Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc
[sfrench/cifs-2.6.git] / fs / f2fs / f2fs.h
1 /*
2  * fs/f2fs/f2fs.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <crypto/hash.h>
27
28 #define __FS_HAS_ENCRYPTION IS_ENABLED(CONFIG_F2FS_FS_ENCRYPTION)
29 #include <linux/fscrypt.h>
30
31 #ifdef CONFIG_F2FS_CHECK_FS
32 #define f2fs_bug_on(sbi, condition)     BUG_ON(condition)
33 #else
34 #define f2fs_bug_on(sbi, condition)                                     \
35         do {                                                            \
36                 if (unlikely(condition)) {                              \
37                         WARN_ON(1);                                     \
38                         set_sbi_flag(sbi, SBI_NEED_FSCK);               \
39                 }                                                       \
40         } while (0)
41 #endif
42
43 #ifdef CONFIG_F2FS_FAULT_INJECTION
44 enum {
45         FAULT_KMALLOC,
46         FAULT_PAGE_ALLOC,
47         FAULT_PAGE_GET,
48         FAULT_ALLOC_BIO,
49         FAULT_ALLOC_NID,
50         FAULT_ORPHAN,
51         FAULT_BLOCK,
52         FAULT_DIR_DEPTH,
53         FAULT_EVICT_INODE,
54         FAULT_TRUNCATE,
55         FAULT_IO,
56         FAULT_CHECKPOINT,
57         FAULT_MAX,
58 };
59
60 struct f2fs_fault_info {
61         atomic_t inject_ops;
62         unsigned int inject_rate;
63         unsigned int inject_type;
64 };
65
66 extern char *fault_name[FAULT_MAX];
67 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
68 #endif
69
70 /*
71  * For mount options
72  */
73 #define F2FS_MOUNT_BG_GC                0x00000001
74 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
75 #define F2FS_MOUNT_DISCARD              0x00000004
76 #define F2FS_MOUNT_NOHEAP               0x00000008
77 #define F2FS_MOUNT_XATTR_USER           0x00000010
78 #define F2FS_MOUNT_POSIX_ACL            0x00000020
79 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
80 #define F2FS_MOUNT_INLINE_XATTR         0x00000080
81 #define F2FS_MOUNT_INLINE_DATA          0x00000100
82 #define F2FS_MOUNT_INLINE_DENTRY        0x00000200
83 #define F2FS_MOUNT_FLUSH_MERGE          0x00000400
84 #define F2FS_MOUNT_NOBARRIER            0x00000800
85 #define F2FS_MOUNT_FASTBOOT             0x00001000
86 #define F2FS_MOUNT_EXTENT_CACHE         0x00002000
87 #define F2FS_MOUNT_FORCE_FG_GC          0x00004000
88 #define F2FS_MOUNT_DATA_FLUSH           0x00008000
89 #define F2FS_MOUNT_FAULT_INJECTION      0x00010000
90 #define F2FS_MOUNT_ADAPTIVE             0x00020000
91 #define F2FS_MOUNT_LFS                  0x00040000
92 #define F2FS_MOUNT_USRQUOTA             0x00080000
93 #define F2FS_MOUNT_GRPQUOTA             0x00100000
94 #define F2FS_MOUNT_PRJQUOTA             0x00200000
95 #define F2FS_MOUNT_QUOTA                0x00400000
96 #define F2FS_MOUNT_INLINE_XATTR_SIZE    0x00800000
97
98 #define clear_opt(sbi, option)  ((sbi)->mount_opt.opt &= ~F2FS_MOUNT_##option)
99 #define set_opt(sbi, option)    ((sbi)->mount_opt.opt |= F2FS_MOUNT_##option)
100 #define test_opt(sbi, option)   ((sbi)->mount_opt.opt & F2FS_MOUNT_##option)
101
102 #define ver_after(a, b) (typecheck(unsigned long long, a) &&            \
103                 typecheck(unsigned long long, b) &&                     \
104                 ((long long)((a) - (b)) > 0))
105
106 typedef u32 block_t;    /*
107                          * should not change u32, since it is the on-disk block
108                          * address format, __le32.
109                          */
110 typedef u32 nid_t;
111
112 struct f2fs_mount_info {
113         unsigned int    opt;
114 };
115
116 #define F2FS_FEATURE_ENCRYPT            0x0001
117 #define F2FS_FEATURE_BLKZONED           0x0002
118 #define F2FS_FEATURE_ATOMIC_WRITE       0x0004
119 #define F2FS_FEATURE_EXTRA_ATTR         0x0008
120 #define F2FS_FEATURE_PRJQUOTA           0x0010
121 #define F2FS_FEATURE_INODE_CHKSUM       0x0020
122 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR      0x0040
123 #define F2FS_FEATURE_QUOTA_INO          0x0080
124
125 #define F2FS_HAS_FEATURE(sb, mask)                                      \
126         ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
127 #define F2FS_SET_FEATURE(sb, mask)                                      \
128         (F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask))
129 #define F2FS_CLEAR_FEATURE(sb, mask)                                    \
130         (F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask))
131
132 /*
133  * For checkpoint manager
134  */
135 enum {
136         NAT_BITMAP,
137         SIT_BITMAP
138 };
139
140 #define CP_UMOUNT       0x00000001
141 #define CP_FASTBOOT     0x00000002
142 #define CP_SYNC         0x00000004
143 #define CP_RECOVERY     0x00000008
144 #define CP_DISCARD      0x00000010
145 #define CP_TRIMMED      0x00000020
146
147 #define DEF_BATCHED_TRIM_SECTIONS       2048
148 #define BATCHED_TRIM_SEGMENTS(sbi)      \
149                 (GET_SEG_FROM_SEC(sbi, SM_I(sbi)->trim_sections))
150 #define BATCHED_TRIM_BLOCKS(sbi)        \
151                 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
152 #define MAX_DISCARD_BLOCKS(sbi)         BLKS_PER_SEC(sbi)
153 #define DEF_MAX_DISCARD_REQUEST         8       /* issue 8 discards per round */
154 #define DEF_MIN_DISCARD_ISSUE_TIME      50      /* 50 ms, if exists */
155 #define DEF_MAX_DISCARD_ISSUE_TIME      60000   /* 60 s, if no candidates */
156 #define DEF_CP_INTERVAL                 60      /* 60 secs */
157 #define DEF_IDLE_INTERVAL               5       /* 5 secs */
158
159 struct cp_control {
160         int reason;
161         __u64 trim_start;
162         __u64 trim_end;
163         __u64 trim_minlen;
164 };
165
166 /*
167  * For CP/NAT/SIT/SSA readahead
168  */
169 enum {
170         META_CP,
171         META_NAT,
172         META_SIT,
173         META_SSA,
174         META_POR,
175 };
176
177 /* for the list of ino */
178 enum {
179         ORPHAN_INO,             /* for orphan ino list */
180         APPEND_INO,             /* for append ino list */
181         UPDATE_INO,             /* for update ino list */
182         FLUSH_INO,              /* for multiple device flushing */
183         MAX_INO_ENTRY,          /* max. list */
184 };
185
186 struct ino_entry {
187         struct list_head list;          /* list head */
188         nid_t ino;                      /* inode number */
189         unsigned int dirty_device;      /* dirty device bitmap */
190 };
191
192 /* for the list of inodes to be GCed */
193 struct inode_entry {
194         struct list_head list;  /* list head */
195         struct inode *inode;    /* vfs inode pointer */
196 };
197
198 /* for the bitmap indicate blocks to be discarded */
199 struct discard_entry {
200         struct list_head list;  /* list head */
201         block_t start_blkaddr;  /* start blockaddr of current segment */
202         unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
203 };
204
205 /* default discard granularity of inner discard thread, unit: block count */
206 #define DEFAULT_DISCARD_GRANULARITY             16
207
208 /* max discard pend list number */
209 #define MAX_PLIST_NUM           512
210 #define plist_idx(blk_num)      ((blk_num) >= MAX_PLIST_NUM ?           \
211                                         (MAX_PLIST_NUM - 1) : (blk_num - 1))
212
213 enum {
214         D_PREP,
215         D_SUBMIT,
216         D_DONE,
217 };
218
219 struct discard_info {
220         block_t lstart;                 /* logical start address */
221         block_t len;                    /* length */
222         block_t start;                  /* actual start address in dev */
223 };
224
225 struct discard_cmd {
226         struct rb_node rb_node;         /* rb node located in rb-tree */
227         union {
228                 struct {
229                         block_t lstart; /* logical start address */
230                         block_t len;    /* length */
231                         block_t start;  /* actual start address in dev */
232                 };
233                 struct discard_info di; /* discard info */
234
235         };
236         struct list_head list;          /* command list */
237         struct completion wait;         /* compleation */
238         struct block_device *bdev;      /* bdev */
239         unsigned short ref;             /* reference count */
240         unsigned char state;            /* state */
241         int error;                      /* bio error */
242 };
243
244 enum {
245         DPOLICY_BG,
246         DPOLICY_FORCE,
247         DPOLICY_FSTRIM,
248         DPOLICY_UMOUNT,
249         MAX_DPOLICY,
250 };
251
252 struct discard_policy {
253         int type;                       /* type of discard */
254         unsigned int min_interval;      /* used for candidates exist */
255         unsigned int max_interval;      /* used for candidates not exist */
256         unsigned int max_requests;      /* # of discards issued per round */
257         unsigned int io_aware_gran;     /* minimum granularity discard not be aware of I/O */
258         bool io_aware;                  /* issue discard in idle time */
259         bool sync;                      /* submit discard with REQ_SYNC flag */
260         unsigned int granularity;       /* discard granularity */
261 };
262
263 struct discard_cmd_control {
264         struct task_struct *f2fs_issue_discard; /* discard thread */
265         struct list_head entry_list;            /* 4KB discard entry list */
266         struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
267         unsigned char pend_list_tag[MAX_PLIST_NUM];/* tag for pending entries */
268         struct list_head wait_list;             /* store on-flushing entries */
269         struct list_head fstrim_list;           /* in-flight discard from fstrim */
270         wait_queue_head_t discard_wait_queue;   /* waiting queue for wake-up */
271         unsigned int discard_wake;              /* to wake up discard thread */
272         struct mutex cmd_lock;
273         unsigned int nr_discards;               /* # of discards in the list */
274         unsigned int max_discards;              /* max. discards to be issued */
275         unsigned int discard_granularity;       /* discard granularity */
276         unsigned int undiscard_blks;            /* # of undiscard blocks */
277         atomic_t issued_discard;                /* # of issued discard */
278         atomic_t issing_discard;                /* # of issing discard */
279         atomic_t discard_cmd_cnt;               /* # of cached cmd count */
280         struct rb_root root;                    /* root of discard rb-tree */
281 };
282
283 /* for the list of fsync inodes, used only during recovery */
284 struct fsync_inode_entry {
285         struct list_head list;  /* list head */
286         struct inode *inode;    /* vfs inode pointer */
287         block_t blkaddr;        /* block address locating the last fsync */
288         block_t last_dentry;    /* block address locating the last dentry */
289 };
290
291 #define nats_in_cursum(jnl)             (le16_to_cpu((jnl)->n_nats))
292 #define sits_in_cursum(jnl)             (le16_to_cpu((jnl)->n_sits))
293
294 #define nat_in_journal(jnl, i)          ((jnl)->nat_j.entries[i].ne)
295 #define nid_in_journal(jnl, i)          ((jnl)->nat_j.entries[i].nid)
296 #define sit_in_journal(jnl, i)          ((jnl)->sit_j.entries[i].se)
297 #define segno_in_journal(jnl, i)        ((jnl)->sit_j.entries[i].segno)
298
299 #define MAX_NAT_JENTRIES(jnl)   (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
300 #define MAX_SIT_JENTRIES(jnl)   (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
301
302 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
303 {
304         int before = nats_in_cursum(journal);
305
306         journal->n_nats = cpu_to_le16(before + i);
307         return before;
308 }
309
310 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
311 {
312         int before = sits_in_cursum(journal);
313
314         journal->n_sits = cpu_to_le16(before + i);
315         return before;
316 }
317
318 static inline bool __has_cursum_space(struct f2fs_journal *journal,
319                                                         int size, int type)
320 {
321         if (type == NAT_JOURNAL)
322                 return size <= MAX_NAT_JENTRIES(journal);
323         return size <= MAX_SIT_JENTRIES(journal);
324 }
325
326 /*
327  * ioctl commands
328  */
329 #define F2FS_IOC_GETFLAGS               FS_IOC_GETFLAGS
330 #define F2FS_IOC_SETFLAGS               FS_IOC_SETFLAGS
331 #define F2FS_IOC_GETVERSION             FS_IOC_GETVERSION
332
333 #define F2FS_IOCTL_MAGIC                0xf5
334 #define F2FS_IOC_START_ATOMIC_WRITE     _IO(F2FS_IOCTL_MAGIC, 1)
335 #define F2FS_IOC_COMMIT_ATOMIC_WRITE    _IO(F2FS_IOCTL_MAGIC, 2)
336 #define F2FS_IOC_START_VOLATILE_WRITE   _IO(F2FS_IOCTL_MAGIC, 3)
337 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
338 #define F2FS_IOC_ABORT_VOLATILE_WRITE   _IO(F2FS_IOCTL_MAGIC, 5)
339 #define F2FS_IOC_GARBAGE_COLLECT        _IOW(F2FS_IOCTL_MAGIC, 6, __u32)
340 #define F2FS_IOC_WRITE_CHECKPOINT       _IO(F2FS_IOCTL_MAGIC, 7)
341 #define F2FS_IOC_DEFRAGMENT             _IOWR(F2FS_IOCTL_MAGIC, 8,      \
342                                                 struct f2fs_defragment)
343 #define F2FS_IOC_MOVE_RANGE             _IOWR(F2FS_IOCTL_MAGIC, 9,      \
344                                                 struct f2fs_move_range)
345 #define F2FS_IOC_FLUSH_DEVICE           _IOW(F2FS_IOCTL_MAGIC, 10,      \
346                                                 struct f2fs_flush_device)
347 #define F2FS_IOC_GARBAGE_COLLECT_RANGE  _IOW(F2FS_IOCTL_MAGIC, 11,      \
348                                                 struct f2fs_gc_range)
349 #define F2FS_IOC_GET_FEATURES           _IOR(F2FS_IOCTL_MAGIC, 12, __u32)
350
351 #define F2FS_IOC_SET_ENCRYPTION_POLICY  FS_IOC_SET_ENCRYPTION_POLICY
352 #define F2FS_IOC_GET_ENCRYPTION_POLICY  FS_IOC_GET_ENCRYPTION_POLICY
353 #define F2FS_IOC_GET_ENCRYPTION_PWSALT  FS_IOC_GET_ENCRYPTION_PWSALT
354
355 /*
356  * should be same as XFS_IOC_GOINGDOWN.
357  * Flags for going down operation used by FS_IOC_GOINGDOWN
358  */
359 #define F2FS_IOC_SHUTDOWN       _IOR('X', 125, __u32)   /* Shutdown */
360 #define F2FS_GOING_DOWN_FULLSYNC        0x0     /* going down with full sync */
361 #define F2FS_GOING_DOWN_METASYNC        0x1     /* going down with metadata */
362 #define F2FS_GOING_DOWN_NOSYNC          0x2     /* going down */
363 #define F2FS_GOING_DOWN_METAFLUSH       0x3     /* going down with meta flush */
364
365 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
366 /*
367  * ioctl commands in 32 bit emulation
368  */
369 #define F2FS_IOC32_GETFLAGS             FS_IOC32_GETFLAGS
370 #define F2FS_IOC32_SETFLAGS             FS_IOC32_SETFLAGS
371 #define F2FS_IOC32_GETVERSION           FS_IOC32_GETVERSION
372 #endif
373
374 #define F2FS_IOC_FSGETXATTR             FS_IOC_FSGETXATTR
375 #define F2FS_IOC_FSSETXATTR             FS_IOC_FSSETXATTR
376
377 struct f2fs_gc_range {
378         u32 sync;
379         u64 start;
380         u64 len;
381 };
382
383 struct f2fs_defragment {
384         u64 start;
385         u64 len;
386 };
387
388 struct f2fs_move_range {
389         u32 dst_fd;             /* destination fd */
390         u64 pos_in;             /* start position in src_fd */
391         u64 pos_out;            /* start position in dst_fd */
392         u64 len;                /* size to move */
393 };
394
395 struct f2fs_flush_device {
396         u32 dev_num;            /* device number to flush */
397         u32 segments;           /* # of segments to flush */
398 };
399
400 /* for inline stuff */
401 #define DEF_INLINE_RESERVED_SIZE        1
402 #define DEF_MIN_INLINE_SIZE             1
403 static inline int get_extra_isize(struct inode *inode);
404 static inline int get_inline_xattr_addrs(struct inode *inode);
405 #define F2FS_INLINE_XATTR_ADDRS(inode)  get_inline_xattr_addrs(inode)
406 #define MAX_INLINE_DATA(inode)  (sizeof(__le32) *                       \
407                                 (CUR_ADDRS_PER_INODE(inode) -           \
408                                 F2FS_INLINE_XATTR_ADDRS(inode) -        \
409                                 DEF_INLINE_RESERVED_SIZE))
410
411 /* for inline dir */
412 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
413                                 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
414                                 BITS_PER_BYTE + 1))
415 #define INLINE_DENTRY_BITMAP_SIZE(inode)        ((NR_INLINE_DENTRY(inode) + \
416                                         BITS_PER_BYTE - 1) / BITS_PER_BYTE)
417 #define INLINE_RESERVED_SIZE(inode)     (MAX_INLINE_DATA(inode) - \
418                                 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
419                                 NR_INLINE_DENTRY(inode) + \
420                                 INLINE_DENTRY_BITMAP_SIZE(inode)))
421
422 /*
423  * For INODE and NODE manager
424  */
425 /* for directory operations */
426 struct f2fs_dentry_ptr {
427         struct inode *inode;
428         void *bitmap;
429         struct f2fs_dir_entry *dentry;
430         __u8 (*filename)[F2FS_SLOT_LEN];
431         int max;
432         int nr_bitmap;
433 };
434
435 static inline void make_dentry_ptr_block(struct inode *inode,
436                 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
437 {
438         d->inode = inode;
439         d->max = NR_DENTRY_IN_BLOCK;
440         d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
441         d->bitmap = &t->dentry_bitmap;
442         d->dentry = t->dentry;
443         d->filename = t->filename;
444 }
445
446 static inline void make_dentry_ptr_inline(struct inode *inode,
447                                         struct f2fs_dentry_ptr *d, void *t)
448 {
449         int entry_cnt = NR_INLINE_DENTRY(inode);
450         int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
451         int reserved_size = INLINE_RESERVED_SIZE(inode);
452
453         d->inode = inode;
454         d->max = entry_cnt;
455         d->nr_bitmap = bitmap_size;
456         d->bitmap = t;
457         d->dentry = t + bitmap_size + reserved_size;
458         d->filename = t + bitmap_size + reserved_size +
459                                         SIZE_OF_DIR_ENTRY * entry_cnt;
460 }
461
462 /*
463  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
464  * as its node offset to distinguish from index node blocks.
465  * But some bits are used to mark the node block.
466  */
467 #define XATTR_NODE_OFFSET       ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
468                                 >> OFFSET_BIT_SHIFT)
469 enum {
470         ALLOC_NODE,                     /* allocate a new node page if needed */
471         LOOKUP_NODE,                    /* look up a node without readahead */
472         LOOKUP_NODE_RA,                 /*
473                                          * look up a node with readahead called
474                                          * by get_data_block.
475                                          */
476 };
477
478 #define F2FS_LINK_MAX   0xffffffff      /* maximum link count per file */
479
480 #define MAX_DIR_RA_PAGES        4       /* maximum ra pages of dir */
481
482 /* vector size for gang look-up from extent cache that consists of radix tree */
483 #define EXT_TREE_VEC_SIZE       64
484
485 /* for in-memory extent cache entry */
486 #define F2FS_MIN_EXTENT_LEN     64      /* minimum extent length */
487
488 /* number of extent info in extent cache we try to shrink */
489 #define EXTENT_CACHE_SHRINK_NUMBER      128
490
491 struct rb_entry {
492         struct rb_node rb_node;         /* rb node located in rb-tree */
493         unsigned int ofs;               /* start offset of the entry */
494         unsigned int len;               /* length of the entry */
495 };
496
497 struct extent_info {
498         unsigned int fofs;              /* start offset in a file */
499         unsigned int len;               /* length of the extent */
500         u32 blk;                        /* start block address of the extent */
501 };
502
503 struct extent_node {
504         struct rb_node rb_node;
505         union {
506                 struct {
507                         unsigned int fofs;
508                         unsigned int len;
509                         u32 blk;
510                 };
511                 struct extent_info ei;  /* extent info */
512
513         };
514         struct list_head list;          /* node in global extent list of sbi */
515         struct extent_tree *et;         /* extent tree pointer */
516 };
517
518 struct extent_tree {
519         nid_t ino;                      /* inode number */
520         struct rb_root root;            /* root of extent info rb-tree */
521         struct extent_node *cached_en;  /* recently accessed extent node */
522         struct extent_info largest;     /* largested extent info */
523         struct list_head list;          /* to be used by sbi->zombie_list */
524         rwlock_t lock;                  /* protect extent info rb-tree */
525         atomic_t node_cnt;              /* # of extent node in rb-tree*/
526 };
527
528 /*
529  * This structure is taken from ext4_map_blocks.
530  *
531  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
532  */
533 #define F2FS_MAP_NEW            (1 << BH_New)
534 #define F2FS_MAP_MAPPED         (1 << BH_Mapped)
535 #define F2FS_MAP_UNWRITTEN      (1 << BH_Unwritten)
536 #define F2FS_MAP_FLAGS          (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
537                                 F2FS_MAP_UNWRITTEN)
538
539 struct f2fs_map_blocks {
540         block_t m_pblk;
541         block_t m_lblk;
542         unsigned int m_len;
543         unsigned int m_flags;
544         pgoff_t *m_next_pgofs;          /* point next possible non-hole pgofs */
545 };
546
547 /* for flag in get_data_block */
548 enum {
549         F2FS_GET_BLOCK_DEFAULT,
550         F2FS_GET_BLOCK_FIEMAP,
551         F2FS_GET_BLOCK_BMAP,
552         F2FS_GET_BLOCK_PRE_DIO,
553         F2FS_GET_BLOCK_PRE_AIO,
554 };
555
556 /*
557  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
558  */
559 #define FADVISE_COLD_BIT        0x01
560 #define FADVISE_LOST_PINO_BIT   0x02
561 #define FADVISE_ENCRYPT_BIT     0x04
562 #define FADVISE_ENC_NAME_BIT    0x08
563 #define FADVISE_KEEP_SIZE_BIT   0x10
564
565 #define file_is_cold(inode)     is_file(inode, FADVISE_COLD_BIT)
566 #define file_wrong_pino(inode)  is_file(inode, FADVISE_LOST_PINO_BIT)
567 #define file_set_cold(inode)    set_file(inode, FADVISE_COLD_BIT)
568 #define file_lost_pino(inode)   set_file(inode, FADVISE_LOST_PINO_BIT)
569 #define file_clear_cold(inode)  clear_file(inode, FADVISE_COLD_BIT)
570 #define file_got_pino(inode)    clear_file(inode, FADVISE_LOST_PINO_BIT)
571 #define file_is_encrypt(inode)  is_file(inode, FADVISE_ENCRYPT_BIT)
572 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
573 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
574 #define file_enc_name(inode)    is_file(inode, FADVISE_ENC_NAME_BIT)
575 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
576 #define file_keep_isize(inode)  is_file(inode, FADVISE_KEEP_SIZE_BIT)
577 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
578
579 #define DEF_DIR_LEVEL           0
580
581 struct f2fs_inode_info {
582         struct inode vfs_inode;         /* serve a vfs inode */
583         unsigned long i_flags;          /* keep an inode flags for ioctl */
584         unsigned char i_advise;         /* use to give file attribute hints */
585         unsigned char i_dir_level;      /* use for dentry level for large dir */
586         unsigned int i_current_depth;   /* use only in directory structure */
587         unsigned int i_pino;            /* parent inode number */
588         umode_t i_acl_mode;             /* keep file acl mode temporarily */
589
590         /* Use below internally in f2fs*/
591         unsigned long flags;            /* use to pass per-file flags */
592         struct rw_semaphore i_sem;      /* protect fi info */
593         atomic_t dirty_pages;           /* # of dirty pages */
594         f2fs_hash_t chash;              /* hash value of given file name */
595         unsigned int clevel;            /* maximum level of given file name */
596         struct task_struct *task;       /* lookup and create consistency */
597         struct task_struct *cp_task;    /* separate cp/wb IO stats*/
598         nid_t i_xattr_nid;              /* node id that contains xattrs */
599         loff_t  last_disk_size;         /* lastly written file size */
600
601 #ifdef CONFIG_QUOTA
602         struct dquot *i_dquot[MAXQUOTAS];
603
604         /* quota space reservation, managed internally by quota code */
605         qsize_t i_reserved_quota;
606 #endif
607         struct list_head dirty_list;    /* dirty list for dirs and files */
608         struct list_head gdirty_list;   /* linked in global dirty list */
609         struct list_head inmem_ilist;   /* list for inmem inodes */
610         struct list_head inmem_pages;   /* inmemory pages managed by f2fs */
611         struct task_struct *inmem_task; /* store inmemory task */
612         struct mutex inmem_lock;        /* lock for inmemory pages */
613         struct extent_tree *extent_tree;        /* cached extent_tree entry */
614         struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */
615         struct rw_semaphore i_mmap_sem;
616         struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
617
618         int i_extra_isize;              /* size of extra space located in i_addr */
619         kprojid_t i_projid;             /* id for project quota */
620         int i_inline_xattr_size;        /* inline xattr size */
621 };
622
623 static inline void get_extent_info(struct extent_info *ext,
624                                         struct f2fs_extent *i_ext)
625 {
626         ext->fofs = le32_to_cpu(i_ext->fofs);
627         ext->blk = le32_to_cpu(i_ext->blk);
628         ext->len = le32_to_cpu(i_ext->len);
629 }
630
631 static inline void set_raw_extent(struct extent_info *ext,
632                                         struct f2fs_extent *i_ext)
633 {
634         i_ext->fofs = cpu_to_le32(ext->fofs);
635         i_ext->blk = cpu_to_le32(ext->blk);
636         i_ext->len = cpu_to_le32(ext->len);
637 }
638
639 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
640                                                 u32 blk, unsigned int len)
641 {
642         ei->fofs = fofs;
643         ei->blk = blk;
644         ei->len = len;
645 }
646
647 static inline bool __is_discard_mergeable(struct discard_info *back,
648                                                 struct discard_info *front)
649 {
650         return back->lstart + back->len == front->lstart;
651 }
652
653 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
654                                                 struct discard_info *back)
655 {
656         return __is_discard_mergeable(back, cur);
657 }
658
659 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
660                                                 struct discard_info *front)
661 {
662         return __is_discard_mergeable(cur, front);
663 }
664
665 static inline bool __is_extent_mergeable(struct extent_info *back,
666                                                 struct extent_info *front)
667 {
668         return (back->fofs + back->len == front->fofs &&
669                         back->blk + back->len == front->blk);
670 }
671
672 static inline bool __is_back_mergeable(struct extent_info *cur,
673                                                 struct extent_info *back)
674 {
675         return __is_extent_mergeable(back, cur);
676 }
677
678 static inline bool __is_front_mergeable(struct extent_info *cur,
679                                                 struct extent_info *front)
680 {
681         return __is_extent_mergeable(cur, front);
682 }
683
684 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
685 static inline void __try_update_largest_extent(struct inode *inode,
686                         struct extent_tree *et, struct extent_node *en)
687 {
688         if (en->ei.len > et->largest.len) {
689                 et->largest = en->ei;
690                 f2fs_mark_inode_dirty_sync(inode, true);
691         }
692 }
693
694 /*
695  * For free nid management
696  */
697 enum nid_state {
698         FREE_NID,               /* newly added to free nid list */
699         PREALLOC_NID,           /* it is preallocated */
700         MAX_NID_STATE,
701 };
702
703 struct f2fs_nm_info {
704         block_t nat_blkaddr;            /* base disk address of NAT */
705         nid_t max_nid;                  /* maximum possible node ids */
706         nid_t available_nids;           /* # of available node ids */
707         nid_t next_scan_nid;            /* the next nid to be scanned */
708         unsigned int ram_thresh;        /* control the memory footprint */
709         unsigned int ra_nid_pages;      /* # of nid pages to be readaheaded */
710         unsigned int dirty_nats_ratio;  /* control dirty nats ratio threshold */
711
712         /* NAT cache management */
713         struct radix_tree_root nat_root;/* root of the nat entry cache */
714         struct radix_tree_root nat_set_root;/* root of the nat set cache */
715         struct rw_semaphore nat_tree_lock;      /* protect nat_tree_lock */
716         struct list_head nat_entries;   /* cached nat entry list (clean) */
717         unsigned int nat_cnt;           /* the # of cached nat entries */
718         unsigned int dirty_nat_cnt;     /* total num of nat entries in set */
719         unsigned int nat_blocks;        /* # of nat blocks */
720
721         /* free node ids management */
722         struct radix_tree_root free_nid_root;/* root of the free_nid cache */
723         struct list_head free_nid_list;         /* list for free nids excluding preallocated nids */
724         unsigned int nid_cnt[MAX_NID_STATE];    /* the number of free node id */
725         spinlock_t nid_list_lock;       /* protect nid lists ops */
726         struct mutex build_lock;        /* lock for build free nids */
727         unsigned char (*free_nid_bitmap)[NAT_ENTRY_BITMAP_SIZE];
728         unsigned char *nat_block_bitmap;
729         unsigned short *free_nid_count; /* free nid count of NAT block */
730
731         /* for checkpoint */
732         char *nat_bitmap;               /* NAT bitmap pointer */
733
734         unsigned int nat_bits_blocks;   /* # of nat bits blocks */
735         unsigned char *nat_bits;        /* NAT bits blocks */
736         unsigned char *full_nat_bits;   /* full NAT pages */
737         unsigned char *empty_nat_bits;  /* empty NAT pages */
738 #ifdef CONFIG_F2FS_CHECK_FS
739         char *nat_bitmap_mir;           /* NAT bitmap mirror */
740 #endif
741         int bitmap_size;                /* bitmap size */
742 };
743
744 /*
745  * this structure is used as one of function parameters.
746  * all the information are dedicated to a given direct node block determined
747  * by the data offset in a file.
748  */
749 struct dnode_of_data {
750         struct inode *inode;            /* vfs inode pointer */
751         struct page *inode_page;        /* its inode page, NULL is possible */
752         struct page *node_page;         /* cached direct node page */
753         nid_t nid;                      /* node id of the direct node block */
754         unsigned int ofs_in_node;       /* data offset in the node page */
755         bool inode_page_locked;         /* inode page is locked or not */
756         bool node_changed;              /* is node block changed */
757         char cur_level;                 /* level of hole node page */
758         char max_level;                 /* level of current page located */
759         block_t data_blkaddr;           /* block address of the node block */
760 };
761
762 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
763                 struct page *ipage, struct page *npage, nid_t nid)
764 {
765         memset(dn, 0, sizeof(*dn));
766         dn->inode = inode;
767         dn->inode_page = ipage;
768         dn->node_page = npage;
769         dn->nid = nid;
770 }
771
772 /*
773  * For SIT manager
774  *
775  * By default, there are 6 active log areas across the whole main area.
776  * When considering hot and cold data separation to reduce cleaning overhead,
777  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
778  * respectively.
779  * In the current design, you should not change the numbers intentionally.
780  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
781  * logs individually according to the underlying devices. (default: 6)
782  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
783  * data and 8 for node logs.
784  */
785 #define NR_CURSEG_DATA_TYPE     (3)
786 #define NR_CURSEG_NODE_TYPE     (3)
787 #define NR_CURSEG_TYPE  (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
788
789 enum {
790         CURSEG_HOT_DATA = 0,    /* directory entry blocks */
791         CURSEG_WARM_DATA,       /* data blocks */
792         CURSEG_COLD_DATA,       /* multimedia or GCed data blocks */
793         CURSEG_HOT_NODE,        /* direct node blocks of directory files */
794         CURSEG_WARM_NODE,       /* direct node blocks of normal files */
795         CURSEG_COLD_NODE,       /* indirect node blocks */
796         NO_CHECK_TYPE,
797 };
798
799 struct flush_cmd {
800         struct completion wait;
801         struct llist_node llnode;
802         nid_t ino;
803         int ret;
804 };
805
806 struct flush_cmd_control {
807         struct task_struct *f2fs_issue_flush;   /* flush thread */
808         wait_queue_head_t flush_wait_queue;     /* waiting queue for wake-up */
809         atomic_t issued_flush;                  /* # of issued flushes */
810         atomic_t issing_flush;                  /* # of issing flushes */
811         struct llist_head issue_list;           /* list for command issue */
812         struct llist_node *dispatch_list;       /* list for command dispatch */
813 };
814
815 struct f2fs_sm_info {
816         struct sit_info *sit_info;              /* whole segment information */
817         struct free_segmap_info *free_info;     /* free segment information */
818         struct dirty_seglist_info *dirty_info;  /* dirty segment information */
819         struct curseg_info *curseg_array;       /* active segment information */
820
821         struct rw_semaphore curseg_lock;        /* for preventing curseg change */
822
823         block_t seg0_blkaddr;           /* block address of 0'th segment */
824         block_t main_blkaddr;           /* start block address of main area */
825         block_t ssa_blkaddr;            /* start block address of SSA area */
826
827         unsigned int segment_count;     /* total # of segments */
828         unsigned int main_segments;     /* # of segments in main area */
829         unsigned int reserved_segments; /* # of reserved segments */
830         unsigned int ovp_segments;      /* # of overprovision segments */
831
832         /* a threshold to reclaim prefree segments */
833         unsigned int rec_prefree_segments;
834
835         /* for batched trimming */
836         unsigned int trim_sections;             /* # of sections to trim */
837
838         struct list_head sit_entry_set; /* sit entry set list */
839
840         unsigned int ipu_policy;        /* in-place-update policy */
841         unsigned int min_ipu_util;      /* in-place-update threshold */
842         unsigned int min_fsync_blocks;  /* threshold for fsync */
843         unsigned int min_hot_blocks;    /* threshold for hot block allocation */
844         unsigned int min_ssr_sections;  /* threshold to trigger SSR allocation */
845
846         /* for flush command control */
847         struct flush_cmd_control *fcc_info;
848
849         /* for discard command control */
850         struct discard_cmd_control *dcc_info;
851 };
852
853 /*
854  * For superblock
855  */
856 /*
857  * COUNT_TYPE for monitoring
858  *
859  * f2fs monitors the number of several block types such as on-writeback,
860  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
861  */
862 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
863 enum count_type {
864         F2FS_DIRTY_DENTS,
865         F2FS_DIRTY_DATA,
866         F2FS_DIRTY_QDATA,
867         F2FS_DIRTY_NODES,
868         F2FS_DIRTY_META,
869         F2FS_INMEM_PAGES,
870         F2FS_DIRTY_IMETA,
871         F2FS_WB_CP_DATA,
872         F2FS_WB_DATA,
873         NR_COUNT_TYPE,
874 };
875
876 /*
877  * The below are the page types of bios used in submit_bio().
878  * The available types are:
879  * DATA                 User data pages. It operates as async mode.
880  * NODE                 Node pages. It operates as async mode.
881  * META                 FS metadata pages such as SIT, NAT, CP.
882  * NR_PAGE_TYPE         The number of page types.
883  * META_FLUSH           Make sure the previous pages are written
884  *                      with waiting the bio's completion
885  * ...                  Only can be used with META.
886  */
887 #define PAGE_TYPE_OF_BIO(type)  ((type) > META ? META : (type))
888 enum page_type {
889         DATA,
890         NODE,
891         META,
892         NR_PAGE_TYPE,
893         META_FLUSH,
894         INMEM,          /* the below types are used by tracepoints only. */
895         INMEM_DROP,
896         INMEM_INVALIDATE,
897         INMEM_REVOKE,
898         IPU,
899         OPU,
900 };
901
902 enum temp_type {
903         HOT = 0,        /* must be zero for meta bio */
904         WARM,
905         COLD,
906         NR_TEMP_TYPE,
907 };
908
909 enum need_lock_type {
910         LOCK_REQ = 0,
911         LOCK_DONE,
912         LOCK_RETRY,
913 };
914
915 enum cp_reason_type {
916         CP_NO_NEEDED,
917         CP_NON_REGULAR,
918         CP_HARDLINK,
919         CP_SB_NEED_CP,
920         CP_WRONG_PINO,
921         CP_NO_SPC_ROLL,
922         CP_NODE_NEED_CP,
923         CP_FASTBOOT_MODE,
924         CP_SPEC_LOG_NUM,
925 };
926
927 enum iostat_type {
928         APP_DIRECT_IO,                  /* app direct IOs */
929         APP_BUFFERED_IO,                /* app buffered IOs */
930         APP_WRITE_IO,                   /* app write IOs */
931         APP_MAPPED_IO,                  /* app mapped IOs */
932         FS_DATA_IO,                     /* data IOs from kworker/fsync/reclaimer */
933         FS_NODE_IO,                     /* node IOs from kworker/fsync/reclaimer */
934         FS_META_IO,                     /* meta IOs from kworker/reclaimer */
935         FS_GC_DATA_IO,                  /* data IOs from forground gc */
936         FS_GC_NODE_IO,                  /* node IOs from forground gc */
937         FS_CP_DATA_IO,                  /* data IOs from checkpoint */
938         FS_CP_NODE_IO,                  /* node IOs from checkpoint */
939         FS_CP_META_IO,                  /* meta IOs from checkpoint */
940         FS_DISCARD,                     /* discard */
941         NR_IO_TYPE,
942 };
943
944 struct f2fs_io_info {
945         struct f2fs_sb_info *sbi;       /* f2fs_sb_info pointer */
946         nid_t ino;              /* inode number */
947         enum page_type type;    /* contains DATA/NODE/META/META_FLUSH */
948         enum temp_type temp;    /* contains HOT/WARM/COLD */
949         int op;                 /* contains REQ_OP_ */
950         int op_flags;           /* req_flag_bits */
951         block_t new_blkaddr;    /* new block address to be written */
952         block_t old_blkaddr;    /* old block address before Cow */
953         struct page *page;      /* page to be written */
954         struct page *encrypted_page;    /* encrypted page */
955         struct list_head list;          /* serialize IOs */
956         bool submitted;         /* indicate IO submission */
957         int need_lock;          /* indicate we need to lock cp_rwsem */
958         bool in_list;           /* indicate fio is in io_list */
959         enum iostat_type io_type;       /* io type */
960 };
961
962 #define is_read_io(rw) ((rw) == READ)
963 struct f2fs_bio_info {
964         struct f2fs_sb_info *sbi;       /* f2fs superblock */
965         struct bio *bio;                /* bios to merge */
966         sector_t last_block_in_bio;     /* last block number */
967         struct f2fs_io_info fio;        /* store buffered io info. */
968         struct rw_semaphore io_rwsem;   /* blocking op for bio */
969         spinlock_t io_lock;             /* serialize DATA/NODE IOs */
970         struct list_head io_list;       /* track fios */
971 };
972
973 #define FDEV(i)                         (sbi->devs[i])
974 #define RDEV(i)                         (raw_super->devs[i])
975 struct f2fs_dev_info {
976         struct block_device *bdev;
977         char path[MAX_PATH_LEN];
978         unsigned int total_segments;
979         block_t start_blk;
980         block_t end_blk;
981 #ifdef CONFIG_BLK_DEV_ZONED
982         unsigned int nr_blkz;                   /* Total number of zones */
983         u8 *blkz_type;                          /* Array of zones type */
984 #endif
985 };
986
987 enum inode_type {
988         DIR_INODE,                      /* for dirty dir inode */
989         FILE_INODE,                     /* for dirty regular/symlink inode */
990         DIRTY_META,                     /* for all dirtied inode metadata */
991         ATOMIC_FILE,                    /* for all atomic files */
992         NR_INODE_TYPE,
993 };
994
995 /* for inner inode cache management */
996 struct inode_management {
997         struct radix_tree_root ino_root;        /* ino entry array */
998         spinlock_t ino_lock;                    /* for ino entry lock */
999         struct list_head ino_list;              /* inode list head */
1000         unsigned long ino_num;                  /* number of entries */
1001 };
1002
1003 /* For s_flag in struct f2fs_sb_info */
1004 enum {
1005         SBI_IS_DIRTY,                           /* dirty flag for checkpoint */
1006         SBI_IS_CLOSE,                           /* specify unmounting */
1007         SBI_NEED_FSCK,                          /* need fsck.f2fs to fix */
1008         SBI_POR_DOING,                          /* recovery is doing or not */
1009         SBI_NEED_SB_WRITE,                      /* need to recover superblock */
1010         SBI_NEED_CP,                            /* need to checkpoint */
1011 };
1012
1013 enum {
1014         CP_TIME,
1015         REQ_TIME,
1016         MAX_TIME,
1017 };
1018
1019 struct f2fs_sb_info {
1020         struct super_block *sb;                 /* pointer to VFS super block */
1021         struct proc_dir_entry *s_proc;          /* proc entry */
1022         struct f2fs_super_block *raw_super;     /* raw super block pointer */
1023         int valid_super_block;                  /* valid super block no */
1024         unsigned long s_flag;                           /* flags for sbi */
1025
1026 #ifdef CONFIG_BLK_DEV_ZONED
1027         unsigned int blocks_per_blkz;           /* F2FS blocks per zone */
1028         unsigned int log_blocks_per_blkz;       /* log2 F2FS blocks per zone */
1029 #endif
1030
1031         /* for node-related operations */
1032         struct f2fs_nm_info *nm_info;           /* node manager */
1033         struct inode *node_inode;               /* cache node blocks */
1034
1035         /* for segment-related operations */
1036         struct f2fs_sm_info *sm_info;           /* segment manager */
1037
1038         /* for bio operations */
1039         struct f2fs_bio_info *write_io[NR_PAGE_TYPE];   /* for write bios */
1040         struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE];
1041                                                 /* bio ordering for NODE/DATA */
1042         int write_io_size_bits;                 /* Write IO size bits */
1043         mempool_t *write_io_dummy;              /* Dummy pages */
1044
1045         /* for checkpoint */
1046         struct f2fs_checkpoint *ckpt;           /* raw checkpoint pointer */
1047         int cur_cp_pack;                        /* remain current cp pack */
1048         spinlock_t cp_lock;                     /* for flag in ckpt */
1049         struct inode *meta_inode;               /* cache meta blocks */
1050         struct mutex cp_mutex;                  /* checkpoint procedure lock */
1051         struct rw_semaphore cp_rwsem;           /* blocking FS operations */
1052         struct rw_semaphore node_write;         /* locking node writes */
1053         struct rw_semaphore node_change;        /* locking node change */
1054         wait_queue_head_t cp_wait;
1055         unsigned long last_time[MAX_TIME];      /* to store time in jiffies */
1056         long interval_time[MAX_TIME];           /* to store thresholds */
1057
1058         struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
1059
1060         /* for orphan inode, use 0'th array */
1061         unsigned int max_orphans;               /* max orphan inodes */
1062
1063         /* for inode management */
1064         struct list_head inode_list[NR_INODE_TYPE];     /* dirty inode list */
1065         spinlock_t inode_lock[NR_INODE_TYPE];   /* for dirty inode list lock */
1066
1067         /* for extent tree cache */
1068         struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1069         struct mutex extent_tree_lock;  /* locking extent radix tree */
1070         struct list_head extent_list;           /* lru list for shrinker */
1071         spinlock_t extent_lock;                 /* locking extent lru list */
1072         atomic_t total_ext_tree;                /* extent tree count */
1073         struct list_head zombie_list;           /* extent zombie tree list */
1074         atomic_t total_zombie_tree;             /* extent zombie tree count */
1075         atomic_t total_ext_node;                /* extent info count */
1076
1077         /* basic filesystem units */
1078         unsigned int log_sectors_per_block;     /* log2 sectors per block */
1079         unsigned int log_blocksize;             /* log2 block size */
1080         unsigned int blocksize;                 /* block size */
1081         unsigned int root_ino_num;              /* root inode number*/
1082         unsigned int node_ino_num;              /* node inode number*/
1083         unsigned int meta_ino_num;              /* meta inode number*/
1084         unsigned int log_blocks_per_seg;        /* log2 blocks per segment */
1085         unsigned int blocks_per_seg;            /* blocks per segment */
1086         unsigned int segs_per_sec;              /* segments per section */
1087         unsigned int secs_per_zone;             /* sections per zone */
1088         unsigned int total_sections;            /* total section count */
1089         unsigned int total_node_count;          /* total node block count */
1090         unsigned int total_valid_node_count;    /* valid node block count */
1091         loff_t max_file_blocks;                 /* max block index of file */
1092         int active_logs;                        /* # of active logs */
1093         int dir_level;                          /* directory level */
1094         int inline_xattr_size;                  /* inline xattr size */
1095         unsigned int trigger_ssr_threshold;     /* threshold to trigger ssr */
1096
1097         block_t user_block_count;               /* # of user blocks */
1098         block_t total_valid_block_count;        /* # of valid blocks */
1099         block_t discard_blks;                   /* discard command candidats */
1100         block_t last_valid_block_count;         /* for recovery */
1101         block_t reserved_blocks;                /* configurable reserved blocks */
1102         block_t current_reserved_blocks;        /* current reserved blocks */
1103
1104         u32 s_next_generation;                  /* for NFS support */
1105
1106         /* # of pages, see count_type */
1107         atomic_t nr_pages[NR_COUNT_TYPE];
1108         /* # of allocated blocks */
1109         struct percpu_counter alloc_valid_block_count;
1110
1111         /* writeback control */
1112         atomic_t wb_sync_req;                   /* count # of WB_SYNC threads */
1113
1114         /* valid inode count */
1115         struct percpu_counter total_valid_inode_count;
1116
1117         struct f2fs_mount_info mount_opt;       /* mount options */
1118
1119         /* for cleaning operations */
1120         struct mutex gc_mutex;                  /* mutex for GC */
1121         struct f2fs_gc_kthread  *gc_thread;     /* GC thread */
1122         unsigned int cur_victim_sec;            /* current victim section num */
1123
1124         /* threshold for converting bg victims for fg */
1125         u64 fggc_threshold;
1126
1127         /* maximum # of trials to find a victim segment for SSR and GC */
1128         unsigned int max_victim_search;
1129
1130         /*
1131          * for stat information.
1132          * one is for the LFS mode, and the other is for the SSR mode.
1133          */
1134 #ifdef CONFIG_F2FS_STAT_FS
1135         struct f2fs_stat_info *stat_info;       /* FS status information */
1136         unsigned int segment_count[2];          /* # of allocated segments */
1137         unsigned int block_count[2];            /* # of allocated blocks */
1138         atomic_t inplace_count;         /* # of inplace update */
1139         atomic64_t total_hit_ext;               /* # of lookup extent cache */
1140         atomic64_t read_hit_rbtree;             /* # of hit rbtree extent node */
1141         atomic64_t read_hit_largest;            /* # of hit largest extent node */
1142         atomic64_t read_hit_cached;             /* # of hit cached extent node */
1143         atomic_t inline_xattr;                  /* # of inline_xattr inodes */
1144         atomic_t inline_inode;                  /* # of inline_data inodes */
1145         atomic_t inline_dir;                    /* # of inline_dentry inodes */
1146         atomic_t aw_cnt;                        /* # of atomic writes */
1147         atomic_t vw_cnt;                        /* # of volatile writes */
1148         atomic_t max_aw_cnt;                    /* max # of atomic writes */
1149         atomic_t max_vw_cnt;                    /* max # of volatile writes */
1150         int bg_gc;                              /* background gc calls */
1151         unsigned int ndirty_inode[NR_INODE_TYPE];       /* # of dirty inodes */
1152 #endif
1153         spinlock_t stat_lock;                   /* lock for stat operations */
1154
1155         /* For app/fs IO statistics */
1156         spinlock_t iostat_lock;
1157         unsigned long long write_iostat[NR_IO_TYPE];
1158         bool iostat_enable;
1159
1160         /* For sysfs suppport */
1161         struct kobject s_kobj;
1162         struct completion s_kobj_unregister;
1163
1164         /* For shrinker support */
1165         struct list_head s_list;
1166         int s_ndevs;                            /* number of devices */
1167         struct f2fs_dev_info *devs;             /* for device list */
1168         unsigned int dirty_device;              /* for checkpoint data flush */
1169         spinlock_t dev_lock;                    /* protect dirty_device */
1170         struct mutex umount_mutex;
1171         unsigned int shrinker_run_no;
1172
1173         /* For write statistics */
1174         u64 sectors_written_start;
1175         u64 kbytes_written;
1176
1177         /* Reference to checksum algorithm driver via cryptoapi */
1178         struct crypto_shash *s_chksum_driver;
1179
1180         /* Precomputed FS UUID checksum for seeding other checksums */
1181         __u32 s_chksum_seed;
1182
1183         /* For fault injection */
1184 #ifdef CONFIG_F2FS_FAULT_INJECTION
1185         struct f2fs_fault_info fault_info;
1186 #endif
1187
1188 #ifdef CONFIG_QUOTA
1189         /* Names of quota files with journalled quota */
1190         char *s_qf_names[MAXQUOTAS];
1191         int s_jquota_fmt;                       /* Format of quota to use */
1192 #endif
1193 };
1194
1195 #ifdef CONFIG_F2FS_FAULT_INJECTION
1196 #define f2fs_show_injection_info(type)                          \
1197         printk("%sF2FS-fs : inject %s in %s of %pF\n",          \
1198                 KERN_INFO, fault_name[type],                    \
1199                 __func__, __builtin_return_address(0))
1200 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1201 {
1202         struct f2fs_fault_info *ffi = &sbi->fault_info;
1203
1204         if (!ffi->inject_rate)
1205                 return false;
1206
1207         if (!IS_FAULT_SET(ffi, type))
1208                 return false;
1209
1210         atomic_inc(&ffi->inject_ops);
1211         if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1212                 atomic_set(&ffi->inject_ops, 0);
1213                 return true;
1214         }
1215         return false;
1216 }
1217 #endif
1218
1219 /* For write statistics. Suppose sector size is 512 bytes,
1220  * and the return value is in kbytes. s is of struct f2fs_sb_info.
1221  */
1222 #define BD_PART_WRITTEN(s)                                               \
1223 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) -            \
1224                 (s)->sectors_written_start) >> 1)
1225
1226 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1227 {
1228         sbi->last_time[type] = jiffies;
1229 }
1230
1231 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1232 {
1233         unsigned long interval = sbi->interval_time[type] * HZ;
1234
1235         return time_after(jiffies, sbi->last_time[type] + interval);
1236 }
1237
1238 static inline bool is_idle(struct f2fs_sb_info *sbi)
1239 {
1240         struct block_device *bdev = sbi->sb->s_bdev;
1241         struct request_queue *q = bdev_get_queue(bdev);
1242         struct request_list *rl = &q->root_rl;
1243
1244         if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
1245                 return 0;
1246
1247         return f2fs_time_over(sbi, REQ_TIME);
1248 }
1249
1250 /*
1251  * Inline functions
1252  */
1253 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1254                            unsigned int length)
1255 {
1256         SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
1257         u32 *ctx = (u32 *)shash_desc_ctx(shash);
1258         u32 retval;
1259         int err;
1260
1261         shash->tfm = sbi->s_chksum_driver;
1262         shash->flags = 0;
1263         *ctx = F2FS_SUPER_MAGIC;
1264
1265         err = crypto_shash_update(shash, address, length);
1266         BUG_ON(err);
1267
1268         retval = *ctx;
1269         barrier_data(ctx);
1270         return retval;
1271 }
1272
1273 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1274                                   void *buf, size_t buf_size)
1275 {
1276         return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1277 }
1278
1279 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1280                               const void *address, unsigned int length)
1281 {
1282         struct {
1283                 struct shash_desc shash;
1284                 char ctx[4];
1285         } desc;
1286         int err;
1287
1288         BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1289
1290         desc.shash.tfm = sbi->s_chksum_driver;
1291         desc.shash.flags = 0;
1292         *(u32 *)desc.ctx = crc;
1293
1294         err = crypto_shash_update(&desc.shash, address, length);
1295         BUG_ON(err);
1296
1297         return *(u32 *)desc.ctx;
1298 }
1299
1300 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1301 {
1302         return container_of(inode, struct f2fs_inode_info, vfs_inode);
1303 }
1304
1305 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1306 {
1307         return sb->s_fs_info;
1308 }
1309
1310 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1311 {
1312         return F2FS_SB(inode->i_sb);
1313 }
1314
1315 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1316 {
1317         return F2FS_I_SB(mapping->host);
1318 }
1319
1320 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1321 {
1322         return F2FS_M_SB(page->mapping);
1323 }
1324
1325 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1326 {
1327         return (struct f2fs_super_block *)(sbi->raw_super);
1328 }
1329
1330 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1331 {
1332         return (struct f2fs_checkpoint *)(sbi->ckpt);
1333 }
1334
1335 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1336 {
1337         return (struct f2fs_node *)page_address(page);
1338 }
1339
1340 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1341 {
1342         return &((struct f2fs_node *)page_address(page))->i;
1343 }
1344
1345 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1346 {
1347         return (struct f2fs_nm_info *)(sbi->nm_info);
1348 }
1349
1350 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1351 {
1352         return (struct f2fs_sm_info *)(sbi->sm_info);
1353 }
1354
1355 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1356 {
1357         return (struct sit_info *)(SM_I(sbi)->sit_info);
1358 }
1359
1360 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1361 {
1362         return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1363 }
1364
1365 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1366 {
1367         return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1368 }
1369
1370 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1371 {
1372         return sbi->meta_inode->i_mapping;
1373 }
1374
1375 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1376 {
1377         return sbi->node_inode->i_mapping;
1378 }
1379
1380 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1381 {
1382         return test_bit(type, &sbi->s_flag);
1383 }
1384
1385 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1386 {
1387         set_bit(type, &sbi->s_flag);
1388 }
1389
1390 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1391 {
1392         clear_bit(type, &sbi->s_flag);
1393 }
1394
1395 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1396 {
1397         return le64_to_cpu(cp->checkpoint_ver);
1398 }
1399
1400 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1401 {
1402         if (type < F2FS_MAX_QUOTAS)
1403                 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1404         return 0;
1405 }
1406
1407 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1408 {
1409         size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1410         return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1411 }
1412
1413 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1414 {
1415         unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1416
1417         return ckpt_flags & f;
1418 }
1419
1420 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1421 {
1422         return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1423 }
1424
1425 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1426 {
1427         unsigned int ckpt_flags;
1428
1429         ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1430         ckpt_flags |= f;
1431         cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1432 }
1433
1434 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1435 {
1436         unsigned long flags;
1437
1438         spin_lock_irqsave(&sbi->cp_lock, flags);
1439         __set_ckpt_flags(F2FS_CKPT(sbi), f);
1440         spin_unlock_irqrestore(&sbi->cp_lock, flags);
1441 }
1442
1443 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1444 {
1445         unsigned int ckpt_flags;
1446
1447         ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1448         ckpt_flags &= (~f);
1449         cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1450 }
1451
1452 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1453 {
1454         unsigned long flags;
1455
1456         spin_lock_irqsave(&sbi->cp_lock, flags);
1457         __clear_ckpt_flags(F2FS_CKPT(sbi), f);
1458         spin_unlock_irqrestore(&sbi->cp_lock, flags);
1459 }
1460
1461 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1462 {
1463         unsigned long flags;
1464
1465         set_sbi_flag(sbi, SBI_NEED_FSCK);
1466
1467         if (lock)
1468                 spin_lock_irqsave(&sbi->cp_lock, flags);
1469         __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1470         kfree(NM_I(sbi)->nat_bits);
1471         NM_I(sbi)->nat_bits = NULL;
1472         if (lock)
1473                 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1474 }
1475
1476 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1477                                         struct cp_control *cpc)
1478 {
1479         bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1480
1481         return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1482 }
1483
1484 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1485 {
1486         down_read(&sbi->cp_rwsem);
1487 }
1488
1489 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1490 {
1491         return down_read_trylock(&sbi->cp_rwsem);
1492 }
1493
1494 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1495 {
1496         up_read(&sbi->cp_rwsem);
1497 }
1498
1499 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1500 {
1501         down_write(&sbi->cp_rwsem);
1502 }
1503
1504 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1505 {
1506         up_write(&sbi->cp_rwsem);
1507 }
1508
1509 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1510 {
1511         int reason = CP_SYNC;
1512
1513         if (test_opt(sbi, FASTBOOT))
1514                 reason = CP_FASTBOOT;
1515         if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1516                 reason = CP_UMOUNT;
1517         return reason;
1518 }
1519
1520 static inline bool __remain_node_summaries(int reason)
1521 {
1522         return (reason & (CP_UMOUNT | CP_FASTBOOT));
1523 }
1524
1525 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1526 {
1527         return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1528                         is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1529 }
1530
1531 /*
1532  * Check whether the given nid is within node id range.
1533  */
1534 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1535 {
1536         if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1537                 return -EINVAL;
1538         if (unlikely(nid >= NM_I(sbi)->max_nid))
1539                 return -EINVAL;
1540         return 0;
1541 }
1542
1543 /*
1544  * Check whether the inode has blocks or not
1545  */
1546 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1547 {
1548         block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1549
1550         return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1551 }
1552
1553 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1554 {
1555         return ofs == XATTR_NODE_OFFSET;
1556 }
1557
1558 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1559 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1560                                  struct inode *inode, blkcnt_t *count)
1561 {
1562         blkcnt_t diff = 0, release = 0;
1563         block_t avail_user_block_count;
1564         int ret;
1565
1566         ret = dquot_reserve_block(inode, *count);
1567         if (ret)
1568                 return ret;
1569
1570 #ifdef CONFIG_F2FS_FAULT_INJECTION
1571         if (time_to_inject(sbi, FAULT_BLOCK)) {
1572                 f2fs_show_injection_info(FAULT_BLOCK);
1573                 release = *count;
1574                 goto enospc;
1575         }
1576 #endif
1577         /*
1578          * let's increase this in prior to actual block count change in order
1579          * for f2fs_sync_file to avoid data races when deciding checkpoint.
1580          */
1581         percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1582
1583         spin_lock(&sbi->stat_lock);
1584         sbi->total_valid_block_count += (block_t)(*count);
1585         avail_user_block_count = sbi->user_block_count -
1586                                         sbi->current_reserved_blocks;
1587         if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1588                 diff = sbi->total_valid_block_count - avail_user_block_count;
1589                 *count -= diff;
1590                 release = diff;
1591                 sbi->total_valid_block_count = avail_user_block_count;
1592                 if (!*count) {
1593                         spin_unlock(&sbi->stat_lock);
1594                         percpu_counter_sub(&sbi->alloc_valid_block_count, diff);
1595                         goto enospc;
1596                 }
1597         }
1598         spin_unlock(&sbi->stat_lock);
1599
1600         if (release)
1601                 dquot_release_reservation_block(inode, release);
1602         f2fs_i_blocks_write(inode, *count, true, true);
1603         return 0;
1604
1605 enospc:
1606         dquot_release_reservation_block(inode, release);
1607         return -ENOSPC;
1608 }
1609
1610 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1611                                                 struct inode *inode,
1612                                                 block_t count)
1613 {
1614         blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1615
1616         spin_lock(&sbi->stat_lock);
1617         f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1618         f2fs_bug_on(sbi, inode->i_blocks < sectors);
1619         sbi->total_valid_block_count -= (block_t)count;
1620         if (sbi->reserved_blocks &&
1621                 sbi->current_reserved_blocks < sbi->reserved_blocks)
1622                 sbi->current_reserved_blocks = min(sbi->reserved_blocks,
1623                                         sbi->current_reserved_blocks + count);
1624         spin_unlock(&sbi->stat_lock);
1625         f2fs_i_blocks_write(inode, count, false, true);
1626 }
1627
1628 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1629 {
1630         atomic_inc(&sbi->nr_pages[count_type]);
1631
1632         if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1633                 count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA)
1634                 return;
1635
1636         set_sbi_flag(sbi, SBI_IS_DIRTY);
1637 }
1638
1639 static inline void inode_inc_dirty_pages(struct inode *inode)
1640 {
1641         atomic_inc(&F2FS_I(inode)->dirty_pages);
1642         inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1643                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1644         if (IS_NOQUOTA(inode))
1645                 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1646 }
1647
1648 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1649 {
1650         atomic_dec(&sbi->nr_pages[count_type]);
1651 }
1652
1653 static inline void inode_dec_dirty_pages(struct inode *inode)
1654 {
1655         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1656                         !S_ISLNK(inode->i_mode))
1657                 return;
1658
1659         atomic_dec(&F2FS_I(inode)->dirty_pages);
1660         dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1661                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1662         if (IS_NOQUOTA(inode))
1663                 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1664 }
1665
1666 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1667 {
1668         return atomic_read(&sbi->nr_pages[count_type]);
1669 }
1670
1671 static inline int get_dirty_pages(struct inode *inode)
1672 {
1673         return atomic_read(&F2FS_I(inode)->dirty_pages);
1674 }
1675
1676 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1677 {
1678         unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1679         unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1680                                                 sbi->log_blocks_per_seg;
1681
1682         return segs / sbi->segs_per_sec;
1683 }
1684
1685 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1686 {
1687         return sbi->total_valid_block_count;
1688 }
1689
1690 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1691 {
1692         return sbi->discard_blks;
1693 }
1694
1695 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1696 {
1697         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1698
1699         /* return NAT or SIT bitmap */
1700         if (flag == NAT_BITMAP)
1701                 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1702         else if (flag == SIT_BITMAP)
1703                 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1704
1705         return 0;
1706 }
1707
1708 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1709 {
1710         return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1711 }
1712
1713 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1714 {
1715         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1716         int offset;
1717
1718         if (__cp_payload(sbi) > 0) {
1719                 if (flag == NAT_BITMAP)
1720                         return &ckpt->sit_nat_version_bitmap;
1721                 else
1722                         return (unsigned char *)ckpt + F2FS_BLKSIZE;
1723         } else {
1724                 offset = (flag == NAT_BITMAP) ?
1725                         le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1726                 return &ckpt->sit_nat_version_bitmap + offset;
1727         }
1728 }
1729
1730 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1731 {
1732         block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1733
1734         if (sbi->cur_cp_pack == 2)
1735                 start_addr += sbi->blocks_per_seg;
1736         return start_addr;
1737 }
1738
1739 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1740 {
1741         block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1742
1743         if (sbi->cur_cp_pack == 1)
1744                 start_addr += sbi->blocks_per_seg;
1745         return start_addr;
1746 }
1747
1748 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1749 {
1750         sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1751 }
1752
1753 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1754 {
1755         return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1756 }
1757
1758 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
1759                                         struct inode *inode, bool is_inode)
1760 {
1761         block_t valid_block_count;
1762         unsigned int valid_node_count;
1763         bool quota = inode && !is_inode;
1764
1765         if (quota) {
1766                 int ret = dquot_reserve_block(inode, 1);
1767                 if (ret)
1768                         return ret;
1769         }
1770
1771 #ifdef CONFIG_F2FS_FAULT_INJECTION
1772         if (time_to_inject(sbi, FAULT_BLOCK)) {
1773                 f2fs_show_injection_info(FAULT_BLOCK);
1774                 goto enospc;
1775         }
1776 #endif
1777
1778         spin_lock(&sbi->stat_lock);
1779
1780         valid_block_count = sbi->total_valid_block_count + 1;
1781         if (unlikely(valid_block_count + sbi->current_reserved_blocks >
1782                                                 sbi->user_block_count)) {
1783                 spin_unlock(&sbi->stat_lock);
1784                 goto enospc;
1785         }
1786
1787         valid_node_count = sbi->total_valid_node_count + 1;
1788         if (unlikely(valid_node_count > sbi->total_node_count)) {
1789                 spin_unlock(&sbi->stat_lock);
1790                 goto enospc;
1791         }
1792
1793         sbi->total_valid_node_count++;
1794         sbi->total_valid_block_count++;
1795         spin_unlock(&sbi->stat_lock);
1796
1797         if (inode) {
1798                 if (is_inode)
1799                         f2fs_mark_inode_dirty_sync(inode, true);
1800                 else
1801                         f2fs_i_blocks_write(inode, 1, true, true);
1802         }
1803
1804         percpu_counter_inc(&sbi->alloc_valid_block_count);
1805         return 0;
1806
1807 enospc:
1808         if (quota)
1809                 dquot_release_reservation_block(inode, 1);
1810         return -ENOSPC;
1811 }
1812
1813 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1814                                         struct inode *inode, bool is_inode)
1815 {
1816         spin_lock(&sbi->stat_lock);
1817
1818         f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1819         f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1820         f2fs_bug_on(sbi, !is_inode && !inode->i_blocks);
1821
1822         sbi->total_valid_node_count--;
1823         sbi->total_valid_block_count--;
1824         if (sbi->reserved_blocks &&
1825                 sbi->current_reserved_blocks < sbi->reserved_blocks)
1826                 sbi->current_reserved_blocks++;
1827
1828         spin_unlock(&sbi->stat_lock);
1829
1830         if (!is_inode)
1831                 f2fs_i_blocks_write(inode, 1, false, true);
1832 }
1833
1834 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1835 {
1836         return sbi->total_valid_node_count;
1837 }
1838
1839 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1840 {
1841         percpu_counter_inc(&sbi->total_valid_inode_count);
1842 }
1843
1844 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1845 {
1846         percpu_counter_dec(&sbi->total_valid_inode_count);
1847 }
1848
1849 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1850 {
1851         return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1852 }
1853
1854 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1855                                                 pgoff_t index, bool for_write)
1856 {
1857 #ifdef CONFIG_F2FS_FAULT_INJECTION
1858         struct page *page = find_lock_page(mapping, index);
1859
1860         if (page)
1861                 return page;
1862
1863         if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
1864                 f2fs_show_injection_info(FAULT_PAGE_ALLOC);
1865                 return NULL;
1866         }
1867 #endif
1868         if (!for_write)
1869                 return grab_cache_page(mapping, index);
1870         return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1871 }
1872
1873 static inline struct page *f2fs_pagecache_get_page(
1874                                 struct address_space *mapping, pgoff_t index,
1875                                 int fgp_flags, gfp_t gfp_mask)
1876 {
1877 #ifdef CONFIG_F2FS_FAULT_INJECTION
1878         if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
1879                 f2fs_show_injection_info(FAULT_PAGE_GET);
1880                 return NULL;
1881         }
1882 #endif
1883         return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
1884 }
1885
1886 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1887 {
1888         char *src_kaddr = kmap(src);
1889         char *dst_kaddr = kmap(dst);
1890
1891         memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1892         kunmap(dst);
1893         kunmap(src);
1894 }
1895
1896 static inline void f2fs_put_page(struct page *page, int unlock)
1897 {
1898         if (!page)
1899                 return;
1900
1901         if (unlock) {
1902                 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1903                 unlock_page(page);
1904         }
1905         put_page(page);
1906 }
1907
1908 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1909 {
1910         if (dn->node_page)
1911                 f2fs_put_page(dn->node_page, 1);
1912         if (dn->inode_page && dn->node_page != dn->inode_page)
1913                 f2fs_put_page(dn->inode_page, 0);
1914         dn->node_page = NULL;
1915         dn->inode_page = NULL;
1916 }
1917
1918 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1919                                         size_t size)
1920 {
1921         return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1922 }
1923
1924 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1925                                                 gfp_t flags)
1926 {
1927         void *entry;
1928
1929         entry = kmem_cache_alloc(cachep, flags);
1930         if (!entry)
1931                 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1932         return entry;
1933 }
1934
1935 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi,
1936                                                 int npages, bool no_fail)
1937 {
1938         struct bio *bio;
1939
1940         if (no_fail) {
1941                 /* No failure on bio allocation */
1942                 bio = bio_alloc(GFP_NOIO, npages);
1943                 if (!bio)
1944                         bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1945                 return bio;
1946         }
1947 #ifdef CONFIG_F2FS_FAULT_INJECTION
1948         if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
1949                 f2fs_show_injection_info(FAULT_ALLOC_BIO);
1950                 return NULL;
1951         }
1952 #endif
1953         return bio_alloc(GFP_KERNEL, npages);
1954 }
1955
1956 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1957                                 unsigned long index, void *item)
1958 {
1959         while (radix_tree_insert(root, index, item))
1960                 cond_resched();
1961 }
1962
1963 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1964
1965 static inline bool IS_INODE(struct page *page)
1966 {
1967         struct f2fs_node *p = F2FS_NODE(page);
1968
1969         return RAW_IS_INODE(p);
1970 }
1971
1972 static inline int offset_in_addr(struct f2fs_inode *i)
1973 {
1974         return (i->i_inline & F2FS_EXTRA_ATTR) ?
1975                         (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
1976 }
1977
1978 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1979 {
1980         return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1981 }
1982
1983 static inline int f2fs_has_extra_attr(struct inode *inode);
1984 static inline block_t datablock_addr(struct inode *inode,
1985                         struct page *node_page, unsigned int offset)
1986 {
1987         struct f2fs_node *raw_node;
1988         __le32 *addr_array;
1989         int base = 0;
1990         bool is_inode = IS_INODE(node_page);
1991
1992         raw_node = F2FS_NODE(node_page);
1993
1994         /* from GC path only */
1995         if (!inode) {
1996                 if (is_inode)
1997                         base = offset_in_addr(&raw_node->i);
1998         } else if (f2fs_has_extra_attr(inode) && is_inode) {
1999                 base = get_extra_isize(inode);
2000         }
2001
2002         addr_array = blkaddr_in_node(raw_node);
2003         return le32_to_cpu(addr_array[base + offset]);
2004 }
2005
2006 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2007 {
2008         int mask;
2009
2010         addr += (nr >> 3);
2011         mask = 1 << (7 - (nr & 0x07));
2012         return mask & *addr;
2013 }
2014
2015 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2016 {
2017         int mask;
2018
2019         addr += (nr >> 3);
2020         mask = 1 << (7 - (nr & 0x07));
2021         *addr |= mask;
2022 }
2023
2024 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2025 {
2026         int mask;
2027
2028         addr += (nr >> 3);
2029         mask = 1 << (7 - (nr & 0x07));
2030         *addr &= ~mask;
2031 }
2032
2033 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2034 {
2035         int mask;
2036         int ret;
2037
2038         addr += (nr >> 3);
2039         mask = 1 << (7 - (nr & 0x07));
2040         ret = mask & *addr;
2041         *addr |= mask;
2042         return ret;
2043 }
2044
2045 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2046 {
2047         int mask;
2048         int ret;
2049
2050         addr += (nr >> 3);
2051         mask = 1 << (7 - (nr & 0x07));
2052         ret = mask & *addr;
2053         *addr &= ~mask;
2054         return ret;
2055 }
2056
2057 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2058 {
2059         int mask;
2060
2061         addr += (nr >> 3);
2062         mask = 1 << (7 - (nr & 0x07));
2063         *addr ^= mask;
2064 }
2065
2066 #define F2FS_REG_FLMASK         (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
2067 #define F2FS_OTHER_FLMASK       (FS_NODUMP_FL | FS_NOATIME_FL)
2068 #define F2FS_FL_INHERITED       (FS_PROJINHERIT_FL)
2069
2070 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2071 {
2072         if (S_ISDIR(mode))
2073                 return flags;
2074         else if (S_ISREG(mode))
2075                 return flags & F2FS_REG_FLMASK;
2076         else
2077                 return flags & F2FS_OTHER_FLMASK;
2078 }
2079
2080 /* used for f2fs_inode_info->flags */
2081 enum {
2082         FI_NEW_INODE,           /* indicate newly allocated inode */
2083         FI_DIRTY_INODE,         /* indicate inode is dirty or not */
2084         FI_AUTO_RECOVER,        /* indicate inode is recoverable */
2085         FI_DIRTY_DIR,           /* indicate directory has dirty pages */
2086         FI_INC_LINK,            /* need to increment i_nlink */
2087         FI_ACL_MODE,            /* indicate acl mode */
2088         FI_NO_ALLOC,            /* should not allocate any blocks */
2089         FI_FREE_NID,            /* free allocated nide */
2090         FI_NO_EXTENT,           /* not to use the extent cache */
2091         FI_INLINE_XATTR,        /* used for inline xattr */
2092         FI_INLINE_DATA,         /* used for inline data*/
2093         FI_INLINE_DENTRY,       /* used for inline dentry */
2094         FI_APPEND_WRITE,        /* inode has appended data */
2095         FI_UPDATE_WRITE,        /* inode has in-place-update data */
2096         FI_NEED_IPU,            /* used for ipu per file */
2097         FI_ATOMIC_FILE,         /* indicate atomic file */
2098         FI_ATOMIC_COMMIT,       /* indicate the state of atomical committing */
2099         FI_VOLATILE_FILE,       /* indicate volatile file */
2100         FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
2101         FI_DROP_CACHE,          /* drop dirty page cache */
2102         FI_DATA_EXIST,          /* indicate data exists */
2103         FI_INLINE_DOTS,         /* indicate inline dot dentries */
2104         FI_DO_DEFRAG,           /* indicate defragment is running */
2105         FI_DIRTY_FILE,          /* indicate regular/symlink has dirty pages */
2106         FI_NO_PREALLOC,         /* indicate skipped preallocated blocks */
2107         FI_HOT_DATA,            /* indicate file is hot */
2108         FI_EXTRA_ATTR,          /* indicate file has extra attribute */
2109         FI_PROJ_INHERIT,        /* indicate file inherits projectid */
2110 };
2111
2112 static inline void __mark_inode_dirty_flag(struct inode *inode,
2113                                                 int flag, bool set)
2114 {
2115         switch (flag) {
2116         case FI_INLINE_XATTR:
2117         case FI_INLINE_DATA:
2118         case FI_INLINE_DENTRY:
2119                 if (set)
2120                         return;
2121         case FI_DATA_EXIST:
2122         case FI_INLINE_DOTS:
2123                 f2fs_mark_inode_dirty_sync(inode, true);
2124         }
2125 }
2126
2127 static inline void set_inode_flag(struct inode *inode, int flag)
2128 {
2129         if (!test_bit(flag, &F2FS_I(inode)->flags))
2130                 set_bit(flag, &F2FS_I(inode)->flags);
2131         __mark_inode_dirty_flag(inode, flag, true);
2132 }
2133
2134 static inline int is_inode_flag_set(struct inode *inode, int flag)
2135 {
2136         return test_bit(flag, &F2FS_I(inode)->flags);
2137 }
2138
2139 static inline void clear_inode_flag(struct inode *inode, int flag)
2140 {
2141         if (test_bit(flag, &F2FS_I(inode)->flags))
2142                 clear_bit(flag, &F2FS_I(inode)->flags);
2143         __mark_inode_dirty_flag(inode, flag, false);
2144 }
2145
2146 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2147 {
2148         F2FS_I(inode)->i_acl_mode = mode;
2149         set_inode_flag(inode, FI_ACL_MODE);
2150         f2fs_mark_inode_dirty_sync(inode, false);
2151 }
2152
2153 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2154 {
2155         if (inc)
2156                 inc_nlink(inode);
2157         else
2158                 drop_nlink(inode);
2159         f2fs_mark_inode_dirty_sync(inode, true);
2160 }
2161
2162 static inline void f2fs_i_blocks_write(struct inode *inode,
2163                                         block_t diff, bool add, bool claim)
2164 {
2165         bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2166         bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2167
2168         /* add = 1, claim = 1 should be dquot_reserve_block in pair */
2169         if (add) {
2170                 if (claim)
2171                         dquot_claim_block(inode, diff);
2172                 else
2173                         dquot_alloc_block_nofail(inode, diff);
2174         } else {
2175                 dquot_free_block(inode, diff);
2176         }
2177
2178         f2fs_mark_inode_dirty_sync(inode, true);
2179         if (clean || recover)
2180                 set_inode_flag(inode, FI_AUTO_RECOVER);
2181 }
2182
2183 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2184 {
2185         bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2186         bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2187
2188         if (i_size_read(inode) == i_size)
2189                 return;
2190
2191         i_size_write(inode, i_size);
2192         f2fs_mark_inode_dirty_sync(inode, true);
2193         if (clean || recover)
2194                 set_inode_flag(inode, FI_AUTO_RECOVER);
2195 }
2196
2197 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2198 {
2199         F2FS_I(inode)->i_current_depth = depth;
2200         f2fs_mark_inode_dirty_sync(inode, true);
2201 }
2202
2203 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2204 {
2205         F2FS_I(inode)->i_xattr_nid = xnid;
2206         f2fs_mark_inode_dirty_sync(inode, true);
2207 }
2208
2209 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2210 {
2211         F2FS_I(inode)->i_pino = pino;
2212         f2fs_mark_inode_dirty_sync(inode, true);
2213 }
2214
2215 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2216 {
2217         struct f2fs_inode_info *fi = F2FS_I(inode);
2218
2219         if (ri->i_inline & F2FS_INLINE_XATTR)
2220                 set_bit(FI_INLINE_XATTR, &fi->flags);
2221         if (ri->i_inline & F2FS_INLINE_DATA)
2222                 set_bit(FI_INLINE_DATA, &fi->flags);
2223         if (ri->i_inline & F2FS_INLINE_DENTRY)
2224                 set_bit(FI_INLINE_DENTRY, &fi->flags);
2225         if (ri->i_inline & F2FS_DATA_EXIST)
2226                 set_bit(FI_DATA_EXIST, &fi->flags);
2227         if (ri->i_inline & F2FS_INLINE_DOTS)
2228                 set_bit(FI_INLINE_DOTS, &fi->flags);
2229         if (ri->i_inline & F2FS_EXTRA_ATTR)
2230                 set_bit(FI_EXTRA_ATTR, &fi->flags);
2231 }
2232
2233 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2234 {
2235         ri->i_inline = 0;
2236
2237         if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2238                 ri->i_inline |= F2FS_INLINE_XATTR;
2239         if (is_inode_flag_set(inode, FI_INLINE_DATA))
2240                 ri->i_inline |= F2FS_INLINE_DATA;
2241         if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2242                 ri->i_inline |= F2FS_INLINE_DENTRY;
2243         if (is_inode_flag_set(inode, FI_DATA_EXIST))
2244                 ri->i_inline |= F2FS_DATA_EXIST;
2245         if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2246                 ri->i_inline |= F2FS_INLINE_DOTS;
2247         if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2248                 ri->i_inline |= F2FS_EXTRA_ATTR;
2249 }
2250
2251 static inline int f2fs_has_extra_attr(struct inode *inode)
2252 {
2253         return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2254 }
2255
2256 static inline int f2fs_has_inline_xattr(struct inode *inode)
2257 {
2258         return is_inode_flag_set(inode, FI_INLINE_XATTR);
2259 }
2260
2261 static inline unsigned int addrs_per_inode(struct inode *inode)
2262 {
2263         return CUR_ADDRS_PER_INODE(inode) - F2FS_INLINE_XATTR_ADDRS(inode);
2264 }
2265
2266 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2267 {
2268         struct f2fs_inode *ri = F2FS_INODE(page);
2269
2270         return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2271                                         F2FS_INLINE_XATTR_ADDRS(inode)]);
2272 }
2273
2274 static inline int inline_xattr_size(struct inode *inode)
2275 {
2276         return get_inline_xattr_addrs(inode) * sizeof(__le32);
2277 }
2278
2279 static inline int f2fs_has_inline_data(struct inode *inode)
2280 {
2281         return is_inode_flag_set(inode, FI_INLINE_DATA);
2282 }
2283
2284 static inline int f2fs_exist_data(struct inode *inode)
2285 {
2286         return is_inode_flag_set(inode, FI_DATA_EXIST);
2287 }
2288
2289 static inline int f2fs_has_inline_dots(struct inode *inode)
2290 {
2291         return is_inode_flag_set(inode, FI_INLINE_DOTS);
2292 }
2293
2294 static inline bool f2fs_is_atomic_file(struct inode *inode)
2295 {
2296         return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2297 }
2298
2299 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2300 {
2301         return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2302 }
2303
2304 static inline bool f2fs_is_volatile_file(struct inode *inode)
2305 {
2306         return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2307 }
2308
2309 static inline bool f2fs_is_first_block_written(struct inode *inode)
2310 {
2311         return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2312 }
2313
2314 static inline bool f2fs_is_drop_cache(struct inode *inode)
2315 {
2316         return is_inode_flag_set(inode, FI_DROP_CACHE);
2317 }
2318
2319 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2320 {
2321         struct f2fs_inode *ri = F2FS_INODE(page);
2322         int extra_size = get_extra_isize(inode);
2323
2324         return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2325 }
2326
2327 static inline int f2fs_has_inline_dentry(struct inode *inode)
2328 {
2329         return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2330 }
2331
2332 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
2333 {
2334         if (!f2fs_has_inline_dentry(dir))
2335                 kunmap(page);
2336 }
2337
2338 static inline int is_file(struct inode *inode, int type)
2339 {
2340         return F2FS_I(inode)->i_advise & type;
2341 }
2342
2343 static inline void set_file(struct inode *inode, int type)
2344 {
2345         F2FS_I(inode)->i_advise |= type;
2346         f2fs_mark_inode_dirty_sync(inode, true);
2347 }
2348
2349 static inline void clear_file(struct inode *inode, int type)
2350 {
2351         F2FS_I(inode)->i_advise &= ~type;
2352         f2fs_mark_inode_dirty_sync(inode, true);
2353 }
2354
2355 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2356 {
2357         bool ret;
2358
2359         if (dsync) {
2360                 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2361
2362                 spin_lock(&sbi->inode_lock[DIRTY_META]);
2363                 ret = list_empty(&F2FS_I(inode)->gdirty_list);
2364                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
2365                 return ret;
2366         }
2367         if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2368                         file_keep_isize(inode) ||
2369                         i_size_read(inode) & PAGE_MASK)
2370                 return false;
2371
2372         down_read(&F2FS_I(inode)->i_sem);
2373         ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2374         up_read(&F2FS_I(inode)->i_sem);
2375
2376         return ret;
2377 }
2378
2379 static inline int f2fs_readonly(struct super_block *sb)
2380 {
2381         return sb->s_flags & SB_RDONLY;
2382 }
2383
2384 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2385 {
2386         return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2387 }
2388
2389 static inline bool is_dot_dotdot(const struct qstr *str)
2390 {
2391         if (str->len == 1 && str->name[0] == '.')
2392                 return true;
2393
2394         if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2395                 return true;
2396
2397         return false;
2398 }
2399
2400 static inline bool f2fs_may_extent_tree(struct inode *inode)
2401 {
2402         if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
2403                         is_inode_flag_set(inode, FI_NO_EXTENT))
2404                 return false;
2405
2406         return S_ISREG(inode->i_mode);
2407 }
2408
2409 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2410                                         size_t size, gfp_t flags)
2411 {
2412 #ifdef CONFIG_F2FS_FAULT_INJECTION
2413         if (time_to_inject(sbi, FAULT_KMALLOC)) {
2414                 f2fs_show_injection_info(FAULT_KMALLOC);
2415                 return NULL;
2416         }
2417 #endif
2418         return kmalloc(size, flags);
2419 }
2420
2421 static inline int get_extra_isize(struct inode *inode)
2422 {
2423         return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2424 }
2425
2426 static inline int f2fs_sb_has_flexible_inline_xattr(struct super_block *sb);
2427 static inline int get_inline_xattr_addrs(struct inode *inode)
2428 {
2429         return F2FS_I(inode)->i_inline_xattr_size;
2430 }
2431
2432 #define get_inode_mode(i) \
2433         ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2434          (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2435
2436 #define F2FS_TOTAL_EXTRA_ATTR_SIZE                      \
2437         (offsetof(struct f2fs_inode, i_extra_end) -     \
2438         offsetof(struct f2fs_inode, i_extra_isize))     \
2439
2440 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
2441 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)              \
2442                 ((offsetof(typeof(*f2fs_inode), field) +        \
2443                 sizeof((f2fs_inode)->field))                    \
2444                 <= (F2FS_OLD_ATTRIBUTE_SIZE + extra_isize))     \
2445
2446 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
2447 {
2448         int i;
2449
2450         spin_lock(&sbi->iostat_lock);
2451         for (i = 0; i < NR_IO_TYPE; i++)
2452                 sbi->write_iostat[i] = 0;
2453         spin_unlock(&sbi->iostat_lock);
2454 }
2455
2456 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
2457                         enum iostat_type type, unsigned long long io_bytes)
2458 {
2459         if (!sbi->iostat_enable)
2460                 return;
2461         spin_lock(&sbi->iostat_lock);
2462         sbi->write_iostat[type] += io_bytes;
2463
2464         if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
2465                 sbi->write_iostat[APP_BUFFERED_IO] =
2466                         sbi->write_iostat[APP_WRITE_IO] -
2467                         sbi->write_iostat[APP_DIRECT_IO];
2468         spin_unlock(&sbi->iostat_lock);
2469 }
2470
2471 /*
2472  * file.c
2473  */
2474 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2475 void truncate_data_blocks(struct dnode_of_data *dn);
2476 int truncate_blocks(struct inode *inode, u64 from, bool lock);
2477 int f2fs_truncate(struct inode *inode);
2478 int f2fs_getattr(const struct path *path, struct kstat *stat,
2479                         u32 request_mask, unsigned int flags);
2480 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2481 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2482 int truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2483 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2484 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2485
2486 /*
2487  * inode.c
2488  */
2489 void f2fs_set_inode_flags(struct inode *inode);
2490 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
2491 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
2492 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2493 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2494 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2495 int update_inode(struct inode *inode, struct page *node_page);
2496 int update_inode_page(struct inode *inode);
2497 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2498 void f2fs_evict_inode(struct inode *inode);
2499 void handle_failed_inode(struct inode *inode);
2500
2501 /*
2502  * namei.c
2503  */
2504 struct dentry *f2fs_get_parent(struct dentry *child);
2505
2506 /*
2507  * dir.c
2508  */
2509 void set_de_type(struct f2fs_dir_entry *de, umode_t mode);
2510 unsigned char get_de_type(struct f2fs_dir_entry *de);
2511 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname,
2512                         f2fs_hash_t namehash, int *max_slots,
2513                         struct f2fs_dentry_ptr *d);
2514 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2515                         unsigned int start_pos, struct fscrypt_str *fstr);
2516 void do_make_empty_dir(struct inode *inode, struct inode *parent,
2517                         struct f2fs_dentry_ptr *d);
2518 struct page *init_inode_metadata(struct inode *inode, struct inode *dir,
2519                         const struct qstr *new_name,
2520                         const struct qstr *orig_name, struct page *dpage);
2521 void update_parent_metadata(struct inode *dir, struct inode *inode,
2522                         unsigned int current_depth);
2523 int room_for_filename(const void *bitmap, int slots, int max_slots);
2524 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2525 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2526                         struct fscrypt_name *fname, struct page **res_page);
2527 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2528                         const struct qstr *child, struct page **res_page);
2529 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2530 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2531                         struct page **page);
2532 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2533                         struct page *page, struct inode *inode);
2534 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2535                         const struct qstr *name, f2fs_hash_t name_hash,
2536                         unsigned int bit_pos);
2537 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2538                         const struct qstr *orig_name,
2539                         struct inode *inode, nid_t ino, umode_t mode);
2540 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname,
2541                         struct inode *inode, nid_t ino, umode_t mode);
2542 int __f2fs_add_link(struct inode *dir, const struct qstr *name,
2543                         struct inode *inode, nid_t ino, umode_t mode);
2544 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2545                         struct inode *dir, struct inode *inode);
2546 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2547 bool f2fs_empty_dir(struct inode *dir);
2548
2549 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2550 {
2551         return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2552                                 inode, inode->i_ino, inode->i_mode);
2553 }
2554
2555 /*
2556  * super.c
2557  */
2558 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2559 void f2fs_inode_synced(struct inode *inode);
2560 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
2561 void f2fs_quota_off_umount(struct super_block *sb);
2562 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2563 int f2fs_sync_fs(struct super_block *sb, int sync);
2564 extern __printf(3, 4)
2565 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2566 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
2567
2568 /*
2569  * hash.c
2570  */
2571 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
2572                                 struct fscrypt_name *fname);
2573
2574 /*
2575  * node.c
2576  */
2577 struct dnode_of_data;
2578 struct node_info;
2579
2580 bool available_free_memory(struct f2fs_sb_info *sbi, int type);
2581 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2582 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2583 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2584 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni);
2585 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2586 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2587 int truncate_inode_blocks(struct inode *inode, pgoff_t from);
2588 int truncate_xattr_node(struct inode *inode);
2589 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino);
2590 int remove_inode_page(struct inode *inode);
2591 struct page *new_inode_page(struct inode *inode);
2592 struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs);
2593 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2594 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2595 struct page *get_node_page_ra(struct page *parent, int start);
2596 void move_node_page(struct page *node_page, int gc_type);
2597 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2598                         struct writeback_control *wbc, bool atomic);
2599 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc,
2600                         bool do_balance, enum iostat_type io_type);
2601 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
2602 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
2603 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
2604 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
2605 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
2606 void recover_inline_xattr(struct inode *inode, struct page *page);
2607 int recover_xattr_data(struct inode *inode, struct page *page,
2608                         block_t blkaddr);
2609 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
2610 int restore_node_summary(struct f2fs_sb_info *sbi,
2611                         unsigned int segno, struct f2fs_summary_block *sum);
2612 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2613 int build_node_manager(struct f2fs_sb_info *sbi);
2614 void destroy_node_manager(struct f2fs_sb_info *sbi);
2615 int __init create_node_manager_caches(void);
2616 void destroy_node_manager_caches(void);
2617
2618 /*
2619  * segment.c
2620  */
2621 bool need_SSR(struct f2fs_sb_info *sbi);
2622 void register_inmem_page(struct inode *inode, struct page *page);
2623 void drop_inmem_pages_all(struct f2fs_sb_info *sbi);
2624 void drop_inmem_pages(struct inode *inode);
2625 void drop_inmem_page(struct inode *inode, struct page *page);
2626 int commit_inmem_pages(struct inode *inode);
2627 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
2628 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
2629 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
2630 int create_flush_cmd_control(struct f2fs_sb_info *sbi);
2631 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
2632 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
2633 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
2634 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
2635 void init_discard_policy(struct discard_policy *dpolicy, int discard_type,
2636                                                 unsigned int granularity);
2637 void stop_discard_thread(struct f2fs_sb_info *sbi);
2638 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi);
2639 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2640 void release_discard_addrs(struct f2fs_sb_info *sbi);
2641 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
2642 void allocate_new_segments(struct f2fs_sb_info *sbi);
2643 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
2644 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2645 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
2646 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr);
2647 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
2648                                                 enum iostat_type io_type);
2649 void write_node_page(unsigned int nid, struct f2fs_io_info *fio);
2650 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio);
2651 int rewrite_data_page(struct f2fs_io_info *fio);
2652 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2653                         block_t old_blkaddr, block_t new_blkaddr,
2654                         bool recover_curseg, bool recover_newaddr);
2655 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2656                         block_t old_addr, block_t new_addr,
2657                         unsigned char version, bool recover_curseg,
2658                         bool recover_newaddr);
2659 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2660                         block_t old_blkaddr, block_t *new_blkaddr,
2661                         struct f2fs_summary *sum, int type,
2662                         struct f2fs_io_info *fio, bool add_list);
2663 void f2fs_wait_on_page_writeback(struct page *page,
2664                         enum page_type type, bool ordered);
2665 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr);
2666 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2667 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2668 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2669                         unsigned int val, int alloc);
2670 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2671 int build_segment_manager(struct f2fs_sb_info *sbi);
2672 void destroy_segment_manager(struct f2fs_sb_info *sbi);
2673 int __init create_segment_manager_caches(void);
2674 void destroy_segment_manager_caches(void);
2675
2676 /*
2677  * checkpoint.c
2678  */
2679 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
2680 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2681 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2682 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
2683 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type);
2684 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
2685                         int type, bool sync);
2686 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
2687 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
2688                         long nr_to_write, enum iostat_type io_type);
2689 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2690 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2691 void release_ino_entry(struct f2fs_sb_info *sbi, bool all);
2692 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
2693 void set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
2694                                         unsigned int devidx, int type);
2695 bool is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
2696                                         unsigned int devidx, int type);
2697 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
2698 int acquire_orphan_inode(struct f2fs_sb_info *sbi);
2699 void release_orphan_inode(struct f2fs_sb_info *sbi);
2700 void add_orphan_inode(struct inode *inode);
2701 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
2702 int recover_orphan_inodes(struct f2fs_sb_info *sbi);
2703 int get_valid_checkpoint(struct f2fs_sb_info *sbi);
2704 void update_dirty_page(struct inode *inode, struct page *page);
2705 void remove_dirty_inode(struct inode *inode);
2706 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
2707 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2708 void init_ino_entry_info(struct f2fs_sb_info *sbi);
2709 int __init create_checkpoint_caches(void);
2710 void destroy_checkpoint_caches(void);
2711
2712 /*
2713  * data.c
2714  */
2715 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
2716 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
2717                                 struct inode *inode, nid_t ino, pgoff_t idx,
2718                                 enum page_type type);
2719 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
2720 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
2721 int f2fs_submit_page_write(struct f2fs_io_info *fio);
2722 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
2723                         block_t blk_addr, struct bio *bio);
2724 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
2725 void set_data_blkaddr(struct dnode_of_data *dn);
2726 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
2727 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
2728 int reserve_new_block(struct dnode_of_data *dn);
2729 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
2730 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
2731 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
2732 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
2733                         int op_flags, bool for_write);
2734 struct page *find_data_page(struct inode *inode, pgoff_t index);
2735 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
2736                         bool for_write);
2737 struct page *get_new_data_page(struct inode *inode,
2738                         struct page *ipage, pgoff_t index, bool new_i_size);
2739 int do_write_data_page(struct f2fs_io_info *fio);
2740 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
2741                         int create, int flag);
2742 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2743                         u64 start, u64 len);
2744 void f2fs_set_page_dirty_nobuffers(struct page *page);
2745 int __f2fs_write_data_pages(struct address_space *mapping,
2746                                                 struct writeback_control *wbc,
2747                                                 enum iostat_type io_type);
2748 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2749                         unsigned int length);
2750 int f2fs_release_page(struct page *page, gfp_t wait);
2751 #ifdef CONFIG_MIGRATION
2752 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
2753                         struct page *page, enum migrate_mode mode);
2754 #endif
2755
2756 /*
2757  * gc.c
2758  */
2759 int start_gc_thread(struct f2fs_sb_info *sbi);
2760 void stop_gc_thread(struct f2fs_sb_info *sbi);
2761 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
2762 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
2763                         unsigned int segno);
2764 void build_gc_manager(struct f2fs_sb_info *sbi);
2765
2766 /*
2767  * recovery.c
2768  */
2769 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
2770 bool space_for_roll_forward(struct f2fs_sb_info *sbi);
2771
2772 /*
2773  * debug.c
2774  */
2775 #ifdef CONFIG_F2FS_STAT_FS
2776 struct f2fs_stat_info {
2777         struct list_head stat_list;
2778         struct f2fs_sb_info *sbi;
2779         int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2780         int main_area_segs, main_area_sections, main_area_zones;
2781         unsigned long long hit_largest, hit_cached, hit_rbtree;
2782         unsigned long long hit_total, total_ext;
2783         int ext_tree, zombie_tree, ext_node;
2784         int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
2785         int ndirty_data, ndirty_qdata;
2786         int inmem_pages;
2787         unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
2788         int nats, dirty_nats, sits, dirty_sits;
2789         int free_nids, avail_nids, alloc_nids;
2790         int total_count, utilization;
2791         int bg_gc, nr_wb_cp_data, nr_wb_data;
2792         int nr_flushing, nr_flushed, flush_list_empty;
2793         int nr_discarding, nr_discarded;
2794         int nr_discard_cmd;
2795         unsigned int undiscard_blks;
2796         int inline_xattr, inline_inode, inline_dir, append, update, orphans;
2797         int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
2798         unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
2799         unsigned int bimodal, avg_vblocks;
2800         int util_free, util_valid, util_invalid;
2801         int rsvd_segs, overp_segs;
2802         int dirty_count, node_pages, meta_pages;
2803         int prefree_count, call_count, cp_count, bg_cp_count;
2804         int tot_segs, node_segs, data_segs, free_segs, free_secs;
2805         int bg_node_segs, bg_data_segs;
2806         int tot_blks, data_blks, node_blks;
2807         int bg_data_blks, bg_node_blks;
2808         int curseg[NR_CURSEG_TYPE];
2809         int cursec[NR_CURSEG_TYPE];
2810         int curzone[NR_CURSEG_TYPE];
2811
2812         unsigned int segment_count[2];
2813         unsigned int block_count[2];
2814         unsigned int inplace_count;
2815         unsigned long long base_mem, cache_mem, page_mem;
2816 };
2817
2818 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2819 {
2820         return (struct f2fs_stat_info *)sbi->stat_info;
2821 }
2822
2823 #define stat_inc_cp_count(si)           ((si)->cp_count++)
2824 #define stat_inc_bg_cp_count(si)        ((si)->bg_cp_count++)
2825 #define stat_inc_call_count(si)         ((si)->call_count++)
2826 #define stat_inc_bggc_count(sbi)        ((sbi)->bg_gc++)
2827 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
2828 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
2829 #define stat_inc_total_hit(sbi)         (atomic64_inc(&(sbi)->total_hit_ext))
2830 #define stat_inc_rbtree_node_hit(sbi)   (atomic64_inc(&(sbi)->read_hit_rbtree))
2831 #define stat_inc_largest_node_hit(sbi)  (atomic64_inc(&(sbi)->read_hit_largest))
2832 #define stat_inc_cached_node_hit(sbi)   (atomic64_inc(&(sbi)->read_hit_cached))
2833 #define stat_inc_inline_xattr(inode)                                    \
2834         do {                                                            \
2835                 if (f2fs_has_inline_xattr(inode))                       \
2836                         (atomic_inc(&F2FS_I_SB(inode)->inline_xattr));  \
2837         } while (0)
2838 #define stat_dec_inline_xattr(inode)                                    \
2839         do {                                                            \
2840                 if (f2fs_has_inline_xattr(inode))                       \
2841                         (atomic_dec(&F2FS_I_SB(inode)->inline_xattr));  \
2842         } while (0)
2843 #define stat_inc_inline_inode(inode)                                    \
2844         do {                                                            \
2845                 if (f2fs_has_inline_data(inode))                        \
2846                         (atomic_inc(&F2FS_I_SB(inode)->inline_inode));  \
2847         } while (0)
2848 #define stat_dec_inline_inode(inode)                                    \
2849         do {                                                            \
2850                 if (f2fs_has_inline_data(inode))                        \
2851                         (atomic_dec(&F2FS_I_SB(inode)->inline_inode));  \
2852         } while (0)
2853 #define stat_inc_inline_dir(inode)                                      \
2854         do {                                                            \
2855                 if (f2fs_has_inline_dentry(inode))                      \
2856                         (atomic_inc(&F2FS_I_SB(inode)->inline_dir));    \
2857         } while (0)
2858 #define stat_dec_inline_dir(inode)                                      \
2859         do {                                                            \
2860                 if (f2fs_has_inline_dentry(inode))                      \
2861                         (atomic_dec(&F2FS_I_SB(inode)->inline_dir));    \
2862         } while (0)
2863 #define stat_inc_seg_type(sbi, curseg)                                  \
2864                 ((sbi)->segment_count[(curseg)->alloc_type]++)
2865 #define stat_inc_block_count(sbi, curseg)                               \
2866                 ((sbi)->block_count[(curseg)->alloc_type]++)
2867 #define stat_inc_inplace_blocks(sbi)                                    \
2868                 (atomic_inc(&(sbi)->inplace_count))
2869 #define stat_inc_atomic_write(inode)                                    \
2870                 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
2871 #define stat_dec_atomic_write(inode)                                    \
2872                 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
2873 #define stat_update_max_atomic_write(inode)                             \
2874         do {                                                            \
2875                 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt);       \
2876                 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);   \
2877                 if (cur > max)                                          \
2878                         atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
2879         } while (0)
2880 #define stat_inc_volatile_write(inode)                                  \
2881                 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
2882 #define stat_dec_volatile_write(inode)                                  \
2883                 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
2884 #define stat_update_max_volatile_write(inode)                           \
2885         do {                                                            \
2886                 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);       \
2887                 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);   \
2888                 if (cur > max)                                          \
2889                         atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \
2890         } while (0)
2891 #define stat_inc_seg_count(sbi, type, gc_type)                          \
2892         do {                                                            \
2893                 struct f2fs_stat_info *si = F2FS_STAT(sbi);             \
2894                 si->tot_segs++;                                         \
2895                 if ((type) == SUM_TYPE_DATA) {                          \
2896                         si->data_segs++;                                \
2897                         si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
2898                 } else {                                                \
2899                         si->node_segs++;                                \
2900                         si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
2901                 }                                                       \
2902         } while (0)
2903
2904 #define stat_inc_tot_blk_count(si, blks)                                \
2905         ((si)->tot_blks += (blks))
2906
2907 #define stat_inc_data_blk_count(sbi, blks, gc_type)                     \
2908         do {                                                            \
2909                 struct f2fs_stat_info *si = F2FS_STAT(sbi);             \
2910                 stat_inc_tot_blk_count(si, blks);                       \
2911                 si->data_blks += (blks);                                \
2912                 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;  \
2913         } while (0)
2914
2915 #define stat_inc_node_blk_count(sbi, blks, gc_type)                     \
2916         do {                                                            \
2917                 struct f2fs_stat_info *si = F2FS_STAT(sbi);             \
2918                 stat_inc_tot_blk_count(si, blks);                       \
2919                 si->node_blks += (blks);                                \
2920                 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;  \
2921         } while (0)
2922
2923 int f2fs_build_stats(struct f2fs_sb_info *sbi);
2924 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
2925 int __init f2fs_create_root_stats(void);
2926 void f2fs_destroy_root_stats(void);
2927 #else
2928 #define stat_inc_cp_count(si)                           do { } while (0)
2929 #define stat_inc_bg_cp_count(si)                        do { } while (0)
2930 #define stat_inc_call_count(si)                         do { } while (0)
2931 #define stat_inc_bggc_count(si)                         do { } while (0)
2932 #define stat_inc_dirty_inode(sbi, type)                 do { } while (0)
2933 #define stat_dec_dirty_inode(sbi, type)                 do { } while (0)
2934 #define stat_inc_total_hit(sb)                          do { } while (0)
2935 #define stat_inc_rbtree_node_hit(sb)                    do { } while (0)
2936 #define stat_inc_largest_node_hit(sbi)                  do { } while (0)
2937 #define stat_inc_cached_node_hit(sbi)                   do { } while (0)
2938 #define stat_inc_inline_xattr(inode)                    do { } while (0)
2939 #define stat_dec_inline_xattr(inode)                    do { } while (0)
2940 #define stat_inc_inline_inode(inode)                    do { } while (0)
2941 #define stat_dec_inline_inode(inode)                    do { } while (0)
2942 #define stat_inc_inline_dir(inode)                      do { } while (0)
2943 #define stat_dec_inline_dir(inode)                      do { } while (0)
2944 #define stat_inc_atomic_write(inode)                    do { } while (0)
2945 #define stat_dec_atomic_write(inode)                    do { } while (0)
2946 #define stat_update_max_atomic_write(inode)             do { } while (0)
2947 #define stat_inc_volatile_write(inode)                  do { } while (0)
2948 #define stat_dec_volatile_write(inode)                  do { } while (0)
2949 #define stat_update_max_volatile_write(inode)           do { } while (0)
2950 #define stat_inc_seg_type(sbi, curseg)                  do { } while (0)
2951 #define stat_inc_block_count(sbi, curseg)               do { } while (0)
2952 #define stat_inc_inplace_blocks(sbi)                    do { } while (0)
2953 #define stat_inc_seg_count(sbi, type, gc_type)          do { } while (0)
2954 #define stat_inc_tot_blk_count(si, blks)                do { } while (0)
2955 #define stat_inc_data_blk_count(sbi, blks, gc_type)     do { } while (0)
2956 #define stat_inc_node_blk_count(sbi, blks, gc_type)     do { } while (0)
2957
2958 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2959 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2960 static inline int __init f2fs_create_root_stats(void) { return 0; }
2961 static inline void f2fs_destroy_root_stats(void) { }
2962 #endif
2963
2964 extern const struct file_operations f2fs_dir_operations;
2965 extern const struct file_operations f2fs_file_operations;
2966 extern const struct inode_operations f2fs_file_inode_operations;
2967 extern const struct address_space_operations f2fs_dblock_aops;
2968 extern const struct address_space_operations f2fs_node_aops;
2969 extern const struct address_space_operations f2fs_meta_aops;
2970 extern const struct inode_operations f2fs_dir_inode_operations;
2971 extern const struct inode_operations f2fs_symlink_inode_operations;
2972 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2973 extern const struct inode_operations f2fs_special_inode_operations;
2974 extern struct kmem_cache *inode_entry_slab;
2975
2976 /*
2977  * inline.c
2978  */
2979 bool f2fs_may_inline_data(struct inode *inode);
2980 bool f2fs_may_inline_dentry(struct inode *inode);
2981 void read_inline_data(struct page *page, struct page *ipage);
2982 void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from);
2983 int f2fs_read_inline_data(struct inode *inode, struct page *page);
2984 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
2985 int f2fs_convert_inline_inode(struct inode *inode);
2986 int f2fs_write_inline_data(struct inode *inode, struct page *page);
2987 bool recover_inline_data(struct inode *inode, struct page *npage);
2988 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
2989                         struct fscrypt_name *fname, struct page **res_page);
2990 int make_empty_inline_dir(struct inode *inode, struct inode *parent,
2991                         struct page *ipage);
2992 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
2993                         const struct qstr *orig_name,
2994                         struct inode *inode, nid_t ino, umode_t mode);
2995 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
2996                         struct inode *dir, struct inode *inode);
2997 bool f2fs_empty_inline_dir(struct inode *dir);
2998 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
2999                         struct fscrypt_str *fstr);
3000 int f2fs_inline_data_fiemap(struct inode *inode,
3001                         struct fiemap_extent_info *fieinfo,
3002                         __u64 start, __u64 len);
3003
3004 /*
3005  * shrinker.c
3006  */
3007 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3008                         struct shrink_control *sc);
3009 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3010                         struct shrink_control *sc);
3011 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3012 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3013
3014 /*
3015  * extent_cache.c
3016  */
3017 struct rb_entry *__lookup_rb_tree(struct rb_root *root,
3018                                 struct rb_entry *cached_re, unsigned int ofs);
3019 struct rb_node **__lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3020                                 struct rb_root *root, struct rb_node **parent,
3021                                 unsigned int ofs);
3022 struct rb_entry *__lookup_rb_tree_ret(struct rb_root *root,
3023                 struct rb_entry *cached_re, unsigned int ofs,
3024                 struct rb_entry **prev_entry, struct rb_entry **next_entry,
3025                 struct rb_node ***insert_p, struct rb_node **insert_parent,
3026                 bool force);
3027 bool __check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3028                                                 struct rb_root *root);
3029 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3030 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
3031 void f2fs_drop_extent_tree(struct inode *inode);
3032 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3033 void f2fs_destroy_extent_tree(struct inode *inode);
3034 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3035                         struct extent_info *ei);
3036 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3037 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3038                         pgoff_t fofs, block_t blkaddr, unsigned int len);
3039 void init_extent_cache_info(struct f2fs_sb_info *sbi);
3040 int __init create_extent_cache(void);
3041 void destroy_extent_cache(void);
3042
3043 /*
3044  * sysfs.c
3045  */
3046 int __init f2fs_init_sysfs(void);
3047 void f2fs_exit_sysfs(void);
3048 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3049 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3050
3051 /*
3052  * crypto support
3053  */
3054 static inline bool f2fs_encrypted_inode(struct inode *inode)
3055 {
3056         return file_is_encrypt(inode);
3057 }
3058
3059 static inline bool f2fs_encrypted_file(struct inode *inode)
3060 {
3061         return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode);
3062 }
3063
3064 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3065 {
3066 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3067         file_set_encrypt(inode);
3068         inode->i_flags |= S_ENCRYPTED;
3069 #endif
3070 }
3071
3072 static inline bool f2fs_bio_encrypted(struct bio *bio)
3073 {
3074         return bio->bi_private != NULL;
3075 }
3076
3077 static inline int f2fs_sb_has_crypto(struct super_block *sb)
3078 {
3079         return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
3080 }
3081
3082 static inline int f2fs_sb_mounted_blkzoned(struct super_block *sb)
3083 {
3084         return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_BLKZONED);
3085 }
3086
3087 static inline int f2fs_sb_has_extra_attr(struct super_block *sb)
3088 {
3089         return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_EXTRA_ATTR);
3090 }
3091
3092 static inline int f2fs_sb_has_project_quota(struct super_block *sb)
3093 {
3094         return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_PRJQUOTA);
3095 }
3096
3097 static inline int f2fs_sb_has_inode_chksum(struct super_block *sb)
3098 {
3099         return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_INODE_CHKSUM);
3100 }
3101
3102 static inline int f2fs_sb_has_flexible_inline_xattr(struct super_block *sb)
3103 {
3104         return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_FLEXIBLE_INLINE_XATTR);
3105 }
3106
3107 static inline int f2fs_sb_has_quota_ino(struct super_block *sb)
3108 {
3109         return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_QUOTA_INO);
3110 }
3111
3112 #ifdef CONFIG_BLK_DEV_ZONED
3113 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
3114                         struct block_device *bdev, block_t blkaddr)
3115 {
3116         unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3117         int i;
3118
3119         for (i = 0; i < sbi->s_ndevs; i++)
3120                 if (FDEV(i).bdev == bdev)
3121                         return FDEV(i).blkz_type[zno];
3122         return -EINVAL;
3123 }
3124 #endif
3125
3126 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
3127 {
3128         struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
3129
3130         return blk_queue_discard(q) || f2fs_sb_mounted_blkzoned(sbi->sb);
3131 }
3132
3133 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
3134 {
3135         clear_opt(sbi, ADAPTIVE);
3136         clear_opt(sbi, LFS);
3137
3138         switch (mt) {
3139         case F2FS_MOUNT_ADAPTIVE:
3140                 set_opt(sbi, ADAPTIVE);
3141                 break;
3142         case F2FS_MOUNT_LFS:
3143                 set_opt(sbi, LFS);
3144                 break;
3145         }
3146 }
3147
3148 static inline bool f2fs_may_encrypt(struct inode *inode)
3149 {
3150 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3151         umode_t mode = inode->i_mode;
3152
3153         return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3154 #else
3155         return 0;
3156 #endif
3157 }
3158
3159 #endif