Merge tag 'for-f2fs-4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk...
[sfrench/cifs-2.6.git] / fs / f2fs / segment.c
1 /*
2  * fs/f2fs/segment.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/swap.h>
18 #include <linux/timer.h>
19
20 #include "f2fs.h"
21 #include "segment.h"
22 #include "node.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
27
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *sit_entry_set_slab;
30 static struct kmem_cache *inmem_entry_slab;
31
32 static unsigned long __reverse_ulong(unsigned char *str)
33 {
34         unsigned long tmp = 0;
35         int shift = 24, idx = 0;
36
37 #if BITS_PER_LONG == 64
38         shift = 56;
39 #endif
40         while (shift >= 0) {
41                 tmp |= (unsigned long)str[idx++] << shift;
42                 shift -= BITS_PER_BYTE;
43         }
44         return tmp;
45 }
46
47 /*
48  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
49  * MSB and LSB are reversed in a byte by f2fs_set_bit.
50  */
51 static inline unsigned long __reverse_ffs(unsigned long word)
52 {
53         int num = 0;
54
55 #if BITS_PER_LONG == 64
56         if ((word & 0xffffffff00000000UL) == 0)
57                 num += 32;
58         else
59                 word >>= 32;
60 #endif
61         if ((word & 0xffff0000) == 0)
62                 num += 16;
63         else
64                 word >>= 16;
65
66         if ((word & 0xff00) == 0)
67                 num += 8;
68         else
69                 word >>= 8;
70
71         if ((word & 0xf0) == 0)
72                 num += 4;
73         else
74                 word >>= 4;
75
76         if ((word & 0xc) == 0)
77                 num += 2;
78         else
79                 word >>= 2;
80
81         if ((word & 0x2) == 0)
82                 num += 1;
83         return num;
84 }
85
86 /*
87  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
88  * f2fs_set_bit makes MSB and LSB reversed in a byte.
89  * @size must be integral times of unsigned long.
90  * Example:
91  *                             MSB <--> LSB
92  *   f2fs_set_bit(0, bitmap) => 1000 0000
93  *   f2fs_set_bit(7, bitmap) => 0000 0001
94  */
95 static unsigned long __find_rev_next_bit(const unsigned long *addr,
96                         unsigned long size, unsigned long offset)
97 {
98         const unsigned long *p = addr + BIT_WORD(offset);
99         unsigned long result = size;
100         unsigned long tmp;
101
102         if (offset >= size)
103                 return size;
104
105         size -= (offset & ~(BITS_PER_LONG - 1));
106         offset %= BITS_PER_LONG;
107
108         while (1) {
109                 if (*p == 0)
110                         goto pass;
111
112                 tmp = __reverse_ulong((unsigned char *)p);
113
114                 tmp &= ~0UL >> offset;
115                 if (size < BITS_PER_LONG)
116                         tmp &= (~0UL << (BITS_PER_LONG - size));
117                 if (tmp)
118                         goto found;
119 pass:
120                 if (size <= BITS_PER_LONG)
121                         break;
122                 size -= BITS_PER_LONG;
123                 offset = 0;
124                 p++;
125         }
126         return result;
127 found:
128         return result - size + __reverse_ffs(tmp);
129 }
130
131 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
132                         unsigned long size, unsigned long offset)
133 {
134         const unsigned long *p = addr + BIT_WORD(offset);
135         unsigned long result = size;
136         unsigned long tmp;
137
138         if (offset >= size)
139                 return size;
140
141         size -= (offset & ~(BITS_PER_LONG - 1));
142         offset %= BITS_PER_LONG;
143
144         while (1) {
145                 if (*p == ~0UL)
146                         goto pass;
147
148                 tmp = __reverse_ulong((unsigned char *)p);
149
150                 if (offset)
151                         tmp |= ~0UL << (BITS_PER_LONG - offset);
152                 if (size < BITS_PER_LONG)
153                         tmp |= ~0UL >> size;
154                 if (tmp != ~0UL)
155                         goto found;
156 pass:
157                 if (size <= BITS_PER_LONG)
158                         break;
159                 size -= BITS_PER_LONG;
160                 offset = 0;
161                 p++;
162         }
163         return result;
164 found:
165         return result - size + __reverse_ffz(tmp);
166 }
167
168 void register_inmem_page(struct inode *inode, struct page *page)
169 {
170         struct f2fs_inode_info *fi = F2FS_I(inode);
171         struct inmem_pages *new;
172
173         f2fs_trace_pid(page);
174
175         set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
176         SetPagePrivate(page);
177
178         new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
179
180         /* add atomic page indices to the list */
181         new->page = page;
182         INIT_LIST_HEAD(&new->list);
183
184         /* increase reference count with clean state */
185         mutex_lock(&fi->inmem_lock);
186         get_page(page);
187         list_add_tail(&new->list, &fi->inmem_pages);
188         inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
189         mutex_unlock(&fi->inmem_lock);
190
191         trace_f2fs_register_inmem_page(page, INMEM);
192 }
193
194 static int __revoke_inmem_pages(struct inode *inode,
195                                 struct list_head *head, bool drop, bool recover)
196 {
197         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
198         struct inmem_pages *cur, *tmp;
199         int err = 0;
200
201         list_for_each_entry_safe(cur, tmp, head, list) {
202                 struct page *page = cur->page;
203
204                 if (drop)
205                         trace_f2fs_commit_inmem_page(page, INMEM_DROP);
206
207                 lock_page(page);
208
209                 if (recover) {
210                         struct dnode_of_data dn;
211                         struct node_info ni;
212
213                         trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
214
215                         set_new_dnode(&dn, inode, NULL, NULL, 0);
216                         if (get_dnode_of_data(&dn, page->index, LOOKUP_NODE)) {
217                                 err = -EAGAIN;
218                                 goto next;
219                         }
220                         get_node_info(sbi, dn.nid, &ni);
221                         f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
222                                         cur->old_addr, ni.version, true, true);
223                         f2fs_put_dnode(&dn);
224                 }
225 next:
226                 /* we don't need to invalidate this in the sccessful status */
227                 if (drop || recover)
228                         ClearPageUptodate(page);
229                 set_page_private(page, 0);
230                 ClearPagePrivate(page);
231                 f2fs_put_page(page, 1);
232
233                 list_del(&cur->list);
234                 kmem_cache_free(inmem_entry_slab, cur);
235                 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
236         }
237         return err;
238 }
239
240 void drop_inmem_pages(struct inode *inode)
241 {
242         struct f2fs_inode_info *fi = F2FS_I(inode);
243
244         clear_inode_flag(inode, FI_ATOMIC_FILE);
245
246         mutex_lock(&fi->inmem_lock);
247         __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
248         mutex_unlock(&fi->inmem_lock);
249 }
250
251 static int __commit_inmem_pages(struct inode *inode,
252                                         struct list_head *revoke_list)
253 {
254         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
255         struct f2fs_inode_info *fi = F2FS_I(inode);
256         struct inmem_pages *cur, *tmp;
257         struct f2fs_io_info fio = {
258                 .sbi = sbi,
259                 .type = DATA,
260                 .op = REQ_OP_WRITE,
261                 .op_flags = WRITE_SYNC | REQ_PRIO,
262                 .encrypted_page = NULL,
263         };
264         bool submit_bio = false;
265         int err = 0;
266
267         list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
268                 struct page *page = cur->page;
269
270                 lock_page(page);
271                 if (page->mapping == inode->i_mapping) {
272                         trace_f2fs_commit_inmem_page(page, INMEM);
273
274                         set_page_dirty(page);
275                         f2fs_wait_on_page_writeback(page, DATA, true);
276                         if (clear_page_dirty_for_io(page))
277                                 inode_dec_dirty_pages(inode);
278
279                         fio.page = page;
280                         err = do_write_data_page(&fio);
281                         if (err) {
282                                 unlock_page(page);
283                                 break;
284                         }
285
286                         /* record old blkaddr for revoking */
287                         cur->old_addr = fio.old_blkaddr;
288
289                         clear_cold_data(page);
290                         submit_bio = true;
291                 }
292                 unlock_page(page);
293                 list_move_tail(&cur->list, revoke_list);
294         }
295
296         if (submit_bio)
297                 f2fs_submit_merged_bio_cond(sbi, inode, NULL, 0, DATA, WRITE);
298
299         if (!err)
300                 __revoke_inmem_pages(inode, revoke_list, false, false);
301
302         return err;
303 }
304
305 int commit_inmem_pages(struct inode *inode)
306 {
307         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
308         struct f2fs_inode_info *fi = F2FS_I(inode);
309         struct list_head revoke_list;
310         int err;
311
312         INIT_LIST_HEAD(&revoke_list);
313         f2fs_balance_fs(sbi, true);
314         f2fs_lock_op(sbi);
315
316         mutex_lock(&fi->inmem_lock);
317         err = __commit_inmem_pages(inode, &revoke_list);
318         if (err) {
319                 int ret;
320                 /*
321                  * try to revoke all committed pages, but still we could fail
322                  * due to no memory or other reason, if that happened, EAGAIN
323                  * will be returned, which means in such case, transaction is
324                  * already not integrity, caller should use journal to do the
325                  * recovery or rewrite & commit last transaction. For other
326                  * error number, revoking was done by filesystem itself.
327                  */
328                 ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
329                 if (ret)
330                         err = ret;
331
332                 /* drop all uncommitted pages */
333                 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
334         }
335         mutex_unlock(&fi->inmem_lock);
336
337         f2fs_unlock_op(sbi);
338         return err;
339 }
340
341 /*
342  * This function balances dirty node and dentry pages.
343  * In addition, it controls garbage collection.
344  */
345 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
346 {
347         if (!need)
348                 return;
349
350         /* balance_fs_bg is able to be pending */
351         if (excess_cached_nats(sbi))
352                 f2fs_balance_fs_bg(sbi);
353
354         /*
355          * We should do GC or end up with checkpoint, if there are so many dirty
356          * dir/node pages without enough free segments.
357          */
358         if (has_not_enough_free_secs(sbi, 0)) {
359                 mutex_lock(&sbi->gc_mutex);
360                 f2fs_gc(sbi, false);
361         }
362 }
363
364 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
365 {
366         /* try to shrink extent cache when there is no enough memory */
367         if (!available_free_memory(sbi, EXTENT_CACHE))
368                 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
369
370         /* check the # of cached NAT entries */
371         if (!available_free_memory(sbi, NAT_ENTRIES))
372                 try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
373
374         if (!available_free_memory(sbi, FREE_NIDS))
375                 try_to_free_nids(sbi, MAX_FREE_NIDS);
376         else
377                 build_free_nids(sbi);
378
379         /* checkpoint is the only way to shrink partial cached entries */
380         if (!available_free_memory(sbi, NAT_ENTRIES) ||
381                         !available_free_memory(sbi, INO_ENTRIES) ||
382                         excess_prefree_segs(sbi) ||
383                         excess_dirty_nats(sbi) ||
384                         (is_idle(sbi) && f2fs_time_over(sbi, CP_TIME))) {
385                 if (test_opt(sbi, DATA_FLUSH)) {
386                         struct blk_plug plug;
387
388                         blk_start_plug(&plug);
389                         sync_dirty_inodes(sbi, FILE_INODE);
390                         blk_finish_plug(&plug);
391                 }
392                 f2fs_sync_fs(sbi->sb, true);
393                 stat_inc_bg_cp_count(sbi->stat_info);
394         }
395 }
396
397 static int issue_flush_thread(void *data)
398 {
399         struct f2fs_sb_info *sbi = data;
400         struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
401         wait_queue_head_t *q = &fcc->flush_wait_queue;
402 repeat:
403         if (kthread_should_stop())
404                 return 0;
405
406         if (!llist_empty(&fcc->issue_list)) {
407                 struct bio *bio;
408                 struct flush_cmd *cmd, *next;
409                 int ret;
410
411                 bio = f2fs_bio_alloc(0);
412
413                 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
414                 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
415
416                 bio->bi_bdev = sbi->sb->s_bdev;
417                 bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH);
418                 ret = submit_bio_wait(bio);
419
420                 llist_for_each_entry_safe(cmd, next,
421                                           fcc->dispatch_list, llnode) {
422                         cmd->ret = ret;
423                         complete(&cmd->wait);
424                 }
425                 bio_put(bio);
426                 fcc->dispatch_list = NULL;
427         }
428
429         wait_event_interruptible(*q,
430                 kthread_should_stop() || !llist_empty(&fcc->issue_list));
431         goto repeat;
432 }
433
434 int f2fs_issue_flush(struct f2fs_sb_info *sbi)
435 {
436         struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
437         struct flush_cmd cmd;
438
439         trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER),
440                                         test_opt(sbi, FLUSH_MERGE));
441
442         if (test_opt(sbi, NOBARRIER))
443                 return 0;
444
445         if (!test_opt(sbi, FLUSH_MERGE) || !atomic_read(&fcc->submit_flush)) {
446                 struct bio *bio = f2fs_bio_alloc(0);
447                 int ret;
448
449                 atomic_inc(&fcc->submit_flush);
450                 bio->bi_bdev = sbi->sb->s_bdev;
451                 bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH);
452                 ret = submit_bio_wait(bio);
453                 atomic_dec(&fcc->submit_flush);
454                 bio_put(bio);
455                 return ret;
456         }
457
458         init_completion(&cmd.wait);
459
460         atomic_inc(&fcc->submit_flush);
461         llist_add(&cmd.llnode, &fcc->issue_list);
462
463         if (!fcc->dispatch_list)
464                 wake_up(&fcc->flush_wait_queue);
465
466         wait_for_completion(&cmd.wait);
467         atomic_dec(&fcc->submit_flush);
468
469         return cmd.ret;
470 }
471
472 int create_flush_cmd_control(struct f2fs_sb_info *sbi)
473 {
474         dev_t dev = sbi->sb->s_bdev->bd_dev;
475         struct flush_cmd_control *fcc;
476         int err = 0;
477
478         fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
479         if (!fcc)
480                 return -ENOMEM;
481         atomic_set(&fcc->submit_flush, 0);
482         init_waitqueue_head(&fcc->flush_wait_queue);
483         init_llist_head(&fcc->issue_list);
484         SM_I(sbi)->cmd_control_info = fcc;
485         fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
486                                 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
487         if (IS_ERR(fcc->f2fs_issue_flush)) {
488                 err = PTR_ERR(fcc->f2fs_issue_flush);
489                 kfree(fcc);
490                 SM_I(sbi)->cmd_control_info = NULL;
491                 return err;
492         }
493
494         return err;
495 }
496
497 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi)
498 {
499         struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
500
501         if (fcc && fcc->f2fs_issue_flush)
502                 kthread_stop(fcc->f2fs_issue_flush);
503         kfree(fcc);
504         SM_I(sbi)->cmd_control_info = NULL;
505 }
506
507 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
508                 enum dirty_type dirty_type)
509 {
510         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
511
512         /* need not be added */
513         if (IS_CURSEG(sbi, segno))
514                 return;
515
516         if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
517                 dirty_i->nr_dirty[dirty_type]++;
518
519         if (dirty_type == DIRTY) {
520                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
521                 enum dirty_type t = sentry->type;
522
523                 if (unlikely(t >= DIRTY)) {
524                         f2fs_bug_on(sbi, 1);
525                         return;
526                 }
527                 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
528                         dirty_i->nr_dirty[t]++;
529         }
530 }
531
532 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
533                 enum dirty_type dirty_type)
534 {
535         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
536
537         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
538                 dirty_i->nr_dirty[dirty_type]--;
539
540         if (dirty_type == DIRTY) {
541                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
542                 enum dirty_type t = sentry->type;
543
544                 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
545                         dirty_i->nr_dirty[t]--;
546
547                 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
548                         clear_bit(GET_SECNO(sbi, segno),
549                                                 dirty_i->victim_secmap);
550         }
551 }
552
553 /*
554  * Should not occur error such as -ENOMEM.
555  * Adding dirty entry into seglist is not critical operation.
556  * If a given segment is one of current working segments, it won't be added.
557  */
558 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
559 {
560         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
561         unsigned short valid_blocks;
562
563         if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
564                 return;
565
566         mutex_lock(&dirty_i->seglist_lock);
567
568         valid_blocks = get_valid_blocks(sbi, segno, 0);
569
570         if (valid_blocks == 0) {
571                 __locate_dirty_segment(sbi, segno, PRE);
572                 __remove_dirty_segment(sbi, segno, DIRTY);
573         } else if (valid_blocks < sbi->blocks_per_seg) {
574                 __locate_dirty_segment(sbi, segno, DIRTY);
575         } else {
576                 /* Recovery routine with SSR needs this */
577                 __remove_dirty_segment(sbi, segno, DIRTY);
578         }
579
580         mutex_unlock(&dirty_i->seglist_lock);
581 }
582
583 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
584                                 block_t blkstart, block_t blklen)
585 {
586         sector_t start = SECTOR_FROM_BLOCK(blkstart);
587         sector_t len = SECTOR_FROM_BLOCK(blklen);
588         struct seg_entry *se;
589         unsigned int offset;
590         block_t i;
591
592         for (i = blkstart; i < blkstart + blklen; i++) {
593                 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
594                 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
595
596                 if (!f2fs_test_and_set_bit(offset, se->discard_map))
597                         sbi->discard_blks--;
598         }
599         trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
600         return blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0);
601 }
602
603 bool discard_next_dnode(struct f2fs_sb_info *sbi, block_t blkaddr)
604 {
605         int err = -EOPNOTSUPP;
606
607         if (test_opt(sbi, DISCARD)) {
608                 struct seg_entry *se = get_seg_entry(sbi,
609                                 GET_SEGNO(sbi, blkaddr));
610                 unsigned int offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
611
612                 if (f2fs_test_bit(offset, se->discard_map))
613                         return false;
614
615                 err = f2fs_issue_discard(sbi, blkaddr, 1);
616         }
617
618         if (err) {
619                 update_meta_page(sbi, NULL, blkaddr);
620                 return true;
621         }
622         return false;
623 }
624
625 static void __add_discard_entry(struct f2fs_sb_info *sbi,
626                 struct cp_control *cpc, struct seg_entry *se,
627                 unsigned int start, unsigned int end)
628 {
629         struct list_head *head = &SM_I(sbi)->discard_list;
630         struct discard_entry *new, *last;
631
632         if (!list_empty(head)) {
633                 last = list_last_entry(head, struct discard_entry, list);
634                 if (START_BLOCK(sbi, cpc->trim_start) + start ==
635                                                 last->blkaddr + last->len) {
636                         last->len += end - start;
637                         goto done;
638                 }
639         }
640
641         new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
642         INIT_LIST_HEAD(&new->list);
643         new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start;
644         new->len = end - start;
645         list_add_tail(&new->list, head);
646 done:
647         SM_I(sbi)->nr_discards += end - start;
648 }
649
650 static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc)
651 {
652         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
653         int max_blocks = sbi->blocks_per_seg;
654         struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
655         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
656         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
657         unsigned long *discard_map = (unsigned long *)se->discard_map;
658         unsigned long *dmap = SIT_I(sbi)->tmp_map;
659         unsigned int start = 0, end = -1;
660         bool force = (cpc->reason == CP_DISCARD);
661         int i;
662
663         if (se->valid_blocks == max_blocks)
664                 return;
665
666         if (!force) {
667                 if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
668                     SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards)
669                         return;
670         }
671
672         /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
673         for (i = 0; i < entries; i++)
674                 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
675                                 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
676
677         while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
678                 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
679                 if (start >= max_blocks)
680                         break;
681
682                 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
683                 if (force && start && end != max_blocks
684                                         && (end - start) < cpc->trim_minlen)
685                         continue;
686
687                 __add_discard_entry(sbi, cpc, se, start, end);
688         }
689 }
690
691 void release_discard_addrs(struct f2fs_sb_info *sbi)
692 {
693         struct list_head *head = &(SM_I(sbi)->discard_list);
694         struct discard_entry *entry, *this;
695
696         /* drop caches */
697         list_for_each_entry_safe(entry, this, head, list) {
698                 list_del(&entry->list);
699                 kmem_cache_free(discard_entry_slab, entry);
700         }
701 }
702
703 /*
704  * Should call clear_prefree_segments after checkpoint is done.
705  */
706 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
707 {
708         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
709         unsigned int segno;
710
711         mutex_lock(&dirty_i->seglist_lock);
712         for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
713                 __set_test_and_free(sbi, segno);
714         mutex_unlock(&dirty_i->seglist_lock);
715 }
716
717 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
718 {
719         struct list_head *head = &(SM_I(sbi)->discard_list);
720         struct discard_entry *entry, *this;
721         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
722         unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
723         unsigned int start = 0, end = -1;
724         unsigned int secno, start_segno;
725         bool force = (cpc->reason == CP_DISCARD);
726
727         mutex_lock(&dirty_i->seglist_lock);
728
729         while (1) {
730                 int i;
731                 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
732                 if (start >= MAIN_SEGS(sbi))
733                         break;
734                 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
735                                                                 start + 1);
736
737                 for (i = start; i < end; i++)
738                         clear_bit(i, prefree_map);
739
740                 dirty_i->nr_dirty[PRE] -= end - start;
741
742                 if (force || !test_opt(sbi, DISCARD))
743                         continue;
744
745                 if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
746                         f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
747                                 (end - start) << sbi->log_blocks_per_seg);
748                         continue;
749                 }
750 next:
751                 secno = GET_SECNO(sbi, start);
752                 start_segno = secno * sbi->segs_per_sec;
753                 if (!IS_CURSEC(sbi, secno) &&
754                         !get_valid_blocks(sbi, start, sbi->segs_per_sec))
755                         f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
756                                 sbi->segs_per_sec << sbi->log_blocks_per_seg);
757
758                 start = start_segno + sbi->segs_per_sec;
759                 if (start < end)
760                         goto next;
761         }
762         mutex_unlock(&dirty_i->seglist_lock);
763
764         /* send small discards */
765         list_for_each_entry_safe(entry, this, head, list) {
766                 if (force && entry->len < cpc->trim_minlen)
767                         goto skip;
768                 f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
769                 cpc->trimmed += entry->len;
770 skip:
771                 list_del(&entry->list);
772                 SM_I(sbi)->nr_discards -= entry->len;
773                 kmem_cache_free(discard_entry_slab, entry);
774         }
775 }
776
777 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
778 {
779         struct sit_info *sit_i = SIT_I(sbi);
780
781         if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
782                 sit_i->dirty_sentries++;
783                 return false;
784         }
785
786         return true;
787 }
788
789 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
790                                         unsigned int segno, int modified)
791 {
792         struct seg_entry *se = get_seg_entry(sbi, segno);
793         se->type = type;
794         if (modified)
795                 __mark_sit_entry_dirty(sbi, segno);
796 }
797
798 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
799 {
800         struct seg_entry *se;
801         unsigned int segno, offset;
802         long int new_vblocks;
803
804         segno = GET_SEGNO(sbi, blkaddr);
805
806         se = get_seg_entry(sbi, segno);
807         new_vblocks = se->valid_blocks + del;
808         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
809
810         f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
811                                 (new_vblocks > sbi->blocks_per_seg)));
812
813         se->valid_blocks = new_vblocks;
814         se->mtime = get_mtime(sbi);
815         SIT_I(sbi)->max_mtime = se->mtime;
816
817         /* Update valid block bitmap */
818         if (del > 0) {
819                 if (f2fs_test_and_set_bit(offset, se->cur_valid_map))
820                         f2fs_bug_on(sbi, 1);
821                 if (!f2fs_test_and_set_bit(offset, se->discard_map))
822                         sbi->discard_blks--;
823         } else {
824                 if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map))
825                         f2fs_bug_on(sbi, 1);
826                 if (f2fs_test_and_clear_bit(offset, se->discard_map))
827                         sbi->discard_blks++;
828         }
829         if (!f2fs_test_bit(offset, se->ckpt_valid_map))
830                 se->ckpt_valid_blocks += del;
831
832         __mark_sit_entry_dirty(sbi, segno);
833
834         /* update total number of valid blocks to be written in ckpt area */
835         SIT_I(sbi)->written_valid_blocks += del;
836
837         if (sbi->segs_per_sec > 1)
838                 get_sec_entry(sbi, segno)->valid_blocks += del;
839 }
840
841 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
842 {
843         update_sit_entry(sbi, new, 1);
844         if (GET_SEGNO(sbi, old) != NULL_SEGNO)
845                 update_sit_entry(sbi, old, -1);
846
847         locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
848         locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
849 }
850
851 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
852 {
853         unsigned int segno = GET_SEGNO(sbi, addr);
854         struct sit_info *sit_i = SIT_I(sbi);
855
856         f2fs_bug_on(sbi, addr == NULL_ADDR);
857         if (addr == NEW_ADDR)
858                 return;
859
860         /* add it into sit main buffer */
861         mutex_lock(&sit_i->sentry_lock);
862
863         update_sit_entry(sbi, addr, -1);
864
865         /* add it into dirty seglist */
866         locate_dirty_segment(sbi, segno);
867
868         mutex_unlock(&sit_i->sentry_lock);
869 }
870
871 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
872 {
873         struct sit_info *sit_i = SIT_I(sbi);
874         unsigned int segno, offset;
875         struct seg_entry *se;
876         bool is_cp = false;
877
878         if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
879                 return true;
880
881         mutex_lock(&sit_i->sentry_lock);
882
883         segno = GET_SEGNO(sbi, blkaddr);
884         se = get_seg_entry(sbi, segno);
885         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
886
887         if (f2fs_test_bit(offset, se->ckpt_valid_map))
888                 is_cp = true;
889
890         mutex_unlock(&sit_i->sentry_lock);
891
892         return is_cp;
893 }
894
895 /*
896  * This function should be resided under the curseg_mutex lock
897  */
898 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
899                                         struct f2fs_summary *sum)
900 {
901         struct curseg_info *curseg = CURSEG_I(sbi, type);
902         void *addr = curseg->sum_blk;
903         addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
904         memcpy(addr, sum, sizeof(struct f2fs_summary));
905 }
906
907 /*
908  * Calculate the number of current summary pages for writing
909  */
910 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
911 {
912         int valid_sum_count = 0;
913         int i, sum_in_page;
914
915         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
916                 if (sbi->ckpt->alloc_type[i] == SSR)
917                         valid_sum_count += sbi->blocks_per_seg;
918                 else {
919                         if (for_ra)
920                                 valid_sum_count += le16_to_cpu(
921                                         F2FS_CKPT(sbi)->cur_data_blkoff[i]);
922                         else
923                                 valid_sum_count += curseg_blkoff(sbi, i);
924                 }
925         }
926
927         sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
928                         SUM_FOOTER_SIZE) / SUMMARY_SIZE;
929         if (valid_sum_count <= sum_in_page)
930                 return 1;
931         else if ((valid_sum_count - sum_in_page) <=
932                 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
933                 return 2;
934         return 3;
935 }
936
937 /*
938  * Caller should put this summary page
939  */
940 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
941 {
942         return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
943 }
944
945 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
946 {
947         struct page *page = grab_meta_page(sbi, blk_addr);
948         void *dst = page_address(page);
949
950         if (src)
951                 memcpy(dst, src, PAGE_SIZE);
952         else
953                 memset(dst, 0, PAGE_SIZE);
954         set_page_dirty(page);
955         f2fs_put_page(page, 1);
956 }
957
958 static void write_sum_page(struct f2fs_sb_info *sbi,
959                         struct f2fs_summary_block *sum_blk, block_t blk_addr)
960 {
961         update_meta_page(sbi, (void *)sum_blk, blk_addr);
962 }
963
964 static void write_current_sum_page(struct f2fs_sb_info *sbi,
965                                                 int type, block_t blk_addr)
966 {
967         struct curseg_info *curseg = CURSEG_I(sbi, type);
968         struct page *page = grab_meta_page(sbi, blk_addr);
969         struct f2fs_summary_block *src = curseg->sum_blk;
970         struct f2fs_summary_block *dst;
971
972         dst = (struct f2fs_summary_block *)page_address(page);
973
974         mutex_lock(&curseg->curseg_mutex);
975
976         down_read(&curseg->journal_rwsem);
977         memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
978         up_read(&curseg->journal_rwsem);
979
980         memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
981         memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
982
983         mutex_unlock(&curseg->curseg_mutex);
984
985         set_page_dirty(page);
986         f2fs_put_page(page, 1);
987 }
988
989 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
990 {
991         struct curseg_info *curseg = CURSEG_I(sbi, type);
992         unsigned int segno = curseg->segno + 1;
993         struct free_segmap_info *free_i = FREE_I(sbi);
994
995         if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
996                 return !test_bit(segno, free_i->free_segmap);
997         return 0;
998 }
999
1000 /*
1001  * Find a new segment from the free segments bitmap to right order
1002  * This function should be returned with success, otherwise BUG
1003  */
1004 static void get_new_segment(struct f2fs_sb_info *sbi,
1005                         unsigned int *newseg, bool new_sec, int dir)
1006 {
1007         struct free_segmap_info *free_i = FREE_I(sbi);
1008         unsigned int segno, secno, zoneno;
1009         unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
1010         unsigned int hint = *newseg / sbi->segs_per_sec;
1011         unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
1012         unsigned int left_start = hint;
1013         bool init = true;
1014         int go_left = 0;
1015         int i;
1016
1017         spin_lock(&free_i->segmap_lock);
1018
1019         if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
1020                 segno = find_next_zero_bit(free_i->free_segmap,
1021                                 (hint + 1) * sbi->segs_per_sec, *newseg + 1);
1022                 if (segno < (hint + 1) * sbi->segs_per_sec)
1023                         goto got_it;
1024         }
1025 find_other_zone:
1026         secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
1027         if (secno >= MAIN_SECS(sbi)) {
1028                 if (dir == ALLOC_RIGHT) {
1029                         secno = find_next_zero_bit(free_i->free_secmap,
1030                                                         MAIN_SECS(sbi), 0);
1031                         f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
1032                 } else {
1033                         go_left = 1;
1034                         left_start = hint - 1;
1035                 }
1036         }
1037         if (go_left == 0)
1038                 goto skip_left;
1039
1040         while (test_bit(left_start, free_i->free_secmap)) {
1041                 if (left_start > 0) {
1042                         left_start--;
1043                         continue;
1044                 }
1045                 left_start = find_next_zero_bit(free_i->free_secmap,
1046                                                         MAIN_SECS(sbi), 0);
1047                 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
1048                 break;
1049         }
1050         secno = left_start;
1051 skip_left:
1052         hint = secno;
1053         segno = secno * sbi->segs_per_sec;
1054         zoneno = secno / sbi->secs_per_zone;
1055
1056         /* give up on finding another zone */
1057         if (!init)
1058                 goto got_it;
1059         if (sbi->secs_per_zone == 1)
1060                 goto got_it;
1061         if (zoneno == old_zoneno)
1062                 goto got_it;
1063         if (dir == ALLOC_LEFT) {
1064                 if (!go_left && zoneno + 1 >= total_zones)
1065                         goto got_it;
1066                 if (go_left && zoneno == 0)
1067                         goto got_it;
1068         }
1069         for (i = 0; i < NR_CURSEG_TYPE; i++)
1070                 if (CURSEG_I(sbi, i)->zone == zoneno)
1071                         break;
1072
1073         if (i < NR_CURSEG_TYPE) {
1074                 /* zone is in user, try another */
1075                 if (go_left)
1076                         hint = zoneno * sbi->secs_per_zone - 1;
1077                 else if (zoneno + 1 >= total_zones)
1078                         hint = 0;
1079                 else
1080                         hint = (zoneno + 1) * sbi->secs_per_zone;
1081                 init = false;
1082                 goto find_other_zone;
1083         }
1084 got_it:
1085         /* set it as dirty segment in free segmap */
1086         f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
1087         __set_inuse(sbi, segno);
1088         *newseg = segno;
1089         spin_unlock(&free_i->segmap_lock);
1090 }
1091
1092 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
1093 {
1094         struct curseg_info *curseg = CURSEG_I(sbi, type);
1095         struct summary_footer *sum_footer;
1096
1097         curseg->segno = curseg->next_segno;
1098         curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
1099         curseg->next_blkoff = 0;
1100         curseg->next_segno = NULL_SEGNO;
1101
1102         sum_footer = &(curseg->sum_blk->footer);
1103         memset(sum_footer, 0, sizeof(struct summary_footer));
1104         if (IS_DATASEG(type))
1105                 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
1106         if (IS_NODESEG(type))
1107                 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
1108         __set_sit_entry_type(sbi, type, curseg->segno, modified);
1109 }
1110
1111 /*
1112  * Allocate a current working segment.
1113  * This function always allocates a free segment in LFS manner.
1114  */
1115 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
1116 {
1117         struct curseg_info *curseg = CURSEG_I(sbi, type);
1118         unsigned int segno = curseg->segno;
1119         int dir = ALLOC_LEFT;
1120
1121         write_sum_page(sbi, curseg->sum_blk,
1122                                 GET_SUM_BLOCK(sbi, segno));
1123         if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
1124                 dir = ALLOC_RIGHT;
1125
1126         if (test_opt(sbi, NOHEAP))
1127                 dir = ALLOC_RIGHT;
1128
1129         get_new_segment(sbi, &segno, new_sec, dir);
1130         curseg->next_segno = segno;
1131         reset_curseg(sbi, type, 1);
1132         curseg->alloc_type = LFS;
1133 }
1134
1135 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
1136                         struct curseg_info *seg, block_t start)
1137 {
1138         struct seg_entry *se = get_seg_entry(sbi, seg->segno);
1139         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1140         unsigned long *target_map = SIT_I(sbi)->tmp_map;
1141         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1142         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1143         int i, pos;
1144
1145         for (i = 0; i < entries; i++)
1146                 target_map[i] = ckpt_map[i] | cur_map[i];
1147
1148         pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
1149
1150         seg->next_blkoff = pos;
1151 }
1152
1153 /*
1154  * If a segment is written by LFS manner, next block offset is just obtained
1155  * by increasing the current block offset. However, if a segment is written by
1156  * SSR manner, next block offset obtained by calling __next_free_blkoff
1157  */
1158 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
1159                                 struct curseg_info *seg)
1160 {
1161         if (seg->alloc_type == SSR)
1162                 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
1163         else
1164                 seg->next_blkoff++;
1165 }
1166
1167 /*
1168  * This function always allocates a used segment(from dirty seglist) by SSR
1169  * manner, so it should recover the existing segment information of valid blocks
1170  */
1171 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
1172 {
1173         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1174         struct curseg_info *curseg = CURSEG_I(sbi, type);
1175         unsigned int new_segno = curseg->next_segno;
1176         struct f2fs_summary_block *sum_node;
1177         struct page *sum_page;
1178
1179         write_sum_page(sbi, curseg->sum_blk,
1180                                 GET_SUM_BLOCK(sbi, curseg->segno));
1181         __set_test_and_inuse(sbi, new_segno);
1182
1183         mutex_lock(&dirty_i->seglist_lock);
1184         __remove_dirty_segment(sbi, new_segno, PRE);
1185         __remove_dirty_segment(sbi, new_segno, DIRTY);
1186         mutex_unlock(&dirty_i->seglist_lock);
1187
1188         reset_curseg(sbi, type, 1);
1189         curseg->alloc_type = SSR;
1190         __next_free_blkoff(sbi, curseg, 0);
1191
1192         if (reuse) {
1193                 sum_page = get_sum_page(sbi, new_segno);
1194                 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
1195                 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
1196                 f2fs_put_page(sum_page, 1);
1197         }
1198 }
1199
1200 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
1201 {
1202         struct curseg_info *curseg = CURSEG_I(sbi, type);
1203         const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
1204
1205         if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
1206                 return v_ops->get_victim(sbi,
1207                                 &(curseg)->next_segno, BG_GC, type, SSR);
1208
1209         /* For data segments, let's do SSR more intensively */
1210         for (; type >= CURSEG_HOT_DATA; type--)
1211                 if (v_ops->get_victim(sbi, &(curseg)->next_segno,
1212                                                 BG_GC, type, SSR))
1213                         return 1;
1214         return 0;
1215 }
1216
1217 /*
1218  * flush out current segment and replace it with new segment
1219  * This function should be returned with success, otherwise BUG
1220  */
1221 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
1222                                                 int type, bool force)
1223 {
1224         struct curseg_info *curseg = CURSEG_I(sbi, type);
1225
1226         if (force)
1227                 new_curseg(sbi, type, true);
1228         else if (type == CURSEG_WARM_NODE)
1229                 new_curseg(sbi, type, false);
1230         else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
1231                 new_curseg(sbi, type, false);
1232         else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
1233                 change_curseg(sbi, type, true);
1234         else
1235                 new_curseg(sbi, type, false);
1236
1237         stat_inc_seg_type(sbi, curseg);
1238 }
1239
1240 static void __allocate_new_segments(struct f2fs_sb_info *sbi, int type)
1241 {
1242         struct curseg_info *curseg = CURSEG_I(sbi, type);
1243         unsigned int old_segno;
1244
1245         old_segno = curseg->segno;
1246         SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
1247         locate_dirty_segment(sbi, old_segno);
1248 }
1249
1250 void allocate_new_segments(struct f2fs_sb_info *sbi)
1251 {
1252         int i;
1253
1254         if (test_opt(sbi, LFS))
1255                 return;
1256
1257         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
1258                 __allocate_new_segments(sbi, i);
1259 }
1260
1261 static const struct segment_allocation default_salloc_ops = {
1262         .allocate_segment = allocate_segment_by_default,
1263 };
1264
1265 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
1266 {
1267         __u64 start = F2FS_BYTES_TO_BLK(range->start);
1268         __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
1269         unsigned int start_segno, end_segno;
1270         struct cp_control cpc;
1271         int err = 0;
1272
1273         if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
1274                 return -EINVAL;
1275
1276         cpc.trimmed = 0;
1277         if (end <= MAIN_BLKADDR(sbi))
1278                 goto out;
1279
1280         /* start/end segment number in main_area */
1281         start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
1282         end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
1283                                                 GET_SEGNO(sbi, end);
1284         cpc.reason = CP_DISCARD;
1285         cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
1286
1287         /* do checkpoint to issue discard commands safely */
1288         for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) {
1289                 cpc.trim_start = start_segno;
1290
1291                 if (sbi->discard_blks == 0)
1292                         break;
1293                 else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
1294                         cpc.trim_end = end_segno;
1295                 else
1296                         cpc.trim_end = min_t(unsigned int,
1297                                 rounddown(start_segno +
1298                                 BATCHED_TRIM_SEGMENTS(sbi),
1299                                 sbi->segs_per_sec) - 1, end_segno);
1300
1301                 mutex_lock(&sbi->gc_mutex);
1302                 err = write_checkpoint(sbi, &cpc);
1303                 mutex_unlock(&sbi->gc_mutex);
1304         }
1305 out:
1306         range->len = F2FS_BLK_TO_BYTES(cpc.trimmed);
1307         return err;
1308 }
1309
1310 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
1311 {
1312         struct curseg_info *curseg = CURSEG_I(sbi, type);
1313         if (curseg->next_blkoff < sbi->blocks_per_seg)
1314                 return true;
1315         return false;
1316 }
1317
1318 static int __get_segment_type_2(struct page *page, enum page_type p_type)
1319 {
1320         if (p_type == DATA)
1321                 return CURSEG_HOT_DATA;
1322         else
1323                 return CURSEG_HOT_NODE;
1324 }
1325
1326 static int __get_segment_type_4(struct page *page, enum page_type p_type)
1327 {
1328         if (p_type == DATA) {
1329                 struct inode *inode = page->mapping->host;
1330
1331                 if (S_ISDIR(inode->i_mode))
1332                         return CURSEG_HOT_DATA;
1333                 else
1334                         return CURSEG_COLD_DATA;
1335         } else {
1336                 if (IS_DNODE(page) && is_cold_node(page))
1337                         return CURSEG_WARM_NODE;
1338                 else
1339                         return CURSEG_COLD_NODE;
1340         }
1341 }
1342
1343 static int __get_segment_type_6(struct page *page, enum page_type p_type)
1344 {
1345         if (p_type == DATA) {
1346                 struct inode *inode = page->mapping->host;
1347
1348                 if (S_ISDIR(inode->i_mode))
1349                         return CURSEG_HOT_DATA;
1350                 else if (is_cold_data(page) || file_is_cold(inode))
1351                         return CURSEG_COLD_DATA;
1352                 else
1353                         return CURSEG_WARM_DATA;
1354         } else {
1355                 if (IS_DNODE(page))
1356                         return is_cold_node(page) ? CURSEG_WARM_NODE :
1357                                                 CURSEG_HOT_NODE;
1358                 else
1359                         return CURSEG_COLD_NODE;
1360         }
1361 }
1362
1363 static int __get_segment_type(struct page *page, enum page_type p_type)
1364 {
1365         switch (F2FS_P_SB(page)->active_logs) {
1366         case 2:
1367                 return __get_segment_type_2(page, p_type);
1368         case 4:
1369                 return __get_segment_type_4(page, p_type);
1370         }
1371         /* NR_CURSEG_TYPE(6) logs by default */
1372         f2fs_bug_on(F2FS_P_SB(page),
1373                 F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
1374         return __get_segment_type_6(page, p_type);
1375 }
1376
1377 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
1378                 block_t old_blkaddr, block_t *new_blkaddr,
1379                 struct f2fs_summary *sum, int type)
1380 {
1381         struct sit_info *sit_i = SIT_I(sbi);
1382         struct curseg_info *curseg;
1383         bool direct_io = (type == CURSEG_DIRECT_IO);
1384
1385         type = direct_io ? CURSEG_WARM_DATA : type;
1386
1387         curseg = CURSEG_I(sbi, type);
1388
1389         mutex_lock(&curseg->curseg_mutex);
1390         mutex_lock(&sit_i->sentry_lock);
1391
1392         /* direct_io'ed data is aligned to the segment for better performance */
1393         if (direct_io && curseg->next_blkoff &&
1394                                 !has_not_enough_free_secs(sbi, 0))
1395                 __allocate_new_segments(sbi, type);
1396
1397         *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
1398
1399         /*
1400          * __add_sum_entry should be resided under the curseg_mutex
1401          * because, this function updates a summary entry in the
1402          * current summary block.
1403          */
1404         __add_sum_entry(sbi, type, sum);
1405
1406         __refresh_next_blkoff(sbi, curseg);
1407
1408         stat_inc_block_count(sbi, curseg);
1409
1410         if (!__has_curseg_space(sbi, type))
1411                 sit_i->s_ops->allocate_segment(sbi, type, false);
1412         /*
1413          * SIT information should be updated before segment allocation,
1414          * since SSR needs latest valid block information.
1415          */
1416         refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
1417
1418         mutex_unlock(&sit_i->sentry_lock);
1419
1420         if (page && IS_NODESEG(type))
1421                 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
1422
1423         mutex_unlock(&curseg->curseg_mutex);
1424 }
1425
1426 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
1427 {
1428         int type = __get_segment_type(fio->page, fio->type);
1429
1430         if (fio->type == NODE || fio->type == DATA)
1431                 mutex_lock(&fio->sbi->wio_mutex[fio->type]);
1432
1433         allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
1434                                         &fio->new_blkaddr, sum, type);
1435
1436         /* writeout dirty page into bdev */
1437         f2fs_submit_page_mbio(fio);
1438
1439         if (fio->type == NODE || fio->type == DATA)
1440                 mutex_unlock(&fio->sbi->wio_mutex[fio->type]);
1441 }
1442
1443 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
1444 {
1445         struct f2fs_io_info fio = {
1446                 .sbi = sbi,
1447                 .type = META,
1448                 .op = REQ_OP_WRITE,
1449                 .op_flags = WRITE_SYNC | REQ_META | REQ_PRIO,
1450                 .old_blkaddr = page->index,
1451                 .new_blkaddr = page->index,
1452                 .page = page,
1453                 .encrypted_page = NULL,
1454         };
1455
1456         if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
1457                 fio.op_flags &= ~REQ_META;
1458
1459         set_page_writeback(page);
1460         f2fs_submit_page_mbio(&fio);
1461 }
1462
1463 void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
1464 {
1465         struct f2fs_summary sum;
1466
1467         set_summary(&sum, nid, 0, 0);
1468         do_write_page(&sum, fio);
1469 }
1470
1471 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
1472 {
1473         struct f2fs_sb_info *sbi = fio->sbi;
1474         struct f2fs_summary sum;
1475         struct node_info ni;
1476
1477         f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
1478         get_node_info(sbi, dn->nid, &ni);
1479         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1480         do_write_page(&sum, fio);
1481         f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
1482 }
1483
1484 void rewrite_data_page(struct f2fs_io_info *fio)
1485 {
1486         fio->new_blkaddr = fio->old_blkaddr;
1487         stat_inc_inplace_blocks(fio->sbi);
1488         f2fs_submit_page_mbio(fio);
1489 }
1490
1491 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
1492                                 block_t old_blkaddr, block_t new_blkaddr,
1493                                 bool recover_curseg, bool recover_newaddr)
1494 {
1495         struct sit_info *sit_i = SIT_I(sbi);
1496         struct curseg_info *curseg;
1497         unsigned int segno, old_cursegno;
1498         struct seg_entry *se;
1499         int type;
1500         unsigned short old_blkoff;
1501
1502         segno = GET_SEGNO(sbi, new_blkaddr);
1503         se = get_seg_entry(sbi, segno);
1504         type = se->type;
1505
1506         if (!recover_curseg) {
1507                 /* for recovery flow */
1508                 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1509                         if (old_blkaddr == NULL_ADDR)
1510                                 type = CURSEG_COLD_DATA;
1511                         else
1512                                 type = CURSEG_WARM_DATA;
1513                 }
1514         } else {
1515                 if (!IS_CURSEG(sbi, segno))
1516                         type = CURSEG_WARM_DATA;
1517         }
1518
1519         curseg = CURSEG_I(sbi, type);
1520
1521         mutex_lock(&curseg->curseg_mutex);
1522         mutex_lock(&sit_i->sentry_lock);
1523
1524         old_cursegno = curseg->segno;
1525         old_blkoff = curseg->next_blkoff;
1526
1527         /* change the current segment */
1528         if (segno != curseg->segno) {
1529                 curseg->next_segno = segno;
1530                 change_curseg(sbi, type, true);
1531         }
1532
1533         curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1534         __add_sum_entry(sbi, type, sum);
1535
1536         if (!recover_curseg || recover_newaddr)
1537                 update_sit_entry(sbi, new_blkaddr, 1);
1538         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1539                 update_sit_entry(sbi, old_blkaddr, -1);
1540
1541         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
1542         locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
1543
1544         locate_dirty_segment(sbi, old_cursegno);
1545
1546         if (recover_curseg) {
1547                 if (old_cursegno != curseg->segno) {
1548                         curseg->next_segno = old_cursegno;
1549                         change_curseg(sbi, type, true);
1550                 }
1551                 curseg->next_blkoff = old_blkoff;
1552         }
1553
1554         mutex_unlock(&sit_i->sentry_lock);
1555         mutex_unlock(&curseg->curseg_mutex);
1556 }
1557
1558 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
1559                                 block_t old_addr, block_t new_addr,
1560                                 unsigned char version, bool recover_curseg,
1561                                 bool recover_newaddr)
1562 {
1563         struct f2fs_summary sum;
1564
1565         set_summary(&sum, dn->nid, dn->ofs_in_node, version);
1566
1567         __f2fs_replace_block(sbi, &sum, old_addr, new_addr,
1568                                         recover_curseg, recover_newaddr);
1569
1570         f2fs_update_data_blkaddr(dn, new_addr);
1571 }
1572
1573 void f2fs_wait_on_page_writeback(struct page *page,
1574                                 enum page_type type, bool ordered)
1575 {
1576         if (PageWriteback(page)) {
1577                 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1578
1579                 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, type, WRITE);
1580                 if (ordered)
1581                         wait_on_page_writeback(page);
1582                 else
1583                         wait_for_stable_page(page);
1584         }
1585 }
1586
1587 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
1588                                                         block_t blkaddr)
1589 {
1590         struct page *cpage;
1591
1592         if (blkaddr == NEW_ADDR)
1593                 return;
1594
1595         f2fs_bug_on(sbi, blkaddr == NULL_ADDR);
1596
1597         cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
1598         if (cpage) {
1599                 f2fs_wait_on_page_writeback(cpage, DATA, true);
1600                 f2fs_put_page(cpage, 1);
1601         }
1602 }
1603
1604 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1605 {
1606         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1607         struct curseg_info *seg_i;
1608         unsigned char *kaddr;
1609         struct page *page;
1610         block_t start;
1611         int i, j, offset;
1612
1613         start = start_sum_block(sbi);
1614
1615         page = get_meta_page(sbi, start++);
1616         kaddr = (unsigned char *)page_address(page);
1617
1618         /* Step 1: restore nat cache */
1619         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1620         memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
1621
1622         /* Step 2: restore sit cache */
1623         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1624         memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
1625         offset = 2 * SUM_JOURNAL_SIZE;
1626
1627         /* Step 3: restore summary entries */
1628         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1629                 unsigned short blk_off;
1630                 unsigned int segno;
1631
1632                 seg_i = CURSEG_I(sbi, i);
1633                 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1634                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1635                 seg_i->next_segno = segno;
1636                 reset_curseg(sbi, i, 0);
1637                 seg_i->alloc_type = ckpt->alloc_type[i];
1638                 seg_i->next_blkoff = blk_off;
1639
1640                 if (seg_i->alloc_type == SSR)
1641                         blk_off = sbi->blocks_per_seg;
1642
1643                 for (j = 0; j < blk_off; j++) {
1644                         struct f2fs_summary *s;
1645                         s = (struct f2fs_summary *)(kaddr + offset);
1646                         seg_i->sum_blk->entries[j] = *s;
1647                         offset += SUMMARY_SIZE;
1648                         if (offset + SUMMARY_SIZE <= PAGE_SIZE -
1649                                                 SUM_FOOTER_SIZE)
1650                                 continue;
1651
1652                         f2fs_put_page(page, 1);
1653                         page = NULL;
1654
1655                         page = get_meta_page(sbi, start++);
1656                         kaddr = (unsigned char *)page_address(page);
1657                         offset = 0;
1658                 }
1659         }
1660         f2fs_put_page(page, 1);
1661         return 0;
1662 }
1663
1664 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1665 {
1666         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1667         struct f2fs_summary_block *sum;
1668         struct curseg_info *curseg;
1669         struct page *new;
1670         unsigned short blk_off;
1671         unsigned int segno = 0;
1672         block_t blk_addr = 0;
1673
1674         /* get segment number and block addr */
1675         if (IS_DATASEG(type)) {
1676                 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1677                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1678                                                         CURSEG_HOT_DATA]);
1679                 if (__exist_node_summaries(sbi))
1680                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1681                 else
1682                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1683         } else {
1684                 segno = le32_to_cpu(ckpt->cur_node_segno[type -
1685                                                         CURSEG_HOT_NODE]);
1686                 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1687                                                         CURSEG_HOT_NODE]);
1688                 if (__exist_node_summaries(sbi))
1689                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1690                                                         type - CURSEG_HOT_NODE);
1691                 else
1692                         blk_addr = GET_SUM_BLOCK(sbi, segno);
1693         }
1694
1695         new = get_meta_page(sbi, blk_addr);
1696         sum = (struct f2fs_summary_block *)page_address(new);
1697
1698         if (IS_NODESEG(type)) {
1699                 if (__exist_node_summaries(sbi)) {
1700                         struct f2fs_summary *ns = &sum->entries[0];
1701                         int i;
1702                         for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1703                                 ns->version = 0;
1704                                 ns->ofs_in_node = 0;
1705                         }
1706                 } else {
1707                         int err;
1708
1709                         err = restore_node_summary(sbi, segno, sum);
1710                         if (err) {
1711                                 f2fs_put_page(new, 1);
1712                                 return err;
1713                         }
1714                 }
1715         }
1716
1717         /* set uncompleted segment to curseg */
1718         curseg = CURSEG_I(sbi, type);
1719         mutex_lock(&curseg->curseg_mutex);
1720
1721         /* update journal info */
1722         down_write(&curseg->journal_rwsem);
1723         memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
1724         up_write(&curseg->journal_rwsem);
1725
1726         memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
1727         memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
1728         curseg->next_segno = segno;
1729         reset_curseg(sbi, type, 0);
1730         curseg->alloc_type = ckpt->alloc_type[type];
1731         curseg->next_blkoff = blk_off;
1732         mutex_unlock(&curseg->curseg_mutex);
1733         f2fs_put_page(new, 1);
1734         return 0;
1735 }
1736
1737 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1738 {
1739         int type = CURSEG_HOT_DATA;
1740         int err;
1741
1742         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1743                 int npages = npages_for_summary_flush(sbi, true);
1744
1745                 if (npages >= 2)
1746                         ra_meta_pages(sbi, start_sum_block(sbi), npages,
1747                                                         META_CP, true);
1748
1749                 /* restore for compacted data summary */
1750                 if (read_compacted_summaries(sbi))
1751                         return -EINVAL;
1752                 type = CURSEG_HOT_NODE;
1753         }
1754
1755         if (__exist_node_summaries(sbi))
1756                 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
1757                                         NR_CURSEG_TYPE - type, META_CP, true);
1758
1759         for (; type <= CURSEG_COLD_NODE; type++) {
1760                 err = read_normal_summaries(sbi, type);
1761                 if (err)
1762                         return err;
1763         }
1764
1765         return 0;
1766 }
1767
1768 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1769 {
1770         struct page *page;
1771         unsigned char *kaddr;
1772         struct f2fs_summary *summary;
1773         struct curseg_info *seg_i;
1774         int written_size = 0;
1775         int i, j;
1776
1777         page = grab_meta_page(sbi, blkaddr++);
1778         kaddr = (unsigned char *)page_address(page);
1779
1780         /* Step 1: write nat cache */
1781         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1782         memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
1783         written_size += SUM_JOURNAL_SIZE;
1784
1785         /* Step 2: write sit cache */
1786         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1787         memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
1788         written_size += SUM_JOURNAL_SIZE;
1789
1790         /* Step 3: write summary entries */
1791         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1792                 unsigned short blkoff;
1793                 seg_i = CURSEG_I(sbi, i);
1794                 if (sbi->ckpt->alloc_type[i] == SSR)
1795                         blkoff = sbi->blocks_per_seg;
1796                 else
1797                         blkoff = curseg_blkoff(sbi, i);
1798
1799                 for (j = 0; j < blkoff; j++) {
1800                         if (!page) {
1801                                 page = grab_meta_page(sbi, blkaddr++);
1802                                 kaddr = (unsigned char *)page_address(page);
1803                                 written_size = 0;
1804                         }
1805                         summary = (struct f2fs_summary *)(kaddr + written_size);
1806                         *summary = seg_i->sum_blk->entries[j];
1807                         written_size += SUMMARY_SIZE;
1808
1809                         if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
1810                                                         SUM_FOOTER_SIZE)
1811                                 continue;
1812
1813                         set_page_dirty(page);
1814                         f2fs_put_page(page, 1);
1815                         page = NULL;
1816                 }
1817         }
1818         if (page) {
1819                 set_page_dirty(page);
1820                 f2fs_put_page(page, 1);
1821         }
1822 }
1823
1824 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1825                                         block_t blkaddr, int type)
1826 {
1827         int i, end;
1828         if (IS_DATASEG(type))
1829                 end = type + NR_CURSEG_DATA_TYPE;
1830         else
1831                 end = type + NR_CURSEG_NODE_TYPE;
1832
1833         for (i = type; i < end; i++)
1834                 write_current_sum_page(sbi, i, blkaddr + (i - type));
1835 }
1836
1837 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1838 {
1839         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1840                 write_compacted_summaries(sbi, start_blk);
1841         else
1842                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1843 }
1844
1845 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1846 {
1847         write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1848 }
1849
1850 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
1851                                         unsigned int val, int alloc)
1852 {
1853         int i;
1854
1855         if (type == NAT_JOURNAL) {
1856                 for (i = 0; i < nats_in_cursum(journal); i++) {
1857                         if (le32_to_cpu(nid_in_journal(journal, i)) == val)
1858                                 return i;
1859                 }
1860                 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
1861                         return update_nats_in_cursum(journal, 1);
1862         } else if (type == SIT_JOURNAL) {
1863                 for (i = 0; i < sits_in_cursum(journal); i++)
1864                         if (le32_to_cpu(segno_in_journal(journal, i)) == val)
1865                                 return i;
1866                 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
1867                         return update_sits_in_cursum(journal, 1);
1868         }
1869         return -1;
1870 }
1871
1872 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1873                                         unsigned int segno)
1874 {
1875         return get_meta_page(sbi, current_sit_addr(sbi, segno));
1876 }
1877
1878 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1879                                         unsigned int start)
1880 {
1881         struct sit_info *sit_i = SIT_I(sbi);
1882         struct page *src_page, *dst_page;
1883         pgoff_t src_off, dst_off;
1884         void *src_addr, *dst_addr;
1885
1886         src_off = current_sit_addr(sbi, start);
1887         dst_off = next_sit_addr(sbi, src_off);
1888
1889         /* get current sit block page without lock */
1890         src_page = get_meta_page(sbi, src_off);
1891         dst_page = grab_meta_page(sbi, dst_off);
1892         f2fs_bug_on(sbi, PageDirty(src_page));
1893
1894         src_addr = page_address(src_page);
1895         dst_addr = page_address(dst_page);
1896         memcpy(dst_addr, src_addr, PAGE_SIZE);
1897
1898         set_page_dirty(dst_page);
1899         f2fs_put_page(src_page, 1);
1900
1901         set_to_next_sit(sit_i, start);
1902
1903         return dst_page;
1904 }
1905
1906 static struct sit_entry_set *grab_sit_entry_set(void)
1907 {
1908         struct sit_entry_set *ses =
1909                         f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
1910
1911         ses->entry_cnt = 0;
1912         INIT_LIST_HEAD(&ses->set_list);
1913         return ses;
1914 }
1915
1916 static void release_sit_entry_set(struct sit_entry_set *ses)
1917 {
1918         list_del(&ses->set_list);
1919         kmem_cache_free(sit_entry_set_slab, ses);
1920 }
1921
1922 static void adjust_sit_entry_set(struct sit_entry_set *ses,
1923                                                 struct list_head *head)
1924 {
1925         struct sit_entry_set *next = ses;
1926
1927         if (list_is_last(&ses->set_list, head))
1928                 return;
1929
1930         list_for_each_entry_continue(next, head, set_list)
1931                 if (ses->entry_cnt <= next->entry_cnt)
1932                         break;
1933
1934         list_move_tail(&ses->set_list, &next->set_list);
1935 }
1936
1937 static void add_sit_entry(unsigned int segno, struct list_head *head)
1938 {
1939         struct sit_entry_set *ses;
1940         unsigned int start_segno = START_SEGNO(segno);
1941
1942         list_for_each_entry(ses, head, set_list) {
1943                 if (ses->start_segno == start_segno) {
1944                         ses->entry_cnt++;
1945                         adjust_sit_entry_set(ses, head);
1946                         return;
1947                 }
1948         }
1949
1950         ses = grab_sit_entry_set();
1951
1952         ses->start_segno = start_segno;
1953         ses->entry_cnt++;
1954         list_add(&ses->set_list, head);
1955 }
1956
1957 static void add_sits_in_set(struct f2fs_sb_info *sbi)
1958 {
1959         struct f2fs_sm_info *sm_info = SM_I(sbi);
1960         struct list_head *set_list = &sm_info->sit_entry_set;
1961         unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
1962         unsigned int segno;
1963
1964         for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
1965                 add_sit_entry(segno, set_list);
1966 }
1967
1968 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
1969 {
1970         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1971         struct f2fs_journal *journal = curseg->journal;
1972         int i;
1973
1974         down_write(&curseg->journal_rwsem);
1975         for (i = 0; i < sits_in_cursum(journal); i++) {
1976                 unsigned int segno;
1977                 bool dirtied;
1978
1979                 segno = le32_to_cpu(segno_in_journal(journal, i));
1980                 dirtied = __mark_sit_entry_dirty(sbi, segno);
1981
1982                 if (!dirtied)
1983                         add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
1984         }
1985         update_sits_in_cursum(journal, -i);
1986         up_write(&curseg->journal_rwsem);
1987 }
1988
1989 /*
1990  * CP calls this function, which flushes SIT entries including sit_journal,
1991  * and moves prefree segs to free segs.
1992  */
1993 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1994 {
1995         struct sit_info *sit_i = SIT_I(sbi);
1996         unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1997         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1998         struct f2fs_journal *journal = curseg->journal;
1999         struct sit_entry_set *ses, *tmp;
2000         struct list_head *head = &SM_I(sbi)->sit_entry_set;
2001         bool to_journal = true;
2002         struct seg_entry *se;
2003
2004         mutex_lock(&sit_i->sentry_lock);
2005
2006         if (!sit_i->dirty_sentries)
2007                 goto out;
2008
2009         /*
2010          * add and account sit entries of dirty bitmap in sit entry
2011          * set temporarily
2012          */
2013         add_sits_in_set(sbi);
2014
2015         /*
2016          * if there are no enough space in journal to store dirty sit
2017          * entries, remove all entries from journal and add and account
2018          * them in sit entry set.
2019          */
2020         if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
2021                 remove_sits_in_journal(sbi);
2022
2023         /*
2024          * there are two steps to flush sit entries:
2025          * #1, flush sit entries to journal in current cold data summary block.
2026          * #2, flush sit entries to sit page.
2027          */
2028         list_for_each_entry_safe(ses, tmp, head, set_list) {
2029                 struct page *page = NULL;
2030                 struct f2fs_sit_block *raw_sit = NULL;
2031                 unsigned int start_segno = ses->start_segno;
2032                 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
2033                                                 (unsigned long)MAIN_SEGS(sbi));
2034                 unsigned int segno = start_segno;
2035
2036                 if (to_journal &&
2037                         !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
2038                         to_journal = false;
2039
2040                 if (to_journal) {
2041                         down_write(&curseg->journal_rwsem);
2042                 } else {
2043                         page = get_next_sit_page(sbi, start_segno);
2044                         raw_sit = page_address(page);
2045                 }
2046
2047                 /* flush dirty sit entries in region of current sit set */
2048                 for_each_set_bit_from(segno, bitmap, end) {
2049                         int offset, sit_offset;
2050
2051                         se = get_seg_entry(sbi, segno);
2052
2053                         /* add discard candidates */
2054                         if (cpc->reason != CP_DISCARD) {
2055                                 cpc->trim_start = segno;
2056                                 add_discard_addrs(sbi, cpc);
2057                         }
2058
2059                         if (to_journal) {
2060                                 offset = lookup_journal_in_cursum(journal,
2061                                                         SIT_JOURNAL, segno, 1);
2062                                 f2fs_bug_on(sbi, offset < 0);
2063                                 segno_in_journal(journal, offset) =
2064                                                         cpu_to_le32(segno);
2065                                 seg_info_to_raw_sit(se,
2066                                         &sit_in_journal(journal, offset));
2067                         } else {
2068                                 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
2069                                 seg_info_to_raw_sit(se,
2070                                                 &raw_sit->entries[sit_offset]);
2071                         }
2072
2073                         __clear_bit(segno, bitmap);
2074                         sit_i->dirty_sentries--;
2075                         ses->entry_cnt--;
2076                 }
2077
2078                 if (to_journal)
2079                         up_write(&curseg->journal_rwsem);
2080                 else
2081                         f2fs_put_page(page, 1);
2082
2083                 f2fs_bug_on(sbi, ses->entry_cnt);
2084                 release_sit_entry_set(ses);
2085         }
2086
2087         f2fs_bug_on(sbi, !list_empty(head));
2088         f2fs_bug_on(sbi, sit_i->dirty_sentries);
2089 out:
2090         if (cpc->reason == CP_DISCARD) {
2091                 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
2092                         add_discard_addrs(sbi, cpc);
2093         }
2094         mutex_unlock(&sit_i->sentry_lock);
2095
2096         set_prefree_as_free_segments(sbi);
2097 }
2098
2099 static int build_sit_info(struct f2fs_sb_info *sbi)
2100 {
2101         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2102         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2103         struct sit_info *sit_i;
2104         unsigned int sit_segs, start;
2105         char *src_bitmap, *dst_bitmap;
2106         unsigned int bitmap_size;
2107
2108         /* allocate memory for SIT information */
2109         sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
2110         if (!sit_i)
2111                 return -ENOMEM;
2112
2113         SM_I(sbi)->sit_info = sit_i;
2114
2115         sit_i->sentries = f2fs_kvzalloc(MAIN_SEGS(sbi) *
2116                                         sizeof(struct seg_entry), GFP_KERNEL);
2117         if (!sit_i->sentries)
2118                 return -ENOMEM;
2119
2120         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2121         sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2122         if (!sit_i->dirty_sentries_bitmap)
2123                 return -ENOMEM;
2124
2125         for (start = 0; start < MAIN_SEGS(sbi); start++) {
2126                 sit_i->sentries[start].cur_valid_map
2127                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2128                 sit_i->sentries[start].ckpt_valid_map
2129                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2130                 sit_i->sentries[start].discard_map
2131                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2132                 if (!sit_i->sentries[start].cur_valid_map ||
2133                                 !sit_i->sentries[start].ckpt_valid_map ||
2134                                 !sit_i->sentries[start].discard_map)
2135                         return -ENOMEM;
2136         }
2137
2138         sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2139         if (!sit_i->tmp_map)
2140                 return -ENOMEM;
2141
2142         if (sbi->segs_per_sec > 1) {
2143                 sit_i->sec_entries = f2fs_kvzalloc(MAIN_SECS(sbi) *
2144                                         sizeof(struct sec_entry), GFP_KERNEL);
2145                 if (!sit_i->sec_entries)
2146                         return -ENOMEM;
2147         }
2148
2149         /* get information related with SIT */
2150         sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
2151
2152         /* setup SIT bitmap from ckeckpoint pack */
2153         bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
2154         src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
2155
2156         dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
2157         if (!dst_bitmap)
2158                 return -ENOMEM;
2159
2160         /* init SIT information */
2161         sit_i->s_ops = &default_salloc_ops;
2162
2163         sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
2164         sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
2165         sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
2166         sit_i->sit_bitmap = dst_bitmap;
2167         sit_i->bitmap_size = bitmap_size;
2168         sit_i->dirty_sentries = 0;
2169         sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
2170         sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
2171         sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
2172         mutex_init(&sit_i->sentry_lock);
2173         return 0;
2174 }
2175
2176 static int build_free_segmap(struct f2fs_sb_info *sbi)
2177 {
2178         struct free_segmap_info *free_i;
2179         unsigned int bitmap_size, sec_bitmap_size;
2180
2181         /* allocate memory for free segmap information */
2182         free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
2183         if (!free_i)
2184                 return -ENOMEM;
2185
2186         SM_I(sbi)->free_info = free_i;
2187
2188         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2189         free_i->free_segmap = f2fs_kvmalloc(bitmap_size, GFP_KERNEL);
2190         if (!free_i->free_segmap)
2191                 return -ENOMEM;
2192
2193         sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2194         free_i->free_secmap = f2fs_kvmalloc(sec_bitmap_size, GFP_KERNEL);
2195         if (!free_i->free_secmap)
2196                 return -ENOMEM;
2197
2198         /* set all segments as dirty temporarily */
2199         memset(free_i->free_segmap, 0xff, bitmap_size);
2200         memset(free_i->free_secmap, 0xff, sec_bitmap_size);
2201
2202         /* init free segmap information */
2203         free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
2204         free_i->free_segments = 0;
2205         free_i->free_sections = 0;
2206         spin_lock_init(&free_i->segmap_lock);
2207         return 0;
2208 }
2209
2210 static int build_curseg(struct f2fs_sb_info *sbi)
2211 {
2212         struct curseg_info *array;
2213         int i;
2214
2215         array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
2216         if (!array)
2217                 return -ENOMEM;
2218
2219         SM_I(sbi)->curseg_array = array;
2220
2221         for (i = 0; i < NR_CURSEG_TYPE; i++) {
2222                 mutex_init(&array[i].curseg_mutex);
2223                 array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL);
2224                 if (!array[i].sum_blk)
2225                         return -ENOMEM;
2226                 init_rwsem(&array[i].journal_rwsem);
2227                 array[i].journal = kzalloc(sizeof(struct f2fs_journal),
2228                                                         GFP_KERNEL);
2229                 if (!array[i].journal)
2230                         return -ENOMEM;
2231                 array[i].segno = NULL_SEGNO;
2232                 array[i].next_blkoff = 0;
2233         }
2234         return restore_curseg_summaries(sbi);
2235 }
2236
2237 static void build_sit_entries(struct f2fs_sb_info *sbi)
2238 {
2239         struct sit_info *sit_i = SIT_I(sbi);
2240         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2241         struct f2fs_journal *journal = curseg->journal;
2242         int sit_blk_cnt = SIT_BLK_CNT(sbi);
2243         unsigned int i, start, end;
2244         unsigned int readed, start_blk = 0;
2245         int nrpages = MAX_BIO_BLOCKS(sbi) * 8;
2246
2247         do {
2248                 readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT, true);
2249
2250                 start = start_blk * sit_i->sents_per_block;
2251                 end = (start_blk + readed) * sit_i->sents_per_block;
2252
2253                 for (; start < end && start < MAIN_SEGS(sbi); start++) {
2254                         struct seg_entry *se = &sit_i->sentries[start];
2255                         struct f2fs_sit_block *sit_blk;
2256                         struct f2fs_sit_entry sit;
2257                         struct page *page;
2258
2259                         down_read(&curseg->journal_rwsem);
2260                         for (i = 0; i < sits_in_cursum(journal); i++) {
2261                                 if (le32_to_cpu(segno_in_journal(journal, i))
2262                                                                 == start) {
2263                                         sit = sit_in_journal(journal, i);
2264                                         up_read(&curseg->journal_rwsem);
2265                                         goto got_it;
2266                                 }
2267                         }
2268                         up_read(&curseg->journal_rwsem);
2269
2270                         page = get_current_sit_page(sbi, start);
2271                         sit_blk = (struct f2fs_sit_block *)page_address(page);
2272                         sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
2273                         f2fs_put_page(page, 1);
2274 got_it:
2275                         check_block_count(sbi, start, &sit);
2276                         seg_info_from_raw_sit(se, &sit);
2277
2278                         /* build discard map only one time */
2279                         memcpy(se->discard_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
2280                         sbi->discard_blks += sbi->blocks_per_seg - se->valid_blocks;
2281
2282                         if (sbi->segs_per_sec > 1) {
2283                                 struct sec_entry *e = get_sec_entry(sbi, start);
2284                                 e->valid_blocks += se->valid_blocks;
2285                         }
2286                 }
2287                 start_blk += readed;
2288         } while (start_blk < sit_blk_cnt);
2289 }
2290
2291 static void init_free_segmap(struct f2fs_sb_info *sbi)
2292 {
2293         unsigned int start;
2294         int type;
2295
2296         for (start = 0; start < MAIN_SEGS(sbi); start++) {
2297                 struct seg_entry *sentry = get_seg_entry(sbi, start);
2298                 if (!sentry->valid_blocks)
2299                         __set_free(sbi, start);
2300         }
2301
2302         /* set use the current segments */
2303         for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
2304                 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
2305                 __set_test_and_inuse(sbi, curseg_t->segno);
2306         }
2307 }
2308
2309 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
2310 {
2311         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2312         struct free_segmap_info *free_i = FREE_I(sbi);
2313         unsigned int segno = 0, offset = 0;
2314         unsigned short valid_blocks;
2315
2316         while (1) {
2317                 /* find dirty segment based on free segmap */
2318                 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
2319                 if (segno >= MAIN_SEGS(sbi))
2320                         break;
2321                 offset = segno + 1;
2322                 valid_blocks = get_valid_blocks(sbi, segno, 0);
2323                 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
2324                         continue;
2325                 if (valid_blocks > sbi->blocks_per_seg) {
2326                         f2fs_bug_on(sbi, 1);
2327                         continue;
2328                 }
2329                 mutex_lock(&dirty_i->seglist_lock);
2330                 __locate_dirty_segment(sbi, segno, DIRTY);
2331                 mutex_unlock(&dirty_i->seglist_lock);
2332         }
2333 }
2334
2335 static int init_victim_secmap(struct f2fs_sb_info *sbi)
2336 {
2337         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2338         unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2339
2340         dirty_i->victim_secmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2341         if (!dirty_i->victim_secmap)
2342                 return -ENOMEM;
2343         return 0;
2344 }
2345
2346 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
2347 {
2348         struct dirty_seglist_info *dirty_i;
2349         unsigned int bitmap_size, i;
2350
2351         /* allocate memory for dirty segments list information */
2352         dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
2353         if (!dirty_i)
2354                 return -ENOMEM;
2355
2356         SM_I(sbi)->dirty_info = dirty_i;
2357         mutex_init(&dirty_i->seglist_lock);
2358
2359         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2360
2361         for (i = 0; i < NR_DIRTY_TYPE; i++) {
2362                 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2363                 if (!dirty_i->dirty_segmap[i])
2364                         return -ENOMEM;
2365         }
2366
2367         init_dirty_segmap(sbi);
2368         return init_victim_secmap(sbi);
2369 }
2370
2371 /*
2372  * Update min, max modified time for cost-benefit GC algorithm
2373  */
2374 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
2375 {
2376         struct sit_info *sit_i = SIT_I(sbi);
2377         unsigned int segno;
2378
2379         mutex_lock(&sit_i->sentry_lock);
2380
2381         sit_i->min_mtime = LLONG_MAX;
2382
2383         for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
2384                 unsigned int i;
2385                 unsigned long long mtime = 0;
2386
2387                 for (i = 0; i < sbi->segs_per_sec; i++)
2388                         mtime += get_seg_entry(sbi, segno + i)->mtime;
2389
2390                 mtime = div_u64(mtime, sbi->segs_per_sec);
2391
2392                 if (sit_i->min_mtime > mtime)
2393                         sit_i->min_mtime = mtime;
2394         }
2395         sit_i->max_mtime = get_mtime(sbi);
2396         mutex_unlock(&sit_i->sentry_lock);
2397 }
2398
2399 int build_segment_manager(struct f2fs_sb_info *sbi)
2400 {
2401         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2402         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2403         struct f2fs_sm_info *sm_info;
2404         int err;
2405
2406         sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
2407         if (!sm_info)
2408                 return -ENOMEM;
2409
2410         /* init sm info */
2411         sbi->sm_info = sm_info;
2412         sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2413         sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2414         sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
2415         sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2416         sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2417         sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
2418         sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2419         sm_info->rec_prefree_segments = sm_info->main_segments *
2420                                         DEF_RECLAIM_PREFREE_SEGMENTS / 100;
2421         if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
2422                 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
2423
2424         if (!test_opt(sbi, LFS))
2425                 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
2426         sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
2427         sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
2428
2429         INIT_LIST_HEAD(&sm_info->discard_list);
2430         sm_info->nr_discards = 0;
2431         sm_info->max_discards = 0;
2432
2433         sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
2434
2435         INIT_LIST_HEAD(&sm_info->sit_entry_set);
2436
2437         if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
2438                 err = create_flush_cmd_control(sbi);
2439                 if (err)
2440                         return err;
2441         }
2442
2443         err = build_sit_info(sbi);
2444         if (err)
2445                 return err;
2446         err = build_free_segmap(sbi);
2447         if (err)
2448                 return err;
2449         err = build_curseg(sbi);
2450         if (err)
2451                 return err;
2452
2453         /* reinit free segmap based on SIT */
2454         build_sit_entries(sbi);
2455
2456         init_free_segmap(sbi);
2457         err = build_dirty_segmap(sbi);
2458         if (err)
2459                 return err;
2460
2461         init_min_max_mtime(sbi);
2462         return 0;
2463 }
2464
2465 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
2466                 enum dirty_type dirty_type)
2467 {
2468         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2469
2470         mutex_lock(&dirty_i->seglist_lock);
2471         kvfree(dirty_i->dirty_segmap[dirty_type]);
2472         dirty_i->nr_dirty[dirty_type] = 0;
2473         mutex_unlock(&dirty_i->seglist_lock);
2474 }
2475
2476 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
2477 {
2478         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2479         kvfree(dirty_i->victim_secmap);
2480 }
2481
2482 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
2483 {
2484         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2485         int i;
2486
2487         if (!dirty_i)
2488                 return;
2489
2490         /* discard pre-free/dirty segments list */
2491         for (i = 0; i < NR_DIRTY_TYPE; i++)
2492                 discard_dirty_segmap(sbi, i);
2493
2494         destroy_victim_secmap(sbi);
2495         SM_I(sbi)->dirty_info = NULL;
2496         kfree(dirty_i);
2497 }
2498
2499 static void destroy_curseg(struct f2fs_sb_info *sbi)
2500 {
2501         struct curseg_info *array = SM_I(sbi)->curseg_array;
2502         int i;
2503
2504         if (!array)
2505                 return;
2506         SM_I(sbi)->curseg_array = NULL;
2507         for (i = 0; i < NR_CURSEG_TYPE; i++) {
2508                 kfree(array[i].sum_blk);
2509                 kfree(array[i].journal);
2510         }
2511         kfree(array);
2512 }
2513
2514 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
2515 {
2516         struct free_segmap_info *free_i = SM_I(sbi)->free_info;
2517         if (!free_i)
2518                 return;
2519         SM_I(sbi)->free_info = NULL;
2520         kvfree(free_i->free_segmap);
2521         kvfree(free_i->free_secmap);
2522         kfree(free_i);
2523 }
2524
2525 static void destroy_sit_info(struct f2fs_sb_info *sbi)
2526 {
2527         struct sit_info *sit_i = SIT_I(sbi);
2528         unsigned int start;
2529
2530         if (!sit_i)
2531                 return;
2532
2533         if (sit_i->sentries) {
2534                 for (start = 0; start < MAIN_SEGS(sbi); start++) {
2535                         kfree(sit_i->sentries[start].cur_valid_map);
2536                         kfree(sit_i->sentries[start].ckpt_valid_map);
2537                         kfree(sit_i->sentries[start].discard_map);
2538                 }
2539         }
2540         kfree(sit_i->tmp_map);
2541
2542         kvfree(sit_i->sentries);
2543         kvfree(sit_i->sec_entries);
2544         kvfree(sit_i->dirty_sentries_bitmap);
2545
2546         SM_I(sbi)->sit_info = NULL;
2547         kfree(sit_i->sit_bitmap);
2548         kfree(sit_i);
2549 }
2550
2551 void destroy_segment_manager(struct f2fs_sb_info *sbi)
2552 {
2553         struct f2fs_sm_info *sm_info = SM_I(sbi);
2554
2555         if (!sm_info)
2556                 return;
2557         destroy_flush_cmd_control(sbi);
2558         destroy_dirty_segmap(sbi);
2559         destroy_curseg(sbi);
2560         destroy_free_segmap(sbi);
2561         destroy_sit_info(sbi);
2562         sbi->sm_info = NULL;
2563         kfree(sm_info);
2564 }
2565
2566 int __init create_segment_manager_caches(void)
2567 {
2568         discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
2569                         sizeof(struct discard_entry));
2570         if (!discard_entry_slab)
2571                 goto fail;
2572
2573         sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
2574                         sizeof(struct sit_entry_set));
2575         if (!sit_entry_set_slab)
2576                 goto destory_discard_entry;
2577
2578         inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
2579                         sizeof(struct inmem_pages));
2580         if (!inmem_entry_slab)
2581                 goto destroy_sit_entry_set;
2582         return 0;
2583
2584 destroy_sit_entry_set:
2585         kmem_cache_destroy(sit_entry_set_slab);
2586 destory_discard_entry:
2587         kmem_cache_destroy(discard_entry_slab);
2588 fail:
2589         return -ENOMEM;
2590 }
2591
2592 void destroy_segment_manager_caches(void)
2593 {
2594         kmem_cache_destroy(sit_entry_set_slab);
2595         kmem_cache_destroy(discard_entry_slab);
2596         kmem_cache_destroy(inmem_entry_slab);
2597 }