f2fs: introduce a new mount option test_dummy_encryption
[sfrench/cifs-2.6.git] / fs / f2fs / super.c
1 /*
2  * fs/f2fs/super.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <linux/f2fs_fs.h>
27 #include <linux/sysfs.h>
28 #include <linux/quota.h>
29
30 #include "f2fs.h"
31 #include "node.h"
32 #include "segment.h"
33 #include "xattr.h"
34 #include "gc.h"
35 #include "trace.h"
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/f2fs.h>
39
40 static struct kmem_cache *f2fs_inode_cachep;
41
42 #ifdef CONFIG_F2FS_FAULT_INJECTION
43
44 char *fault_name[FAULT_MAX] = {
45         [FAULT_KMALLOC]         = "kmalloc",
46         [FAULT_KVMALLOC]        = "kvmalloc",
47         [FAULT_PAGE_ALLOC]      = "page alloc",
48         [FAULT_PAGE_GET]        = "page get",
49         [FAULT_ALLOC_BIO]       = "alloc bio",
50         [FAULT_ALLOC_NID]       = "alloc nid",
51         [FAULT_ORPHAN]          = "orphan",
52         [FAULT_BLOCK]           = "no more block",
53         [FAULT_DIR_DEPTH]       = "too big dir depth",
54         [FAULT_EVICT_INODE]     = "evict_inode fail",
55         [FAULT_TRUNCATE]        = "truncate fail",
56         [FAULT_IO]              = "IO error",
57         [FAULT_CHECKPOINT]      = "checkpoint error",
58 };
59
60 static void f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
61                                                 unsigned int rate)
62 {
63         struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
64
65         if (rate) {
66                 atomic_set(&ffi->inject_ops, 0);
67                 ffi->inject_rate = rate;
68                 ffi->inject_type = (1 << FAULT_MAX) - 1;
69         } else {
70                 memset(ffi, 0, sizeof(struct f2fs_fault_info));
71         }
72 }
73 #endif
74
75 /* f2fs-wide shrinker description */
76 static struct shrinker f2fs_shrinker_info = {
77         .scan_objects = f2fs_shrink_scan,
78         .count_objects = f2fs_shrink_count,
79         .seeks = DEFAULT_SEEKS,
80 };
81
82 enum {
83         Opt_gc_background,
84         Opt_disable_roll_forward,
85         Opt_norecovery,
86         Opt_discard,
87         Opt_nodiscard,
88         Opt_noheap,
89         Opt_heap,
90         Opt_user_xattr,
91         Opt_nouser_xattr,
92         Opt_acl,
93         Opt_noacl,
94         Opt_active_logs,
95         Opt_disable_ext_identify,
96         Opt_inline_xattr,
97         Opt_noinline_xattr,
98         Opt_inline_xattr_size,
99         Opt_inline_data,
100         Opt_inline_dentry,
101         Opt_noinline_dentry,
102         Opt_flush_merge,
103         Opt_noflush_merge,
104         Opt_nobarrier,
105         Opt_fastboot,
106         Opt_extent_cache,
107         Opt_noextent_cache,
108         Opt_noinline_data,
109         Opt_data_flush,
110         Opt_reserve_root,
111         Opt_resgid,
112         Opt_resuid,
113         Opt_mode,
114         Opt_io_size_bits,
115         Opt_fault_injection,
116         Opt_lazytime,
117         Opt_nolazytime,
118         Opt_quota,
119         Opt_noquota,
120         Opt_usrquota,
121         Opt_grpquota,
122         Opt_prjquota,
123         Opt_usrjquota,
124         Opt_grpjquota,
125         Opt_prjjquota,
126         Opt_offusrjquota,
127         Opt_offgrpjquota,
128         Opt_offprjjquota,
129         Opt_jqfmt_vfsold,
130         Opt_jqfmt_vfsv0,
131         Opt_jqfmt_vfsv1,
132         Opt_whint,
133         Opt_alloc,
134         Opt_fsync,
135         Opt_test_dummy_encryption,
136         Opt_err,
137 };
138
139 static match_table_t f2fs_tokens = {
140         {Opt_gc_background, "background_gc=%s"},
141         {Opt_disable_roll_forward, "disable_roll_forward"},
142         {Opt_norecovery, "norecovery"},
143         {Opt_discard, "discard"},
144         {Opt_nodiscard, "nodiscard"},
145         {Opt_noheap, "no_heap"},
146         {Opt_heap, "heap"},
147         {Opt_user_xattr, "user_xattr"},
148         {Opt_nouser_xattr, "nouser_xattr"},
149         {Opt_acl, "acl"},
150         {Opt_noacl, "noacl"},
151         {Opt_active_logs, "active_logs=%u"},
152         {Opt_disable_ext_identify, "disable_ext_identify"},
153         {Opt_inline_xattr, "inline_xattr"},
154         {Opt_noinline_xattr, "noinline_xattr"},
155         {Opt_inline_xattr_size, "inline_xattr_size=%u"},
156         {Opt_inline_data, "inline_data"},
157         {Opt_inline_dentry, "inline_dentry"},
158         {Opt_noinline_dentry, "noinline_dentry"},
159         {Opt_flush_merge, "flush_merge"},
160         {Opt_noflush_merge, "noflush_merge"},
161         {Opt_nobarrier, "nobarrier"},
162         {Opt_fastboot, "fastboot"},
163         {Opt_extent_cache, "extent_cache"},
164         {Opt_noextent_cache, "noextent_cache"},
165         {Opt_noinline_data, "noinline_data"},
166         {Opt_data_flush, "data_flush"},
167         {Opt_reserve_root, "reserve_root=%u"},
168         {Opt_resgid, "resgid=%u"},
169         {Opt_resuid, "resuid=%u"},
170         {Opt_mode, "mode=%s"},
171         {Opt_io_size_bits, "io_bits=%u"},
172         {Opt_fault_injection, "fault_injection=%u"},
173         {Opt_lazytime, "lazytime"},
174         {Opt_nolazytime, "nolazytime"},
175         {Opt_quota, "quota"},
176         {Opt_noquota, "noquota"},
177         {Opt_usrquota, "usrquota"},
178         {Opt_grpquota, "grpquota"},
179         {Opt_prjquota, "prjquota"},
180         {Opt_usrjquota, "usrjquota=%s"},
181         {Opt_grpjquota, "grpjquota=%s"},
182         {Opt_prjjquota, "prjjquota=%s"},
183         {Opt_offusrjquota, "usrjquota="},
184         {Opt_offgrpjquota, "grpjquota="},
185         {Opt_offprjjquota, "prjjquota="},
186         {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
187         {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
188         {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
189         {Opt_whint, "whint_mode=%s"},
190         {Opt_alloc, "alloc_mode=%s"},
191         {Opt_fsync, "fsync_mode=%s"},
192         {Opt_test_dummy_encryption, "test_dummy_encryption"},
193         {Opt_err, NULL},
194 };
195
196 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
197 {
198         struct va_format vaf;
199         va_list args;
200
201         va_start(args, fmt);
202         vaf.fmt = fmt;
203         vaf.va = &args;
204         printk_ratelimited("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
205         va_end(args);
206 }
207
208 static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
209 {
210         block_t limit = (sbi->user_block_count << 1) / 1000;
211
212         /* limit is 0.2% */
213         if (test_opt(sbi, RESERVE_ROOT) &&
214                         F2FS_OPTION(sbi).root_reserved_blocks > limit) {
215                 F2FS_OPTION(sbi).root_reserved_blocks = limit;
216                 f2fs_msg(sbi->sb, KERN_INFO,
217                         "Reduce reserved blocks for root = %u",
218                         F2FS_OPTION(sbi).root_reserved_blocks);
219         }
220         if (!test_opt(sbi, RESERVE_ROOT) &&
221                 (!uid_eq(F2FS_OPTION(sbi).s_resuid,
222                                 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
223                 !gid_eq(F2FS_OPTION(sbi).s_resgid,
224                                 make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
225                 f2fs_msg(sbi->sb, KERN_INFO,
226                         "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
227                                 from_kuid_munged(&init_user_ns,
228                                         F2FS_OPTION(sbi).s_resuid),
229                                 from_kgid_munged(&init_user_ns,
230                                         F2FS_OPTION(sbi).s_resgid));
231 }
232
233 static void init_once(void *foo)
234 {
235         struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
236
237         inode_init_once(&fi->vfs_inode);
238 }
239
240 #ifdef CONFIG_QUOTA
241 static const char * const quotatypes[] = INITQFNAMES;
242 #define QTYPE2NAME(t) (quotatypes[t])
243 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
244                                                         substring_t *args)
245 {
246         struct f2fs_sb_info *sbi = F2FS_SB(sb);
247         char *qname;
248         int ret = -EINVAL;
249
250         if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) {
251                 f2fs_msg(sb, KERN_ERR,
252                         "Cannot change journaled "
253                         "quota options when quota turned on");
254                 return -EINVAL;
255         }
256         if (f2fs_sb_has_quota_ino(sb)) {
257                 f2fs_msg(sb, KERN_INFO,
258                         "QUOTA feature is enabled, so ignore qf_name");
259                 return 0;
260         }
261
262         qname = match_strdup(args);
263         if (!qname) {
264                 f2fs_msg(sb, KERN_ERR,
265                         "Not enough memory for storing quotafile name");
266                 return -EINVAL;
267         }
268         if (F2FS_OPTION(sbi).s_qf_names[qtype]) {
269                 if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0)
270                         ret = 0;
271                 else
272                         f2fs_msg(sb, KERN_ERR,
273                                  "%s quota file already specified",
274                                  QTYPE2NAME(qtype));
275                 goto errout;
276         }
277         if (strchr(qname, '/')) {
278                 f2fs_msg(sb, KERN_ERR,
279                         "quotafile must be on filesystem root");
280                 goto errout;
281         }
282         F2FS_OPTION(sbi).s_qf_names[qtype] = qname;
283         set_opt(sbi, QUOTA);
284         return 0;
285 errout:
286         kfree(qname);
287         return ret;
288 }
289
290 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
291 {
292         struct f2fs_sb_info *sbi = F2FS_SB(sb);
293
294         if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) {
295                 f2fs_msg(sb, KERN_ERR, "Cannot change journaled quota options"
296                         " when quota turned on");
297                 return -EINVAL;
298         }
299         kfree(F2FS_OPTION(sbi).s_qf_names[qtype]);
300         F2FS_OPTION(sbi).s_qf_names[qtype] = NULL;
301         return 0;
302 }
303
304 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
305 {
306         /*
307          * We do the test below only for project quotas. 'usrquota' and
308          * 'grpquota' mount options are allowed even without quota feature
309          * to support legacy quotas in quota files.
310          */
311         if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi->sb)) {
312                 f2fs_msg(sbi->sb, KERN_ERR, "Project quota feature not enabled. "
313                          "Cannot enable project quota enforcement.");
314                 return -1;
315         }
316         if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
317                         F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
318                         F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) {
319                 if (test_opt(sbi, USRQUOTA) &&
320                                 F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
321                         clear_opt(sbi, USRQUOTA);
322
323                 if (test_opt(sbi, GRPQUOTA) &&
324                                 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
325                         clear_opt(sbi, GRPQUOTA);
326
327                 if (test_opt(sbi, PRJQUOTA) &&
328                                 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
329                         clear_opt(sbi, PRJQUOTA);
330
331                 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
332                                 test_opt(sbi, PRJQUOTA)) {
333                         f2fs_msg(sbi->sb, KERN_ERR, "old and new quota "
334                                         "format mixing");
335                         return -1;
336                 }
337
338                 if (!F2FS_OPTION(sbi).s_jquota_fmt) {
339                         f2fs_msg(sbi->sb, KERN_ERR, "journaled quota format "
340                                         "not specified");
341                         return -1;
342                 }
343         }
344
345         if (f2fs_sb_has_quota_ino(sbi->sb) && F2FS_OPTION(sbi).s_jquota_fmt) {
346                 f2fs_msg(sbi->sb, KERN_INFO,
347                         "QUOTA feature is enabled, so ignore jquota_fmt");
348                 F2FS_OPTION(sbi).s_jquota_fmt = 0;
349         }
350         if (f2fs_sb_has_quota_ino(sbi->sb) && f2fs_readonly(sbi->sb)) {
351                 f2fs_msg(sbi->sb, KERN_INFO,
352                          "Filesystem with quota feature cannot be mounted RDWR "
353                          "without CONFIG_QUOTA");
354                 return -1;
355         }
356         return 0;
357 }
358 #endif
359
360 static int parse_options(struct super_block *sb, char *options)
361 {
362         struct f2fs_sb_info *sbi = F2FS_SB(sb);
363         struct request_queue *q;
364         substring_t args[MAX_OPT_ARGS];
365         char *p, *name;
366         int arg = 0;
367         kuid_t uid;
368         kgid_t gid;
369 #ifdef CONFIG_QUOTA
370         int ret;
371 #endif
372
373         if (!options)
374                 return 0;
375
376         while ((p = strsep(&options, ",")) != NULL) {
377                 int token;
378                 if (!*p)
379                         continue;
380                 /*
381                  * Initialize args struct so we know whether arg was
382                  * found; some options take optional arguments.
383                  */
384                 args[0].to = args[0].from = NULL;
385                 token = match_token(p, f2fs_tokens, args);
386
387                 switch (token) {
388                 case Opt_gc_background:
389                         name = match_strdup(&args[0]);
390
391                         if (!name)
392                                 return -ENOMEM;
393                         if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
394                                 set_opt(sbi, BG_GC);
395                                 clear_opt(sbi, FORCE_FG_GC);
396                         } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
397                                 clear_opt(sbi, BG_GC);
398                                 clear_opt(sbi, FORCE_FG_GC);
399                         } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
400                                 set_opt(sbi, BG_GC);
401                                 set_opt(sbi, FORCE_FG_GC);
402                         } else {
403                                 kfree(name);
404                                 return -EINVAL;
405                         }
406                         kfree(name);
407                         break;
408                 case Opt_disable_roll_forward:
409                         set_opt(sbi, DISABLE_ROLL_FORWARD);
410                         break;
411                 case Opt_norecovery:
412                         /* this option mounts f2fs with ro */
413                         set_opt(sbi, DISABLE_ROLL_FORWARD);
414                         if (!f2fs_readonly(sb))
415                                 return -EINVAL;
416                         break;
417                 case Opt_discard:
418                         q = bdev_get_queue(sb->s_bdev);
419                         if (blk_queue_discard(q)) {
420                                 set_opt(sbi, DISCARD);
421                         } else if (!f2fs_sb_has_blkzoned(sb)) {
422                                 f2fs_msg(sb, KERN_WARNING,
423                                         "mounting with \"discard\" option, but "
424                                         "the device does not support discard");
425                         }
426                         break;
427                 case Opt_nodiscard:
428                         if (f2fs_sb_has_blkzoned(sb)) {
429                                 f2fs_msg(sb, KERN_WARNING,
430                                         "discard is required for zoned block devices");
431                                 return -EINVAL;
432                         }
433                         clear_opt(sbi, DISCARD);
434                         break;
435                 case Opt_noheap:
436                         set_opt(sbi, NOHEAP);
437                         break;
438                 case Opt_heap:
439                         clear_opt(sbi, NOHEAP);
440                         break;
441 #ifdef CONFIG_F2FS_FS_XATTR
442                 case Opt_user_xattr:
443                         set_opt(sbi, XATTR_USER);
444                         break;
445                 case Opt_nouser_xattr:
446                         clear_opt(sbi, XATTR_USER);
447                         break;
448                 case Opt_inline_xattr:
449                         set_opt(sbi, INLINE_XATTR);
450                         break;
451                 case Opt_noinline_xattr:
452                         clear_opt(sbi, INLINE_XATTR);
453                         break;
454                 case Opt_inline_xattr_size:
455                         if (args->from && match_int(args, &arg))
456                                 return -EINVAL;
457                         set_opt(sbi, INLINE_XATTR_SIZE);
458                         F2FS_OPTION(sbi).inline_xattr_size = arg;
459                         break;
460 #else
461                 case Opt_user_xattr:
462                         f2fs_msg(sb, KERN_INFO,
463                                 "user_xattr options not supported");
464                         break;
465                 case Opt_nouser_xattr:
466                         f2fs_msg(sb, KERN_INFO,
467                                 "nouser_xattr options not supported");
468                         break;
469                 case Opt_inline_xattr:
470                         f2fs_msg(sb, KERN_INFO,
471                                 "inline_xattr options not supported");
472                         break;
473                 case Opt_noinline_xattr:
474                         f2fs_msg(sb, KERN_INFO,
475                                 "noinline_xattr options not supported");
476                         break;
477 #endif
478 #ifdef CONFIG_F2FS_FS_POSIX_ACL
479                 case Opt_acl:
480                         set_opt(sbi, POSIX_ACL);
481                         break;
482                 case Opt_noacl:
483                         clear_opt(sbi, POSIX_ACL);
484                         break;
485 #else
486                 case Opt_acl:
487                         f2fs_msg(sb, KERN_INFO, "acl options not supported");
488                         break;
489                 case Opt_noacl:
490                         f2fs_msg(sb, KERN_INFO, "noacl options not supported");
491                         break;
492 #endif
493                 case Opt_active_logs:
494                         if (args->from && match_int(args, &arg))
495                                 return -EINVAL;
496                         if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
497                                 return -EINVAL;
498                         F2FS_OPTION(sbi).active_logs = arg;
499                         break;
500                 case Opt_disable_ext_identify:
501                         set_opt(sbi, DISABLE_EXT_IDENTIFY);
502                         break;
503                 case Opt_inline_data:
504                         set_opt(sbi, INLINE_DATA);
505                         break;
506                 case Opt_inline_dentry:
507                         set_opt(sbi, INLINE_DENTRY);
508                         break;
509                 case Opt_noinline_dentry:
510                         clear_opt(sbi, INLINE_DENTRY);
511                         break;
512                 case Opt_flush_merge:
513                         set_opt(sbi, FLUSH_MERGE);
514                         break;
515                 case Opt_noflush_merge:
516                         clear_opt(sbi, FLUSH_MERGE);
517                         break;
518                 case Opt_nobarrier:
519                         set_opt(sbi, NOBARRIER);
520                         break;
521                 case Opt_fastboot:
522                         set_opt(sbi, FASTBOOT);
523                         break;
524                 case Opt_extent_cache:
525                         set_opt(sbi, EXTENT_CACHE);
526                         break;
527                 case Opt_noextent_cache:
528                         clear_opt(sbi, EXTENT_CACHE);
529                         break;
530                 case Opt_noinline_data:
531                         clear_opt(sbi, INLINE_DATA);
532                         break;
533                 case Opt_data_flush:
534                         set_opt(sbi, DATA_FLUSH);
535                         break;
536                 case Opt_reserve_root:
537                         if (args->from && match_int(args, &arg))
538                                 return -EINVAL;
539                         if (test_opt(sbi, RESERVE_ROOT)) {
540                                 f2fs_msg(sb, KERN_INFO,
541                                         "Preserve previous reserve_root=%u",
542                                         F2FS_OPTION(sbi).root_reserved_blocks);
543                         } else {
544                                 F2FS_OPTION(sbi).root_reserved_blocks = arg;
545                                 set_opt(sbi, RESERVE_ROOT);
546                         }
547                         break;
548                 case Opt_resuid:
549                         if (args->from && match_int(args, &arg))
550                                 return -EINVAL;
551                         uid = make_kuid(current_user_ns(), arg);
552                         if (!uid_valid(uid)) {
553                                 f2fs_msg(sb, KERN_ERR,
554                                         "Invalid uid value %d", arg);
555                                 return -EINVAL;
556                         }
557                         F2FS_OPTION(sbi).s_resuid = uid;
558                         break;
559                 case Opt_resgid:
560                         if (args->from && match_int(args, &arg))
561                                 return -EINVAL;
562                         gid = make_kgid(current_user_ns(), arg);
563                         if (!gid_valid(gid)) {
564                                 f2fs_msg(sb, KERN_ERR,
565                                         "Invalid gid value %d", arg);
566                                 return -EINVAL;
567                         }
568                         F2FS_OPTION(sbi).s_resgid = gid;
569                         break;
570                 case Opt_mode:
571                         name = match_strdup(&args[0]);
572
573                         if (!name)
574                                 return -ENOMEM;
575                         if (strlen(name) == 8 &&
576                                         !strncmp(name, "adaptive", 8)) {
577                                 if (f2fs_sb_has_blkzoned(sb)) {
578                                         f2fs_msg(sb, KERN_WARNING,
579                                                  "adaptive mode is not allowed with "
580                                                  "zoned block device feature");
581                                         kfree(name);
582                                         return -EINVAL;
583                                 }
584                                 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
585                         } else if (strlen(name) == 3 &&
586                                         !strncmp(name, "lfs", 3)) {
587                                 set_opt_mode(sbi, F2FS_MOUNT_LFS);
588                         } else {
589                                 kfree(name);
590                                 return -EINVAL;
591                         }
592                         kfree(name);
593                         break;
594                 case Opt_io_size_bits:
595                         if (args->from && match_int(args, &arg))
596                                 return -EINVAL;
597                         if (arg > __ilog2_u32(BIO_MAX_PAGES)) {
598                                 f2fs_msg(sb, KERN_WARNING,
599                                         "Not support %d, larger than %d",
600                                         1 << arg, BIO_MAX_PAGES);
601                                 return -EINVAL;
602                         }
603                         F2FS_OPTION(sbi).write_io_size_bits = arg;
604                         break;
605                 case Opt_fault_injection:
606                         if (args->from && match_int(args, &arg))
607                                 return -EINVAL;
608 #ifdef CONFIG_F2FS_FAULT_INJECTION
609                         f2fs_build_fault_attr(sbi, arg);
610                         set_opt(sbi, FAULT_INJECTION);
611 #else
612                         f2fs_msg(sb, KERN_INFO,
613                                 "FAULT_INJECTION was not selected");
614 #endif
615                         break;
616                 case Opt_lazytime:
617                         sb->s_flags |= SB_LAZYTIME;
618                         break;
619                 case Opt_nolazytime:
620                         sb->s_flags &= ~SB_LAZYTIME;
621                         break;
622 #ifdef CONFIG_QUOTA
623                 case Opt_quota:
624                 case Opt_usrquota:
625                         set_opt(sbi, USRQUOTA);
626                         break;
627                 case Opt_grpquota:
628                         set_opt(sbi, GRPQUOTA);
629                         break;
630                 case Opt_prjquota:
631                         set_opt(sbi, PRJQUOTA);
632                         break;
633                 case Opt_usrjquota:
634                         ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
635                         if (ret)
636                                 return ret;
637                         break;
638                 case Opt_grpjquota:
639                         ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
640                         if (ret)
641                                 return ret;
642                         break;
643                 case Opt_prjjquota:
644                         ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
645                         if (ret)
646                                 return ret;
647                         break;
648                 case Opt_offusrjquota:
649                         ret = f2fs_clear_qf_name(sb, USRQUOTA);
650                         if (ret)
651                                 return ret;
652                         break;
653                 case Opt_offgrpjquota:
654                         ret = f2fs_clear_qf_name(sb, GRPQUOTA);
655                         if (ret)
656                                 return ret;
657                         break;
658                 case Opt_offprjjquota:
659                         ret = f2fs_clear_qf_name(sb, PRJQUOTA);
660                         if (ret)
661                                 return ret;
662                         break;
663                 case Opt_jqfmt_vfsold:
664                         F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD;
665                         break;
666                 case Opt_jqfmt_vfsv0:
667                         F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0;
668                         break;
669                 case Opt_jqfmt_vfsv1:
670                         F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1;
671                         break;
672                 case Opt_noquota:
673                         clear_opt(sbi, QUOTA);
674                         clear_opt(sbi, USRQUOTA);
675                         clear_opt(sbi, GRPQUOTA);
676                         clear_opt(sbi, PRJQUOTA);
677                         break;
678 #else
679                 case Opt_quota:
680                 case Opt_usrquota:
681                 case Opt_grpquota:
682                 case Opt_prjquota:
683                 case Opt_usrjquota:
684                 case Opt_grpjquota:
685                 case Opt_prjjquota:
686                 case Opt_offusrjquota:
687                 case Opt_offgrpjquota:
688                 case Opt_offprjjquota:
689                 case Opt_jqfmt_vfsold:
690                 case Opt_jqfmt_vfsv0:
691                 case Opt_jqfmt_vfsv1:
692                 case Opt_noquota:
693                         f2fs_msg(sb, KERN_INFO,
694                                         "quota operations not supported");
695                         break;
696 #endif
697                 case Opt_whint:
698                         name = match_strdup(&args[0]);
699                         if (!name)
700                                 return -ENOMEM;
701                         if (strlen(name) == 10 &&
702                                         !strncmp(name, "user-based", 10)) {
703                                 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER;
704                         } else if (strlen(name) == 3 &&
705                                         !strncmp(name, "off", 3)) {
706                                 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
707                         } else if (strlen(name) == 8 &&
708                                         !strncmp(name, "fs-based", 8)) {
709                                 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS;
710                         } else {
711                                 kfree(name);
712                                 return -EINVAL;
713                         }
714                         kfree(name);
715                         break;
716                 case Opt_alloc:
717                         name = match_strdup(&args[0]);
718                         if (!name)
719                                 return -ENOMEM;
720
721                         if (strlen(name) == 7 &&
722                                         !strncmp(name, "default", 7)) {
723                                 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
724                         } else if (strlen(name) == 5 &&
725                                         !strncmp(name, "reuse", 5)) {
726                                 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
727                         } else {
728                                 kfree(name);
729                                 return -EINVAL;
730                         }
731                         kfree(name);
732                         break;
733                 case Opt_fsync:
734                         name = match_strdup(&args[0]);
735                         if (!name)
736                                 return -ENOMEM;
737                         if (strlen(name) == 5 &&
738                                         !strncmp(name, "posix", 5)) {
739                                 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
740                         } else if (strlen(name) == 6 &&
741                                         !strncmp(name, "strict", 6)) {
742                                 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT;
743                         } else {
744                                 kfree(name);
745                                 return -EINVAL;
746                         }
747                         kfree(name);
748                         break;
749                 case Opt_test_dummy_encryption:
750 #ifdef CONFIG_F2FS_FS_ENCRYPTION
751                         if (!f2fs_sb_has_encrypt(sb)) {
752                                 f2fs_msg(sb, KERN_ERR, "Encrypt feature is off");
753                                 return -EINVAL;
754                         }
755
756                         F2FS_OPTION(sbi).test_dummy_encryption = true;
757                         f2fs_msg(sb, KERN_INFO,
758                                         "Test dummy encryption mode enabled");
759 #else
760                         f2fs_msg(sb, KERN_INFO,
761                                         "Test dummy encryption mount option ignored");
762 #endif
763                         break;
764                 default:
765                         f2fs_msg(sb, KERN_ERR,
766                                 "Unrecognized mount option \"%s\" or missing value",
767                                 p);
768                         return -EINVAL;
769                 }
770         }
771 #ifdef CONFIG_QUOTA
772         if (f2fs_check_quota_options(sbi))
773                 return -EINVAL;
774 #endif
775
776         if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) {
777                 f2fs_msg(sb, KERN_ERR,
778                                 "Should set mode=lfs with %uKB-sized IO",
779                                 F2FS_IO_SIZE_KB(sbi));
780                 return -EINVAL;
781         }
782
783         if (test_opt(sbi, INLINE_XATTR_SIZE)) {
784                 if (!f2fs_sb_has_extra_attr(sb) ||
785                         !f2fs_sb_has_flexible_inline_xattr(sb)) {
786                         f2fs_msg(sb, KERN_ERR,
787                                         "extra_attr or flexible_inline_xattr "
788                                         "feature is off");
789                         return -EINVAL;
790                 }
791                 if (!test_opt(sbi, INLINE_XATTR)) {
792                         f2fs_msg(sb, KERN_ERR,
793                                         "inline_xattr_size option should be "
794                                         "set with inline_xattr option");
795                         return -EINVAL;
796                 }
797                 if (!F2FS_OPTION(sbi).inline_xattr_size ||
798                         F2FS_OPTION(sbi).inline_xattr_size >=
799                                         DEF_ADDRS_PER_INODE -
800                                         F2FS_TOTAL_EXTRA_ATTR_SIZE -
801                                         DEF_INLINE_RESERVED_SIZE -
802                                         DEF_MIN_INLINE_SIZE) {
803                         f2fs_msg(sb, KERN_ERR,
804                                         "inline xattr size is out of range");
805                         return -EINVAL;
806                 }
807         }
808
809         /* Not pass down write hints if the number of active logs is lesser
810          * than NR_CURSEG_TYPE.
811          */
812         if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE)
813                 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
814         return 0;
815 }
816
817 static struct inode *f2fs_alloc_inode(struct super_block *sb)
818 {
819         struct f2fs_inode_info *fi;
820
821         fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
822         if (!fi)
823                 return NULL;
824
825         init_once((void *) fi);
826
827         /* Initialize f2fs-specific inode info */
828         atomic_set(&fi->dirty_pages, 0);
829         fi->i_current_depth = 1;
830         fi->i_advise = 0;
831         init_rwsem(&fi->i_sem);
832         INIT_LIST_HEAD(&fi->dirty_list);
833         INIT_LIST_HEAD(&fi->gdirty_list);
834         INIT_LIST_HEAD(&fi->inmem_ilist);
835         INIT_LIST_HEAD(&fi->inmem_pages);
836         mutex_init(&fi->inmem_lock);
837         init_rwsem(&fi->dio_rwsem[READ]);
838         init_rwsem(&fi->dio_rwsem[WRITE]);
839         init_rwsem(&fi->i_mmap_sem);
840         init_rwsem(&fi->i_xattr_sem);
841
842 #ifdef CONFIG_QUOTA
843         memset(&fi->i_dquot, 0, sizeof(fi->i_dquot));
844         fi->i_reserved_quota = 0;
845 #endif
846         /* Will be used by directory only */
847         fi->i_dir_level = F2FS_SB(sb)->dir_level;
848
849         return &fi->vfs_inode;
850 }
851
852 static int f2fs_drop_inode(struct inode *inode)
853 {
854         int ret;
855         /*
856          * This is to avoid a deadlock condition like below.
857          * writeback_single_inode(inode)
858          *  - f2fs_write_data_page
859          *    - f2fs_gc -> iput -> evict
860          *       - inode_wait_for_writeback(inode)
861          */
862         if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
863                 if (!inode->i_nlink && !is_bad_inode(inode)) {
864                         /* to avoid evict_inode call simultaneously */
865                         atomic_inc(&inode->i_count);
866                         spin_unlock(&inode->i_lock);
867
868                         /* some remained atomic pages should discarded */
869                         if (f2fs_is_atomic_file(inode))
870                                 drop_inmem_pages(inode);
871
872                         /* should remain fi->extent_tree for writepage */
873                         f2fs_destroy_extent_node(inode);
874
875                         sb_start_intwrite(inode->i_sb);
876                         f2fs_i_size_write(inode, 0);
877
878                         if (F2FS_HAS_BLOCKS(inode))
879                                 f2fs_truncate(inode);
880
881                         sb_end_intwrite(inode->i_sb);
882
883                         spin_lock(&inode->i_lock);
884                         atomic_dec(&inode->i_count);
885                 }
886                 trace_f2fs_drop_inode(inode, 0);
887                 return 0;
888         }
889         ret = generic_drop_inode(inode);
890         trace_f2fs_drop_inode(inode, ret);
891         return ret;
892 }
893
894 int f2fs_inode_dirtied(struct inode *inode, bool sync)
895 {
896         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
897         int ret = 0;
898
899         spin_lock(&sbi->inode_lock[DIRTY_META]);
900         if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
901                 ret = 1;
902         } else {
903                 set_inode_flag(inode, FI_DIRTY_INODE);
904                 stat_inc_dirty_inode(sbi, DIRTY_META);
905         }
906         if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
907                 list_add_tail(&F2FS_I(inode)->gdirty_list,
908                                 &sbi->inode_list[DIRTY_META]);
909                 inc_page_count(sbi, F2FS_DIRTY_IMETA);
910         }
911         spin_unlock(&sbi->inode_lock[DIRTY_META]);
912         return ret;
913 }
914
915 void f2fs_inode_synced(struct inode *inode)
916 {
917         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
918
919         spin_lock(&sbi->inode_lock[DIRTY_META]);
920         if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
921                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
922                 return;
923         }
924         if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
925                 list_del_init(&F2FS_I(inode)->gdirty_list);
926                 dec_page_count(sbi, F2FS_DIRTY_IMETA);
927         }
928         clear_inode_flag(inode, FI_DIRTY_INODE);
929         clear_inode_flag(inode, FI_AUTO_RECOVER);
930         stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
931         spin_unlock(&sbi->inode_lock[DIRTY_META]);
932 }
933
934 /*
935  * f2fs_dirty_inode() is called from __mark_inode_dirty()
936  *
937  * We should call set_dirty_inode to write the dirty inode through write_inode.
938  */
939 static void f2fs_dirty_inode(struct inode *inode, int flags)
940 {
941         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
942
943         if (inode->i_ino == F2FS_NODE_INO(sbi) ||
944                         inode->i_ino == F2FS_META_INO(sbi))
945                 return;
946
947         if (flags == I_DIRTY_TIME)
948                 return;
949
950         if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
951                 clear_inode_flag(inode, FI_AUTO_RECOVER);
952
953         f2fs_inode_dirtied(inode, false);
954 }
955
956 static void f2fs_i_callback(struct rcu_head *head)
957 {
958         struct inode *inode = container_of(head, struct inode, i_rcu);
959         kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
960 }
961
962 static void f2fs_destroy_inode(struct inode *inode)
963 {
964         call_rcu(&inode->i_rcu, f2fs_i_callback);
965 }
966
967 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
968 {
969         percpu_counter_destroy(&sbi->alloc_valid_block_count);
970         percpu_counter_destroy(&sbi->total_valid_inode_count);
971 }
972
973 static void destroy_device_list(struct f2fs_sb_info *sbi)
974 {
975         int i;
976
977         for (i = 0; i < sbi->s_ndevs; i++) {
978                 blkdev_put(FDEV(i).bdev, FMODE_EXCL);
979 #ifdef CONFIG_BLK_DEV_ZONED
980                 kfree(FDEV(i).blkz_type);
981 #endif
982         }
983         kfree(sbi->devs);
984 }
985
986 static void f2fs_put_super(struct super_block *sb)
987 {
988         struct f2fs_sb_info *sbi = F2FS_SB(sb);
989         int i;
990         bool dropped;
991
992         f2fs_quota_off_umount(sb);
993
994         /* prevent remaining shrinker jobs */
995         mutex_lock(&sbi->umount_mutex);
996
997         /*
998          * We don't need to do checkpoint when superblock is clean.
999          * But, the previous checkpoint was not done by umount, it needs to do
1000          * clean checkpoint again.
1001          */
1002         if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
1003                         !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
1004                 struct cp_control cpc = {
1005                         .reason = CP_UMOUNT,
1006                 };
1007                 write_checkpoint(sbi, &cpc);
1008         }
1009
1010         /* be sure to wait for any on-going discard commands */
1011         dropped = f2fs_wait_discard_bios(sbi);
1012
1013         if (f2fs_discard_en(sbi) && !sbi->discard_blks && !dropped) {
1014                 struct cp_control cpc = {
1015                         .reason = CP_UMOUNT | CP_TRIMMED,
1016                 };
1017                 write_checkpoint(sbi, &cpc);
1018         }
1019
1020         /* write_checkpoint can update stat informaion */
1021         f2fs_destroy_stats(sbi);
1022
1023         /*
1024          * normally superblock is clean, so we need to release this.
1025          * In addition, EIO will skip do checkpoint, we need this as well.
1026          */
1027         release_ino_entry(sbi, true);
1028
1029         f2fs_leave_shrinker(sbi);
1030         mutex_unlock(&sbi->umount_mutex);
1031
1032         /* our cp_error case, we can wait for any writeback page */
1033         f2fs_flush_merged_writes(sbi);
1034
1035         iput(sbi->node_inode);
1036         iput(sbi->meta_inode);
1037
1038         /* destroy f2fs internal modules */
1039         destroy_node_manager(sbi);
1040         destroy_segment_manager(sbi);
1041
1042         kfree(sbi->ckpt);
1043
1044         f2fs_unregister_sysfs(sbi);
1045
1046         sb->s_fs_info = NULL;
1047         if (sbi->s_chksum_driver)
1048                 crypto_free_shash(sbi->s_chksum_driver);
1049         kfree(sbi->raw_super);
1050
1051         destroy_device_list(sbi);
1052         mempool_destroy(sbi->write_io_dummy);
1053 #ifdef CONFIG_QUOTA
1054         for (i = 0; i < MAXQUOTAS; i++)
1055                 kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1056 #endif
1057         destroy_percpu_info(sbi);
1058         for (i = 0; i < NR_PAGE_TYPE; i++)
1059                 kfree(sbi->write_io[i]);
1060         kfree(sbi);
1061 }
1062
1063 int f2fs_sync_fs(struct super_block *sb, int sync)
1064 {
1065         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1066         int err = 0;
1067
1068         if (unlikely(f2fs_cp_error(sbi)))
1069                 return 0;
1070
1071         trace_f2fs_sync_fs(sb, sync);
1072
1073         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1074                 return -EAGAIN;
1075
1076         if (sync) {
1077                 struct cp_control cpc;
1078
1079                 cpc.reason = __get_cp_reason(sbi);
1080
1081                 mutex_lock(&sbi->gc_mutex);
1082                 err = write_checkpoint(sbi, &cpc);
1083                 mutex_unlock(&sbi->gc_mutex);
1084         }
1085         f2fs_trace_ios(NULL, 1);
1086
1087         return err;
1088 }
1089
1090 static int f2fs_freeze(struct super_block *sb)
1091 {
1092         if (f2fs_readonly(sb))
1093                 return 0;
1094
1095         /* IO error happened before */
1096         if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
1097                 return -EIO;
1098
1099         /* must be clean, since sync_filesystem() was already called */
1100         if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
1101                 return -EINVAL;
1102         return 0;
1103 }
1104
1105 static int f2fs_unfreeze(struct super_block *sb)
1106 {
1107         return 0;
1108 }
1109
1110 #ifdef CONFIG_QUOTA
1111 static int f2fs_statfs_project(struct super_block *sb,
1112                                 kprojid_t projid, struct kstatfs *buf)
1113 {
1114         struct kqid qid;
1115         struct dquot *dquot;
1116         u64 limit;
1117         u64 curblock;
1118
1119         qid = make_kqid_projid(projid);
1120         dquot = dqget(sb, qid);
1121         if (IS_ERR(dquot))
1122                 return PTR_ERR(dquot);
1123         spin_lock(&dq_data_lock);
1124
1125         limit = (dquot->dq_dqb.dqb_bsoftlimit ?
1126                  dquot->dq_dqb.dqb_bsoftlimit :
1127                  dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
1128         if (limit && buf->f_blocks > limit) {
1129                 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
1130                 buf->f_blocks = limit;
1131                 buf->f_bfree = buf->f_bavail =
1132                         (buf->f_blocks > curblock) ?
1133                          (buf->f_blocks - curblock) : 0;
1134         }
1135
1136         limit = dquot->dq_dqb.dqb_isoftlimit ?
1137                 dquot->dq_dqb.dqb_isoftlimit :
1138                 dquot->dq_dqb.dqb_ihardlimit;
1139         if (limit && buf->f_files > limit) {
1140                 buf->f_files = limit;
1141                 buf->f_ffree =
1142                         (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
1143                          (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
1144         }
1145
1146         spin_unlock(&dq_data_lock);
1147         dqput(dquot);
1148         return 0;
1149 }
1150 #endif
1151
1152 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
1153 {
1154         struct super_block *sb = dentry->d_sb;
1155         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1156         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
1157         block_t total_count, user_block_count, start_count;
1158         u64 avail_node_count;
1159
1160         total_count = le64_to_cpu(sbi->raw_super->block_count);
1161         user_block_count = sbi->user_block_count;
1162         start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1163         buf->f_type = F2FS_SUPER_MAGIC;
1164         buf->f_bsize = sbi->blocksize;
1165
1166         buf->f_blocks = total_count - start_count;
1167         buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
1168                                                 sbi->current_reserved_blocks;
1169         if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
1170                 buf->f_bavail = buf->f_bfree -
1171                                 F2FS_OPTION(sbi).root_reserved_blocks;
1172         else
1173                 buf->f_bavail = 0;
1174
1175         avail_node_count = sbi->total_node_count - sbi->nquota_files -
1176                                                 F2FS_RESERVED_NODE_NUM;
1177
1178         if (avail_node_count > user_block_count) {
1179                 buf->f_files = user_block_count;
1180                 buf->f_ffree = buf->f_bavail;
1181         } else {
1182                 buf->f_files = avail_node_count;
1183                 buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
1184                                         buf->f_bavail);
1185         }
1186
1187         buf->f_namelen = F2FS_NAME_LEN;
1188         buf->f_fsid.val[0] = (u32)id;
1189         buf->f_fsid.val[1] = (u32)(id >> 32);
1190
1191 #ifdef CONFIG_QUOTA
1192         if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1193                         sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1194                 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1195         }
1196 #endif
1197         return 0;
1198 }
1199
1200 static inline void f2fs_show_quota_options(struct seq_file *seq,
1201                                            struct super_block *sb)
1202 {
1203 #ifdef CONFIG_QUOTA
1204         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1205
1206         if (F2FS_OPTION(sbi).s_jquota_fmt) {
1207                 char *fmtname = "";
1208
1209                 switch (F2FS_OPTION(sbi).s_jquota_fmt) {
1210                 case QFMT_VFS_OLD:
1211                         fmtname = "vfsold";
1212                         break;
1213                 case QFMT_VFS_V0:
1214                         fmtname = "vfsv0";
1215                         break;
1216                 case QFMT_VFS_V1:
1217                         fmtname = "vfsv1";
1218                         break;
1219                 }
1220                 seq_printf(seq, ",jqfmt=%s", fmtname);
1221         }
1222
1223         if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
1224                 seq_show_option(seq, "usrjquota",
1225                         F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
1226
1227         if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
1228                 seq_show_option(seq, "grpjquota",
1229                         F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
1230
1231         if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
1232                 seq_show_option(seq, "prjjquota",
1233                         F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
1234 #endif
1235 }
1236
1237 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1238 {
1239         struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1240
1241         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
1242                 if (test_opt(sbi, FORCE_FG_GC))
1243                         seq_printf(seq, ",background_gc=%s", "sync");
1244                 else
1245                         seq_printf(seq, ",background_gc=%s", "on");
1246         } else {
1247                 seq_printf(seq, ",background_gc=%s", "off");
1248         }
1249         if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1250                 seq_puts(seq, ",disable_roll_forward");
1251         if (test_opt(sbi, DISCARD))
1252                 seq_puts(seq, ",discard");
1253         if (test_opt(sbi, NOHEAP))
1254                 seq_puts(seq, ",no_heap");
1255         else
1256                 seq_puts(seq, ",heap");
1257 #ifdef CONFIG_F2FS_FS_XATTR
1258         if (test_opt(sbi, XATTR_USER))
1259                 seq_puts(seq, ",user_xattr");
1260         else
1261                 seq_puts(seq, ",nouser_xattr");
1262         if (test_opt(sbi, INLINE_XATTR))
1263                 seq_puts(seq, ",inline_xattr");
1264         else
1265                 seq_puts(seq, ",noinline_xattr");
1266         if (test_opt(sbi, INLINE_XATTR_SIZE))
1267                 seq_printf(seq, ",inline_xattr_size=%u",
1268                                         F2FS_OPTION(sbi).inline_xattr_size);
1269 #endif
1270 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1271         if (test_opt(sbi, POSIX_ACL))
1272                 seq_puts(seq, ",acl");
1273         else
1274                 seq_puts(seq, ",noacl");
1275 #endif
1276         if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1277                 seq_puts(seq, ",disable_ext_identify");
1278         if (test_opt(sbi, INLINE_DATA))
1279                 seq_puts(seq, ",inline_data");
1280         else
1281                 seq_puts(seq, ",noinline_data");
1282         if (test_opt(sbi, INLINE_DENTRY))
1283                 seq_puts(seq, ",inline_dentry");
1284         else
1285                 seq_puts(seq, ",noinline_dentry");
1286         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1287                 seq_puts(seq, ",flush_merge");
1288         if (test_opt(sbi, NOBARRIER))
1289                 seq_puts(seq, ",nobarrier");
1290         if (test_opt(sbi, FASTBOOT))
1291                 seq_puts(seq, ",fastboot");
1292         if (test_opt(sbi, EXTENT_CACHE))
1293                 seq_puts(seq, ",extent_cache");
1294         else
1295                 seq_puts(seq, ",noextent_cache");
1296         if (test_opt(sbi, DATA_FLUSH))
1297                 seq_puts(seq, ",data_flush");
1298
1299         seq_puts(seq, ",mode=");
1300         if (test_opt(sbi, ADAPTIVE))
1301                 seq_puts(seq, "adaptive");
1302         else if (test_opt(sbi, LFS))
1303                 seq_puts(seq, "lfs");
1304         seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
1305         if (test_opt(sbi, RESERVE_ROOT))
1306                 seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
1307                                 F2FS_OPTION(sbi).root_reserved_blocks,
1308                                 from_kuid_munged(&init_user_ns,
1309                                         F2FS_OPTION(sbi).s_resuid),
1310                                 from_kgid_munged(&init_user_ns,
1311                                         F2FS_OPTION(sbi).s_resgid));
1312         if (F2FS_IO_SIZE_BITS(sbi))
1313                 seq_printf(seq, ",io_size=%uKB", F2FS_IO_SIZE_KB(sbi));
1314 #ifdef CONFIG_F2FS_FAULT_INJECTION
1315         if (test_opt(sbi, FAULT_INJECTION))
1316                 seq_printf(seq, ",fault_injection=%u",
1317                                 F2FS_OPTION(sbi).fault_info.inject_rate);
1318 #endif
1319 #ifdef CONFIG_QUOTA
1320         if (test_opt(sbi, QUOTA))
1321                 seq_puts(seq, ",quota");
1322         if (test_opt(sbi, USRQUOTA))
1323                 seq_puts(seq, ",usrquota");
1324         if (test_opt(sbi, GRPQUOTA))
1325                 seq_puts(seq, ",grpquota");
1326         if (test_opt(sbi, PRJQUOTA))
1327                 seq_puts(seq, ",prjquota");
1328 #endif
1329         f2fs_show_quota_options(seq, sbi->sb);
1330         if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER)
1331                 seq_printf(seq, ",whint_mode=%s", "user-based");
1332         else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS)
1333                 seq_printf(seq, ",whint_mode=%s", "fs-based");
1334 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1335         if (F2FS_OPTION(sbi).test_dummy_encryption)
1336                 seq_puts(seq, ",test_dummy_encryption");
1337 #endif
1338
1339         if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
1340                 seq_printf(seq, ",alloc_mode=%s", "default");
1341         else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
1342                 seq_printf(seq, ",alloc_mode=%s", "reuse");
1343
1344         if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
1345                 seq_printf(seq, ",fsync_mode=%s", "posix");
1346         else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
1347                 seq_printf(seq, ",fsync_mode=%s", "strict");
1348         return 0;
1349 }
1350
1351 static void default_options(struct f2fs_sb_info *sbi)
1352 {
1353         /* init some FS parameters */
1354         F2FS_OPTION(sbi).active_logs = NR_CURSEG_TYPE;
1355         F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
1356         F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1357         F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
1358         F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
1359         F2FS_OPTION(sbi).test_dummy_encryption = false;
1360         sbi->readdir_ra = 1;
1361
1362         set_opt(sbi, BG_GC);
1363         set_opt(sbi, INLINE_XATTR);
1364         set_opt(sbi, INLINE_DATA);
1365         set_opt(sbi, INLINE_DENTRY);
1366         set_opt(sbi, EXTENT_CACHE);
1367         set_opt(sbi, NOHEAP);
1368         sbi->sb->s_flags |= SB_LAZYTIME;
1369         set_opt(sbi, FLUSH_MERGE);
1370         if (f2fs_sb_has_blkzoned(sbi->sb)) {
1371                 set_opt_mode(sbi, F2FS_MOUNT_LFS);
1372                 set_opt(sbi, DISCARD);
1373         } else {
1374                 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
1375         }
1376
1377 #ifdef CONFIG_F2FS_FS_XATTR
1378         set_opt(sbi, XATTR_USER);
1379 #endif
1380 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1381         set_opt(sbi, POSIX_ACL);
1382 #endif
1383
1384 #ifdef CONFIG_F2FS_FAULT_INJECTION
1385         f2fs_build_fault_attr(sbi, 0);
1386 #endif
1387 }
1388
1389 #ifdef CONFIG_QUOTA
1390 static int f2fs_enable_quotas(struct super_block *sb);
1391 #endif
1392 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1393 {
1394         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1395         struct f2fs_mount_info org_mount_opt;
1396         unsigned long old_sb_flags;
1397         int err;
1398         bool need_restart_gc = false;
1399         bool need_stop_gc = false;
1400         bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1401 #ifdef CONFIG_QUOTA
1402         int i, j;
1403 #endif
1404
1405         /*
1406          * Save the old mount options in case we
1407          * need to restore them.
1408          */
1409         org_mount_opt = sbi->mount_opt;
1410         old_sb_flags = sb->s_flags;
1411
1412 #ifdef CONFIG_QUOTA
1413         org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
1414         for (i = 0; i < MAXQUOTAS; i++) {
1415                 if (F2FS_OPTION(sbi).s_qf_names[i]) {
1416                         org_mount_opt.s_qf_names[i] =
1417                                 kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
1418                                 GFP_KERNEL);
1419                         if (!org_mount_opt.s_qf_names[i]) {
1420                                 for (j = 0; j < i; j++)
1421                                         kfree(org_mount_opt.s_qf_names[j]);
1422                                 return -ENOMEM;
1423                         }
1424                 } else {
1425                         org_mount_opt.s_qf_names[i] = NULL;
1426                 }
1427         }
1428 #endif
1429
1430         /* recover superblocks we couldn't write due to previous RO mount */
1431         if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1432                 err = f2fs_commit_super(sbi, false);
1433                 f2fs_msg(sb, KERN_INFO,
1434                         "Try to recover all the superblocks, ret: %d", err);
1435                 if (!err)
1436                         clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1437         }
1438
1439         default_options(sbi);
1440
1441         /* parse mount options */
1442         err = parse_options(sb, data);
1443         if (err)
1444                 goto restore_opts;
1445
1446         /*
1447          * Previous and new state of filesystem is RO,
1448          * so skip checking GC and FLUSH_MERGE conditions.
1449          */
1450         if (f2fs_readonly(sb) && (*flags & SB_RDONLY))
1451                 goto skip;
1452
1453 #ifdef CONFIG_QUOTA
1454         if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) {
1455                 err = dquot_suspend(sb, -1);
1456                 if (err < 0)
1457                         goto restore_opts;
1458         } else if (f2fs_readonly(sb) && !(*flags & MS_RDONLY)) {
1459                 /* dquot_resume needs RW */
1460                 sb->s_flags &= ~SB_RDONLY;
1461                 if (sb_any_quota_suspended(sb)) {
1462                         dquot_resume(sb, -1);
1463                 } else if (f2fs_sb_has_quota_ino(sb)) {
1464                         err = f2fs_enable_quotas(sb);
1465                         if (err)
1466                                 goto restore_opts;
1467                 }
1468         }
1469 #endif
1470         /* disallow enable/disable extent_cache dynamically */
1471         if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1472                 err = -EINVAL;
1473                 f2fs_msg(sbi->sb, KERN_WARNING,
1474                                 "switch extent_cache option is not allowed");
1475                 goto restore_opts;
1476         }
1477
1478         /*
1479          * We stop the GC thread if FS is mounted as RO
1480          * or if background_gc = off is passed in mount
1481          * option. Also sync the filesystem.
1482          */
1483         if ((*flags & SB_RDONLY) || !test_opt(sbi, BG_GC)) {
1484                 if (sbi->gc_thread) {
1485                         stop_gc_thread(sbi);
1486                         need_restart_gc = true;
1487                 }
1488         } else if (!sbi->gc_thread) {
1489                 err = start_gc_thread(sbi);
1490                 if (err)
1491                         goto restore_opts;
1492                 need_stop_gc = true;
1493         }
1494
1495         if (*flags & SB_RDONLY ||
1496                 F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) {
1497                 writeback_inodes_sb(sb, WB_REASON_SYNC);
1498                 sync_inodes_sb(sb);
1499
1500                 set_sbi_flag(sbi, SBI_IS_DIRTY);
1501                 set_sbi_flag(sbi, SBI_IS_CLOSE);
1502                 f2fs_sync_fs(sb, 1);
1503                 clear_sbi_flag(sbi, SBI_IS_CLOSE);
1504         }
1505
1506         /*
1507          * We stop issue flush thread if FS is mounted as RO
1508          * or if flush_merge is not passed in mount option.
1509          */
1510         if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1511                 clear_opt(sbi, FLUSH_MERGE);
1512                 destroy_flush_cmd_control(sbi, false);
1513         } else {
1514                 err = create_flush_cmd_control(sbi);
1515                 if (err)
1516                         goto restore_gc;
1517         }
1518 skip:
1519 #ifdef CONFIG_QUOTA
1520         /* Release old quota file names */
1521         for (i = 0; i < MAXQUOTAS; i++)
1522                 kfree(org_mount_opt.s_qf_names[i]);
1523 #endif
1524         /* Update the POSIXACL Flag */
1525         sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
1526                 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
1527
1528         limit_reserve_root(sbi);
1529         return 0;
1530 restore_gc:
1531         if (need_restart_gc) {
1532                 if (start_gc_thread(sbi))
1533                         f2fs_msg(sbi->sb, KERN_WARNING,
1534                                 "background gc thread has stopped");
1535         } else if (need_stop_gc) {
1536                 stop_gc_thread(sbi);
1537         }
1538 restore_opts:
1539 #ifdef CONFIG_QUOTA
1540         F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
1541         for (i = 0; i < MAXQUOTAS; i++) {
1542                 kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1543                 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
1544         }
1545 #endif
1546         sbi->mount_opt = org_mount_opt;
1547         sb->s_flags = old_sb_flags;
1548         return err;
1549 }
1550
1551 #ifdef CONFIG_QUOTA
1552 /* Read data from quotafile */
1553 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
1554                                size_t len, loff_t off)
1555 {
1556         struct inode *inode = sb_dqopt(sb)->files[type];
1557         struct address_space *mapping = inode->i_mapping;
1558         block_t blkidx = F2FS_BYTES_TO_BLK(off);
1559         int offset = off & (sb->s_blocksize - 1);
1560         int tocopy;
1561         size_t toread;
1562         loff_t i_size = i_size_read(inode);
1563         struct page *page;
1564         char *kaddr;
1565
1566         if (off > i_size)
1567                 return 0;
1568
1569         if (off + len > i_size)
1570                 len = i_size - off;
1571         toread = len;
1572         while (toread > 0) {
1573                 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
1574 repeat:
1575                 page = read_mapping_page(mapping, blkidx, NULL);
1576                 if (IS_ERR(page)) {
1577                         if (PTR_ERR(page) == -ENOMEM) {
1578                                 congestion_wait(BLK_RW_ASYNC, HZ/50);
1579                                 goto repeat;
1580                         }
1581                         return PTR_ERR(page);
1582                 }
1583
1584                 lock_page(page);
1585
1586                 if (unlikely(page->mapping != mapping)) {
1587                         f2fs_put_page(page, 1);
1588                         goto repeat;
1589                 }
1590                 if (unlikely(!PageUptodate(page))) {
1591                         f2fs_put_page(page, 1);
1592                         return -EIO;
1593                 }
1594
1595                 kaddr = kmap_atomic(page);
1596                 memcpy(data, kaddr + offset, tocopy);
1597                 kunmap_atomic(kaddr);
1598                 f2fs_put_page(page, 1);
1599
1600                 offset = 0;
1601                 toread -= tocopy;
1602                 data += tocopy;
1603                 blkidx++;
1604         }
1605         return len;
1606 }
1607
1608 /* Write to quotafile */
1609 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
1610                                 const char *data, size_t len, loff_t off)
1611 {
1612         struct inode *inode = sb_dqopt(sb)->files[type];
1613         struct address_space *mapping = inode->i_mapping;
1614         const struct address_space_operations *a_ops = mapping->a_ops;
1615         int offset = off & (sb->s_blocksize - 1);
1616         size_t towrite = len;
1617         struct page *page;
1618         char *kaddr;
1619         int err = 0;
1620         int tocopy;
1621
1622         while (towrite > 0) {
1623                 tocopy = min_t(unsigned long, sb->s_blocksize - offset,
1624                                                                 towrite);
1625 retry:
1626                 err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
1627                                                         &page, NULL);
1628                 if (unlikely(err)) {
1629                         if (err == -ENOMEM) {
1630                                 congestion_wait(BLK_RW_ASYNC, HZ/50);
1631                                 goto retry;
1632                         }
1633                         break;
1634                 }
1635
1636                 kaddr = kmap_atomic(page);
1637                 memcpy(kaddr + offset, data, tocopy);
1638                 kunmap_atomic(kaddr);
1639                 flush_dcache_page(page);
1640
1641                 a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
1642                                                 page, NULL);
1643                 offset = 0;
1644                 towrite -= tocopy;
1645                 off += tocopy;
1646                 data += tocopy;
1647                 cond_resched();
1648         }
1649
1650         if (len == towrite)
1651                 return err;
1652         inode->i_mtime = inode->i_ctime = current_time(inode);
1653         f2fs_mark_inode_dirty_sync(inode, false);
1654         return len - towrite;
1655 }
1656
1657 static struct dquot **f2fs_get_dquots(struct inode *inode)
1658 {
1659         return F2FS_I(inode)->i_dquot;
1660 }
1661
1662 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
1663 {
1664         return &F2FS_I(inode)->i_reserved_quota;
1665 }
1666
1667 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
1668 {
1669         return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
1670                                         F2FS_OPTION(sbi).s_jquota_fmt, type);
1671 }
1672
1673 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
1674 {
1675         int enabled = 0;
1676         int i, err;
1677
1678         if (f2fs_sb_has_quota_ino(sbi->sb) && rdonly) {
1679                 err = f2fs_enable_quotas(sbi->sb);
1680                 if (err) {
1681                         f2fs_msg(sbi->sb, KERN_ERR,
1682                                         "Cannot turn on quota_ino: %d", err);
1683                         return 0;
1684                 }
1685                 return 1;
1686         }
1687
1688         for (i = 0; i < MAXQUOTAS; i++) {
1689                 if (F2FS_OPTION(sbi).s_qf_names[i]) {
1690                         err = f2fs_quota_on_mount(sbi, i);
1691                         if (!err) {
1692                                 enabled = 1;
1693                                 continue;
1694                         }
1695                         f2fs_msg(sbi->sb, KERN_ERR,
1696                                 "Cannot turn on quotas: %d on %d", err, i);
1697                 }
1698         }
1699         return enabled;
1700 }
1701
1702 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
1703                              unsigned int flags)
1704 {
1705         struct inode *qf_inode;
1706         unsigned long qf_inum;
1707         int err;
1708
1709         BUG_ON(!f2fs_sb_has_quota_ino(sb));
1710
1711         qf_inum = f2fs_qf_ino(sb, type);
1712         if (!qf_inum)
1713                 return -EPERM;
1714
1715         qf_inode = f2fs_iget(sb, qf_inum);
1716         if (IS_ERR(qf_inode)) {
1717                 f2fs_msg(sb, KERN_ERR,
1718                         "Bad quota inode %u:%lu", type, qf_inum);
1719                 return PTR_ERR(qf_inode);
1720         }
1721
1722         /* Don't account quota for quota files to avoid recursion */
1723         qf_inode->i_flags |= S_NOQUOTA;
1724         err = dquot_enable(qf_inode, type, format_id, flags);
1725         iput(qf_inode);
1726         return err;
1727 }
1728
1729 static int f2fs_enable_quotas(struct super_block *sb)
1730 {
1731         int type, err = 0;
1732         unsigned long qf_inum;
1733         bool quota_mopt[MAXQUOTAS] = {
1734                 test_opt(F2FS_SB(sb), USRQUOTA),
1735                 test_opt(F2FS_SB(sb), GRPQUOTA),
1736                 test_opt(F2FS_SB(sb), PRJQUOTA),
1737         };
1738
1739         sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
1740         for (type = 0; type < MAXQUOTAS; type++) {
1741                 qf_inum = f2fs_qf_ino(sb, type);
1742                 if (qf_inum) {
1743                         err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
1744                                 DQUOT_USAGE_ENABLED |
1745                                 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
1746                         if (err) {
1747                                 f2fs_msg(sb, KERN_ERR,
1748                                         "Failed to enable quota tracking "
1749                                         "(type=%d, err=%d). Please run "
1750                                         "fsck to fix.", type, err);
1751                                 for (type--; type >= 0; type--)
1752                                         dquot_quota_off(sb, type);
1753                                 return err;
1754                         }
1755                 }
1756         }
1757         return 0;
1758 }
1759
1760 static int f2fs_quota_sync(struct super_block *sb, int type)
1761 {
1762         struct quota_info *dqopt = sb_dqopt(sb);
1763         int cnt;
1764         int ret;
1765
1766         ret = dquot_writeback_dquots(sb, type);
1767         if (ret)
1768                 return ret;
1769
1770         /*
1771          * Now when everything is written we can discard the pagecache so
1772          * that userspace sees the changes.
1773          */
1774         for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
1775                 if (type != -1 && cnt != type)
1776                         continue;
1777                 if (!sb_has_quota_active(sb, cnt))
1778                         continue;
1779
1780                 ret = filemap_write_and_wait(dqopt->files[cnt]->i_mapping);
1781                 if (ret)
1782                         return ret;
1783
1784                 inode_lock(dqopt->files[cnt]);
1785                 truncate_inode_pages(&dqopt->files[cnt]->i_data, 0);
1786                 inode_unlock(dqopt->files[cnt]);
1787         }
1788         return 0;
1789 }
1790
1791 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
1792                                                         const struct path *path)
1793 {
1794         struct inode *inode;
1795         int err;
1796
1797         err = f2fs_quota_sync(sb, type);
1798         if (err)
1799                 return err;
1800
1801         err = dquot_quota_on(sb, type, format_id, path);
1802         if (err)
1803                 return err;
1804
1805         inode = d_inode(path->dentry);
1806
1807         inode_lock(inode);
1808         F2FS_I(inode)->i_flags |= FS_NOATIME_FL | FS_IMMUTABLE_FL;
1809         inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
1810                                         S_NOATIME | S_IMMUTABLE);
1811         inode_unlock(inode);
1812         f2fs_mark_inode_dirty_sync(inode, false);
1813
1814         return 0;
1815 }
1816
1817 static int f2fs_quota_off(struct super_block *sb, int type)
1818 {
1819         struct inode *inode = sb_dqopt(sb)->files[type];
1820         int err;
1821
1822         if (!inode || !igrab(inode))
1823                 return dquot_quota_off(sb, type);
1824
1825         f2fs_quota_sync(sb, type);
1826
1827         err = dquot_quota_off(sb, type);
1828         if (err || f2fs_sb_has_quota_ino(sb))
1829                 goto out_put;
1830
1831         inode_lock(inode);
1832         F2FS_I(inode)->i_flags &= ~(FS_NOATIME_FL | FS_IMMUTABLE_FL);
1833         inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
1834         inode_unlock(inode);
1835         f2fs_mark_inode_dirty_sync(inode, false);
1836 out_put:
1837         iput(inode);
1838         return err;
1839 }
1840
1841 void f2fs_quota_off_umount(struct super_block *sb)
1842 {
1843         int type;
1844
1845         for (type = 0; type < MAXQUOTAS; type++)
1846                 f2fs_quota_off(sb, type);
1847 }
1848
1849 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
1850 {
1851         *projid = F2FS_I(inode)->i_projid;
1852         return 0;
1853 }
1854
1855 static const struct dquot_operations f2fs_quota_operations = {
1856         .get_reserved_space = f2fs_get_reserved_space,
1857         .write_dquot    = dquot_commit,
1858         .acquire_dquot  = dquot_acquire,
1859         .release_dquot  = dquot_release,
1860         .mark_dirty     = dquot_mark_dquot_dirty,
1861         .write_info     = dquot_commit_info,
1862         .alloc_dquot    = dquot_alloc,
1863         .destroy_dquot  = dquot_destroy,
1864         .get_projid     = f2fs_get_projid,
1865         .get_next_id    = dquot_get_next_id,
1866 };
1867
1868 static const struct quotactl_ops f2fs_quotactl_ops = {
1869         .quota_on       = f2fs_quota_on,
1870         .quota_off      = f2fs_quota_off,
1871         .quota_sync     = f2fs_quota_sync,
1872         .get_state      = dquot_get_state,
1873         .set_info       = dquot_set_dqinfo,
1874         .get_dqblk      = dquot_get_dqblk,
1875         .set_dqblk      = dquot_set_dqblk,
1876         .get_nextdqblk  = dquot_get_next_dqblk,
1877 };
1878 #else
1879 void f2fs_quota_off_umount(struct super_block *sb)
1880 {
1881 }
1882 #endif
1883
1884 static const struct super_operations f2fs_sops = {
1885         .alloc_inode    = f2fs_alloc_inode,
1886         .drop_inode     = f2fs_drop_inode,
1887         .destroy_inode  = f2fs_destroy_inode,
1888         .write_inode    = f2fs_write_inode,
1889         .dirty_inode    = f2fs_dirty_inode,
1890         .show_options   = f2fs_show_options,
1891 #ifdef CONFIG_QUOTA
1892         .quota_read     = f2fs_quota_read,
1893         .quota_write    = f2fs_quota_write,
1894         .get_dquots     = f2fs_get_dquots,
1895 #endif
1896         .evict_inode    = f2fs_evict_inode,
1897         .put_super      = f2fs_put_super,
1898         .sync_fs        = f2fs_sync_fs,
1899         .freeze_fs      = f2fs_freeze,
1900         .unfreeze_fs    = f2fs_unfreeze,
1901         .statfs         = f2fs_statfs,
1902         .remount_fs     = f2fs_remount,
1903 };
1904
1905 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1906 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
1907 {
1908         return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1909                                 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1910                                 ctx, len, NULL);
1911 }
1912
1913 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
1914                                                         void *fs_data)
1915 {
1916         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1917
1918         /*
1919          * Encrypting the root directory is not allowed because fsck
1920          * expects lost+found directory to exist and remain unencrypted
1921          * if LOST_FOUND feature is enabled.
1922          *
1923          */
1924         if (f2fs_sb_has_lost_found(sbi->sb) &&
1925                         inode->i_ino == F2FS_ROOT_INO(sbi))
1926                 return -EPERM;
1927
1928         return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1929                                 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1930                                 ctx, len, fs_data, XATTR_CREATE);
1931 }
1932
1933 static bool f2fs_dummy_context(struct inode *inode)
1934 {
1935         return DUMMY_ENCRYPTION_ENABLED(F2FS_I_SB(inode));
1936 }
1937
1938 static unsigned f2fs_max_namelen(struct inode *inode)
1939 {
1940         return S_ISLNK(inode->i_mode) ?
1941                         inode->i_sb->s_blocksize : F2FS_NAME_LEN;
1942 }
1943
1944 static const struct fscrypt_operations f2fs_cryptops = {
1945         .key_prefix     = "f2fs:",
1946         .get_context    = f2fs_get_context,
1947         .set_context    = f2fs_set_context,
1948         .dummy_context  = f2fs_dummy_context,
1949         .empty_dir      = f2fs_empty_dir,
1950         .max_namelen    = f2fs_max_namelen,
1951 };
1952 #endif
1953
1954 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
1955                 u64 ino, u32 generation)
1956 {
1957         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1958         struct inode *inode;
1959
1960         if (check_nid_range(sbi, ino))
1961                 return ERR_PTR(-ESTALE);
1962
1963         /*
1964          * f2fs_iget isn't quite right if the inode is currently unallocated!
1965          * However f2fs_iget currently does appropriate checks to handle stale
1966          * inodes so everything is OK.
1967          */
1968         inode = f2fs_iget(sb, ino);
1969         if (IS_ERR(inode))
1970                 return ERR_CAST(inode);
1971         if (unlikely(generation && inode->i_generation != generation)) {
1972                 /* we didn't find the right inode.. */
1973                 iput(inode);
1974                 return ERR_PTR(-ESTALE);
1975         }
1976         return inode;
1977 }
1978
1979 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1980                 int fh_len, int fh_type)
1981 {
1982         return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1983                                     f2fs_nfs_get_inode);
1984 }
1985
1986 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
1987                 int fh_len, int fh_type)
1988 {
1989         return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1990                                     f2fs_nfs_get_inode);
1991 }
1992
1993 static const struct export_operations f2fs_export_ops = {
1994         .fh_to_dentry = f2fs_fh_to_dentry,
1995         .fh_to_parent = f2fs_fh_to_parent,
1996         .get_parent = f2fs_get_parent,
1997 };
1998
1999 static loff_t max_file_blocks(void)
2000 {
2001         loff_t result = 0;
2002         loff_t leaf_count = ADDRS_PER_BLOCK;
2003
2004         /*
2005          * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
2006          * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
2007          * space in inode.i_addr, it will be more safe to reassign
2008          * result as zero.
2009          */
2010
2011         /* two direct node blocks */
2012         result += (leaf_count * 2);
2013
2014         /* two indirect node blocks */
2015         leaf_count *= NIDS_PER_BLOCK;
2016         result += (leaf_count * 2);
2017
2018         /* one double indirect node block */
2019         leaf_count *= NIDS_PER_BLOCK;
2020         result += leaf_count;
2021
2022         return result;
2023 }
2024
2025 static int __f2fs_commit_super(struct buffer_head *bh,
2026                         struct f2fs_super_block *super)
2027 {
2028         lock_buffer(bh);
2029         if (super)
2030                 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
2031         set_buffer_dirty(bh);
2032         unlock_buffer(bh);
2033
2034         /* it's rare case, we can do fua all the time */
2035         return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2036 }
2037
2038 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
2039                                         struct buffer_head *bh)
2040 {
2041         struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2042                                         (bh->b_data + F2FS_SUPER_OFFSET);
2043         struct super_block *sb = sbi->sb;
2044         u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2045         u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
2046         u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
2047         u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
2048         u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2049         u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2050         u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
2051         u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
2052         u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
2053         u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
2054         u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2055         u32 segment_count = le32_to_cpu(raw_super->segment_count);
2056         u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2057         u64 main_end_blkaddr = main_blkaddr +
2058                                 (segment_count_main << log_blocks_per_seg);
2059         u64 seg_end_blkaddr = segment0_blkaddr +
2060                                 (segment_count << log_blocks_per_seg);
2061
2062         if (segment0_blkaddr != cp_blkaddr) {
2063                 f2fs_msg(sb, KERN_INFO,
2064                         "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
2065                         segment0_blkaddr, cp_blkaddr);
2066                 return true;
2067         }
2068
2069         if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
2070                                                         sit_blkaddr) {
2071                 f2fs_msg(sb, KERN_INFO,
2072                         "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
2073                         cp_blkaddr, sit_blkaddr,
2074                         segment_count_ckpt << log_blocks_per_seg);
2075                 return true;
2076         }
2077
2078         if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
2079                                                         nat_blkaddr) {
2080                 f2fs_msg(sb, KERN_INFO,
2081                         "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
2082                         sit_blkaddr, nat_blkaddr,
2083                         segment_count_sit << log_blocks_per_seg);
2084                 return true;
2085         }
2086
2087         if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
2088                                                         ssa_blkaddr) {
2089                 f2fs_msg(sb, KERN_INFO,
2090                         "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
2091                         nat_blkaddr, ssa_blkaddr,
2092                         segment_count_nat << log_blocks_per_seg);
2093                 return true;
2094         }
2095
2096         if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
2097                                                         main_blkaddr) {
2098                 f2fs_msg(sb, KERN_INFO,
2099                         "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
2100                         ssa_blkaddr, main_blkaddr,
2101                         segment_count_ssa << log_blocks_per_seg);
2102                 return true;
2103         }
2104
2105         if (main_end_blkaddr > seg_end_blkaddr) {
2106                 f2fs_msg(sb, KERN_INFO,
2107                         "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
2108                         main_blkaddr,
2109                         segment0_blkaddr +
2110                                 (segment_count << log_blocks_per_seg),
2111                         segment_count_main << log_blocks_per_seg);
2112                 return true;
2113         } else if (main_end_blkaddr < seg_end_blkaddr) {
2114                 int err = 0;
2115                 char *res;
2116
2117                 /* fix in-memory information all the time */
2118                 raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
2119                                 segment0_blkaddr) >> log_blocks_per_seg);
2120
2121                 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
2122                         set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2123                         res = "internally";
2124                 } else {
2125                         err = __f2fs_commit_super(bh, NULL);
2126                         res = err ? "failed" : "done";
2127                 }
2128                 f2fs_msg(sb, KERN_INFO,
2129                         "Fix alignment : %s, start(%u) end(%u) block(%u)",
2130                         res, main_blkaddr,
2131                         segment0_blkaddr +
2132                                 (segment_count << log_blocks_per_seg),
2133                         segment_count_main << log_blocks_per_seg);
2134                 if (err)
2135                         return true;
2136         }
2137         return false;
2138 }
2139
2140 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
2141                                 struct buffer_head *bh)
2142 {
2143         struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2144                                         (bh->b_data + F2FS_SUPER_OFFSET);
2145         struct super_block *sb = sbi->sb;
2146         unsigned int blocksize;
2147
2148         if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
2149                 f2fs_msg(sb, KERN_INFO,
2150                         "Magic Mismatch, valid(0x%x) - read(0x%x)",
2151                         F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
2152                 return 1;
2153         }
2154
2155         /* Currently, support only 4KB page cache size */
2156         if (F2FS_BLKSIZE != PAGE_SIZE) {
2157                 f2fs_msg(sb, KERN_INFO,
2158                         "Invalid page_cache_size (%lu), supports only 4KB\n",
2159                         PAGE_SIZE);
2160                 return 1;
2161         }
2162
2163         /* Currently, support only 4KB block size */
2164         blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
2165         if (blocksize != F2FS_BLKSIZE) {
2166                 f2fs_msg(sb, KERN_INFO,
2167                         "Invalid blocksize (%u), supports only 4KB\n",
2168                         blocksize);
2169                 return 1;
2170         }
2171
2172         /* check log blocks per segment */
2173         if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
2174                 f2fs_msg(sb, KERN_INFO,
2175                         "Invalid log blocks per segment (%u)\n",
2176                         le32_to_cpu(raw_super->log_blocks_per_seg));
2177                 return 1;
2178         }
2179
2180         /* Currently, support 512/1024/2048/4096 bytes sector size */
2181         if (le32_to_cpu(raw_super->log_sectorsize) >
2182                                 F2FS_MAX_LOG_SECTOR_SIZE ||
2183                 le32_to_cpu(raw_super->log_sectorsize) <
2184                                 F2FS_MIN_LOG_SECTOR_SIZE) {
2185                 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
2186                         le32_to_cpu(raw_super->log_sectorsize));
2187                 return 1;
2188         }
2189         if (le32_to_cpu(raw_super->log_sectors_per_block) +
2190                 le32_to_cpu(raw_super->log_sectorsize) !=
2191                         F2FS_MAX_LOG_SECTOR_SIZE) {
2192                 f2fs_msg(sb, KERN_INFO,
2193                         "Invalid log sectors per block(%u) log sectorsize(%u)",
2194                         le32_to_cpu(raw_super->log_sectors_per_block),
2195                         le32_to_cpu(raw_super->log_sectorsize));
2196                 return 1;
2197         }
2198
2199         /* check reserved ino info */
2200         if (le32_to_cpu(raw_super->node_ino) != 1 ||
2201                 le32_to_cpu(raw_super->meta_ino) != 2 ||
2202                 le32_to_cpu(raw_super->root_ino) != 3) {
2203                 f2fs_msg(sb, KERN_INFO,
2204                         "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
2205                         le32_to_cpu(raw_super->node_ino),
2206                         le32_to_cpu(raw_super->meta_ino),
2207                         le32_to_cpu(raw_super->root_ino));
2208                 return 1;
2209         }
2210
2211         if (le32_to_cpu(raw_super->segment_count) > F2FS_MAX_SEGMENT) {
2212                 f2fs_msg(sb, KERN_INFO,
2213                         "Invalid segment count (%u)",
2214                         le32_to_cpu(raw_super->segment_count));
2215                 return 1;
2216         }
2217
2218         /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
2219         if (sanity_check_area_boundary(sbi, bh))
2220                 return 1;
2221
2222         return 0;
2223 }
2224
2225 int sanity_check_ckpt(struct f2fs_sb_info *sbi)
2226 {
2227         unsigned int total, fsmeta;
2228         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2229         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2230         unsigned int ovp_segments, reserved_segments;
2231         unsigned int main_segs, blocks_per_seg;
2232         int i;
2233
2234         total = le32_to_cpu(raw_super->segment_count);
2235         fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
2236         fsmeta += le32_to_cpu(raw_super->segment_count_sit);
2237         fsmeta += le32_to_cpu(raw_super->segment_count_nat);
2238         fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
2239         fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
2240
2241         if (unlikely(fsmeta >= total))
2242                 return 1;
2243
2244         ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2245         reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2246
2247         if (unlikely(fsmeta < F2FS_MIN_SEGMENTS ||
2248                         ovp_segments == 0 || reserved_segments == 0)) {
2249                 f2fs_msg(sbi->sb, KERN_ERR,
2250                         "Wrong layout: check mkfs.f2fs version");
2251                 return 1;
2252         }
2253
2254         main_segs = le32_to_cpu(raw_super->segment_count_main);
2255         blocks_per_seg = sbi->blocks_per_seg;
2256
2257         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2258                 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
2259                         le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
2260                         return 1;
2261         }
2262         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
2263                 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
2264                         le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
2265                         return 1;
2266         }
2267
2268         if (unlikely(f2fs_cp_error(sbi))) {
2269                 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
2270                 return 1;
2271         }
2272         return 0;
2273 }
2274
2275 static void init_sb_info(struct f2fs_sb_info *sbi)
2276 {
2277         struct f2fs_super_block *raw_super = sbi->raw_super;
2278         int i, j;
2279
2280         sbi->log_sectors_per_block =
2281                 le32_to_cpu(raw_super->log_sectors_per_block);
2282         sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
2283         sbi->blocksize = 1 << sbi->log_blocksize;
2284         sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2285         sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
2286         sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2287         sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2288         sbi->total_sections = le32_to_cpu(raw_super->section_count);
2289         sbi->total_node_count =
2290                 (le32_to_cpu(raw_super->segment_count_nat) / 2)
2291                         * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
2292         sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
2293         sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
2294         sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
2295         sbi->cur_victim_sec = NULL_SECNO;
2296         sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
2297
2298         sbi->dir_level = DEF_DIR_LEVEL;
2299         sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
2300         sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
2301         clear_sbi_flag(sbi, SBI_NEED_FSCK);
2302
2303         for (i = 0; i < NR_COUNT_TYPE; i++)
2304                 atomic_set(&sbi->nr_pages[i], 0);
2305
2306         atomic_set(&sbi->wb_sync_req, 0);
2307
2308         INIT_LIST_HEAD(&sbi->s_list);
2309         mutex_init(&sbi->umount_mutex);
2310         for (i = 0; i < NR_PAGE_TYPE - 1; i++)
2311                 for (j = HOT; j < NR_TEMP_TYPE; j++)
2312                         mutex_init(&sbi->wio_mutex[i][j]);
2313         spin_lock_init(&sbi->cp_lock);
2314
2315         sbi->dirty_device = 0;
2316         spin_lock_init(&sbi->dev_lock);
2317
2318         init_rwsem(&sbi->sb_lock);
2319 }
2320
2321 static int init_percpu_info(struct f2fs_sb_info *sbi)
2322 {
2323         int err;
2324
2325         err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
2326         if (err)
2327                 return err;
2328
2329         return percpu_counter_init(&sbi->total_valid_inode_count, 0,
2330                                                                 GFP_KERNEL);
2331 }
2332
2333 #ifdef CONFIG_BLK_DEV_ZONED
2334 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
2335 {
2336         struct block_device *bdev = FDEV(devi).bdev;
2337         sector_t nr_sectors = bdev->bd_part->nr_sects;
2338         sector_t sector = 0;
2339         struct blk_zone *zones;
2340         unsigned int i, nr_zones;
2341         unsigned int n = 0;
2342         int err = -EIO;
2343
2344         if (!f2fs_sb_has_blkzoned(sbi->sb))
2345                 return 0;
2346
2347         if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
2348                                 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
2349                 return -EINVAL;
2350         sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
2351         if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
2352                                 __ilog2_u32(sbi->blocks_per_blkz))
2353                 return -EINVAL;
2354         sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
2355         FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
2356                                         sbi->log_blocks_per_blkz;
2357         if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
2358                 FDEV(devi).nr_blkz++;
2359
2360         FDEV(devi).blkz_type = f2fs_kmalloc(sbi, FDEV(devi).nr_blkz,
2361                                                                 GFP_KERNEL);
2362         if (!FDEV(devi).blkz_type)
2363                 return -ENOMEM;
2364
2365 #define F2FS_REPORT_NR_ZONES   4096
2366
2367         zones = f2fs_kzalloc(sbi, sizeof(struct blk_zone) *
2368                                 F2FS_REPORT_NR_ZONES, GFP_KERNEL);
2369         if (!zones)
2370                 return -ENOMEM;
2371
2372         /* Get block zones type */
2373         while (zones && sector < nr_sectors) {
2374
2375                 nr_zones = F2FS_REPORT_NR_ZONES;
2376                 err = blkdev_report_zones(bdev, sector,
2377                                           zones, &nr_zones,
2378                                           GFP_KERNEL);
2379                 if (err)
2380                         break;
2381                 if (!nr_zones) {
2382                         err = -EIO;
2383                         break;
2384                 }
2385
2386                 for (i = 0; i < nr_zones; i++) {
2387                         FDEV(devi).blkz_type[n] = zones[i].type;
2388                         sector += zones[i].len;
2389                         n++;
2390                 }
2391         }
2392
2393         kfree(zones);
2394
2395         return err;
2396 }
2397 #endif
2398
2399 /*
2400  * Read f2fs raw super block.
2401  * Because we have two copies of super block, so read both of them
2402  * to get the first valid one. If any one of them is broken, we pass
2403  * them recovery flag back to the caller.
2404  */
2405 static int read_raw_super_block(struct f2fs_sb_info *sbi,
2406                         struct f2fs_super_block **raw_super,
2407                         int *valid_super_block, int *recovery)
2408 {
2409         struct super_block *sb = sbi->sb;
2410         int block;
2411         struct buffer_head *bh;
2412         struct f2fs_super_block *super;
2413         int err = 0;
2414
2415         super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
2416         if (!super)
2417                 return -ENOMEM;
2418
2419         for (block = 0; block < 2; block++) {
2420                 bh = sb_bread(sb, block);
2421                 if (!bh) {
2422                         f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
2423                                 block + 1);
2424                         err = -EIO;
2425                         continue;
2426                 }
2427
2428                 /* sanity checking of raw super */
2429                 if (sanity_check_raw_super(sbi, bh)) {
2430                         f2fs_msg(sb, KERN_ERR,
2431                                 "Can't find valid F2FS filesystem in %dth superblock",
2432                                 block + 1);
2433                         err = -EINVAL;
2434                         brelse(bh);
2435                         continue;
2436                 }
2437
2438                 if (!*raw_super) {
2439                         memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
2440                                                         sizeof(*super));
2441                         *valid_super_block = block;
2442                         *raw_super = super;
2443                 }
2444                 brelse(bh);
2445         }
2446
2447         /* Fail to read any one of the superblocks*/
2448         if (err < 0)
2449                 *recovery = 1;
2450
2451         /* No valid superblock */
2452         if (!*raw_super)
2453                 kfree(super);
2454         else
2455                 err = 0;
2456
2457         return err;
2458 }
2459
2460 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
2461 {
2462         struct buffer_head *bh;
2463         int err;
2464
2465         if ((recover && f2fs_readonly(sbi->sb)) ||
2466                                 bdev_read_only(sbi->sb->s_bdev)) {
2467                 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2468                 return -EROFS;
2469         }
2470
2471         /* write back-up superblock first */
2472         bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1);
2473         if (!bh)
2474                 return -EIO;
2475         err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2476         brelse(bh);
2477
2478         /* if we are in recovery path, skip writing valid superblock */
2479         if (recover || err)
2480                 return err;
2481
2482         /* write current valid superblock */
2483         bh = sb_bread(sbi->sb, sbi->valid_super_block);
2484         if (!bh)
2485                 return -EIO;
2486         err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2487         brelse(bh);
2488         return err;
2489 }
2490
2491 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
2492 {
2493         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2494         unsigned int max_devices = MAX_DEVICES;
2495         int i;
2496
2497         /* Initialize single device information */
2498         if (!RDEV(0).path[0]) {
2499                 if (!bdev_is_zoned(sbi->sb->s_bdev))
2500                         return 0;
2501                 max_devices = 1;
2502         }
2503
2504         /*
2505          * Initialize multiple devices information, or single
2506          * zoned block device information.
2507          */
2508         sbi->devs = f2fs_kzalloc(sbi, sizeof(struct f2fs_dev_info) *
2509                                                 max_devices, GFP_KERNEL);
2510         if (!sbi->devs)
2511                 return -ENOMEM;
2512
2513         for (i = 0; i < max_devices; i++) {
2514
2515                 if (i > 0 && !RDEV(i).path[0])
2516                         break;
2517
2518                 if (max_devices == 1) {
2519                         /* Single zoned block device mount */
2520                         FDEV(0).bdev =
2521                                 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
2522                                         sbi->sb->s_mode, sbi->sb->s_type);
2523                 } else {
2524                         /* Multi-device mount */
2525                         memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
2526                         FDEV(i).total_segments =
2527                                 le32_to_cpu(RDEV(i).total_segments);
2528                         if (i == 0) {
2529                                 FDEV(i).start_blk = 0;
2530                                 FDEV(i).end_blk = FDEV(i).start_blk +
2531                                     (FDEV(i).total_segments <<
2532                                     sbi->log_blocks_per_seg) - 1 +
2533                                     le32_to_cpu(raw_super->segment0_blkaddr);
2534                         } else {
2535                                 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
2536                                 FDEV(i).end_blk = FDEV(i).start_blk +
2537                                         (FDEV(i).total_segments <<
2538                                         sbi->log_blocks_per_seg) - 1;
2539                         }
2540                         FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
2541                                         sbi->sb->s_mode, sbi->sb->s_type);
2542                 }
2543                 if (IS_ERR(FDEV(i).bdev))
2544                         return PTR_ERR(FDEV(i).bdev);
2545
2546                 /* to release errored devices */
2547                 sbi->s_ndevs = i + 1;
2548
2549 #ifdef CONFIG_BLK_DEV_ZONED
2550                 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
2551                                 !f2fs_sb_has_blkzoned(sbi->sb)) {
2552                         f2fs_msg(sbi->sb, KERN_ERR,
2553                                 "Zoned block device feature not enabled\n");
2554                         return -EINVAL;
2555                 }
2556                 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
2557                         if (init_blkz_info(sbi, i)) {
2558                                 f2fs_msg(sbi->sb, KERN_ERR,
2559                                         "Failed to initialize F2FS blkzone information");
2560                                 return -EINVAL;
2561                         }
2562                         if (max_devices == 1)
2563                                 break;
2564                         f2fs_msg(sbi->sb, KERN_INFO,
2565                                 "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
2566                                 i, FDEV(i).path,
2567                                 FDEV(i).total_segments,
2568                                 FDEV(i).start_blk, FDEV(i).end_blk,
2569                                 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
2570                                 "Host-aware" : "Host-managed");
2571                         continue;
2572                 }
2573 #endif
2574                 f2fs_msg(sbi->sb, KERN_INFO,
2575                         "Mount Device [%2d]: %20s, %8u, %8x - %8x",
2576                                 i, FDEV(i).path,
2577                                 FDEV(i).total_segments,
2578                                 FDEV(i).start_blk, FDEV(i).end_blk);
2579         }
2580         f2fs_msg(sbi->sb, KERN_INFO,
2581                         "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
2582         return 0;
2583 }
2584
2585 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
2586 {
2587         struct f2fs_sm_info *sm_i = SM_I(sbi);
2588
2589         /* adjust parameters according to the volume size */
2590         if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) {
2591                 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
2592                 sm_i->dcc_info->discard_granularity = 1;
2593                 sm_i->ipu_policy = 1 << F2FS_IPU_FORCE;
2594         }
2595 }
2596
2597 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
2598 {
2599         struct f2fs_sb_info *sbi;
2600         struct f2fs_super_block *raw_super;
2601         struct inode *root;
2602         int err;
2603         bool retry = true, need_fsck = false;
2604         char *options = NULL;
2605         int recovery, i, valid_super_block;
2606         struct curseg_info *seg_i;
2607
2608 try_onemore:
2609         err = -EINVAL;
2610         raw_super = NULL;
2611         valid_super_block = -1;
2612         recovery = 0;
2613
2614         /* allocate memory for f2fs-specific super block info */
2615         sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
2616         if (!sbi)
2617                 return -ENOMEM;
2618
2619         sbi->sb = sb;
2620
2621         /* Load the checksum driver */
2622         sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
2623         if (IS_ERR(sbi->s_chksum_driver)) {
2624                 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
2625                 err = PTR_ERR(sbi->s_chksum_driver);
2626                 sbi->s_chksum_driver = NULL;
2627                 goto free_sbi;
2628         }
2629
2630         /* set a block size */
2631         if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
2632                 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
2633                 goto free_sbi;
2634         }
2635
2636         err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
2637                                                                 &recovery);
2638         if (err)
2639                 goto free_sbi;
2640
2641         sb->s_fs_info = sbi;
2642         sbi->raw_super = raw_super;
2643
2644         F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
2645         F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
2646
2647         /* precompute checksum seed for metadata */
2648         if (f2fs_sb_has_inode_chksum(sb))
2649                 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
2650                                                 sizeof(raw_super->uuid));
2651
2652         /*
2653          * The BLKZONED feature indicates that the drive was formatted with
2654          * zone alignment optimization. This is optional for host-aware
2655          * devices, but mandatory for host-managed zoned block devices.
2656          */
2657 #ifndef CONFIG_BLK_DEV_ZONED
2658         if (f2fs_sb_has_blkzoned(sb)) {
2659                 f2fs_msg(sb, KERN_ERR,
2660                          "Zoned block device support is not enabled\n");
2661                 err = -EOPNOTSUPP;
2662                 goto free_sb_buf;
2663         }
2664 #endif
2665         default_options(sbi);
2666         /* parse mount options */
2667         options = kstrdup((const char *)data, GFP_KERNEL);
2668         if (data && !options) {
2669                 err = -ENOMEM;
2670                 goto free_sb_buf;
2671         }
2672
2673         err = parse_options(sb, options);
2674         if (err)
2675                 goto free_options;
2676
2677         sbi->max_file_blocks = max_file_blocks();
2678         sb->s_maxbytes = sbi->max_file_blocks <<
2679                                 le32_to_cpu(raw_super->log_blocksize);
2680         sb->s_max_links = F2FS_LINK_MAX;
2681         get_random_bytes(&sbi->s_next_generation, sizeof(u32));
2682
2683 #ifdef CONFIG_QUOTA
2684         sb->dq_op = &f2fs_quota_operations;
2685         if (f2fs_sb_has_quota_ino(sb))
2686                 sb->s_qcop = &dquot_quotactl_sysfile_ops;
2687         else
2688                 sb->s_qcop = &f2fs_quotactl_ops;
2689         sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
2690
2691         if (f2fs_sb_has_quota_ino(sbi->sb)) {
2692                 for (i = 0; i < MAXQUOTAS; i++) {
2693                         if (f2fs_qf_ino(sbi->sb, i))
2694                                 sbi->nquota_files++;
2695                 }
2696         }
2697 #endif
2698
2699         sb->s_op = &f2fs_sops;
2700 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2701         sb->s_cop = &f2fs_cryptops;
2702 #endif
2703         sb->s_xattr = f2fs_xattr_handlers;
2704         sb->s_export_op = &f2fs_export_ops;
2705         sb->s_magic = F2FS_SUPER_MAGIC;
2706         sb->s_time_gran = 1;
2707         sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
2708                 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
2709         memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
2710         sb->s_iflags |= SB_I_CGROUPWB;
2711
2712         /* init f2fs-specific super block info */
2713         sbi->valid_super_block = valid_super_block;
2714         mutex_init(&sbi->gc_mutex);
2715         mutex_init(&sbi->cp_mutex);
2716         init_rwsem(&sbi->node_write);
2717         init_rwsem(&sbi->node_change);
2718
2719         /* disallow all the data/node/meta page writes */
2720         set_sbi_flag(sbi, SBI_POR_DOING);
2721         spin_lock_init(&sbi->stat_lock);
2722
2723         /* init iostat info */
2724         spin_lock_init(&sbi->iostat_lock);
2725         sbi->iostat_enable = false;
2726
2727         for (i = 0; i < NR_PAGE_TYPE; i++) {
2728                 int n = (i == META) ? 1: NR_TEMP_TYPE;
2729                 int j;
2730
2731                 sbi->write_io[i] = f2fs_kmalloc(sbi,
2732                                         n * sizeof(struct f2fs_bio_info),
2733                                         GFP_KERNEL);
2734                 if (!sbi->write_io[i]) {
2735                         err = -ENOMEM;
2736                         goto free_options;
2737                 }
2738
2739                 for (j = HOT; j < n; j++) {
2740                         init_rwsem(&sbi->write_io[i][j].io_rwsem);
2741                         sbi->write_io[i][j].sbi = sbi;
2742                         sbi->write_io[i][j].bio = NULL;
2743                         spin_lock_init(&sbi->write_io[i][j].io_lock);
2744                         INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
2745                 }
2746         }
2747
2748         init_rwsem(&sbi->cp_rwsem);
2749         init_waitqueue_head(&sbi->cp_wait);
2750         init_sb_info(sbi);
2751
2752         err = init_percpu_info(sbi);
2753         if (err)
2754                 goto free_bio_info;
2755
2756         if (F2FS_IO_SIZE(sbi) > 1) {
2757                 sbi->write_io_dummy =
2758                         mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
2759                 if (!sbi->write_io_dummy) {
2760                         err = -ENOMEM;
2761                         goto free_percpu;
2762                 }
2763         }
2764
2765         /* get an inode for meta space */
2766         sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
2767         if (IS_ERR(sbi->meta_inode)) {
2768                 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
2769                 err = PTR_ERR(sbi->meta_inode);
2770                 goto free_io_dummy;
2771         }
2772
2773         err = get_valid_checkpoint(sbi);
2774         if (err) {
2775                 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
2776                 goto free_meta_inode;
2777         }
2778
2779         /* Initialize device list */
2780         err = f2fs_scan_devices(sbi);
2781         if (err) {
2782                 f2fs_msg(sb, KERN_ERR, "Failed to find devices");
2783                 goto free_devices;
2784         }
2785
2786         sbi->total_valid_node_count =
2787                                 le32_to_cpu(sbi->ckpt->valid_node_count);
2788         percpu_counter_set(&sbi->total_valid_inode_count,
2789                                 le32_to_cpu(sbi->ckpt->valid_inode_count));
2790         sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
2791         sbi->total_valid_block_count =
2792                                 le64_to_cpu(sbi->ckpt->valid_block_count);
2793         sbi->last_valid_block_count = sbi->total_valid_block_count;
2794         sbi->reserved_blocks = 0;
2795         sbi->current_reserved_blocks = 0;
2796         limit_reserve_root(sbi);
2797
2798         for (i = 0; i < NR_INODE_TYPE; i++) {
2799                 INIT_LIST_HEAD(&sbi->inode_list[i]);
2800                 spin_lock_init(&sbi->inode_lock[i]);
2801         }
2802
2803         init_extent_cache_info(sbi);
2804
2805         init_ino_entry_info(sbi);
2806
2807         /* setup f2fs internal modules */
2808         err = build_segment_manager(sbi);
2809         if (err) {
2810                 f2fs_msg(sb, KERN_ERR,
2811                         "Failed to initialize F2FS segment manager");
2812                 goto free_sm;
2813         }
2814         err = build_node_manager(sbi);
2815         if (err) {
2816                 f2fs_msg(sb, KERN_ERR,
2817                         "Failed to initialize F2FS node manager");
2818                 goto free_nm;
2819         }
2820
2821         /* For write statistics */
2822         if (sb->s_bdev->bd_part)
2823                 sbi->sectors_written_start =
2824                         (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
2825
2826         /* Read accumulated write IO statistics if exists */
2827         seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
2828         if (__exist_node_summaries(sbi))
2829                 sbi->kbytes_written =
2830                         le64_to_cpu(seg_i->journal->info.kbytes_written);
2831
2832         build_gc_manager(sbi);
2833
2834         /* get an inode for node space */
2835         sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
2836         if (IS_ERR(sbi->node_inode)) {
2837                 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
2838                 err = PTR_ERR(sbi->node_inode);
2839                 goto free_nm;
2840         }
2841
2842         err = f2fs_build_stats(sbi);
2843         if (err)
2844                 goto free_node_inode;
2845
2846         /* read root inode and dentry */
2847         root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
2848         if (IS_ERR(root)) {
2849                 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
2850                 err = PTR_ERR(root);
2851                 goto free_stats;
2852         }
2853         if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
2854                 iput(root);
2855                 err = -EINVAL;
2856                 goto free_node_inode;
2857         }
2858
2859         sb->s_root = d_make_root(root); /* allocate root dentry */
2860         if (!sb->s_root) {
2861                 err = -ENOMEM;
2862                 goto free_root_inode;
2863         }
2864
2865         err = f2fs_register_sysfs(sbi);
2866         if (err)
2867                 goto free_root_inode;
2868
2869 #ifdef CONFIG_QUOTA
2870         /*
2871          * Turn on quotas which were not enabled for read-only mounts if
2872          * filesystem has quota feature, so that they are updated correctly.
2873          */
2874         if (f2fs_sb_has_quota_ino(sb) && !f2fs_readonly(sb)) {
2875                 err = f2fs_enable_quotas(sb);
2876                 if (err) {
2877                         f2fs_msg(sb, KERN_ERR,
2878                                 "Cannot turn on quotas: error %d", err);
2879                         goto free_sysfs;
2880                 }
2881         }
2882 #endif
2883         /* if there are nt orphan nodes free them */
2884         err = recover_orphan_inodes(sbi);
2885         if (err)
2886                 goto free_meta;
2887
2888         /* recover fsynced data */
2889         if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
2890                 /*
2891                  * mount should be failed, when device has readonly mode, and
2892                  * previous checkpoint was not done by clean system shutdown.
2893                  */
2894                 if (bdev_read_only(sb->s_bdev) &&
2895                                 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
2896                         err = -EROFS;
2897                         goto free_meta;
2898                 }
2899
2900                 if (need_fsck)
2901                         set_sbi_flag(sbi, SBI_NEED_FSCK);
2902
2903                 if (!retry)
2904                         goto skip_recovery;
2905
2906                 err = recover_fsync_data(sbi, false);
2907                 if (err < 0) {
2908                         need_fsck = true;
2909                         f2fs_msg(sb, KERN_ERR,
2910                                 "Cannot recover all fsync data errno=%d", err);
2911                         goto free_meta;
2912                 }
2913         } else {
2914                 err = recover_fsync_data(sbi, true);
2915
2916                 if (!f2fs_readonly(sb) && err > 0) {
2917                         err = -EINVAL;
2918                         f2fs_msg(sb, KERN_ERR,
2919                                 "Need to recover fsync data");
2920                         goto free_meta;
2921                 }
2922         }
2923 skip_recovery:
2924         /* recover_fsync_data() cleared this already */
2925         clear_sbi_flag(sbi, SBI_POR_DOING);
2926
2927         /*
2928          * If filesystem is not mounted as read-only then
2929          * do start the gc_thread.
2930          */
2931         if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
2932                 /* After POR, we can run background GC thread.*/
2933                 err = start_gc_thread(sbi);
2934                 if (err)
2935                         goto free_meta;
2936         }
2937         kfree(options);
2938
2939         /* recover broken superblock */
2940         if (recovery) {
2941                 err = f2fs_commit_super(sbi, true);
2942                 f2fs_msg(sb, KERN_INFO,
2943                         "Try to recover %dth superblock, ret: %d",
2944                         sbi->valid_super_block ? 1 : 2, err);
2945         }
2946
2947         f2fs_join_shrinker(sbi);
2948
2949         f2fs_tuning_parameters(sbi);
2950
2951         f2fs_msg(sbi->sb, KERN_NOTICE, "Mounted with checkpoint version = %llx",
2952                                 cur_cp_version(F2FS_CKPT(sbi)));
2953         f2fs_update_time(sbi, CP_TIME);
2954         f2fs_update_time(sbi, REQ_TIME);
2955         return 0;
2956
2957 free_meta:
2958 #ifdef CONFIG_QUOTA
2959         if (f2fs_sb_has_quota_ino(sb) && !f2fs_readonly(sb))
2960                 f2fs_quota_off_umount(sbi->sb);
2961 #endif
2962         f2fs_sync_inode_meta(sbi);
2963         /*
2964          * Some dirty meta pages can be produced by recover_orphan_inodes()
2965          * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
2966          * followed by write_checkpoint() through f2fs_write_node_pages(), which
2967          * falls into an infinite loop in sync_meta_pages().
2968          */
2969         truncate_inode_pages_final(META_MAPPING(sbi));
2970 #ifdef CONFIG_QUOTA
2971 free_sysfs:
2972 #endif
2973         f2fs_unregister_sysfs(sbi);
2974 free_root_inode:
2975         dput(sb->s_root);
2976         sb->s_root = NULL;
2977 free_stats:
2978         f2fs_destroy_stats(sbi);
2979 free_node_inode:
2980         release_ino_entry(sbi, true);
2981         truncate_inode_pages_final(NODE_MAPPING(sbi));
2982         iput(sbi->node_inode);
2983 free_nm:
2984         destroy_node_manager(sbi);
2985 free_sm:
2986         destroy_segment_manager(sbi);
2987 free_devices:
2988         destroy_device_list(sbi);
2989         kfree(sbi->ckpt);
2990 free_meta_inode:
2991         make_bad_inode(sbi->meta_inode);
2992         iput(sbi->meta_inode);
2993 free_io_dummy:
2994         mempool_destroy(sbi->write_io_dummy);
2995 free_percpu:
2996         destroy_percpu_info(sbi);
2997 free_bio_info:
2998         for (i = 0; i < NR_PAGE_TYPE; i++)
2999                 kfree(sbi->write_io[i]);
3000 free_options:
3001 #ifdef CONFIG_QUOTA
3002         for (i = 0; i < MAXQUOTAS; i++)
3003                 kfree(F2FS_OPTION(sbi).s_qf_names[i]);
3004 #endif
3005         kfree(options);
3006 free_sb_buf:
3007         kfree(raw_super);
3008 free_sbi:
3009         if (sbi->s_chksum_driver)
3010                 crypto_free_shash(sbi->s_chksum_driver);
3011         kfree(sbi);
3012
3013         /* give only one another chance */
3014         if (retry) {
3015                 retry = false;
3016                 shrink_dcache_sb(sb);
3017                 goto try_onemore;
3018         }
3019         return err;
3020 }
3021
3022 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
3023                         const char *dev_name, void *data)
3024 {
3025         return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
3026 }
3027
3028 static void kill_f2fs_super(struct super_block *sb)
3029 {
3030         if (sb->s_root) {
3031                 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
3032                 stop_gc_thread(F2FS_SB(sb));
3033                 stop_discard_thread(F2FS_SB(sb));
3034         }
3035         kill_block_super(sb);
3036 }
3037
3038 static struct file_system_type f2fs_fs_type = {
3039         .owner          = THIS_MODULE,
3040         .name           = "f2fs",
3041         .mount          = f2fs_mount,
3042         .kill_sb        = kill_f2fs_super,
3043         .fs_flags       = FS_REQUIRES_DEV,
3044 };
3045 MODULE_ALIAS_FS("f2fs");
3046
3047 static int __init init_inodecache(void)
3048 {
3049         f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
3050                         sizeof(struct f2fs_inode_info), 0,
3051                         SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
3052         if (!f2fs_inode_cachep)
3053                 return -ENOMEM;
3054         return 0;
3055 }
3056
3057 static void destroy_inodecache(void)
3058 {
3059         /*
3060          * Make sure all delayed rcu free inodes are flushed before we
3061          * destroy cache.
3062          */
3063         rcu_barrier();
3064         kmem_cache_destroy(f2fs_inode_cachep);
3065 }
3066
3067 static int __init init_f2fs_fs(void)
3068 {
3069         int err;
3070
3071         f2fs_build_trace_ios();
3072
3073         err = init_inodecache();
3074         if (err)
3075                 goto fail;
3076         err = create_node_manager_caches();
3077         if (err)
3078                 goto free_inodecache;
3079         err = create_segment_manager_caches();
3080         if (err)
3081                 goto free_node_manager_caches;
3082         err = create_checkpoint_caches();
3083         if (err)
3084                 goto free_segment_manager_caches;
3085         err = create_extent_cache();
3086         if (err)
3087                 goto free_checkpoint_caches;
3088         err = f2fs_init_sysfs();
3089         if (err)
3090                 goto free_extent_cache;
3091         err = register_shrinker(&f2fs_shrinker_info);
3092         if (err)
3093                 goto free_sysfs;
3094         err = register_filesystem(&f2fs_fs_type);
3095         if (err)
3096                 goto free_shrinker;
3097         err = f2fs_create_root_stats();
3098         if (err)
3099                 goto free_filesystem;
3100         return 0;
3101
3102 free_filesystem:
3103         unregister_filesystem(&f2fs_fs_type);
3104 free_shrinker:
3105         unregister_shrinker(&f2fs_shrinker_info);
3106 free_sysfs:
3107         f2fs_exit_sysfs();
3108 free_extent_cache:
3109         destroy_extent_cache();
3110 free_checkpoint_caches:
3111         destroy_checkpoint_caches();
3112 free_segment_manager_caches:
3113         destroy_segment_manager_caches();
3114 free_node_manager_caches:
3115         destroy_node_manager_caches();
3116 free_inodecache:
3117         destroy_inodecache();
3118 fail:
3119         return err;
3120 }
3121
3122 static void __exit exit_f2fs_fs(void)
3123 {
3124         f2fs_destroy_root_stats();
3125         unregister_filesystem(&f2fs_fs_type);
3126         unregister_shrinker(&f2fs_shrinker_info);
3127         f2fs_exit_sysfs();
3128         destroy_extent_cache();
3129         destroy_checkpoint_caches();
3130         destroy_segment_manager_caches();
3131         destroy_node_manager_caches();
3132         destroy_inodecache();
3133         f2fs_destroy_trace_ios();
3134 }
3135
3136 module_init(init_f2fs_fs)
3137 module_exit(exit_f2fs_fs)
3138
3139 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
3140 MODULE_DESCRIPTION("Flash Friendly File System");
3141 MODULE_LICENSE("GPL");
3142