ext4: remove unused metadata accounting variables
[sfrench/cifs-2.6.git] / fs / ext4 / super.c
1 /*
2  *  linux/fs/ext4/super.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Big-endian to little-endian byte-swapping/bitmaps by
16  *        David S. Miller (davem@caip.rutgers.edu), 1995
17  */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/ctype.h>
38 #include <linux/log2.h>
39 #include <linux/crc16.h>
40 #include <linux/dax.h>
41 #include <linux/cleancache.h>
42 #include <linux/uaccess.h>
43
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46
47 #include "ext4.h"
48 #include "ext4_extents.h"       /* Needed for trace points definition */
49 #include "ext4_jbd2.h"
50 #include "xattr.h"
51 #include "acl.h"
52 #include "mballoc.h"
53 #include "fsmap.h"
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/ext4.h>
57
58 static struct ext4_lazy_init *ext4_li_info;
59 static struct mutex ext4_li_mtx;
60 static struct ratelimit_state ext4_mount_msg_ratelimit;
61
62 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
63                              unsigned long journal_devnum);
64 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
65 static int ext4_commit_super(struct super_block *sb, int sync);
66 static void ext4_mark_recovery_complete(struct super_block *sb,
67                                         struct ext4_super_block *es);
68 static void ext4_clear_journal_err(struct super_block *sb,
69                                    struct ext4_super_block *es);
70 static int ext4_sync_fs(struct super_block *sb, int wait);
71 static int ext4_remount(struct super_block *sb, int *flags, char *data);
72 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
73 static int ext4_unfreeze(struct super_block *sb);
74 static int ext4_freeze(struct super_block *sb);
75 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
76                        const char *dev_name, void *data);
77 static inline int ext2_feature_set_ok(struct super_block *sb);
78 static inline int ext3_feature_set_ok(struct super_block *sb);
79 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
80 static void ext4_destroy_lazyinit_thread(void);
81 static void ext4_unregister_li_request(struct super_block *sb);
82 static void ext4_clear_request_list(void);
83 static struct inode *ext4_get_journal_inode(struct super_block *sb,
84                                             unsigned int journal_inum);
85
86 /*
87  * Lock ordering
88  *
89  * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
90  * i_mmap_rwsem (inode->i_mmap_rwsem)!
91  *
92  * page fault path:
93  * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
94  *   page lock -> i_data_sem (rw)
95  *
96  * buffered write path:
97  * sb_start_write -> i_mutex -> mmap_sem
98  * sb_start_write -> i_mutex -> transaction start -> page lock ->
99  *   i_data_sem (rw)
100  *
101  * truncate:
102  * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
103  *   i_mmap_rwsem (w) -> page lock
104  * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
105  *   transaction start -> i_data_sem (rw)
106  *
107  * direct IO:
108  * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> mmap_sem
109  * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) ->
110  *   transaction start -> i_data_sem (rw)
111  *
112  * writepages:
113  * transaction start -> page lock(s) -> i_data_sem (rw)
114  */
115
116 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
117 static struct file_system_type ext2_fs_type = {
118         .owner          = THIS_MODULE,
119         .name           = "ext2",
120         .mount          = ext4_mount,
121         .kill_sb        = kill_block_super,
122         .fs_flags       = FS_REQUIRES_DEV,
123 };
124 MODULE_ALIAS_FS("ext2");
125 MODULE_ALIAS("ext2");
126 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
127 #else
128 #define IS_EXT2_SB(sb) (0)
129 #endif
130
131
132 static struct file_system_type ext3_fs_type = {
133         .owner          = THIS_MODULE,
134         .name           = "ext3",
135         .mount          = ext4_mount,
136         .kill_sb        = kill_block_super,
137         .fs_flags       = FS_REQUIRES_DEV,
138 };
139 MODULE_ALIAS_FS("ext3");
140 MODULE_ALIAS("ext3");
141 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
142
143 static int ext4_verify_csum_type(struct super_block *sb,
144                                  struct ext4_super_block *es)
145 {
146         if (!ext4_has_feature_metadata_csum(sb))
147                 return 1;
148
149         return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
150 }
151
152 static __le32 ext4_superblock_csum(struct super_block *sb,
153                                    struct ext4_super_block *es)
154 {
155         struct ext4_sb_info *sbi = EXT4_SB(sb);
156         int offset = offsetof(struct ext4_super_block, s_checksum);
157         __u32 csum;
158
159         csum = ext4_chksum(sbi, ~0, (char *)es, offset);
160
161         return cpu_to_le32(csum);
162 }
163
164 static int ext4_superblock_csum_verify(struct super_block *sb,
165                                        struct ext4_super_block *es)
166 {
167         if (!ext4_has_metadata_csum(sb))
168                 return 1;
169
170         return es->s_checksum == ext4_superblock_csum(sb, es);
171 }
172
173 void ext4_superblock_csum_set(struct super_block *sb)
174 {
175         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
176
177         if (!ext4_has_metadata_csum(sb))
178                 return;
179
180         es->s_checksum = ext4_superblock_csum(sb, es);
181 }
182
183 void *ext4_kvmalloc(size_t size, gfp_t flags)
184 {
185         void *ret;
186
187         ret = kmalloc(size, flags | __GFP_NOWARN);
188         if (!ret)
189                 ret = __vmalloc(size, flags, PAGE_KERNEL);
190         return ret;
191 }
192
193 void *ext4_kvzalloc(size_t size, gfp_t flags)
194 {
195         void *ret;
196
197         ret = kzalloc(size, flags | __GFP_NOWARN);
198         if (!ret)
199                 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
200         return ret;
201 }
202
203 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
204                                struct ext4_group_desc *bg)
205 {
206         return le32_to_cpu(bg->bg_block_bitmap_lo) |
207                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
208                  (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
209 }
210
211 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
212                                struct ext4_group_desc *bg)
213 {
214         return le32_to_cpu(bg->bg_inode_bitmap_lo) |
215                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
216                  (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
217 }
218
219 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
220                               struct ext4_group_desc *bg)
221 {
222         return le32_to_cpu(bg->bg_inode_table_lo) |
223                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
224                  (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
225 }
226
227 __u32 ext4_free_group_clusters(struct super_block *sb,
228                                struct ext4_group_desc *bg)
229 {
230         return le16_to_cpu(bg->bg_free_blocks_count_lo) |
231                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
232                  (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
233 }
234
235 __u32 ext4_free_inodes_count(struct super_block *sb,
236                               struct ext4_group_desc *bg)
237 {
238         return le16_to_cpu(bg->bg_free_inodes_count_lo) |
239                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
240                  (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
241 }
242
243 __u32 ext4_used_dirs_count(struct super_block *sb,
244                               struct ext4_group_desc *bg)
245 {
246         return le16_to_cpu(bg->bg_used_dirs_count_lo) |
247                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
248                  (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
249 }
250
251 __u32 ext4_itable_unused_count(struct super_block *sb,
252                               struct ext4_group_desc *bg)
253 {
254         return le16_to_cpu(bg->bg_itable_unused_lo) |
255                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
256                  (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
257 }
258
259 void ext4_block_bitmap_set(struct super_block *sb,
260                            struct ext4_group_desc *bg, ext4_fsblk_t blk)
261 {
262         bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
263         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
264                 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
265 }
266
267 void ext4_inode_bitmap_set(struct super_block *sb,
268                            struct ext4_group_desc *bg, ext4_fsblk_t blk)
269 {
270         bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
271         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
272                 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
273 }
274
275 void ext4_inode_table_set(struct super_block *sb,
276                           struct ext4_group_desc *bg, ext4_fsblk_t blk)
277 {
278         bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
279         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
280                 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
281 }
282
283 void ext4_free_group_clusters_set(struct super_block *sb,
284                                   struct ext4_group_desc *bg, __u32 count)
285 {
286         bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
287         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
288                 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
289 }
290
291 void ext4_free_inodes_set(struct super_block *sb,
292                           struct ext4_group_desc *bg, __u32 count)
293 {
294         bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
295         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
296                 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
297 }
298
299 void ext4_used_dirs_set(struct super_block *sb,
300                           struct ext4_group_desc *bg, __u32 count)
301 {
302         bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
303         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
304                 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
305 }
306
307 void ext4_itable_unused_set(struct super_block *sb,
308                           struct ext4_group_desc *bg, __u32 count)
309 {
310         bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
311         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
312                 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
313 }
314
315
316 static void __save_error_info(struct super_block *sb, const char *func,
317                             unsigned int line)
318 {
319         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
320
321         EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
322         if (bdev_read_only(sb->s_bdev))
323                 return;
324         es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
325         es->s_last_error_time = cpu_to_le32(get_seconds());
326         strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
327         es->s_last_error_line = cpu_to_le32(line);
328         if (!es->s_first_error_time) {
329                 es->s_first_error_time = es->s_last_error_time;
330                 strncpy(es->s_first_error_func, func,
331                         sizeof(es->s_first_error_func));
332                 es->s_first_error_line = cpu_to_le32(line);
333                 es->s_first_error_ino = es->s_last_error_ino;
334                 es->s_first_error_block = es->s_last_error_block;
335         }
336         /*
337          * Start the daily error reporting function if it hasn't been
338          * started already
339          */
340         if (!es->s_error_count)
341                 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
342         le32_add_cpu(&es->s_error_count, 1);
343 }
344
345 static void save_error_info(struct super_block *sb, const char *func,
346                             unsigned int line)
347 {
348         __save_error_info(sb, func, line);
349         ext4_commit_super(sb, 1);
350 }
351
352 /*
353  * The del_gendisk() function uninitializes the disk-specific data
354  * structures, including the bdi structure, without telling anyone
355  * else.  Once this happens, any attempt to call mark_buffer_dirty()
356  * (for example, by ext4_commit_super), will cause a kernel OOPS.
357  * This is a kludge to prevent these oops until we can put in a proper
358  * hook in del_gendisk() to inform the VFS and file system layers.
359  */
360 static int block_device_ejected(struct super_block *sb)
361 {
362         struct inode *bd_inode = sb->s_bdev->bd_inode;
363         struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
364
365         return bdi->dev == NULL;
366 }
367
368 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
369 {
370         struct super_block              *sb = journal->j_private;
371         struct ext4_sb_info             *sbi = EXT4_SB(sb);
372         int                             error = is_journal_aborted(journal);
373         struct ext4_journal_cb_entry    *jce;
374
375         BUG_ON(txn->t_state == T_FINISHED);
376
377         ext4_process_freed_data(sb, txn->t_tid);
378
379         spin_lock(&sbi->s_md_lock);
380         while (!list_empty(&txn->t_private_list)) {
381                 jce = list_entry(txn->t_private_list.next,
382                                  struct ext4_journal_cb_entry, jce_list);
383                 list_del_init(&jce->jce_list);
384                 spin_unlock(&sbi->s_md_lock);
385                 jce->jce_func(sb, jce, error);
386                 spin_lock(&sbi->s_md_lock);
387         }
388         spin_unlock(&sbi->s_md_lock);
389 }
390
391 /* Deal with the reporting of failure conditions on a filesystem such as
392  * inconsistencies detected or read IO failures.
393  *
394  * On ext2, we can store the error state of the filesystem in the
395  * superblock.  That is not possible on ext4, because we may have other
396  * write ordering constraints on the superblock which prevent us from
397  * writing it out straight away; and given that the journal is about to
398  * be aborted, we can't rely on the current, or future, transactions to
399  * write out the superblock safely.
400  *
401  * We'll just use the jbd2_journal_abort() error code to record an error in
402  * the journal instead.  On recovery, the journal will complain about
403  * that error until we've noted it down and cleared it.
404  */
405
406 static void ext4_handle_error(struct super_block *sb)
407 {
408         if (sb->s_flags & MS_RDONLY)
409                 return;
410
411         if (!test_opt(sb, ERRORS_CONT)) {
412                 journal_t *journal = EXT4_SB(sb)->s_journal;
413
414                 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
415                 if (journal)
416                         jbd2_journal_abort(journal, -EIO);
417         }
418         if (test_opt(sb, ERRORS_RO)) {
419                 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
420                 /*
421                  * Make sure updated value of ->s_mount_flags will be visible
422                  * before ->s_flags update
423                  */
424                 smp_wmb();
425                 sb->s_flags |= MS_RDONLY;
426         }
427         if (test_opt(sb, ERRORS_PANIC)) {
428                 if (EXT4_SB(sb)->s_journal &&
429                   !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
430                         return;
431                 panic("EXT4-fs (device %s): panic forced after error\n",
432                         sb->s_id);
433         }
434 }
435
436 #define ext4_error_ratelimit(sb)                                        \
437                 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),     \
438                              "EXT4-fs error")
439
440 void __ext4_error(struct super_block *sb, const char *function,
441                   unsigned int line, const char *fmt, ...)
442 {
443         struct va_format vaf;
444         va_list args;
445
446         if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
447                 return;
448
449         if (ext4_error_ratelimit(sb)) {
450                 va_start(args, fmt);
451                 vaf.fmt = fmt;
452                 vaf.va = &args;
453                 printk(KERN_CRIT
454                        "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
455                        sb->s_id, function, line, current->comm, &vaf);
456                 va_end(args);
457         }
458         save_error_info(sb, function, line);
459         ext4_handle_error(sb);
460 }
461
462 void __ext4_error_inode(struct inode *inode, const char *function,
463                         unsigned int line, ext4_fsblk_t block,
464                         const char *fmt, ...)
465 {
466         va_list args;
467         struct va_format vaf;
468         struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
469
470         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
471                 return;
472
473         es->s_last_error_ino = cpu_to_le32(inode->i_ino);
474         es->s_last_error_block = cpu_to_le64(block);
475         if (ext4_error_ratelimit(inode->i_sb)) {
476                 va_start(args, fmt);
477                 vaf.fmt = fmt;
478                 vaf.va = &args;
479                 if (block)
480                         printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
481                                "inode #%lu: block %llu: comm %s: %pV\n",
482                                inode->i_sb->s_id, function, line, inode->i_ino,
483                                block, current->comm, &vaf);
484                 else
485                         printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
486                                "inode #%lu: comm %s: %pV\n",
487                                inode->i_sb->s_id, function, line, inode->i_ino,
488                                current->comm, &vaf);
489                 va_end(args);
490         }
491         save_error_info(inode->i_sb, function, line);
492         ext4_handle_error(inode->i_sb);
493 }
494
495 void __ext4_error_file(struct file *file, const char *function,
496                        unsigned int line, ext4_fsblk_t block,
497                        const char *fmt, ...)
498 {
499         va_list args;
500         struct va_format vaf;
501         struct ext4_super_block *es;
502         struct inode *inode = file_inode(file);
503         char pathname[80], *path;
504
505         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
506                 return;
507
508         es = EXT4_SB(inode->i_sb)->s_es;
509         es->s_last_error_ino = cpu_to_le32(inode->i_ino);
510         if (ext4_error_ratelimit(inode->i_sb)) {
511                 path = file_path(file, pathname, sizeof(pathname));
512                 if (IS_ERR(path))
513                         path = "(unknown)";
514                 va_start(args, fmt);
515                 vaf.fmt = fmt;
516                 vaf.va = &args;
517                 if (block)
518                         printk(KERN_CRIT
519                                "EXT4-fs error (device %s): %s:%d: inode #%lu: "
520                                "block %llu: comm %s: path %s: %pV\n",
521                                inode->i_sb->s_id, function, line, inode->i_ino,
522                                block, current->comm, path, &vaf);
523                 else
524                         printk(KERN_CRIT
525                                "EXT4-fs error (device %s): %s:%d: inode #%lu: "
526                                "comm %s: path %s: %pV\n",
527                                inode->i_sb->s_id, function, line, inode->i_ino,
528                                current->comm, path, &vaf);
529                 va_end(args);
530         }
531         save_error_info(inode->i_sb, function, line);
532         ext4_handle_error(inode->i_sb);
533 }
534
535 const char *ext4_decode_error(struct super_block *sb, int errno,
536                               char nbuf[16])
537 {
538         char *errstr = NULL;
539
540         switch (errno) {
541         case -EFSCORRUPTED:
542                 errstr = "Corrupt filesystem";
543                 break;
544         case -EFSBADCRC:
545                 errstr = "Filesystem failed CRC";
546                 break;
547         case -EIO:
548                 errstr = "IO failure";
549                 break;
550         case -ENOMEM:
551                 errstr = "Out of memory";
552                 break;
553         case -EROFS:
554                 if (!sb || (EXT4_SB(sb)->s_journal &&
555                             EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
556                         errstr = "Journal has aborted";
557                 else
558                         errstr = "Readonly filesystem";
559                 break;
560         default:
561                 /* If the caller passed in an extra buffer for unknown
562                  * errors, textualise them now.  Else we just return
563                  * NULL. */
564                 if (nbuf) {
565                         /* Check for truncated error codes... */
566                         if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
567                                 errstr = nbuf;
568                 }
569                 break;
570         }
571
572         return errstr;
573 }
574
575 /* __ext4_std_error decodes expected errors from journaling functions
576  * automatically and invokes the appropriate error response.  */
577
578 void __ext4_std_error(struct super_block *sb, const char *function,
579                       unsigned int line, int errno)
580 {
581         char nbuf[16];
582         const char *errstr;
583
584         if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
585                 return;
586
587         /* Special case: if the error is EROFS, and we're not already
588          * inside a transaction, then there's really no point in logging
589          * an error. */
590         if (errno == -EROFS && journal_current_handle() == NULL &&
591             (sb->s_flags & MS_RDONLY))
592                 return;
593
594         if (ext4_error_ratelimit(sb)) {
595                 errstr = ext4_decode_error(sb, errno, nbuf);
596                 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
597                        sb->s_id, function, line, errstr);
598         }
599
600         save_error_info(sb, function, line);
601         ext4_handle_error(sb);
602 }
603
604 /*
605  * ext4_abort is a much stronger failure handler than ext4_error.  The
606  * abort function may be used to deal with unrecoverable failures such
607  * as journal IO errors or ENOMEM at a critical moment in log management.
608  *
609  * We unconditionally force the filesystem into an ABORT|READONLY state,
610  * unless the error response on the fs has been set to panic in which
611  * case we take the easy way out and panic immediately.
612  */
613
614 void __ext4_abort(struct super_block *sb, const char *function,
615                 unsigned int line, const char *fmt, ...)
616 {
617         struct va_format vaf;
618         va_list args;
619
620         if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
621                 return;
622
623         save_error_info(sb, function, line);
624         va_start(args, fmt);
625         vaf.fmt = fmt;
626         vaf.va = &args;
627         printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
628                sb->s_id, function, line, &vaf);
629         va_end(args);
630
631         if ((sb->s_flags & MS_RDONLY) == 0) {
632                 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
633                 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
634                 /*
635                  * Make sure updated value of ->s_mount_flags will be visible
636                  * before ->s_flags update
637                  */
638                 smp_wmb();
639                 sb->s_flags |= MS_RDONLY;
640                 if (EXT4_SB(sb)->s_journal)
641                         jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
642                 save_error_info(sb, function, line);
643         }
644         if (test_opt(sb, ERRORS_PANIC)) {
645                 if (EXT4_SB(sb)->s_journal &&
646                   !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
647                         return;
648                 panic("EXT4-fs panic from previous error\n");
649         }
650 }
651
652 void __ext4_msg(struct super_block *sb,
653                 const char *prefix, const char *fmt, ...)
654 {
655         struct va_format vaf;
656         va_list args;
657
658         if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
659                 return;
660
661         va_start(args, fmt);
662         vaf.fmt = fmt;
663         vaf.va = &args;
664         printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
665         va_end(args);
666 }
667
668 #define ext4_warning_ratelimit(sb)                                      \
669                 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
670                              "EXT4-fs warning")
671
672 void __ext4_warning(struct super_block *sb, const char *function,
673                     unsigned int line, const char *fmt, ...)
674 {
675         struct va_format vaf;
676         va_list args;
677
678         if (!ext4_warning_ratelimit(sb))
679                 return;
680
681         va_start(args, fmt);
682         vaf.fmt = fmt;
683         vaf.va = &args;
684         printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
685                sb->s_id, function, line, &vaf);
686         va_end(args);
687 }
688
689 void __ext4_warning_inode(const struct inode *inode, const char *function,
690                           unsigned int line, const char *fmt, ...)
691 {
692         struct va_format vaf;
693         va_list args;
694
695         if (!ext4_warning_ratelimit(inode->i_sb))
696                 return;
697
698         va_start(args, fmt);
699         vaf.fmt = fmt;
700         vaf.va = &args;
701         printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
702                "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
703                function, line, inode->i_ino, current->comm, &vaf);
704         va_end(args);
705 }
706
707 void __ext4_grp_locked_error(const char *function, unsigned int line,
708                              struct super_block *sb, ext4_group_t grp,
709                              unsigned long ino, ext4_fsblk_t block,
710                              const char *fmt, ...)
711 __releases(bitlock)
712 __acquires(bitlock)
713 {
714         struct va_format vaf;
715         va_list args;
716         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
717
718         if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
719                 return;
720
721         es->s_last_error_ino = cpu_to_le32(ino);
722         es->s_last_error_block = cpu_to_le64(block);
723         __save_error_info(sb, function, line);
724
725         if (ext4_error_ratelimit(sb)) {
726                 va_start(args, fmt);
727                 vaf.fmt = fmt;
728                 vaf.va = &args;
729                 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
730                        sb->s_id, function, line, grp);
731                 if (ino)
732                         printk(KERN_CONT "inode %lu: ", ino);
733                 if (block)
734                         printk(KERN_CONT "block %llu:",
735                                (unsigned long long) block);
736                 printk(KERN_CONT "%pV\n", &vaf);
737                 va_end(args);
738         }
739
740         if (test_opt(sb, ERRORS_CONT)) {
741                 ext4_commit_super(sb, 0);
742                 return;
743         }
744
745         ext4_unlock_group(sb, grp);
746         ext4_handle_error(sb);
747         /*
748          * We only get here in the ERRORS_RO case; relocking the group
749          * may be dangerous, but nothing bad will happen since the
750          * filesystem will have already been marked read/only and the
751          * journal has been aborted.  We return 1 as a hint to callers
752          * who might what to use the return value from
753          * ext4_grp_locked_error() to distinguish between the
754          * ERRORS_CONT and ERRORS_RO case, and perhaps return more
755          * aggressively from the ext4 function in question, with a
756          * more appropriate error code.
757          */
758         ext4_lock_group(sb, grp);
759         return;
760 }
761
762 void ext4_update_dynamic_rev(struct super_block *sb)
763 {
764         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
765
766         if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
767                 return;
768
769         ext4_warning(sb,
770                      "updating to rev %d because of new feature flag, "
771                      "running e2fsck is recommended",
772                      EXT4_DYNAMIC_REV);
773
774         es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
775         es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
776         es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
777         /* leave es->s_feature_*compat flags alone */
778         /* es->s_uuid will be set by e2fsck if empty */
779
780         /*
781          * The rest of the superblock fields should be zero, and if not it
782          * means they are likely already in use, so leave them alone.  We
783          * can leave it up to e2fsck to clean up any inconsistencies there.
784          */
785 }
786
787 /*
788  * Open the external journal device
789  */
790 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
791 {
792         struct block_device *bdev;
793         char b[BDEVNAME_SIZE];
794
795         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
796         if (IS_ERR(bdev))
797                 goto fail;
798         return bdev;
799
800 fail:
801         ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
802                         __bdevname(dev, b), PTR_ERR(bdev));
803         return NULL;
804 }
805
806 /*
807  * Release the journal device
808  */
809 static void ext4_blkdev_put(struct block_device *bdev)
810 {
811         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
812 }
813
814 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
815 {
816         struct block_device *bdev;
817         bdev = sbi->journal_bdev;
818         if (bdev) {
819                 ext4_blkdev_put(bdev);
820                 sbi->journal_bdev = NULL;
821         }
822 }
823
824 static inline struct inode *orphan_list_entry(struct list_head *l)
825 {
826         return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
827 }
828
829 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
830 {
831         struct list_head *l;
832
833         ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
834                  le32_to_cpu(sbi->s_es->s_last_orphan));
835
836         printk(KERN_ERR "sb_info orphan list:\n");
837         list_for_each(l, &sbi->s_orphan) {
838                 struct inode *inode = orphan_list_entry(l);
839                 printk(KERN_ERR "  "
840                        "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
841                        inode->i_sb->s_id, inode->i_ino, inode,
842                        inode->i_mode, inode->i_nlink,
843                        NEXT_ORPHAN(inode));
844         }
845 }
846
847 #ifdef CONFIG_QUOTA
848 static int ext4_quota_off(struct super_block *sb, int type);
849
850 static inline void ext4_quota_off_umount(struct super_block *sb)
851 {
852         int type;
853
854         /* Use our quota_off function to clear inode flags etc. */
855         for (type = 0; type < EXT4_MAXQUOTAS; type++)
856                 ext4_quota_off(sb, type);
857 }
858 #else
859 static inline void ext4_quota_off_umount(struct super_block *sb)
860 {
861 }
862 #endif
863
864 static void ext4_put_super(struct super_block *sb)
865 {
866         struct ext4_sb_info *sbi = EXT4_SB(sb);
867         struct ext4_super_block *es = sbi->s_es;
868         int aborted = 0;
869         int i, err;
870
871         ext4_unregister_li_request(sb);
872         ext4_quota_off_umount(sb);
873
874         flush_workqueue(sbi->rsv_conversion_wq);
875         destroy_workqueue(sbi->rsv_conversion_wq);
876
877         if (sbi->s_journal) {
878                 aborted = is_journal_aborted(sbi->s_journal);
879                 err = jbd2_journal_destroy(sbi->s_journal);
880                 sbi->s_journal = NULL;
881                 if ((err < 0) && !aborted)
882                         ext4_abort(sb, "Couldn't clean up the journal");
883         }
884
885         ext4_unregister_sysfs(sb);
886         ext4_es_unregister_shrinker(sbi);
887         del_timer_sync(&sbi->s_err_report);
888         ext4_release_system_zone(sb);
889         ext4_mb_release(sb);
890         ext4_ext_release(sb);
891
892         if (!(sb->s_flags & MS_RDONLY) && !aborted) {
893                 ext4_clear_feature_journal_needs_recovery(sb);
894                 es->s_state = cpu_to_le16(sbi->s_mount_state);
895         }
896         if (!(sb->s_flags & MS_RDONLY))
897                 ext4_commit_super(sb, 1);
898
899         for (i = 0; i < sbi->s_gdb_count; i++)
900                 brelse(sbi->s_group_desc[i]);
901         kvfree(sbi->s_group_desc);
902         kvfree(sbi->s_flex_groups);
903         percpu_counter_destroy(&sbi->s_freeclusters_counter);
904         percpu_counter_destroy(&sbi->s_freeinodes_counter);
905         percpu_counter_destroy(&sbi->s_dirs_counter);
906         percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
907         percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
908 #ifdef CONFIG_QUOTA
909         for (i = 0; i < EXT4_MAXQUOTAS; i++)
910                 kfree(sbi->s_qf_names[i]);
911 #endif
912
913         /* Debugging code just in case the in-memory inode orphan list
914          * isn't empty.  The on-disk one can be non-empty if we've
915          * detected an error and taken the fs readonly, but the
916          * in-memory list had better be clean by this point. */
917         if (!list_empty(&sbi->s_orphan))
918                 dump_orphan_list(sb, sbi);
919         J_ASSERT(list_empty(&sbi->s_orphan));
920
921         sync_blockdev(sb->s_bdev);
922         invalidate_bdev(sb->s_bdev);
923         if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
924                 /*
925                  * Invalidate the journal device's buffers.  We don't want them
926                  * floating about in memory - the physical journal device may
927                  * hotswapped, and it breaks the `ro-after' testing code.
928                  */
929                 sync_blockdev(sbi->journal_bdev);
930                 invalidate_bdev(sbi->journal_bdev);
931                 ext4_blkdev_remove(sbi);
932         }
933         if (sbi->s_ea_inode_cache) {
934                 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
935                 sbi->s_ea_inode_cache = NULL;
936         }
937         if (sbi->s_ea_block_cache) {
938                 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
939                 sbi->s_ea_block_cache = NULL;
940         }
941         if (sbi->s_mmp_tsk)
942                 kthread_stop(sbi->s_mmp_tsk);
943         brelse(sbi->s_sbh);
944         sb->s_fs_info = NULL;
945         /*
946          * Now that we are completely done shutting down the
947          * superblock, we need to actually destroy the kobject.
948          */
949         kobject_put(&sbi->s_kobj);
950         wait_for_completion(&sbi->s_kobj_unregister);
951         if (sbi->s_chksum_driver)
952                 crypto_free_shash(sbi->s_chksum_driver);
953         kfree(sbi->s_blockgroup_lock);
954         kfree(sbi);
955 }
956
957 static struct kmem_cache *ext4_inode_cachep;
958
959 /*
960  * Called inside transaction, so use GFP_NOFS
961  */
962 static struct inode *ext4_alloc_inode(struct super_block *sb)
963 {
964         struct ext4_inode_info *ei;
965
966         ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
967         if (!ei)
968                 return NULL;
969
970         ei->vfs_inode.i_version = 1;
971         spin_lock_init(&ei->i_raw_lock);
972         INIT_LIST_HEAD(&ei->i_prealloc_list);
973         spin_lock_init(&ei->i_prealloc_lock);
974         ext4_es_init_tree(&ei->i_es_tree);
975         rwlock_init(&ei->i_es_lock);
976         INIT_LIST_HEAD(&ei->i_es_list);
977         ei->i_es_all_nr = 0;
978         ei->i_es_shk_nr = 0;
979         ei->i_es_shrink_lblk = 0;
980         ei->i_reserved_data_blocks = 0;
981         ei->i_da_metadata_calc_len = 0;
982         ei->i_da_metadata_calc_last_lblock = 0;
983         spin_lock_init(&(ei->i_block_reservation_lock));
984 #ifdef CONFIG_QUOTA
985         ei->i_reserved_quota = 0;
986         memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
987 #endif
988         ei->jinode = NULL;
989         INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
990         spin_lock_init(&ei->i_completed_io_lock);
991         ei->i_sync_tid = 0;
992         ei->i_datasync_tid = 0;
993         atomic_set(&ei->i_unwritten, 0);
994         INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
995         return &ei->vfs_inode;
996 }
997
998 static int ext4_drop_inode(struct inode *inode)
999 {
1000         int drop = generic_drop_inode(inode);
1001
1002         trace_ext4_drop_inode(inode, drop);
1003         return drop;
1004 }
1005
1006 static void ext4_i_callback(struct rcu_head *head)
1007 {
1008         struct inode *inode = container_of(head, struct inode, i_rcu);
1009         kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1010 }
1011
1012 static void ext4_destroy_inode(struct inode *inode)
1013 {
1014         if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1015                 ext4_msg(inode->i_sb, KERN_ERR,
1016                          "Inode %lu (%p): orphan list check failed!",
1017                          inode->i_ino, EXT4_I(inode));
1018                 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1019                                 EXT4_I(inode), sizeof(struct ext4_inode_info),
1020                                 true);
1021                 dump_stack();
1022         }
1023         call_rcu(&inode->i_rcu, ext4_i_callback);
1024 }
1025
1026 static void init_once(void *foo)
1027 {
1028         struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1029
1030         INIT_LIST_HEAD(&ei->i_orphan);
1031         init_rwsem(&ei->xattr_sem);
1032         init_rwsem(&ei->i_data_sem);
1033         init_rwsem(&ei->i_mmap_sem);
1034         inode_init_once(&ei->vfs_inode);
1035 }
1036
1037 static int __init init_inodecache(void)
1038 {
1039         ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
1040                                              sizeof(struct ext4_inode_info),
1041                                              0, (SLAB_RECLAIM_ACCOUNT|
1042                                                 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1043                                              init_once);
1044         if (ext4_inode_cachep == NULL)
1045                 return -ENOMEM;
1046         return 0;
1047 }
1048
1049 static void destroy_inodecache(void)
1050 {
1051         /*
1052          * Make sure all delayed rcu free inodes are flushed before we
1053          * destroy cache.
1054          */
1055         rcu_barrier();
1056         kmem_cache_destroy(ext4_inode_cachep);
1057 }
1058
1059 void ext4_clear_inode(struct inode *inode)
1060 {
1061         invalidate_inode_buffers(inode);
1062         clear_inode(inode);
1063         dquot_drop(inode);
1064         ext4_discard_preallocations(inode);
1065         ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1066         if (EXT4_I(inode)->jinode) {
1067                 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1068                                                EXT4_I(inode)->jinode);
1069                 jbd2_free_inode(EXT4_I(inode)->jinode);
1070                 EXT4_I(inode)->jinode = NULL;
1071         }
1072 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1073         fscrypt_put_encryption_info(inode, NULL);
1074 #endif
1075 }
1076
1077 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1078                                         u64 ino, u32 generation)
1079 {
1080         struct inode *inode;
1081
1082         if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1083                 return ERR_PTR(-ESTALE);
1084         if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1085                 return ERR_PTR(-ESTALE);
1086
1087         /* iget isn't really right if the inode is currently unallocated!!
1088          *
1089          * ext4_read_inode will return a bad_inode if the inode had been
1090          * deleted, so we should be safe.
1091          *
1092          * Currently we don't know the generation for parent directory, so
1093          * a generation of 0 means "accept any"
1094          */
1095         inode = ext4_iget_normal(sb, ino);
1096         if (IS_ERR(inode))
1097                 return ERR_CAST(inode);
1098         if (generation && inode->i_generation != generation) {
1099                 iput(inode);
1100                 return ERR_PTR(-ESTALE);
1101         }
1102
1103         return inode;
1104 }
1105
1106 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1107                                         int fh_len, int fh_type)
1108 {
1109         return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1110                                     ext4_nfs_get_inode);
1111 }
1112
1113 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1114                                         int fh_len, int fh_type)
1115 {
1116         return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1117                                     ext4_nfs_get_inode);
1118 }
1119
1120 /*
1121  * Try to release metadata pages (indirect blocks, directories) which are
1122  * mapped via the block device.  Since these pages could have journal heads
1123  * which would prevent try_to_free_buffers() from freeing them, we must use
1124  * jbd2 layer's try_to_free_buffers() function to release them.
1125  */
1126 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1127                                  gfp_t wait)
1128 {
1129         journal_t *journal = EXT4_SB(sb)->s_journal;
1130
1131         WARN_ON(PageChecked(page));
1132         if (!page_has_buffers(page))
1133                 return 0;
1134         if (journal)
1135                 return jbd2_journal_try_to_free_buffers(journal, page,
1136                                                 wait & ~__GFP_DIRECT_RECLAIM);
1137         return try_to_free_buffers(page);
1138 }
1139
1140 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1141 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1142 {
1143         return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1144                                  EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1145 }
1146
1147 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1148                                                         void *fs_data)
1149 {
1150         handle_t *handle = fs_data;
1151         int res, res2, credits, retries = 0;
1152
1153         /*
1154          * Encrypting the root directory is not allowed because e2fsck expects
1155          * lost+found to exist and be unencrypted, and encrypting the root
1156          * directory would imply encrypting the lost+found directory as well as
1157          * the filename "lost+found" itself.
1158          */
1159         if (inode->i_ino == EXT4_ROOT_INO)
1160                 return -EPERM;
1161
1162         res = ext4_convert_inline_data(inode);
1163         if (res)
1164                 return res;
1165
1166         /*
1167          * If a journal handle was specified, then the encryption context is
1168          * being set on a new inode via inheritance and is part of a larger
1169          * transaction to create the inode.  Otherwise the encryption context is
1170          * being set on an existing inode in its own transaction.  Only in the
1171          * latter case should the "retry on ENOSPC" logic be used.
1172          */
1173
1174         if (handle) {
1175                 res = ext4_xattr_set_handle(handle, inode,
1176                                             EXT4_XATTR_INDEX_ENCRYPTION,
1177                                             EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1178                                             ctx, len, 0);
1179                 if (!res) {
1180                         ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1181                         ext4_clear_inode_state(inode,
1182                                         EXT4_STATE_MAY_INLINE_DATA);
1183                         /*
1184                          * Update inode->i_flags - e.g. S_DAX may get disabled
1185                          */
1186                         ext4_set_inode_flags(inode);
1187                 }
1188                 return res;
1189         }
1190
1191         res = dquot_initialize(inode);
1192         if (res)
1193                 return res;
1194 retry:
1195         res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1196                                      &credits);
1197         if (res)
1198                 return res;
1199
1200         handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1201         if (IS_ERR(handle))
1202                 return PTR_ERR(handle);
1203
1204         res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1205                                     EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1206                                     ctx, len, 0);
1207         if (!res) {
1208                 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1209                 /* Update inode->i_flags - e.g. S_DAX may get disabled */
1210                 ext4_set_inode_flags(inode);
1211                 res = ext4_mark_inode_dirty(handle, inode);
1212                 if (res)
1213                         EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1214         }
1215         res2 = ext4_journal_stop(handle);
1216
1217         if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1218                 goto retry;
1219         if (!res)
1220                 res = res2;
1221         return res;
1222 }
1223
1224 static bool ext4_dummy_context(struct inode *inode)
1225 {
1226         return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb));
1227 }
1228
1229 static unsigned ext4_max_namelen(struct inode *inode)
1230 {
1231         return S_ISLNK(inode->i_mode) ? inode->i_sb->s_blocksize :
1232                 EXT4_NAME_LEN;
1233 }
1234
1235 static const struct fscrypt_operations ext4_cryptops = {
1236         .key_prefix             = "ext4:",
1237         .get_context            = ext4_get_context,
1238         .set_context            = ext4_set_context,
1239         .dummy_context          = ext4_dummy_context,
1240         .is_encrypted           = ext4_encrypted_inode,
1241         .empty_dir              = ext4_empty_dir,
1242         .max_namelen            = ext4_max_namelen,
1243 };
1244 #else
1245 static const struct fscrypt_operations ext4_cryptops = {
1246         .is_encrypted           = ext4_encrypted_inode,
1247 };
1248 #endif
1249
1250 #ifdef CONFIG_QUOTA
1251 static const char * const quotatypes[] = INITQFNAMES;
1252 #define QTYPE2NAME(t) (quotatypes[t])
1253
1254 static int ext4_write_dquot(struct dquot *dquot);
1255 static int ext4_acquire_dquot(struct dquot *dquot);
1256 static int ext4_release_dquot(struct dquot *dquot);
1257 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1258 static int ext4_write_info(struct super_block *sb, int type);
1259 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1260                          const struct path *path);
1261 static int ext4_quota_on_mount(struct super_block *sb, int type);
1262 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1263                                size_t len, loff_t off);
1264 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1265                                 const char *data, size_t len, loff_t off);
1266 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1267                              unsigned int flags);
1268 static int ext4_enable_quotas(struct super_block *sb);
1269 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1270
1271 static struct dquot **ext4_get_dquots(struct inode *inode)
1272 {
1273         return EXT4_I(inode)->i_dquot;
1274 }
1275
1276 static const struct dquot_operations ext4_quota_operations = {
1277         .get_reserved_space     = ext4_get_reserved_space,
1278         .write_dquot            = ext4_write_dquot,
1279         .acquire_dquot          = ext4_acquire_dquot,
1280         .release_dquot          = ext4_release_dquot,
1281         .mark_dirty             = ext4_mark_dquot_dirty,
1282         .write_info             = ext4_write_info,
1283         .alloc_dquot            = dquot_alloc,
1284         .destroy_dquot          = dquot_destroy,
1285         .get_projid             = ext4_get_projid,
1286         .get_inode_usage        = ext4_get_inode_usage,
1287         .get_next_id            = ext4_get_next_id,
1288 };
1289
1290 static const struct quotactl_ops ext4_qctl_operations = {
1291         .quota_on       = ext4_quota_on,
1292         .quota_off      = ext4_quota_off,
1293         .quota_sync     = dquot_quota_sync,
1294         .get_state      = dquot_get_state,
1295         .set_info       = dquot_set_dqinfo,
1296         .get_dqblk      = dquot_get_dqblk,
1297         .set_dqblk      = dquot_set_dqblk,
1298         .get_nextdqblk  = dquot_get_next_dqblk,
1299 };
1300 #endif
1301
1302 static const struct super_operations ext4_sops = {
1303         .alloc_inode    = ext4_alloc_inode,
1304         .destroy_inode  = ext4_destroy_inode,
1305         .write_inode    = ext4_write_inode,
1306         .dirty_inode    = ext4_dirty_inode,
1307         .drop_inode     = ext4_drop_inode,
1308         .evict_inode    = ext4_evict_inode,
1309         .put_super      = ext4_put_super,
1310         .sync_fs        = ext4_sync_fs,
1311         .freeze_fs      = ext4_freeze,
1312         .unfreeze_fs    = ext4_unfreeze,
1313         .statfs         = ext4_statfs,
1314         .remount_fs     = ext4_remount,
1315         .show_options   = ext4_show_options,
1316 #ifdef CONFIG_QUOTA
1317         .quota_read     = ext4_quota_read,
1318         .quota_write    = ext4_quota_write,
1319         .get_dquots     = ext4_get_dquots,
1320 #endif
1321         .bdev_try_to_free_page = bdev_try_to_free_page,
1322 };
1323
1324 static const struct export_operations ext4_export_ops = {
1325         .fh_to_dentry = ext4_fh_to_dentry,
1326         .fh_to_parent = ext4_fh_to_parent,
1327         .get_parent = ext4_get_parent,
1328 };
1329
1330 enum {
1331         Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1332         Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1333         Opt_nouid32, Opt_debug, Opt_removed,
1334         Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1335         Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1336         Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1337         Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1338         Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1339         Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1340         Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1341         Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1342         Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1343         Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1344         Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1345         Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1346         Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1347         Opt_inode_readahead_blks, Opt_journal_ioprio,
1348         Opt_dioread_nolock, Opt_dioread_lock,
1349         Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1350         Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1351 };
1352
1353 static const match_table_t tokens = {
1354         {Opt_bsd_df, "bsddf"},
1355         {Opt_minix_df, "minixdf"},
1356         {Opt_grpid, "grpid"},
1357         {Opt_grpid, "bsdgroups"},
1358         {Opt_nogrpid, "nogrpid"},
1359         {Opt_nogrpid, "sysvgroups"},
1360         {Opt_resgid, "resgid=%u"},
1361         {Opt_resuid, "resuid=%u"},
1362         {Opt_sb, "sb=%u"},
1363         {Opt_err_cont, "errors=continue"},
1364         {Opt_err_panic, "errors=panic"},
1365         {Opt_err_ro, "errors=remount-ro"},
1366         {Opt_nouid32, "nouid32"},
1367         {Opt_debug, "debug"},
1368         {Opt_removed, "oldalloc"},
1369         {Opt_removed, "orlov"},
1370         {Opt_user_xattr, "user_xattr"},
1371         {Opt_nouser_xattr, "nouser_xattr"},
1372         {Opt_acl, "acl"},
1373         {Opt_noacl, "noacl"},
1374         {Opt_noload, "norecovery"},
1375         {Opt_noload, "noload"},
1376         {Opt_removed, "nobh"},
1377         {Opt_removed, "bh"},
1378         {Opt_commit, "commit=%u"},
1379         {Opt_min_batch_time, "min_batch_time=%u"},
1380         {Opt_max_batch_time, "max_batch_time=%u"},
1381         {Opt_journal_dev, "journal_dev=%u"},
1382         {Opt_journal_path, "journal_path=%s"},
1383         {Opt_journal_checksum, "journal_checksum"},
1384         {Opt_nojournal_checksum, "nojournal_checksum"},
1385         {Opt_journal_async_commit, "journal_async_commit"},
1386         {Opt_abort, "abort"},
1387         {Opt_data_journal, "data=journal"},
1388         {Opt_data_ordered, "data=ordered"},
1389         {Opt_data_writeback, "data=writeback"},
1390         {Opt_data_err_abort, "data_err=abort"},
1391         {Opt_data_err_ignore, "data_err=ignore"},
1392         {Opt_offusrjquota, "usrjquota="},
1393         {Opt_usrjquota, "usrjquota=%s"},
1394         {Opt_offgrpjquota, "grpjquota="},
1395         {Opt_grpjquota, "grpjquota=%s"},
1396         {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1397         {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1398         {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1399         {Opt_grpquota, "grpquota"},
1400         {Opt_noquota, "noquota"},
1401         {Opt_quota, "quota"},
1402         {Opt_usrquota, "usrquota"},
1403         {Opt_prjquota, "prjquota"},
1404         {Opt_barrier, "barrier=%u"},
1405         {Opt_barrier, "barrier"},
1406         {Opt_nobarrier, "nobarrier"},
1407         {Opt_i_version, "i_version"},
1408         {Opt_dax, "dax"},
1409         {Opt_stripe, "stripe=%u"},
1410         {Opt_delalloc, "delalloc"},
1411         {Opt_lazytime, "lazytime"},
1412         {Opt_nolazytime, "nolazytime"},
1413         {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1414         {Opt_nodelalloc, "nodelalloc"},
1415         {Opt_removed, "mblk_io_submit"},
1416         {Opt_removed, "nomblk_io_submit"},
1417         {Opt_block_validity, "block_validity"},
1418         {Opt_noblock_validity, "noblock_validity"},
1419         {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1420         {Opt_journal_ioprio, "journal_ioprio=%u"},
1421         {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1422         {Opt_auto_da_alloc, "auto_da_alloc"},
1423         {Opt_noauto_da_alloc, "noauto_da_alloc"},
1424         {Opt_dioread_nolock, "dioread_nolock"},
1425         {Opt_dioread_lock, "dioread_lock"},
1426         {Opt_discard, "discard"},
1427         {Opt_nodiscard, "nodiscard"},
1428         {Opt_init_itable, "init_itable=%u"},
1429         {Opt_init_itable, "init_itable"},
1430         {Opt_noinit_itable, "noinit_itable"},
1431         {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1432         {Opt_test_dummy_encryption, "test_dummy_encryption"},
1433         {Opt_nombcache, "nombcache"},
1434         {Opt_nombcache, "no_mbcache"},  /* for backward compatibility */
1435         {Opt_removed, "check=none"},    /* mount option from ext2/3 */
1436         {Opt_removed, "nocheck"},       /* mount option from ext2/3 */
1437         {Opt_removed, "reservation"},   /* mount option from ext2/3 */
1438         {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1439         {Opt_removed, "journal=%u"},    /* mount option from ext2/3 */
1440         {Opt_err, NULL},
1441 };
1442
1443 static ext4_fsblk_t get_sb_block(void **data)
1444 {
1445         ext4_fsblk_t    sb_block;
1446         char            *options = (char *) *data;
1447
1448         if (!options || strncmp(options, "sb=", 3) != 0)
1449                 return 1;       /* Default location */
1450
1451         options += 3;
1452         /* TODO: use simple_strtoll with >32bit ext4 */
1453         sb_block = simple_strtoul(options, &options, 0);
1454         if (*options && *options != ',') {
1455                 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1456                        (char *) *data);
1457                 return 1;
1458         }
1459         if (*options == ',')
1460                 options++;
1461         *data = (void *) options;
1462
1463         return sb_block;
1464 }
1465
1466 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1467 static const char deprecated_msg[] =
1468         "Mount option \"%s\" will be removed by %s\n"
1469         "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1470
1471 #ifdef CONFIG_QUOTA
1472 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1473 {
1474         struct ext4_sb_info *sbi = EXT4_SB(sb);
1475         char *qname;
1476         int ret = -1;
1477
1478         if (sb_any_quota_loaded(sb) &&
1479                 !sbi->s_qf_names[qtype]) {
1480                 ext4_msg(sb, KERN_ERR,
1481                         "Cannot change journaled "
1482                         "quota options when quota turned on");
1483                 return -1;
1484         }
1485         if (ext4_has_feature_quota(sb)) {
1486                 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1487                          "ignored when QUOTA feature is enabled");
1488                 return 1;
1489         }
1490         qname = match_strdup(args);
1491         if (!qname) {
1492                 ext4_msg(sb, KERN_ERR,
1493                         "Not enough memory for storing quotafile name");
1494                 return -1;
1495         }
1496         if (sbi->s_qf_names[qtype]) {
1497                 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1498                         ret = 1;
1499                 else
1500                         ext4_msg(sb, KERN_ERR,
1501                                  "%s quota file already specified",
1502                                  QTYPE2NAME(qtype));
1503                 goto errout;
1504         }
1505         if (strchr(qname, '/')) {
1506                 ext4_msg(sb, KERN_ERR,
1507                         "quotafile must be on filesystem root");
1508                 goto errout;
1509         }
1510         sbi->s_qf_names[qtype] = qname;
1511         set_opt(sb, QUOTA);
1512         return 1;
1513 errout:
1514         kfree(qname);
1515         return ret;
1516 }
1517
1518 static int clear_qf_name(struct super_block *sb, int qtype)
1519 {
1520
1521         struct ext4_sb_info *sbi = EXT4_SB(sb);
1522
1523         if (sb_any_quota_loaded(sb) &&
1524                 sbi->s_qf_names[qtype]) {
1525                 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1526                         " when quota turned on");
1527                 return -1;
1528         }
1529         kfree(sbi->s_qf_names[qtype]);
1530         sbi->s_qf_names[qtype] = NULL;
1531         return 1;
1532 }
1533 #endif
1534
1535 #define MOPT_SET        0x0001
1536 #define MOPT_CLEAR      0x0002
1537 #define MOPT_NOSUPPORT  0x0004
1538 #define MOPT_EXPLICIT   0x0008
1539 #define MOPT_CLEAR_ERR  0x0010
1540 #define MOPT_GTE0       0x0020
1541 #ifdef CONFIG_QUOTA
1542 #define MOPT_Q          0
1543 #define MOPT_QFMT       0x0040
1544 #else
1545 #define MOPT_Q          MOPT_NOSUPPORT
1546 #define MOPT_QFMT       MOPT_NOSUPPORT
1547 #endif
1548 #define MOPT_DATAJ      0x0080
1549 #define MOPT_NO_EXT2    0x0100
1550 #define MOPT_NO_EXT3    0x0200
1551 #define MOPT_EXT4_ONLY  (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1552 #define MOPT_STRING     0x0400
1553
1554 static const struct mount_opts {
1555         int     token;
1556         int     mount_opt;
1557         int     flags;
1558 } ext4_mount_opts[] = {
1559         {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1560         {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1561         {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1562         {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1563         {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1564         {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1565         {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1566          MOPT_EXT4_ONLY | MOPT_SET},
1567         {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1568          MOPT_EXT4_ONLY | MOPT_CLEAR},
1569         {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1570         {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1571         {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1572          MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1573         {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1574          MOPT_EXT4_ONLY | MOPT_CLEAR},
1575         {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1576          MOPT_EXT4_ONLY | MOPT_CLEAR},
1577         {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1578          MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1579         {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1580                                     EXT4_MOUNT_JOURNAL_CHECKSUM),
1581          MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1582         {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1583         {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1584         {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1585         {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1586         {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1587          MOPT_NO_EXT2},
1588         {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1589          MOPT_NO_EXT2},
1590         {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1591         {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1592         {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1593         {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1594         {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1595         {Opt_commit, 0, MOPT_GTE0},
1596         {Opt_max_batch_time, 0, MOPT_GTE0},
1597         {Opt_min_batch_time, 0, MOPT_GTE0},
1598         {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1599         {Opt_init_itable, 0, MOPT_GTE0},
1600         {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1601         {Opt_stripe, 0, MOPT_GTE0},
1602         {Opt_resuid, 0, MOPT_GTE0},
1603         {Opt_resgid, 0, MOPT_GTE0},
1604         {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1605         {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1606         {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1607         {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1608         {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1609         {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1610          MOPT_NO_EXT2 | MOPT_DATAJ},
1611         {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1612         {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1613 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1614         {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1615         {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1616 #else
1617         {Opt_acl, 0, MOPT_NOSUPPORT},
1618         {Opt_noacl, 0, MOPT_NOSUPPORT},
1619 #endif
1620         {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1621         {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1622         {Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1623         {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1624         {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1625                                                         MOPT_SET | MOPT_Q},
1626         {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1627                                                         MOPT_SET | MOPT_Q},
1628         {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1629                                                         MOPT_SET | MOPT_Q},
1630         {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1631                        EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1632                                                         MOPT_CLEAR | MOPT_Q},
1633         {Opt_usrjquota, 0, MOPT_Q},
1634         {Opt_grpjquota, 0, MOPT_Q},
1635         {Opt_offusrjquota, 0, MOPT_Q},
1636         {Opt_offgrpjquota, 0, MOPT_Q},
1637         {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1638         {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1639         {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1640         {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1641         {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1642         {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1643         {Opt_err, 0, 0}
1644 };
1645
1646 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1647                             substring_t *args, unsigned long *journal_devnum,
1648                             unsigned int *journal_ioprio, int is_remount)
1649 {
1650         struct ext4_sb_info *sbi = EXT4_SB(sb);
1651         const struct mount_opts *m;
1652         kuid_t uid;
1653         kgid_t gid;
1654         int arg = 0;
1655
1656 #ifdef CONFIG_QUOTA
1657         if (token == Opt_usrjquota)
1658                 return set_qf_name(sb, USRQUOTA, &args[0]);
1659         else if (token == Opt_grpjquota)
1660                 return set_qf_name(sb, GRPQUOTA, &args[0]);
1661         else if (token == Opt_offusrjquota)
1662                 return clear_qf_name(sb, USRQUOTA);
1663         else if (token == Opt_offgrpjquota)
1664                 return clear_qf_name(sb, GRPQUOTA);
1665 #endif
1666         switch (token) {
1667         case Opt_noacl:
1668         case Opt_nouser_xattr:
1669                 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1670                 break;
1671         case Opt_sb:
1672                 return 1;       /* handled by get_sb_block() */
1673         case Opt_removed:
1674                 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1675                 return 1;
1676         case Opt_abort:
1677                 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1678                 return 1;
1679         case Opt_i_version:
1680                 sb->s_flags |= MS_I_VERSION;
1681                 return 1;
1682         case Opt_lazytime:
1683                 sb->s_flags |= MS_LAZYTIME;
1684                 return 1;
1685         case Opt_nolazytime:
1686                 sb->s_flags &= ~MS_LAZYTIME;
1687                 return 1;
1688         }
1689
1690         for (m = ext4_mount_opts; m->token != Opt_err; m++)
1691                 if (token == m->token)
1692                         break;
1693
1694         if (m->token == Opt_err) {
1695                 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1696                          "or missing value", opt);
1697                 return -1;
1698         }
1699
1700         if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1701                 ext4_msg(sb, KERN_ERR,
1702                          "Mount option \"%s\" incompatible with ext2", opt);
1703                 return -1;
1704         }
1705         if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1706                 ext4_msg(sb, KERN_ERR,
1707                          "Mount option \"%s\" incompatible with ext3", opt);
1708                 return -1;
1709         }
1710
1711         if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1712                 return -1;
1713         if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1714                 return -1;
1715         if (m->flags & MOPT_EXPLICIT) {
1716                 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1717                         set_opt2(sb, EXPLICIT_DELALLOC);
1718                 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1719                         set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1720                 } else
1721                         return -1;
1722         }
1723         if (m->flags & MOPT_CLEAR_ERR)
1724                 clear_opt(sb, ERRORS_MASK);
1725         if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1726                 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1727                          "options when quota turned on");
1728                 return -1;
1729         }
1730
1731         if (m->flags & MOPT_NOSUPPORT) {
1732                 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1733         } else if (token == Opt_commit) {
1734                 if (arg == 0)
1735                         arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1736                 sbi->s_commit_interval = HZ * arg;
1737         } else if (token == Opt_debug_want_extra_isize) {
1738                 sbi->s_want_extra_isize = arg;
1739         } else if (token == Opt_max_batch_time) {
1740                 sbi->s_max_batch_time = arg;
1741         } else if (token == Opt_min_batch_time) {
1742                 sbi->s_min_batch_time = arg;
1743         } else if (token == Opt_inode_readahead_blks) {
1744                 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1745                         ext4_msg(sb, KERN_ERR,
1746                                  "EXT4-fs: inode_readahead_blks must be "
1747                                  "0 or a power of 2 smaller than 2^31");
1748                         return -1;
1749                 }
1750                 sbi->s_inode_readahead_blks = arg;
1751         } else if (token == Opt_init_itable) {
1752                 set_opt(sb, INIT_INODE_TABLE);
1753                 if (!args->from)
1754                         arg = EXT4_DEF_LI_WAIT_MULT;
1755                 sbi->s_li_wait_mult = arg;
1756         } else if (token == Opt_max_dir_size_kb) {
1757                 sbi->s_max_dir_size_kb = arg;
1758         } else if (token == Opt_stripe) {
1759                 sbi->s_stripe = arg;
1760         } else if (token == Opt_resuid) {
1761                 uid = make_kuid(current_user_ns(), arg);
1762                 if (!uid_valid(uid)) {
1763                         ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1764                         return -1;
1765                 }
1766                 sbi->s_resuid = uid;
1767         } else if (token == Opt_resgid) {
1768                 gid = make_kgid(current_user_ns(), arg);
1769                 if (!gid_valid(gid)) {
1770                         ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1771                         return -1;
1772                 }
1773                 sbi->s_resgid = gid;
1774         } else if (token == Opt_journal_dev) {
1775                 if (is_remount) {
1776                         ext4_msg(sb, KERN_ERR,
1777                                  "Cannot specify journal on remount");
1778                         return -1;
1779                 }
1780                 *journal_devnum = arg;
1781         } else if (token == Opt_journal_path) {
1782                 char *journal_path;
1783                 struct inode *journal_inode;
1784                 struct path path;
1785                 int error;
1786
1787                 if (is_remount) {
1788                         ext4_msg(sb, KERN_ERR,
1789                                  "Cannot specify journal on remount");
1790                         return -1;
1791                 }
1792                 journal_path = match_strdup(&args[0]);
1793                 if (!journal_path) {
1794                         ext4_msg(sb, KERN_ERR, "error: could not dup "
1795                                 "journal device string");
1796                         return -1;
1797                 }
1798
1799                 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1800                 if (error) {
1801                         ext4_msg(sb, KERN_ERR, "error: could not find "
1802                                 "journal device path: error %d", error);
1803                         kfree(journal_path);
1804                         return -1;
1805                 }
1806
1807                 journal_inode = d_inode(path.dentry);
1808                 if (!S_ISBLK(journal_inode->i_mode)) {
1809                         ext4_msg(sb, KERN_ERR, "error: journal path %s "
1810                                 "is not a block device", journal_path);
1811                         path_put(&path);
1812                         kfree(journal_path);
1813                         return -1;
1814                 }
1815
1816                 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1817                 path_put(&path);
1818                 kfree(journal_path);
1819         } else if (token == Opt_journal_ioprio) {
1820                 if (arg > 7) {
1821                         ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1822                                  " (must be 0-7)");
1823                         return -1;
1824                 }
1825                 *journal_ioprio =
1826                         IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1827         } else if (token == Opt_test_dummy_encryption) {
1828 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1829                 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1830                 ext4_msg(sb, KERN_WARNING,
1831                          "Test dummy encryption mode enabled");
1832 #else
1833                 ext4_msg(sb, KERN_WARNING,
1834                          "Test dummy encryption mount option ignored");
1835 #endif
1836         } else if (m->flags & MOPT_DATAJ) {
1837                 if (is_remount) {
1838                         if (!sbi->s_journal)
1839                                 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1840                         else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1841                                 ext4_msg(sb, KERN_ERR,
1842                                          "Cannot change data mode on remount");
1843                                 return -1;
1844                         }
1845                 } else {
1846                         clear_opt(sb, DATA_FLAGS);
1847                         sbi->s_mount_opt |= m->mount_opt;
1848                 }
1849 #ifdef CONFIG_QUOTA
1850         } else if (m->flags & MOPT_QFMT) {
1851                 if (sb_any_quota_loaded(sb) &&
1852                     sbi->s_jquota_fmt != m->mount_opt) {
1853                         ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1854                                  "quota options when quota turned on");
1855                         return -1;
1856                 }
1857                 if (ext4_has_feature_quota(sb)) {
1858                         ext4_msg(sb, KERN_INFO,
1859                                  "Quota format mount options ignored "
1860                                  "when QUOTA feature is enabled");
1861                         return 1;
1862                 }
1863                 sbi->s_jquota_fmt = m->mount_opt;
1864 #endif
1865         } else if (token == Opt_dax) {
1866 #ifdef CONFIG_FS_DAX
1867                 ext4_msg(sb, KERN_WARNING,
1868                 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1869                         sbi->s_mount_opt |= m->mount_opt;
1870 #else
1871                 ext4_msg(sb, KERN_INFO, "dax option not supported");
1872                 return -1;
1873 #endif
1874         } else if (token == Opt_data_err_abort) {
1875                 sbi->s_mount_opt |= m->mount_opt;
1876         } else if (token == Opt_data_err_ignore) {
1877                 sbi->s_mount_opt &= ~m->mount_opt;
1878         } else {
1879                 if (!args->from)
1880                         arg = 1;
1881                 if (m->flags & MOPT_CLEAR)
1882                         arg = !arg;
1883                 else if (unlikely(!(m->flags & MOPT_SET))) {
1884                         ext4_msg(sb, KERN_WARNING,
1885                                  "buggy handling of option %s", opt);
1886                         WARN_ON(1);
1887                         return -1;
1888                 }
1889                 if (arg != 0)
1890                         sbi->s_mount_opt |= m->mount_opt;
1891                 else
1892                         sbi->s_mount_opt &= ~m->mount_opt;
1893         }
1894         return 1;
1895 }
1896
1897 static int parse_options(char *options, struct super_block *sb,
1898                          unsigned long *journal_devnum,
1899                          unsigned int *journal_ioprio,
1900                          int is_remount)
1901 {
1902         struct ext4_sb_info *sbi = EXT4_SB(sb);
1903         char *p;
1904         substring_t args[MAX_OPT_ARGS];
1905         int token;
1906
1907         if (!options)
1908                 return 1;
1909
1910         while ((p = strsep(&options, ",")) != NULL) {
1911                 if (!*p)
1912                         continue;
1913                 /*
1914                  * Initialize args struct so we know whether arg was
1915                  * found; some options take optional arguments.
1916                  */
1917                 args[0].to = args[0].from = NULL;
1918                 token = match_token(p, tokens, args);
1919                 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1920                                      journal_ioprio, is_remount) < 0)
1921                         return 0;
1922         }
1923 #ifdef CONFIG_QUOTA
1924         /*
1925          * We do the test below only for project quotas. 'usrquota' and
1926          * 'grpquota' mount options are allowed even without quota feature
1927          * to support legacy quotas in quota files.
1928          */
1929         if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
1930                 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
1931                          "Cannot enable project quota enforcement.");
1932                 return 0;
1933         }
1934         if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1935                 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1936                         clear_opt(sb, USRQUOTA);
1937
1938                 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1939                         clear_opt(sb, GRPQUOTA);
1940
1941                 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1942                         ext4_msg(sb, KERN_ERR, "old and new quota "
1943                                         "format mixing");
1944                         return 0;
1945                 }
1946
1947                 if (!sbi->s_jquota_fmt) {
1948                         ext4_msg(sb, KERN_ERR, "journaled quota format "
1949                                         "not specified");
1950                         return 0;
1951                 }
1952         }
1953 #endif
1954         if (test_opt(sb, DIOREAD_NOLOCK)) {
1955                 int blocksize =
1956                         BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1957
1958                 if (blocksize < PAGE_SIZE) {
1959                         ext4_msg(sb, KERN_ERR, "can't mount with "
1960                                  "dioread_nolock if block size != PAGE_SIZE");
1961                         return 0;
1962                 }
1963         }
1964         return 1;
1965 }
1966
1967 static inline void ext4_show_quota_options(struct seq_file *seq,
1968                                            struct super_block *sb)
1969 {
1970 #if defined(CONFIG_QUOTA)
1971         struct ext4_sb_info *sbi = EXT4_SB(sb);
1972
1973         if (sbi->s_jquota_fmt) {
1974                 char *fmtname = "";
1975
1976                 switch (sbi->s_jquota_fmt) {
1977                 case QFMT_VFS_OLD:
1978                         fmtname = "vfsold";
1979                         break;
1980                 case QFMT_VFS_V0:
1981                         fmtname = "vfsv0";
1982                         break;
1983                 case QFMT_VFS_V1:
1984                         fmtname = "vfsv1";
1985                         break;
1986                 }
1987                 seq_printf(seq, ",jqfmt=%s", fmtname);
1988         }
1989
1990         if (sbi->s_qf_names[USRQUOTA])
1991                 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
1992
1993         if (sbi->s_qf_names[GRPQUOTA])
1994                 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
1995 #endif
1996 }
1997
1998 static const char *token2str(int token)
1999 {
2000         const struct match_token *t;
2001
2002         for (t = tokens; t->token != Opt_err; t++)
2003                 if (t->token == token && !strchr(t->pattern, '='))
2004                         break;
2005         return t->pattern;
2006 }
2007
2008 /*
2009  * Show an option if
2010  *  - it's set to a non-default value OR
2011  *  - if the per-sb default is different from the global default
2012  */
2013 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2014                               int nodefs)
2015 {
2016         struct ext4_sb_info *sbi = EXT4_SB(sb);
2017         struct ext4_super_block *es = sbi->s_es;
2018         int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
2019         const struct mount_opts *m;
2020         char sep = nodefs ? '\n' : ',';
2021
2022 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2023 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2024
2025         if (sbi->s_sb_block != 1)
2026                 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2027
2028         for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2029                 int want_set = m->flags & MOPT_SET;
2030                 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2031                     (m->flags & MOPT_CLEAR_ERR))
2032                         continue;
2033                 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2034                         continue; /* skip if same as the default */
2035                 if ((want_set &&
2036                      (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2037                     (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2038                         continue; /* select Opt_noFoo vs Opt_Foo */
2039                 SEQ_OPTS_PRINT("%s", token2str(m->token));
2040         }
2041
2042         if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2043             le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2044                 SEQ_OPTS_PRINT("resuid=%u",
2045                                 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2046         if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2047             le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2048                 SEQ_OPTS_PRINT("resgid=%u",
2049                                 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2050         def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2051         if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2052                 SEQ_OPTS_PUTS("errors=remount-ro");
2053         if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2054                 SEQ_OPTS_PUTS("errors=continue");
2055         if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2056                 SEQ_OPTS_PUTS("errors=panic");
2057         if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2058                 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2059         if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2060                 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2061         if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2062                 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2063         if (sb->s_flags & MS_I_VERSION)
2064                 SEQ_OPTS_PUTS("i_version");
2065         if (nodefs || sbi->s_stripe)
2066                 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2067         if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
2068                 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2069                         SEQ_OPTS_PUTS("data=journal");
2070                 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2071                         SEQ_OPTS_PUTS("data=ordered");
2072                 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2073                         SEQ_OPTS_PUTS("data=writeback");
2074         }
2075         if (nodefs ||
2076             sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2077                 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2078                                sbi->s_inode_readahead_blks);
2079
2080         if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
2081                        (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2082                 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2083         if (nodefs || sbi->s_max_dir_size_kb)
2084                 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2085         if (test_opt(sb, DATA_ERR_ABORT))
2086                 SEQ_OPTS_PUTS("data_err=abort");
2087
2088         ext4_show_quota_options(seq, sb);
2089         return 0;
2090 }
2091
2092 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2093 {
2094         return _ext4_show_options(seq, root->d_sb, 0);
2095 }
2096
2097 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2098 {
2099         struct super_block *sb = seq->private;
2100         int rc;
2101
2102         seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
2103         rc = _ext4_show_options(seq, sb, 1);
2104         seq_puts(seq, "\n");
2105         return rc;
2106 }
2107
2108 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2109                             int read_only)
2110 {
2111         struct ext4_sb_info *sbi = EXT4_SB(sb);
2112         int res = 0;
2113
2114         if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2115                 ext4_msg(sb, KERN_ERR, "revision level too high, "
2116                          "forcing read-only mode");
2117                 res = MS_RDONLY;
2118         }
2119         if (read_only)
2120                 goto done;
2121         if (!(sbi->s_mount_state & EXT4_VALID_FS))
2122                 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2123                          "running e2fsck is recommended");
2124         else if (sbi->s_mount_state & EXT4_ERROR_FS)
2125                 ext4_msg(sb, KERN_WARNING,
2126                          "warning: mounting fs with errors, "
2127                          "running e2fsck is recommended");
2128         else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2129                  le16_to_cpu(es->s_mnt_count) >=
2130                  (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2131                 ext4_msg(sb, KERN_WARNING,
2132                          "warning: maximal mount count reached, "
2133                          "running e2fsck is recommended");
2134         else if (le32_to_cpu(es->s_checkinterval) &&
2135                 (le32_to_cpu(es->s_lastcheck) +
2136                         le32_to_cpu(es->s_checkinterval) <= get_seconds()))
2137                 ext4_msg(sb, KERN_WARNING,
2138                          "warning: checktime reached, "
2139                          "running e2fsck is recommended");
2140         if (!sbi->s_journal)
2141                 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2142         if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2143                 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2144         le16_add_cpu(&es->s_mnt_count, 1);
2145         es->s_mtime = cpu_to_le32(get_seconds());
2146         ext4_update_dynamic_rev(sb);
2147         if (sbi->s_journal)
2148                 ext4_set_feature_journal_needs_recovery(sb);
2149
2150         ext4_commit_super(sb, 1);
2151 done:
2152         if (test_opt(sb, DEBUG))
2153                 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2154                                 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2155                         sb->s_blocksize,
2156                         sbi->s_groups_count,
2157                         EXT4_BLOCKS_PER_GROUP(sb),
2158                         EXT4_INODES_PER_GROUP(sb),
2159                         sbi->s_mount_opt, sbi->s_mount_opt2);
2160
2161         cleancache_init_fs(sb);
2162         return res;
2163 }
2164
2165 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2166 {
2167         struct ext4_sb_info *sbi = EXT4_SB(sb);
2168         struct flex_groups *new_groups;
2169         int size;
2170
2171         if (!sbi->s_log_groups_per_flex)
2172                 return 0;
2173
2174         size = ext4_flex_group(sbi, ngroup - 1) + 1;
2175         if (size <= sbi->s_flex_groups_allocated)
2176                 return 0;
2177
2178         size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2179         new_groups = kvzalloc(size, GFP_KERNEL);
2180         if (!new_groups) {
2181                 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2182                          size / (int) sizeof(struct flex_groups));
2183                 return -ENOMEM;
2184         }
2185
2186         if (sbi->s_flex_groups) {
2187                 memcpy(new_groups, sbi->s_flex_groups,
2188                        (sbi->s_flex_groups_allocated *
2189                         sizeof(struct flex_groups)));
2190                 kvfree(sbi->s_flex_groups);
2191         }
2192         sbi->s_flex_groups = new_groups;
2193         sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2194         return 0;
2195 }
2196
2197 static int ext4_fill_flex_info(struct super_block *sb)
2198 {
2199         struct ext4_sb_info *sbi = EXT4_SB(sb);
2200         struct ext4_group_desc *gdp = NULL;
2201         ext4_group_t flex_group;
2202         int i, err;
2203
2204         sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2205         if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2206                 sbi->s_log_groups_per_flex = 0;
2207                 return 1;
2208         }
2209
2210         err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2211         if (err)
2212                 goto failed;
2213
2214         for (i = 0; i < sbi->s_groups_count; i++) {
2215                 gdp = ext4_get_group_desc(sb, i, NULL);
2216
2217                 flex_group = ext4_flex_group(sbi, i);
2218                 atomic_add(ext4_free_inodes_count(sb, gdp),
2219                            &sbi->s_flex_groups[flex_group].free_inodes);
2220                 atomic64_add(ext4_free_group_clusters(sb, gdp),
2221                              &sbi->s_flex_groups[flex_group].free_clusters);
2222                 atomic_add(ext4_used_dirs_count(sb, gdp),
2223                            &sbi->s_flex_groups[flex_group].used_dirs);
2224         }
2225
2226         return 1;
2227 failed:
2228         return 0;
2229 }
2230
2231 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2232                                    struct ext4_group_desc *gdp)
2233 {
2234         int offset = offsetof(struct ext4_group_desc, bg_checksum);
2235         __u16 crc = 0;
2236         __le32 le_group = cpu_to_le32(block_group);
2237         struct ext4_sb_info *sbi = EXT4_SB(sb);
2238
2239         if (ext4_has_metadata_csum(sbi->s_sb)) {
2240                 /* Use new metadata_csum algorithm */
2241                 __u32 csum32;
2242                 __u16 dummy_csum = 0;
2243
2244                 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2245                                      sizeof(le_group));
2246                 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2247                 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2248                                      sizeof(dummy_csum));
2249                 offset += sizeof(dummy_csum);
2250                 if (offset < sbi->s_desc_size)
2251                         csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2252                                              sbi->s_desc_size - offset);
2253
2254                 crc = csum32 & 0xFFFF;
2255                 goto out;
2256         }
2257
2258         /* old crc16 code */
2259         if (!ext4_has_feature_gdt_csum(sb))
2260                 return 0;
2261
2262         crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2263         crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2264         crc = crc16(crc, (__u8 *)gdp, offset);
2265         offset += sizeof(gdp->bg_checksum); /* skip checksum */
2266         /* for checksum of struct ext4_group_desc do the rest...*/
2267         if (ext4_has_feature_64bit(sb) &&
2268             offset < le16_to_cpu(sbi->s_es->s_desc_size))
2269                 crc = crc16(crc, (__u8 *)gdp + offset,
2270                             le16_to_cpu(sbi->s_es->s_desc_size) -
2271                                 offset);
2272
2273 out:
2274         return cpu_to_le16(crc);
2275 }
2276
2277 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2278                                 struct ext4_group_desc *gdp)
2279 {
2280         if (ext4_has_group_desc_csum(sb) &&
2281             (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2282                 return 0;
2283
2284         return 1;
2285 }
2286
2287 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2288                               struct ext4_group_desc *gdp)
2289 {
2290         if (!ext4_has_group_desc_csum(sb))
2291                 return;
2292         gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2293 }
2294
2295 /* Called at mount-time, super-block is locked */
2296 static int ext4_check_descriptors(struct super_block *sb,
2297                                   ext4_fsblk_t sb_block,
2298                                   ext4_group_t *first_not_zeroed)
2299 {
2300         struct ext4_sb_info *sbi = EXT4_SB(sb);
2301         ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2302         ext4_fsblk_t last_block;
2303         ext4_fsblk_t block_bitmap;
2304         ext4_fsblk_t inode_bitmap;
2305         ext4_fsblk_t inode_table;
2306         int flexbg_flag = 0;
2307         ext4_group_t i, grp = sbi->s_groups_count;
2308
2309         if (ext4_has_feature_flex_bg(sb))
2310                 flexbg_flag = 1;
2311
2312         ext4_debug("Checking group descriptors");
2313
2314         for (i = 0; i < sbi->s_groups_count; i++) {
2315                 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2316
2317                 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2318                         last_block = ext4_blocks_count(sbi->s_es) - 1;
2319                 else
2320                         last_block = first_block +
2321                                 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2322
2323                 if ((grp == sbi->s_groups_count) &&
2324                    !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2325                         grp = i;
2326
2327                 block_bitmap = ext4_block_bitmap(sb, gdp);
2328                 if (block_bitmap == sb_block) {
2329                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2330                                  "Block bitmap for group %u overlaps "
2331                                  "superblock", i);
2332                 }
2333                 if (block_bitmap < first_block || block_bitmap > last_block) {
2334                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2335                                "Block bitmap for group %u not in group "
2336                                "(block %llu)!", i, block_bitmap);
2337                         return 0;
2338                 }
2339                 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2340                 if (inode_bitmap == sb_block) {
2341                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2342                                  "Inode bitmap for group %u overlaps "
2343                                  "superblock", i);
2344                 }
2345                 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2346                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2347                                "Inode bitmap for group %u not in group "
2348                                "(block %llu)!", i, inode_bitmap);
2349                         return 0;
2350                 }
2351                 inode_table = ext4_inode_table(sb, gdp);
2352                 if (inode_table == sb_block) {
2353                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2354                                  "Inode table for group %u overlaps "
2355                                  "superblock", i);
2356                 }
2357                 if (inode_table < first_block ||
2358                     inode_table + sbi->s_itb_per_group - 1 > last_block) {
2359                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2360                                "Inode table for group %u not in group "
2361                                "(block %llu)!", i, inode_table);
2362                         return 0;
2363                 }
2364                 ext4_lock_group(sb, i);
2365                 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2366                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2367                                  "Checksum for group %u failed (%u!=%u)",
2368                                  i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2369                                      gdp)), le16_to_cpu(gdp->bg_checksum));
2370                         if (!(sb->s_flags & MS_RDONLY)) {
2371                                 ext4_unlock_group(sb, i);
2372                                 return 0;
2373                         }
2374                 }
2375                 ext4_unlock_group(sb, i);
2376                 if (!flexbg_flag)
2377                         first_block += EXT4_BLOCKS_PER_GROUP(sb);
2378         }
2379         if (NULL != first_not_zeroed)
2380                 *first_not_zeroed = grp;
2381         return 1;
2382 }
2383
2384 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2385  * the superblock) which were deleted from all directories, but held open by
2386  * a process at the time of a crash.  We walk the list and try to delete these
2387  * inodes at recovery time (only with a read-write filesystem).
2388  *
2389  * In order to keep the orphan inode chain consistent during traversal (in
2390  * case of crash during recovery), we link each inode into the superblock
2391  * orphan list_head and handle it the same way as an inode deletion during
2392  * normal operation (which journals the operations for us).
2393  *
2394  * We only do an iget() and an iput() on each inode, which is very safe if we
2395  * accidentally point at an in-use or already deleted inode.  The worst that
2396  * can happen in this case is that we get a "bit already cleared" message from
2397  * ext4_free_inode().  The only reason we would point at a wrong inode is if
2398  * e2fsck was run on this filesystem, and it must have already done the orphan
2399  * inode cleanup for us, so we can safely abort without any further action.
2400  */
2401 static void ext4_orphan_cleanup(struct super_block *sb,
2402                                 struct ext4_super_block *es)
2403 {
2404         unsigned int s_flags = sb->s_flags;
2405         int ret, nr_orphans = 0, nr_truncates = 0;
2406 #ifdef CONFIG_QUOTA
2407         int i;
2408 #endif
2409         if (!es->s_last_orphan) {
2410                 jbd_debug(4, "no orphan inodes to clean up\n");
2411                 return;
2412         }
2413
2414         if (bdev_read_only(sb->s_bdev)) {
2415                 ext4_msg(sb, KERN_ERR, "write access "
2416                         "unavailable, skipping orphan cleanup");
2417                 return;
2418         }
2419
2420         /* Check if feature set would not allow a r/w mount */
2421         if (!ext4_feature_set_ok(sb, 0)) {
2422                 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2423                          "unknown ROCOMPAT features");
2424                 return;
2425         }
2426
2427         if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2428                 /* don't clear list on RO mount w/ errors */
2429                 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2430                         ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2431                                   "clearing orphan list.\n");
2432                         es->s_last_orphan = 0;
2433                 }
2434                 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2435                 return;
2436         }
2437
2438         if (s_flags & MS_RDONLY) {
2439                 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2440                 sb->s_flags &= ~MS_RDONLY;
2441         }
2442 #ifdef CONFIG_QUOTA
2443         /* Needed for iput() to work correctly and not trash data */
2444         sb->s_flags |= MS_ACTIVE;
2445         /* Turn on quotas so that they are updated correctly */
2446         for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2447                 if (EXT4_SB(sb)->s_qf_names[i]) {
2448                         int ret = ext4_quota_on_mount(sb, i);
2449                         if (ret < 0)
2450                                 ext4_msg(sb, KERN_ERR,
2451                                         "Cannot turn on journaled "
2452                                         "quota: error %d", ret);
2453                 }
2454         }
2455 #endif
2456
2457         while (es->s_last_orphan) {
2458                 struct inode *inode;
2459
2460                 /*
2461                  * We may have encountered an error during cleanup; if
2462                  * so, skip the rest.
2463                  */
2464                 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2465                         jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2466                         es->s_last_orphan = 0;
2467                         break;
2468                 }
2469
2470                 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2471                 if (IS_ERR(inode)) {
2472                         es->s_last_orphan = 0;
2473                         break;
2474                 }
2475
2476                 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2477                 dquot_initialize(inode);
2478                 if (inode->i_nlink) {
2479                         if (test_opt(sb, DEBUG))
2480                                 ext4_msg(sb, KERN_DEBUG,
2481                                         "%s: truncating inode %lu to %lld bytes",
2482                                         __func__, inode->i_ino, inode->i_size);
2483                         jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2484                                   inode->i_ino, inode->i_size);
2485                         inode_lock(inode);
2486                         truncate_inode_pages(inode->i_mapping, inode->i_size);
2487                         ret = ext4_truncate(inode);
2488                         if (ret)
2489                                 ext4_std_error(inode->i_sb, ret);
2490                         inode_unlock(inode);
2491                         nr_truncates++;
2492                 } else {
2493                         if (test_opt(sb, DEBUG))
2494                                 ext4_msg(sb, KERN_DEBUG,
2495                                         "%s: deleting unreferenced inode %lu",
2496                                         __func__, inode->i_ino);
2497                         jbd_debug(2, "deleting unreferenced inode %lu\n",
2498                                   inode->i_ino);
2499                         nr_orphans++;
2500                 }
2501                 iput(inode);  /* The delete magic happens here! */
2502         }
2503
2504 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2505
2506         if (nr_orphans)
2507                 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2508                        PLURAL(nr_orphans));
2509         if (nr_truncates)
2510                 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2511                        PLURAL(nr_truncates));
2512 #ifdef CONFIG_QUOTA
2513         /* Turn quotas off */
2514         for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2515                 if (sb_dqopt(sb)->files[i])
2516                         dquot_quota_off(sb, i);
2517         }
2518 #endif
2519         sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2520 }
2521
2522 /*
2523  * Maximal extent format file size.
2524  * Resulting logical blkno at s_maxbytes must fit in our on-disk
2525  * extent format containers, within a sector_t, and within i_blocks
2526  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
2527  * so that won't be a limiting factor.
2528  *
2529  * However there is other limiting factor. We do store extents in the form
2530  * of starting block and length, hence the resulting length of the extent
2531  * covering maximum file size must fit into on-disk format containers as
2532  * well. Given that length is always by 1 unit bigger than max unit (because
2533  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2534  *
2535  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2536  */
2537 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2538 {
2539         loff_t res;
2540         loff_t upper_limit = MAX_LFS_FILESIZE;
2541
2542         /* small i_blocks in vfs inode? */
2543         if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2544                 /*
2545                  * CONFIG_LBDAF is not enabled implies the inode
2546                  * i_block represent total blocks in 512 bytes
2547                  * 32 == size of vfs inode i_blocks * 8
2548                  */
2549                 upper_limit = (1LL << 32) - 1;
2550
2551                 /* total blocks in file system block size */
2552                 upper_limit >>= (blkbits - 9);
2553                 upper_limit <<= blkbits;
2554         }
2555
2556         /*
2557          * 32-bit extent-start container, ee_block. We lower the maxbytes
2558          * by one fs block, so ee_len can cover the extent of maximum file
2559          * size
2560          */
2561         res = (1LL << 32) - 1;
2562         res <<= blkbits;
2563
2564         /* Sanity check against vm- & vfs- imposed limits */
2565         if (res > upper_limit)
2566                 res = upper_limit;
2567
2568         return res;
2569 }
2570
2571 /*
2572  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
2573  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2574  * We need to be 1 filesystem block less than the 2^48 sector limit.
2575  */
2576 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2577 {
2578         loff_t res = EXT4_NDIR_BLOCKS;
2579         int meta_blocks;
2580         loff_t upper_limit;
2581         /* This is calculated to be the largest file size for a dense, block
2582          * mapped file such that the file's total number of 512-byte sectors,
2583          * including data and all indirect blocks, does not exceed (2^48 - 1).
2584          *
2585          * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2586          * number of 512-byte sectors of the file.
2587          */
2588
2589         if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2590                 /*
2591                  * !has_huge_files or CONFIG_LBDAF not enabled implies that
2592                  * the inode i_block field represents total file blocks in
2593                  * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2594                  */
2595                 upper_limit = (1LL << 32) - 1;
2596
2597                 /* total blocks in file system block size */
2598                 upper_limit >>= (bits - 9);
2599
2600         } else {
2601                 /*
2602                  * We use 48 bit ext4_inode i_blocks
2603                  * With EXT4_HUGE_FILE_FL set the i_blocks
2604                  * represent total number of blocks in
2605                  * file system block size
2606                  */
2607                 upper_limit = (1LL << 48) - 1;
2608
2609         }
2610
2611         /* indirect blocks */
2612         meta_blocks = 1;
2613         /* double indirect blocks */
2614         meta_blocks += 1 + (1LL << (bits-2));
2615         /* tripple indirect blocks */
2616         meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2617
2618         upper_limit -= meta_blocks;
2619         upper_limit <<= bits;
2620
2621         res += 1LL << (bits-2);
2622         res += 1LL << (2*(bits-2));
2623         res += 1LL << (3*(bits-2));
2624         res <<= bits;
2625         if (res > upper_limit)
2626                 res = upper_limit;
2627
2628         if (res > MAX_LFS_FILESIZE)
2629                 res = MAX_LFS_FILESIZE;
2630
2631         return res;
2632 }
2633
2634 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2635                                    ext4_fsblk_t logical_sb_block, int nr)
2636 {
2637         struct ext4_sb_info *sbi = EXT4_SB(sb);
2638         ext4_group_t bg, first_meta_bg;
2639         int has_super = 0;
2640
2641         first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2642
2643         if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2644                 return logical_sb_block + nr + 1;
2645         bg = sbi->s_desc_per_block * nr;
2646         if (ext4_bg_has_super(sb, bg))
2647                 has_super = 1;
2648
2649         /*
2650          * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2651          * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
2652          * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2653          * compensate.
2654          */
2655         if (sb->s_blocksize == 1024 && nr == 0 &&
2656             le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0)
2657                 has_super++;
2658
2659         return (has_super + ext4_group_first_block_no(sb, bg));
2660 }
2661
2662 /**
2663  * ext4_get_stripe_size: Get the stripe size.
2664  * @sbi: In memory super block info
2665  *
2666  * If we have specified it via mount option, then
2667  * use the mount option value. If the value specified at mount time is
2668  * greater than the blocks per group use the super block value.
2669  * If the super block value is greater than blocks per group return 0.
2670  * Allocator needs it be less than blocks per group.
2671  *
2672  */
2673 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2674 {
2675         unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2676         unsigned long stripe_width =
2677                         le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2678         int ret;
2679
2680         if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2681                 ret = sbi->s_stripe;
2682         else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
2683                 ret = stripe_width;
2684         else if (stride && stride <= sbi->s_blocks_per_group)
2685                 ret = stride;
2686         else
2687                 ret = 0;
2688
2689         /*
2690          * If the stripe width is 1, this makes no sense and
2691          * we set it to 0 to turn off stripe handling code.
2692          */
2693         if (ret <= 1)
2694                 ret = 0;
2695
2696         return ret;
2697 }
2698
2699 /*
2700  * Check whether this filesystem can be mounted based on
2701  * the features present and the RDONLY/RDWR mount requested.
2702  * Returns 1 if this filesystem can be mounted as requested,
2703  * 0 if it cannot be.
2704  */
2705 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2706 {
2707         if (ext4_has_unknown_ext4_incompat_features(sb)) {
2708                 ext4_msg(sb, KERN_ERR,
2709                         "Couldn't mount because of "
2710                         "unsupported optional features (%x)",
2711                         (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2712                         ~EXT4_FEATURE_INCOMPAT_SUPP));
2713                 return 0;
2714         }
2715
2716         if (readonly)
2717                 return 1;
2718
2719         if (ext4_has_feature_readonly(sb)) {
2720                 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2721                 sb->s_flags |= MS_RDONLY;
2722                 return 1;
2723         }
2724
2725         /* Check that feature set is OK for a read-write mount */
2726         if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2727                 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2728                          "unsupported optional features (%x)",
2729                          (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2730                                 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2731                 return 0;
2732         }
2733         /*
2734          * Large file size enabled file system can only be mounted
2735          * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2736          */
2737         if (ext4_has_feature_huge_file(sb)) {
2738                 if (sizeof(blkcnt_t) < sizeof(u64)) {
2739                         ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2740                                  "cannot be mounted RDWR without "
2741                                  "CONFIG_LBDAF");
2742                         return 0;
2743                 }
2744         }
2745         if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2746                 ext4_msg(sb, KERN_ERR,
2747                          "Can't support bigalloc feature without "
2748                          "extents feature\n");
2749                 return 0;
2750         }
2751
2752 #ifndef CONFIG_QUOTA
2753         if (ext4_has_feature_quota(sb) && !readonly) {
2754                 ext4_msg(sb, KERN_ERR,
2755                          "Filesystem with quota feature cannot be mounted RDWR "
2756                          "without CONFIG_QUOTA");
2757                 return 0;
2758         }
2759         if (ext4_has_feature_project(sb) && !readonly) {
2760                 ext4_msg(sb, KERN_ERR,
2761                          "Filesystem with project quota feature cannot be mounted RDWR "
2762                          "without CONFIG_QUOTA");
2763                 return 0;
2764         }
2765 #endif  /* CONFIG_QUOTA */
2766         return 1;
2767 }
2768
2769 /*
2770  * This function is called once a day if we have errors logged
2771  * on the file system
2772  */
2773 static void print_daily_error_info(unsigned long arg)
2774 {
2775         struct super_block *sb = (struct super_block *) arg;
2776         struct ext4_sb_info *sbi;
2777         struct ext4_super_block *es;
2778
2779         sbi = EXT4_SB(sb);
2780         es = sbi->s_es;
2781
2782         if (es->s_error_count)
2783                 /* fsck newer than v1.41.13 is needed to clean this condition. */
2784                 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2785                          le32_to_cpu(es->s_error_count));
2786         if (es->s_first_error_time) {
2787                 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2788                        sb->s_id, le32_to_cpu(es->s_first_error_time),
2789                        (int) sizeof(es->s_first_error_func),
2790                        es->s_first_error_func,
2791                        le32_to_cpu(es->s_first_error_line));
2792                 if (es->s_first_error_ino)
2793                         printk(KERN_CONT ": inode %u",
2794                                le32_to_cpu(es->s_first_error_ino));
2795                 if (es->s_first_error_block)
2796                         printk(KERN_CONT ": block %llu", (unsigned long long)
2797                                le64_to_cpu(es->s_first_error_block));
2798                 printk(KERN_CONT "\n");
2799         }
2800         if (es->s_last_error_time) {
2801                 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2802                        sb->s_id, le32_to_cpu(es->s_last_error_time),
2803                        (int) sizeof(es->s_last_error_func),
2804                        es->s_last_error_func,
2805                        le32_to_cpu(es->s_last_error_line));
2806                 if (es->s_last_error_ino)
2807                         printk(KERN_CONT ": inode %u",
2808                                le32_to_cpu(es->s_last_error_ino));
2809                 if (es->s_last_error_block)
2810                         printk(KERN_CONT ": block %llu", (unsigned long long)
2811                                le64_to_cpu(es->s_last_error_block));
2812                 printk(KERN_CONT "\n");
2813         }
2814         mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
2815 }
2816
2817 /* Find next suitable group and run ext4_init_inode_table */
2818 static int ext4_run_li_request(struct ext4_li_request *elr)
2819 {
2820         struct ext4_group_desc *gdp = NULL;
2821         ext4_group_t group, ngroups;
2822         struct super_block *sb;
2823         unsigned long timeout = 0;
2824         int ret = 0;
2825
2826         sb = elr->lr_super;
2827         ngroups = EXT4_SB(sb)->s_groups_count;
2828
2829         for (group = elr->lr_next_group; group < ngroups; group++) {
2830                 gdp = ext4_get_group_desc(sb, group, NULL);
2831                 if (!gdp) {
2832                         ret = 1;
2833                         break;
2834                 }
2835
2836                 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2837                         break;
2838         }
2839
2840         if (group >= ngroups)
2841                 ret = 1;
2842
2843         if (!ret) {
2844                 timeout = jiffies;
2845                 ret = ext4_init_inode_table(sb, group,
2846                                             elr->lr_timeout ? 0 : 1);
2847                 if (elr->lr_timeout == 0) {
2848                         timeout = (jiffies - timeout) *
2849                                   elr->lr_sbi->s_li_wait_mult;
2850                         elr->lr_timeout = timeout;
2851                 }
2852                 elr->lr_next_sched = jiffies + elr->lr_timeout;
2853                 elr->lr_next_group = group + 1;
2854         }
2855         return ret;
2856 }
2857
2858 /*
2859  * Remove lr_request from the list_request and free the
2860  * request structure. Should be called with li_list_mtx held
2861  */
2862 static void ext4_remove_li_request(struct ext4_li_request *elr)
2863 {
2864         struct ext4_sb_info *sbi;
2865
2866         if (!elr)
2867                 return;
2868
2869         sbi = elr->lr_sbi;
2870
2871         list_del(&elr->lr_request);
2872         sbi->s_li_request = NULL;
2873         kfree(elr);
2874 }
2875
2876 static void ext4_unregister_li_request(struct super_block *sb)
2877 {
2878         mutex_lock(&ext4_li_mtx);
2879         if (!ext4_li_info) {
2880                 mutex_unlock(&ext4_li_mtx);
2881                 return;
2882         }
2883
2884         mutex_lock(&ext4_li_info->li_list_mtx);
2885         ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2886         mutex_unlock(&ext4_li_info->li_list_mtx);
2887         mutex_unlock(&ext4_li_mtx);
2888 }
2889
2890 static struct task_struct *ext4_lazyinit_task;
2891
2892 /*
2893  * This is the function where ext4lazyinit thread lives. It walks
2894  * through the request list searching for next scheduled filesystem.
2895  * When such a fs is found, run the lazy initialization request
2896  * (ext4_rn_li_request) and keep track of the time spend in this
2897  * function. Based on that time we compute next schedule time of
2898  * the request. When walking through the list is complete, compute
2899  * next waking time and put itself into sleep.
2900  */
2901 static int ext4_lazyinit_thread(void *arg)
2902 {
2903         struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2904         struct list_head *pos, *n;
2905         struct ext4_li_request *elr;
2906         unsigned long next_wakeup, cur;
2907
2908         BUG_ON(NULL == eli);
2909
2910 cont_thread:
2911         while (true) {
2912                 next_wakeup = MAX_JIFFY_OFFSET;
2913
2914                 mutex_lock(&eli->li_list_mtx);
2915                 if (list_empty(&eli->li_request_list)) {
2916                         mutex_unlock(&eli->li_list_mtx);
2917                         goto exit_thread;
2918                 }
2919                 list_for_each_safe(pos, n, &eli->li_request_list) {
2920                         int err = 0;
2921                         int progress = 0;
2922                         elr = list_entry(pos, struct ext4_li_request,
2923                                          lr_request);
2924
2925                         if (time_before(jiffies, elr->lr_next_sched)) {
2926                                 if (time_before(elr->lr_next_sched, next_wakeup))
2927                                         next_wakeup = elr->lr_next_sched;
2928                                 continue;
2929                         }
2930                         if (down_read_trylock(&elr->lr_super->s_umount)) {
2931                                 if (sb_start_write_trylock(elr->lr_super)) {
2932                                         progress = 1;
2933                                         /*
2934                                          * We hold sb->s_umount, sb can not
2935                                          * be removed from the list, it is
2936                                          * now safe to drop li_list_mtx
2937                                          */
2938                                         mutex_unlock(&eli->li_list_mtx);
2939                                         err = ext4_run_li_request(elr);
2940                                         sb_end_write(elr->lr_super);
2941                                         mutex_lock(&eli->li_list_mtx);
2942                                         n = pos->next;
2943                                 }
2944                                 up_read((&elr->lr_super->s_umount));
2945                         }
2946                         /* error, remove the lazy_init job */
2947                         if (err) {
2948                                 ext4_remove_li_request(elr);
2949                                 continue;
2950                         }
2951                         if (!progress) {
2952                                 elr->lr_next_sched = jiffies +
2953                                         (prandom_u32()
2954                                          % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
2955                         }
2956                         if (time_before(elr->lr_next_sched, next_wakeup))
2957                                 next_wakeup = elr->lr_next_sched;
2958                 }
2959                 mutex_unlock(&eli->li_list_mtx);
2960
2961                 try_to_freeze();
2962
2963                 cur = jiffies;
2964                 if ((time_after_eq(cur, next_wakeup)) ||
2965                     (MAX_JIFFY_OFFSET == next_wakeup)) {
2966                         cond_resched();
2967                         continue;
2968                 }
2969
2970                 schedule_timeout_interruptible(next_wakeup - cur);
2971
2972                 if (kthread_should_stop()) {
2973                         ext4_clear_request_list();
2974                         goto exit_thread;
2975                 }
2976         }
2977
2978 exit_thread:
2979         /*
2980          * It looks like the request list is empty, but we need
2981          * to check it under the li_list_mtx lock, to prevent any
2982          * additions into it, and of course we should lock ext4_li_mtx
2983          * to atomically free the list and ext4_li_info, because at
2984          * this point another ext4 filesystem could be registering
2985          * new one.
2986          */
2987         mutex_lock(&ext4_li_mtx);
2988         mutex_lock(&eli->li_list_mtx);
2989         if (!list_empty(&eli->li_request_list)) {
2990                 mutex_unlock(&eli->li_list_mtx);
2991                 mutex_unlock(&ext4_li_mtx);
2992                 goto cont_thread;
2993         }
2994         mutex_unlock(&eli->li_list_mtx);
2995         kfree(ext4_li_info);
2996         ext4_li_info = NULL;
2997         mutex_unlock(&ext4_li_mtx);
2998
2999         return 0;
3000 }
3001
3002 static void ext4_clear_request_list(void)
3003 {
3004         struct list_head *pos, *n;
3005         struct ext4_li_request *elr;
3006
3007         mutex_lock(&ext4_li_info->li_list_mtx);
3008         list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3009                 elr = list_entry(pos, struct ext4_li_request,
3010                                  lr_request);
3011                 ext4_remove_li_request(elr);
3012         }
3013         mutex_unlock(&ext4_li_info->li_list_mtx);
3014 }
3015
3016 static int ext4_run_lazyinit_thread(void)
3017 {
3018         ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3019                                          ext4_li_info, "ext4lazyinit");
3020         if (IS_ERR(ext4_lazyinit_task)) {
3021                 int err = PTR_ERR(ext4_lazyinit_task);
3022                 ext4_clear_request_list();
3023                 kfree(ext4_li_info);
3024                 ext4_li_info = NULL;
3025                 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3026                                  "initialization thread\n",
3027                                  err);
3028                 return err;
3029         }
3030         ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3031         return 0;
3032 }
3033
3034 /*
3035  * Check whether it make sense to run itable init. thread or not.
3036  * If there is at least one uninitialized inode table, return
3037  * corresponding group number, else the loop goes through all
3038  * groups and return total number of groups.
3039  */
3040 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3041 {
3042         ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3043         struct ext4_group_desc *gdp = NULL;
3044
3045         for (group = 0; group < ngroups; group++) {
3046                 gdp = ext4_get_group_desc(sb, group, NULL);
3047                 if (!gdp)
3048                         continue;
3049
3050                 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3051                         break;
3052         }
3053
3054         return group;
3055 }
3056
3057 static int ext4_li_info_new(void)
3058 {
3059         struct ext4_lazy_init *eli = NULL;
3060
3061         eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3062         if (!eli)
3063                 return -ENOMEM;
3064
3065         INIT_LIST_HEAD(&eli->li_request_list);
3066         mutex_init(&eli->li_list_mtx);
3067
3068         eli->li_state |= EXT4_LAZYINIT_QUIT;
3069
3070         ext4_li_info = eli;
3071
3072         return 0;
3073 }
3074
3075 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3076                                             ext4_group_t start)
3077 {
3078         struct ext4_sb_info *sbi = EXT4_SB(sb);
3079         struct ext4_li_request *elr;
3080
3081         elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3082         if (!elr)
3083                 return NULL;
3084
3085         elr->lr_super = sb;
3086         elr->lr_sbi = sbi;
3087         elr->lr_next_group = start;
3088
3089         /*
3090          * Randomize first schedule time of the request to
3091          * spread the inode table initialization requests
3092          * better.
3093          */
3094         elr->lr_next_sched = jiffies + (prandom_u32() %
3095                                 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3096         return elr;
3097 }
3098
3099 int ext4_register_li_request(struct super_block *sb,
3100                              ext4_group_t first_not_zeroed)
3101 {
3102         struct ext4_sb_info *sbi = EXT4_SB(sb);
3103         struct ext4_li_request *elr = NULL;
3104         ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3105         int ret = 0;
3106
3107         mutex_lock(&ext4_li_mtx);
3108         if (sbi->s_li_request != NULL) {
3109                 /*
3110                  * Reset timeout so it can be computed again, because
3111                  * s_li_wait_mult might have changed.
3112                  */
3113                 sbi->s_li_request->lr_timeout = 0;
3114                 goto out;
3115         }
3116
3117         if (first_not_zeroed == ngroups ||
3118             (sb->s_flags & MS_RDONLY) ||
3119             !test_opt(sb, INIT_INODE_TABLE))
3120                 goto out;
3121
3122         elr = ext4_li_request_new(sb, first_not_zeroed);
3123         if (!elr) {
3124                 ret = -ENOMEM;
3125                 goto out;
3126         }
3127
3128         if (NULL == ext4_li_info) {
3129                 ret = ext4_li_info_new();
3130                 if (ret)
3131                         goto out;
3132         }
3133
3134         mutex_lock(&ext4_li_info->li_list_mtx);
3135         list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3136         mutex_unlock(&ext4_li_info->li_list_mtx);
3137
3138         sbi->s_li_request = elr;
3139         /*
3140          * set elr to NULL here since it has been inserted to
3141          * the request_list and the removal and free of it is
3142          * handled by ext4_clear_request_list from now on.
3143          */
3144         elr = NULL;
3145
3146         if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3147                 ret = ext4_run_lazyinit_thread();
3148                 if (ret)
3149                         goto out;
3150         }
3151 out:
3152         mutex_unlock(&ext4_li_mtx);
3153         if (ret)
3154                 kfree(elr);
3155         return ret;
3156 }
3157
3158 /*
3159  * We do not need to lock anything since this is called on
3160  * module unload.
3161  */
3162 static void ext4_destroy_lazyinit_thread(void)
3163 {
3164         /*
3165          * If thread exited earlier
3166          * there's nothing to be done.
3167          */
3168         if (!ext4_li_info || !ext4_lazyinit_task)
3169                 return;
3170
3171         kthread_stop(ext4_lazyinit_task);
3172 }
3173
3174 static int set_journal_csum_feature_set(struct super_block *sb)
3175 {
3176         int ret = 1;
3177         int compat, incompat;
3178         struct ext4_sb_info *sbi = EXT4_SB(sb);
3179
3180         if (ext4_has_metadata_csum(sb)) {
3181                 /* journal checksum v3 */
3182                 compat = 0;
3183                 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3184         } else {
3185                 /* journal checksum v1 */
3186                 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3187                 incompat = 0;
3188         }
3189
3190         jbd2_journal_clear_features(sbi->s_journal,
3191                         JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3192                         JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3193                         JBD2_FEATURE_INCOMPAT_CSUM_V2);
3194         if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3195                 ret = jbd2_journal_set_features(sbi->s_journal,
3196                                 compat, 0,
3197                                 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3198                                 incompat);
3199         } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3200                 ret = jbd2_journal_set_features(sbi->s_journal,
3201                                 compat, 0,
3202                                 incompat);
3203                 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3204                                 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3205         } else {
3206                 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3207                                 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3208         }
3209
3210         return ret;
3211 }
3212
3213 /*
3214  * Note: calculating the overhead so we can be compatible with
3215  * historical BSD practice is quite difficult in the face of
3216  * clusters/bigalloc.  This is because multiple metadata blocks from
3217  * different block group can end up in the same allocation cluster.
3218  * Calculating the exact overhead in the face of clustered allocation
3219  * requires either O(all block bitmaps) in memory or O(number of block
3220  * groups**2) in time.  We will still calculate the superblock for
3221  * older file systems --- and if we come across with a bigalloc file
3222  * system with zero in s_overhead_clusters the estimate will be close to
3223  * correct especially for very large cluster sizes --- but for newer
3224  * file systems, it's better to calculate this figure once at mkfs
3225  * time, and store it in the superblock.  If the superblock value is
3226  * present (even for non-bigalloc file systems), we will use it.
3227  */
3228 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3229                           char *buf)
3230 {
3231         struct ext4_sb_info     *sbi = EXT4_SB(sb);
3232         struct ext4_group_desc  *gdp;
3233         ext4_fsblk_t            first_block, last_block, b;
3234         ext4_group_t            i, ngroups = ext4_get_groups_count(sb);
3235         int                     s, j, count = 0;
3236
3237         if (!ext4_has_feature_bigalloc(sb))
3238                 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3239                         sbi->s_itb_per_group + 2);
3240
3241         first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3242                 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3243         last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3244         for (i = 0; i < ngroups; i++) {
3245                 gdp = ext4_get_group_desc(sb, i, NULL);
3246                 b = ext4_block_bitmap(sb, gdp);
3247                 if (b >= first_block && b <= last_block) {
3248                         ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3249                         count++;
3250                 }
3251                 b = ext4_inode_bitmap(sb, gdp);
3252                 if (b >= first_block && b <= last_block) {
3253                         ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3254                         count++;
3255                 }
3256                 b = ext4_inode_table(sb, gdp);
3257                 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3258                         for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3259                                 int c = EXT4_B2C(sbi, b - first_block);
3260                                 ext4_set_bit(c, buf);
3261                                 count++;
3262                         }
3263                 if (i != grp)
3264                         continue;
3265                 s = 0;
3266                 if (ext4_bg_has_super(sb, grp)) {
3267                         ext4_set_bit(s++, buf);
3268                         count++;
3269                 }
3270                 j = ext4_bg_num_gdb(sb, grp);
3271                 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3272                         ext4_error(sb, "Invalid number of block group "
3273                                    "descriptor blocks: %d", j);
3274                         j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3275                 }
3276                 count += j;
3277                 for (; j > 0; j--)
3278                         ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3279         }
3280         if (!count)
3281                 return 0;
3282         return EXT4_CLUSTERS_PER_GROUP(sb) -
3283                 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3284 }
3285
3286 /*
3287  * Compute the overhead and stash it in sbi->s_overhead
3288  */
3289 int ext4_calculate_overhead(struct super_block *sb)
3290 {
3291         struct ext4_sb_info *sbi = EXT4_SB(sb);
3292         struct ext4_super_block *es = sbi->s_es;
3293         struct inode *j_inode;
3294         unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3295         ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3296         ext4_fsblk_t overhead = 0;
3297         char *buf = (char *) get_zeroed_page(GFP_NOFS);
3298
3299         if (!buf)
3300                 return -ENOMEM;
3301
3302         /*
3303          * Compute the overhead (FS structures).  This is constant
3304          * for a given filesystem unless the number of block groups
3305          * changes so we cache the previous value until it does.
3306          */
3307
3308         /*
3309          * All of the blocks before first_data_block are overhead
3310          */
3311         overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3312
3313         /*
3314          * Add the overhead found in each block group
3315          */
3316         for (i = 0; i < ngroups; i++) {
3317                 int blks;
3318
3319                 blks = count_overhead(sb, i, buf);
3320                 overhead += blks;
3321                 if (blks)
3322                         memset(buf, 0, PAGE_SIZE);
3323                 cond_resched();
3324         }
3325
3326         /*
3327          * Add the internal journal blocks whether the journal has been
3328          * loaded or not
3329          */
3330         if (sbi->s_journal && !sbi->journal_bdev)
3331                 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3332         else if (ext4_has_feature_journal(sb) && !sbi->s_journal) {
3333                 j_inode = ext4_get_journal_inode(sb, j_inum);
3334                 if (j_inode) {
3335                         j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3336                         overhead += EXT4_NUM_B2C(sbi, j_blocks);
3337                         iput(j_inode);
3338                 } else {
3339                         ext4_msg(sb, KERN_ERR, "can't get journal size");
3340                 }
3341         }
3342         sbi->s_overhead = overhead;
3343         smp_wmb();
3344         free_page((unsigned long) buf);
3345         return 0;
3346 }
3347
3348 static void ext4_set_resv_clusters(struct super_block *sb)
3349 {
3350         ext4_fsblk_t resv_clusters;
3351         struct ext4_sb_info *sbi = EXT4_SB(sb);
3352
3353         /*
3354          * There's no need to reserve anything when we aren't using extents.
3355          * The space estimates are exact, there are no unwritten extents,
3356          * hole punching doesn't need new metadata... This is needed especially
3357          * to keep ext2/3 backward compatibility.
3358          */
3359         if (!ext4_has_feature_extents(sb))
3360                 return;
3361         /*
3362          * By default we reserve 2% or 4096 clusters, whichever is smaller.
3363          * This should cover the situations where we can not afford to run
3364          * out of space like for example punch hole, or converting
3365          * unwritten extents in delalloc path. In most cases such
3366          * allocation would require 1, or 2 blocks, higher numbers are
3367          * very rare.
3368          */
3369         resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3370                          sbi->s_cluster_bits);
3371
3372         do_div(resv_clusters, 50);
3373         resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3374
3375         atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3376 }
3377
3378 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3379 {
3380         char *orig_data = kstrdup(data, GFP_KERNEL);
3381         struct buffer_head *bh;
3382         struct ext4_super_block *es = NULL;
3383         struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3384         ext4_fsblk_t block;
3385         ext4_fsblk_t sb_block = get_sb_block(&data);
3386         ext4_fsblk_t logical_sb_block;
3387         unsigned long offset = 0;
3388         unsigned long journal_devnum = 0;
3389         unsigned long def_mount_opts;
3390         struct inode *root;
3391         const char *descr;
3392         int ret = -ENOMEM;
3393         int blocksize, clustersize;
3394         unsigned int db_count;
3395         unsigned int i;
3396         int needs_recovery, has_huge_files, has_bigalloc;
3397         __u64 blocks_count;
3398         int err = 0;
3399         unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3400         ext4_group_t first_not_zeroed;
3401
3402         if ((data && !orig_data) || !sbi)
3403                 goto out_free_base;
3404
3405         sbi->s_blockgroup_lock =
3406                 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3407         if (!sbi->s_blockgroup_lock)
3408                 goto out_free_base;
3409
3410         sb->s_fs_info = sbi;
3411         sbi->s_sb = sb;
3412         sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3413         sbi->s_sb_block = sb_block;
3414         if (sb->s_bdev->bd_part)
3415                 sbi->s_sectors_written_start =
3416                         part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3417
3418         /* Cleanup superblock name */
3419         strreplace(sb->s_id, '/', '!');
3420
3421         /* -EINVAL is default */
3422         ret = -EINVAL;
3423         blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3424         if (!blocksize) {
3425                 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3426                 goto out_fail;
3427         }
3428
3429         /*
3430          * The ext4 superblock will not be buffer aligned for other than 1kB
3431          * block sizes.  We need to calculate the offset from buffer start.
3432          */
3433         if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3434                 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3435                 offset = do_div(logical_sb_block, blocksize);
3436         } else {
3437                 logical_sb_block = sb_block;
3438         }
3439
3440         if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3441                 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3442                 goto out_fail;
3443         }
3444         /*
3445          * Note: s_es must be initialized as soon as possible because
3446          *       some ext4 macro-instructions depend on its value
3447          */
3448         es = (struct ext4_super_block *) (bh->b_data + offset);
3449         sbi->s_es = es;
3450         sb->s_magic = le16_to_cpu(es->s_magic);
3451         if (sb->s_magic != EXT4_SUPER_MAGIC)
3452                 goto cantfind_ext4;
3453         sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3454
3455         /* Warn if metadata_csum and gdt_csum are both set. */
3456         if (ext4_has_feature_metadata_csum(sb) &&
3457             ext4_has_feature_gdt_csum(sb))
3458                 ext4_warning(sb, "metadata_csum and uninit_bg are "
3459                              "redundant flags; please run fsck.");
3460
3461         /* Check for a known checksum algorithm */
3462         if (!ext4_verify_csum_type(sb, es)) {
3463                 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3464                          "unknown checksum algorithm.");
3465                 silent = 1;
3466                 goto cantfind_ext4;
3467         }
3468
3469         /* Load the checksum driver */
3470         if (ext4_has_feature_metadata_csum(sb) ||
3471             ext4_has_feature_ea_inode(sb)) {
3472                 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3473                 if (IS_ERR(sbi->s_chksum_driver)) {
3474                         ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3475                         ret = PTR_ERR(sbi->s_chksum_driver);
3476                         sbi->s_chksum_driver = NULL;
3477                         goto failed_mount;
3478                 }
3479         }
3480
3481         /* Check superblock checksum */
3482         if (!ext4_superblock_csum_verify(sb, es)) {
3483                 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3484                          "invalid superblock checksum.  Run e2fsck?");
3485                 silent = 1;
3486                 ret = -EFSBADCRC;
3487                 goto cantfind_ext4;
3488         }
3489
3490         /* Precompute checksum seed for all metadata */
3491         if (ext4_has_feature_csum_seed(sb))
3492                 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3493         else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
3494                 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3495                                                sizeof(es->s_uuid));
3496
3497         /* Set defaults before we parse the mount options */
3498         def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3499         set_opt(sb, INIT_INODE_TABLE);
3500         if (def_mount_opts & EXT4_DEFM_DEBUG)
3501                 set_opt(sb, DEBUG);
3502         if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3503                 set_opt(sb, GRPID);
3504         if (def_mount_opts & EXT4_DEFM_UID16)
3505                 set_opt(sb, NO_UID32);
3506         /* xattr user namespace & acls are now defaulted on */
3507         set_opt(sb, XATTR_USER);
3508 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3509         set_opt(sb, POSIX_ACL);
3510 #endif
3511         /* don't forget to enable journal_csum when metadata_csum is enabled. */
3512         if (ext4_has_metadata_csum(sb))
3513                 set_opt(sb, JOURNAL_CHECKSUM);
3514
3515         if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3516                 set_opt(sb, JOURNAL_DATA);
3517         else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3518                 set_opt(sb, ORDERED_DATA);
3519         else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3520                 set_opt(sb, WRITEBACK_DATA);
3521
3522         if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3523                 set_opt(sb, ERRORS_PANIC);
3524         else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3525                 set_opt(sb, ERRORS_CONT);
3526         else
3527                 set_opt(sb, ERRORS_RO);
3528         /* block_validity enabled by default; disable with noblock_validity */
3529         set_opt(sb, BLOCK_VALIDITY);
3530         if (def_mount_opts & EXT4_DEFM_DISCARD)
3531                 set_opt(sb, DISCARD);
3532
3533         sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3534         sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3535         sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3536         sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3537         sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3538
3539         if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3540                 set_opt(sb, BARRIER);
3541
3542         /*
3543          * enable delayed allocation by default
3544          * Use -o nodelalloc to turn it off
3545          */
3546         if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3547             ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3548                 set_opt(sb, DELALLOC);
3549
3550         /*
3551          * set default s_li_wait_mult for lazyinit, for the case there is
3552          * no mount option specified.
3553          */
3554         sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3555
3556         if (sbi->s_es->s_mount_opts[0]) {
3557                 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
3558                                               sizeof(sbi->s_es->s_mount_opts),
3559                                               GFP_KERNEL);
3560                 if (!s_mount_opts)
3561                         goto failed_mount;
3562                 if (!parse_options(s_mount_opts, sb, &journal_devnum,
3563                                    &journal_ioprio, 0)) {
3564                         ext4_msg(sb, KERN_WARNING,
3565                                  "failed to parse options in superblock: %s",
3566                                  s_mount_opts);
3567                 }
3568                 kfree(s_mount_opts);
3569         }
3570         sbi->s_def_mount_opt = sbi->s_mount_opt;
3571         if (!parse_options((char *) data, sb, &journal_devnum,
3572                            &journal_ioprio, 0))
3573                 goto failed_mount;
3574
3575         if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3576                 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3577                             "with data=journal disables delayed "
3578                             "allocation and O_DIRECT support!\n");
3579                 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3580                         ext4_msg(sb, KERN_ERR, "can't mount with "
3581                                  "both data=journal and delalloc");
3582                         goto failed_mount;
3583                 }
3584                 if (test_opt(sb, DIOREAD_NOLOCK)) {
3585                         ext4_msg(sb, KERN_ERR, "can't mount with "
3586                                  "both data=journal and dioread_nolock");
3587                         goto failed_mount;
3588                 }
3589                 if (test_opt(sb, DAX)) {
3590                         ext4_msg(sb, KERN_ERR, "can't mount with "
3591                                  "both data=journal and dax");
3592                         goto failed_mount;
3593                 }
3594                 if (ext4_has_feature_encrypt(sb)) {
3595                         ext4_msg(sb, KERN_WARNING,
3596                                  "encrypted files will use data=ordered "
3597                                  "instead of data journaling mode");
3598                 }
3599                 if (test_opt(sb, DELALLOC))
3600                         clear_opt(sb, DELALLOC);
3601         } else {
3602                 sb->s_iflags |= SB_I_CGROUPWB;
3603         }
3604
3605         sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3606                 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3607
3608         if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3609             (ext4_has_compat_features(sb) ||
3610              ext4_has_ro_compat_features(sb) ||
3611              ext4_has_incompat_features(sb)))
3612                 ext4_msg(sb, KERN_WARNING,
3613                        "feature flags set on rev 0 fs, "
3614                        "running e2fsck is recommended");
3615
3616         if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3617                 set_opt2(sb, HURD_COMPAT);
3618                 if (ext4_has_feature_64bit(sb)) {
3619                         ext4_msg(sb, KERN_ERR,
3620                                  "The Hurd can't support 64-bit file systems");
3621                         goto failed_mount;
3622                 }
3623
3624                 /*
3625                  * ea_inode feature uses l_i_version field which is not
3626                  * available in HURD_COMPAT mode.
3627                  */
3628                 if (ext4_has_feature_ea_inode(sb)) {
3629                         ext4_msg(sb, KERN_ERR,
3630                                  "ea_inode feature is not supported for Hurd");
3631                         goto failed_mount;
3632                 }
3633         }
3634
3635         if (IS_EXT2_SB(sb)) {
3636                 if (ext2_feature_set_ok(sb))
3637                         ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3638                                  "using the ext4 subsystem");
3639                 else {
3640                         ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3641                                  "to feature incompatibilities");
3642                         goto failed_mount;
3643                 }
3644         }
3645
3646         if (IS_EXT3_SB(sb)) {
3647                 if (ext3_feature_set_ok(sb))
3648                         ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3649                                  "using the ext4 subsystem");
3650                 else {
3651                         ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3652                                  "to feature incompatibilities");
3653                         goto failed_mount;
3654                 }
3655         }
3656
3657         /*
3658          * Check feature flags regardless of the revision level, since we
3659          * previously didn't change the revision level when setting the flags,
3660          * so there is a chance incompat flags are set on a rev 0 filesystem.
3661          */
3662         if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3663                 goto failed_mount;
3664
3665         blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3666         if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3667             blocksize > EXT4_MAX_BLOCK_SIZE) {
3668                 ext4_msg(sb, KERN_ERR,
3669                        "Unsupported filesystem blocksize %d (%d log_block_size)",
3670                          blocksize, le32_to_cpu(es->s_log_block_size));
3671                 goto failed_mount;
3672         }
3673         if (le32_to_cpu(es->s_log_block_size) >
3674             (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3675                 ext4_msg(sb, KERN_ERR,
3676                          "Invalid log block size: %u",
3677                          le32_to_cpu(es->s_log_block_size));
3678                 goto failed_mount;
3679         }
3680
3681         if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
3682                 ext4_msg(sb, KERN_ERR,
3683                          "Number of reserved GDT blocks insanely large: %d",
3684                          le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
3685                 goto failed_mount;
3686         }
3687
3688         if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3689                 err = bdev_dax_supported(sb, blocksize);
3690                 if (err)
3691                         goto failed_mount;
3692         }
3693
3694         if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3695                 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3696                          es->s_encryption_level);
3697                 goto failed_mount;
3698         }
3699
3700         if (sb->s_blocksize != blocksize) {
3701                 /* Validate the filesystem blocksize */
3702                 if (!sb_set_blocksize(sb, blocksize)) {
3703                         ext4_msg(sb, KERN_ERR, "bad block size %d",
3704                                         blocksize);
3705                         goto failed_mount;
3706                 }
3707
3708                 brelse(bh);
3709                 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3710                 offset = do_div(logical_sb_block, blocksize);
3711                 bh = sb_bread_unmovable(sb, logical_sb_block);
3712                 if (!bh) {
3713                         ext4_msg(sb, KERN_ERR,
3714                                "Can't read superblock on 2nd try");
3715                         goto failed_mount;
3716                 }
3717                 es = (struct ext4_super_block *)(bh->b_data + offset);
3718                 sbi->s_es = es;
3719                 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3720                         ext4_msg(sb, KERN_ERR,
3721                                "Magic mismatch, very weird!");
3722                         goto failed_mount;
3723                 }
3724         }
3725
3726         has_huge_files = ext4_has_feature_huge_file(sb);
3727         sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3728                                                       has_huge_files);
3729         sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3730
3731         if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3732                 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3733                 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3734         } else {
3735                 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3736                 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3737                 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3738                     (!is_power_of_2(sbi->s_inode_size)) ||
3739                     (sbi->s_inode_size > blocksize)) {
3740                         ext4_msg(sb, KERN_ERR,
3741                                "unsupported inode size: %d",
3742                                sbi->s_inode_size);
3743                         goto failed_mount;
3744                 }
3745                 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3746                         sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3747         }
3748
3749         sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3750         if (ext4_has_feature_64bit(sb)) {
3751                 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3752                     sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3753                     !is_power_of_2(sbi->s_desc_size)) {
3754                         ext4_msg(sb, KERN_ERR,
3755                                "unsupported descriptor size %lu",
3756                                sbi->s_desc_size);
3757                         goto failed_mount;
3758                 }
3759         } else
3760                 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3761
3762         sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3763         sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3764
3765         sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3766         if (sbi->s_inodes_per_block == 0)
3767                 goto cantfind_ext4;
3768         if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
3769             sbi->s_inodes_per_group > blocksize * 8) {
3770                 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
3771                          sbi->s_blocks_per_group);
3772                 goto failed_mount;
3773         }
3774         sbi->s_itb_per_group = sbi->s_inodes_per_group /
3775                                         sbi->s_inodes_per_block;
3776         sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3777         sbi->s_sbh = bh;
3778         sbi->s_mount_state = le16_to_cpu(es->s_state);
3779         sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3780         sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3781
3782         for (i = 0; i < 4; i++)
3783                 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3784         sbi->s_def_hash_version = es->s_def_hash_version;
3785         if (ext4_has_feature_dir_index(sb)) {
3786                 i = le32_to_cpu(es->s_flags);
3787                 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3788                         sbi->s_hash_unsigned = 3;
3789                 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3790 #ifdef __CHAR_UNSIGNED__
3791                         if (!(sb->s_flags & MS_RDONLY))
3792                                 es->s_flags |=
3793                                         cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3794                         sbi->s_hash_unsigned = 3;
3795 #else
3796                         if (!(sb->s_flags & MS_RDONLY))
3797                                 es->s_flags |=
3798                                         cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3799 #endif
3800                 }
3801         }
3802
3803         /* Handle clustersize */
3804         clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3805         has_bigalloc = ext4_has_feature_bigalloc(sb);
3806         if (has_bigalloc) {
3807                 if (clustersize < blocksize) {
3808                         ext4_msg(sb, KERN_ERR,
3809                                  "cluster size (%d) smaller than "
3810                                  "block size (%d)", clustersize, blocksize);
3811                         goto failed_mount;
3812                 }
3813                 if (le32_to_cpu(es->s_log_cluster_size) >
3814                     (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3815                         ext4_msg(sb, KERN_ERR,
3816                                  "Invalid log cluster size: %u",
3817                                  le32_to_cpu(es->s_log_cluster_size));
3818                         goto failed_mount;
3819                 }
3820                 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3821                         le32_to_cpu(es->s_log_block_size);
3822                 sbi->s_clusters_per_group =
3823                         le32_to_cpu(es->s_clusters_per_group);
3824                 if (sbi->s_clusters_per_group > blocksize * 8) {
3825                         ext4_msg(sb, KERN_ERR,
3826                                  "#clusters per group too big: %lu",
3827                                  sbi->s_clusters_per_group);
3828                         goto failed_mount;
3829                 }
3830                 if (sbi->s_blocks_per_group !=
3831                     (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3832                         ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3833                                  "clusters per group (%lu) inconsistent",
3834                                  sbi->s_blocks_per_group,
3835                                  sbi->s_clusters_per_group);
3836                         goto failed_mount;
3837                 }
3838         } else {
3839                 if (clustersize != blocksize) {
3840                         ext4_warning(sb, "fragment/cluster size (%d) != "
3841                                      "block size (%d)", clustersize,
3842                                      blocksize);
3843                         clustersize = blocksize;
3844                 }
3845                 if (sbi->s_blocks_per_group > blocksize * 8) {
3846                         ext4_msg(sb, KERN_ERR,
3847                                  "#blocks per group too big: %lu",
3848                                  sbi->s_blocks_per_group);
3849                         goto failed_mount;
3850                 }
3851                 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3852                 sbi->s_cluster_bits = 0;
3853         }
3854         sbi->s_cluster_ratio = clustersize / blocksize;
3855
3856         /* Do we have standard group size of clustersize * 8 blocks ? */
3857         if (sbi->s_blocks_per_group == clustersize << 3)
3858                 set_opt2(sb, STD_GROUP_SIZE);
3859
3860         /*
3861          * Test whether we have more sectors than will fit in sector_t,
3862          * and whether the max offset is addressable by the page cache.
3863          */
3864         err = generic_check_addressable(sb->s_blocksize_bits,
3865                                         ext4_blocks_count(es));
3866         if (err) {
3867                 ext4_msg(sb, KERN_ERR, "filesystem"
3868                          " too large to mount safely on this system");
3869                 if (sizeof(sector_t) < 8)
3870                         ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3871                 goto failed_mount;
3872         }
3873
3874         if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3875                 goto cantfind_ext4;
3876
3877         /* check blocks count against device size */
3878         blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3879         if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3880                 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3881                        "exceeds size of device (%llu blocks)",
3882                        ext4_blocks_count(es), blocks_count);
3883                 goto failed_mount;
3884         }
3885
3886         /*
3887          * It makes no sense for the first data block to be beyond the end
3888          * of the filesystem.
3889          */
3890         if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3891                 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3892                          "block %u is beyond end of filesystem (%llu)",
3893                          le32_to_cpu(es->s_first_data_block),
3894                          ext4_blocks_count(es));
3895                 goto failed_mount;
3896         }
3897         blocks_count = (ext4_blocks_count(es) -
3898                         le32_to_cpu(es->s_first_data_block) +
3899                         EXT4_BLOCKS_PER_GROUP(sb) - 1);
3900         do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3901         if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3902                 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3903                        "(block count %llu, first data block %u, "
3904                        "blocks per group %lu)", sbi->s_groups_count,
3905                        ext4_blocks_count(es),
3906                        le32_to_cpu(es->s_first_data_block),
3907                        EXT4_BLOCKS_PER_GROUP(sb));
3908                 goto failed_mount;
3909         }
3910         sbi->s_groups_count = blocks_count;
3911         sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3912                         (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3913         db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3914                    EXT4_DESC_PER_BLOCK(sb);
3915         if (ext4_has_feature_meta_bg(sb)) {
3916                 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
3917                         ext4_msg(sb, KERN_WARNING,
3918                                  "first meta block group too large: %u "
3919                                  "(group descriptor block count %u)",
3920                                  le32_to_cpu(es->s_first_meta_bg), db_count);
3921                         goto failed_mount;
3922                 }
3923         }
3924         sbi->s_group_desc = kvmalloc(db_count *
3925                                           sizeof(struct buffer_head *),
3926                                           GFP_KERNEL);
3927         if (sbi->s_group_desc == NULL) {
3928                 ext4_msg(sb, KERN_ERR, "not enough memory");
3929                 ret = -ENOMEM;
3930                 goto failed_mount;
3931         }
3932
3933         bgl_lock_init(sbi->s_blockgroup_lock);
3934
3935         /* Pre-read the descriptors into the buffer cache */
3936         for (i = 0; i < db_count; i++) {
3937                 block = descriptor_loc(sb, logical_sb_block, i);
3938                 sb_breadahead(sb, block);
3939         }
3940
3941         for (i = 0; i < db_count; i++) {
3942                 block = descriptor_loc(sb, logical_sb_block, i);
3943                 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
3944                 if (!sbi->s_group_desc[i]) {
3945                         ext4_msg(sb, KERN_ERR,
3946                                "can't read group descriptor %d", i);
3947                         db_count = i;
3948                         goto failed_mount2;
3949                 }
3950         }
3951         if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
3952                 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3953                 ret = -EFSCORRUPTED;
3954                 goto failed_mount2;
3955         }
3956
3957         sbi->s_gdb_count = db_count;
3958         get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3959         spin_lock_init(&sbi->s_next_gen_lock);
3960
3961         setup_timer(&sbi->s_err_report, print_daily_error_info,
3962                 (unsigned long) sb);
3963
3964         /* Register extent status tree shrinker */
3965         if (ext4_es_register_shrinker(sbi))
3966                 goto failed_mount3;
3967
3968         sbi->s_stripe = ext4_get_stripe_size(sbi);
3969         sbi->s_extent_max_zeroout_kb = 32;
3970
3971         /*
3972          * set up enough so that it can read an inode
3973          */
3974         sb->s_op = &ext4_sops;
3975         sb->s_export_op = &ext4_export_ops;
3976         sb->s_xattr = ext4_xattr_handlers;
3977         sb->s_cop = &ext4_cryptops;
3978 #ifdef CONFIG_QUOTA
3979         sb->dq_op = &ext4_quota_operations;
3980         if (ext4_has_feature_quota(sb))
3981                 sb->s_qcop = &dquot_quotactl_sysfile_ops;
3982         else
3983                 sb->s_qcop = &ext4_qctl_operations;
3984         sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3985 #endif
3986         memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3987
3988         INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3989         mutex_init(&sbi->s_orphan_lock);
3990
3991         sb->s_root = NULL;
3992
3993         needs_recovery = (es->s_last_orphan != 0 ||
3994                           ext4_has_feature_journal_needs_recovery(sb));
3995
3996         if (ext4_has_feature_mmp(sb) && !(sb->s_flags & MS_RDONLY))
3997                 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3998                         goto failed_mount3a;
3999
4000         /*
4001          * The first inode we look at is the journal inode.  Don't try
4002          * root first: it may be modified in the journal!
4003          */
4004         if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4005                 err = ext4_load_journal(sb, es, journal_devnum);
4006                 if (err)
4007                         goto failed_mount3a;
4008         } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
4009                    ext4_has_feature_journal_needs_recovery(sb)) {
4010                 ext4_msg(sb, KERN_ERR, "required journal recovery "
4011                        "suppressed and not mounted read-only");
4012                 goto failed_mount_wq;
4013         } else {
4014                 /* Nojournal mode, all journal mount options are illegal */
4015                 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4016                         ext4_msg(sb, KERN_ERR, "can't mount with "
4017                                  "journal_checksum, fs mounted w/o journal");
4018                         goto failed_mount_wq;
4019                 }
4020                 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4021                         ext4_msg(sb, KERN_ERR, "can't mount with "
4022                                  "journal_async_commit, fs mounted w/o journal");
4023                         goto failed_mount_wq;
4024                 }
4025                 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4026                         ext4_msg(sb, KERN_ERR, "can't mount with "
4027                                  "commit=%lu, fs mounted w/o journal",
4028                                  sbi->s_commit_interval / HZ);
4029                         goto failed_mount_wq;
4030                 }
4031                 if (EXT4_MOUNT_DATA_FLAGS &
4032                     (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4033                         ext4_msg(sb, KERN_ERR, "can't mount with "
4034                                  "data=, fs mounted w/o journal");
4035                         goto failed_mount_wq;
4036                 }
4037                 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM;
4038                 clear_opt(sb, JOURNAL_CHECKSUM);
4039                 clear_opt(sb, DATA_FLAGS);
4040                 sbi->s_journal = NULL;
4041                 needs_recovery = 0;
4042                 goto no_journal;
4043         }
4044
4045         if (ext4_has_feature_64bit(sb) &&
4046             !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4047                                        JBD2_FEATURE_INCOMPAT_64BIT)) {
4048                 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4049                 goto failed_mount_wq;
4050         }
4051
4052         if (!set_journal_csum_feature_set(sb)) {
4053                 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4054                          "feature set");
4055                 goto failed_mount_wq;
4056         }
4057
4058         /* We have now updated the journal if required, so we can
4059          * validate the data journaling mode. */
4060         switch (test_opt(sb, DATA_FLAGS)) {
4061         case 0:
4062                 /* No mode set, assume a default based on the journal
4063                  * capabilities: ORDERED_DATA if the journal can
4064                  * cope, else JOURNAL_DATA
4065                  */
4066                 if (jbd2_journal_check_available_features
4067                     (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
4068                         set_opt(sb, ORDERED_DATA);
4069                 else
4070                         set_opt(sb, JOURNAL_DATA);
4071                 break;
4072
4073         case EXT4_MOUNT_ORDERED_DATA:
4074         case EXT4_MOUNT_WRITEBACK_DATA:
4075                 if (!jbd2_journal_check_available_features
4076                     (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4077                         ext4_msg(sb, KERN_ERR, "Journal does not support "
4078                                "requested data journaling mode");
4079                         goto failed_mount_wq;
4080                 }
4081         default:
4082                 break;
4083         }
4084
4085         if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4086             test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4087                 ext4_msg(sb, KERN_ERR, "can't mount with "
4088                         "journal_async_commit in data=ordered mode");
4089                 goto failed_mount_wq;
4090         }
4091
4092         set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4093
4094         sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4095
4096 no_journal:
4097         if (!test_opt(sb, NO_MBCACHE)) {
4098                 sbi->s_ea_block_cache = ext4_xattr_create_cache();
4099                 if (!sbi->s_ea_block_cache) {
4100                         ext4_msg(sb, KERN_ERR,
4101                                  "Failed to create ea_block_cache");
4102                         goto failed_mount_wq;
4103                 }
4104
4105                 if (ext4_has_feature_ea_inode(sb)) {
4106                         sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4107                         if (!sbi->s_ea_inode_cache) {
4108                                 ext4_msg(sb, KERN_ERR,
4109                                          "Failed to create ea_inode_cache");
4110                                 goto failed_mount_wq;
4111                         }
4112                 }
4113         }
4114
4115         if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
4116             (blocksize != PAGE_SIZE)) {
4117                 ext4_msg(sb, KERN_ERR,
4118                          "Unsupported blocksize for fs encryption");
4119                 goto failed_mount_wq;
4120         }
4121
4122         if (DUMMY_ENCRYPTION_ENABLED(sbi) && !(sb->s_flags & MS_RDONLY) &&
4123             !ext4_has_feature_encrypt(sb)) {
4124                 ext4_set_feature_encrypt(sb);
4125                 ext4_commit_super(sb, 1);
4126         }
4127
4128         /*
4129          * Get the # of file system overhead blocks from the
4130          * superblock if present.
4131          */
4132         if (es->s_overhead_clusters)
4133                 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4134         else {
4135                 err = ext4_calculate_overhead(sb);
4136                 if (err)
4137                         goto failed_mount_wq;
4138         }
4139
4140         /*
4141          * The maximum number of concurrent works can be high and
4142          * concurrency isn't really necessary.  Limit it to 1.
4143          */
4144         EXT4_SB(sb)->rsv_conversion_wq =
4145                 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4146         if (!EXT4_SB(sb)->rsv_conversion_wq) {
4147                 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4148                 ret = -ENOMEM;
4149                 goto failed_mount4;
4150         }
4151
4152         /*
4153          * The jbd2_journal_load will have done any necessary log recovery,
4154          * so we can safely mount the rest of the filesystem now.
4155          */
4156
4157         root = ext4_iget(sb, EXT4_ROOT_INO);
4158         if (IS_ERR(root)) {
4159                 ext4_msg(sb, KERN_ERR, "get root inode failed");
4160                 ret = PTR_ERR(root);
4161                 root = NULL;
4162                 goto failed_mount4;
4163         }
4164         if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4165                 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4166                 iput(root);
4167                 goto failed_mount4;
4168         }
4169         sb->s_root = d_make_root(root);
4170         if (!sb->s_root) {
4171                 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4172                 ret = -ENOMEM;
4173                 goto failed_mount4;
4174         }
4175
4176         if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
4177                 sb->s_flags |= MS_RDONLY;
4178
4179         /* determine the minimum size of new large inodes, if present */
4180         if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE &&
4181             sbi->s_want_extra_isize == 0) {
4182                 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4183                                                      EXT4_GOOD_OLD_INODE_SIZE;
4184                 if (ext4_has_feature_extra_isize(sb)) {
4185                         if (sbi->s_want_extra_isize <
4186                             le16_to_cpu(es->s_want_extra_isize))
4187                                 sbi->s_want_extra_isize =
4188                                         le16_to_cpu(es->s_want_extra_isize);
4189                         if (sbi->s_want_extra_isize <
4190                             le16_to_cpu(es->s_min_extra_isize))
4191                                 sbi->s_want_extra_isize =
4192                                         le16_to_cpu(es->s_min_extra_isize);
4193                 }
4194         }
4195         /* Check if enough inode space is available */
4196         if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4197                                                         sbi->s_inode_size) {
4198                 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4199                                                        EXT4_GOOD_OLD_INODE_SIZE;
4200                 ext4_msg(sb, KERN_INFO, "required extra inode space not"
4201                          "available");
4202         }
4203
4204         ext4_set_resv_clusters(sb);
4205
4206         err = ext4_setup_system_zone(sb);
4207         if (err) {
4208                 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4209                          "zone (%d)", err);
4210                 goto failed_mount4a;
4211         }
4212
4213         ext4_ext_init(sb);
4214         err = ext4_mb_init(sb);
4215         if (err) {
4216                 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4217                          err);
4218                 goto failed_mount5;
4219         }
4220
4221         block = ext4_count_free_clusters(sb);
4222         ext4_free_blocks_count_set(sbi->s_es, 
4223                                    EXT4_C2B(sbi, block));
4224         err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4225                                   GFP_KERNEL);
4226         if (!err) {
4227                 unsigned long freei = ext4_count_free_inodes(sb);
4228                 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4229                 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4230                                           GFP_KERNEL);
4231         }
4232         if (!err)
4233                 err = percpu_counter_init(&sbi->s_dirs_counter,
4234                                           ext4_count_dirs(sb), GFP_KERNEL);
4235         if (!err)
4236                 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4237                                           GFP_KERNEL);
4238         if (!err)
4239                 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem);
4240
4241         if (err) {
4242                 ext4_msg(sb, KERN_ERR, "insufficient memory");
4243                 goto failed_mount6;
4244         }
4245
4246         if (ext4_has_feature_flex_bg(sb))
4247                 if (!ext4_fill_flex_info(sb)) {
4248                         ext4_msg(sb, KERN_ERR,
4249                                "unable to initialize "
4250                                "flex_bg meta info!");
4251                         goto failed_mount6;
4252                 }
4253
4254         err = ext4_register_li_request(sb, first_not_zeroed);
4255         if (err)
4256                 goto failed_mount6;
4257
4258         err = ext4_register_sysfs(sb);
4259         if (err)
4260                 goto failed_mount7;
4261
4262 #ifdef CONFIG_QUOTA
4263         /* Enable quota usage during mount. */
4264         if (ext4_has_feature_quota(sb) && !(sb->s_flags & MS_RDONLY)) {
4265                 err = ext4_enable_quotas(sb);
4266                 if (err)
4267                         goto failed_mount8;
4268         }
4269 #endif  /* CONFIG_QUOTA */
4270
4271         EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4272         ext4_orphan_cleanup(sb, es);
4273         EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4274         if (needs_recovery) {
4275                 ext4_msg(sb, KERN_INFO, "recovery complete");
4276                 ext4_mark_recovery_complete(sb, es);
4277         }
4278         if (EXT4_SB(sb)->s_journal) {
4279                 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4280                         descr = " journalled data mode";
4281                 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4282                         descr = " ordered data mode";
4283                 else
4284                         descr = " writeback data mode";
4285         } else
4286                 descr = "out journal";
4287
4288         if (test_opt(sb, DISCARD)) {
4289                 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4290                 if (!blk_queue_discard(q))
4291                         ext4_msg(sb, KERN_WARNING,
4292                                  "mounting with \"discard\" option, but "
4293                                  "the device does not support discard");
4294         }
4295
4296         if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4297                 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4298                          "Opts: %.*s%s%s", descr,
4299                          (int) sizeof(sbi->s_es->s_mount_opts),
4300                          sbi->s_es->s_mount_opts,
4301                          *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4302
4303         if (es->s_error_count)
4304                 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4305
4306         /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4307         ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4308         ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4309         ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4310
4311         kfree(orig_data);
4312         return 0;
4313
4314 cantfind_ext4:
4315         if (!silent)
4316                 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4317         goto failed_mount;
4318
4319 #ifdef CONFIG_QUOTA
4320 failed_mount8:
4321         ext4_unregister_sysfs(sb);
4322 #endif
4323 failed_mount7:
4324         ext4_unregister_li_request(sb);
4325 failed_mount6:
4326         ext4_mb_release(sb);
4327         if (sbi->s_flex_groups)
4328                 kvfree(sbi->s_flex_groups);
4329         percpu_counter_destroy(&sbi->s_freeclusters_counter);
4330         percpu_counter_destroy(&sbi->s_freeinodes_counter);
4331         percpu_counter_destroy(&sbi->s_dirs_counter);
4332         percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4333 failed_mount5:
4334         ext4_ext_release(sb);
4335         ext4_release_system_zone(sb);
4336 failed_mount4a:
4337         dput(sb->s_root);
4338         sb->s_root = NULL;
4339 failed_mount4:
4340         ext4_msg(sb, KERN_ERR, "mount failed");
4341         if (EXT4_SB(sb)->rsv_conversion_wq)
4342                 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4343 failed_mount_wq:
4344         if (sbi->s_ea_inode_cache) {
4345                 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
4346                 sbi->s_ea_inode_cache = NULL;
4347         }
4348         if (sbi->s_ea_block_cache) {
4349                 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
4350                 sbi->s_ea_block_cache = NULL;
4351         }
4352         if (sbi->s_journal) {
4353                 jbd2_journal_destroy(sbi->s_journal);
4354                 sbi->s_journal = NULL;
4355         }
4356 failed_mount3a:
4357         ext4_es_unregister_shrinker(sbi);
4358 failed_mount3:
4359         del_timer_sync(&sbi->s_err_report);
4360         if (sbi->s_mmp_tsk)
4361                 kthread_stop(sbi->s_mmp_tsk);
4362 failed_mount2:
4363         for (i = 0; i < db_count; i++)
4364                 brelse(sbi->s_group_desc[i]);
4365         kvfree(sbi->s_group_desc);
4366 failed_mount:
4367         if (sbi->s_chksum_driver)
4368                 crypto_free_shash(sbi->s_chksum_driver);
4369 #ifdef CONFIG_QUOTA
4370         for (i = 0; i < EXT4_MAXQUOTAS; i++)
4371                 kfree(sbi->s_qf_names[i]);
4372 #endif
4373         ext4_blkdev_remove(sbi);
4374         brelse(bh);
4375 out_fail:
4376         sb->s_fs_info = NULL;
4377         kfree(sbi->s_blockgroup_lock);
4378 out_free_base:
4379         kfree(sbi);
4380         kfree(orig_data);
4381         return err ? err : ret;
4382 }
4383
4384 /*
4385  * Setup any per-fs journal parameters now.  We'll do this both on
4386  * initial mount, once the journal has been initialised but before we've
4387  * done any recovery; and again on any subsequent remount.
4388  */
4389 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4390 {
4391         struct ext4_sb_info *sbi = EXT4_SB(sb);
4392
4393         journal->j_commit_interval = sbi->s_commit_interval;
4394         journal->j_min_batch_time = sbi->s_min_batch_time;
4395         journal->j_max_batch_time = sbi->s_max_batch_time;
4396
4397         write_lock(&journal->j_state_lock);
4398         if (test_opt(sb, BARRIER))
4399                 journal->j_flags |= JBD2_BARRIER;
4400         else
4401                 journal->j_flags &= ~JBD2_BARRIER;
4402         if (test_opt(sb, DATA_ERR_ABORT))
4403                 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4404         else
4405                 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4406         write_unlock(&journal->j_state_lock);
4407 }
4408
4409 static struct inode *ext4_get_journal_inode(struct super_block *sb,
4410                                              unsigned int journal_inum)
4411 {
4412         struct inode *journal_inode;
4413
4414         /*
4415          * Test for the existence of a valid inode on disk.  Bad things
4416          * happen if we iget() an unused inode, as the subsequent iput()
4417          * will try to delete it.
4418          */
4419         journal_inode = ext4_iget(sb, journal_inum);
4420         if (IS_ERR(journal_inode)) {
4421                 ext4_msg(sb, KERN_ERR, "no journal found");
4422                 return NULL;
4423         }
4424         if (!journal_inode->i_nlink) {
4425                 make_bad_inode(journal_inode);
4426                 iput(journal_inode);
4427                 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4428                 return NULL;
4429         }
4430
4431         jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4432                   journal_inode, journal_inode->i_size);
4433         if (!S_ISREG(journal_inode->i_mode)) {
4434                 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4435                 iput(journal_inode);
4436                 return NULL;
4437         }
4438         return journal_inode;
4439 }
4440
4441 static journal_t *ext4_get_journal(struct super_block *sb,
4442                                    unsigned int journal_inum)
4443 {
4444         struct inode *journal_inode;
4445         journal_t *journal;
4446
4447         BUG_ON(!ext4_has_feature_journal(sb));
4448
4449         journal_inode = ext4_get_journal_inode(sb, journal_inum);
4450         if (!journal_inode)
4451                 return NULL;
4452
4453         journal = jbd2_journal_init_inode(journal_inode);
4454         if (!journal) {
4455                 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4456                 iput(journal_inode);
4457                 return NULL;
4458         }
4459         journal->j_private = sb;
4460         ext4_init_journal_params(sb, journal);
4461         return journal;
4462 }
4463
4464 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4465                                        dev_t j_dev)
4466 {
4467         struct buffer_head *bh;
4468         journal_t *journal;
4469         ext4_fsblk_t start;
4470         ext4_fsblk_t len;
4471         int hblock, blocksize;
4472         ext4_fsblk_t sb_block;
4473         unsigned long offset;
4474         struct ext4_super_block *es;
4475         struct block_device *bdev;
4476
4477         BUG_ON(!ext4_has_feature_journal(sb));
4478
4479         bdev = ext4_blkdev_get(j_dev, sb);
4480         if (bdev == NULL)
4481                 return NULL;
4482
4483         blocksize = sb->s_blocksize;
4484         hblock = bdev_logical_block_size(bdev);
4485         if (blocksize < hblock) {
4486                 ext4_msg(sb, KERN_ERR,
4487                         "blocksize too small for journal device");
4488                 goto out_bdev;
4489         }
4490
4491         sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4492         offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4493         set_blocksize(bdev, blocksize);
4494         if (!(bh = __bread(bdev, sb_block, blocksize))) {
4495                 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4496                        "external journal");
4497                 goto out_bdev;
4498         }
4499
4500         es = (struct ext4_super_block *) (bh->b_data + offset);
4501         if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4502             !(le32_to_cpu(es->s_feature_incompat) &
4503               EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4504                 ext4_msg(sb, KERN_ERR, "external journal has "
4505                                         "bad superblock");
4506                 brelse(bh);
4507                 goto out_bdev;
4508         }
4509
4510         if ((le32_to_cpu(es->s_feature_ro_compat) &
4511              EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4512             es->s_checksum != ext4_superblock_csum(sb, es)) {
4513                 ext4_msg(sb, KERN_ERR, "external journal has "
4514                                        "corrupt superblock");
4515                 brelse(bh);
4516                 goto out_bdev;
4517         }
4518
4519         if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4520                 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4521                 brelse(bh);
4522                 goto out_bdev;
4523         }
4524
4525         len = ext4_blocks_count(es);
4526         start = sb_block + 1;
4527         brelse(bh);     /* we're done with the superblock */
4528
4529         journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4530                                         start, len, blocksize);
4531         if (!journal) {
4532                 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4533                 goto out_bdev;
4534         }
4535         journal->j_private = sb;
4536         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4537         wait_on_buffer(journal->j_sb_buffer);
4538         if (!buffer_uptodate(journal->j_sb_buffer)) {
4539                 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4540                 goto out_journal;
4541         }
4542         if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4543                 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4544                                         "user (unsupported) - %d",
4545                         be32_to_cpu(journal->j_superblock->s_nr_users));
4546                 goto out_journal;
4547         }
4548         EXT4_SB(sb)->journal_bdev = bdev;
4549         ext4_init_journal_params(sb, journal);
4550         return journal;
4551
4552 out_journal:
4553         jbd2_journal_destroy(journal);
4554 out_bdev:
4555         ext4_blkdev_put(bdev);
4556         return NULL;
4557 }
4558
4559 static int ext4_load_journal(struct super_block *sb,
4560                              struct ext4_super_block *es,
4561                              unsigned long journal_devnum)
4562 {
4563         journal_t *journal;
4564         unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4565         dev_t journal_dev;
4566         int err = 0;
4567         int really_read_only;
4568
4569         BUG_ON(!ext4_has_feature_journal(sb));
4570
4571         if (journal_devnum &&
4572             journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4573                 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4574                         "numbers have changed");
4575                 journal_dev = new_decode_dev(journal_devnum);
4576         } else
4577                 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4578
4579         really_read_only = bdev_read_only(sb->s_bdev);
4580
4581         /*
4582          * Are we loading a blank journal or performing recovery after a
4583          * crash?  For recovery, we need to check in advance whether we
4584          * can get read-write access to the device.
4585          */
4586         if (ext4_has_feature_journal_needs_recovery(sb)) {
4587                 if (sb->s_flags & MS_RDONLY) {
4588                         ext4_msg(sb, KERN_INFO, "INFO: recovery "
4589                                         "required on readonly filesystem");
4590                         if (really_read_only) {
4591                                 ext4_msg(sb, KERN_ERR, "write access "
4592                                         "unavailable, cannot proceed");
4593                                 return -EROFS;
4594                         }
4595                         ext4_msg(sb, KERN_INFO, "write access will "
4596                                "be enabled during recovery");
4597                 }
4598         }
4599
4600         if (journal_inum && journal_dev) {
4601                 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4602                        "and inode journals!");
4603                 return -EINVAL;
4604         }
4605
4606         if (journal_inum) {
4607                 if (!(journal = ext4_get_journal(sb, journal_inum)))
4608                         return -EINVAL;
4609         } else {
4610                 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4611                         return -EINVAL;
4612         }
4613
4614         if (!(journal->j_flags & JBD2_BARRIER))
4615                 ext4_msg(sb, KERN_INFO, "barriers disabled");
4616
4617         if (!ext4_has_feature_journal_needs_recovery(sb))
4618                 err = jbd2_journal_wipe(journal, !really_read_only);
4619         if (!err) {
4620                 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4621                 if (save)
4622                         memcpy(save, ((char *) es) +
4623                                EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4624                 err = jbd2_journal_load(journal);
4625                 if (save)
4626                         memcpy(((char *) es) + EXT4_S_ERR_START,
4627                                save, EXT4_S_ERR_LEN);
4628                 kfree(save);
4629         }
4630
4631         if (err) {
4632                 ext4_msg(sb, KERN_ERR, "error loading journal");
4633                 jbd2_journal_destroy(journal);
4634                 return err;
4635         }
4636
4637         EXT4_SB(sb)->s_journal = journal;
4638         ext4_clear_journal_err(sb, es);
4639
4640         if (!really_read_only && journal_devnum &&
4641             journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4642                 es->s_journal_dev = cpu_to_le32(journal_devnum);
4643
4644                 /* Make sure we flush the recovery flag to disk. */
4645                 ext4_commit_super(sb, 1);
4646         }
4647
4648         return 0;
4649 }
4650
4651 static int ext4_commit_super(struct super_block *sb, int sync)
4652 {
4653         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4654         struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4655         int error = 0;
4656
4657         if (!sbh || block_device_ejected(sb))
4658                 return error;
4659         /*
4660          * If the file system is mounted read-only, don't update the
4661          * superblock write time.  This avoids updating the superblock
4662          * write time when we are mounting the root file system
4663          * read/only but we need to replay the journal; at that point,
4664          * for people who are east of GMT and who make their clock
4665          * tick in localtime for Windows bug-for-bug compatibility,
4666          * the clock is set in the future, and this will cause e2fsck
4667          * to complain and force a full file system check.
4668          */
4669         if (!(sb->s_flags & MS_RDONLY))
4670                 es->s_wtime = cpu_to_le32(get_seconds());
4671         if (sb->s_bdev->bd_part)
4672                 es->s_kbytes_written =
4673                         cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4674                             ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4675                               EXT4_SB(sb)->s_sectors_written_start) >> 1));
4676         else
4677                 es->s_kbytes_written =
4678                         cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4679         if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4680                 ext4_free_blocks_count_set(es,
4681                         EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4682                                 &EXT4_SB(sb)->s_freeclusters_counter)));
4683         if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4684                 es->s_free_inodes_count =
4685                         cpu_to_le32(percpu_counter_sum_positive(
4686                                 &EXT4_SB(sb)->s_freeinodes_counter));
4687         BUFFER_TRACE(sbh, "marking dirty");
4688         ext4_superblock_csum_set(sb);
4689         if (sync)
4690                 lock_buffer(sbh);
4691         if (buffer_write_io_error(sbh)) {
4692                 /*
4693                  * Oh, dear.  A previous attempt to write the
4694                  * superblock failed.  This could happen because the
4695                  * USB device was yanked out.  Or it could happen to
4696                  * be a transient write error and maybe the block will
4697                  * be remapped.  Nothing we can do but to retry the
4698                  * write and hope for the best.
4699                  */
4700                 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4701                        "superblock detected");
4702                 clear_buffer_write_io_error(sbh);
4703                 set_buffer_uptodate(sbh);
4704         }
4705         mark_buffer_dirty(sbh);
4706         if (sync) {
4707                 unlock_buffer(sbh);
4708                 error = __sync_dirty_buffer(sbh,
4709                         REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
4710                 if (error)
4711                         return error;
4712
4713                 error = buffer_write_io_error(sbh);
4714                 if (error) {
4715                         ext4_msg(sb, KERN_ERR, "I/O error while writing "
4716                                "superblock");
4717                         clear_buffer_write_io_error(sbh);
4718                         set_buffer_uptodate(sbh);
4719                 }
4720         }
4721         return error;
4722 }
4723
4724 /*
4725  * Have we just finished recovery?  If so, and if we are mounting (or
4726  * remounting) the filesystem readonly, then we will end up with a
4727  * consistent fs on disk.  Record that fact.
4728  */
4729 static void ext4_mark_recovery_complete(struct super_block *sb,
4730                                         struct ext4_super_block *es)
4731 {
4732         journal_t *journal = EXT4_SB(sb)->s_journal;
4733
4734         if (!ext4_has_feature_journal(sb)) {
4735                 BUG_ON(journal != NULL);
4736                 return;
4737         }
4738         jbd2_journal_lock_updates(journal);
4739         if (jbd2_journal_flush(journal) < 0)
4740                 goto out;
4741
4742         if (ext4_has_feature_journal_needs_recovery(sb) &&
4743             sb->s_flags & MS_RDONLY) {
4744                 ext4_clear_feature_journal_needs_recovery(sb);
4745                 ext4_commit_super(sb, 1);
4746         }
4747
4748 out:
4749         jbd2_journal_unlock_updates(journal);
4750 }
4751
4752 /*
4753  * If we are mounting (or read-write remounting) a filesystem whose journal
4754  * has recorded an error from a previous lifetime, move that error to the
4755  * main filesystem now.
4756  */
4757 static void ext4_clear_journal_err(struct super_block *sb,
4758                                    struct ext4_super_block *es)
4759 {
4760         journal_t *journal;
4761         int j_errno;
4762         const char *errstr;
4763
4764         BUG_ON(!ext4_has_feature_journal(sb));
4765
4766         journal = EXT4_SB(sb)->s_journal;
4767
4768         /*
4769          * Now check for any error status which may have been recorded in the
4770          * journal by a prior ext4_error() or ext4_abort()
4771          */
4772
4773         j_errno = jbd2_journal_errno(journal);
4774         if (j_errno) {
4775                 char nbuf[16];
4776
4777                 errstr = ext4_decode_error(sb, j_errno, nbuf);
4778                 ext4_warning(sb, "Filesystem error recorded "
4779                              "from previous mount: %s", errstr);
4780                 ext4_warning(sb, "Marking fs in need of filesystem check.");
4781
4782                 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4783                 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4784                 ext4_commit_super(sb, 1);
4785
4786                 jbd2_journal_clear_err(journal);
4787                 jbd2_journal_update_sb_errno(journal);
4788         }
4789 }
4790
4791 /*
4792  * Force the running and committing transactions to commit,
4793  * and wait on the commit.
4794  */
4795 int ext4_force_commit(struct super_block *sb)
4796 {
4797         journal_t *journal;
4798
4799         if (sb->s_flags & MS_RDONLY)
4800                 return 0;
4801
4802         journal = EXT4_SB(sb)->s_journal;
4803         return ext4_journal_force_commit(journal);
4804 }
4805
4806 static int ext4_sync_fs(struct super_block *sb, int wait)
4807 {
4808         int ret = 0;
4809         tid_t target;
4810         bool needs_barrier = false;
4811         struct ext4_sb_info *sbi = EXT4_SB(sb);
4812
4813         if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
4814                 return 0;
4815
4816         trace_ext4_sync_fs(sb, wait);
4817         flush_workqueue(sbi->rsv_conversion_wq);
4818         /*
4819          * Writeback quota in non-journalled quota case - journalled quota has
4820          * no dirty dquots
4821          */
4822         dquot_writeback_dquots(sb, -1);
4823         /*
4824          * Data writeback is possible w/o journal transaction, so barrier must
4825          * being sent at the end of the function. But we can skip it if
4826          * transaction_commit will do it for us.
4827          */
4828         if (sbi->s_journal) {
4829                 target = jbd2_get_latest_transaction(sbi->s_journal);
4830                 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4831                     !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4832                         needs_barrier = true;
4833
4834                 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4835                         if (wait)
4836                                 ret = jbd2_log_wait_commit(sbi->s_journal,
4837                                                            target);
4838                 }
4839         } else if (wait && test_opt(sb, BARRIER))
4840                 needs_barrier = true;
4841         if (needs_barrier) {
4842                 int err;
4843                 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4844                 if (!ret)
4845                         ret = err;
4846         }
4847
4848         return ret;
4849 }
4850
4851 /*
4852  * LVM calls this function before a (read-only) snapshot is created.  This
4853  * gives us a chance to flush the journal completely and mark the fs clean.
4854  *
4855  * Note that only this function cannot bring a filesystem to be in a clean
4856  * state independently. It relies on upper layer to stop all data & metadata
4857  * modifications.
4858  */
4859 static int ext4_freeze(struct super_block *sb)
4860 {
4861         int error = 0;
4862         journal_t *journal;
4863
4864         if (sb->s_flags & MS_RDONLY)
4865                 return 0;
4866
4867         journal = EXT4_SB(sb)->s_journal;
4868
4869         if (journal) {
4870                 /* Now we set up the journal barrier. */
4871                 jbd2_journal_lock_updates(journal);
4872
4873                 /*
4874                  * Don't clear the needs_recovery flag if we failed to
4875                  * flush the journal.
4876                  */
4877                 error = jbd2_journal_flush(journal);
4878                 if (error < 0)
4879                         goto out;
4880
4881                 /* Journal blocked and flushed, clear needs_recovery flag. */
4882                 ext4_clear_feature_journal_needs_recovery(sb);
4883         }
4884
4885         error = ext4_commit_super(sb, 1);
4886 out:
4887         if (journal)
4888                 /* we rely on upper layer to stop further updates */
4889                 jbd2_journal_unlock_updates(journal);
4890         return error;
4891 }
4892
4893 /*
4894  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
4895  * flag here, even though the filesystem is not technically dirty yet.
4896  */
4897 static int ext4_unfreeze(struct super_block *sb)
4898 {
4899         if ((sb->s_flags & MS_RDONLY) || ext4_forced_shutdown(EXT4_SB(sb)))
4900                 return 0;
4901
4902         if (EXT4_SB(sb)->s_journal) {
4903                 /* Reset the needs_recovery flag before the fs is unlocked. */
4904                 ext4_set_feature_journal_needs_recovery(sb);
4905         }
4906
4907         ext4_commit_super(sb, 1);
4908         return 0;
4909 }
4910
4911 /*
4912  * Structure to save mount options for ext4_remount's benefit
4913  */
4914 struct ext4_mount_options {
4915         unsigned long s_mount_opt;
4916         unsigned long s_mount_opt2;
4917         kuid_t s_resuid;
4918         kgid_t s_resgid;
4919         unsigned long s_commit_interval;
4920         u32 s_min_batch_time, s_max_batch_time;
4921 #ifdef CONFIG_QUOTA
4922         int s_jquota_fmt;
4923         char *s_qf_names[EXT4_MAXQUOTAS];
4924 #endif
4925 };
4926
4927 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4928 {
4929         struct ext4_super_block *es;
4930         struct ext4_sb_info *sbi = EXT4_SB(sb);
4931         unsigned long old_sb_flags;
4932         struct ext4_mount_options old_opts;
4933         int enable_quota = 0;
4934         ext4_group_t g;
4935         unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4936         int err = 0;
4937 #ifdef CONFIG_QUOTA
4938         int i, j;
4939 #endif
4940         char *orig_data = kstrdup(data, GFP_KERNEL);
4941
4942         /* Store the original options */
4943         old_sb_flags = sb->s_flags;
4944         old_opts.s_mount_opt = sbi->s_mount_opt;
4945         old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4946         old_opts.s_resuid = sbi->s_resuid;
4947         old_opts.s_resgid = sbi->s_resgid;
4948         old_opts.s_commit_interval = sbi->s_commit_interval;
4949         old_opts.s_min_batch_time = sbi->s_min_batch_time;
4950         old_opts.s_max_batch_time = sbi->s_max_batch_time;
4951 #ifdef CONFIG_QUOTA
4952         old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4953         for (i = 0; i < EXT4_MAXQUOTAS; i++)
4954                 if (sbi->s_qf_names[i]) {
4955                         old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4956                                                          GFP_KERNEL);
4957                         if (!old_opts.s_qf_names[i]) {
4958                                 for (j = 0; j < i; j++)
4959                                         kfree(old_opts.s_qf_names[j]);
4960                                 kfree(orig_data);
4961                                 return -ENOMEM;
4962                         }
4963                 } else
4964                         old_opts.s_qf_names[i] = NULL;
4965 #endif
4966         if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4967                 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4968
4969         if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4970                 err = -EINVAL;
4971                 goto restore_opts;
4972         }
4973
4974         if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
4975             test_opt(sb, JOURNAL_CHECKSUM)) {
4976                 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
4977                          "during remount not supported; ignoring");
4978                 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
4979         }
4980
4981         if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4982                 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4983                         ext4_msg(sb, KERN_ERR, "can't mount with "
4984                                  "both data=journal and delalloc");
4985                         err = -EINVAL;
4986                         goto restore_opts;
4987                 }
4988                 if (test_opt(sb, DIOREAD_NOLOCK)) {
4989                         ext4_msg(sb, KERN_ERR, "can't mount with "
4990                                  "both data=journal and dioread_nolock");
4991                         err = -EINVAL;
4992                         goto restore_opts;
4993                 }
4994                 if (test_opt(sb, DAX)) {
4995                         ext4_msg(sb, KERN_ERR, "can't mount with "
4996                                  "both data=journal and dax");
4997                         err = -EINVAL;
4998                         goto restore_opts;
4999                 }
5000         } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5001                 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5002                         ext4_msg(sb, KERN_ERR, "can't mount with "
5003                                 "journal_async_commit in data=ordered mode");
5004                         err = -EINVAL;
5005                         goto restore_opts;
5006                 }
5007         }
5008
5009         if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5010                 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5011                 err = -EINVAL;
5012                 goto restore_opts;
5013         }
5014
5015         if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
5016                 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
5017                         "dax flag with busy inodes while remounting");
5018                 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
5019         }
5020
5021         if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
5022                 ext4_abort(sb, "Abort forced by user");
5023
5024         sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
5025                 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
5026
5027         es = sbi->s_es;
5028
5029         if (sbi->s_journal) {
5030                 ext4_init_journal_params(sb, sbi->s_journal);
5031                 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5032         }
5033
5034         if (*flags & MS_LAZYTIME)
5035                 sb->s_flags |= MS_LAZYTIME;
5036
5037         if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
5038                 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
5039                         err = -EROFS;
5040                         goto restore_opts;
5041                 }
5042
5043                 if (*flags & MS_RDONLY) {
5044                         err = sync_filesystem(sb);
5045                         if (err < 0)
5046                                 goto restore_opts;
5047                         err = dquot_suspend(sb, -1);
5048                         if (err < 0)
5049                                 goto restore_opts;
5050
5051                         /*
5052                          * First of all, the unconditional stuff we have to do
5053                          * to disable replay of the journal when we next remount
5054                          */
5055                         sb->s_flags |= MS_RDONLY;
5056
5057                         /*
5058                          * OK, test if we are remounting a valid rw partition
5059                          * readonly, and if so set the rdonly flag and then
5060                          * mark the partition as valid again.
5061                          */
5062                         if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5063                             (sbi->s_mount_state & EXT4_VALID_FS))
5064                                 es->s_state = cpu_to_le16(sbi->s_mount_state);
5065
5066                         if (sbi->s_journal)
5067                                 ext4_mark_recovery_complete(sb, es);
5068                 } else {
5069                         /* Make sure we can mount this feature set readwrite */
5070                         if (ext4_has_feature_readonly(sb) ||
5071                             !ext4_feature_set_ok(sb, 0)) {
5072                                 err = -EROFS;
5073                                 goto restore_opts;
5074                         }
5075                         /*
5076                          * Make sure the group descriptor checksums
5077                          * are sane.  If they aren't, refuse to remount r/w.
5078                          */
5079                         for (g = 0; g < sbi->s_groups_count; g++) {
5080                                 struct ext4_group_desc *gdp =
5081                                         ext4_get_group_desc(sb, g, NULL);
5082
5083                                 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5084                                         ext4_msg(sb, KERN_ERR,
5085                "ext4_remount: Checksum for group %u failed (%u!=%u)",
5086                 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5087                                                le16_to_cpu(gdp->bg_checksum));
5088                                         err = -EFSBADCRC;
5089                                         goto restore_opts;
5090                                 }
5091                         }
5092
5093                         /*
5094                          * If we have an unprocessed orphan list hanging
5095                          * around from a previously readonly bdev mount,
5096                          * require a full umount/remount for now.
5097                          */
5098                         if (es->s_last_orphan) {
5099                                 ext4_msg(sb, KERN_WARNING, "Couldn't "
5100                                        "remount RDWR because of unprocessed "
5101                                        "orphan inode list.  Please "
5102                                        "umount/remount instead");
5103                                 err = -EINVAL;
5104                                 goto restore_opts;
5105                         }
5106
5107                         /*
5108                          * Mounting a RDONLY partition read-write, so reread
5109                          * and store the current valid flag.  (It may have
5110                          * been changed by e2fsck since we originally mounted
5111                          * the partition.)
5112                          */
5113                         if (sbi->s_journal)
5114                                 ext4_clear_journal_err(sb, es);
5115                         sbi->s_mount_state = le16_to_cpu(es->s_state);
5116                         if (!ext4_setup_super(sb, es, 0))
5117                                 sb->s_flags &= ~MS_RDONLY;
5118                         if (ext4_has_feature_mmp(sb))
5119                                 if (ext4_multi_mount_protect(sb,
5120                                                 le64_to_cpu(es->s_mmp_block))) {
5121                                         err = -EROFS;
5122                                         goto restore_opts;
5123                                 }
5124                         enable_quota = 1;
5125                 }
5126         }
5127
5128         /*
5129          * Reinitialize lazy itable initialization thread based on
5130          * current settings
5131          */
5132         if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
5133                 ext4_unregister_li_request(sb);
5134         else {
5135                 ext4_group_t first_not_zeroed;
5136                 first_not_zeroed = ext4_has_uninit_itable(sb);
5137                 ext4_register_li_request(sb, first_not_zeroed);
5138         }
5139
5140         ext4_setup_system_zone(sb);
5141         if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
5142                 ext4_commit_super(sb, 1);
5143
5144 #ifdef CONFIG_QUOTA
5145         /* Release old quota file names */
5146         for (i = 0; i < EXT4_MAXQUOTAS; i++)
5147                 kfree(old_opts.s_qf_names[i]);
5148         if (enable_quota) {
5149                 if (sb_any_quota_suspended(sb))
5150                         dquot_resume(sb, -1);
5151                 else if (ext4_has_feature_quota(sb)) {
5152                         err = ext4_enable_quotas(sb);
5153                         if (err)
5154                                 goto restore_opts;
5155                 }
5156         }
5157 #endif
5158
5159         *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME);
5160         ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5161         kfree(orig_data);
5162         return 0;
5163
5164 restore_opts:
5165         sb->s_flags = old_sb_flags;
5166         sbi->s_mount_opt = old_opts.s_mount_opt;
5167         sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5168         sbi->s_resuid = old_opts.s_resuid;
5169         sbi->s_resgid = old_opts.s_resgid;
5170         sbi->s_commit_interval = old_opts.s_commit_interval;
5171         sbi->s_min_batch_time = old_opts.s_min_batch_time;
5172         sbi->s_max_batch_time = old_opts.s_max_batch_time;
5173 #ifdef CONFIG_QUOTA
5174         sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5175         for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5176                 kfree(sbi->s_qf_names[i]);
5177                 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
5178         }
5179 #endif
5180         kfree(orig_data);
5181         return err;
5182 }
5183
5184 #ifdef CONFIG_QUOTA
5185 static int ext4_statfs_project(struct super_block *sb,
5186                                kprojid_t projid, struct kstatfs *buf)
5187 {
5188         struct kqid qid;
5189         struct dquot *dquot;
5190         u64 limit;
5191         u64 curblock;
5192
5193         qid = make_kqid_projid(projid);
5194         dquot = dqget(sb, qid);
5195         if (IS_ERR(dquot))
5196                 return PTR_ERR(dquot);
5197         spin_lock(&dq_data_lock);
5198
5199         limit = (dquot->dq_dqb.dqb_bsoftlimit ?
5200                  dquot->dq_dqb.dqb_bsoftlimit :
5201                  dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
5202         if (limit && buf->f_blocks > limit) {
5203                 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
5204                 buf->f_blocks = limit;
5205                 buf->f_bfree = buf->f_bavail =
5206                         (buf->f_blocks > curblock) ?
5207                          (buf->f_blocks - curblock) : 0;
5208         }
5209
5210         limit = dquot->dq_dqb.dqb_isoftlimit ?
5211                 dquot->dq_dqb.dqb_isoftlimit :
5212                 dquot->dq_dqb.dqb_ihardlimit;
5213         if (limit && buf->f_files > limit) {
5214                 buf->f_files = limit;
5215                 buf->f_ffree =
5216                         (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5217                          (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5218         }
5219
5220         spin_unlock(&dq_data_lock);
5221         dqput(dquot);
5222         return 0;
5223 }
5224 #endif
5225
5226 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5227 {
5228         struct super_block *sb = dentry->d_sb;
5229         struct ext4_sb_info *sbi = EXT4_SB(sb);
5230         struct ext4_super_block *es = sbi->s_es;
5231         ext4_fsblk_t overhead = 0, resv_blocks;
5232         u64 fsid;
5233         s64 bfree;
5234         resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5235
5236         if (!test_opt(sb, MINIX_DF))
5237                 overhead = sbi->s_overhead;
5238
5239         buf->f_type = EXT4_SUPER_MAGIC;
5240         buf->f_bsize = sb->s_blocksize;
5241         buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5242         bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5243                 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5244         /* prevent underflow in case that few free space is available */
5245         buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5246         buf->f_bavail = buf->f_bfree -
5247                         (ext4_r_blocks_count(es) + resv_blocks);
5248         if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5249                 buf->f_bavail = 0;
5250         buf->f_files = le32_to_cpu(es->s_inodes_count);
5251         buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5252         buf->f_namelen = EXT4_NAME_LEN;
5253         fsid = le64_to_cpup((void *)es->s_uuid) ^
5254                le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5255         buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5256         buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5257
5258 #ifdef CONFIG_QUOTA
5259         if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5260             sb_has_quota_limits_enabled(sb, PRJQUOTA))
5261                 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5262 #endif
5263         return 0;
5264 }
5265
5266 /* Helper function for writing quotas on sync - we need to start transaction
5267  * before quota file is locked for write. Otherwise the are possible deadlocks:
5268  * Process 1                         Process 2
5269  * ext4_create()                     quota_sync()
5270  *   jbd2_journal_start()                  write_dquot()
5271  *   dquot_initialize()                         down(dqio_mutex)
5272  *     down(dqio_mutex)                    jbd2_journal_start()
5273  *
5274  */
5275
5276 #ifdef CONFIG_QUOTA
5277
5278 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5279 {
5280         return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5281 }
5282
5283 static int ext4_write_dquot(struct dquot *dquot)
5284 {
5285         int ret, err;
5286         handle_t *handle;
5287         struct inode *inode;
5288
5289         inode = dquot_to_inode(dquot);
5290         handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5291                                     EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5292         if (IS_ERR(handle))
5293                 return PTR_ERR(handle);
5294         ret = dquot_commit(dquot);
5295         err = ext4_journal_stop(handle);
5296         if (!ret)
5297                 ret = err;
5298         return ret;
5299 }
5300
5301 static int ext4_acquire_dquot(struct dquot *dquot)
5302 {
5303         int ret, err;
5304         handle_t *handle;
5305
5306         handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5307                                     EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5308         if (IS_ERR(handle))
5309                 return PTR_ERR(handle);
5310         ret = dquot_acquire(dquot);
5311         err = ext4_journal_stop(handle);
5312         if (!ret)
5313                 ret = err;
5314         return ret;
5315 }
5316
5317 static int ext4_release_dquot(struct dquot *dquot)
5318 {
5319         int ret, err;
5320         handle_t *handle;
5321
5322         handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5323                                     EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5324         if (IS_ERR(handle)) {
5325                 /* Release dquot anyway to avoid endless cycle in dqput() */
5326                 dquot_release(dquot);
5327                 return PTR_ERR(handle);
5328         }
5329         ret = dquot_release(dquot);
5330         err = ext4_journal_stop(handle);
5331         if (!ret)
5332                 ret = err;
5333         return ret;
5334 }
5335
5336 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5337 {
5338         struct super_block *sb = dquot->dq_sb;
5339         struct ext4_sb_info *sbi = EXT4_SB(sb);
5340
5341         /* Are we journaling quotas? */
5342         if (ext4_has_feature_quota(sb) ||
5343             sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5344                 dquot_mark_dquot_dirty(dquot);
5345                 return ext4_write_dquot(dquot);
5346         } else {
5347                 return dquot_mark_dquot_dirty(dquot);
5348         }
5349 }
5350
5351 static int ext4_write_info(struct super_block *sb, int type)
5352 {
5353         int ret, err;
5354         handle_t *handle;
5355
5356         /* Data block + inode block */
5357         handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5358         if (IS_ERR(handle))
5359                 return PTR_ERR(handle);
5360         ret = dquot_commit_info(sb, type);
5361         err = ext4_journal_stop(handle);
5362         if (!ret)
5363                 ret = err;
5364         return ret;
5365 }
5366
5367 /*
5368  * Turn on quotas during mount time - we need to find
5369  * the quota file and such...
5370  */
5371 static int ext4_quota_on_mount(struct super_block *sb, int type)
5372 {
5373         return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5374                                         EXT4_SB(sb)->s_jquota_fmt, type);
5375 }
5376
5377 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5378 {
5379         struct ext4_inode_info *ei = EXT4_I(inode);
5380
5381         /* The first argument of lockdep_set_subclass has to be
5382          * *exactly* the same as the argument to init_rwsem() --- in
5383          * this case, in init_once() --- or lockdep gets unhappy
5384          * because the name of the lock is set using the
5385          * stringification of the argument to init_rwsem().
5386          */
5387         (void) ei;      /* shut up clang warning if !CONFIG_LOCKDEP */
5388         lockdep_set_subclass(&ei->i_data_sem, subclass);
5389 }
5390
5391 /*
5392  * Standard function to be called on quota_on
5393  */
5394 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5395                          const struct path *path)
5396 {
5397         int err;
5398
5399         if (!test_opt(sb, QUOTA))
5400                 return -EINVAL;
5401
5402         /* Quotafile not on the same filesystem? */
5403         if (path->dentry->d_sb != sb)
5404                 return -EXDEV;
5405         /* Journaling quota? */
5406         if (EXT4_SB(sb)->s_qf_names[type]) {
5407                 /* Quotafile not in fs root? */
5408                 if (path->dentry->d_parent != sb->s_root)
5409                         ext4_msg(sb, KERN_WARNING,
5410                                 "Quota file not on filesystem root. "
5411                                 "Journaled quota will not work");
5412         }
5413
5414         /*
5415          * When we journal data on quota file, we have to flush journal to see
5416          * all updates to the file when we bypass pagecache...
5417          */
5418         if (EXT4_SB(sb)->s_journal &&
5419             ext4_should_journal_data(d_inode(path->dentry))) {
5420                 /*
5421                  * We don't need to lock updates but journal_flush() could
5422                  * otherwise be livelocked...
5423                  */
5424                 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5425                 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5426                 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5427                 if (err)
5428                         return err;
5429         }
5430
5431         lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5432         err = dquot_quota_on(sb, type, format_id, path);
5433         if (err) {
5434                 lockdep_set_quota_inode(path->dentry->d_inode,
5435                                              I_DATA_SEM_NORMAL);
5436         } else {
5437                 struct inode *inode = d_inode(path->dentry);
5438                 handle_t *handle;
5439
5440                 /*
5441                  * Set inode flags to prevent userspace from messing with quota
5442                  * files. If this fails, we return success anyway since quotas
5443                  * are already enabled and this is not a hard failure.
5444                  */
5445                 inode_lock(inode);
5446                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5447                 if (IS_ERR(handle))
5448                         goto unlock_inode;
5449                 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
5450                 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
5451                                 S_NOATIME | S_IMMUTABLE);
5452                 ext4_mark_inode_dirty(handle, inode);
5453                 ext4_journal_stop(handle);
5454         unlock_inode:
5455                 inode_unlock(inode);
5456         }
5457         return err;
5458 }
5459
5460 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5461                              unsigned int flags)
5462 {
5463         int err;
5464         struct inode *qf_inode;
5465         unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5466                 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5467                 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5468                 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5469         };
5470
5471         BUG_ON(!ext4_has_feature_quota(sb));
5472
5473         if (!qf_inums[type])
5474                 return -EPERM;
5475
5476         qf_inode = ext4_iget(sb, qf_inums[type]);
5477         if (IS_ERR(qf_inode)) {
5478                 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5479                 return PTR_ERR(qf_inode);
5480         }
5481
5482         /* Don't account quota for quota files to avoid recursion */
5483         qf_inode->i_flags |= S_NOQUOTA;
5484         lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5485         err = dquot_enable(qf_inode, type, format_id, flags);
5486         iput(qf_inode);
5487         if (err)
5488                 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5489
5490         return err;
5491 }
5492
5493 /* Enable usage tracking for all quota types. */
5494 static int ext4_enable_quotas(struct super_block *sb)
5495 {
5496         int type, err = 0;
5497         unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5498                 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5499                 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5500                 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5501         };
5502         bool quota_mopt[EXT4_MAXQUOTAS] = {
5503                 test_opt(sb, USRQUOTA),
5504                 test_opt(sb, GRPQUOTA),
5505                 test_opt(sb, PRJQUOTA),
5506         };
5507
5508         sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5509         for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5510                 if (qf_inums[type]) {
5511                         err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5512                                 DQUOT_USAGE_ENABLED |
5513                                 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5514                         if (err) {
5515                                 ext4_warning(sb,
5516                                         "Failed to enable quota tracking "
5517                                         "(type=%d, err=%d). Please run "
5518                                         "e2fsck to fix.", type, err);
5519                                 return err;
5520                         }
5521                 }
5522         }
5523         return 0;
5524 }
5525
5526 static int ext4_quota_off(struct super_block *sb, int type)
5527 {
5528         struct inode *inode = sb_dqopt(sb)->files[type];
5529         handle_t *handle;
5530         int err;
5531
5532         /* Force all delayed allocation blocks to be allocated.
5533          * Caller already holds s_umount sem */
5534         if (test_opt(sb, DELALLOC))
5535                 sync_filesystem(sb);
5536
5537         if (!inode || !igrab(inode))
5538                 goto out;
5539
5540         err = dquot_quota_off(sb, type);
5541         if (err || ext4_has_feature_quota(sb))
5542                 goto out_put;
5543
5544         inode_lock(inode);
5545         /*
5546          * Update modification times of quota files when userspace can
5547          * start looking at them. If we fail, we return success anyway since
5548          * this is not a hard failure and quotas are already disabled.
5549          */
5550         handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5551         if (IS_ERR(handle))
5552                 goto out_unlock;
5553         EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
5554         inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
5555         inode->i_mtime = inode->i_ctime = current_time(inode);
5556         ext4_mark_inode_dirty(handle, inode);
5557         ext4_journal_stop(handle);
5558 out_unlock:
5559         inode_unlock(inode);
5560 out_put:
5561         lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
5562         iput(inode);
5563         return err;
5564 out:
5565         return dquot_quota_off(sb, type);
5566 }
5567
5568 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5569  * acquiring the locks... As quota files are never truncated and quota code
5570  * itself serializes the operations (and no one else should touch the files)
5571  * we don't have to be afraid of races */
5572 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5573                                size_t len, loff_t off)
5574 {
5575         struct inode *inode = sb_dqopt(sb)->files[type];
5576         ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5577         int offset = off & (sb->s_blocksize - 1);
5578         int tocopy;
5579         size_t toread;
5580         struct buffer_head *bh;
5581         loff_t i_size = i_size_read(inode);
5582
5583         if (off > i_size)
5584                 return 0;
5585         if (off+len > i_size)
5586                 len = i_size-off;
5587         toread = len;
5588         while (toread > 0) {
5589                 tocopy = sb->s_blocksize - offset < toread ?
5590                                 sb->s_blocksize - offset : toread;
5591                 bh = ext4_bread(NULL, inode, blk, 0);
5592                 if (IS_ERR(bh))
5593                         return PTR_ERR(bh);
5594                 if (!bh)        /* A hole? */
5595                         memset(data, 0, tocopy);
5596                 else
5597                         memcpy(data, bh->b_data+offset, tocopy);
5598                 brelse(bh);
5599                 offset = 0;
5600                 toread -= tocopy;
5601                 data += tocopy;
5602                 blk++;
5603         }
5604         return len;
5605 }
5606
5607 /* Write to quotafile (we know the transaction is already started and has
5608  * enough credits) */
5609 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5610                                 const char *data, size_t len, loff_t off)
5611 {
5612         struct inode *inode = sb_dqopt(sb)->files[type];
5613         ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5614         int err, offset = off & (sb->s_blocksize - 1);
5615         int retries = 0;
5616         struct buffer_head *bh;
5617         handle_t *handle = journal_current_handle();
5618
5619         if (EXT4_SB(sb)->s_journal && !handle) {
5620                 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5621                         " cancelled because transaction is not started",
5622                         (unsigned long long)off, (unsigned long long)len);
5623                 return -EIO;
5624         }
5625         /*
5626          * Since we account only one data block in transaction credits,
5627          * then it is impossible to cross a block boundary.
5628          */
5629         if (sb->s_blocksize - offset < len) {
5630                 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5631                         " cancelled because not block aligned",
5632                         (unsigned long long)off, (unsigned long long)len);
5633                 return -EIO;
5634         }
5635
5636         do {
5637                 bh = ext4_bread(handle, inode, blk,
5638                                 EXT4_GET_BLOCKS_CREATE |
5639                                 EXT4_GET_BLOCKS_METADATA_NOFAIL);
5640         } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5641                  ext4_should_retry_alloc(inode->i_sb, &retries));
5642         if (IS_ERR(bh))
5643                 return PTR_ERR(bh);
5644         if (!bh)
5645                 goto out;
5646         BUFFER_TRACE(bh, "get write access");
5647         err = ext4_journal_get_write_access(handle, bh);
5648         if (err) {
5649                 brelse(bh);
5650                 return err;
5651         }
5652         lock_buffer(bh);
5653         memcpy(bh->b_data+offset, data, len);
5654         flush_dcache_page(bh->b_page);
5655         unlock_buffer(bh);
5656         err = ext4_handle_dirty_metadata(handle, NULL, bh);
5657         brelse(bh);
5658 out:
5659         if (inode->i_size < off + len) {
5660                 i_size_write(inode, off + len);
5661                 EXT4_I(inode)->i_disksize = inode->i_size;
5662                 ext4_mark_inode_dirty(handle, inode);
5663         }
5664         return len;
5665 }
5666
5667 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid)
5668 {
5669         const struct quota_format_ops   *ops;
5670
5671         if (!sb_has_quota_loaded(sb, qid->type))
5672                 return -ESRCH;
5673         ops = sb_dqopt(sb)->ops[qid->type];
5674         if (!ops || !ops->get_next_id)
5675                 return -ENOSYS;
5676         return dquot_get_next_id(sb, qid);
5677 }
5678 #endif
5679
5680 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5681                        const char *dev_name, void *data)
5682 {
5683         return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5684 }
5685
5686 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
5687 static inline void register_as_ext2(void)
5688 {
5689         int err = register_filesystem(&ext2_fs_type);
5690         if (err)
5691                 printk(KERN_WARNING
5692                        "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5693 }
5694
5695 static inline void unregister_as_ext2(void)
5696 {
5697         unregister_filesystem(&ext2_fs_type);
5698 }
5699
5700 static inline int ext2_feature_set_ok(struct super_block *sb)
5701 {
5702         if (ext4_has_unknown_ext2_incompat_features(sb))
5703                 return 0;
5704         if (sb->s_flags & MS_RDONLY)
5705                 return 1;
5706         if (ext4_has_unknown_ext2_ro_compat_features(sb))
5707                 return 0;
5708         return 1;
5709 }
5710 #else
5711 static inline void register_as_ext2(void) { }
5712 static inline void unregister_as_ext2(void) { }
5713 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5714 #endif
5715
5716 static inline void register_as_ext3(void)
5717 {
5718         int err = register_filesystem(&ext3_fs_type);
5719         if (err)
5720                 printk(KERN_WARNING
5721                        "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5722 }
5723
5724 static inline void unregister_as_ext3(void)
5725 {
5726         unregister_filesystem(&ext3_fs_type);
5727 }
5728
5729 static inline int ext3_feature_set_ok(struct super_block *sb)
5730 {
5731         if (ext4_has_unknown_ext3_incompat_features(sb))
5732                 return 0;
5733         if (!ext4_has_feature_journal(sb))
5734                 return 0;
5735         if (sb->s_flags & MS_RDONLY)
5736                 return 1;
5737         if (ext4_has_unknown_ext3_ro_compat_features(sb))
5738                 return 0;
5739         return 1;
5740 }
5741
5742 static struct file_system_type ext4_fs_type = {
5743         .owner          = THIS_MODULE,
5744         .name           = "ext4",
5745         .mount          = ext4_mount,
5746         .kill_sb        = kill_block_super,
5747         .fs_flags       = FS_REQUIRES_DEV,
5748 };
5749 MODULE_ALIAS_FS("ext4");
5750
5751 /* Shared across all ext4 file systems */
5752 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5753
5754 static int __init ext4_init_fs(void)
5755 {
5756         int i, err;
5757
5758         ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
5759         ext4_li_info = NULL;
5760         mutex_init(&ext4_li_mtx);
5761
5762         /* Build-time check for flags consistency */
5763         ext4_check_flag_values();
5764
5765         for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
5766                 init_waitqueue_head(&ext4__ioend_wq[i]);
5767
5768         err = ext4_init_es();
5769         if (err)
5770                 return err;
5771
5772         err = ext4_init_pageio();
5773         if (err)
5774                 goto out5;
5775
5776         err = ext4_init_system_zone();
5777         if (err)
5778                 goto out4;
5779
5780         err = ext4_init_sysfs();
5781         if (err)
5782                 goto out3;
5783
5784         err = ext4_init_mballoc();
5785         if (err)
5786                 goto out2;
5787         err = init_inodecache();
5788         if (err)
5789                 goto out1;
5790         register_as_ext3();
5791         register_as_ext2();
5792         err = register_filesystem(&ext4_fs_type);
5793         if (err)
5794                 goto out;
5795
5796         return 0;
5797 out:
5798         unregister_as_ext2();
5799         unregister_as_ext3();
5800         destroy_inodecache();
5801 out1:
5802         ext4_exit_mballoc();
5803 out2:
5804         ext4_exit_sysfs();
5805 out3:
5806         ext4_exit_system_zone();
5807 out4:
5808         ext4_exit_pageio();
5809 out5:
5810         ext4_exit_es();
5811
5812         return err;
5813 }
5814
5815 static void __exit ext4_exit_fs(void)
5816 {
5817         ext4_destroy_lazyinit_thread();
5818         unregister_as_ext2();
5819         unregister_as_ext3();
5820         unregister_filesystem(&ext4_fs_type);
5821         destroy_inodecache();
5822         ext4_exit_mballoc();
5823         ext4_exit_sysfs();
5824         ext4_exit_system_zone();
5825         ext4_exit_pageio();
5826         ext4_exit_es();
5827 }
5828
5829 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5830 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5831 MODULE_LICENSE("GPL");
5832 module_init(ext4_init_fs)
5833 module_exit(ext4_exit_fs)