Merge tag 'rproc-v4.14-fixes' of git://github.com/andersson/remoteproc
[sfrench/cifs-2.6.git] / fs / f2fs / super.c
1 /*
2  * fs/f2fs/super.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <linux/f2fs_fs.h>
27 #include <linux/sysfs.h>
28 #include <linux/quota.h>
29
30 #include "f2fs.h"
31 #include "node.h"
32 #include "segment.h"
33 #include "xattr.h"
34 #include "gc.h"
35 #include "trace.h"
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/f2fs.h>
39
40 static struct kmem_cache *f2fs_inode_cachep;
41
42 #ifdef CONFIG_F2FS_FAULT_INJECTION
43
44 char *fault_name[FAULT_MAX] = {
45         [FAULT_KMALLOC]         = "kmalloc",
46         [FAULT_PAGE_ALLOC]      = "page alloc",
47         [FAULT_ALLOC_NID]       = "alloc nid",
48         [FAULT_ORPHAN]          = "orphan",
49         [FAULT_BLOCK]           = "no more block",
50         [FAULT_DIR_DEPTH]       = "too big dir depth",
51         [FAULT_EVICT_INODE]     = "evict_inode fail",
52         [FAULT_TRUNCATE]        = "truncate fail",
53         [FAULT_IO]              = "IO error",
54         [FAULT_CHECKPOINT]      = "checkpoint error",
55 };
56
57 static void f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
58                                                 unsigned int rate)
59 {
60         struct f2fs_fault_info *ffi = &sbi->fault_info;
61
62         if (rate) {
63                 atomic_set(&ffi->inject_ops, 0);
64                 ffi->inject_rate = rate;
65                 ffi->inject_type = (1 << FAULT_MAX) - 1;
66         } else {
67                 memset(ffi, 0, sizeof(struct f2fs_fault_info));
68         }
69 }
70 #endif
71
72 /* f2fs-wide shrinker description */
73 static struct shrinker f2fs_shrinker_info = {
74         .scan_objects = f2fs_shrink_scan,
75         .count_objects = f2fs_shrink_count,
76         .seeks = DEFAULT_SEEKS,
77 };
78
79 enum {
80         Opt_gc_background,
81         Opt_disable_roll_forward,
82         Opt_norecovery,
83         Opt_discard,
84         Opt_nodiscard,
85         Opt_noheap,
86         Opt_heap,
87         Opt_user_xattr,
88         Opt_nouser_xattr,
89         Opt_acl,
90         Opt_noacl,
91         Opt_active_logs,
92         Opt_disable_ext_identify,
93         Opt_inline_xattr,
94         Opt_noinline_xattr,
95         Opt_inline_data,
96         Opt_inline_dentry,
97         Opt_noinline_dentry,
98         Opt_flush_merge,
99         Opt_noflush_merge,
100         Opt_nobarrier,
101         Opt_fastboot,
102         Opt_extent_cache,
103         Opt_noextent_cache,
104         Opt_noinline_data,
105         Opt_data_flush,
106         Opt_mode,
107         Opt_io_size_bits,
108         Opt_fault_injection,
109         Opt_lazytime,
110         Opt_nolazytime,
111         Opt_quota,
112         Opt_noquota,
113         Opt_usrquota,
114         Opt_grpquota,
115         Opt_prjquota,
116         Opt_usrjquota,
117         Opt_grpjquota,
118         Opt_prjjquota,
119         Opt_offusrjquota,
120         Opt_offgrpjquota,
121         Opt_offprjjquota,
122         Opt_jqfmt_vfsold,
123         Opt_jqfmt_vfsv0,
124         Opt_jqfmt_vfsv1,
125         Opt_err,
126 };
127
128 static match_table_t f2fs_tokens = {
129         {Opt_gc_background, "background_gc=%s"},
130         {Opt_disable_roll_forward, "disable_roll_forward"},
131         {Opt_norecovery, "norecovery"},
132         {Opt_discard, "discard"},
133         {Opt_nodiscard, "nodiscard"},
134         {Opt_noheap, "no_heap"},
135         {Opt_heap, "heap"},
136         {Opt_user_xattr, "user_xattr"},
137         {Opt_nouser_xattr, "nouser_xattr"},
138         {Opt_acl, "acl"},
139         {Opt_noacl, "noacl"},
140         {Opt_active_logs, "active_logs=%u"},
141         {Opt_disable_ext_identify, "disable_ext_identify"},
142         {Opt_inline_xattr, "inline_xattr"},
143         {Opt_noinline_xattr, "noinline_xattr"},
144         {Opt_inline_data, "inline_data"},
145         {Opt_inline_dentry, "inline_dentry"},
146         {Opt_noinline_dentry, "noinline_dentry"},
147         {Opt_flush_merge, "flush_merge"},
148         {Opt_noflush_merge, "noflush_merge"},
149         {Opt_nobarrier, "nobarrier"},
150         {Opt_fastboot, "fastboot"},
151         {Opt_extent_cache, "extent_cache"},
152         {Opt_noextent_cache, "noextent_cache"},
153         {Opt_noinline_data, "noinline_data"},
154         {Opt_data_flush, "data_flush"},
155         {Opt_mode, "mode=%s"},
156         {Opt_io_size_bits, "io_bits=%u"},
157         {Opt_fault_injection, "fault_injection=%u"},
158         {Opt_lazytime, "lazytime"},
159         {Opt_nolazytime, "nolazytime"},
160         {Opt_quota, "quota"},
161         {Opt_noquota, "noquota"},
162         {Opt_usrquota, "usrquota"},
163         {Opt_grpquota, "grpquota"},
164         {Opt_prjquota, "prjquota"},
165         {Opt_usrjquota, "usrjquota=%s"},
166         {Opt_grpjquota, "grpjquota=%s"},
167         {Opt_prjjquota, "prjjquota=%s"},
168         {Opt_offusrjquota, "usrjquota="},
169         {Opt_offgrpjquota, "grpjquota="},
170         {Opt_offprjjquota, "prjjquota="},
171         {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
172         {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
173         {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
174         {Opt_err, NULL},
175 };
176
177 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
178 {
179         struct va_format vaf;
180         va_list args;
181
182         va_start(args, fmt);
183         vaf.fmt = fmt;
184         vaf.va = &args;
185         printk_ratelimited("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
186         va_end(args);
187 }
188
189 static void init_once(void *foo)
190 {
191         struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
192
193         inode_init_once(&fi->vfs_inode);
194 }
195
196 #ifdef CONFIG_QUOTA
197 static const char * const quotatypes[] = INITQFNAMES;
198 #define QTYPE2NAME(t) (quotatypes[t])
199 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
200                                                         substring_t *args)
201 {
202         struct f2fs_sb_info *sbi = F2FS_SB(sb);
203         char *qname;
204         int ret = -EINVAL;
205
206         if (sb_any_quota_loaded(sb) && !sbi->s_qf_names[qtype]) {
207                 f2fs_msg(sb, KERN_ERR,
208                         "Cannot change journaled "
209                         "quota options when quota turned on");
210                 return -EINVAL;
211         }
212         qname = match_strdup(args);
213         if (!qname) {
214                 f2fs_msg(sb, KERN_ERR,
215                         "Not enough memory for storing quotafile name");
216                 return -EINVAL;
217         }
218         if (sbi->s_qf_names[qtype]) {
219                 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
220                         ret = 0;
221                 else
222                         f2fs_msg(sb, KERN_ERR,
223                                  "%s quota file already specified",
224                                  QTYPE2NAME(qtype));
225                 goto errout;
226         }
227         if (strchr(qname, '/')) {
228                 f2fs_msg(sb, KERN_ERR,
229                         "quotafile must be on filesystem root");
230                 goto errout;
231         }
232         sbi->s_qf_names[qtype] = qname;
233         set_opt(sbi, QUOTA);
234         return 0;
235 errout:
236         kfree(qname);
237         return ret;
238 }
239
240 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
241 {
242         struct f2fs_sb_info *sbi = F2FS_SB(sb);
243
244         if (sb_any_quota_loaded(sb) && sbi->s_qf_names[qtype]) {
245                 f2fs_msg(sb, KERN_ERR, "Cannot change journaled quota options"
246                         " when quota turned on");
247                 return -EINVAL;
248         }
249         kfree(sbi->s_qf_names[qtype]);
250         sbi->s_qf_names[qtype] = NULL;
251         return 0;
252 }
253
254 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
255 {
256         /*
257          * We do the test below only for project quotas. 'usrquota' and
258          * 'grpquota' mount options are allowed even without quota feature
259          * to support legacy quotas in quota files.
260          */
261         if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi->sb)) {
262                 f2fs_msg(sbi->sb, KERN_ERR, "Project quota feature not enabled. "
263                          "Cannot enable project quota enforcement.");
264                 return -1;
265         }
266         if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA] ||
267                         sbi->s_qf_names[PRJQUOTA]) {
268                 if (test_opt(sbi, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
269                         clear_opt(sbi, USRQUOTA);
270
271                 if (test_opt(sbi, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
272                         clear_opt(sbi, GRPQUOTA);
273
274                 if (test_opt(sbi, PRJQUOTA) && sbi->s_qf_names[PRJQUOTA])
275                         clear_opt(sbi, PRJQUOTA);
276
277                 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
278                                 test_opt(sbi, PRJQUOTA)) {
279                         f2fs_msg(sbi->sb, KERN_ERR, "old and new quota "
280                                         "format mixing");
281                         return -1;
282                 }
283
284                 if (!sbi->s_jquota_fmt) {
285                         f2fs_msg(sbi->sb, KERN_ERR, "journaled quota format "
286                                         "not specified");
287                         return -1;
288                 }
289         }
290         return 0;
291 }
292 #endif
293
294 static int parse_options(struct super_block *sb, char *options)
295 {
296         struct f2fs_sb_info *sbi = F2FS_SB(sb);
297         struct request_queue *q;
298         substring_t args[MAX_OPT_ARGS];
299         char *p, *name;
300         int arg = 0;
301 #ifdef CONFIG_QUOTA
302         int ret;
303 #endif
304
305         if (!options)
306                 return 0;
307
308         while ((p = strsep(&options, ",")) != NULL) {
309                 int token;
310                 if (!*p)
311                         continue;
312                 /*
313                  * Initialize args struct so we know whether arg was
314                  * found; some options take optional arguments.
315                  */
316                 args[0].to = args[0].from = NULL;
317                 token = match_token(p, f2fs_tokens, args);
318
319                 switch (token) {
320                 case Opt_gc_background:
321                         name = match_strdup(&args[0]);
322
323                         if (!name)
324                                 return -ENOMEM;
325                         if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
326                                 set_opt(sbi, BG_GC);
327                                 clear_opt(sbi, FORCE_FG_GC);
328                         } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
329                                 clear_opt(sbi, BG_GC);
330                                 clear_opt(sbi, FORCE_FG_GC);
331                         } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
332                                 set_opt(sbi, BG_GC);
333                                 set_opt(sbi, FORCE_FG_GC);
334                         } else {
335                                 kfree(name);
336                                 return -EINVAL;
337                         }
338                         kfree(name);
339                         break;
340                 case Opt_disable_roll_forward:
341                         set_opt(sbi, DISABLE_ROLL_FORWARD);
342                         break;
343                 case Opt_norecovery:
344                         /* this option mounts f2fs with ro */
345                         set_opt(sbi, DISABLE_ROLL_FORWARD);
346                         if (!f2fs_readonly(sb))
347                                 return -EINVAL;
348                         break;
349                 case Opt_discard:
350                         q = bdev_get_queue(sb->s_bdev);
351                         if (blk_queue_discard(q)) {
352                                 set_opt(sbi, DISCARD);
353                         } else if (!f2fs_sb_mounted_blkzoned(sb)) {
354                                 f2fs_msg(sb, KERN_WARNING,
355                                         "mounting with \"discard\" option, but "
356                                         "the device does not support discard");
357                         }
358                         break;
359                 case Opt_nodiscard:
360                         if (f2fs_sb_mounted_blkzoned(sb)) {
361                                 f2fs_msg(sb, KERN_WARNING,
362                                         "discard is required for zoned block devices");
363                                 return -EINVAL;
364                         }
365                         clear_opt(sbi, DISCARD);
366                         break;
367                 case Opt_noheap:
368                         set_opt(sbi, NOHEAP);
369                         break;
370                 case Opt_heap:
371                         clear_opt(sbi, NOHEAP);
372                         break;
373 #ifdef CONFIG_F2FS_FS_XATTR
374                 case Opt_user_xattr:
375                         set_opt(sbi, XATTR_USER);
376                         break;
377                 case Opt_nouser_xattr:
378                         clear_opt(sbi, XATTR_USER);
379                         break;
380                 case Opt_inline_xattr:
381                         set_opt(sbi, INLINE_XATTR);
382                         break;
383                 case Opt_noinline_xattr:
384                         clear_opt(sbi, INLINE_XATTR);
385                         break;
386 #else
387                 case Opt_user_xattr:
388                         f2fs_msg(sb, KERN_INFO,
389                                 "user_xattr options not supported");
390                         break;
391                 case Opt_nouser_xattr:
392                         f2fs_msg(sb, KERN_INFO,
393                                 "nouser_xattr options not supported");
394                         break;
395                 case Opt_inline_xattr:
396                         f2fs_msg(sb, KERN_INFO,
397                                 "inline_xattr options not supported");
398                         break;
399                 case Opt_noinline_xattr:
400                         f2fs_msg(sb, KERN_INFO,
401                                 "noinline_xattr options not supported");
402                         break;
403 #endif
404 #ifdef CONFIG_F2FS_FS_POSIX_ACL
405                 case Opt_acl:
406                         set_opt(sbi, POSIX_ACL);
407                         break;
408                 case Opt_noacl:
409                         clear_opt(sbi, POSIX_ACL);
410                         break;
411 #else
412                 case Opt_acl:
413                         f2fs_msg(sb, KERN_INFO, "acl options not supported");
414                         break;
415                 case Opt_noacl:
416                         f2fs_msg(sb, KERN_INFO, "noacl options not supported");
417                         break;
418 #endif
419                 case Opt_active_logs:
420                         if (args->from && match_int(args, &arg))
421                                 return -EINVAL;
422                         if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
423                                 return -EINVAL;
424                         sbi->active_logs = arg;
425                         break;
426                 case Opt_disable_ext_identify:
427                         set_opt(sbi, DISABLE_EXT_IDENTIFY);
428                         break;
429                 case Opt_inline_data:
430                         set_opt(sbi, INLINE_DATA);
431                         break;
432                 case Opt_inline_dentry:
433                         set_opt(sbi, INLINE_DENTRY);
434                         break;
435                 case Opt_noinline_dentry:
436                         clear_opt(sbi, INLINE_DENTRY);
437                         break;
438                 case Opt_flush_merge:
439                         set_opt(sbi, FLUSH_MERGE);
440                         break;
441                 case Opt_noflush_merge:
442                         clear_opt(sbi, FLUSH_MERGE);
443                         break;
444                 case Opt_nobarrier:
445                         set_opt(sbi, NOBARRIER);
446                         break;
447                 case Opt_fastboot:
448                         set_opt(sbi, FASTBOOT);
449                         break;
450                 case Opt_extent_cache:
451                         set_opt(sbi, EXTENT_CACHE);
452                         break;
453                 case Opt_noextent_cache:
454                         clear_opt(sbi, EXTENT_CACHE);
455                         break;
456                 case Opt_noinline_data:
457                         clear_opt(sbi, INLINE_DATA);
458                         break;
459                 case Opt_data_flush:
460                         set_opt(sbi, DATA_FLUSH);
461                         break;
462                 case Opt_mode:
463                         name = match_strdup(&args[0]);
464
465                         if (!name)
466                                 return -ENOMEM;
467                         if (strlen(name) == 8 &&
468                                         !strncmp(name, "adaptive", 8)) {
469                                 if (f2fs_sb_mounted_blkzoned(sb)) {
470                                         f2fs_msg(sb, KERN_WARNING,
471                                                  "adaptive mode is not allowed with "
472                                                  "zoned block device feature");
473                                         kfree(name);
474                                         return -EINVAL;
475                                 }
476                                 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
477                         } else if (strlen(name) == 3 &&
478                                         !strncmp(name, "lfs", 3)) {
479                                 set_opt_mode(sbi, F2FS_MOUNT_LFS);
480                         } else {
481                                 kfree(name);
482                                 return -EINVAL;
483                         }
484                         kfree(name);
485                         break;
486                 case Opt_io_size_bits:
487                         if (args->from && match_int(args, &arg))
488                                 return -EINVAL;
489                         if (arg > __ilog2_u32(BIO_MAX_PAGES)) {
490                                 f2fs_msg(sb, KERN_WARNING,
491                                         "Not support %d, larger than %d",
492                                         1 << arg, BIO_MAX_PAGES);
493                                 return -EINVAL;
494                         }
495                         sbi->write_io_size_bits = arg;
496                         break;
497                 case Opt_fault_injection:
498                         if (args->from && match_int(args, &arg))
499                                 return -EINVAL;
500 #ifdef CONFIG_F2FS_FAULT_INJECTION
501                         f2fs_build_fault_attr(sbi, arg);
502                         set_opt(sbi, FAULT_INJECTION);
503 #else
504                         f2fs_msg(sb, KERN_INFO,
505                                 "FAULT_INJECTION was not selected");
506 #endif
507                         break;
508                 case Opt_lazytime:
509                         sb->s_flags |= MS_LAZYTIME;
510                         break;
511                 case Opt_nolazytime:
512                         sb->s_flags &= ~MS_LAZYTIME;
513                         break;
514 #ifdef CONFIG_QUOTA
515                 case Opt_quota:
516                 case Opt_usrquota:
517                         set_opt(sbi, USRQUOTA);
518                         break;
519                 case Opt_grpquota:
520                         set_opt(sbi, GRPQUOTA);
521                         break;
522                 case Opt_prjquota:
523                         set_opt(sbi, PRJQUOTA);
524                         break;
525                 case Opt_usrjquota:
526                         ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
527                         if (ret)
528                                 return ret;
529                         break;
530                 case Opt_grpjquota:
531                         ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
532                         if (ret)
533                                 return ret;
534                         break;
535                 case Opt_prjjquota:
536                         ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
537                         if (ret)
538                                 return ret;
539                         break;
540                 case Opt_offusrjquota:
541                         ret = f2fs_clear_qf_name(sb, USRQUOTA);
542                         if (ret)
543                                 return ret;
544                         break;
545                 case Opt_offgrpjquota:
546                         ret = f2fs_clear_qf_name(sb, GRPQUOTA);
547                         if (ret)
548                                 return ret;
549                         break;
550                 case Opt_offprjjquota:
551                         ret = f2fs_clear_qf_name(sb, PRJQUOTA);
552                         if (ret)
553                                 return ret;
554                         break;
555                 case Opt_jqfmt_vfsold:
556                         sbi->s_jquota_fmt = QFMT_VFS_OLD;
557                         break;
558                 case Opt_jqfmt_vfsv0:
559                         sbi->s_jquota_fmt = QFMT_VFS_V0;
560                         break;
561                 case Opt_jqfmt_vfsv1:
562                         sbi->s_jquota_fmt = QFMT_VFS_V1;
563                         break;
564                 case Opt_noquota:
565                         clear_opt(sbi, QUOTA);
566                         clear_opt(sbi, USRQUOTA);
567                         clear_opt(sbi, GRPQUOTA);
568                         clear_opt(sbi, PRJQUOTA);
569                         break;
570 #else
571                 case Opt_quota:
572                 case Opt_usrquota:
573                 case Opt_grpquota:
574                 case Opt_prjquota:
575                 case Opt_usrjquota:
576                 case Opt_grpjquota:
577                 case Opt_prjjquota:
578                 case Opt_offusrjquota:
579                 case Opt_offgrpjquota:
580                 case Opt_offprjjquota:
581                 case Opt_jqfmt_vfsold:
582                 case Opt_jqfmt_vfsv0:
583                 case Opt_jqfmt_vfsv1:
584                 case Opt_noquota:
585                         f2fs_msg(sb, KERN_INFO,
586                                         "quota operations not supported");
587                         break;
588 #endif
589                 default:
590                         f2fs_msg(sb, KERN_ERR,
591                                 "Unrecognized mount option \"%s\" or missing value",
592                                 p);
593                         return -EINVAL;
594                 }
595         }
596 #ifdef CONFIG_QUOTA
597         if (f2fs_check_quota_options(sbi))
598                 return -EINVAL;
599 #endif
600
601         if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) {
602                 f2fs_msg(sb, KERN_ERR,
603                                 "Should set mode=lfs with %uKB-sized IO",
604                                 F2FS_IO_SIZE_KB(sbi));
605                 return -EINVAL;
606         }
607         return 0;
608 }
609
610 static struct inode *f2fs_alloc_inode(struct super_block *sb)
611 {
612         struct f2fs_inode_info *fi;
613
614         fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
615         if (!fi)
616                 return NULL;
617
618         init_once((void *) fi);
619
620         /* Initialize f2fs-specific inode info */
621         fi->vfs_inode.i_version = 1;
622         atomic_set(&fi->dirty_pages, 0);
623         fi->i_current_depth = 1;
624         fi->i_advise = 0;
625         init_rwsem(&fi->i_sem);
626         INIT_LIST_HEAD(&fi->dirty_list);
627         INIT_LIST_HEAD(&fi->gdirty_list);
628         INIT_LIST_HEAD(&fi->inmem_pages);
629         mutex_init(&fi->inmem_lock);
630         init_rwsem(&fi->dio_rwsem[READ]);
631         init_rwsem(&fi->dio_rwsem[WRITE]);
632         init_rwsem(&fi->i_mmap_sem);
633         init_rwsem(&fi->i_xattr_sem);
634
635 #ifdef CONFIG_QUOTA
636         memset(&fi->i_dquot, 0, sizeof(fi->i_dquot));
637         fi->i_reserved_quota = 0;
638 #endif
639         /* Will be used by directory only */
640         fi->i_dir_level = F2FS_SB(sb)->dir_level;
641
642         return &fi->vfs_inode;
643 }
644
645 static int f2fs_drop_inode(struct inode *inode)
646 {
647         int ret;
648         /*
649          * This is to avoid a deadlock condition like below.
650          * writeback_single_inode(inode)
651          *  - f2fs_write_data_page
652          *    - f2fs_gc -> iput -> evict
653          *       - inode_wait_for_writeback(inode)
654          */
655         if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
656                 if (!inode->i_nlink && !is_bad_inode(inode)) {
657                         /* to avoid evict_inode call simultaneously */
658                         atomic_inc(&inode->i_count);
659                         spin_unlock(&inode->i_lock);
660
661                         /* some remained atomic pages should discarded */
662                         if (f2fs_is_atomic_file(inode))
663                                 drop_inmem_pages(inode);
664
665                         /* should remain fi->extent_tree for writepage */
666                         f2fs_destroy_extent_node(inode);
667
668                         sb_start_intwrite(inode->i_sb);
669                         f2fs_i_size_write(inode, 0);
670
671                         if (F2FS_HAS_BLOCKS(inode))
672                                 f2fs_truncate(inode);
673
674                         sb_end_intwrite(inode->i_sb);
675
676                         fscrypt_put_encryption_info(inode, NULL);
677                         spin_lock(&inode->i_lock);
678                         atomic_dec(&inode->i_count);
679                 }
680                 trace_f2fs_drop_inode(inode, 0);
681                 return 0;
682         }
683         ret = generic_drop_inode(inode);
684         trace_f2fs_drop_inode(inode, ret);
685         return ret;
686 }
687
688 int f2fs_inode_dirtied(struct inode *inode, bool sync)
689 {
690         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
691         int ret = 0;
692
693         spin_lock(&sbi->inode_lock[DIRTY_META]);
694         if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
695                 ret = 1;
696         } else {
697                 set_inode_flag(inode, FI_DIRTY_INODE);
698                 stat_inc_dirty_inode(sbi, DIRTY_META);
699         }
700         if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
701                 list_add_tail(&F2FS_I(inode)->gdirty_list,
702                                 &sbi->inode_list[DIRTY_META]);
703                 inc_page_count(sbi, F2FS_DIRTY_IMETA);
704         }
705         spin_unlock(&sbi->inode_lock[DIRTY_META]);
706         return ret;
707 }
708
709 void f2fs_inode_synced(struct inode *inode)
710 {
711         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
712
713         spin_lock(&sbi->inode_lock[DIRTY_META]);
714         if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
715                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
716                 return;
717         }
718         if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
719                 list_del_init(&F2FS_I(inode)->gdirty_list);
720                 dec_page_count(sbi, F2FS_DIRTY_IMETA);
721         }
722         clear_inode_flag(inode, FI_DIRTY_INODE);
723         clear_inode_flag(inode, FI_AUTO_RECOVER);
724         stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
725         spin_unlock(&sbi->inode_lock[DIRTY_META]);
726 }
727
728 /*
729  * f2fs_dirty_inode() is called from __mark_inode_dirty()
730  *
731  * We should call set_dirty_inode to write the dirty inode through write_inode.
732  */
733 static void f2fs_dirty_inode(struct inode *inode, int flags)
734 {
735         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
736
737         if (inode->i_ino == F2FS_NODE_INO(sbi) ||
738                         inode->i_ino == F2FS_META_INO(sbi))
739                 return;
740
741         if (flags == I_DIRTY_TIME)
742                 return;
743
744         if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
745                 clear_inode_flag(inode, FI_AUTO_RECOVER);
746
747         f2fs_inode_dirtied(inode, false);
748 }
749
750 static void f2fs_i_callback(struct rcu_head *head)
751 {
752         struct inode *inode = container_of(head, struct inode, i_rcu);
753         kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
754 }
755
756 static void f2fs_destroy_inode(struct inode *inode)
757 {
758         call_rcu(&inode->i_rcu, f2fs_i_callback);
759 }
760
761 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
762 {
763         percpu_counter_destroy(&sbi->alloc_valid_block_count);
764         percpu_counter_destroy(&sbi->total_valid_inode_count);
765 }
766
767 static void destroy_device_list(struct f2fs_sb_info *sbi)
768 {
769         int i;
770
771         for (i = 0; i < sbi->s_ndevs; i++) {
772                 blkdev_put(FDEV(i).bdev, FMODE_EXCL);
773 #ifdef CONFIG_BLK_DEV_ZONED
774                 kfree(FDEV(i).blkz_type);
775 #endif
776         }
777         kfree(sbi->devs);
778 }
779
780 static void f2fs_put_super(struct super_block *sb)
781 {
782         struct f2fs_sb_info *sbi = F2FS_SB(sb);
783         int i;
784
785         f2fs_quota_off_umount(sb);
786
787         /* prevent remaining shrinker jobs */
788         mutex_lock(&sbi->umount_mutex);
789
790         /*
791          * We don't need to do checkpoint when superblock is clean.
792          * But, the previous checkpoint was not done by umount, it needs to do
793          * clean checkpoint again.
794          */
795         if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
796                         !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
797                 struct cp_control cpc = {
798                         .reason = CP_UMOUNT,
799                 };
800                 write_checkpoint(sbi, &cpc);
801         }
802
803         /* be sure to wait for any on-going discard commands */
804         f2fs_wait_discard_bios(sbi, true);
805
806         if (f2fs_discard_en(sbi) && !sbi->discard_blks) {
807                 struct cp_control cpc = {
808                         .reason = CP_UMOUNT | CP_TRIMMED,
809                 };
810                 write_checkpoint(sbi, &cpc);
811         }
812
813         /* write_checkpoint can update stat informaion */
814         f2fs_destroy_stats(sbi);
815
816         /*
817          * normally superblock is clean, so we need to release this.
818          * In addition, EIO will skip do checkpoint, we need this as well.
819          */
820         release_ino_entry(sbi, true);
821
822         f2fs_leave_shrinker(sbi);
823         mutex_unlock(&sbi->umount_mutex);
824
825         /* our cp_error case, we can wait for any writeback page */
826         f2fs_flush_merged_writes(sbi);
827
828         iput(sbi->node_inode);
829         iput(sbi->meta_inode);
830
831         /* destroy f2fs internal modules */
832         destroy_node_manager(sbi);
833         destroy_segment_manager(sbi);
834
835         kfree(sbi->ckpt);
836
837         f2fs_unregister_sysfs(sbi);
838
839         sb->s_fs_info = NULL;
840         if (sbi->s_chksum_driver)
841                 crypto_free_shash(sbi->s_chksum_driver);
842         kfree(sbi->raw_super);
843
844         destroy_device_list(sbi);
845         mempool_destroy(sbi->write_io_dummy);
846 #ifdef CONFIG_QUOTA
847         for (i = 0; i < MAXQUOTAS; i++)
848                 kfree(sbi->s_qf_names[i]);
849 #endif
850         destroy_percpu_info(sbi);
851         for (i = 0; i < NR_PAGE_TYPE; i++)
852                 kfree(sbi->write_io[i]);
853         kfree(sbi);
854 }
855
856 int f2fs_sync_fs(struct super_block *sb, int sync)
857 {
858         struct f2fs_sb_info *sbi = F2FS_SB(sb);
859         int err = 0;
860
861         trace_f2fs_sync_fs(sb, sync);
862
863         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
864                 return -EAGAIN;
865
866         if (sync) {
867                 struct cp_control cpc;
868
869                 cpc.reason = __get_cp_reason(sbi);
870
871                 mutex_lock(&sbi->gc_mutex);
872                 err = write_checkpoint(sbi, &cpc);
873                 mutex_unlock(&sbi->gc_mutex);
874         }
875         f2fs_trace_ios(NULL, 1);
876
877         return err;
878 }
879
880 static int f2fs_freeze(struct super_block *sb)
881 {
882         if (f2fs_readonly(sb))
883                 return 0;
884
885         /* IO error happened before */
886         if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
887                 return -EIO;
888
889         /* must be clean, since sync_filesystem() was already called */
890         if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
891                 return -EINVAL;
892         return 0;
893 }
894
895 static int f2fs_unfreeze(struct super_block *sb)
896 {
897         return 0;
898 }
899
900 #ifdef CONFIG_QUOTA
901 static int f2fs_statfs_project(struct super_block *sb,
902                                 kprojid_t projid, struct kstatfs *buf)
903 {
904         struct kqid qid;
905         struct dquot *dquot;
906         u64 limit;
907         u64 curblock;
908
909         qid = make_kqid_projid(projid);
910         dquot = dqget(sb, qid);
911         if (IS_ERR(dquot))
912                 return PTR_ERR(dquot);
913         spin_lock(&dq_data_lock);
914
915         limit = (dquot->dq_dqb.dqb_bsoftlimit ?
916                  dquot->dq_dqb.dqb_bsoftlimit :
917                  dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
918         if (limit && buf->f_blocks > limit) {
919                 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
920                 buf->f_blocks = limit;
921                 buf->f_bfree = buf->f_bavail =
922                         (buf->f_blocks > curblock) ?
923                          (buf->f_blocks - curblock) : 0;
924         }
925
926         limit = dquot->dq_dqb.dqb_isoftlimit ?
927                 dquot->dq_dqb.dqb_isoftlimit :
928                 dquot->dq_dqb.dqb_ihardlimit;
929         if (limit && buf->f_files > limit) {
930                 buf->f_files = limit;
931                 buf->f_ffree =
932                         (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
933                          (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
934         }
935
936         spin_unlock(&dq_data_lock);
937         dqput(dquot);
938         return 0;
939 }
940 #endif
941
942 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
943 {
944         struct super_block *sb = dentry->d_sb;
945         struct f2fs_sb_info *sbi = F2FS_SB(sb);
946         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
947         block_t total_count, user_block_count, start_count, ovp_count;
948         u64 avail_node_count;
949
950         total_count = le64_to_cpu(sbi->raw_super->block_count);
951         user_block_count = sbi->user_block_count;
952         start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
953         ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
954         buf->f_type = F2FS_SUPER_MAGIC;
955         buf->f_bsize = sbi->blocksize;
956
957         buf->f_blocks = total_count - start_count;
958         buf->f_bfree = user_block_count - valid_user_blocks(sbi) + ovp_count;
959         buf->f_bavail = user_block_count - valid_user_blocks(sbi) -
960                                                 sbi->reserved_blocks;
961
962         avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
963
964         if (avail_node_count > user_block_count) {
965                 buf->f_files = user_block_count;
966                 buf->f_ffree = buf->f_bavail;
967         } else {
968                 buf->f_files = avail_node_count;
969                 buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
970                                         buf->f_bavail);
971         }
972
973         buf->f_namelen = F2FS_NAME_LEN;
974         buf->f_fsid.val[0] = (u32)id;
975         buf->f_fsid.val[1] = (u32)(id >> 32);
976
977 #ifdef CONFIG_QUOTA
978         if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
979                         sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
980                 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
981         }
982 #endif
983         return 0;
984 }
985
986 static inline void f2fs_show_quota_options(struct seq_file *seq,
987                                            struct super_block *sb)
988 {
989 #ifdef CONFIG_QUOTA
990         struct f2fs_sb_info *sbi = F2FS_SB(sb);
991
992         if (sbi->s_jquota_fmt) {
993                 char *fmtname = "";
994
995                 switch (sbi->s_jquota_fmt) {
996                 case QFMT_VFS_OLD:
997                         fmtname = "vfsold";
998                         break;
999                 case QFMT_VFS_V0:
1000                         fmtname = "vfsv0";
1001                         break;
1002                 case QFMT_VFS_V1:
1003                         fmtname = "vfsv1";
1004                         break;
1005                 }
1006                 seq_printf(seq, ",jqfmt=%s", fmtname);
1007         }
1008
1009         if (sbi->s_qf_names[USRQUOTA])
1010                 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
1011
1012         if (sbi->s_qf_names[GRPQUOTA])
1013                 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
1014
1015         if (sbi->s_qf_names[PRJQUOTA])
1016                 seq_show_option(seq, "prjjquota", sbi->s_qf_names[PRJQUOTA]);
1017 #endif
1018 }
1019
1020 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1021 {
1022         struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1023
1024         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
1025                 if (test_opt(sbi, FORCE_FG_GC))
1026                         seq_printf(seq, ",background_gc=%s", "sync");
1027                 else
1028                         seq_printf(seq, ",background_gc=%s", "on");
1029         } else {
1030                 seq_printf(seq, ",background_gc=%s", "off");
1031         }
1032         if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1033                 seq_puts(seq, ",disable_roll_forward");
1034         if (test_opt(sbi, DISCARD))
1035                 seq_puts(seq, ",discard");
1036         if (test_opt(sbi, NOHEAP))
1037                 seq_puts(seq, ",no_heap");
1038         else
1039                 seq_puts(seq, ",heap");
1040 #ifdef CONFIG_F2FS_FS_XATTR
1041         if (test_opt(sbi, XATTR_USER))
1042                 seq_puts(seq, ",user_xattr");
1043         else
1044                 seq_puts(seq, ",nouser_xattr");
1045         if (test_opt(sbi, INLINE_XATTR))
1046                 seq_puts(seq, ",inline_xattr");
1047         else
1048                 seq_puts(seq, ",noinline_xattr");
1049 #endif
1050 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1051         if (test_opt(sbi, POSIX_ACL))
1052                 seq_puts(seq, ",acl");
1053         else
1054                 seq_puts(seq, ",noacl");
1055 #endif
1056         if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1057                 seq_puts(seq, ",disable_ext_identify");
1058         if (test_opt(sbi, INLINE_DATA))
1059                 seq_puts(seq, ",inline_data");
1060         else
1061                 seq_puts(seq, ",noinline_data");
1062         if (test_opt(sbi, INLINE_DENTRY))
1063                 seq_puts(seq, ",inline_dentry");
1064         else
1065                 seq_puts(seq, ",noinline_dentry");
1066         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1067                 seq_puts(seq, ",flush_merge");
1068         if (test_opt(sbi, NOBARRIER))
1069                 seq_puts(seq, ",nobarrier");
1070         if (test_opt(sbi, FASTBOOT))
1071                 seq_puts(seq, ",fastboot");
1072         if (test_opt(sbi, EXTENT_CACHE))
1073                 seq_puts(seq, ",extent_cache");
1074         else
1075                 seq_puts(seq, ",noextent_cache");
1076         if (test_opt(sbi, DATA_FLUSH))
1077                 seq_puts(seq, ",data_flush");
1078
1079         seq_puts(seq, ",mode=");
1080         if (test_opt(sbi, ADAPTIVE))
1081                 seq_puts(seq, "adaptive");
1082         else if (test_opt(sbi, LFS))
1083                 seq_puts(seq, "lfs");
1084         seq_printf(seq, ",active_logs=%u", sbi->active_logs);
1085         if (F2FS_IO_SIZE_BITS(sbi))
1086                 seq_printf(seq, ",io_size=%uKB", F2FS_IO_SIZE_KB(sbi));
1087 #ifdef CONFIG_F2FS_FAULT_INJECTION
1088         if (test_opt(sbi, FAULT_INJECTION))
1089                 seq_printf(seq, ",fault_injection=%u",
1090                                 sbi->fault_info.inject_rate);
1091 #endif
1092 #ifdef CONFIG_QUOTA
1093         if (test_opt(sbi, QUOTA))
1094                 seq_puts(seq, ",quota");
1095         if (test_opt(sbi, USRQUOTA))
1096                 seq_puts(seq, ",usrquota");
1097         if (test_opt(sbi, GRPQUOTA))
1098                 seq_puts(seq, ",grpquota");
1099         if (test_opt(sbi, PRJQUOTA))
1100                 seq_puts(seq, ",prjquota");
1101 #endif
1102         f2fs_show_quota_options(seq, sbi->sb);
1103
1104         return 0;
1105 }
1106
1107 static void default_options(struct f2fs_sb_info *sbi)
1108 {
1109         /* init some FS parameters */
1110         sbi->active_logs = NR_CURSEG_TYPE;
1111
1112         set_opt(sbi, BG_GC);
1113         set_opt(sbi, INLINE_XATTR);
1114         set_opt(sbi, INLINE_DATA);
1115         set_opt(sbi, INLINE_DENTRY);
1116         set_opt(sbi, EXTENT_CACHE);
1117         set_opt(sbi, NOHEAP);
1118         sbi->sb->s_flags |= MS_LAZYTIME;
1119         set_opt(sbi, FLUSH_MERGE);
1120         if (f2fs_sb_mounted_blkzoned(sbi->sb)) {
1121                 set_opt_mode(sbi, F2FS_MOUNT_LFS);
1122                 set_opt(sbi, DISCARD);
1123         } else {
1124                 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
1125         }
1126
1127 #ifdef CONFIG_F2FS_FS_XATTR
1128         set_opt(sbi, XATTR_USER);
1129 #endif
1130 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1131         set_opt(sbi, POSIX_ACL);
1132 #endif
1133
1134 #ifdef CONFIG_F2FS_FAULT_INJECTION
1135         f2fs_build_fault_attr(sbi, 0);
1136 #endif
1137 }
1138
1139 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1140 {
1141         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1142         struct f2fs_mount_info org_mount_opt;
1143         unsigned long old_sb_flags;
1144         int err, active_logs;
1145         bool need_restart_gc = false;
1146         bool need_stop_gc = false;
1147         bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1148 #ifdef CONFIG_F2FS_FAULT_INJECTION
1149         struct f2fs_fault_info ffi = sbi->fault_info;
1150 #endif
1151 #ifdef CONFIG_QUOTA
1152         int s_jquota_fmt;
1153         char *s_qf_names[MAXQUOTAS];
1154         int i, j;
1155 #endif
1156
1157         /*
1158          * Save the old mount options in case we
1159          * need to restore them.
1160          */
1161         org_mount_opt = sbi->mount_opt;
1162         old_sb_flags = sb->s_flags;
1163         active_logs = sbi->active_logs;
1164
1165 #ifdef CONFIG_QUOTA
1166         s_jquota_fmt = sbi->s_jquota_fmt;
1167         for (i = 0; i < MAXQUOTAS; i++) {
1168                 if (sbi->s_qf_names[i]) {
1169                         s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
1170                                                          GFP_KERNEL);
1171                         if (!s_qf_names[i]) {
1172                                 for (j = 0; j < i; j++)
1173                                         kfree(s_qf_names[j]);
1174                                 return -ENOMEM;
1175                         }
1176                 } else {
1177                         s_qf_names[i] = NULL;
1178                 }
1179         }
1180 #endif
1181
1182         /* recover superblocks we couldn't write due to previous RO mount */
1183         if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1184                 err = f2fs_commit_super(sbi, false);
1185                 f2fs_msg(sb, KERN_INFO,
1186                         "Try to recover all the superblocks, ret: %d", err);
1187                 if (!err)
1188                         clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1189         }
1190
1191         default_options(sbi);
1192
1193         /* parse mount options */
1194         err = parse_options(sb, data);
1195         if (err)
1196                 goto restore_opts;
1197
1198         /*
1199          * Previous and new state of filesystem is RO,
1200          * so skip checking GC and FLUSH_MERGE conditions.
1201          */
1202         if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
1203                 goto skip;
1204
1205         if (!f2fs_readonly(sb) && (*flags & MS_RDONLY)) {
1206                 err = dquot_suspend(sb, -1);
1207                 if (err < 0)
1208                         goto restore_opts;
1209         } else {
1210                 /* dquot_resume needs RW */
1211                 sb->s_flags &= ~MS_RDONLY;
1212                 dquot_resume(sb, -1);
1213         }
1214
1215         /* disallow enable/disable extent_cache dynamically */
1216         if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1217                 err = -EINVAL;
1218                 f2fs_msg(sbi->sb, KERN_WARNING,
1219                                 "switch extent_cache option is not allowed");
1220                 goto restore_opts;
1221         }
1222
1223         /*
1224          * We stop the GC thread if FS is mounted as RO
1225          * or if background_gc = off is passed in mount
1226          * option. Also sync the filesystem.
1227          */
1228         if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
1229                 if (sbi->gc_thread) {
1230                         stop_gc_thread(sbi);
1231                         need_restart_gc = true;
1232                 }
1233         } else if (!sbi->gc_thread) {
1234                 err = start_gc_thread(sbi);
1235                 if (err)
1236                         goto restore_opts;
1237                 need_stop_gc = true;
1238         }
1239
1240         if (*flags & MS_RDONLY) {
1241                 writeback_inodes_sb(sb, WB_REASON_SYNC);
1242                 sync_inodes_sb(sb);
1243
1244                 set_sbi_flag(sbi, SBI_IS_DIRTY);
1245                 set_sbi_flag(sbi, SBI_IS_CLOSE);
1246                 f2fs_sync_fs(sb, 1);
1247                 clear_sbi_flag(sbi, SBI_IS_CLOSE);
1248         }
1249
1250         /*
1251          * We stop issue flush thread if FS is mounted as RO
1252          * or if flush_merge is not passed in mount option.
1253          */
1254         if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1255                 clear_opt(sbi, FLUSH_MERGE);
1256                 destroy_flush_cmd_control(sbi, false);
1257         } else {
1258                 err = create_flush_cmd_control(sbi);
1259                 if (err)
1260                         goto restore_gc;
1261         }
1262 skip:
1263 #ifdef CONFIG_QUOTA
1264         /* Release old quota file names */
1265         for (i = 0; i < MAXQUOTAS; i++)
1266                 kfree(s_qf_names[i]);
1267 #endif
1268         /* Update the POSIXACL Flag */
1269         sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1270                 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1271
1272         return 0;
1273 restore_gc:
1274         if (need_restart_gc) {
1275                 if (start_gc_thread(sbi))
1276                         f2fs_msg(sbi->sb, KERN_WARNING,
1277                                 "background gc thread has stopped");
1278         } else if (need_stop_gc) {
1279                 stop_gc_thread(sbi);
1280         }
1281 restore_opts:
1282 #ifdef CONFIG_QUOTA
1283         sbi->s_jquota_fmt = s_jquota_fmt;
1284         for (i = 0; i < MAXQUOTAS; i++) {
1285                 kfree(sbi->s_qf_names[i]);
1286                 sbi->s_qf_names[i] = s_qf_names[i];
1287         }
1288 #endif
1289         sbi->mount_opt = org_mount_opt;
1290         sbi->active_logs = active_logs;
1291         sb->s_flags = old_sb_flags;
1292 #ifdef CONFIG_F2FS_FAULT_INJECTION
1293         sbi->fault_info = ffi;
1294 #endif
1295         return err;
1296 }
1297
1298 #ifdef CONFIG_QUOTA
1299 /* Read data from quotafile */
1300 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
1301                                size_t len, loff_t off)
1302 {
1303         struct inode *inode = sb_dqopt(sb)->files[type];
1304         struct address_space *mapping = inode->i_mapping;
1305         block_t blkidx = F2FS_BYTES_TO_BLK(off);
1306         int offset = off & (sb->s_blocksize - 1);
1307         int tocopy;
1308         size_t toread;
1309         loff_t i_size = i_size_read(inode);
1310         struct page *page;
1311         char *kaddr;
1312
1313         if (off > i_size)
1314                 return 0;
1315
1316         if (off + len > i_size)
1317                 len = i_size - off;
1318         toread = len;
1319         while (toread > 0) {
1320                 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
1321 repeat:
1322                 page = read_mapping_page(mapping, blkidx, NULL);
1323                 if (IS_ERR(page))
1324                         return PTR_ERR(page);
1325
1326                 lock_page(page);
1327
1328                 if (unlikely(page->mapping != mapping)) {
1329                         f2fs_put_page(page, 1);
1330                         goto repeat;
1331                 }
1332                 if (unlikely(!PageUptodate(page))) {
1333                         f2fs_put_page(page, 1);
1334                         return -EIO;
1335                 }
1336
1337                 kaddr = kmap_atomic(page);
1338                 memcpy(data, kaddr + offset, tocopy);
1339                 kunmap_atomic(kaddr);
1340                 f2fs_put_page(page, 1);
1341
1342                 offset = 0;
1343                 toread -= tocopy;
1344                 data += tocopy;
1345                 blkidx++;
1346         }
1347         return len;
1348 }
1349
1350 /* Write to quotafile */
1351 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
1352                                 const char *data, size_t len, loff_t off)
1353 {
1354         struct inode *inode = sb_dqopt(sb)->files[type];
1355         struct address_space *mapping = inode->i_mapping;
1356         const struct address_space_operations *a_ops = mapping->a_ops;
1357         int offset = off & (sb->s_blocksize - 1);
1358         size_t towrite = len;
1359         struct page *page;
1360         char *kaddr;
1361         int err = 0;
1362         int tocopy;
1363
1364         while (towrite > 0) {
1365                 tocopy = min_t(unsigned long, sb->s_blocksize - offset,
1366                                                                 towrite);
1367
1368                 err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
1369                                                         &page, NULL);
1370                 if (unlikely(err))
1371                         break;
1372
1373                 kaddr = kmap_atomic(page);
1374                 memcpy(kaddr + offset, data, tocopy);
1375                 kunmap_atomic(kaddr);
1376                 flush_dcache_page(page);
1377
1378                 a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
1379                                                 page, NULL);
1380                 offset = 0;
1381                 towrite -= tocopy;
1382                 off += tocopy;
1383                 data += tocopy;
1384                 cond_resched();
1385         }
1386
1387         if (len == towrite)
1388                 return 0;
1389         inode->i_version++;
1390         inode->i_mtime = inode->i_ctime = current_time(inode);
1391         f2fs_mark_inode_dirty_sync(inode, false);
1392         return len - towrite;
1393 }
1394
1395 static struct dquot **f2fs_get_dquots(struct inode *inode)
1396 {
1397         return F2FS_I(inode)->i_dquot;
1398 }
1399
1400 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
1401 {
1402         return &F2FS_I(inode)->i_reserved_quota;
1403 }
1404
1405 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
1406 {
1407         return dquot_quota_on_mount(sbi->sb, sbi->s_qf_names[type],
1408                                                 sbi->s_jquota_fmt, type);
1409 }
1410
1411 void f2fs_enable_quota_files(struct f2fs_sb_info *sbi)
1412 {
1413         int i, ret;
1414
1415         for (i = 0; i < MAXQUOTAS; i++) {
1416                 if (sbi->s_qf_names[i]) {
1417                         ret = f2fs_quota_on_mount(sbi, i);
1418                         if (ret < 0)
1419                                 f2fs_msg(sbi->sb, KERN_ERR,
1420                                         "Cannot turn on journaled "
1421                                         "quota: error %d", ret);
1422                 }
1423         }
1424 }
1425
1426 static int f2fs_quota_sync(struct super_block *sb, int type)
1427 {
1428         struct quota_info *dqopt = sb_dqopt(sb);
1429         int cnt;
1430         int ret;
1431
1432         ret = dquot_writeback_dquots(sb, type);
1433         if (ret)
1434                 return ret;
1435
1436         /*
1437          * Now when everything is written we can discard the pagecache so
1438          * that userspace sees the changes.
1439          */
1440         for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
1441                 if (type != -1 && cnt != type)
1442                         continue;
1443                 if (!sb_has_quota_active(sb, cnt))
1444                         continue;
1445
1446                 ret = filemap_write_and_wait(dqopt->files[cnt]->i_mapping);
1447                 if (ret)
1448                         return ret;
1449
1450                 inode_lock(dqopt->files[cnt]);
1451                 truncate_inode_pages(&dqopt->files[cnt]->i_data, 0);
1452                 inode_unlock(dqopt->files[cnt]);
1453         }
1454         return 0;
1455 }
1456
1457 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
1458                                                         const struct path *path)
1459 {
1460         struct inode *inode;
1461         int err;
1462
1463         err = f2fs_quota_sync(sb, type);
1464         if (err)
1465                 return err;
1466
1467         err = dquot_quota_on(sb, type, format_id, path);
1468         if (err)
1469                 return err;
1470
1471         inode = d_inode(path->dentry);
1472
1473         inode_lock(inode);
1474         F2FS_I(inode)->i_flags |= FS_NOATIME_FL | FS_IMMUTABLE_FL;
1475         inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
1476                                         S_NOATIME | S_IMMUTABLE);
1477         inode_unlock(inode);
1478         f2fs_mark_inode_dirty_sync(inode, false);
1479
1480         return 0;
1481 }
1482
1483 static int f2fs_quota_off(struct super_block *sb, int type)
1484 {
1485         struct inode *inode = sb_dqopt(sb)->files[type];
1486         int err;
1487
1488         if (!inode || !igrab(inode))
1489                 return dquot_quota_off(sb, type);
1490
1491         f2fs_quota_sync(sb, type);
1492
1493         err = dquot_quota_off(sb, type);
1494         if (err)
1495                 goto out_put;
1496
1497         inode_lock(inode);
1498         F2FS_I(inode)->i_flags &= ~(FS_NOATIME_FL | FS_IMMUTABLE_FL);
1499         inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
1500         inode_unlock(inode);
1501         f2fs_mark_inode_dirty_sync(inode, false);
1502 out_put:
1503         iput(inode);
1504         return err;
1505 }
1506
1507 void f2fs_quota_off_umount(struct super_block *sb)
1508 {
1509         int type;
1510
1511         for (type = 0; type < MAXQUOTAS; type++)
1512                 f2fs_quota_off(sb, type);
1513 }
1514
1515 int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
1516 {
1517         *projid = F2FS_I(inode)->i_projid;
1518         return 0;
1519 }
1520
1521 static const struct dquot_operations f2fs_quota_operations = {
1522         .get_reserved_space = f2fs_get_reserved_space,
1523         .write_dquot    = dquot_commit,
1524         .acquire_dquot  = dquot_acquire,
1525         .release_dquot  = dquot_release,
1526         .mark_dirty     = dquot_mark_dquot_dirty,
1527         .write_info     = dquot_commit_info,
1528         .alloc_dquot    = dquot_alloc,
1529         .destroy_dquot  = dquot_destroy,
1530         .get_projid     = f2fs_get_projid,
1531         .get_next_id    = dquot_get_next_id,
1532 };
1533
1534 static const struct quotactl_ops f2fs_quotactl_ops = {
1535         .quota_on       = f2fs_quota_on,
1536         .quota_off      = f2fs_quota_off,
1537         .quota_sync     = f2fs_quota_sync,
1538         .get_state      = dquot_get_state,
1539         .set_info       = dquot_set_dqinfo,
1540         .get_dqblk      = dquot_get_dqblk,
1541         .set_dqblk      = dquot_set_dqblk,
1542         .get_nextdqblk  = dquot_get_next_dqblk,
1543 };
1544 #else
1545 void f2fs_quota_off_umount(struct super_block *sb)
1546 {
1547 }
1548 #endif
1549
1550 static const struct super_operations f2fs_sops = {
1551         .alloc_inode    = f2fs_alloc_inode,
1552         .drop_inode     = f2fs_drop_inode,
1553         .destroy_inode  = f2fs_destroy_inode,
1554         .write_inode    = f2fs_write_inode,
1555         .dirty_inode    = f2fs_dirty_inode,
1556         .show_options   = f2fs_show_options,
1557 #ifdef CONFIG_QUOTA
1558         .quota_read     = f2fs_quota_read,
1559         .quota_write    = f2fs_quota_write,
1560         .get_dquots     = f2fs_get_dquots,
1561 #endif
1562         .evict_inode    = f2fs_evict_inode,
1563         .put_super      = f2fs_put_super,
1564         .sync_fs        = f2fs_sync_fs,
1565         .freeze_fs      = f2fs_freeze,
1566         .unfreeze_fs    = f2fs_unfreeze,
1567         .statfs         = f2fs_statfs,
1568         .remount_fs     = f2fs_remount,
1569 };
1570
1571 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1572 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
1573 {
1574         return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1575                                 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1576                                 ctx, len, NULL);
1577 }
1578
1579 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
1580                                                         void *fs_data)
1581 {
1582         return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1583                                 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1584                                 ctx, len, fs_data, XATTR_CREATE);
1585 }
1586
1587 static unsigned f2fs_max_namelen(struct inode *inode)
1588 {
1589         return S_ISLNK(inode->i_mode) ?
1590                         inode->i_sb->s_blocksize : F2FS_NAME_LEN;
1591 }
1592
1593 static const struct fscrypt_operations f2fs_cryptops = {
1594         .key_prefix     = "f2fs:",
1595         .get_context    = f2fs_get_context,
1596         .set_context    = f2fs_set_context,
1597         .is_encrypted   = f2fs_encrypted_inode,
1598         .empty_dir      = f2fs_empty_dir,
1599         .max_namelen    = f2fs_max_namelen,
1600 };
1601 #else
1602 static const struct fscrypt_operations f2fs_cryptops = {
1603         .is_encrypted   = f2fs_encrypted_inode,
1604 };
1605 #endif
1606
1607 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
1608                 u64 ino, u32 generation)
1609 {
1610         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1611         struct inode *inode;
1612
1613         if (check_nid_range(sbi, ino))
1614                 return ERR_PTR(-ESTALE);
1615
1616         /*
1617          * f2fs_iget isn't quite right if the inode is currently unallocated!
1618          * However f2fs_iget currently does appropriate checks to handle stale
1619          * inodes so everything is OK.
1620          */
1621         inode = f2fs_iget(sb, ino);
1622         if (IS_ERR(inode))
1623                 return ERR_CAST(inode);
1624         if (unlikely(generation && inode->i_generation != generation)) {
1625                 /* we didn't find the right inode.. */
1626                 iput(inode);
1627                 return ERR_PTR(-ESTALE);
1628         }
1629         return inode;
1630 }
1631
1632 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1633                 int fh_len, int fh_type)
1634 {
1635         return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1636                                     f2fs_nfs_get_inode);
1637 }
1638
1639 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
1640                 int fh_len, int fh_type)
1641 {
1642         return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1643                                     f2fs_nfs_get_inode);
1644 }
1645
1646 static const struct export_operations f2fs_export_ops = {
1647         .fh_to_dentry = f2fs_fh_to_dentry,
1648         .fh_to_parent = f2fs_fh_to_parent,
1649         .get_parent = f2fs_get_parent,
1650 };
1651
1652 static loff_t max_file_blocks(void)
1653 {
1654         loff_t result = 0;
1655         loff_t leaf_count = ADDRS_PER_BLOCK;
1656
1657         /*
1658          * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
1659          * F2FS_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
1660          * space in inode.i_addr, it will be more safe to reassign
1661          * result as zero.
1662          */
1663
1664         /* two direct node blocks */
1665         result += (leaf_count * 2);
1666
1667         /* two indirect node blocks */
1668         leaf_count *= NIDS_PER_BLOCK;
1669         result += (leaf_count * 2);
1670
1671         /* one double indirect node block */
1672         leaf_count *= NIDS_PER_BLOCK;
1673         result += leaf_count;
1674
1675         return result;
1676 }
1677
1678 static int __f2fs_commit_super(struct buffer_head *bh,
1679                         struct f2fs_super_block *super)
1680 {
1681         lock_buffer(bh);
1682         if (super)
1683                 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
1684         set_buffer_uptodate(bh);
1685         set_buffer_dirty(bh);
1686         unlock_buffer(bh);
1687
1688         /* it's rare case, we can do fua all the time */
1689         return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1690 }
1691
1692 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
1693                                         struct buffer_head *bh)
1694 {
1695         struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1696                                         (bh->b_data + F2FS_SUPER_OFFSET);
1697         struct super_block *sb = sbi->sb;
1698         u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1699         u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
1700         u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
1701         u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
1702         u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1703         u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1704         u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
1705         u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
1706         u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
1707         u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
1708         u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
1709         u32 segment_count = le32_to_cpu(raw_super->segment_count);
1710         u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1711         u64 main_end_blkaddr = main_blkaddr +
1712                                 (segment_count_main << log_blocks_per_seg);
1713         u64 seg_end_blkaddr = segment0_blkaddr +
1714                                 (segment_count << log_blocks_per_seg);
1715
1716         if (segment0_blkaddr != cp_blkaddr) {
1717                 f2fs_msg(sb, KERN_INFO,
1718                         "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
1719                         segment0_blkaddr, cp_blkaddr);
1720                 return true;
1721         }
1722
1723         if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
1724                                                         sit_blkaddr) {
1725                 f2fs_msg(sb, KERN_INFO,
1726                         "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
1727                         cp_blkaddr, sit_blkaddr,
1728                         segment_count_ckpt << log_blocks_per_seg);
1729                 return true;
1730         }
1731
1732         if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
1733                                                         nat_blkaddr) {
1734                 f2fs_msg(sb, KERN_INFO,
1735                         "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
1736                         sit_blkaddr, nat_blkaddr,
1737                         segment_count_sit << log_blocks_per_seg);
1738                 return true;
1739         }
1740
1741         if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
1742                                                         ssa_blkaddr) {
1743                 f2fs_msg(sb, KERN_INFO,
1744                         "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
1745                         nat_blkaddr, ssa_blkaddr,
1746                         segment_count_nat << log_blocks_per_seg);
1747                 return true;
1748         }
1749
1750         if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
1751                                                         main_blkaddr) {
1752                 f2fs_msg(sb, KERN_INFO,
1753                         "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
1754                         ssa_blkaddr, main_blkaddr,
1755                         segment_count_ssa << log_blocks_per_seg);
1756                 return true;
1757         }
1758
1759         if (main_end_blkaddr > seg_end_blkaddr) {
1760                 f2fs_msg(sb, KERN_INFO,
1761                         "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
1762                         main_blkaddr,
1763                         segment0_blkaddr +
1764                                 (segment_count << log_blocks_per_seg),
1765                         segment_count_main << log_blocks_per_seg);
1766                 return true;
1767         } else if (main_end_blkaddr < seg_end_blkaddr) {
1768                 int err = 0;
1769                 char *res;
1770
1771                 /* fix in-memory information all the time */
1772                 raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
1773                                 segment0_blkaddr) >> log_blocks_per_seg);
1774
1775                 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
1776                         set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1777                         res = "internally";
1778                 } else {
1779                         err = __f2fs_commit_super(bh, NULL);
1780                         res = err ? "failed" : "done";
1781                 }
1782                 f2fs_msg(sb, KERN_INFO,
1783                         "Fix alignment : %s, start(%u) end(%u) block(%u)",
1784                         res, main_blkaddr,
1785                         segment0_blkaddr +
1786                                 (segment_count << log_blocks_per_seg),
1787                         segment_count_main << log_blocks_per_seg);
1788                 if (err)
1789                         return true;
1790         }
1791         return false;
1792 }
1793
1794 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
1795                                 struct buffer_head *bh)
1796 {
1797         struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1798                                         (bh->b_data + F2FS_SUPER_OFFSET);
1799         struct super_block *sb = sbi->sb;
1800         unsigned int blocksize;
1801
1802         if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
1803                 f2fs_msg(sb, KERN_INFO,
1804                         "Magic Mismatch, valid(0x%x) - read(0x%x)",
1805                         F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
1806                 return 1;
1807         }
1808
1809         /* Currently, support only 4KB page cache size */
1810         if (F2FS_BLKSIZE != PAGE_SIZE) {
1811                 f2fs_msg(sb, KERN_INFO,
1812                         "Invalid page_cache_size (%lu), supports only 4KB\n",
1813                         PAGE_SIZE);
1814                 return 1;
1815         }
1816
1817         /* Currently, support only 4KB block size */
1818         blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
1819         if (blocksize != F2FS_BLKSIZE) {
1820                 f2fs_msg(sb, KERN_INFO,
1821                         "Invalid blocksize (%u), supports only 4KB\n",
1822                         blocksize);
1823                 return 1;
1824         }
1825
1826         /* check log blocks per segment */
1827         if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
1828                 f2fs_msg(sb, KERN_INFO,
1829                         "Invalid log blocks per segment (%u)\n",
1830                         le32_to_cpu(raw_super->log_blocks_per_seg));
1831                 return 1;
1832         }
1833
1834         /* Currently, support 512/1024/2048/4096 bytes sector size */
1835         if (le32_to_cpu(raw_super->log_sectorsize) >
1836                                 F2FS_MAX_LOG_SECTOR_SIZE ||
1837                 le32_to_cpu(raw_super->log_sectorsize) <
1838                                 F2FS_MIN_LOG_SECTOR_SIZE) {
1839                 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
1840                         le32_to_cpu(raw_super->log_sectorsize));
1841                 return 1;
1842         }
1843         if (le32_to_cpu(raw_super->log_sectors_per_block) +
1844                 le32_to_cpu(raw_super->log_sectorsize) !=
1845                         F2FS_MAX_LOG_SECTOR_SIZE) {
1846                 f2fs_msg(sb, KERN_INFO,
1847                         "Invalid log sectors per block(%u) log sectorsize(%u)",
1848                         le32_to_cpu(raw_super->log_sectors_per_block),
1849                         le32_to_cpu(raw_super->log_sectorsize));
1850                 return 1;
1851         }
1852
1853         /* check reserved ino info */
1854         if (le32_to_cpu(raw_super->node_ino) != 1 ||
1855                 le32_to_cpu(raw_super->meta_ino) != 2 ||
1856                 le32_to_cpu(raw_super->root_ino) != 3) {
1857                 f2fs_msg(sb, KERN_INFO,
1858                         "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
1859                         le32_to_cpu(raw_super->node_ino),
1860                         le32_to_cpu(raw_super->meta_ino),
1861                         le32_to_cpu(raw_super->root_ino));
1862                 return 1;
1863         }
1864
1865         if (le32_to_cpu(raw_super->segment_count) > F2FS_MAX_SEGMENT) {
1866                 f2fs_msg(sb, KERN_INFO,
1867                         "Invalid segment count (%u)",
1868                         le32_to_cpu(raw_super->segment_count));
1869                 return 1;
1870         }
1871
1872         /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
1873         if (sanity_check_area_boundary(sbi, bh))
1874                 return 1;
1875
1876         return 0;
1877 }
1878
1879 int sanity_check_ckpt(struct f2fs_sb_info *sbi)
1880 {
1881         unsigned int total, fsmeta;
1882         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1883         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1884         unsigned int ovp_segments, reserved_segments;
1885         unsigned int main_segs, blocks_per_seg;
1886         int i;
1887
1888         total = le32_to_cpu(raw_super->segment_count);
1889         fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
1890         fsmeta += le32_to_cpu(raw_super->segment_count_sit);
1891         fsmeta += le32_to_cpu(raw_super->segment_count_nat);
1892         fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
1893         fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
1894
1895         if (unlikely(fsmeta >= total))
1896                 return 1;
1897
1898         ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
1899         reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
1900
1901         if (unlikely(fsmeta < F2FS_MIN_SEGMENTS ||
1902                         ovp_segments == 0 || reserved_segments == 0)) {
1903                 f2fs_msg(sbi->sb, KERN_ERR,
1904                         "Wrong layout: check mkfs.f2fs version");
1905                 return 1;
1906         }
1907
1908         main_segs = le32_to_cpu(raw_super->segment_count_main);
1909         blocks_per_seg = sbi->blocks_per_seg;
1910
1911         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1912                 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
1913                         le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
1914                         return 1;
1915         }
1916         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1917                 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
1918                         le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
1919                         return 1;
1920         }
1921
1922         if (unlikely(f2fs_cp_error(sbi))) {
1923                 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
1924                 return 1;
1925         }
1926         return 0;
1927 }
1928
1929 static void init_sb_info(struct f2fs_sb_info *sbi)
1930 {
1931         struct f2fs_super_block *raw_super = sbi->raw_super;
1932         int i, j;
1933
1934         sbi->log_sectors_per_block =
1935                 le32_to_cpu(raw_super->log_sectors_per_block);
1936         sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
1937         sbi->blocksize = 1 << sbi->log_blocksize;
1938         sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1939         sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
1940         sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
1941         sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
1942         sbi->total_sections = le32_to_cpu(raw_super->section_count);
1943         sbi->total_node_count =
1944                 (le32_to_cpu(raw_super->segment_count_nat) / 2)
1945                         * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
1946         sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
1947         sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
1948         sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
1949         sbi->cur_victim_sec = NULL_SECNO;
1950         sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
1951
1952         sbi->dir_level = DEF_DIR_LEVEL;
1953         sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
1954         sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
1955         clear_sbi_flag(sbi, SBI_NEED_FSCK);
1956
1957         for (i = 0; i < NR_COUNT_TYPE; i++)
1958                 atomic_set(&sbi->nr_pages[i], 0);
1959
1960         atomic_set(&sbi->wb_sync_req, 0);
1961
1962         INIT_LIST_HEAD(&sbi->s_list);
1963         mutex_init(&sbi->umount_mutex);
1964         for (i = 0; i < NR_PAGE_TYPE - 1; i++)
1965                 for (j = HOT; j < NR_TEMP_TYPE; j++)
1966                         mutex_init(&sbi->wio_mutex[i][j]);
1967         spin_lock_init(&sbi->cp_lock);
1968 }
1969
1970 static int init_percpu_info(struct f2fs_sb_info *sbi)
1971 {
1972         int err;
1973
1974         err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
1975         if (err)
1976                 return err;
1977
1978         return percpu_counter_init(&sbi->total_valid_inode_count, 0,
1979                                                                 GFP_KERNEL);
1980 }
1981
1982 #ifdef CONFIG_BLK_DEV_ZONED
1983 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
1984 {
1985         struct block_device *bdev = FDEV(devi).bdev;
1986         sector_t nr_sectors = bdev->bd_part->nr_sects;
1987         sector_t sector = 0;
1988         struct blk_zone *zones;
1989         unsigned int i, nr_zones;
1990         unsigned int n = 0;
1991         int err = -EIO;
1992
1993         if (!f2fs_sb_mounted_blkzoned(sbi->sb))
1994                 return 0;
1995
1996         if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
1997                                 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
1998                 return -EINVAL;
1999         sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
2000         if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
2001                                 __ilog2_u32(sbi->blocks_per_blkz))
2002                 return -EINVAL;
2003         sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
2004         FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
2005                                         sbi->log_blocks_per_blkz;
2006         if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
2007                 FDEV(devi).nr_blkz++;
2008
2009         FDEV(devi).blkz_type = kmalloc(FDEV(devi).nr_blkz, GFP_KERNEL);
2010         if (!FDEV(devi).blkz_type)
2011                 return -ENOMEM;
2012
2013 #define F2FS_REPORT_NR_ZONES   4096
2014
2015         zones = kcalloc(F2FS_REPORT_NR_ZONES, sizeof(struct blk_zone),
2016                         GFP_KERNEL);
2017         if (!zones)
2018                 return -ENOMEM;
2019
2020         /* Get block zones type */
2021         while (zones && sector < nr_sectors) {
2022
2023                 nr_zones = F2FS_REPORT_NR_ZONES;
2024                 err = blkdev_report_zones(bdev, sector,
2025                                           zones, &nr_zones,
2026                                           GFP_KERNEL);
2027                 if (err)
2028                         break;
2029                 if (!nr_zones) {
2030                         err = -EIO;
2031                         break;
2032                 }
2033
2034                 for (i = 0; i < nr_zones; i++) {
2035                         FDEV(devi).blkz_type[n] = zones[i].type;
2036                         sector += zones[i].len;
2037                         n++;
2038                 }
2039         }
2040
2041         kfree(zones);
2042
2043         return err;
2044 }
2045 #endif
2046
2047 /*
2048  * Read f2fs raw super block.
2049  * Because we have two copies of super block, so read both of them
2050  * to get the first valid one. If any one of them is broken, we pass
2051  * them recovery flag back to the caller.
2052  */
2053 static int read_raw_super_block(struct f2fs_sb_info *sbi,
2054                         struct f2fs_super_block **raw_super,
2055                         int *valid_super_block, int *recovery)
2056 {
2057         struct super_block *sb = sbi->sb;
2058         int block;
2059         struct buffer_head *bh;
2060         struct f2fs_super_block *super;
2061         int err = 0;
2062
2063         super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
2064         if (!super)
2065                 return -ENOMEM;
2066
2067         for (block = 0; block < 2; block++) {
2068                 bh = sb_bread(sb, block);
2069                 if (!bh) {
2070                         f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
2071                                 block + 1);
2072                         err = -EIO;
2073                         continue;
2074                 }
2075
2076                 /* sanity checking of raw super */
2077                 if (sanity_check_raw_super(sbi, bh)) {
2078                         f2fs_msg(sb, KERN_ERR,
2079                                 "Can't find valid F2FS filesystem in %dth superblock",
2080                                 block + 1);
2081                         err = -EINVAL;
2082                         brelse(bh);
2083                         continue;
2084                 }
2085
2086                 if (!*raw_super) {
2087                         memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
2088                                                         sizeof(*super));
2089                         *valid_super_block = block;
2090                         *raw_super = super;
2091                 }
2092                 brelse(bh);
2093         }
2094
2095         /* Fail to read any one of the superblocks*/
2096         if (err < 0)
2097                 *recovery = 1;
2098
2099         /* No valid superblock */
2100         if (!*raw_super)
2101                 kfree(super);
2102         else
2103                 err = 0;
2104
2105         return err;
2106 }
2107
2108 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
2109 {
2110         struct buffer_head *bh;
2111         int err;
2112
2113         if ((recover && f2fs_readonly(sbi->sb)) ||
2114                                 bdev_read_only(sbi->sb->s_bdev)) {
2115                 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2116                 return -EROFS;
2117         }
2118
2119         /* write back-up superblock first */
2120         bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1);
2121         if (!bh)
2122                 return -EIO;
2123         err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2124         brelse(bh);
2125
2126         /* if we are in recovery path, skip writing valid superblock */
2127         if (recover || err)
2128                 return err;
2129
2130         /* write current valid superblock */
2131         bh = sb_getblk(sbi->sb, sbi->valid_super_block);
2132         if (!bh)
2133                 return -EIO;
2134         err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2135         brelse(bh);
2136         return err;
2137 }
2138
2139 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
2140 {
2141         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2142         unsigned int max_devices = MAX_DEVICES;
2143         int i;
2144
2145         /* Initialize single device information */
2146         if (!RDEV(0).path[0]) {
2147                 if (!bdev_is_zoned(sbi->sb->s_bdev))
2148                         return 0;
2149                 max_devices = 1;
2150         }
2151
2152         /*
2153          * Initialize multiple devices information, or single
2154          * zoned block device information.
2155          */
2156         sbi->devs = kcalloc(max_devices, sizeof(struct f2fs_dev_info),
2157                                 GFP_KERNEL);
2158         if (!sbi->devs)
2159                 return -ENOMEM;
2160
2161         for (i = 0; i < max_devices; i++) {
2162
2163                 if (i > 0 && !RDEV(i).path[0])
2164                         break;
2165
2166                 if (max_devices == 1) {
2167                         /* Single zoned block device mount */
2168                         FDEV(0).bdev =
2169                                 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
2170                                         sbi->sb->s_mode, sbi->sb->s_type);
2171                 } else {
2172                         /* Multi-device mount */
2173                         memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
2174                         FDEV(i).total_segments =
2175                                 le32_to_cpu(RDEV(i).total_segments);
2176                         if (i == 0) {
2177                                 FDEV(i).start_blk = 0;
2178                                 FDEV(i).end_blk = FDEV(i).start_blk +
2179                                     (FDEV(i).total_segments <<
2180                                     sbi->log_blocks_per_seg) - 1 +
2181                                     le32_to_cpu(raw_super->segment0_blkaddr);
2182                         } else {
2183                                 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
2184                                 FDEV(i).end_blk = FDEV(i).start_blk +
2185                                         (FDEV(i).total_segments <<
2186                                         sbi->log_blocks_per_seg) - 1;
2187                         }
2188                         FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
2189                                         sbi->sb->s_mode, sbi->sb->s_type);
2190                 }
2191                 if (IS_ERR(FDEV(i).bdev))
2192                         return PTR_ERR(FDEV(i).bdev);
2193
2194                 /* to release errored devices */
2195                 sbi->s_ndevs = i + 1;
2196
2197 #ifdef CONFIG_BLK_DEV_ZONED
2198                 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
2199                                 !f2fs_sb_mounted_blkzoned(sbi->sb)) {
2200                         f2fs_msg(sbi->sb, KERN_ERR,
2201                                 "Zoned block device feature not enabled\n");
2202                         return -EINVAL;
2203                 }
2204                 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
2205                         if (init_blkz_info(sbi, i)) {
2206                                 f2fs_msg(sbi->sb, KERN_ERR,
2207                                         "Failed to initialize F2FS blkzone information");
2208                                 return -EINVAL;
2209                         }
2210                         if (max_devices == 1)
2211                                 break;
2212                         f2fs_msg(sbi->sb, KERN_INFO,
2213                                 "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
2214                                 i, FDEV(i).path,
2215                                 FDEV(i).total_segments,
2216                                 FDEV(i).start_blk, FDEV(i).end_blk,
2217                                 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
2218                                 "Host-aware" : "Host-managed");
2219                         continue;
2220                 }
2221 #endif
2222                 f2fs_msg(sbi->sb, KERN_INFO,
2223                         "Mount Device [%2d]: %20s, %8u, %8x - %8x",
2224                                 i, FDEV(i).path,
2225                                 FDEV(i).total_segments,
2226                                 FDEV(i).start_blk, FDEV(i).end_blk);
2227         }
2228         f2fs_msg(sbi->sb, KERN_INFO,
2229                         "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
2230         return 0;
2231 }
2232
2233 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
2234 {
2235         struct f2fs_sb_info *sbi;
2236         struct f2fs_super_block *raw_super;
2237         struct inode *root;
2238         int err;
2239         bool retry = true, need_fsck = false;
2240         char *options = NULL;
2241         int recovery, i, valid_super_block;
2242         struct curseg_info *seg_i;
2243
2244 try_onemore:
2245         err = -EINVAL;
2246         raw_super = NULL;
2247         valid_super_block = -1;
2248         recovery = 0;
2249
2250         /* allocate memory for f2fs-specific super block info */
2251         sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
2252         if (!sbi)
2253                 return -ENOMEM;
2254
2255         sbi->sb = sb;
2256
2257         /* Load the checksum driver */
2258         sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
2259         if (IS_ERR(sbi->s_chksum_driver)) {
2260                 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
2261                 err = PTR_ERR(sbi->s_chksum_driver);
2262                 sbi->s_chksum_driver = NULL;
2263                 goto free_sbi;
2264         }
2265
2266         /* set a block size */
2267         if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
2268                 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
2269                 goto free_sbi;
2270         }
2271
2272         err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
2273                                                                 &recovery);
2274         if (err)
2275                 goto free_sbi;
2276
2277         sb->s_fs_info = sbi;
2278         sbi->raw_super = raw_super;
2279
2280         /* precompute checksum seed for metadata */
2281         if (f2fs_sb_has_inode_chksum(sb))
2282                 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
2283                                                 sizeof(raw_super->uuid));
2284
2285         /*
2286          * The BLKZONED feature indicates that the drive was formatted with
2287          * zone alignment optimization. This is optional for host-aware
2288          * devices, but mandatory for host-managed zoned block devices.
2289          */
2290 #ifndef CONFIG_BLK_DEV_ZONED
2291         if (f2fs_sb_mounted_blkzoned(sb)) {
2292                 f2fs_msg(sb, KERN_ERR,
2293                          "Zoned block device support is not enabled\n");
2294                 err = -EOPNOTSUPP;
2295                 goto free_sb_buf;
2296         }
2297 #endif
2298         default_options(sbi);
2299         /* parse mount options */
2300         options = kstrdup((const char *)data, GFP_KERNEL);
2301         if (data && !options) {
2302                 err = -ENOMEM;
2303                 goto free_sb_buf;
2304         }
2305
2306         err = parse_options(sb, options);
2307         if (err)
2308                 goto free_options;
2309
2310         sbi->max_file_blocks = max_file_blocks();
2311         sb->s_maxbytes = sbi->max_file_blocks <<
2312                                 le32_to_cpu(raw_super->log_blocksize);
2313         sb->s_max_links = F2FS_LINK_MAX;
2314         get_random_bytes(&sbi->s_next_generation, sizeof(u32));
2315
2316 #ifdef CONFIG_QUOTA
2317         sb->dq_op = &f2fs_quota_operations;
2318         sb->s_qcop = &f2fs_quotactl_ops;
2319         sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
2320 #endif
2321
2322         sb->s_op = &f2fs_sops;
2323         sb->s_cop = &f2fs_cryptops;
2324         sb->s_xattr = f2fs_xattr_handlers;
2325         sb->s_export_op = &f2fs_export_ops;
2326         sb->s_magic = F2FS_SUPER_MAGIC;
2327         sb->s_time_gran = 1;
2328         sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
2329                 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
2330         memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
2331
2332         /* init f2fs-specific super block info */
2333         sbi->valid_super_block = valid_super_block;
2334         mutex_init(&sbi->gc_mutex);
2335         mutex_init(&sbi->cp_mutex);
2336         init_rwsem(&sbi->node_write);
2337         init_rwsem(&sbi->node_change);
2338
2339         /* disallow all the data/node/meta page writes */
2340         set_sbi_flag(sbi, SBI_POR_DOING);
2341         spin_lock_init(&sbi->stat_lock);
2342
2343         /* init iostat info */
2344         spin_lock_init(&sbi->iostat_lock);
2345         sbi->iostat_enable = false;
2346
2347         for (i = 0; i < NR_PAGE_TYPE; i++) {
2348                 int n = (i == META) ? 1: NR_TEMP_TYPE;
2349                 int j;
2350
2351                 sbi->write_io[i] = kmalloc(n * sizeof(struct f2fs_bio_info),
2352                                                                 GFP_KERNEL);
2353                 if (!sbi->write_io[i]) {
2354                         err = -ENOMEM;
2355                         goto free_options;
2356                 }
2357
2358                 for (j = HOT; j < n; j++) {
2359                         init_rwsem(&sbi->write_io[i][j].io_rwsem);
2360                         sbi->write_io[i][j].sbi = sbi;
2361                         sbi->write_io[i][j].bio = NULL;
2362                         spin_lock_init(&sbi->write_io[i][j].io_lock);
2363                         INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
2364                 }
2365         }
2366
2367         init_rwsem(&sbi->cp_rwsem);
2368         init_waitqueue_head(&sbi->cp_wait);
2369         init_sb_info(sbi);
2370
2371         err = init_percpu_info(sbi);
2372         if (err)
2373                 goto free_options;
2374
2375         if (F2FS_IO_SIZE(sbi) > 1) {
2376                 sbi->write_io_dummy =
2377                         mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
2378                 if (!sbi->write_io_dummy) {
2379                         err = -ENOMEM;
2380                         goto free_options;
2381                 }
2382         }
2383
2384         /* get an inode for meta space */
2385         sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
2386         if (IS_ERR(sbi->meta_inode)) {
2387                 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
2388                 err = PTR_ERR(sbi->meta_inode);
2389                 goto free_io_dummy;
2390         }
2391
2392         err = get_valid_checkpoint(sbi);
2393         if (err) {
2394                 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
2395                 goto free_meta_inode;
2396         }
2397
2398         /* Initialize device list */
2399         err = f2fs_scan_devices(sbi);
2400         if (err) {
2401                 f2fs_msg(sb, KERN_ERR, "Failed to find devices");
2402                 goto free_devices;
2403         }
2404
2405         sbi->total_valid_node_count =
2406                                 le32_to_cpu(sbi->ckpt->valid_node_count);
2407         percpu_counter_set(&sbi->total_valid_inode_count,
2408                                 le32_to_cpu(sbi->ckpt->valid_inode_count));
2409         sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
2410         sbi->total_valid_block_count =
2411                                 le64_to_cpu(sbi->ckpt->valid_block_count);
2412         sbi->last_valid_block_count = sbi->total_valid_block_count;
2413         sbi->reserved_blocks = 0;
2414
2415         for (i = 0; i < NR_INODE_TYPE; i++) {
2416                 INIT_LIST_HEAD(&sbi->inode_list[i]);
2417                 spin_lock_init(&sbi->inode_lock[i]);
2418         }
2419
2420         init_extent_cache_info(sbi);
2421
2422         init_ino_entry_info(sbi);
2423
2424         /* setup f2fs internal modules */
2425         err = build_segment_manager(sbi);
2426         if (err) {
2427                 f2fs_msg(sb, KERN_ERR,
2428                         "Failed to initialize F2FS segment manager");
2429                 goto free_sm;
2430         }
2431         err = build_node_manager(sbi);
2432         if (err) {
2433                 f2fs_msg(sb, KERN_ERR,
2434                         "Failed to initialize F2FS node manager");
2435                 goto free_nm;
2436         }
2437
2438         /* For write statistics */
2439         if (sb->s_bdev->bd_part)
2440                 sbi->sectors_written_start =
2441                         (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
2442
2443         /* Read accumulated write IO statistics if exists */
2444         seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
2445         if (__exist_node_summaries(sbi))
2446                 sbi->kbytes_written =
2447                         le64_to_cpu(seg_i->journal->info.kbytes_written);
2448
2449         build_gc_manager(sbi);
2450
2451         /* get an inode for node space */
2452         sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
2453         if (IS_ERR(sbi->node_inode)) {
2454                 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
2455                 err = PTR_ERR(sbi->node_inode);
2456                 goto free_nm;
2457         }
2458
2459         f2fs_join_shrinker(sbi);
2460
2461         err = f2fs_build_stats(sbi);
2462         if (err)
2463                 goto free_nm;
2464
2465         /* read root inode and dentry */
2466         root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
2467         if (IS_ERR(root)) {
2468                 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
2469                 err = PTR_ERR(root);
2470                 goto free_node_inode;
2471         }
2472         if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
2473                 iput(root);
2474                 err = -EINVAL;
2475                 goto free_node_inode;
2476         }
2477
2478         sb->s_root = d_make_root(root); /* allocate root dentry */
2479         if (!sb->s_root) {
2480                 err = -ENOMEM;
2481                 goto free_root_inode;
2482         }
2483
2484         err = f2fs_register_sysfs(sbi);
2485         if (err)
2486                 goto free_root_inode;
2487
2488         /* if there are nt orphan nodes free them */
2489         err = recover_orphan_inodes(sbi);
2490         if (err)
2491                 goto free_sysfs;
2492
2493         /* recover fsynced data */
2494         if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
2495                 /*
2496                  * mount should be failed, when device has readonly mode, and
2497                  * previous checkpoint was not done by clean system shutdown.
2498                  */
2499                 if (bdev_read_only(sb->s_bdev) &&
2500                                 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
2501                         err = -EROFS;
2502                         goto free_meta;
2503                 }
2504
2505                 if (need_fsck)
2506                         set_sbi_flag(sbi, SBI_NEED_FSCK);
2507
2508                 if (!retry)
2509                         goto skip_recovery;
2510
2511                 err = recover_fsync_data(sbi, false);
2512                 if (err < 0) {
2513                         need_fsck = true;
2514                         f2fs_msg(sb, KERN_ERR,
2515                                 "Cannot recover all fsync data errno=%d", err);
2516                         goto free_meta;
2517                 }
2518         } else {
2519                 err = recover_fsync_data(sbi, true);
2520
2521                 if (!f2fs_readonly(sb) && err > 0) {
2522                         err = -EINVAL;
2523                         f2fs_msg(sb, KERN_ERR,
2524                                 "Need to recover fsync data");
2525                         goto free_sysfs;
2526                 }
2527         }
2528 skip_recovery:
2529         /* recover_fsync_data() cleared this already */
2530         clear_sbi_flag(sbi, SBI_POR_DOING);
2531
2532         /*
2533          * If filesystem is not mounted as read-only then
2534          * do start the gc_thread.
2535          */
2536         if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
2537                 /* After POR, we can run background GC thread.*/
2538                 err = start_gc_thread(sbi);
2539                 if (err)
2540                         goto free_meta;
2541         }
2542         kfree(options);
2543
2544         /* recover broken superblock */
2545         if (recovery) {
2546                 err = f2fs_commit_super(sbi, true);
2547                 f2fs_msg(sb, KERN_INFO,
2548                         "Try to recover %dth superblock, ret: %d",
2549                         sbi->valid_super_block ? 1 : 2, err);
2550         }
2551
2552         f2fs_msg(sbi->sb, KERN_NOTICE, "Mounted with checkpoint version = %llx",
2553                                 cur_cp_version(F2FS_CKPT(sbi)));
2554         f2fs_update_time(sbi, CP_TIME);
2555         f2fs_update_time(sbi, REQ_TIME);
2556         return 0;
2557
2558 free_meta:
2559         f2fs_sync_inode_meta(sbi);
2560         /*
2561          * Some dirty meta pages can be produced by recover_orphan_inodes()
2562          * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
2563          * followed by write_checkpoint() through f2fs_write_node_pages(), which
2564          * falls into an infinite loop in sync_meta_pages().
2565          */
2566         truncate_inode_pages_final(META_MAPPING(sbi));
2567 free_sysfs:
2568         f2fs_unregister_sysfs(sbi);
2569 free_root_inode:
2570         dput(sb->s_root);
2571         sb->s_root = NULL;
2572 free_node_inode:
2573         truncate_inode_pages_final(NODE_MAPPING(sbi));
2574         mutex_lock(&sbi->umount_mutex);
2575         release_ino_entry(sbi, true);
2576         f2fs_leave_shrinker(sbi);
2577         iput(sbi->node_inode);
2578         mutex_unlock(&sbi->umount_mutex);
2579         f2fs_destroy_stats(sbi);
2580 free_nm:
2581         destroy_node_manager(sbi);
2582 free_sm:
2583         destroy_segment_manager(sbi);
2584 free_devices:
2585         destroy_device_list(sbi);
2586         kfree(sbi->ckpt);
2587 free_meta_inode:
2588         make_bad_inode(sbi->meta_inode);
2589         iput(sbi->meta_inode);
2590 free_io_dummy:
2591         mempool_destroy(sbi->write_io_dummy);
2592 free_options:
2593         for (i = 0; i < NR_PAGE_TYPE; i++)
2594                 kfree(sbi->write_io[i]);
2595         destroy_percpu_info(sbi);
2596 #ifdef CONFIG_QUOTA
2597         for (i = 0; i < MAXQUOTAS; i++)
2598                 kfree(sbi->s_qf_names[i]);
2599 #endif
2600         kfree(options);
2601 free_sb_buf:
2602         kfree(raw_super);
2603 free_sbi:
2604         if (sbi->s_chksum_driver)
2605                 crypto_free_shash(sbi->s_chksum_driver);
2606         kfree(sbi);
2607
2608         /* give only one another chance */
2609         if (retry) {
2610                 retry = false;
2611                 shrink_dcache_sb(sb);
2612                 goto try_onemore;
2613         }
2614         return err;
2615 }
2616
2617 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
2618                         const char *dev_name, void *data)
2619 {
2620         return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
2621 }
2622
2623 static void kill_f2fs_super(struct super_block *sb)
2624 {
2625         if (sb->s_root) {
2626                 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
2627                 stop_gc_thread(F2FS_SB(sb));
2628                 stop_discard_thread(F2FS_SB(sb));
2629         }
2630         kill_block_super(sb);
2631 }
2632
2633 static struct file_system_type f2fs_fs_type = {
2634         .owner          = THIS_MODULE,
2635         .name           = "f2fs",
2636         .mount          = f2fs_mount,
2637         .kill_sb        = kill_f2fs_super,
2638         .fs_flags       = FS_REQUIRES_DEV,
2639 };
2640 MODULE_ALIAS_FS("f2fs");
2641
2642 static int __init init_inodecache(void)
2643 {
2644         f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
2645                         sizeof(struct f2fs_inode_info), 0,
2646                         SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
2647         if (!f2fs_inode_cachep)
2648                 return -ENOMEM;
2649         return 0;
2650 }
2651
2652 static void destroy_inodecache(void)
2653 {
2654         /*
2655          * Make sure all delayed rcu free inodes are flushed before we
2656          * destroy cache.
2657          */
2658         rcu_barrier();
2659         kmem_cache_destroy(f2fs_inode_cachep);
2660 }
2661
2662 static int __init init_f2fs_fs(void)
2663 {
2664         int err;
2665
2666         f2fs_build_trace_ios();
2667
2668         err = init_inodecache();
2669         if (err)
2670                 goto fail;
2671         err = create_node_manager_caches();
2672         if (err)
2673                 goto free_inodecache;
2674         err = create_segment_manager_caches();
2675         if (err)
2676                 goto free_node_manager_caches;
2677         err = create_checkpoint_caches();
2678         if (err)
2679                 goto free_segment_manager_caches;
2680         err = create_extent_cache();
2681         if (err)
2682                 goto free_checkpoint_caches;
2683         err = f2fs_init_sysfs();
2684         if (err)
2685                 goto free_extent_cache;
2686         err = register_shrinker(&f2fs_shrinker_info);
2687         if (err)
2688                 goto free_sysfs;
2689         err = register_filesystem(&f2fs_fs_type);
2690         if (err)
2691                 goto free_shrinker;
2692         err = f2fs_create_root_stats();
2693         if (err)
2694                 goto free_filesystem;
2695         return 0;
2696
2697 free_filesystem:
2698         unregister_filesystem(&f2fs_fs_type);
2699 free_shrinker:
2700         unregister_shrinker(&f2fs_shrinker_info);
2701 free_sysfs:
2702         f2fs_exit_sysfs();
2703 free_extent_cache:
2704         destroy_extent_cache();
2705 free_checkpoint_caches:
2706         destroy_checkpoint_caches();
2707 free_segment_manager_caches:
2708         destroy_segment_manager_caches();
2709 free_node_manager_caches:
2710         destroy_node_manager_caches();
2711 free_inodecache:
2712         destroy_inodecache();
2713 fail:
2714         return err;
2715 }
2716
2717 static void __exit exit_f2fs_fs(void)
2718 {
2719         f2fs_destroy_root_stats();
2720         unregister_filesystem(&f2fs_fs_type);
2721         unregister_shrinker(&f2fs_shrinker_info);
2722         f2fs_exit_sysfs();
2723         destroy_extent_cache();
2724         destroy_checkpoint_caches();
2725         destroy_segment_manager_caches();
2726         destroy_node_manager_caches();
2727         destroy_inodecache();
2728         f2fs_destroy_trace_ios();
2729 }
2730
2731 module_init(init_f2fs_fs)
2732 module_exit(exit_f2fs_fs)
2733
2734 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
2735 MODULE_DESCRIPTION("Flash Friendly File System");
2736 MODULE_LICENSE("GPL");
2737