Merge tag 'pci-v4.13-fixes-1' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaa...
[sfrench/cifs-2.6.git] / fs / f2fs / super.c
1 /*
2  * fs/f2fs/super.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <linux/f2fs_fs.h>
27 #include <linux/sysfs.h>
28
29 #include "f2fs.h"
30 #include "node.h"
31 #include "segment.h"
32 #include "xattr.h"
33 #include "gc.h"
34 #include "trace.h"
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/f2fs.h>
38
39 static struct kmem_cache *f2fs_inode_cachep;
40
41 #ifdef CONFIG_F2FS_FAULT_INJECTION
42
43 char *fault_name[FAULT_MAX] = {
44         [FAULT_KMALLOC]         = "kmalloc",
45         [FAULT_PAGE_ALLOC]      = "page alloc",
46         [FAULT_ALLOC_NID]       = "alloc nid",
47         [FAULT_ORPHAN]          = "orphan",
48         [FAULT_BLOCK]           = "no more block",
49         [FAULT_DIR_DEPTH]       = "too big dir depth",
50         [FAULT_EVICT_INODE]     = "evict_inode fail",
51         [FAULT_TRUNCATE]        = "truncate fail",
52         [FAULT_IO]              = "IO error",
53         [FAULT_CHECKPOINT]      = "checkpoint error",
54 };
55
56 static void f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
57                                                 unsigned int rate)
58 {
59         struct f2fs_fault_info *ffi = &sbi->fault_info;
60
61         if (rate) {
62                 atomic_set(&ffi->inject_ops, 0);
63                 ffi->inject_rate = rate;
64                 ffi->inject_type = (1 << FAULT_MAX) - 1;
65         } else {
66                 memset(ffi, 0, sizeof(struct f2fs_fault_info));
67         }
68 }
69 #endif
70
71 /* f2fs-wide shrinker description */
72 static struct shrinker f2fs_shrinker_info = {
73         .scan_objects = f2fs_shrink_scan,
74         .count_objects = f2fs_shrink_count,
75         .seeks = DEFAULT_SEEKS,
76 };
77
78 enum {
79         Opt_gc_background,
80         Opt_disable_roll_forward,
81         Opt_norecovery,
82         Opt_discard,
83         Opt_nodiscard,
84         Opt_noheap,
85         Opt_heap,
86         Opt_user_xattr,
87         Opt_nouser_xattr,
88         Opt_acl,
89         Opt_noacl,
90         Opt_active_logs,
91         Opt_disable_ext_identify,
92         Opt_inline_xattr,
93         Opt_noinline_xattr,
94         Opt_inline_data,
95         Opt_inline_dentry,
96         Opt_noinline_dentry,
97         Opt_flush_merge,
98         Opt_noflush_merge,
99         Opt_nobarrier,
100         Opt_fastboot,
101         Opt_extent_cache,
102         Opt_noextent_cache,
103         Opt_noinline_data,
104         Opt_data_flush,
105         Opt_mode,
106         Opt_io_size_bits,
107         Opt_fault_injection,
108         Opt_lazytime,
109         Opt_nolazytime,
110         Opt_usrquota,
111         Opt_grpquota,
112         Opt_err,
113 };
114
115 static match_table_t f2fs_tokens = {
116         {Opt_gc_background, "background_gc=%s"},
117         {Opt_disable_roll_forward, "disable_roll_forward"},
118         {Opt_norecovery, "norecovery"},
119         {Opt_discard, "discard"},
120         {Opt_nodiscard, "nodiscard"},
121         {Opt_noheap, "no_heap"},
122         {Opt_heap, "heap"},
123         {Opt_user_xattr, "user_xattr"},
124         {Opt_nouser_xattr, "nouser_xattr"},
125         {Opt_acl, "acl"},
126         {Opt_noacl, "noacl"},
127         {Opt_active_logs, "active_logs=%u"},
128         {Opt_disable_ext_identify, "disable_ext_identify"},
129         {Opt_inline_xattr, "inline_xattr"},
130         {Opt_noinline_xattr, "noinline_xattr"},
131         {Opt_inline_data, "inline_data"},
132         {Opt_inline_dentry, "inline_dentry"},
133         {Opt_noinline_dentry, "noinline_dentry"},
134         {Opt_flush_merge, "flush_merge"},
135         {Opt_noflush_merge, "noflush_merge"},
136         {Opt_nobarrier, "nobarrier"},
137         {Opt_fastboot, "fastboot"},
138         {Opt_extent_cache, "extent_cache"},
139         {Opt_noextent_cache, "noextent_cache"},
140         {Opt_noinline_data, "noinline_data"},
141         {Opt_data_flush, "data_flush"},
142         {Opt_mode, "mode=%s"},
143         {Opt_io_size_bits, "io_bits=%u"},
144         {Opt_fault_injection, "fault_injection=%u"},
145         {Opt_lazytime, "lazytime"},
146         {Opt_nolazytime, "nolazytime"},
147         {Opt_usrquota, "usrquota"},
148         {Opt_grpquota, "grpquota"},
149         {Opt_err, NULL},
150 };
151
152 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
153 {
154         struct va_format vaf;
155         va_list args;
156
157         va_start(args, fmt);
158         vaf.fmt = fmt;
159         vaf.va = &args;
160         printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
161         va_end(args);
162 }
163
164 static void init_once(void *foo)
165 {
166         struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
167
168         inode_init_once(&fi->vfs_inode);
169 }
170
171 static int parse_options(struct super_block *sb, char *options)
172 {
173         struct f2fs_sb_info *sbi = F2FS_SB(sb);
174         struct request_queue *q;
175         substring_t args[MAX_OPT_ARGS];
176         char *p, *name;
177         int arg = 0;
178
179         if (!options)
180                 return 0;
181
182         while ((p = strsep(&options, ",")) != NULL) {
183                 int token;
184                 if (!*p)
185                         continue;
186                 /*
187                  * Initialize args struct so we know whether arg was
188                  * found; some options take optional arguments.
189                  */
190                 args[0].to = args[0].from = NULL;
191                 token = match_token(p, f2fs_tokens, args);
192
193                 switch (token) {
194                 case Opt_gc_background:
195                         name = match_strdup(&args[0]);
196
197                         if (!name)
198                                 return -ENOMEM;
199                         if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
200                                 set_opt(sbi, BG_GC);
201                                 clear_opt(sbi, FORCE_FG_GC);
202                         } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
203                                 clear_opt(sbi, BG_GC);
204                                 clear_opt(sbi, FORCE_FG_GC);
205                         } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
206                                 set_opt(sbi, BG_GC);
207                                 set_opt(sbi, FORCE_FG_GC);
208                         } else {
209                                 kfree(name);
210                                 return -EINVAL;
211                         }
212                         kfree(name);
213                         break;
214                 case Opt_disable_roll_forward:
215                         set_opt(sbi, DISABLE_ROLL_FORWARD);
216                         break;
217                 case Opt_norecovery:
218                         /* this option mounts f2fs with ro */
219                         set_opt(sbi, DISABLE_ROLL_FORWARD);
220                         if (!f2fs_readonly(sb))
221                                 return -EINVAL;
222                         break;
223                 case Opt_discard:
224                         q = bdev_get_queue(sb->s_bdev);
225                         if (blk_queue_discard(q)) {
226                                 set_opt(sbi, DISCARD);
227                         } else if (!f2fs_sb_mounted_blkzoned(sb)) {
228                                 f2fs_msg(sb, KERN_WARNING,
229                                         "mounting with \"discard\" option, but "
230                                         "the device does not support discard");
231                         }
232                         break;
233                 case Opt_nodiscard:
234                         if (f2fs_sb_mounted_blkzoned(sb)) {
235                                 f2fs_msg(sb, KERN_WARNING,
236                                         "discard is required for zoned block devices");
237                                 return -EINVAL;
238                         }
239                         clear_opt(sbi, DISCARD);
240                         break;
241                 case Opt_noheap:
242                         set_opt(sbi, NOHEAP);
243                         break;
244                 case Opt_heap:
245                         clear_opt(sbi, NOHEAP);
246                         break;
247 #ifdef CONFIG_F2FS_FS_XATTR
248                 case Opt_user_xattr:
249                         set_opt(sbi, XATTR_USER);
250                         break;
251                 case Opt_nouser_xattr:
252                         clear_opt(sbi, XATTR_USER);
253                         break;
254                 case Opt_inline_xattr:
255                         set_opt(sbi, INLINE_XATTR);
256                         break;
257                 case Opt_noinline_xattr:
258                         clear_opt(sbi, INLINE_XATTR);
259                         break;
260 #else
261                 case Opt_user_xattr:
262                         f2fs_msg(sb, KERN_INFO,
263                                 "user_xattr options not supported");
264                         break;
265                 case Opt_nouser_xattr:
266                         f2fs_msg(sb, KERN_INFO,
267                                 "nouser_xattr options not supported");
268                         break;
269                 case Opt_inline_xattr:
270                         f2fs_msg(sb, KERN_INFO,
271                                 "inline_xattr options not supported");
272                         break;
273                 case Opt_noinline_xattr:
274                         f2fs_msg(sb, KERN_INFO,
275                                 "noinline_xattr options not supported");
276                         break;
277 #endif
278 #ifdef CONFIG_F2FS_FS_POSIX_ACL
279                 case Opt_acl:
280                         set_opt(sbi, POSIX_ACL);
281                         break;
282                 case Opt_noacl:
283                         clear_opt(sbi, POSIX_ACL);
284                         break;
285 #else
286                 case Opt_acl:
287                         f2fs_msg(sb, KERN_INFO, "acl options not supported");
288                         break;
289                 case Opt_noacl:
290                         f2fs_msg(sb, KERN_INFO, "noacl options not supported");
291                         break;
292 #endif
293                 case Opt_active_logs:
294                         if (args->from && match_int(args, &arg))
295                                 return -EINVAL;
296                         if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
297                                 return -EINVAL;
298                         sbi->active_logs = arg;
299                         break;
300                 case Opt_disable_ext_identify:
301                         set_opt(sbi, DISABLE_EXT_IDENTIFY);
302                         break;
303                 case Opt_inline_data:
304                         set_opt(sbi, INLINE_DATA);
305                         break;
306                 case Opt_inline_dentry:
307                         set_opt(sbi, INLINE_DENTRY);
308                         break;
309                 case Opt_noinline_dentry:
310                         clear_opt(sbi, INLINE_DENTRY);
311                         break;
312                 case Opt_flush_merge:
313                         set_opt(sbi, FLUSH_MERGE);
314                         break;
315                 case Opt_noflush_merge:
316                         clear_opt(sbi, FLUSH_MERGE);
317                         break;
318                 case Opt_nobarrier:
319                         set_opt(sbi, NOBARRIER);
320                         break;
321                 case Opt_fastboot:
322                         set_opt(sbi, FASTBOOT);
323                         break;
324                 case Opt_extent_cache:
325                         set_opt(sbi, EXTENT_CACHE);
326                         break;
327                 case Opt_noextent_cache:
328                         clear_opt(sbi, EXTENT_CACHE);
329                         break;
330                 case Opt_noinline_data:
331                         clear_opt(sbi, INLINE_DATA);
332                         break;
333                 case Opt_data_flush:
334                         set_opt(sbi, DATA_FLUSH);
335                         break;
336                 case Opt_mode:
337                         name = match_strdup(&args[0]);
338
339                         if (!name)
340                                 return -ENOMEM;
341                         if (strlen(name) == 8 &&
342                                         !strncmp(name, "adaptive", 8)) {
343                                 if (f2fs_sb_mounted_blkzoned(sb)) {
344                                         f2fs_msg(sb, KERN_WARNING,
345                                                  "adaptive mode is not allowed with "
346                                                  "zoned block device feature");
347                                         kfree(name);
348                                         return -EINVAL;
349                                 }
350                                 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
351                         } else if (strlen(name) == 3 &&
352                                         !strncmp(name, "lfs", 3)) {
353                                 set_opt_mode(sbi, F2FS_MOUNT_LFS);
354                         } else {
355                                 kfree(name);
356                                 return -EINVAL;
357                         }
358                         kfree(name);
359                         break;
360                 case Opt_io_size_bits:
361                         if (args->from && match_int(args, &arg))
362                                 return -EINVAL;
363                         if (arg > __ilog2_u32(BIO_MAX_PAGES)) {
364                                 f2fs_msg(sb, KERN_WARNING,
365                                         "Not support %d, larger than %d",
366                                         1 << arg, BIO_MAX_PAGES);
367                                 return -EINVAL;
368                         }
369                         sbi->write_io_size_bits = arg;
370                         break;
371                 case Opt_fault_injection:
372                         if (args->from && match_int(args, &arg))
373                                 return -EINVAL;
374 #ifdef CONFIG_F2FS_FAULT_INJECTION
375                         f2fs_build_fault_attr(sbi, arg);
376                         set_opt(sbi, FAULT_INJECTION);
377 #else
378                         f2fs_msg(sb, KERN_INFO,
379                                 "FAULT_INJECTION was not selected");
380 #endif
381                         break;
382                 case Opt_lazytime:
383                         sb->s_flags |= MS_LAZYTIME;
384                         break;
385                 case Opt_nolazytime:
386                         sb->s_flags &= ~MS_LAZYTIME;
387                         break;
388 #ifdef CONFIG_QUOTA
389                 case Opt_usrquota:
390                         set_opt(sbi, USRQUOTA);
391                         break;
392                 case Opt_grpquota:
393                         set_opt(sbi, GRPQUOTA);
394                         break;
395 #else
396                 case Opt_usrquota:
397                 case Opt_grpquota:
398                         f2fs_msg(sb, KERN_INFO,
399                                         "quota operations not supported");
400                         break;
401 #endif
402                 default:
403                         f2fs_msg(sb, KERN_ERR,
404                                 "Unrecognized mount option \"%s\" or missing value",
405                                 p);
406                         return -EINVAL;
407                 }
408         }
409
410         if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) {
411                 f2fs_msg(sb, KERN_ERR,
412                                 "Should set mode=lfs with %uKB-sized IO",
413                                 F2FS_IO_SIZE_KB(sbi));
414                 return -EINVAL;
415         }
416         return 0;
417 }
418
419 static struct inode *f2fs_alloc_inode(struct super_block *sb)
420 {
421         struct f2fs_inode_info *fi;
422
423         fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
424         if (!fi)
425                 return NULL;
426
427         init_once((void *) fi);
428
429         /* Initialize f2fs-specific inode info */
430         fi->vfs_inode.i_version = 1;
431         atomic_set(&fi->dirty_pages, 0);
432         fi->i_current_depth = 1;
433         fi->i_advise = 0;
434         init_rwsem(&fi->i_sem);
435         INIT_LIST_HEAD(&fi->dirty_list);
436         INIT_LIST_HEAD(&fi->gdirty_list);
437         INIT_LIST_HEAD(&fi->inmem_pages);
438         mutex_init(&fi->inmem_lock);
439         init_rwsem(&fi->dio_rwsem[READ]);
440         init_rwsem(&fi->dio_rwsem[WRITE]);
441         init_rwsem(&fi->i_mmap_sem);
442
443 #ifdef CONFIG_QUOTA
444         memset(&fi->i_dquot, 0, sizeof(fi->i_dquot));
445         fi->i_reserved_quota = 0;
446 #endif
447         /* Will be used by directory only */
448         fi->i_dir_level = F2FS_SB(sb)->dir_level;
449         return &fi->vfs_inode;
450 }
451
452 static int f2fs_drop_inode(struct inode *inode)
453 {
454         int ret;
455         /*
456          * This is to avoid a deadlock condition like below.
457          * writeback_single_inode(inode)
458          *  - f2fs_write_data_page
459          *    - f2fs_gc -> iput -> evict
460          *       - inode_wait_for_writeback(inode)
461          */
462         if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
463                 if (!inode->i_nlink && !is_bad_inode(inode)) {
464                         /* to avoid evict_inode call simultaneously */
465                         atomic_inc(&inode->i_count);
466                         spin_unlock(&inode->i_lock);
467
468                         /* some remained atomic pages should discarded */
469                         if (f2fs_is_atomic_file(inode))
470                                 drop_inmem_pages(inode);
471
472                         /* should remain fi->extent_tree for writepage */
473                         f2fs_destroy_extent_node(inode);
474
475                         sb_start_intwrite(inode->i_sb);
476                         f2fs_i_size_write(inode, 0);
477
478                         if (F2FS_HAS_BLOCKS(inode))
479                                 f2fs_truncate(inode);
480
481                         sb_end_intwrite(inode->i_sb);
482
483                         fscrypt_put_encryption_info(inode, NULL);
484                         spin_lock(&inode->i_lock);
485                         atomic_dec(&inode->i_count);
486                 }
487                 trace_f2fs_drop_inode(inode, 0);
488                 return 0;
489         }
490         ret = generic_drop_inode(inode);
491         trace_f2fs_drop_inode(inode, ret);
492         return ret;
493 }
494
495 int f2fs_inode_dirtied(struct inode *inode, bool sync)
496 {
497         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
498         int ret = 0;
499
500         spin_lock(&sbi->inode_lock[DIRTY_META]);
501         if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
502                 ret = 1;
503         } else {
504                 set_inode_flag(inode, FI_DIRTY_INODE);
505                 stat_inc_dirty_inode(sbi, DIRTY_META);
506         }
507         if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
508                 list_add_tail(&F2FS_I(inode)->gdirty_list,
509                                 &sbi->inode_list[DIRTY_META]);
510                 inc_page_count(sbi, F2FS_DIRTY_IMETA);
511         }
512         spin_unlock(&sbi->inode_lock[DIRTY_META]);
513         return ret;
514 }
515
516 void f2fs_inode_synced(struct inode *inode)
517 {
518         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
519
520         spin_lock(&sbi->inode_lock[DIRTY_META]);
521         if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
522                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
523                 return;
524         }
525         if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
526                 list_del_init(&F2FS_I(inode)->gdirty_list);
527                 dec_page_count(sbi, F2FS_DIRTY_IMETA);
528         }
529         clear_inode_flag(inode, FI_DIRTY_INODE);
530         clear_inode_flag(inode, FI_AUTO_RECOVER);
531         stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
532         spin_unlock(&sbi->inode_lock[DIRTY_META]);
533 }
534
535 /*
536  * f2fs_dirty_inode() is called from __mark_inode_dirty()
537  *
538  * We should call set_dirty_inode to write the dirty inode through write_inode.
539  */
540 static void f2fs_dirty_inode(struct inode *inode, int flags)
541 {
542         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
543
544         if (inode->i_ino == F2FS_NODE_INO(sbi) ||
545                         inode->i_ino == F2FS_META_INO(sbi))
546                 return;
547
548         if (flags == I_DIRTY_TIME)
549                 return;
550
551         if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
552                 clear_inode_flag(inode, FI_AUTO_RECOVER);
553
554         f2fs_inode_dirtied(inode, false);
555 }
556
557 static void f2fs_i_callback(struct rcu_head *head)
558 {
559         struct inode *inode = container_of(head, struct inode, i_rcu);
560         kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
561 }
562
563 static void f2fs_destroy_inode(struct inode *inode)
564 {
565         call_rcu(&inode->i_rcu, f2fs_i_callback);
566 }
567
568 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
569 {
570         percpu_counter_destroy(&sbi->alloc_valid_block_count);
571         percpu_counter_destroy(&sbi->total_valid_inode_count);
572 }
573
574 static void destroy_device_list(struct f2fs_sb_info *sbi)
575 {
576         int i;
577
578         for (i = 0; i < sbi->s_ndevs; i++) {
579                 blkdev_put(FDEV(i).bdev, FMODE_EXCL);
580 #ifdef CONFIG_BLK_DEV_ZONED
581                 kfree(FDEV(i).blkz_type);
582 #endif
583         }
584         kfree(sbi->devs);
585 }
586
587 static void f2fs_quota_off_umount(struct super_block *sb);
588 static void f2fs_put_super(struct super_block *sb)
589 {
590         struct f2fs_sb_info *sbi = F2FS_SB(sb);
591         int i;
592
593         f2fs_quota_off_umount(sb);
594
595         /* prevent remaining shrinker jobs */
596         mutex_lock(&sbi->umount_mutex);
597
598         /*
599          * We don't need to do checkpoint when superblock is clean.
600          * But, the previous checkpoint was not done by umount, it needs to do
601          * clean checkpoint again.
602          */
603         if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
604                         !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
605                 struct cp_control cpc = {
606                         .reason = CP_UMOUNT,
607                 };
608                 write_checkpoint(sbi, &cpc);
609         }
610
611         /* be sure to wait for any on-going discard commands */
612         f2fs_wait_discard_bios(sbi);
613
614         if (f2fs_discard_en(sbi) && !sbi->discard_blks) {
615                 struct cp_control cpc = {
616                         .reason = CP_UMOUNT | CP_TRIMMED,
617                 };
618                 write_checkpoint(sbi, &cpc);
619         }
620
621         /* write_checkpoint can update stat informaion */
622         f2fs_destroy_stats(sbi);
623
624         /*
625          * normally superblock is clean, so we need to release this.
626          * In addition, EIO will skip do checkpoint, we need this as well.
627          */
628         release_ino_entry(sbi, true);
629
630         f2fs_leave_shrinker(sbi);
631         mutex_unlock(&sbi->umount_mutex);
632
633         /* our cp_error case, we can wait for any writeback page */
634         f2fs_flush_merged_writes(sbi);
635
636         iput(sbi->node_inode);
637         iput(sbi->meta_inode);
638
639         /* destroy f2fs internal modules */
640         destroy_node_manager(sbi);
641         destroy_segment_manager(sbi);
642
643         kfree(sbi->ckpt);
644
645         f2fs_exit_sysfs(sbi);
646
647         sb->s_fs_info = NULL;
648         if (sbi->s_chksum_driver)
649                 crypto_free_shash(sbi->s_chksum_driver);
650         kfree(sbi->raw_super);
651
652         destroy_device_list(sbi);
653         mempool_destroy(sbi->write_io_dummy);
654         destroy_percpu_info(sbi);
655         for (i = 0; i < NR_PAGE_TYPE; i++)
656                 kfree(sbi->write_io[i]);
657         kfree(sbi);
658 }
659
660 int f2fs_sync_fs(struct super_block *sb, int sync)
661 {
662         struct f2fs_sb_info *sbi = F2FS_SB(sb);
663         int err = 0;
664
665         trace_f2fs_sync_fs(sb, sync);
666
667         if (sync) {
668                 struct cp_control cpc;
669
670                 cpc.reason = __get_cp_reason(sbi);
671
672                 mutex_lock(&sbi->gc_mutex);
673                 err = write_checkpoint(sbi, &cpc);
674                 mutex_unlock(&sbi->gc_mutex);
675         }
676         f2fs_trace_ios(NULL, 1);
677
678         return err;
679 }
680
681 static int f2fs_freeze(struct super_block *sb)
682 {
683         if (f2fs_readonly(sb))
684                 return 0;
685
686         /* IO error happened before */
687         if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
688                 return -EIO;
689
690         /* must be clean, since sync_filesystem() was already called */
691         if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
692                 return -EINVAL;
693         return 0;
694 }
695
696 static int f2fs_unfreeze(struct super_block *sb)
697 {
698         return 0;
699 }
700
701 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
702 {
703         struct super_block *sb = dentry->d_sb;
704         struct f2fs_sb_info *sbi = F2FS_SB(sb);
705         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
706         block_t total_count, user_block_count, start_count, ovp_count;
707         u64 avail_node_count;
708
709         total_count = le64_to_cpu(sbi->raw_super->block_count);
710         user_block_count = sbi->user_block_count;
711         start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
712         ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
713         buf->f_type = F2FS_SUPER_MAGIC;
714         buf->f_bsize = sbi->blocksize;
715
716         buf->f_blocks = total_count - start_count;
717         buf->f_bfree = user_block_count - valid_user_blocks(sbi) + ovp_count;
718         buf->f_bavail = user_block_count - valid_user_blocks(sbi) -
719                                                 sbi->reserved_blocks;
720
721         avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
722
723         if (avail_node_count > user_block_count) {
724                 buf->f_files = user_block_count;
725                 buf->f_ffree = buf->f_bavail;
726         } else {
727                 buf->f_files = avail_node_count;
728                 buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
729                                         buf->f_bavail);
730         }
731
732         buf->f_namelen = F2FS_NAME_LEN;
733         buf->f_fsid.val[0] = (u32)id;
734         buf->f_fsid.val[1] = (u32)(id >> 32);
735
736         return 0;
737 }
738
739 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
740 {
741         struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
742
743         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
744                 if (test_opt(sbi, FORCE_FG_GC))
745                         seq_printf(seq, ",background_gc=%s", "sync");
746                 else
747                         seq_printf(seq, ",background_gc=%s", "on");
748         } else {
749                 seq_printf(seq, ",background_gc=%s", "off");
750         }
751         if (test_opt(sbi, DISABLE_ROLL_FORWARD))
752                 seq_puts(seq, ",disable_roll_forward");
753         if (test_opt(sbi, DISCARD))
754                 seq_puts(seq, ",discard");
755         if (test_opt(sbi, NOHEAP))
756                 seq_puts(seq, ",no_heap");
757         else
758                 seq_puts(seq, ",heap");
759 #ifdef CONFIG_F2FS_FS_XATTR
760         if (test_opt(sbi, XATTR_USER))
761                 seq_puts(seq, ",user_xattr");
762         else
763                 seq_puts(seq, ",nouser_xattr");
764         if (test_opt(sbi, INLINE_XATTR))
765                 seq_puts(seq, ",inline_xattr");
766         else
767                 seq_puts(seq, ",noinline_xattr");
768 #endif
769 #ifdef CONFIG_F2FS_FS_POSIX_ACL
770         if (test_opt(sbi, POSIX_ACL))
771                 seq_puts(seq, ",acl");
772         else
773                 seq_puts(seq, ",noacl");
774 #endif
775         if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
776                 seq_puts(seq, ",disable_ext_identify");
777         if (test_opt(sbi, INLINE_DATA))
778                 seq_puts(seq, ",inline_data");
779         else
780                 seq_puts(seq, ",noinline_data");
781         if (test_opt(sbi, INLINE_DENTRY))
782                 seq_puts(seq, ",inline_dentry");
783         else
784                 seq_puts(seq, ",noinline_dentry");
785         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
786                 seq_puts(seq, ",flush_merge");
787         if (test_opt(sbi, NOBARRIER))
788                 seq_puts(seq, ",nobarrier");
789         if (test_opt(sbi, FASTBOOT))
790                 seq_puts(seq, ",fastboot");
791         if (test_opt(sbi, EXTENT_CACHE))
792                 seq_puts(seq, ",extent_cache");
793         else
794                 seq_puts(seq, ",noextent_cache");
795         if (test_opt(sbi, DATA_FLUSH))
796                 seq_puts(seq, ",data_flush");
797
798         seq_puts(seq, ",mode=");
799         if (test_opt(sbi, ADAPTIVE))
800                 seq_puts(seq, "adaptive");
801         else if (test_opt(sbi, LFS))
802                 seq_puts(seq, "lfs");
803         seq_printf(seq, ",active_logs=%u", sbi->active_logs);
804         if (F2FS_IO_SIZE_BITS(sbi))
805                 seq_printf(seq, ",io_size=%uKB", F2FS_IO_SIZE_KB(sbi));
806 #ifdef CONFIG_F2FS_FAULT_INJECTION
807         if (test_opt(sbi, FAULT_INJECTION))
808                 seq_printf(seq, ",fault_injection=%u",
809                                 sbi->fault_info.inject_rate);
810 #endif
811 #ifdef CONFIG_QUOTA
812         if (test_opt(sbi, USRQUOTA))
813                 seq_puts(seq, ",usrquota");
814         if (test_opt(sbi, GRPQUOTA))
815                 seq_puts(seq, ",grpquota");
816 #endif
817
818         return 0;
819 }
820
821 static void default_options(struct f2fs_sb_info *sbi)
822 {
823         /* init some FS parameters */
824         sbi->active_logs = NR_CURSEG_TYPE;
825
826         set_opt(sbi, BG_GC);
827         set_opt(sbi, INLINE_XATTR);
828         set_opt(sbi, INLINE_DATA);
829         set_opt(sbi, INLINE_DENTRY);
830         set_opt(sbi, EXTENT_CACHE);
831         set_opt(sbi, NOHEAP);
832         sbi->sb->s_flags |= MS_LAZYTIME;
833         set_opt(sbi, FLUSH_MERGE);
834         if (f2fs_sb_mounted_blkzoned(sbi->sb)) {
835                 set_opt_mode(sbi, F2FS_MOUNT_LFS);
836                 set_opt(sbi, DISCARD);
837         } else {
838                 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
839         }
840
841 #ifdef CONFIG_F2FS_FS_XATTR
842         set_opt(sbi, XATTR_USER);
843 #endif
844 #ifdef CONFIG_F2FS_FS_POSIX_ACL
845         set_opt(sbi, POSIX_ACL);
846 #endif
847
848 #ifdef CONFIG_F2FS_FAULT_INJECTION
849         f2fs_build_fault_attr(sbi, 0);
850 #endif
851 }
852
853 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
854 {
855         struct f2fs_sb_info *sbi = F2FS_SB(sb);
856         struct f2fs_mount_info org_mount_opt;
857         unsigned long old_sb_flags;
858         int err, active_logs;
859         bool need_restart_gc = false;
860         bool need_stop_gc = false;
861         bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
862 #ifdef CONFIG_F2FS_FAULT_INJECTION
863         struct f2fs_fault_info ffi = sbi->fault_info;
864 #endif
865
866         /*
867          * Save the old mount options in case we
868          * need to restore them.
869          */
870         org_mount_opt = sbi->mount_opt;
871         old_sb_flags = sb->s_flags;
872         active_logs = sbi->active_logs;
873
874         /* recover superblocks we couldn't write due to previous RO mount */
875         if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
876                 err = f2fs_commit_super(sbi, false);
877                 f2fs_msg(sb, KERN_INFO,
878                         "Try to recover all the superblocks, ret: %d", err);
879                 if (!err)
880                         clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
881         }
882
883         default_options(sbi);
884
885         /* parse mount options */
886         err = parse_options(sb, data);
887         if (err)
888                 goto restore_opts;
889
890         /*
891          * Previous and new state of filesystem is RO,
892          * so skip checking GC and FLUSH_MERGE conditions.
893          */
894         if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
895                 goto skip;
896
897         if (!f2fs_readonly(sb) && (*flags & MS_RDONLY)) {
898                 err = dquot_suspend(sb, -1);
899                 if (err < 0)
900                         goto restore_opts;
901         } else {
902                 /* dquot_resume needs RW */
903                 sb->s_flags &= ~MS_RDONLY;
904                 dquot_resume(sb, -1);
905         }
906
907         /* disallow enable/disable extent_cache dynamically */
908         if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
909                 err = -EINVAL;
910                 f2fs_msg(sbi->sb, KERN_WARNING,
911                                 "switch extent_cache option is not allowed");
912                 goto restore_opts;
913         }
914
915         /*
916          * We stop the GC thread if FS is mounted as RO
917          * or if background_gc = off is passed in mount
918          * option. Also sync the filesystem.
919          */
920         if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
921                 if (sbi->gc_thread) {
922                         stop_gc_thread(sbi);
923                         need_restart_gc = true;
924                 }
925         } else if (!sbi->gc_thread) {
926                 err = start_gc_thread(sbi);
927                 if (err)
928                         goto restore_opts;
929                 need_stop_gc = true;
930         }
931
932         if (*flags & MS_RDONLY) {
933                 writeback_inodes_sb(sb, WB_REASON_SYNC);
934                 sync_inodes_sb(sb);
935
936                 set_sbi_flag(sbi, SBI_IS_DIRTY);
937                 set_sbi_flag(sbi, SBI_IS_CLOSE);
938                 f2fs_sync_fs(sb, 1);
939                 clear_sbi_flag(sbi, SBI_IS_CLOSE);
940         }
941
942         /*
943          * We stop issue flush thread if FS is mounted as RO
944          * or if flush_merge is not passed in mount option.
945          */
946         if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
947                 clear_opt(sbi, FLUSH_MERGE);
948                 destroy_flush_cmd_control(sbi, false);
949         } else {
950                 err = create_flush_cmd_control(sbi);
951                 if (err)
952                         goto restore_gc;
953         }
954 skip:
955         /* Update the POSIXACL Flag */
956         sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
957                 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
958
959         return 0;
960 restore_gc:
961         if (need_restart_gc) {
962                 if (start_gc_thread(sbi))
963                         f2fs_msg(sbi->sb, KERN_WARNING,
964                                 "background gc thread has stopped");
965         } else if (need_stop_gc) {
966                 stop_gc_thread(sbi);
967         }
968 restore_opts:
969         sbi->mount_opt = org_mount_opt;
970         sbi->active_logs = active_logs;
971         sb->s_flags = old_sb_flags;
972 #ifdef CONFIG_F2FS_FAULT_INJECTION
973         sbi->fault_info = ffi;
974 #endif
975         return err;
976 }
977
978 #ifdef CONFIG_QUOTA
979 /* Read data from quotafile */
980 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
981                                size_t len, loff_t off)
982 {
983         struct inode *inode = sb_dqopt(sb)->files[type];
984         struct address_space *mapping = inode->i_mapping;
985         block_t blkidx = F2FS_BYTES_TO_BLK(off);
986         int offset = off & (sb->s_blocksize - 1);
987         int tocopy;
988         size_t toread;
989         loff_t i_size = i_size_read(inode);
990         struct page *page;
991         char *kaddr;
992
993         if (off > i_size)
994                 return 0;
995
996         if (off + len > i_size)
997                 len = i_size - off;
998         toread = len;
999         while (toread > 0) {
1000                 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
1001 repeat:
1002                 page = read_mapping_page(mapping, blkidx, NULL);
1003                 if (IS_ERR(page))
1004                         return PTR_ERR(page);
1005
1006                 lock_page(page);
1007
1008                 if (unlikely(page->mapping != mapping)) {
1009                         f2fs_put_page(page, 1);
1010                         goto repeat;
1011                 }
1012                 if (unlikely(!PageUptodate(page))) {
1013                         f2fs_put_page(page, 1);
1014                         return -EIO;
1015                 }
1016
1017                 kaddr = kmap_atomic(page);
1018                 memcpy(data, kaddr + offset, tocopy);
1019                 kunmap_atomic(kaddr);
1020                 f2fs_put_page(page, 1);
1021
1022                 offset = 0;
1023                 toread -= tocopy;
1024                 data += tocopy;
1025                 blkidx++;
1026         }
1027         return len;
1028 }
1029
1030 /* Write to quotafile */
1031 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
1032                                 const char *data, size_t len, loff_t off)
1033 {
1034         struct inode *inode = sb_dqopt(sb)->files[type];
1035         struct address_space *mapping = inode->i_mapping;
1036         const struct address_space_operations *a_ops = mapping->a_ops;
1037         int offset = off & (sb->s_blocksize - 1);
1038         size_t towrite = len;
1039         struct page *page;
1040         char *kaddr;
1041         int err = 0;
1042         int tocopy;
1043
1044         while (towrite > 0) {
1045                 tocopy = min_t(unsigned long, sb->s_blocksize - offset,
1046                                                                 towrite);
1047
1048                 err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
1049                                                         &page, NULL);
1050                 if (unlikely(err))
1051                         break;
1052
1053                 kaddr = kmap_atomic(page);
1054                 memcpy(kaddr + offset, data, tocopy);
1055                 kunmap_atomic(kaddr);
1056                 flush_dcache_page(page);
1057
1058                 a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
1059                                                 page, NULL);
1060                 offset = 0;
1061                 towrite -= tocopy;
1062                 off += tocopy;
1063                 data += tocopy;
1064                 cond_resched();
1065         }
1066
1067         if (len == towrite)
1068                 return err;
1069         inode->i_version++;
1070         inode->i_mtime = inode->i_ctime = current_time(inode);
1071         f2fs_mark_inode_dirty_sync(inode, false);
1072         return len - towrite;
1073 }
1074
1075 static struct dquot **f2fs_get_dquots(struct inode *inode)
1076 {
1077         return F2FS_I(inode)->i_dquot;
1078 }
1079
1080 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
1081 {
1082         return &F2FS_I(inode)->i_reserved_quota;
1083 }
1084
1085 static int f2fs_quota_sync(struct super_block *sb, int type)
1086 {
1087         struct quota_info *dqopt = sb_dqopt(sb);
1088         int cnt;
1089         int ret;
1090
1091         ret = dquot_writeback_dquots(sb, type);
1092         if (ret)
1093                 return ret;
1094
1095         /*
1096          * Now when everything is written we can discard the pagecache so
1097          * that userspace sees the changes.
1098          */
1099         for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
1100                 if (type != -1 && cnt != type)
1101                         continue;
1102                 if (!sb_has_quota_active(sb, cnt))
1103                         continue;
1104
1105                 ret = filemap_write_and_wait(dqopt->files[cnt]->i_mapping);
1106                 if (ret)
1107                         return ret;
1108
1109                 inode_lock(dqopt->files[cnt]);
1110                 truncate_inode_pages(&dqopt->files[cnt]->i_data, 0);
1111                 inode_unlock(dqopt->files[cnt]);
1112         }
1113         return 0;
1114 }
1115
1116 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
1117                                                         const struct path *path)
1118 {
1119         struct inode *inode;
1120         int err;
1121
1122         err = f2fs_quota_sync(sb, -1);
1123         if (err)
1124                 return err;
1125
1126         err = dquot_quota_on(sb, type, format_id, path);
1127         if (err)
1128                 return err;
1129
1130         inode = d_inode(path->dentry);
1131
1132         inode_lock(inode);
1133         F2FS_I(inode)->i_flags |= FS_NOATIME_FL | FS_IMMUTABLE_FL;
1134         inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
1135                                         S_NOATIME | S_IMMUTABLE);
1136         inode_unlock(inode);
1137         f2fs_mark_inode_dirty_sync(inode, false);
1138
1139         return 0;
1140 }
1141
1142 static int f2fs_quota_off(struct super_block *sb, int type)
1143 {
1144         struct inode *inode = sb_dqopt(sb)->files[type];
1145         int err;
1146
1147         if (!inode || !igrab(inode))
1148                 return dquot_quota_off(sb, type);
1149
1150         f2fs_quota_sync(sb, -1);
1151
1152         err = dquot_quota_off(sb, type);
1153         if (err)
1154                 goto out_put;
1155
1156         inode_lock(inode);
1157         F2FS_I(inode)->i_flags &= ~(FS_NOATIME_FL | FS_IMMUTABLE_FL);
1158         inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
1159         inode_unlock(inode);
1160         f2fs_mark_inode_dirty_sync(inode, false);
1161 out_put:
1162         iput(inode);
1163         return err;
1164 }
1165
1166 static void f2fs_quota_off_umount(struct super_block *sb)
1167 {
1168         int type;
1169
1170         for (type = 0; type < MAXQUOTAS; type++)
1171                 f2fs_quota_off(sb, type);
1172 }
1173
1174 static const struct dquot_operations f2fs_quota_operations = {
1175         .get_reserved_space = f2fs_get_reserved_space,
1176         .write_dquot    = dquot_commit,
1177         .acquire_dquot  = dquot_acquire,
1178         .release_dquot  = dquot_release,
1179         .mark_dirty     = dquot_mark_dquot_dirty,
1180         .write_info     = dquot_commit_info,
1181         .alloc_dquot    = dquot_alloc,
1182         .destroy_dquot  = dquot_destroy,
1183         .get_next_id    = dquot_get_next_id,
1184 };
1185
1186 static const struct quotactl_ops f2fs_quotactl_ops = {
1187         .quota_on       = f2fs_quota_on,
1188         .quota_off      = f2fs_quota_off,
1189         .quota_sync     = f2fs_quota_sync,
1190         .get_state      = dquot_get_state,
1191         .set_info       = dquot_set_dqinfo,
1192         .get_dqblk      = dquot_get_dqblk,
1193         .set_dqblk      = dquot_set_dqblk,
1194         .get_nextdqblk  = dquot_get_next_dqblk,
1195 };
1196 #else
1197 static inline void f2fs_quota_off_umount(struct super_block *sb)
1198 {
1199 }
1200 #endif
1201
1202 static struct super_operations f2fs_sops = {
1203         .alloc_inode    = f2fs_alloc_inode,
1204         .drop_inode     = f2fs_drop_inode,
1205         .destroy_inode  = f2fs_destroy_inode,
1206         .write_inode    = f2fs_write_inode,
1207         .dirty_inode    = f2fs_dirty_inode,
1208         .show_options   = f2fs_show_options,
1209 #ifdef CONFIG_QUOTA
1210         .quota_read     = f2fs_quota_read,
1211         .quota_write    = f2fs_quota_write,
1212         .get_dquots     = f2fs_get_dquots,
1213 #endif
1214         .evict_inode    = f2fs_evict_inode,
1215         .put_super      = f2fs_put_super,
1216         .sync_fs        = f2fs_sync_fs,
1217         .freeze_fs      = f2fs_freeze,
1218         .unfreeze_fs    = f2fs_unfreeze,
1219         .statfs         = f2fs_statfs,
1220         .remount_fs     = f2fs_remount,
1221 };
1222
1223 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1224 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
1225 {
1226         return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1227                                 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1228                                 ctx, len, NULL);
1229 }
1230
1231 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
1232                                                         void *fs_data)
1233 {
1234         return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1235                                 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1236                                 ctx, len, fs_data, XATTR_CREATE);
1237 }
1238
1239 static unsigned f2fs_max_namelen(struct inode *inode)
1240 {
1241         return S_ISLNK(inode->i_mode) ?
1242                         inode->i_sb->s_blocksize : F2FS_NAME_LEN;
1243 }
1244
1245 static const struct fscrypt_operations f2fs_cryptops = {
1246         .key_prefix     = "f2fs:",
1247         .get_context    = f2fs_get_context,
1248         .set_context    = f2fs_set_context,
1249         .is_encrypted   = f2fs_encrypted_inode,
1250         .empty_dir      = f2fs_empty_dir,
1251         .max_namelen    = f2fs_max_namelen,
1252 };
1253 #else
1254 static const struct fscrypt_operations f2fs_cryptops = {
1255         .is_encrypted   = f2fs_encrypted_inode,
1256 };
1257 #endif
1258
1259 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
1260                 u64 ino, u32 generation)
1261 {
1262         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1263         struct inode *inode;
1264
1265         if (check_nid_range(sbi, ino))
1266                 return ERR_PTR(-ESTALE);
1267
1268         /*
1269          * f2fs_iget isn't quite right if the inode is currently unallocated!
1270          * However f2fs_iget currently does appropriate checks to handle stale
1271          * inodes so everything is OK.
1272          */
1273         inode = f2fs_iget(sb, ino);
1274         if (IS_ERR(inode))
1275                 return ERR_CAST(inode);
1276         if (unlikely(generation && inode->i_generation != generation)) {
1277                 /* we didn't find the right inode.. */
1278                 iput(inode);
1279                 return ERR_PTR(-ESTALE);
1280         }
1281         return inode;
1282 }
1283
1284 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1285                 int fh_len, int fh_type)
1286 {
1287         return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1288                                     f2fs_nfs_get_inode);
1289 }
1290
1291 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
1292                 int fh_len, int fh_type)
1293 {
1294         return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1295                                     f2fs_nfs_get_inode);
1296 }
1297
1298 static const struct export_operations f2fs_export_ops = {
1299         .fh_to_dentry = f2fs_fh_to_dentry,
1300         .fh_to_parent = f2fs_fh_to_parent,
1301         .get_parent = f2fs_get_parent,
1302 };
1303
1304 static loff_t max_file_blocks(void)
1305 {
1306         loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
1307         loff_t leaf_count = ADDRS_PER_BLOCK;
1308
1309         /* two direct node blocks */
1310         result += (leaf_count * 2);
1311
1312         /* two indirect node blocks */
1313         leaf_count *= NIDS_PER_BLOCK;
1314         result += (leaf_count * 2);
1315
1316         /* one double indirect node block */
1317         leaf_count *= NIDS_PER_BLOCK;
1318         result += leaf_count;
1319
1320         return result;
1321 }
1322
1323 static int __f2fs_commit_super(struct buffer_head *bh,
1324                         struct f2fs_super_block *super)
1325 {
1326         lock_buffer(bh);
1327         if (super)
1328                 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
1329         set_buffer_uptodate(bh);
1330         set_buffer_dirty(bh);
1331         unlock_buffer(bh);
1332
1333         /* it's rare case, we can do fua all the time */
1334         return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1335 }
1336
1337 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
1338                                         struct buffer_head *bh)
1339 {
1340         struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1341                                         (bh->b_data + F2FS_SUPER_OFFSET);
1342         struct super_block *sb = sbi->sb;
1343         u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1344         u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
1345         u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
1346         u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
1347         u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1348         u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1349         u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
1350         u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
1351         u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
1352         u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
1353         u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
1354         u32 segment_count = le32_to_cpu(raw_super->segment_count);
1355         u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1356         u64 main_end_blkaddr = main_blkaddr +
1357                                 (segment_count_main << log_blocks_per_seg);
1358         u64 seg_end_blkaddr = segment0_blkaddr +
1359                                 (segment_count << log_blocks_per_seg);
1360
1361         if (segment0_blkaddr != cp_blkaddr) {
1362                 f2fs_msg(sb, KERN_INFO,
1363                         "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
1364                         segment0_blkaddr, cp_blkaddr);
1365                 return true;
1366         }
1367
1368         if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
1369                                                         sit_blkaddr) {
1370                 f2fs_msg(sb, KERN_INFO,
1371                         "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
1372                         cp_blkaddr, sit_blkaddr,
1373                         segment_count_ckpt << log_blocks_per_seg);
1374                 return true;
1375         }
1376
1377         if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
1378                                                         nat_blkaddr) {
1379                 f2fs_msg(sb, KERN_INFO,
1380                         "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
1381                         sit_blkaddr, nat_blkaddr,
1382                         segment_count_sit << log_blocks_per_seg);
1383                 return true;
1384         }
1385
1386         if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
1387                                                         ssa_blkaddr) {
1388                 f2fs_msg(sb, KERN_INFO,
1389                         "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
1390                         nat_blkaddr, ssa_blkaddr,
1391                         segment_count_nat << log_blocks_per_seg);
1392                 return true;
1393         }
1394
1395         if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
1396                                                         main_blkaddr) {
1397                 f2fs_msg(sb, KERN_INFO,
1398                         "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
1399                         ssa_blkaddr, main_blkaddr,
1400                         segment_count_ssa << log_blocks_per_seg);
1401                 return true;
1402         }
1403
1404         if (main_end_blkaddr > seg_end_blkaddr) {
1405                 f2fs_msg(sb, KERN_INFO,
1406                         "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
1407                         main_blkaddr,
1408                         segment0_blkaddr +
1409                                 (segment_count << log_blocks_per_seg),
1410                         segment_count_main << log_blocks_per_seg);
1411                 return true;
1412         } else if (main_end_blkaddr < seg_end_blkaddr) {
1413                 int err = 0;
1414                 char *res;
1415
1416                 /* fix in-memory information all the time */
1417                 raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
1418                                 segment0_blkaddr) >> log_blocks_per_seg);
1419
1420                 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
1421                         set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1422                         res = "internally";
1423                 } else {
1424                         err = __f2fs_commit_super(bh, NULL);
1425                         res = err ? "failed" : "done";
1426                 }
1427                 f2fs_msg(sb, KERN_INFO,
1428                         "Fix alignment : %s, start(%u) end(%u) block(%u)",
1429                         res, main_blkaddr,
1430                         segment0_blkaddr +
1431                                 (segment_count << log_blocks_per_seg),
1432                         segment_count_main << log_blocks_per_seg);
1433                 if (err)
1434                         return true;
1435         }
1436         return false;
1437 }
1438
1439 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
1440                                 struct buffer_head *bh)
1441 {
1442         struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1443                                         (bh->b_data + F2FS_SUPER_OFFSET);
1444         struct super_block *sb = sbi->sb;
1445         unsigned int blocksize;
1446
1447         if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
1448                 f2fs_msg(sb, KERN_INFO,
1449                         "Magic Mismatch, valid(0x%x) - read(0x%x)",
1450                         F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
1451                 return 1;
1452         }
1453
1454         /* Currently, support only 4KB page cache size */
1455         if (F2FS_BLKSIZE != PAGE_SIZE) {
1456                 f2fs_msg(sb, KERN_INFO,
1457                         "Invalid page_cache_size (%lu), supports only 4KB\n",
1458                         PAGE_SIZE);
1459                 return 1;
1460         }
1461
1462         /* Currently, support only 4KB block size */
1463         blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
1464         if (blocksize != F2FS_BLKSIZE) {
1465                 f2fs_msg(sb, KERN_INFO,
1466                         "Invalid blocksize (%u), supports only 4KB\n",
1467                         blocksize);
1468                 return 1;
1469         }
1470
1471         /* check log blocks per segment */
1472         if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
1473                 f2fs_msg(sb, KERN_INFO,
1474                         "Invalid log blocks per segment (%u)\n",
1475                         le32_to_cpu(raw_super->log_blocks_per_seg));
1476                 return 1;
1477         }
1478
1479         /* Currently, support 512/1024/2048/4096 bytes sector size */
1480         if (le32_to_cpu(raw_super->log_sectorsize) >
1481                                 F2FS_MAX_LOG_SECTOR_SIZE ||
1482                 le32_to_cpu(raw_super->log_sectorsize) <
1483                                 F2FS_MIN_LOG_SECTOR_SIZE) {
1484                 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
1485                         le32_to_cpu(raw_super->log_sectorsize));
1486                 return 1;
1487         }
1488         if (le32_to_cpu(raw_super->log_sectors_per_block) +
1489                 le32_to_cpu(raw_super->log_sectorsize) !=
1490                         F2FS_MAX_LOG_SECTOR_SIZE) {
1491                 f2fs_msg(sb, KERN_INFO,
1492                         "Invalid log sectors per block(%u) log sectorsize(%u)",
1493                         le32_to_cpu(raw_super->log_sectors_per_block),
1494                         le32_to_cpu(raw_super->log_sectorsize));
1495                 return 1;
1496         }
1497
1498         /* check reserved ino info */
1499         if (le32_to_cpu(raw_super->node_ino) != 1 ||
1500                 le32_to_cpu(raw_super->meta_ino) != 2 ||
1501                 le32_to_cpu(raw_super->root_ino) != 3) {
1502                 f2fs_msg(sb, KERN_INFO,
1503                         "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
1504                         le32_to_cpu(raw_super->node_ino),
1505                         le32_to_cpu(raw_super->meta_ino),
1506                         le32_to_cpu(raw_super->root_ino));
1507                 return 1;
1508         }
1509
1510         if (le32_to_cpu(raw_super->segment_count) > F2FS_MAX_SEGMENT) {
1511                 f2fs_msg(sb, KERN_INFO,
1512                         "Invalid segment count (%u)",
1513                         le32_to_cpu(raw_super->segment_count));
1514                 return 1;
1515         }
1516
1517         /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
1518         if (sanity_check_area_boundary(sbi, bh))
1519                 return 1;
1520
1521         return 0;
1522 }
1523
1524 int sanity_check_ckpt(struct f2fs_sb_info *sbi)
1525 {
1526         unsigned int total, fsmeta;
1527         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1528         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1529         unsigned int ovp_segments, reserved_segments;
1530         unsigned int main_segs, blocks_per_seg;
1531         int i;
1532
1533         total = le32_to_cpu(raw_super->segment_count);
1534         fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
1535         fsmeta += le32_to_cpu(raw_super->segment_count_sit);
1536         fsmeta += le32_to_cpu(raw_super->segment_count_nat);
1537         fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
1538         fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
1539
1540         if (unlikely(fsmeta >= total))
1541                 return 1;
1542
1543         ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
1544         reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
1545
1546         if (unlikely(fsmeta < F2FS_MIN_SEGMENTS ||
1547                         ovp_segments == 0 || reserved_segments == 0)) {
1548                 f2fs_msg(sbi->sb, KERN_ERR,
1549                         "Wrong layout: check mkfs.f2fs version");
1550                 return 1;
1551         }
1552
1553         main_segs = le32_to_cpu(raw_super->segment_count_main);
1554         blocks_per_seg = sbi->blocks_per_seg;
1555
1556         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1557                 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
1558                         le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
1559                         return 1;
1560         }
1561         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1562                 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
1563                         le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
1564                         return 1;
1565         }
1566
1567         if (unlikely(f2fs_cp_error(sbi))) {
1568                 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
1569                 return 1;
1570         }
1571         return 0;
1572 }
1573
1574 static void init_sb_info(struct f2fs_sb_info *sbi)
1575 {
1576         struct f2fs_super_block *raw_super = sbi->raw_super;
1577         int i, j;
1578
1579         sbi->log_sectors_per_block =
1580                 le32_to_cpu(raw_super->log_sectors_per_block);
1581         sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
1582         sbi->blocksize = 1 << sbi->log_blocksize;
1583         sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1584         sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
1585         sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
1586         sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
1587         sbi->total_sections = le32_to_cpu(raw_super->section_count);
1588         sbi->total_node_count =
1589                 (le32_to_cpu(raw_super->segment_count_nat) / 2)
1590                         * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
1591         sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
1592         sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
1593         sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
1594         sbi->cur_victim_sec = NULL_SECNO;
1595         sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
1596
1597         sbi->dir_level = DEF_DIR_LEVEL;
1598         sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
1599         sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
1600         clear_sbi_flag(sbi, SBI_NEED_FSCK);
1601
1602         for (i = 0; i < NR_COUNT_TYPE; i++)
1603                 atomic_set(&sbi->nr_pages[i], 0);
1604
1605         atomic_set(&sbi->wb_sync_req, 0);
1606
1607         INIT_LIST_HEAD(&sbi->s_list);
1608         mutex_init(&sbi->umount_mutex);
1609         for (i = 0; i < NR_PAGE_TYPE - 1; i++)
1610                 for (j = HOT; j < NR_TEMP_TYPE; j++)
1611                         mutex_init(&sbi->wio_mutex[i][j]);
1612         spin_lock_init(&sbi->cp_lock);
1613 }
1614
1615 static int init_percpu_info(struct f2fs_sb_info *sbi)
1616 {
1617         int err;
1618
1619         err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
1620         if (err)
1621                 return err;
1622
1623         return percpu_counter_init(&sbi->total_valid_inode_count, 0,
1624                                                                 GFP_KERNEL);
1625 }
1626
1627 #ifdef CONFIG_BLK_DEV_ZONED
1628 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
1629 {
1630         struct block_device *bdev = FDEV(devi).bdev;
1631         sector_t nr_sectors = bdev->bd_part->nr_sects;
1632         sector_t sector = 0;
1633         struct blk_zone *zones;
1634         unsigned int i, nr_zones;
1635         unsigned int n = 0;
1636         int err = -EIO;
1637
1638         if (!f2fs_sb_mounted_blkzoned(sbi->sb))
1639                 return 0;
1640
1641         if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
1642                                 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
1643                 return -EINVAL;
1644         sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
1645         if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
1646                                 __ilog2_u32(sbi->blocks_per_blkz))
1647                 return -EINVAL;
1648         sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
1649         FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
1650                                         sbi->log_blocks_per_blkz;
1651         if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
1652                 FDEV(devi).nr_blkz++;
1653
1654         FDEV(devi).blkz_type = kmalloc(FDEV(devi).nr_blkz, GFP_KERNEL);
1655         if (!FDEV(devi).blkz_type)
1656                 return -ENOMEM;
1657
1658 #define F2FS_REPORT_NR_ZONES   4096
1659
1660         zones = kcalloc(F2FS_REPORT_NR_ZONES, sizeof(struct blk_zone),
1661                         GFP_KERNEL);
1662         if (!zones)
1663                 return -ENOMEM;
1664
1665         /* Get block zones type */
1666         while (zones && sector < nr_sectors) {
1667
1668                 nr_zones = F2FS_REPORT_NR_ZONES;
1669                 err = blkdev_report_zones(bdev, sector,
1670                                           zones, &nr_zones,
1671                                           GFP_KERNEL);
1672                 if (err)
1673                         break;
1674                 if (!nr_zones) {
1675                         err = -EIO;
1676                         break;
1677                 }
1678
1679                 for (i = 0; i < nr_zones; i++) {
1680                         FDEV(devi).blkz_type[n] = zones[i].type;
1681                         sector += zones[i].len;
1682                         n++;
1683                 }
1684         }
1685
1686         kfree(zones);
1687
1688         return err;
1689 }
1690 #endif
1691
1692 /*
1693  * Read f2fs raw super block.
1694  * Because we have two copies of super block, so read both of them
1695  * to get the first valid one. If any one of them is broken, we pass
1696  * them recovery flag back to the caller.
1697  */
1698 static int read_raw_super_block(struct f2fs_sb_info *sbi,
1699                         struct f2fs_super_block **raw_super,
1700                         int *valid_super_block, int *recovery)
1701 {
1702         struct super_block *sb = sbi->sb;
1703         int block;
1704         struct buffer_head *bh;
1705         struct f2fs_super_block *super;
1706         int err = 0;
1707
1708         super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
1709         if (!super)
1710                 return -ENOMEM;
1711
1712         for (block = 0; block < 2; block++) {
1713                 bh = sb_bread(sb, block);
1714                 if (!bh) {
1715                         f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
1716                                 block + 1);
1717                         err = -EIO;
1718                         continue;
1719                 }
1720
1721                 /* sanity checking of raw super */
1722                 if (sanity_check_raw_super(sbi, bh)) {
1723                         f2fs_msg(sb, KERN_ERR,
1724                                 "Can't find valid F2FS filesystem in %dth superblock",
1725                                 block + 1);
1726                         err = -EINVAL;
1727                         brelse(bh);
1728                         continue;
1729                 }
1730
1731                 if (!*raw_super) {
1732                         memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
1733                                                         sizeof(*super));
1734                         *valid_super_block = block;
1735                         *raw_super = super;
1736                 }
1737                 brelse(bh);
1738         }
1739
1740         /* Fail to read any one of the superblocks*/
1741         if (err < 0)
1742                 *recovery = 1;
1743
1744         /* No valid superblock */
1745         if (!*raw_super)
1746                 kfree(super);
1747         else
1748                 err = 0;
1749
1750         return err;
1751 }
1752
1753 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
1754 {
1755         struct buffer_head *bh;
1756         int err;
1757
1758         if ((recover && f2fs_readonly(sbi->sb)) ||
1759                                 bdev_read_only(sbi->sb->s_bdev)) {
1760                 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1761                 return -EROFS;
1762         }
1763
1764         /* write back-up superblock first */
1765         bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1);
1766         if (!bh)
1767                 return -EIO;
1768         err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1769         brelse(bh);
1770
1771         /* if we are in recovery path, skip writing valid superblock */
1772         if (recover || err)
1773                 return err;
1774
1775         /* write current valid superblock */
1776         bh = sb_getblk(sbi->sb, sbi->valid_super_block);
1777         if (!bh)
1778                 return -EIO;
1779         err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1780         brelse(bh);
1781         return err;
1782 }
1783
1784 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
1785 {
1786         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1787         unsigned int max_devices = MAX_DEVICES;
1788         int i;
1789
1790         /* Initialize single device information */
1791         if (!RDEV(0).path[0]) {
1792                 if (!bdev_is_zoned(sbi->sb->s_bdev))
1793                         return 0;
1794                 max_devices = 1;
1795         }
1796
1797         /*
1798          * Initialize multiple devices information, or single
1799          * zoned block device information.
1800          */
1801         sbi->devs = kcalloc(max_devices, sizeof(struct f2fs_dev_info),
1802                                 GFP_KERNEL);
1803         if (!sbi->devs)
1804                 return -ENOMEM;
1805
1806         for (i = 0; i < max_devices; i++) {
1807
1808                 if (i > 0 && !RDEV(i).path[0])
1809                         break;
1810
1811                 if (max_devices == 1) {
1812                         /* Single zoned block device mount */
1813                         FDEV(0).bdev =
1814                                 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
1815                                         sbi->sb->s_mode, sbi->sb->s_type);
1816                 } else {
1817                         /* Multi-device mount */
1818                         memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
1819                         FDEV(i).total_segments =
1820                                 le32_to_cpu(RDEV(i).total_segments);
1821                         if (i == 0) {
1822                                 FDEV(i).start_blk = 0;
1823                                 FDEV(i).end_blk = FDEV(i).start_blk +
1824                                     (FDEV(i).total_segments <<
1825                                     sbi->log_blocks_per_seg) - 1 +
1826                                     le32_to_cpu(raw_super->segment0_blkaddr);
1827                         } else {
1828                                 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
1829                                 FDEV(i).end_blk = FDEV(i).start_blk +
1830                                         (FDEV(i).total_segments <<
1831                                         sbi->log_blocks_per_seg) - 1;
1832                         }
1833                         FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
1834                                         sbi->sb->s_mode, sbi->sb->s_type);
1835                 }
1836                 if (IS_ERR(FDEV(i).bdev))
1837                         return PTR_ERR(FDEV(i).bdev);
1838
1839                 /* to release errored devices */
1840                 sbi->s_ndevs = i + 1;
1841
1842 #ifdef CONFIG_BLK_DEV_ZONED
1843                 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
1844                                 !f2fs_sb_mounted_blkzoned(sbi->sb)) {
1845                         f2fs_msg(sbi->sb, KERN_ERR,
1846                                 "Zoned block device feature not enabled\n");
1847                         return -EINVAL;
1848                 }
1849                 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
1850                         if (init_blkz_info(sbi, i)) {
1851                                 f2fs_msg(sbi->sb, KERN_ERR,
1852                                         "Failed to initialize F2FS blkzone information");
1853                                 return -EINVAL;
1854                         }
1855                         if (max_devices == 1)
1856                                 break;
1857                         f2fs_msg(sbi->sb, KERN_INFO,
1858                                 "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
1859                                 i, FDEV(i).path,
1860                                 FDEV(i).total_segments,
1861                                 FDEV(i).start_blk, FDEV(i).end_blk,
1862                                 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
1863                                 "Host-aware" : "Host-managed");
1864                         continue;
1865                 }
1866 #endif
1867                 f2fs_msg(sbi->sb, KERN_INFO,
1868                         "Mount Device [%2d]: %20s, %8u, %8x - %8x",
1869                                 i, FDEV(i).path,
1870                                 FDEV(i).total_segments,
1871                                 FDEV(i).start_blk, FDEV(i).end_blk);
1872         }
1873         f2fs_msg(sbi->sb, KERN_INFO,
1874                         "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
1875         return 0;
1876 }
1877
1878 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
1879 {
1880         struct f2fs_sb_info *sbi;
1881         struct f2fs_super_block *raw_super;
1882         struct inode *root;
1883         int err;
1884         bool retry = true, need_fsck = false;
1885         char *options = NULL;
1886         int recovery, i, valid_super_block;
1887         struct curseg_info *seg_i;
1888
1889 try_onemore:
1890         err = -EINVAL;
1891         raw_super = NULL;
1892         valid_super_block = -1;
1893         recovery = 0;
1894
1895         /* allocate memory for f2fs-specific super block info */
1896         sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
1897         if (!sbi)
1898                 return -ENOMEM;
1899
1900         sbi->sb = sb;
1901
1902         /* Load the checksum driver */
1903         sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
1904         if (IS_ERR(sbi->s_chksum_driver)) {
1905                 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
1906                 err = PTR_ERR(sbi->s_chksum_driver);
1907                 sbi->s_chksum_driver = NULL;
1908                 goto free_sbi;
1909         }
1910
1911         /* set a block size */
1912         if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
1913                 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
1914                 goto free_sbi;
1915         }
1916
1917         err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
1918                                                                 &recovery);
1919         if (err)
1920                 goto free_sbi;
1921
1922         sb->s_fs_info = sbi;
1923         sbi->raw_super = raw_super;
1924
1925         /*
1926          * The BLKZONED feature indicates that the drive was formatted with
1927          * zone alignment optimization. This is optional for host-aware
1928          * devices, but mandatory for host-managed zoned block devices.
1929          */
1930 #ifndef CONFIG_BLK_DEV_ZONED
1931         if (f2fs_sb_mounted_blkzoned(sb)) {
1932                 f2fs_msg(sb, KERN_ERR,
1933                          "Zoned block device support is not enabled\n");
1934                 err = -EOPNOTSUPP;
1935                 goto free_sb_buf;
1936         }
1937 #endif
1938         default_options(sbi);
1939         /* parse mount options */
1940         options = kstrdup((const char *)data, GFP_KERNEL);
1941         if (data && !options) {
1942                 err = -ENOMEM;
1943                 goto free_sb_buf;
1944         }
1945
1946         err = parse_options(sb, options);
1947         if (err)
1948                 goto free_options;
1949
1950         sbi->max_file_blocks = max_file_blocks();
1951         sb->s_maxbytes = sbi->max_file_blocks <<
1952                                 le32_to_cpu(raw_super->log_blocksize);
1953         sb->s_max_links = F2FS_LINK_MAX;
1954         get_random_bytes(&sbi->s_next_generation, sizeof(u32));
1955
1956 #ifdef CONFIG_QUOTA
1957         sb->dq_op = &f2fs_quota_operations;
1958         sb->s_qcop = &f2fs_quotactl_ops;
1959         sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
1960 #endif
1961
1962         sb->s_op = &f2fs_sops;
1963         sb->s_cop = &f2fs_cryptops;
1964         sb->s_xattr = f2fs_xattr_handlers;
1965         sb->s_export_op = &f2fs_export_ops;
1966         sb->s_magic = F2FS_SUPER_MAGIC;
1967         sb->s_time_gran = 1;
1968         sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1969                 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1970         memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
1971
1972         /* init f2fs-specific super block info */
1973         sbi->valid_super_block = valid_super_block;
1974         mutex_init(&sbi->gc_mutex);
1975         mutex_init(&sbi->cp_mutex);
1976         init_rwsem(&sbi->node_write);
1977         init_rwsem(&sbi->node_change);
1978
1979         /* disallow all the data/node/meta page writes */
1980         set_sbi_flag(sbi, SBI_POR_DOING);
1981         spin_lock_init(&sbi->stat_lock);
1982
1983         for (i = 0; i < NR_PAGE_TYPE; i++) {
1984                 int n = (i == META) ? 1: NR_TEMP_TYPE;
1985                 int j;
1986
1987                 sbi->write_io[i] = kmalloc(n * sizeof(struct f2fs_bio_info),
1988                                                                 GFP_KERNEL);
1989                 if (!sbi->write_io[i]) {
1990                         err = -ENOMEM;
1991                         goto free_options;
1992                 }
1993
1994                 for (j = HOT; j < n; j++) {
1995                         init_rwsem(&sbi->write_io[i][j].io_rwsem);
1996                         sbi->write_io[i][j].sbi = sbi;
1997                         sbi->write_io[i][j].bio = NULL;
1998                         spin_lock_init(&sbi->write_io[i][j].io_lock);
1999                         INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
2000                 }
2001         }
2002
2003         init_rwsem(&sbi->cp_rwsem);
2004         init_waitqueue_head(&sbi->cp_wait);
2005         init_sb_info(sbi);
2006
2007         err = init_percpu_info(sbi);
2008         if (err)
2009                 goto free_options;
2010
2011         if (F2FS_IO_SIZE(sbi) > 1) {
2012                 sbi->write_io_dummy =
2013                         mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
2014                 if (!sbi->write_io_dummy) {
2015                         err = -ENOMEM;
2016                         goto free_options;
2017                 }
2018         }
2019
2020         /* get an inode for meta space */
2021         sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
2022         if (IS_ERR(sbi->meta_inode)) {
2023                 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
2024                 err = PTR_ERR(sbi->meta_inode);
2025                 goto free_io_dummy;
2026         }
2027
2028         err = get_valid_checkpoint(sbi);
2029         if (err) {
2030                 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
2031                 goto free_meta_inode;
2032         }
2033
2034         /* Initialize device list */
2035         err = f2fs_scan_devices(sbi);
2036         if (err) {
2037                 f2fs_msg(sb, KERN_ERR, "Failed to find devices");
2038                 goto free_devices;
2039         }
2040
2041         sbi->total_valid_node_count =
2042                                 le32_to_cpu(sbi->ckpt->valid_node_count);
2043         percpu_counter_set(&sbi->total_valid_inode_count,
2044                                 le32_to_cpu(sbi->ckpt->valid_inode_count));
2045         sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
2046         sbi->total_valid_block_count =
2047                                 le64_to_cpu(sbi->ckpt->valid_block_count);
2048         sbi->last_valid_block_count = sbi->total_valid_block_count;
2049         sbi->reserved_blocks = 0;
2050
2051         for (i = 0; i < NR_INODE_TYPE; i++) {
2052                 INIT_LIST_HEAD(&sbi->inode_list[i]);
2053                 spin_lock_init(&sbi->inode_lock[i]);
2054         }
2055
2056         init_extent_cache_info(sbi);
2057
2058         init_ino_entry_info(sbi);
2059
2060         /* setup f2fs internal modules */
2061         err = build_segment_manager(sbi);
2062         if (err) {
2063                 f2fs_msg(sb, KERN_ERR,
2064                         "Failed to initialize F2FS segment manager");
2065                 goto free_sm;
2066         }
2067         err = build_node_manager(sbi);
2068         if (err) {
2069                 f2fs_msg(sb, KERN_ERR,
2070                         "Failed to initialize F2FS node manager");
2071                 goto free_nm;
2072         }
2073
2074         /* For write statistics */
2075         if (sb->s_bdev->bd_part)
2076                 sbi->sectors_written_start =
2077                         (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
2078
2079         /* Read accumulated write IO statistics if exists */
2080         seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
2081         if (__exist_node_summaries(sbi))
2082                 sbi->kbytes_written =
2083                         le64_to_cpu(seg_i->journal->info.kbytes_written);
2084
2085         build_gc_manager(sbi);
2086
2087         /* get an inode for node space */
2088         sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
2089         if (IS_ERR(sbi->node_inode)) {
2090                 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
2091                 err = PTR_ERR(sbi->node_inode);
2092                 goto free_nm;
2093         }
2094
2095         f2fs_join_shrinker(sbi);
2096
2097         err = f2fs_build_stats(sbi);
2098         if (err)
2099                 goto free_nm;
2100
2101         /* if there are nt orphan nodes free them */
2102         err = recover_orphan_inodes(sbi);
2103         if (err)
2104                 goto free_node_inode;
2105
2106         /* read root inode and dentry */
2107         root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
2108         if (IS_ERR(root)) {
2109                 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
2110                 err = PTR_ERR(root);
2111                 goto free_node_inode;
2112         }
2113         if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
2114                 iput(root);
2115                 err = -EINVAL;
2116                 goto free_node_inode;
2117         }
2118
2119         sb->s_root = d_make_root(root); /* allocate root dentry */
2120         if (!sb->s_root) {
2121                 err = -ENOMEM;
2122                 goto free_root_inode;
2123         }
2124
2125         err = f2fs_init_sysfs(sbi);
2126         if (err)
2127                 goto free_root_inode;
2128
2129         /* recover fsynced data */
2130         if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
2131                 /*
2132                  * mount should be failed, when device has readonly mode, and
2133                  * previous checkpoint was not done by clean system shutdown.
2134                  */
2135                 if (bdev_read_only(sb->s_bdev) &&
2136                                 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
2137                         err = -EROFS;
2138                         goto free_sysfs;
2139                 }
2140
2141                 if (need_fsck)
2142                         set_sbi_flag(sbi, SBI_NEED_FSCK);
2143
2144                 if (!retry)
2145                         goto skip_recovery;
2146
2147                 err = recover_fsync_data(sbi, false);
2148                 if (err < 0) {
2149                         need_fsck = true;
2150                         f2fs_msg(sb, KERN_ERR,
2151                                 "Cannot recover all fsync data errno=%d", err);
2152                         goto free_sysfs;
2153                 }
2154         } else {
2155                 err = recover_fsync_data(sbi, true);
2156
2157                 if (!f2fs_readonly(sb) && err > 0) {
2158                         err = -EINVAL;
2159                         f2fs_msg(sb, KERN_ERR,
2160                                 "Need to recover fsync data");
2161                         goto free_sysfs;
2162                 }
2163         }
2164 skip_recovery:
2165         /* recover_fsync_data() cleared this already */
2166         clear_sbi_flag(sbi, SBI_POR_DOING);
2167
2168         /*
2169          * If filesystem is not mounted as read-only then
2170          * do start the gc_thread.
2171          */
2172         if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
2173                 /* After POR, we can run background GC thread.*/
2174                 err = start_gc_thread(sbi);
2175                 if (err)
2176                         goto free_sysfs;
2177         }
2178         kfree(options);
2179
2180         /* recover broken superblock */
2181         if (recovery) {
2182                 err = f2fs_commit_super(sbi, true);
2183                 f2fs_msg(sb, KERN_INFO,
2184                         "Try to recover %dth superblock, ret: %d",
2185                         sbi->valid_super_block ? 1 : 2, err);
2186         }
2187
2188         f2fs_msg(sbi->sb, KERN_NOTICE, "Mounted with checkpoint version = %llx",
2189                                 cur_cp_version(F2FS_CKPT(sbi)));
2190         f2fs_update_time(sbi, CP_TIME);
2191         f2fs_update_time(sbi, REQ_TIME);
2192         return 0;
2193
2194 free_sysfs:
2195         f2fs_sync_inode_meta(sbi);
2196         f2fs_exit_sysfs(sbi);
2197 free_root_inode:
2198         dput(sb->s_root);
2199         sb->s_root = NULL;
2200 free_node_inode:
2201         truncate_inode_pages_final(NODE_MAPPING(sbi));
2202         mutex_lock(&sbi->umount_mutex);
2203         release_ino_entry(sbi, true);
2204         f2fs_leave_shrinker(sbi);
2205         /*
2206          * Some dirty meta pages can be produced by recover_orphan_inodes()
2207          * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
2208          * followed by write_checkpoint() through f2fs_write_node_pages(), which
2209          * falls into an infinite loop in sync_meta_pages().
2210          */
2211         truncate_inode_pages_final(META_MAPPING(sbi));
2212         iput(sbi->node_inode);
2213         mutex_unlock(&sbi->umount_mutex);
2214         f2fs_destroy_stats(sbi);
2215 free_nm:
2216         destroy_node_manager(sbi);
2217 free_sm:
2218         destroy_segment_manager(sbi);
2219 free_devices:
2220         destroy_device_list(sbi);
2221         kfree(sbi->ckpt);
2222 free_meta_inode:
2223         make_bad_inode(sbi->meta_inode);
2224         iput(sbi->meta_inode);
2225 free_io_dummy:
2226         mempool_destroy(sbi->write_io_dummy);
2227 free_options:
2228         for (i = 0; i < NR_PAGE_TYPE; i++)
2229                 kfree(sbi->write_io[i]);
2230         destroy_percpu_info(sbi);
2231         kfree(options);
2232 free_sb_buf:
2233         kfree(raw_super);
2234 free_sbi:
2235         if (sbi->s_chksum_driver)
2236                 crypto_free_shash(sbi->s_chksum_driver);
2237         kfree(sbi);
2238
2239         /* give only one another chance */
2240         if (retry) {
2241                 retry = false;
2242                 shrink_dcache_sb(sb);
2243                 goto try_onemore;
2244         }
2245         return err;
2246 }
2247
2248 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
2249                         const char *dev_name, void *data)
2250 {
2251         return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
2252 }
2253
2254 static void kill_f2fs_super(struct super_block *sb)
2255 {
2256         if (sb->s_root) {
2257                 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
2258                 stop_gc_thread(F2FS_SB(sb));
2259                 stop_discard_thread(F2FS_SB(sb));
2260         }
2261         kill_block_super(sb);
2262 }
2263
2264 static struct file_system_type f2fs_fs_type = {
2265         .owner          = THIS_MODULE,
2266         .name           = "f2fs",
2267         .mount          = f2fs_mount,
2268         .kill_sb        = kill_f2fs_super,
2269         .fs_flags       = FS_REQUIRES_DEV,
2270 };
2271 MODULE_ALIAS_FS("f2fs");
2272
2273 static int __init init_inodecache(void)
2274 {
2275         f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
2276                         sizeof(struct f2fs_inode_info), 0,
2277                         SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
2278         if (!f2fs_inode_cachep)
2279                 return -ENOMEM;
2280         return 0;
2281 }
2282
2283 static void destroy_inodecache(void)
2284 {
2285         /*
2286          * Make sure all delayed rcu free inodes are flushed before we
2287          * destroy cache.
2288          */
2289         rcu_barrier();
2290         kmem_cache_destroy(f2fs_inode_cachep);
2291 }
2292
2293 static int __init init_f2fs_fs(void)
2294 {
2295         int err;
2296
2297         f2fs_build_trace_ios();
2298
2299         err = init_inodecache();
2300         if (err)
2301                 goto fail;
2302         err = create_node_manager_caches();
2303         if (err)
2304                 goto free_inodecache;
2305         err = create_segment_manager_caches();
2306         if (err)
2307                 goto free_node_manager_caches;
2308         err = create_checkpoint_caches();
2309         if (err)
2310                 goto free_segment_manager_caches;
2311         err = create_extent_cache();
2312         if (err)
2313                 goto free_checkpoint_caches;
2314         err = f2fs_register_sysfs();
2315         if (err)
2316                 goto free_extent_cache;
2317         err = register_shrinker(&f2fs_shrinker_info);
2318         if (err)
2319                 goto free_sysfs;
2320         err = register_filesystem(&f2fs_fs_type);
2321         if (err)
2322                 goto free_shrinker;
2323         err = f2fs_create_root_stats();
2324         if (err)
2325                 goto free_filesystem;
2326         return 0;
2327
2328 free_filesystem:
2329         unregister_filesystem(&f2fs_fs_type);
2330 free_shrinker:
2331         unregister_shrinker(&f2fs_shrinker_info);
2332 free_sysfs:
2333         f2fs_unregister_sysfs();
2334 free_extent_cache:
2335         destroy_extent_cache();
2336 free_checkpoint_caches:
2337         destroy_checkpoint_caches();
2338 free_segment_manager_caches:
2339         destroy_segment_manager_caches();
2340 free_node_manager_caches:
2341         destroy_node_manager_caches();
2342 free_inodecache:
2343         destroy_inodecache();
2344 fail:
2345         return err;
2346 }
2347
2348 static void __exit exit_f2fs_fs(void)
2349 {
2350         f2fs_destroy_root_stats();
2351         unregister_filesystem(&f2fs_fs_type);
2352         unregister_shrinker(&f2fs_shrinker_info);
2353         f2fs_unregister_sysfs();
2354         destroy_extent_cache();
2355         destroy_checkpoint_caches();
2356         destroy_segment_manager_caches();
2357         destroy_node_manager_caches();
2358         destroy_inodecache();
2359         f2fs_destroy_trace_ios();
2360 }
2361
2362 module_init(init_f2fs_fs)
2363 module_exit(exit_f2fs_fs)
2364
2365 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
2366 MODULE_DESCRIPTION("Flash Friendly File System");
2367 MODULE_LICENSE("GPL");
2368