1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/prefetch.h>
13 #include <linux/kthread.h>
14 #include <linux/swap.h>
15 #include <linux/timer.h>
16 #include <linux/freezer.h>
17 #include <linux/sched/signal.h>
24 #include <trace/events/f2fs.h>
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *discard_cmd_slab;
30 static struct kmem_cache *sit_entry_set_slab;
31 static struct kmem_cache *inmem_entry_slab;
33 static unsigned long __reverse_ulong(unsigned char *str)
35 unsigned long tmp = 0;
36 int shift = 24, idx = 0;
38 #if BITS_PER_LONG == 64
42 tmp |= (unsigned long)str[idx++] << shift;
43 shift -= BITS_PER_BYTE;
49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
50 * MSB and LSB are reversed in a byte by f2fs_set_bit.
52 static inline unsigned long __reverse_ffs(unsigned long word)
56 #if BITS_PER_LONG == 64
57 if ((word & 0xffffffff00000000UL) == 0)
62 if ((word & 0xffff0000) == 0)
67 if ((word & 0xff00) == 0)
72 if ((word & 0xf0) == 0)
77 if ((word & 0xc) == 0)
82 if ((word & 0x2) == 0)
88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
89 * f2fs_set_bit makes MSB and LSB reversed in a byte.
90 * @size must be integral times of unsigned long.
93 * f2fs_set_bit(0, bitmap) => 1000 0000
94 * f2fs_set_bit(7, bitmap) => 0000 0001
96 static unsigned long __find_rev_next_bit(const unsigned long *addr,
97 unsigned long size, unsigned long offset)
99 const unsigned long *p = addr + BIT_WORD(offset);
100 unsigned long result = size;
106 size -= (offset & ~(BITS_PER_LONG - 1));
107 offset %= BITS_PER_LONG;
113 tmp = __reverse_ulong((unsigned char *)p);
115 tmp &= ~0UL >> offset;
116 if (size < BITS_PER_LONG)
117 tmp &= (~0UL << (BITS_PER_LONG - size));
121 if (size <= BITS_PER_LONG)
123 size -= BITS_PER_LONG;
129 return result - size + __reverse_ffs(tmp);
132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
133 unsigned long size, unsigned long offset)
135 const unsigned long *p = addr + BIT_WORD(offset);
136 unsigned long result = size;
142 size -= (offset & ~(BITS_PER_LONG - 1));
143 offset %= BITS_PER_LONG;
149 tmp = __reverse_ulong((unsigned char *)p);
152 tmp |= ~0UL << (BITS_PER_LONG - offset);
153 if (size < BITS_PER_LONG)
158 if (size <= BITS_PER_LONG)
160 size -= BITS_PER_LONG;
166 return result - size + __reverse_ffz(tmp);
169 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
171 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
172 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
173 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
175 if (test_opt(sbi, LFS))
177 if (sbi->gc_mode == GC_URGENT)
179 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
182 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
183 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
186 void f2fs_register_inmem_page(struct inode *inode, struct page *page)
188 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
189 struct f2fs_inode_info *fi = F2FS_I(inode);
190 struct inmem_pages *new;
192 f2fs_trace_pid(page);
194 set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
195 SetPagePrivate(page);
197 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
199 /* add atomic page indices to the list */
201 INIT_LIST_HEAD(&new->list);
203 /* increase reference count with clean state */
204 mutex_lock(&fi->inmem_lock);
206 list_add_tail(&new->list, &fi->inmem_pages);
207 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
208 if (list_empty(&fi->inmem_ilist))
209 list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
210 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
211 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
212 mutex_unlock(&fi->inmem_lock);
214 trace_f2fs_register_inmem_page(page, INMEM);
217 static int __revoke_inmem_pages(struct inode *inode,
218 struct list_head *head, bool drop, bool recover)
220 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
221 struct inmem_pages *cur, *tmp;
224 list_for_each_entry_safe(cur, tmp, head, list) {
225 struct page *page = cur->page;
228 trace_f2fs_commit_inmem_page(page, INMEM_DROP);
232 f2fs_wait_on_page_writeback(page, DATA, true, true);
235 struct dnode_of_data dn;
238 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
240 set_new_dnode(&dn, inode, NULL, NULL, 0);
241 err = f2fs_get_dnode_of_data(&dn, page->index,
244 if (err == -ENOMEM) {
245 congestion_wait(BLK_RW_ASYNC, HZ/50);
253 err = f2fs_get_node_info(sbi, dn.nid, &ni);
259 if (cur->old_addr == NEW_ADDR) {
260 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
261 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
263 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
264 cur->old_addr, ni.version, true, true);
268 /* we don't need to invalidate this in the sccessful status */
269 if (drop || recover) {
270 ClearPageUptodate(page);
271 clear_cold_data(page);
273 set_page_private(page, 0);
274 ClearPagePrivate(page);
275 f2fs_put_page(page, 1);
277 list_del(&cur->list);
278 kmem_cache_free(inmem_entry_slab, cur);
279 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
284 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
286 struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
288 struct f2fs_inode_info *fi;
290 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
291 if (list_empty(head)) {
292 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
295 fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
296 inode = igrab(&fi->vfs_inode);
297 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
301 if (fi->i_gc_failures[GC_FAILURE_ATOMIC])
306 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
307 f2fs_drop_inmem_pages(inode);
311 congestion_wait(BLK_RW_ASYNC, HZ/50);
316 void f2fs_drop_inmem_pages(struct inode *inode)
318 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
319 struct f2fs_inode_info *fi = F2FS_I(inode);
321 mutex_lock(&fi->inmem_lock);
322 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
323 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
324 if (!list_empty(&fi->inmem_ilist))
325 list_del_init(&fi->inmem_ilist);
326 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
327 mutex_unlock(&fi->inmem_lock);
329 clear_inode_flag(inode, FI_ATOMIC_FILE);
330 fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
331 stat_dec_atomic_write(inode);
334 void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
336 struct f2fs_inode_info *fi = F2FS_I(inode);
337 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
338 struct list_head *head = &fi->inmem_pages;
339 struct inmem_pages *cur = NULL;
341 f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
343 mutex_lock(&fi->inmem_lock);
344 list_for_each_entry(cur, head, list) {
345 if (cur->page == page)
349 f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
350 list_del(&cur->list);
351 mutex_unlock(&fi->inmem_lock);
353 dec_page_count(sbi, F2FS_INMEM_PAGES);
354 kmem_cache_free(inmem_entry_slab, cur);
356 ClearPageUptodate(page);
357 set_page_private(page, 0);
358 ClearPagePrivate(page);
359 f2fs_put_page(page, 0);
361 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
364 static int __f2fs_commit_inmem_pages(struct inode *inode)
366 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
367 struct f2fs_inode_info *fi = F2FS_I(inode);
368 struct inmem_pages *cur, *tmp;
369 struct f2fs_io_info fio = {
374 .op_flags = REQ_SYNC | REQ_PRIO,
375 .io_type = FS_DATA_IO,
377 struct list_head revoke_list;
378 bool submit_bio = false;
381 INIT_LIST_HEAD(&revoke_list);
383 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
384 struct page *page = cur->page;
387 if (page->mapping == inode->i_mapping) {
388 trace_f2fs_commit_inmem_page(page, INMEM);
390 f2fs_wait_on_page_writeback(page, DATA, true, true);
392 set_page_dirty(page);
393 if (clear_page_dirty_for_io(page)) {
394 inode_dec_dirty_pages(inode);
395 f2fs_remove_dirty_inode(inode);
399 fio.old_blkaddr = NULL_ADDR;
400 fio.encrypted_page = NULL;
401 fio.need_lock = LOCK_DONE;
402 err = f2fs_do_write_data_page(&fio);
404 if (err == -ENOMEM) {
405 congestion_wait(BLK_RW_ASYNC, HZ/50);
412 /* record old blkaddr for revoking */
413 cur->old_addr = fio.old_blkaddr;
417 list_move_tail(&cur->list, &revoke_list);
421 f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
425 * try to revoke all committed pages, but still we could fail
426 * due to no memory or other reason, if that happened, EAGAIN
427 * will be returned, which means in such case, transaction is
428 * already not integrity, caller should use journal to do the
429 * recovery or rewrite & commit last transaction. For other
430 * error number, revoking was done by filesystem itself.
432 err = __revoke_inmem_pages(inode, &revoke_list, false, true);
434 /* drop all uncommitted pages */
435 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
437 __revoke_inmem_pages(inode, &revoke_list, false, false);
443 int f2fs_commit_inmem_pages(struct inode *inode)
445 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
446 struct f2fs_inode_info *fi = F2FS_I(inode);
449 f2fs_balance_fs(sbi, true);
451 down_write(&fi->i_gc_rwsem[WRITE]);
454 set_inode_flag(inode, FI_ATOMIC_COMMIT);
456 mutex_lock(&fi->inmem_lock);
457 err = __f2fs_commit_inmem_pages(inode);
459 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
460 if (!list_empty(&fi->inmem_ilist))
461 list_del_init(&fi->inmem_ilist);
462 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
463 mutex_unlock(&fi->inmem_lock);
465 clear_inode_flag(inode, FI_ATOMIC_COMMIT);
468 up_write(&fi->i_gc_rwsem[WRITE]);
474 * This function balances dirty node and dentry pages.
475 * In addition, it controls garbage collection.
477 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
479 if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
480 f2fs_show_injection_info(FAULT_CHECKPOINT);
481 f2fs_stop_checkpoint(sbi, false);
484 /* balance_fs_bg is able to be pending */
485 if (need && excess_cached_nats(sbi))
486 f2fs_balance_fs_bg(sbi);
488 if (f2fs_is_checkpoint_ready(sbi))
492 * We should do GC or end up with checkpoint, if there are so many dirty
493 * dir/node pages without enough free segments.
495 if (has_not_enough_free_secs(sbi, 0, 0)) {
496 mutex_lock(&sbi->gc_mutex);
497 f2fs_gc(sbi, false, false, NULL_SEGNO);
501 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
503 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
506 /* try to shrink extent cache when there is no enough memory */
507 if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
508 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
510 /* check the # of cached NAT entries */
511 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
512 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
514 if (!f2fs_available_free_memory(sbi, FREE_NIDS))
515 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
517 f2fs_build_free_nids(sbi, false, false);
519 if (!is_idle(sbi, REQ_TIME) &&
520 (!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi)))
523 /* checkpoint is the only way to shrink partial cached entries */
524 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
525 !f2fs_available_free_memory(sbi, INO_ENTRIES) ||
526 excess_prefree_segs(sbi) ||
527 excess_dirty_nats(sbi) ||
528 excess_dirty_nodes(sbi) ||
529 f2fs_time_over(sbi, CP_TIME)) {
530 if (test_opt(sbi, DATA_FLUSH)) {
531 struct blk_plug plug;
533 blk_start_plug(&plug);
534 f2fs_sync_dirty_inodes(sbi, FILE_INODE);
535 blk_finish_plug(&plug);
537 f2fs_sync_fs(sbi->sb, true);
538 stat_inc_bg_cp_count(sbi->stat_info);
542 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
543 struct block_device *bdev)
545 struct bio *bio = f2fs_bio_alloc(sbi, 0, true);
548 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
549 bio_set_dev(bio, bdev);
550 ret = submit_bio_wait(bio);
553 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
554 test_opt(sbi, FLUSH_MERGE), ret);
558 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
564 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
566 for (i = 0; i < sbi->s_ndevs; i++) {
567 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
569 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
576 static int issue_flush_thread(void *data)
578 struct f2fs_sb_info *sbi = data;
579 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
580 wait_queue_head_t *q = &fcc->flush_wait_queue;
582 if (kthread_should_stop())
585 sb_start_intwrite(sbi->sb);
587 if (!llist_empty(&fcc->issue_list)) {
588 struct flush_cmd *cmd, *next;
591 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
592 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
594 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
596 ret = submit_flush_wait(sbi, cmd->ino);
597 atomic_inc(&fcc->issued_flush);
599 llist_for_each_entry_safe(cmd, next,
600 fcc->dispatch_list, llnode) {
602 complete(&cmd->wait);
604 fcc->dispatch_list = NULL;
607 sb_end_intwrite(sbi->sb);
609 wait_event_interruptible(*q,
610 kthread_should_stop() || !llist_empty(&fcc->issue_list));
614 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
616 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
617 struct flush_cmd cmd;
620 if (test_opt(sbi, NOBARRIER))
623 if (!test_opt(sbi, FLUSH_MERGE)) {
624 atomic_inc(&fcc->queued_flush);
625 ret = submit_flush_wait(sbi, ino);
626 atomic_dec(&fcc->queued_flush);
627 atomic_inc(&fcc->issued_flush);
631 if (atomic_inc_return(&fcc->queued_flush) == 1 || sbi->s_ndevs > 1) {
632 ret = submit_flush_wait(sbi, ino);
633 atomic_dec(&fcc->queued_flush);
635 atomic_inc(&fcc->issued_flush);
640 init_completion(&cmd.wait);
642 llist_add(&cmd.llnode, &fcc->issue_list);
644 /* update issue_list before we wake up issue_flush thread */
647 if (waitqueue_active(&fcc->flush_wait_queue))
648 wake_up(&fcc->flush_wait_queue);
650 if (fcc->f2fs_issue_flush) {
651 wait_for_completion(&cmd.wait);
652 atomic_dec(&fcc->queued_flush);
654 struct llist_node *list;
656 list = llist_del_all(&fcc->issue_list);
658 wait_for_completion(&cmd.wait);
659 atomic_dec(&fcc->queued_flush);
661 struct flush_cmd *tmp, *next;
663 ret = submit_flush_wait(sbi, ino);
665 llist_for_each_entry_safe(tmp, next, list, llnode) {
668 atomic_dec(&fcc->queued_flush);
672 complete(&tmp->wait);
680 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
682 dev_t dev = sbi->sb->s_bdev->bd_dev;
683 struct flush_cmd_control *fcc;
686 if (SM_I(sbi)->fcc_info) {
687 fcc = SM_I(sbi)->fcc_info;
688 if (fcc->f2fs_issue_flush)
693 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
696 atomic_set(&fcc->issued_flush, 0);
697 atomic_set(&fcc->queued_flush, 0);
698 init_waitqueue_head(&fcc->flush_wait_queue);
699 init_llist_head(&fcc->issue_list);
700 SM_I(sbi)->fcc_info = fcc;
701 if (!test_opt(sbi, FLUSH_MERGE))
705 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
706 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
707 if (IS_ERR(fcc->f2fs_issue_flush)) {
708 err = PTR_ERR(fcc->f2fs_issue_flush);
710 SM_I(sbi)->fcc_info = NULL;
717 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
719 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
721 if (fcc && fcc->f2fs_issue_flush) {
722 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
724 fcc->f2fs_issue_flush = NULL;
725 kthread_stop(flush_thread);
729 SM_I(sbi)->fcc_info = NULL;
733 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
740 for (i = 1; i < sbi->s_ndevs; i++) {
741 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
743 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
747 spin_lock(&sbi->dev_lock);
748 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
749 spin_unlock(&sbi->dev_lock);
755 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
756 enum dirty_type dirty_type)
758 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
760 /* need not be added */
761 if (IS_CURSEG(sbi, segno))
764 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
765 dirty_i->nr_dirty[dirty_type]++;
767 if (dirty_type == DIRTY) {
768 struct seg_entry *sentry = get_seg_entry(sbi, segno);
769 enum dirty_type t = sentry->type;
771 if (unlikely(t >= DIRTY)) {
775 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
776 dirty_i->nr_dirty[t]++;
780 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
781 enum dirty_type dirty_type)
783 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
785 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
786 dirty_i->nr_dirty[dirty_type]--;
788 if (dirty_type == DIRTY) {
789 struct seg_entry *sentry = get_seg_entry(sbi, segno);
790 enum dirty_type t = sentry->type;
792 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
793 dirty_i->nr_dirty[t]--;
795 if (get_valid_blocks(sbi, segno, true) == 0)
796 clear_bit(GET_SEC_FROM_SEG(sbi, segno),
797 dirty_i->victim_secmap);
802 * Should not occur error such as -ENOMEM.
803 * Adding dirty entry into seglist is not critical operation.
804 * If a given segment is one of current working segments, it won't be added.
806 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
808 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
809 unsigned short valid_blocks, ckpt_valid_blocks;
811 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
814 mutex_lock(&dirty_i->seglist_lock);
816 valid_blocks = get_valid_blocks(sbi, segno, false);
817 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno);
819 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
820 ckpt_valid_blocks == sbi->blocks_per_seg)) {
821 __locate_dirty_segment(sbi, segno, PRE);
822 __remove_dirty_segment(sbi, segno, DIRTY);
823 } else if (valid_blocks < sbi->blocks_per_seg) {
824 __locate_dirty_segment(sbi, segno, DIRTY);
826 /* Recovery routine with SSR needs this */
827 __remove_dirty_segment(sbi, segno, DIRTY);
830 mutex_unlock(&dirty_i->seglist_lock);
833 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
834 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
836 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
839 mutex_lock(&dirty_i->seglist_lock);
840 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
841 if (get_valid_blocks(sbi, segno, false))
843 if (IS_CURSEG(sbi, segno))
845 __locate_dirty_segment(sbi, segno, PRE);
846 __remove_dirty_segment(sbi, segno, DIRTY);
848 mutex_unlock(&dirty_i->seglist_lock);
851 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi)
853 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
854 block_t ovp = overprovision_segments(sbi) << sbi->log_blocks_per_seg;
855 block_t holes[2] = {0, 0}; /* DATA and NODE */
856 struct seg_entry *se;
859 mutex_lock(&dirty_i->seglist_lock);
860 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
861 se = get_seg_entry(sbi, segno);
862 if (IS_NODESEG(se->type))
863 holes[NODE] += sbi->blocks_per_seg - se->valid_blocks;
865 holes[DATA] += sbi->blocks_per_seg - se->valid_blocks;
867 mutex_unlock(&dirty_i->seglist_lock);
869 if (holes[DATA] > ovp || holes[NODE] > ovp)
874 /* This is only used by SBI_CP_DISABLED */
875 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
877 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
878 unsigned int segno = 0;
880 mutex_lock(&dirty_i->seglist_lock);
881 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
882 if (get_valid_blocks(sbi, segno, false))
884 if (get_ckpt_valid_blocks(sbi, segno))
886 mutex_unlock(&dirty_i->seglist_lock);
889 mutex_unlock(&dirty_i->seglist_lock);
893 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
894 struct block_device *bdev, block_t lstart,
895 block_t start, block_t len)
897 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
898 struct list_head *pend_list;
899 struct discard_cmd *dc;
901 f2fs_bug_on(sbi, !len);
903 pend_list = &dcc->pend_list[plist_idx(len)];
905 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
906 INIT_LIST_HEAD(&dc->list);
915 init_completion(&dc->wait);
916 list_add_tail(&dc->list, pend_list);
917 spin_lock_init(&dc->lock);
919 atomic_inc(&dcc->discard_cmd_cnt);
920 dcc->undiscard_blks += len;
925 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
926 struct block_device *bdev, block_t lstart,
927 block_t start, block_t len,
928 struct rb_node *parent, struct rb_node **p,
931 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
932 struct discard_cmd *dc;
934 dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
936 rb_link_node(&dc->rb_node, parent, p);
937 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
942 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
943 struct discard_cmd *dc)
945 if (dc->state == D_DONE)
946 atomic_sub(dc->queued, &dcc->queued_discard);
949 rb_erase_cached(&dc->rb_node, &dcc->root);
950 dcc->undiscard_blks -= dc->len;
952 kmem_cache_free(discard_cmd_slab, dc);
954 atomic_dec(&dcc->discard_cmd_cnt);
957 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
958 struct discard_cmd *dc)
960 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
963 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
965 spin_lock_irqsave(&dc->lock, flags);
967 spin_unlock_irqrestore(&dc->lock, flags);
970 spin_unlock_irqrestore(&dc->lock, flags);
972 f2fs_bug_on(sbi, dc->ref);
974 if (dc->error == -EOPNOTSUPP)
979 "%sF2FS-fs: Issue discard(%u, %u, %u) failed, ret: %d",
980 KERN_INFO, dc->lstart, dc->start, dc->len, dc->error);
981 __detach_discard_cmd(dcc, dc);
984 static void f2fs_submit_discard_endio(struct bio *bio)
986 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
989 dc->error = blk_status_to_errno(bio->bi_status);
991 spin_lock_irqsave(&dc->lock, flags);
993 if (!dc->bio_ref && dc->state == D_SUBMIT) {
995 complete_all(&dc->wait);
997 spin_unlock_irqrestore(&dc->lock, flags);
1001 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1002 block_t start, block_t end)
1004 #ifdef CONFIG_F2FS_CHECK_FS
1005 struct seg_entry *sentry;
1007 block_t blk = start;
1008 unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1012 segno = GET_SEGNO(sbi, blk);
1013 sentry = get_seg_entry(sbi, segno);
1014 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1016 if (end < START_BLOCK(sbi, segno + 1))
1017 size = GET_BLKOFF_FROM_SEG0(sbi, end);
1020 map = (unsigned long *)(sentry->cur_valid_map);
1021 offset = __find_rev_next_bit(map, size, offset);
1022 f2fs_bug_on(sbi, offset != size);
1023 blk = START_BLOCK(sbi, segno + 1);
1028 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1029 struct discard_policy *dpolicy,
1030 int discard_type, unsigned int granularity)
1033 dpolicy->type = discard_type;
1034 dpolicy->sync = true;
1035 dpolicy->ordered = false;
1036 dpolicy->granularity = granularity;
1038 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1039 dpolicy->io_aware_gran = MAX_PLIST_NUM;
1041 if (discard_type == DPOLICY_BG) {
1042 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1043 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1044 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1045 dpolicy->io_aware = true;
1046 dpolicy->sync = false;
1047 dpolicy->ordered = true;
1048 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1049 dpolicy->granularity = 1;
1050 dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1052 } else if (discard_type == DPOLICY_FORCE) {
1053 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1054 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1055 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1056 dpolicy->io_aware = false;
1057 } else if (discard_type == DPOLICY_FSTRIM) {
1058 dpolicy->io_aware = false;
1059 } else if (discard_type == DPOLICY_UMOUNT) {
1060 dpolicy->max_requests = UINT_MAX;
1061 dpolicy->io_aware = false;
1065 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1066 struct block_device *bdev, block_t lstart,
1067 block_t start, block_t len);
1068 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1069 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1070 struct discard_policy *dpolicy,
1071 struct discard_cmd *dc,
1072 unsigned int *issued)
1074 struct block_device *bdev = dc->bdev;
1075 struct request_queue *q = bdev_get_queue(bdev);
1076 unsigned int max_discard_blocks =
1077 SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1078 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1079 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1080 &(dcc->fstrim_list) : &(dcc->wait_list);
1081 int flag = dpolicy->sync ? REQ_SYNC : 0;
1082 block_t lstart, start, len, total_len;
1085 if (dc->state != D_PREP)
1088 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1091 trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1093 lstart = dc->lstart;
1100 while (total_len && *issued < dpolicy->max_requests && !err) {
1101 struct bio *bio = NULL;
1102 unsigned long flags;
1105 if (len > max_discard_blocks) {
1106 len = max_discard_blocks;
1111 if (*issued == dpolicy->max_requests)
1116 if (time_to_inject(sbi, FAULT_DISCARD)) {
1117 f2fs_show_injection_info(FAULT_DISCARD);
1121 err = __blkdev_issue_discard(bdev,
1122 SECTOR_FROM_BLOCK(start),
1123 SECTOR_FROM_BLOCK(len),
1127 spin_lock_irqsave(&dc->lock, flags);
1128 if (dc->state == D_PARTIAL)
1129 dc->state = D_SUBMIT;
1130 spin_unlock_irqrestore(&dc->lock, flags);
1135 f2fs_bug_on(sbi, !bio);
1138 * should keep before submission to avoid D_DONE
1141 spin_lock_irqsave(&dc->lock, flags);
1143 dc->state = D_SUBMIT;
1145 dc->state = D_PARTIAL;
1147 spin_unlock_irqrestore(&dc->lock, flags);
1149 atomic_inc(&dcc->queued_discard);
1151 list_move_tail(&dc->list, wait_list);
1153 /* sanity check on discard range */
1154 __check_sit_bitmap(sbi, lstart, lstart + len);
1156 bio->bi_private = dc;
1157 bio->bi_end_io = f2fs_submit_discard_endio;
1158 bio->bi_opf |= flag;
1161 atomic_inc(&dcc->issued_discard);
1163 f2fs_update_iostat(sbi, FS_DISCARD, 1);
1172 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1176 static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
1177 struct block_device *bdev, block_t lstart,
1178 block_t start, block_t len,
1179 struct rb_node **insert_p,
1180 struct rb_node *insert_parent)
1182 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1184 struct rb_node *parent = NULL;
1185 struct discard_cmd *dc = NULL;
1186 bool leftmost = true;
1188 if (insert_p && insert_parent) {
1189 parent = insert_parent;
1194 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1197 dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1205 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1206 struct discard_cmd *dc)
1208 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1211 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1212 struct discard_cmd *dc, block_t blkaddr)
1214 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1215 struct discard_info di = dc->di;
1216 bool modified = false;
1218 if (dc->state == D_DONE || dc->len == 1) {
1219 __remove_discard_cmd(sbi, dc);
1223 dcc->undiscard_blks -= di.len;
1225 if (blkaddr > di.lstart) {
1226 dc->len = blkaddr - dc->lstart;
1227 dcc->undiscard_blks += dc->len;
1228 __relocate_discard_cmd(dcc, dc);
1232 if (blkaddr < di.lstart + di.len - 1) {
1234 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1235 di.start + blkaddr + 1 - di.lstart,
1236 di.lstart + di.len - 1 - blkaddr,
1242 dcc->undiscard_blks += dc->len;
1243 __relocate_discard_cmd(dcc, dc);
1248 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1249 struct block_device *bdev, block_t lstart,
1250 block_t start, block_t len)
1252 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1253 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1254 struct discard_cmd *dc;
1255 struct discard_info di = {0};
1256 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1257 struct request_queue *q = bdev_get_queue(bdev);
1258 unsigned int max_discard_blocks =
1259 SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1260 block_t end = lstart + len;
1262 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1264 (struct rb_entry **)&prev_dc,
1265 (struct rb_entry **)&next_dc,
1266 &insert_p, &insert_parent, true, NULL);
1272 di.len = next_dc ? next_dc->lstart - lstart : len;
1273 di.len = min(di.len, len);
1278 struct rb_node *node;
1279 bool merged = false;
1280 struct discard_cmd *tdc = NULL;
1283 di.lstart = prev_dc->lstart + prev_dc->len;
1284 if (di.lstart < lstart)
1286 if (di.lstart >= end)
1289 if (!next_dc || next_dc->lstart > end)
1290 di.len = end - di.lstart;
1292 di.len = next_dc->lstart - di.lstart;
1293 di.start = start + di.lstart - lstart;
1299 if (prev_dc && prev_dc->state == D_PREP &&
1300 prev_dc->bdev == bdev &&
1301 __is_discard_back_mergeable(&di, &prev_dc->di,
1302 max_discard_blocks)) {
1303 prev_dc->di.len += di.len;
1304 dcc->undiscard_blks += di.len;
1305 __relocate_discard_cmd(dcc, prev_dc);
1311 if (next_dc && next_dc->state == D_PREP &&
1312 next_dc->bdev == bdev &&
1313 __is_discard_front_mergeable(&di, &next_dc->di,
1314 max_discard_blocks)) {
1315 next_dc->di.lstart = di.lstart;
1316 next_dc->di.len += di.len;
1317 next_dc->di.start = di.start;
1318 dcc->undiscard_blks += di.len;
1319 __relocate_discard_cmd(dcc, next_dc);
1321 __remove_discard_cmd(sbi, tdc);
1326 __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1327 di.len, NULL, NULL);
1334 node = rb_next(&prev_dc->rb_node);
1335 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1339 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1340 struct block_device *bdev, block_t blkstart, block_t blklen)
1342 block_t lblkstart = blkstart;
1344 trace_f2fs_queue_discard(bdev, blkstart, blklen);
1347 int devi = f2fs_target_device_index(sbi, blkstart);
1349 blkstart -= FDEV(devi).start_blk;
1351 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1352 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1353 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1357 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1358 struct discard_policy *dpolicy)
1360 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1361 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1362 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1363 struct discard_cmd *dc;
1364 struct blk_plug plug;
1365 unsigned int pos = dcc->next_pos;
1366 unsigned int issued = 0;
1367 bool io_interrupted = false;
1369 mutex_lock(&dcc->cmd_lock);
1370 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1372 (struct rb_entry **)&prev_dc,
1373 (struct rb_entry **)&next_dc,
1374 &insert_p, &insert_parent, true, NULL);
1378 blk_start_plug(&plug);
1381 struct rb_node *node;
1384 if (dc->state != D_PREP)
1387 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1388 io_interrupted = true;
1392 dcc->next_pos = dc->lstart + dc->len;
1393 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1395 if (issued >= dpolicy->max_requests)
1398 node = rb_next(&dc->rb_node);
1400 __remove_discard_cmd(sbi, dc);
1401 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1404 blk_finish_plug(&plug);
1409 mutex_unlock(&dcc->cmd_lock);
1411 if (!issued && io_interrupted)
1417 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1418 struct discard_policy *dpolicy)
1420 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1421 struct list_head *pend_list;
1422 struct discard_cmd *dc, *tmp;
1423 struct blk_plug plug;
1425 bool io_interrupted = false;
1427 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1428 if (i + 1 < dpolicy->granularity)
1431 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1432 return __issue_discard_cmd_orderly(sbi, dpolicy);
1434 pend_list = &dcc->pend_list[i];
1436 mutex_lock(&dcc->cmd_lock);
1437 if (list_empty(pend_list))
1439 if (unlikely(dcc->rbtree_check))
1440 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1442 blk_start_plug(&plug);
1443 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1444 f2fs_bug_on(sbi, dc->state != D_PREP);
1446 if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1447 !is_idle(sbi, DISCARD_TIME)) {
1448 io_interrupted = true;
1452 __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1454 if (issued >= dpolicy->max_requests)
1457 blk_finish_plug(&plug);
1459 mutex_unlock(&dcc->cmd_lock);
1461 if (issued >= dpolicy->max_requests || io_interrupted)
1465 if (!issued && io_interrupted)
1471 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1473 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1474 struct list_head *pend_list;
1475 struct discard_cmd *dc, *tmp;
1477 bool dropped = false;
1479 mutex_lock(&dcc->cmd_lock);
1480 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1481 pend_list = &dcc->pend_list[i];
1482 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1483 f2fs_bug_on(sbi, dc->state != D_PREP);
1484 __remove_discard_cmd(sbi, dc);
1488 mutex_unlock(&dcc->cmd_lock);
1493 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1495 __drop_discard_cmd(sbi);
1498 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1499 struct discard_cmd *dc)
1501 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1502 unsigned int len = 0;
1504 wait_for_completion_io(&dc->wait);
1505 mutex_lock(&dcc->cmd_lock);
1506 f2fs_bug_on(sbi, dc->state != D_DONE);
1511 __remove_discard_cmd(sbi, dc);
1513 mutex_unlock(&dcc->cmd_lock);
1518 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1519 struct discard_policy *dpolicy,
1520 block_t start, block_t end)
1522 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1523 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1524 &(dcc->fstrim_list) : &(dcc->wait_list);
1525 struct discard_cmd *dc, *tmp;
1527 unsigned int trimmed = 0;
1532 mutex_lock(&dcc->cmd_lock);
1533 list_for_each_entry_safe(dc, tmp, wait_list, list) {
1534 if (dc->lstart + dc->len <= start || end <= dc->lstart)
1536 if (dc->len < dpolicy->granularity)
1538 if (dc->state == D_DONE && !dc->ref) {
1539 wait_for_completion_io(&dc->wait);
1542 __remove_discard_cmd(sbi, dc);
1549 mutex_unlock(&dcc->cmd_lock);
1552 trimmed += __wait_one_discard_bio(sbi, dc);
1559 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1560 struct discard_policy *dpolicy)
1562 struct discard_policy dp;
1563 unsigned int discard_blks;
1566 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1569 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1570 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1571 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1572 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1574 return discard_blks;
1577 /* This should be covered by global mutex, &sit_i->sentry_lock */
1578 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1580 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1581 struct discard_cmd *dc;
1582 bool need_wait = false;
1584 mutex_lock(&dcc->cmd_lock);
1585 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1588 if (dc->state == D_PREP) {
1589 __punch_discard_cmd(sbi, dc, blkaddr);
1595 mutex_unlock(&dcc->cmd_lock);
1598 __wait_one_discard_bio(sbi, dc);
1601 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1603 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1605 if (dcc && dcc->f2fs_issue_discard) {
1606 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1608 dcc->f2fs_issue_discard = NULL;
1609 kthread_stop(discard_thread);
1613 /* This comes from f2fs_put_super */
1614 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi)
1616 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1617 struct discard_policy dpolicy;
1620 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1621 dcc->discard_granularity);
1622 __issue_discard_cmd(sbi, &dpolicy);
1623 dropped = __drop_discard_cmd(sbi);
1625 /* just to make sure there is no pending discard commands */
1626 __wait_all_discard_cmd(sbi, NULL);
1628 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1632 static int issue_discard_thread(void *data)
1634 struct f2fs_sb_info *sbi = data;
1635 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1636 wait_queue_head_t *q = &dcc->discard_wait_queue;
1637 struct discard_policy dpolicy;
1638 unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1644 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1645 dcc->discard_granularity);
1647 wait_event_interruptible_timeout(*q,
1648 kthread_should_stop() || freezing(current) ||
1650 msecs_to_jiffies(wait_ms));
1652 if (dcc->discard_wake)
1653 dcc->discard_wake = 0;
1655 /* clean up pending candidates before going to sleep */
1656 if (atomic_read(&dcc->queued_discard))
1657 __wait_all_discard_cmd(sbi, NULL);
1659 if (try_to_freeze())
1661 if (f2fs_readonly(sbi->sb))
1663 if (kthread_should_stop())
1665 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1666 wait_ms = dpolicy.max_interval;
1670 if (sbi->gc_mode == GC_URGENT)
1671 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1673 sb_start_intwrite(sbi->sb);
1675 issued = __issue_discard_cmd(sbi, &dpolicy);
1677 __wait_all_discard_cmd(sbi, &dpolicy);
1678 wait_ms = dpolicy.min_interval;
1679 } else if (issued == -1){
1680 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1682 wait_ms = dpolicy.mid_interval;
1684 wait_ms = dpolicy.max_interval;
1687 sb_end_intwrite(sbi->sb);
1689 } while (!kthread_should_stop());
1693 #ifdef CONFIG_BLK_DEV_ZONED
1694 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1695 struct block_device *bdev, block_t blkstart, block_t blklen)
1697 sector_t sector, nr_sects;
1698 block_t lblkstart = blkstart;
1702 devi = f2fs_target_device_index(sbi, blkstart);
1703 blkstart -= FDEV(devi).start_blk;
1707 * We need to know the type of the zone: for conventional zones,
1708 * use regular discard if the drive supports it. For sequential
1709 * zones, reset the zone write pointer.
1711 switch (get_blkz_type(sbi, bdev, blkstart)) {
1713 case BLK_ZONE_TYPE_CONVENTIONAL:
1714 if (!blk_queue_discard(bdev_get_queue(bdev)))
1716 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1717 case BLK_ZONE_TYPE_SEQWRITE_REQ:
1718 case BLK_ZONE_TYPE_SEQWRITE_PREF:
1719 sector = SECTOR_FROM_BLOCK(blkstart);
1720 nr_sects = SECTOR_FROM_BLOCK(blklen);
1722 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1723 nr_sects != bdev_zone_sectors(bdev)) {
1724 f2fs_msg(sbi->sb, KERN_INFO,
1725 "(%d) %s: Unaligned discard attempted (block %x + %x)",
1726 devi, sbi->s_ndevs ? FDEV(devi).path: "",
1730 trace_f2fs_issue_reset_zone(bdev, blkstart);
1731 return blkdev_reset_zones(bdev, sector,
1732 nr_sects, GFP_NOFS);
1734 /* Unknown zone type: broken device ? */
1740 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1741 struct block_device *bdev, block_t blkstart, block_t blklen)
1743 #ifdef CONFIG_BLK_DEV_ZONED
1744 if (f2fs_sb_has_blkzoned(sbi) &&
1745 bdev_zoned_model(bdev) != BLK_ZONED_NONE)
1746 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1748 return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1751 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1752 block_t blkstart, block_t blklen)
1754 sector_t start = blkstart, len = 0;
1755 struct block_device *bdev;
1756 struct seg_entry *se;
1757 unsigned int offset;
1761 bdev = f2fs_target_device(sbi, blkstart, NULL);
1763 for (i = blkstart; i < blkstart + blklen; i++, len++) {
1765 struct block_device *bdev2 =
1766 f2fs_target_device(sbi, i, NULL);
1768 if (bdev2 != bdev) {
1769 err = __issue_discard_async(sbi, bdev,
1779 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1780 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1782 if (!f2fs_test_and_set_bit(offset, se->discard_map))
1783 sbi->discard_blks--;
1787 err = __issue_discard_async(sbi, bdev, start, len);
1791 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1794 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1795 int max_blocks = sbi->blocks_per_seg;
1796 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1797 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1798 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1799 unsigned long *discard_map = (unsigned long *)se->discard_map;
1800 unsigned long *dmap = SIT_I(sbi)->tmp_map;
1801 unsigned int start = 0, end = -1;
1802 bool force = (cpc->reason & CP_DISCARD);
1803 struct discard_entry *de = NULL;
1804 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1807 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
1811 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1812 SM_I(sbi)->dcc_info->nr_discards >=
1813 SM_I(sbi)->dcc_info->max_discards)
1817 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1818 for (i = 0; i < entries; i++)
1819 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1820 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1822 while (force || SM_I(sbi)->dcc_info->nr_discards <=
1823 SM_I(sbi)->dcc_info->max_discards) {
1824 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1825 if (start >= max_blocks)
1828 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1829 if (force && start && end != max_blocks
1830 && (end - start) < cpc->trim_minlen)
1837 de = f2fs_kmem_cache_alloc(discard_entry_slab,
1839 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1840 list_add_tail(&de->list, head);
1843 for (i = start; i < end; i++)
1844 __set_bit_le(i, (void *)de->discard_map);
1846 SM_I(sbi)->dcc_info->nr_discards += end - start;
1851 static void release_discard_addr(struct discard_entry *entry)
1853 list_del(&entry->list);
1854 kmem_cache_free(discard_entry_slab, entry);
1857 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1859 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1860 struct discard_entry *entry, *this;
1863 list_for_each_entry_safe(entry, this, head, list)
1864 release_discard_addr(entry);
1868 * Should call f2fs_clear_prefree_segments after checkpoint is done.
1870 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1872 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1875 mutex_lock(&dirty_i->seglist_lock);
1876 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1877 __set_test_and_free(sbi, segno);
1878 mutex_unlock(&dirty_i->seglist_lock);
1881 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1882 struct cp_control *cpc)
1884 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1885 struct list_head *head = &dcc->entry_list;
1886 struct discard_entry *entry, *this;
1887 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1888 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1889 unsigned int start = 0, end = -1;
1890 unsigned int secno, start_segno;
1891 bool force = (cpc->reason & CP_DISCARD);
1892 bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi);
1894 mutex_lock(&dirty_i->seglist_lock);
1899 if (need_align && end != -1)
1901 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1902 if (start >= MAIN_SEGS(sbi))
1904 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1908 start = rounddown(start, sbi->segs_per_sec);
1909 end = roundup(end, sbi->segs_per_sec);
1912 for (i = start; i < end; i++) {
1913 if (test_and_clear_bit(i, prefree_map))
1914 dirty_i->nr_dirty[PRE]--;
1917 if (!f2fs_realtime_discard_enable(sbi))
1920 if (force && start >= cpc->trim_start &&
1921 (end - 1) <= cpc->trim_end)
1924 if (!test_opt(sbi, LFS) || !__is_large_section(sbi)) {
1925 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1926 (end - start) << sbi->log_blocks_per_seg);
1930 secno = GET_SEC_FROM_SEG(sbi, start);
1931 start_segno = GET_SEG_FROM_SEC(sbi, secno);
1932 if (!IS_CURSEC(sbi, secno) &&
1933 !get_valid_blocks(sbi, start, true))
1934 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1935 sbi->segs_per_sec << sbi->log_blocks_per_seg);
1937 start = start_segno + sbi->segs_per_sec;
1943 mutex_unlock(&dirty_i->seglist_lock);
1945 /* send small discards */
1946 list_for_each_entry_safe(entry, this, head, list) {
1947 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
1948 bool is_valid = test_bit_le(0, entry->discard_map);
1952 next_pos = find_next_zero_bit_le(entry->discard_map,
1953 sbi->blocks_per_seg, cur_pos);
1954 len = next_pos - cur_pos;
1956 if (f2fs_sb_has_blkzoned(sbi) ||
1957 (force && len < cpc->trim_minlen))
1960 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
1964 next_pos = find_next_bit_le(entry->discard_map,
1965 sbi->blocks_per_seg, cur_pos);
1969 is_valid = !is_valid;
1971 if (cur_pos < sbi->blocks_per_seg)
1974 release_discard_addr(entry);
1975 dcc->nr_discards -= total_len;
1978 wake_up_discard_thread(sbi, false);
1981 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
1983 dev_t dev = sbi->sb->s_bdev->bd_dev;
1984 struct discard_cmd_control *dcc;
1987 if (SM_I(sbi)->dcc_info) {
1988 dcc = SM_I(sbi)->dcc_info;
1992 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
1996 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
1997 INIT_LIST_HEAD(&dcc->entry_list);
1998 for (i = 0; i < MAX_PLIST_NUM; i++)
1999 INIT_LIST_HEAD(&dcc->pend_list[i]);
2000 INIT_LIST_HEAD(&dcc->wait_list);
2001 INIT_LIST_HEAD(&dcc->fstrim_list);
2002 mutex_init(&dcc->cmd_lock);
2003 atomic_set(&dcc->issued_discard, 0);
2004 atomic_set(&dcc->queued_discard, 0);
2005 atomic_set(&dcc->discard_cmd_cnt, 0);
2006 dcc->nr_discards = 0;
2007 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2008 dcc->undiscard_blks = 0;
2010 dcc->root = RB_ROOT_CACHED;
2011 dcc->rbtree_check = false;
2013 init_waitqueue_head(&dcc->discard_wait_queue);
2014 SM_I(sbi)->dcc_info = dcc;
2016 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2017 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2018 if (IS_ERR(dcc->f2fs_issue_discard)) {
2019 err = PTR_ERR(dcc->f2fs_issue_discard);
2021 SM_I(sbi)->dcc_info = NULL;
2028 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2030 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2035 f2fs_stop_discard_thread(sbi);
2038 SM_I(sbi)->dcc_info = NULL;
2041 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2043 struct sit_info *sit_i = SIT_I(sbi);
2045 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2046 sit_i->dirty_sentries++;
2053 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2054 unsigned int segno, int modified)
2056 struct seg_entry *se = get_seg_entry(sbi, segno);
2059 __mark_sit_entry_dirty(sbi, segno);
2062 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2064 struct seg_entry *se;
2065 unsigned int segno, offset;
2066 long int new_vblocks;
2068 #ifdef CONFIG_F2FS_CHECK_FS
2072 segno = GET_SEGNO(sbi, blkaddr);
2074 se = get_seg_entry(sbi, segno);
2075 new_vblocks = se->valid_blocks + del;
2076 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2078 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
2079 (new_vblocks > sbi->blocks_per_seg)));
2081 se->valid_blocks = new_vblocks;
2082 se->mtime = get_mtime(sbi, false);
2083 if (se->mtime > SIT_I(sbi)->max_mtime)
2084 SIT_I(sbi)->max_mtime = se->mtime;
2086 /* Update valid block bitmap */
2088 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2089 #ifdef CONFIG_F2FS_CHECK_FS
2090 mir_exist = f2fs_test_and_set_bit(offset,
2091 se->cur_valid_map_mir);
2092 if (unlikely(exist != mir_exist)) {
2093 f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
2094 "when setting bitmap, blk:%u, old bit:%d",
2096 f2fs_bug_on(sbi, 1);
2099 if (unlikely(exist)) {
2100 f2fs_msg(sbi->sb, KERN_ERR,
2101 "Bitmap was wrongly set, blk:%u", blkaddr);
2102 f2fs_bug_on(sbi, 1);
2107 if (!f2fs_test_and_set_bit(offset, se->discard_map))
2108 sbi->discard_blks--;
2110 /* don't overwrite by SSR to keep node chain */
2111 if (IS_NODESEG(se->type) &&
2112 !is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2113 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2114 se->ckpt_valid_blocks++;
2117 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2118 #ifdef CONFIG_F2FS_CHECK_FS
2119 mir_exist = f2fs_test_and_clear_bit(offset,
2120 se->cur_valid_map_mir);
2121 if (unlikely(exist != mir_exist)) {
2122 f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
2123 "when clearing bitmap, blk:%u, old bit:%d",
2125 f2fs_bug_on(sbi, 1);
2128 if (unlikely(!exist)) {
2129 f2fs_msg(sbi->sb, KERN_ERR,
2130 "Bitmap was wrongly cleared, blk:%u", blkaddr);
2131 f2fs_bug_on(sbi, 1);
2134 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2136 * If checkpoints are off, we must not reuse data that
2137 * was used in the previous checkpoint. If it was used
2138 * before, we must track that to know how much space we
2141 if (f2fs_test_bit(offset, se->ckpt_valid_map))
2142 sbi->unusable_block_count++;
2145 if (f2fs_test_and_clear_bit(offset, se->discard_map))
2146 sbi->discard_blks++;
2148 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2149 se->ckpt_valid_blocks += del;
2151 __mark_sit_entry_dirty(sbi, segno);
2153 /* update total number of valid blocks to be written in ckpt area */
2154 SIT_I(sbi)->written_valid_blocks += del;
2156 if (__is_large_section(sbi))
2157 get_sec_entry(sbi, segno)->valid_blocks += del;
2160 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2162 unsigned int segno = GET_SEGNO(sbi, addr);
2163 struct sit_info *sit_i = SIT_I(sbi);
2165 f2fs_bug_on(sbi, addr == NULL_ADDR);
2166 if (addr == NEW_ADDR)
2169 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2171 /* add it into sit main buffer */
2172 down_write(&sit_i->sentry_lock);
2174 update_sit_entry(sbi, addr, -1);
2176 /* add it into dirty seglist */
2177 locate_dirty_segment(sbi, segno);
2179 up_write(&sit_i->sentry_lock);
2182 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2184 struct sit_info *sit_i = SIT_I(sbi);
2185 unsigned int segno, offset;
2186 struct seg_entry *se;
2189 if (!is_valid_data_blkaddr(sbi, blkaddr))
2192 down_read(&sit_i->sentry_lock);
2194 segno = GET_SEGNO(sbi, blkaddr);
2195 se = get_seg_entry(sbi, segno);
2196 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2198 if (f2fs_test_bit(offset, se->ckpt_valid_map))
2201 up_read(&sit_i->sentry_lock);
2207 * This function should be resided under the curseg_mutex lock
2209 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2210 struct f2fs_summary *sum)
2212 struct curseg_info *curseg = CURSEG_I(sbi, type);
2213 void *addr = curseg->sum_blk;
2214 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2215 memcpy(addr, sum, sizeof(struct f2fs_summary));
2219 * Calculate the number of current summary pages for writing
2221 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2223 int valid_sum_count = 0;
2226 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2227 if (sbi->ckpt->alloc_type[i] == SSR)
2228 valid_sum_count += sbi->blocks_per_seg;
2231 valid_sum_count += le16_to_cpu(
2232 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2234 valid_sum_count += curseg_blkoff(sbi, i);
2238 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2239 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2240 if (valid_sum_count <= sum_in_page)
2242 else if ((valid_sum_count - sum_in_page) <=
2243 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2249 * Caller should put this summary page
2251 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2253 return f2fs_get_meta_page_nofail(sbi, GET_SUM_BLOCK(sbi, segno));
2256 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2257 void *src, block_t blk_addr)
2259 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2261 memcpy(page_address(page), src, PAGE_SIZE);
2262 set_page_dirty(page);
2263 f2fs_put_page(page, 1);
2266 static void write_sum_page(struct f2fs_sb_info *sbi,
2267 struct f2fs_summary_block *sum_blk, block_t blk_addr)
2269 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2272 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2273 int type, block_t blk_addr)
2275 struct curseg_info *curseg = CURSEG_I(sbi, type);
2276 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2277 struct f2fs_summary_block *src = curseg->sum_blk;
2278 struct f2fs_summary_block *dst;
2280 dst = (struct f2fs_summary_block *)page_address(page);
2281 memset(dst, 0, PAGE_SIZE);
2283 mutex_lock(&curseg->curseg_mutex);
2285 down_read(&curseg->journal_rwsem);
2286 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2287 up_read(&curseg->journal_rwsem);
2289 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2290 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2292 mutex_unlock(&curseg->curseg_mutex);
2294 set_page_dirty(page);
2295 f2fs_put_page(page, 1);
2298 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
2300 struct curseg_info *curseg = CURSEG_I(sbi, type);
2301 unsigned int segno = curseg->segno + 1;
2302 struct free_segmap_info *free_i = FREE_I(sbi);
2304 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2305 return !test_bit(segno, free_i->free_segmap);
2310 * Find a new segment from the free segments bitmap to right order
2311 * This function should be returned with success, otherwise BUG
2313 static void get_new_segment(struct f2fs_sb_info *sbi,
2314 unsigned int *newseg, bool new_sec, int dir)
2316 struct free_segmap_info *free_i = FREE_I(sbi);
2317 unsigned int segno, secno, zoneno;
2318 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2319 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2320 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2321 unsigned int left_start = hint;
2326 spin_lock(&free_i->segmap_lock);
2328 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2329 segno = find_next_zero_bit(free_i->free_segmap,
2330 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2331 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2335 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2336 if (secno >= MAIN_SECS(sbi)) {
2337 if (dir == ALLOC_RIGHT) {
2338 secno = find_next_zero_bit(free_i->free_secmap,
2340 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2343 left_start = hint - 1;
2349 while (test_bit(left_start, free_i->free_secmap)) {
2350 if (left_start > 0) {
2354 left_start = find_next_zero_bit(free_i->free_secmap,
2356 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2361 segno = GET_SEG_FROM_SEC(sbi, secno);
2362 zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2364 /* give up on finding another zone */
2367 if (sbi->secs_per_zone == 1)
2369 if (zoneno == old_zoneno)
2371 if (dir == ALLOC_LEFT) {
2372 if (!go_left && zoneno + 1 >= total_zones)
2374 if (go_left && zoneno == 0)
2377 for (i = 0; i < NR_CURSEG_TYPE; i++)
2378 if (CURSEG_I(sbi, i)->zone == zoneno)
2381 if (i < NR_CURSEG_TYPE) {
2382 /* zone is in user, try another */
2384 hint = zoneno * sbi->secs_per_zone - 1;
2385 else if (zoneno + 1 >= total_zones)
2388 hint = (zoneno + 1) * sbi->secs_per_zone;
2390 goto find_other_zone;
2393 /* set it as dirty segment in free segmap */
2394 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2395 __set_inuse(sbi, segno);
2397 spin_unlock(&free_i->segmap_lock);
2400 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2402 struct curseg_info *curseg = CURSEG_I(sbi, type);
2403 struct summary_footer *sum_footer;
2405 curseg->segno = curseg->next_segno;
2406 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2407 curseg->next_blkoff = 0;
2408 curseg->next_segno = NULL_SEGNO;
2410 sum_footer = &(curseg->sum_blk->footer);
2411 memset(sum_footer, 0, sizeof(struct summary_footer));
2412 if (IS_DATASEG(type))
2413 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2414 if (IS_NODESEG(type))
2415 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2416 __set_sit_entry_type(sbi, type, curseg->segno, modified);
2419 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2421 /* if segs_per_sec is large than 1, we need to keep original policy. */
2422 if (__is_large_section(sbi))
2423 return CURSEG_I(sbi, type)->segno;
2425 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2428 if (test_opt(sbi, NOHEAP) &&
2429 (type == CURSEG_HOT_DATA || IS_NODESEG(type)))
2432 if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2433 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2435 /* find segments from 0 to reuse freed segments */
2436 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2439 return CURSEG_I(sbi, type)->segno;
2443 * Allocate a current working segment.
2444 * This function always allocates a free segment in LFS manner.
2446 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2448 struct curseg_info *curseg = CURSEG_I(sbi, type);
2449 unsigned int segno = curseg->segno;
2450 int dir = ALLOC_LEFT;
2452 write_sum_page(sbi, curseg->sum_blk,
2453 GET_SUM_BLOCK(sbi, segno));
2454 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
2457 if (test_opt(sbi, NOHEAP))
2460 segno = __get_next_segno(sbi, type);
2461 get_new_segment(sbi, &segno, new_sec, dir);
2462 curseg->next_segno = segno;
2463 reset_curseg(sbi, type, 1);
2464 curseg->alloc_type = LFS;
2467 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2468 struct curseg_info *seg, block_t start)
2470 struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2471 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2472 unsigned long *target_map = SIT_I(sbi)->tmp_map;
2473 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2474 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2477 for (i = 0; i < entries; i++)
2478 target_map[i] = ckpt_map[i] | cur_map[i];
2480 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2482 seg->next_blkoff = pos;
2486 * If a segment is written by LFS manner, next block offset is just obtained
2487 * by increasing the current block offset. However, if a segment is written by
2488 * SSR manner, next block offset obtained by calling __next_free_blkoff
2490 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2491 struct curseg_info *seg)
2493 if (seg->alloc_type == SSR)
2494 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2500 * This function always allocates a used segment(from dirty seglist) by SSR
2501 * manner, so it should recover the existing segment information of valid blocks
2503 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2505 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2506 struct curseg_info *curseg = CURSEG_I(sbi, type);
2507 unsigned int new_segno = curseg->next_segno;
2508 struct f2fs_summary_block *sum_node;
2509 struct page *sum_page;
2511 write_sum_page(sbi, curseg->sum_blk,
2512 GET_SUM_BLOCK(sbi, curseg->segno));
2513 __set_test_and_inuse(sbi, new_segno);
2515 mutex_lock(&dirty_i->seglist_lock);
2516 __remove_dirty_segment(sbi, new_segno, PRE);
2517 __remove_dirty_segment(sbi, new_segno, DIRTY);
2518 mutex_unlock(&dirty_i->seglist_lock);
2520 reset_curseg(sbi, type, 1);
2521 curseg->alloc_type = SSR;
2522 __next_free_blkoff(sbi, curseg, 0);
2524 sum_page = f2fs_get_sum_page(sbi, new_segno);
2525 f2fs_bug_on(sbi, IS_ERR(sum_page));
2526 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2527 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2528 f2fs_put_page(sum_page, 1);
2531 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
2533 struct curseg_info *curseg = CURSEG_I(sbi, type);
2534 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2535 unsigned segno = NULL_SEGNO;
2537 bool reversed = false;
2539 /* f2fs_need_SSR() already forces to do this */
2540 if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
2541 curseg->next_segno = segno;
2545 /* For node segments, let's do SSR more intensively */
2546 if (IS_NODESEG(type)) {
2547 if (type >= CURSEG_WARM_NODE) {
2549 i = CURSEG_COLD_NODE;
2551 i = CURSEG_HOT_NODE;
2553 cnt = NR_CURSEG_NODE_TYPE;
2555 if (type >= CURSEG_WARM_DATA) {
2557 i = CURSEG_COLD_DATA;
2559 i = CURSEG_HOT_DATA;
2561 cnt = NR_CURSEG_DATA_TYPE;
2564 for (; cnt-- > 0; reversed ? i-- : i++) {
2567 if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
2568 curseg->next_segno = segno;
2573 /* find valid_blocks=0 in dirty list */
2574 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2575 segno = get_free_segment(sbi);
2576 if (segno != NULL_SEGNO) {
2577 curseg->next_segno = segno;
2585 * flush out current segment and replace it with new segment
2586 * This function should be returned with success, otherwise BUG
2588 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2589 int type, bool force)
2591 struct curseg_info *curseg = CURSEG_I(sbi, type);
2594 new_curseg(sbi, type, true);
2595 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2596 type == CURSEG_WARM_NODE)
2597 new_curseg(sbi, type, false);
2598 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type) &&
2599 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2600 new_curseg(sbi, type, false);
2601 else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2602 change_curseg(sbi, type);
2604 new_curseg(sbi, type, false);
2606 stat_inc_seg_type(sbi, curseg);
2609 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2611 struct curseg_info *curseg;
2612 unsigned int old_segno;
2615 down_write(&SIT_I(sbi)->sentry_lock);
2617 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2618 curseg = CURSEG_I(sbi, i);
2619 old_segno = curseg->segno;
2620 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
2621 locate_dirty_segment(sbi, old_segno);
2624 up_write(&SIT_I(sbi)->sentry_lock);
2627 static const struct segment_allocation default_salloc_ops = {
2628 .allocate_segment = allocate_segment_by_default,
2631 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2632 struct cp_control *cpc)
2634 __u64 trim_start = cpc->trim_start;
2635 bool has_candidate = false;
2637 down_write(&SIT_I(sbi)->sentry_lock);
2638 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2639 if (add_discard_addrs(sbi, cpc, true)) {
2640 has_candidate = true;
2644 up_write(&SIT_I(sbi)->sentry_lock);
2646 cpc->trim_start = trim_start;
2647 return has_candidate;
2650 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2651 struct discard_policy *dpolicy,
2652 unsigned int start, unsigned int end)
2654 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2655 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2656 struct rb_node **insert_p = NULL, *insert_parent = NULL;
2657 struct discard_cmd *dc;
2658 struct blk_plug plug;
2660 unsigned int trimmed = 0;
2665 mutex_lock(&dcc->cmd_lock);
2666 if (unlikely(dcc->rbtree_check))
2667 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2670 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2672 (struct rb_entry **)&prev_dc,
2673 (struct rb_entry **)&next_dc,
2674 &insert_p, &insert_parent, true, NULL);
2678 blk_start_plug(&plug);
2680 while (dc && dc->lstart <= end) {
2681 struct rb_node *node;
2684 if (dc->len < dpolicy->granularity)
2687 if (dc->state != D_PREP) {
2688 list_move_tail(&dc->list, &dcc->fstrim_list);
2692 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
2694 if (issued >= dpolicy->max_requests) {
2695 start = dc->lstart + dc->len;
2698 __remove_discard_cmd(sbi, dc);
2700 blk_finish_plug(&plug);
2701 mutex_unlock(&dcc->cmd_lock);
2702 trimmed += __wait_all_discard_cmd(sbi, NULL);
2703 congestion_wait(BLK_RW_ASYNC, HZ/50);
2707 node = rb_next(&dc->rb_node);
2709 __remove_discard_cmd(sbi, dc);
2710 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
2712 if (fatal_signal_pending(current))
2716 blk_finish_plug(&plug);
2717 mutex_unlock(&dcc->cmd_lock);
2722 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
2724 __u64 start = F2FS_BYTES_TO_BLK(range->start);
2725 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
2726 unsigned int start_segno, end_segno;
2727 block_t start_block, end_block;
2728 struct cp_control cpc;
2729 struct discard_policy dpolicy;
2730 unsigned long long trimmed = 0;
2732 bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi);
2734 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
2737 if (end < MAIN_BLKADDR(sbi))
2740 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2741 f2fs_msg(sbi->sb, KERN_WARNING,
2742 "Found FS corruption, run fsck to fix.");
2746 /* start/end segment number in main_area */
2747 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
2748 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
2749 GET_SEGNO(sbi, end);
2751 start_segno = rounddown(start_segno, sbi->segs_per_sec);
2752 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
2755 cpc.reason = CP_DISCARD;
2756 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
2757 cpc.trim_start = start_segno;
2758 cpc.trim_end = end_segno;
2760 if (sbi->discard_blks == 0)
2763 mutex_lock(&sbi->gc_mutex);
2764 err = f2fs_write_checkpoint(sbi, &cpc);
2765 mutex_unlock(&sbi->gc_mutex);
2770 * We filed discard candidates, but actually we don't need to wait for
2771 * all of them, since they'll be issued in idle time along with runtime
2772 * discard option. User configuration looks like using runtime discard
2773 * or periodic fstrim instead of it.
2775 if (f2fs_realtime_discard_enable(sbi))
2778 start_block = START_BLOCK(sbi, start_segno);
2779 end_block = START_BLOCK(sbi, end_segno + 1);
2781 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
2782 trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
2783 start_block, end_block);
2785 trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
2786 start_block, end_block);
2789 range->len = F2FS_BLK_TO_BYTES(trimmed);
2793 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
2795 struct curseg_info *curseg = CURSEG_I(sbi, type);
2796 if (curseg->next_blkoff < sbi->blocks_per_seg)
2801 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
2804 case WRITE_LIFE_SHORT:
2805 return CURSEG_HOT_DATA;
2806 case WRITE_LIFE_EXTREME:
2807 return CURSEG_COLD_DATA;
2809 return CURSEG_WARM_DATA;
2813 /* This returns write hints for each segment type. This hints will be
2814 * passed down to block layer. There are mapping tables which depend on
2815 * the mount option 'whint_mode'.
2817 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
2819 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
2823 * META WRITE_LIFE_NOT_SET
2827 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
2828 * extension list " "
2831 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2832 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2833 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2834 * WRITE_LIFE_NONE " "
2835 * WRITE_LIFE_MEDIUM " "
2836 * WRITE_LIFE_LONG " "
2839 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2840 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2841 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2842 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
2843 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
2844 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
2846 * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
2850 * META WRITE_LIFE_MEDIUM;
2851 * HOT_NODE WRITE_LIFE_NOT_SET
2853 * COLD_NODE WRITE_LIFE_NONE
2854 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
2855 * extension list " "
2858 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2859 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2860 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG
2861 * WRITE_LIFE_NONE " "
2862 * WRITE_LIFE_MEDIUM " "
2863 * WRITE_LIFE_LONG " "
2866 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2867 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2868 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2869 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
2870 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
2871 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
2874 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
2875 enum page_type type, enum temp_type temp)
2877 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
2880 return WRITE_LIFE_NOT_SET;
2881 else if (temp == HOT)
2882 return WRITE_LIFE_SHORT;
2883 else if (temp == COLD)
2884 return WRITE_LIFE_EXTREME;
2886 return WRITE_LIFE_NOT_SET;
2888 } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
2891 return WRITE_LIFE_LONG;
2892 else if (temp == HOT)
2893 return WRITE_LIFE_SHORT;
2894 else if (temp == COLD)
2895 return WRITE_LIFE_EXTREME;
2896 } else if (type == NODE) {
2897 if (temp == WARM || temp == HOT)
2898 return WRITE_LIFE_NOT_SET;
2899 else if (temp == COLD)
2900 return WRITE_LIFE_NONE;
2901 } else if (type == META) {
2902 return WRITE_LIFE_MEDIUM;
2905 return WRITE_LIFE_NOT_SET;
2908 static int __get_segment_type_2(struct f2fs_io_info *fio)
2910 if (fio->type == DATA)
2911 return CURSEG_HOT_DATA;
2913 return CURSEG_HOT_NODE;
2916 static int __get_segment_type_4(struct f2fs_io_info *fio)
2918 if (fio->type == DATA) {
2919 struct inode *inode = fio->page->mapping->host;
2921 if (S_ISDIR(inode->i_mode))
2922 return CURSEG_HOT_DATA;
2924 return CURSEG_COLD_DATA;
2926 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
2927 return CURSEG_WARM_NODE;
2929 return CURSEG_COLD_NODE;
2933 static int __get_segment_type_6(struct f2fs_io_info *fio)
2935 if (fio->type == DATA) {
2936 struct inode *inode = fio->page->mapping->host;
2938 if (is_cold_data(fio->page) || file_is_cold(inode))
2939 return CURSEG_COLD_DATA;
2940 if (file_is_hot(inode) ||
2941 is_inode_flag_set(inode, FI_HOT_DATA) ||
2942 f2fs_is_atomic_file(inode) ||
2943 f2fs_is_volatile_file(inode))
2944 return CURSEG_HOT_DATA;
2945 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
2947 if (IS_DNODE(fio->page))
2948 return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
2950 return CURSEG_COLD_NODE;
2954 static int __get_segment_type(struct f2fs_io_info *fio)
2958 switch (F2FS_OPTION(fio->sbi).active_logs) {
2960 type = __get_segment_type_2(fio);
2963 type = __get_segment_type_4(fio);
2966 type = __get_segment_type_6(fio);
2969 f2fs_bug_on(fio->sbi, true);
2974 else if (IS_WARM(type))
2981 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2982 block_t old_blkaddr, block_t *new_blkaddr,
2983 struct f2fs_summary *sum, int type,
2984 struct f2fs_io_info *fio, bool add_list)
2986 struct sit_info *sit_i = SIT_I(sbi);
2987 struct curseg_info *curseg = CURSEG_I(sbi, type);
2989 down_read(&SM_I(sbi)->curseg_lock);
2991 mutex_lock(&curseg->curseg_mutex);
2992 down_write(&sit_i->sentry_lock);
2994 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
2996 f2fs_wait_discard_bio(sbi, *new_blkaddr);
2999 * __add_sum_entry should be resided under the curseg_mutex
3000 * because, this function updates a summary entry in the
3001 * current summary block.
3003 __add_sum_entry(sbi, type, sum);
3005 __refresh_next_blkoff(sbi, curseg);
3007 stat_inc_block_count(sbi, curseg);
3010 * SIT information should be updated before segment allocation,
3011 * since SSR needs latest valid block information.
3013 update_sit_entry(sbi, *new_blkaddr, 1);
3014 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3015 update_sit_entry(sbi, old_blkaddr, -1);
3017 if (!__has_curseg_space(sbi, type))
3018 sit_i->s_ops->allocate_segment(sbi, type, false);
3021 * segment dirty status should be updated after segment allocation,
3022 * so we just need to update status only one time after previous
3023 * segment being closed.
3025 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3026 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3028 up_write(&sit_i->sentry_lock);
3030 if (page && IS_NODESEG(type)) {
3031 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3033 f2fs_inode_chksum_set(sbi, page);
3037 struct f2fs_bio_info *io;
3039 INIT_LIST_HEAD(&fio->list);
3040 fio->in_list = true;
3042 io = sbi->write_io[fio->type] + fio->temp;
3043 spin_lock(&io->io_lock);
3044 list_add_tail(&fio->list, &io->io_list);
3045 spin_unlock(&io->io_lock);
3048 mutex_unlock(&curseg->curseg_mutex);
3050 up_read(&SM_I(sbi)->curseg_lock);
3053 static void update_device_state(struct f2fs_io_info *fio)
3055 struct f2fs_sb_info *sbi = fio->sbi;
3056 unsigned int devidx;
3061 devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
3063 /* update device state for fsync */
3064 f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
3066 /* update device state for checkpoint */
3067 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3068 spin_lock(&sbi->dev_lock);
3069 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3070 spin_unlock(&sbi->dev_lock);
3074 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3076 int type = __get_segment_type(fio);
3077 bool keep_order = (test_opt(fio->sbi, LFS) && type == CURSEG_COLD_DATA);
3080 down_read(&fio->sbi->io_order_lock);
3082 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3083 &fio->new_blkaddr, sum, type, fio, true);
3084 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3085 invalidate_mapping_pages(META_MAPPING(fio->sbi),
3086 fio->old_blkaddr, fio->old_blkaddr);
3088 /* writeout dirty page into bdev */
3089 f2fs_submit_page_write(fio);
3091 fio->old_blkaddr = fio->new_blkaddr;
3095 update_device_state(fio);
3098 up_read(&fio->sbi->io_order_lock);
3101 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3102 enum iostat_type io_type)
3104 struct f2fs_io_info fio = {
3109 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3110 .old_blkaddr = page->index,
3111 .new_blkaddr = page->index,
3113 .encrypted_page = NULL,
3117 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3118 fio.op_flags &= ~REQ_META;
3120 set_page_writeback(page);
3121 ClearPageError(page);
3122 f2fs_submit_page_write(&fio);
3124 stat_inc_meta_count(sbi, page->index);
3125 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3128 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3130 struct f2fs_summary sum;
3132 set_summary(&sum, nid, 0, 0);
3133 do_write_page(&sum, fio);
3135 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3138 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3139 struct f2fs_io_info *fio)
3141 struct f2fs_sb_info *sbi = fio->sbi;
3142 struct f2fs_summary sum;
3144 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3145 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3146 do_write_page(&sum, fio);
3147 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3149 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3152 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3155 struct f2fs_sb_info *sbi = fio->sbi;
3157 fio->new_blkaddr = fio->old_blkaddr;
3158 /* i/o temperature is needed for passing down write hints */
3159 __get_segment_type(fio);
3161 f2fs_bug_on(sbi, !IS_DATASEG(get_seg_entry(sbi,
3162 GET_SEGNO(sbi, fio->new_blkaddr))->type));
3164 stat_inc_inplace_blocks(fio->sbi);
3166 err = f2fs_submit_page_bio(fio);
3168 update_device_state(fio);
3170 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3175 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3180 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3181 if (CURSEG_I(sbi, i)->segno == segno)
3187 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3188 block_t old_blkaddr, block_t new_blkaddr,
3189 bool recover_curseg, bool recover_newaddr)
3191 struct sit_info *sit_i = SIT_I(sbi);
3192 struct curseg_info *curseg;
3193 unsigned int segno, old_cursegno;
3194 struct seg_entry *se;
3196 unsigned short old_blkoff;
3198 segno = GET_SEGNO(sbi, new_blkaddr);
3199 se = get_seg_entry(sbi, segno);
3202 down_write(&SM_I(sbi)->curseg_lock);
3204 if (!recover_curseg) {
3205 /* for recovery flow */
3206 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3207 if (old_blkaddr == NULL_ADDR)
3208 type = CURSEG_COLD_DATA;
3210 type = CURSEG_WARM_DATA;
3213 if (IS_CURSEG(sbi, segno)) {
3214 /* se->type is volatile as SSR allocation */
3215 type = __f2fs_get_curseg(sbi, segno);
3216 f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3218 type = CURSEG_WARM_DATA;
3222 f2fs_bug_on(sbi, !IS_DATASEG(type));
3223 curseg = CURSEG_I(sbi, type);
3225 mutex_lock(&curseg->curseg_mutex);
3226 down_write(&sit_i->sentry_lock);
3228 old_cursegno = curseg->segno;
3229 old_blkoff = curseg->next_blkoff;
3231 /* change the current segment */
3232 if (segno != curseg->segno) {
3233 curseg->next_segno = segno;
3234 change_curseg(sbi, type);
3237 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3238 __add_sum_entry(sbi, type, sum);
3240 if (!recover_curseg || recover_newaddr)
3241 update_sit_entry(sbi, new_blkaddr, 1);
3242 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {