Writeback completion is responsible to remove
2303                  * the inode from either list once the writeback tag is cleared.
2304                  */
2305                 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2306
2307                 /*
2308                  * The mapping can appear untagged while still on-list since we
2309                  * do not have the mapping lock. Skip it here, wb completion
2310                  * will remove it.
2311                  */
2312                 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2313                         continue;
2314
2315                 spin_unlock_irq(&sb->s_inode_wblist_lock);
2316
2317                 spin_lock(&inode->i_lock);
2318                 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2319                         spin_unlock(&inode->i_lock);
2320
2321                         spin_lock_irq(&sb->s_inode_wblist_lock);
2322                         continue;
2323                 }
2324                 __iget(inode);
2325                 spin_unlock(&inode->i_lock);
2326                 rcu_read_unlock();
2327
2328                 /*
2329                  * We keep the error status of individual mapping so that
2330                  * applications can catch the writeback error using fsync(2).
2331                  * See filemap_fdatawait_keep_errors() for details.
2332                  */
2333                 filemap_fdatawait_keep_errors(mapping);
2334
2335                 cond_resched();
2336
2337                 iput(inode);
2338
2339                 rcu_read_lock();
2340                 spin_lock_irq(&sb->s_inode_wblist_lock);
2341         }
2342         spin_unlock_irq(&sb->s_inode_wblist_lock);
2343         rcu_read_unlock();
2344         mutex_unlock(&sb->s_sync_lock);
2345 }
2346
2347 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2348                                      enum wb_reason reason, bool skip_if_busy)
2349 {
2350         DEFINE_WB_COMPLETION_ONSTACK(done);
2351         struct wb_writeback_work work = {
2352                 .sb                     = sb,
2353                 .sync_mode              = WB_SYNC_NONE,
2354                 .tagged_writepages      = 1,
2355                 .done                   = &done,
2356                 .nr_pages               = nr,
2357                 .reason                 = reason,
2358         };
2359         struct backing_dev_info *bdi = sb->s_bdi;
2360
2361         if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2362                 return;
2363         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2364
2365         bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2366         wb_wait_for_completion(bdi, &done);
2367 }
2368
2369 /**
2370  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
2371  * @sb: the superblock
2372  * @nr: the number of pages to write
2373  * @reason: reason why some writeback work initiated
2374  *
2375  * Start writeback on some inodes on this super_block. No guarantees are made
2376  * on how many (if any) will be written, and this function does not wait
2377  * for IO completion of submitted IO.
2378  */
2379 void writeback_inodes_sb_nr(struct super_block *sb,
2380                             unsigned long nr,
2381                             enum wb_reason reason)
2382 {
2383         __writeback_inodes_sb_nr(sb, nr, reason, false);
2384 }
2385 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2386
2387 /**
2388  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
2389  * @sb: the superblock
2390  * @reason: reason why some writeback work was initiated
2391  *
2392  * Start writeback on some inodes on this super_block. No guarantees are made
2393  * on how many (if any) will be written, and this function does not wait
2394  * for IO completion of submitted IO.
2395  */
2396 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2397 {
2398         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2399 }
2400 EXPORT_SYMBOL(writeback_inodes_sb);
2401
2402 /**
2403  * try_to_writeback_inodes_sb - try to start writeback if none underway
2404  * @sb: the superblock
2405  * @reason: reason why some writeback work was initiated
2406  *
2407  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2408  */
2409 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2410 {
2411         if (!down_read_trylock(&sb->s_umount))
2412                 return;
2413
2414         __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2415         up_read(&sb->s_umount);
2416 }
2417 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2418
2419 /**
2420  * sync_inodes_sb       -       sync sb inode pages
2421  * @sb: the superblock
2422  *
2423  * This function writes and waits on any dirty inode belonging to this
2424  * super_block.
2425  */
2426 void sync_inodes_sb(struct super_block *sb)
2427 {
2428         DEFINE_WB_COMPLETION_ONSTACK(done);
2429         struct wb_writeback_work work = {
2430                 .sb             = sb,
2431                 .sync_mode      = WB_SYNC_ALL,
2432                 .nr_pages       = LONG_MAX,
2433                 .range_cyclic   = 0,
2434                 .done           = &done,
2435                 .reason         = WB_REASON_SYNC,
2436                 .for_sync       = 1,
2437         };
2438         struct backing_dev_info *bdi = sb->s_bdi;
2439
2440         /*
2441          * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2442          * inodes under writeback and I_DIRTY_TIME inodes ignored by
2443          * bdi_has_dirty() need to be written out too.
2444          */
2445         if (bdi == &noop_backing_dev_info)
2446                 return;
2447         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2448
2449         /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2450         bdi_down_write_wb_switch_rwsem(bdi);
2451         bdi_split_work_to_wbs(bdi, &work, false);
2452         wb_wait_for_completion(bdi, &done);
2453         bdi_up_write_wb_switch_rwsem(bdi);
2454
2455         wait_sb_inodes(sb);
2456 }
2457 EXPORT_SYMBOL(sync_inodes_sb);
2458
2459 /**
2460  * write_inode_now      -       write an inode to disk
2461  * @inode: inode to write to disk
2462  * @sync: whether the write should be synchronous or not
2463  *
2464  * This function commits an inode to disk immediately if it is dirty. This is
2465  * primarily needed by knfsd.
2466  *
2467  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2468  */
2469 int write_inode_now(struct inode *inode, int sync)
2470 {
2471         struct writeback_control wbc = {
2472                 .nr_to_write = LONG_MAX,
2473                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2474                 .range_start = 0,
2475                 .range_end = LLONG_MAX,
2476         };
2477
2478         if (!mapping_cap_writeback_dirty(inode->i_mapping))
2479                 wbc.nr_to_write = 0;
2480
2481         might_sleep();
2482         return writeback_single_inode(inode, &wbc);
2483 }
2484 EXPORT_SYMBOL(write_inode_now);
2485
2486 /**
2487  * sync_inode - write an inode and its pages to disk.
2488  * @inode: the inode to sync
2489  * @wbc: controls the writeback mode
2490  *
2491  * sync_inode() will write an inode and its pages to disk.  It will also
2492  * correctly update the inode on its superblock's dirty inode lists and will
2493  * update inode->i_state.
2494  *
2495  * The caller must have a ref on the inode.
2496  */
2497 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2498 {
2499         return writeback_single_inode(inode, wbc);
2500 }
2501 EXPORT_SYMBOL(sync_inode);
2502
2503 /**
2504  * sync_inode_metadata - write an inode to disk
2505  * @inode: the inode to sync
2506  * @wait: wait for I/O to complete.
2507  *
2508  * Write an inode to disk and adjust its dirty state after completion.
2509  *
2510  * Note: only writes the actual inode, no associated data or other metadata.
2511  */
2512 int sync_inode_metadata(struct inode *inode, int wait)
2513 {
2514         struct writeback_control wbc = {
2515                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2516                 .nr_to_write = 0, /* metadata-only */
2517         };
2518
2519         return sync_inode(inode, &wbc);
2520 }
2521 EXPORT_SYMBOL(sync_inode_metadata);