1 // SPDX-License-Identifier: GPL-2.0
3 * linux/fs/ext4/super.c
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
12 * linux/fs/minix/inode.c
14 * Copyright (C) 1991, 1992 Linus Torvalds
16 * Big-endian to little-endian byte-swapping/bitmaps by
17 * David S. Miller (davem@caip.rutgers.edu), 1995
20 #include <linux/module.h>
21 #include <linux/string.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/cleancache.h>
43 #include <linux/uaccess.h>
44 #include <linux/iversion.h>
46 #include <linux/kthread.h>
47 #include <linux/freezer.h>
50 #include "ext4_extents.h" /* Needed for trace points definition */
51 #include "ext4_jbd2.h"
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/ext4.h>
60 static struct ext4_lazy_init *ext4_li_info;
61 static struct mutex ext4_li_mtx;
62 static struct ratelimit_state ext4_mount_msg_ratelimit;
64 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
65 unsigned long journal_devnum);
66 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
67 static int ext4_commit_super(struct super_block *sb, int sync);
68 static void ext4_mark_recovery_complete(struct super_block *sb,
69 struct ext4_super_block *es);
70 static void ext4_clear_journal_err(struct super_block *sb,
71 struct ext4_super_block *es);
72 static int ext4_sync_fs(struct super_block *sb, int wait);
73 static int ext4_remount(struct super_block *sb, int *flags, char *data);
74 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
75 static int ext4_unfreeze(struct super_block *sb);
76 static int ext4_freeze(struct super_block *sb);
77 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
78 const char *dev_name, void *data);
79 static inline int ext2_feature_set_ok(struct super_block *sb);
80 static inline int ext3_feature_set_ok(struct super_block *sb);
81 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
82 static void ext4_destroy_lazyinit_thread(void);
83 static void ext4_unregister_li_request(struct super_block *sb);
84 static void ext4_clear_request_list(void);
85 static struct inode *ext4_get_journal_inode(struct super_block *sb,
86 unsigned int journal_inum);
91 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
92 * i_mmap_rwsem (inode->i_mmap_rwsem)!
95 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
96 * page lock -> i_data_sem (rw)
98 * buffered write path:
99 * sb_start_write -> i_mutex -> mmap_sem
100 * sb_start_write -> i_mutex -> transaction start -> page lock ->
104 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
105 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
109 * sb_start_write -> i_mutex -> mmap_sem
110 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
113 * transaction start -> page lock(s) -> i_data_sem (rw)
116 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
117 static struct file_system_type ext2_fs_type = {
118 .owner = THIS_MODULE,
121 .kill_sb = kill_block_super,
122 .fs_flags = FS_REQUIRES_DEV,
124 MODULE_ALIAS_FS("ext2");
125 MODULE_ALIAS("ext2");
126 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
128 #define IS_EXT2_SB(sb) (0)
132 static struct file_system_type ext3_fs_type = {
133 .owner = THIS_MODULE,
136 .kill_sb = kill_block_super,
137 .fs_flags = FS_REQUIRES_DEV,
139 MODULE_ALIAS_FS("ext3");
140 MODULE_ALIAS("ext3");
141 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
143 static int ext4_verify_csum_type(struct super_block *sb,
144 struct ext4_super_block *es)
146 if (!ext4_has_feature_metadata_csum(sb))
149 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
152 static __le32 ext4_superblock_csum(struct super_block *sb,
153 struct ext4_super_block *es)
155 struct ext4_sb_info *sbi = EXT4_SB(sb);
156 int offset = offsetof(struct ext4_super_block, s_checksum);
159 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
161 return cpu_to_le32(csum);
164 static int ext4_superblock_csum_verify(struct super_block *sb,
165 struct ext4_super_block *es)
167 if (!ext4_has_metadata_csum(sb))
170 return es->s_checksum == ext4_superblock_csum(sb, es);
173 void ext4_superblock_csum_set(struct super_block *sb)
175 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
177 if (!ext4_has_metadata_csum(sb))
180 es->s_checksum = ext4_superblock_csum(sb, es);
183 void *ext4_kvmalloc(size_t size, gfp_t flags)
187 ret = kmalloc(size, flags | __GFP_NOWARN);
189 ret = __vmalloc(size, flags, PAGE_KERNEL);
193 void *ext4_kvzalloc(size_t size, gfp_t flags)
197 ret = kzalloc(size, flags | __GFP_NOWARN);
199 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
203 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
204 struct ext4_group_desc *bg)
206 return le32_to_cpu(bg->bg_block_bitmap_lo) |
207 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
208 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
211 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
212 struct ext4_group_desc *bg)
214 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
215 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
216 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
219 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
220 struct ext4_group_desc *bg)
222 return le32_to_cpu(bg->bg_inode_table_lo) |
223 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
224 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
227 __u32 ext4_free_group_clusters(struct super_block *sb,
228 struct ext4_group_desc *bg)
230 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
231 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
232 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
235 __u32 ext4_free_inodes_count(struct super_block *sb,
236 struct ext4_group_desc *bg)
238 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
239 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
240 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
243 __u32 ext4_used_dirs_count(struct super_block *sb,
244 struct ext4_group_desc *bg)
246 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
247 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
248 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
251 __u32 ext4_itable_unused_count(struct super_block *sb,
252 struct ext4_group_desc *bg)
254 return le16_to_cpu(bg->bg_itable_unused_lo) |
255 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
256 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
259 void ext4_block_bitmap_set(struct super_block *sb,
260 struct ext4_group_desc *bg, ext4_fsblk_t blk)
262 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
263 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
264 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
267 void ext4_inode_bitmap_set(struct super_block *sb,
268 struct ext4_group_desc *bg, ext4_fsblk_t blk)
270 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
271 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
272 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
275 void ext4_inode_table_set(struct super_block *sb,
276 struct ext4_group_desc *bg, ext4_fsblk_t blk)
278 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
279 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
280 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
283 void ext4_free_group_clusters_set(struct super_block *sb,
284 struct ext4_group_desc *bg, __u32 count)
286 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
287 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
288 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
291 void ext4_free_inodes_set(struct super_block *sb,
292 struct ext4_group_desc *bg, __u32 count)
294 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
295 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
296 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
299 void ext4_used_dirs_set(struct super_block *sb,
300 struct ext4_group_desc *bg, __u32 count)
302 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
303 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
304 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
307 void ext4_itable_unused_set(struct super_block *sb,
308 struct ext4_group_desc *bg, __u32 count)
310 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
311 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
312 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
315 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi)
317 time64_t now = ktime_get_real_seconds();
319 now = clamp_val(now, 0, (1ull << 40) - 1);
321 *lo = cpu_to_le32(lower_32_bits(now));
322 *hi = upper_32_bits(now);
325 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
327 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
329 #define ext4_update_tstamp(es, tstamp) \
330 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
331 #define ext4_get_tstamp(es, tstamp) \
332 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
334 static void __save_error_info(struct super_block *sb, const char *func,
337 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
339 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
340 if (bdev_read_only(sb->s_bdev))
342 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
343 ext4_update_tstamp(es, s_last_error_time);
344 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
345 es->s_last_error_line = cpu_to_le32(line);
346 if (!es->s_first_error_time) {
347 es->s_first_error_time = es->s_last_error_time;
348 es->s_first_error_time_hi = es->s_last_error_time_hi;
349 strncpy(es->s_first_error_func, func,
350 sizeof(es->s_first_error_func));
351 es->s_first_error_line = cpu_to_le32(line);
352 es->s_first_error_ino = es->s_last_error_ino;
353 es->s_first_error_block = es->s_last_error_block;
356 * Start the daily error reporting function if it hasn't been
359 if (!es->s_error_count)
360 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
361 le32_add_cpu(&es->s_error_count, 1);
364 static void save_error_info(struct super_block *sb, const char *func,
367 __save_error_info(sb, func, line);
368 ext4_commit_super(sb, 1);
372 * The del_gendisk() function uninitializes the disk-specific data
373 * structures, including the bdi structure, without telling anyone
374 * else. Once this happens, any attempt to call mark_buffer_dirty()
375 * (for example, by ext4_commit_super), will cause a kernel OOPS.
376 * This is a kludge to prevent these oops until we can put in a proper
377 * hook in del_gendisk() to inform the VFS and file system layers.
379 static int block_device_ejected(struct super_block *sb)
381 struct inode *bd_inode = sb->s_bdev->bd_inode;
382 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
384 return bdi->dev == NULL;
387 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
389 struct super_block *sb = journal->j_private;
390 struct ext4_sb_info *sbi = EXT4_SB(sb);
391 int error = is_journal_aborted(journal);
392 struct ext4_journal_cb_entry *jce;
394 BUG_ON(txn->t_state == T_FINISHED);
396 ext4_process_freed_data(sb, txn->t_tid);
398 spin_lock(&sbi->s_md_lock);
399 while (!list_empty(&txn->t_private_list)) {
400 jce = list_entry(txn->t_private_list.next,
401 struct ext4_journal_cb_entry, jce_list);
402 list_del_init(&jce->jce_list);
403 spin_unlock(&sbi->s_md_lock);
404 jce->jce_func(sb, jce, error);
405 spin_lock(&sbi->s_md_lock);
407 spin_unlock(&sbi->s_md_lock);
410 /* Deal with the reporting of failure conditions on a filesystem such as
411 * inconsistencies detected or read IO failures.
413 * On ext2, we can store the error state of the filesystem in the
414 * superblock. That is not possible on ext4, because we may have other
415 * write ordering constraints on the superblock which prevent us from
416 * writing it out straight away; and given that the journal is about to
417 * be aborted, we can't rely on the current, or future, transactions to
418 * write out the superblock safely.
420 * We'll just use the jbd2_journal_abort() error code to record an error in
421 * the journal instead. On recovery, the journal will complain about
422 * that error until we've noted it down and cleared it.
425 static void ext4_handle_error(struct super_block *sb)
427 if (test_opt(sb, WARN_ON_ERROR))
433 if (!test_opt(sb, ERRORS_CONT)) {
434 journal_t *journal = EXT4_SB(sb)->s_journal;
436 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
438 jbd2_journal_abort(journal, -EIO);
440 if (test_opt(sb, ERRORS_RO)) {
441 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
443 * Make sure updated value of ->s_mount_flags will be visible
444 * before ->s_flags update
447 sb->s_flags |= SB_RDONLY;
449 if (test_opt(sb, ERRORS_PANIC)) {
450 if (EXT4_SB(sb)->s_journal &&
451 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
453 panic("EXT4-fs (device %s): panic forced after error\n",
458 #define ext4_error_ratelimit(sb) \
459 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
462 void __ext4_error(struct super_block *sb, const char *function,
463 unsigned int line, const char *fmt, ...)
465 struct va_format vaf;
468 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
471 trace_ext4_error(sb, function, line);
472 if (ext4_error_ratelimit(sb)) {
477 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
478 sb->s_id, function, line, current->comm, &vaf);
481 save_error_info(sb, function, line);
482 ext4_handle_error(sb);
485 void __ext4_error_inode(struct inode *inode, const char *function,
486 unsigned int line, ext4_fsblk_t block,
487 const char *fmt, ...)
490 struct va_format vaf;
491 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
493 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
496 trace_ext4_error(inode->i_sb, function, line);
497 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
498 es->s_last_error_block = cpu_to_le64(block);
499 if (ext4_error_ratelimit(inode->i_sb)) {
504 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
505 "inode #%lu: block %llu: comm %s: %pV\n",
506 inode->i_sb->s_id, function, line, inode->i_ino,
507 block, current->comm, &vaf);
509 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
510 "inode #%lu: comm %s: %pV\n",
511 inode->i_sb->s_id, function, line, inode->i_ino,
512 current->comm, &vaf);
515 save_error_info(inode->i_sb, function, line);
516 ext4_handle_error(inode->i_sb);
519 void __ext4_error_file(struct file *file, const char *function,
520 unsigned int line, ext4_fsblk_t block,
521 const char *fmt, ...)
524 struct va_format vaf;
525 struct ext4_super_block *es;
526 struct inode *inode = file_inode(file);
527 char pathname[80], *path;
529 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
532 trace_ext4_error(inode->i_sb, function, line);
533 es = EXT4_SB(inode->i_sb)->s_es;
534 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
535 if (ext4_error_ratelimit(inode->i_sb)) {
536 path = file_path(file, pathname, sizeof(pathname));
544 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
545 "block %llu: comm %s: path %s: %pV\n",
546 inode->i_sb->s_id, function, line, inode->i_ino,
547 block, current->comm, path, &vaf);
550 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
551 "comm %s: path %s: %pV\n",
552 inode->i_sb->s_id, function, line, inode->i_ino,
553 current->comm, path, &vaf);
556 save_error_info(inode->i_sb, function, line);
557 ext4_handle_error(inode->i_sb);
560 const char *ext4_decode_error(struct super_block *sb, int errno,
567 errstr = "Corrupt filesystem";
570 errstr = "Filesystem failed CRC";
573 errstr = "IO failure";
576 errstr = "Out of memory";
579 if (!sb || (EXT4_SB(sb)->s_journal &&
580 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
581 errstr = "Journal has aborted";
583 errstr = "Readonly filesystem";
586 /* If the caller passed in an extra buffer for unknown
587 * errors, textualise them now. Else we just return
590 /* Check for truncated error codes... */
591 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
600 /* __ext4_std_error decodes expected errors from journaling functions
601 * automatically and invokes the appropriate error response. */
603 void __ext4_std_error(struct super_block *sb, const char *function,
604 unsigned int line, int errno)
609 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
612 /* Special case: if the error is EROFS, and we're not already
613 * inside a transaction, then there's really no point in logging
615 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
618 if (ext4_error_ratelimit(sb)) {
619 errstr = ext4_decode_error(sb, errno, nbuf);
620 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
621 sb->s_id, function, line, errstr);
624 save_error_info(sb, function, line);
625 ext4_handle_error(sb);
629 * ext4_abort is a much stronger failure handler than ext4_error. The
630 * abort function may be used to deal with unrecoverable failures such
631 * as journal IO errors or ENOMEM at a critical moment in log management.
633 * We unconditionally force the filesystem into an ABORT|READONLY state,
634 * unless the error response on the fs has been set to panic in which
635 * case we take the easy way out and panic immediately.
638 void __ext4_abort(struct super_block *sb, const char *function,
639 unsigned int line, const char *fmt, ...)
641 struct va_format vaf;
644 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
647 save_error_info(sb, function, line);
651 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
652 sb->s_id, function, line, &vaf);
655 if (sb_rdonly(sb) == 0) {
656 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
657 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
659 * Make sure updated value of ->s_mount_flags will be visible
660 * before ->s_flags update
663 sb->s_flags |= SB_RDONLY;
664 if (EXT4_SB(sb)->s_journal)
665 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
666 save_error_info(sb, function, line);
668 if (test_opt(sb, ERRORS_PANIC)) {
669 if (EXT4_SB(sb)->s_journal &&
670 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
672 panic("EXT4-fs panic from previous error\n");
676 void __ext4_msg(struct super_block *sb,
677 const char *prefix, const char *fmt, ...)
679 struct va_format vaf;
682 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
688 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
692 #define ext4_warning_ratelimit(sb) \
693 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
696 void __ext4_warning(struct super_block *sb, const char *function,
697 unsigned int line, const char *fmt, ...)
699 struct va_format vaf;
702 if (!ext4_warning_ratelimit(sb))
708 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
709 sb->s_id, function, line, &vaf);
713 void __ext4_warning_inode(const struct inode *inode, const char *function,
714 unsigned int line, const char *fmt, ...)
716 struct va_format vaf;
719 if (!ext4_warning_ratelimit(inode->i_sb))
725 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
726 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
727 function, line, inode->i_ino, current->comm, &vaf);
731 void __ext4_grp_locked_error(const char *function, unsigned int line,
732 struct super_block *sb, ext4_group_t grp,
733 unsigned long ino, ext4_fsblk_t block,
734 const char *fmt, ...)
738 struct va_format vaf;
740 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
742 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
745 trace_ext4_error(sb, function, line);
746 es->s_last_error_ino = cpu_to_le32(ino);
747 es->s_last_error_block = cpu_to_le64(block);
748 __save_error_info(sb, function, line);
750 if (ext4_error_ratelimit(sb)) {
754 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
755 sb->s_id, function, line, grp);
757 printk(KERN_CONT "inode %lu: ", ino);
759 printk(KERN_CONT "block %llu:",
760 (unsigned long long) block);
761 printk(KERN_CONT "%pV\n", &vaf);
765 if (test_opt(sb, WARN_ON_ERROR))
768 if (test_opt(sb, ERRORS_CONT)) {
769 ext4_commit_super(sb, 0);
773 ext4_unlock_group(sb, grp);
774 ext4_commit_super(sb, 1);
775 ext4_handle_error(sb);
777 * We only get here in the ERRORS_RO case; relocking the group
778 * may be dangerous, but nothing bad will happen since the
779 * filesystem will have already been marked read/only and the
780 * journal has been aborted. We return 1 as a hint to callers
781 * who might what to use the return value from
782 * ext4_grp_locked_error() to distinguish between the
783 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
784 * aggressively from the ext4 function in question, with a
785 * more appropriate error code.
787 ext4_lock_group(sb, grp);
791 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
795 struct ext4_sb_info *sbi = EXT4_SB(sb);
796 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
797 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
800 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
801 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
804 percpu_counter_sub(&sbi->s_freeclusters_counter,
808 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
809 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
814 count = ext4_free_inodes_count(sb, gdp);
815 percpu_counter_sub(&sbi->s_freeinodes_counter,
821 void ext4_update_dynamic_rev(struct super_block *sb)
823 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
825 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
829 "updating to rev %d because of new feature flag, "
830 "running e2fsck is recommended",
833 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
834 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
835 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
836 /* leave es->s_feature_*compat flags alone */
837 /* es->s_uuid will be set by e2fsck if empty */
840 * The rest of the superblock fields should be zero, and if not it
841 * means they are likely already in use, so leave them alone. We
842 * can leave it up to e2fsck to clean up any inconsistencies there.
847 * Open the external journal device
849 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
851 struct block_device *bdev;
852 char b[BDEVNAME_SIZE];
854 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
860 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
861 __bdevname(dev, b), PTR_ERR(bdev));
866 * Release the journal device
868 static void ext4_blkdev_put(struct block_device *bdev)
870 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
873 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
875 struct block_device *bdev;
876 bdev = sbi->journal_bdev;
878 ext4_blkdev_put(bdev);
879 sbi->journal_bdev = NULL;
883 static inline struct inode *orphan_list_entry(struct list_head *l)
885 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
888 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
892 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
893 le32_to_cpu(sbi->s_es->s_last_orphan));
895 printk(KERN_ERR "sb_info orphan list:\n");
896 list_for_each(l, &sbi->s_orphan) {
897 struct inode *inode = orphan_list_entry(l);
899 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
900 inode->i_sb->s_id, inode->i_ino, inode,
901 inode->i_mode, inode->i_nlink,
907 static int ext4_quota_off(struct super_block *sb, int type);
909 static inline void ext4_quota_off_umount(struct super_block *sb)
913 /* Use our quota_off function to clear inode flags etc. */
914 for (type = 0; type < EXT4_MAXQUOTAS; type++)
915 ext4_quota_off(sb, type);
919 * This is a helper function which is used in the mount/remount
920 * codepaths (which holds s_umount) to fetch the quota file name.
922 static inline char *get_qf_name(struct super_block *sb,
923 struct ext4_sb_info *sbi,
926 return rcu_dereference_protected(sbi->s_qf_names[type],
927 lockdep_is_held(&sb->s_umount));
930 static inline void ext4_quota_off_umount(struct super_block *sb)
935 static void ext4_put_super(struct super_block *sb)
937 struct ext4_sb_info *sbi = EXT4_SB(sb);
938 struct ext4_super_block *es = sbi->s_es;
942 ext4_unregister_li_request(sb);
943 ext4_quota_off_umount(sb);
945 destroy_workqueue(sbi->rsv_conversion_wq);
947 if (sbi->s_journal) {
948 aborted = is_journal_aborted(sbi->s_journal);
949 err = jbd2_journal_destroy(sbi->s_journal);
950 sbi->s_journal = NULL;
951 if ((err < 0) && !aborted)
952 ext4_abort(sb, "Couldn't clean up the journal");
955 ext4_unregister_sysfs(sb);
956 ext4_es_unregister_shrinker(sbi);
957 del_timer_sync(&sbi->s_err_report);
958 ext4_release_system_zone(sb);
960 ext4_ext_release(sb);
962 if (!sb_rdonly(sb) && !aborted) {
963 ext4_clear_feature_journal_needs_recovery(sb);
964 es->s_state = cpu_to_le16(sbi->s_mount_state);
967 ext4_commit_super(sb, 1);
969 for (i = 0; i < sbi->s_gdb_count; i++)
970 brelse(sbi->s_group_desc[i]);
971 kvfree(sbi->s_group_desc);
972 kvfree(sbi->s_flex_groups);
973 percpu_counter_destroy(&sbi->s_freeclusters_counter);
974 percpu_counter_destroy(&sbi->s_freeinodes_counter);
975 percpu_counter_destroy(&sbi->s_dirs_counter);
976 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
977 percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
979 for (i = 0; i < EXT4_MAXQUOTAS; i++)
980 kfree(get_qf_name(sb, sbi, i));
983 /* Debugging code just in case the in-memory inode orphan list
984 * isn't empty. The on-disk one can be non-empty if we've
985 * detected an error and taken the fs readonly, but the
986 * in-memory list had better be clean by this point. */
987 if (!list_empty(&sbi->s_orphan))
988 dump_orphan_list(sb, sbi);
989 J_ASSERT(list_empty(&sbi->s_orphan));
991 sync_blockdev(sb->s_bdev);
992 invalidate_bdev(sb->s_bdev);
993 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
995 * Invalidate the journal device's buffers. We don't want them
996 * floating about in memory - the physical journal device may
997 * hotswapped, and it breaks the `ro-after' testing code.
999 sync_blockdev(sbi->journal_bdev);
1000 invalidate_bdev(sbi->journal_bdev);
1001 ext4_blkdev_remove(sbi);
1003 if (sbi->s_ea_inode_cache) {
1004 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1005 sbi->s_ea_inode_cache = NULL;
1007 if (sbi->s_ea_block_cache) {
1008 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1009 sbi->s_ea_block_cache = NULL;
1012 kthread_stop(sbi->s_mmp_tsk);
1014 sb->s_fs_info = NULL;
1016 * Now that we are completely done shutting down the
1017 * superblock, we need to actually destroy the kobject.
1019 kobject_put(&sbi->s_kobj);
1020 wait_for_completion(&sbi->s_kobj_unregister);
1021 if (sbi->s_chksum_driver)
1022 crypto_free_shash(sbi->s_chksum_driver);
1023 kfree(sbi->s_blockgroup_lock);
1024 fs_put_dax(sbi->s_daxdev);
1028 static struct kmem_cache *ext4_inode_cachep;
1031 * Called inside transaction, so use GFP_NOFS
1033 static struct inode *ext4_alloc_inode(struct super_block *sb)
1035 struct ext4_inode_info *ei;
1037 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1041 inode_set_iversion(&ei->vfs_inode, 1);
1042 spin_lock_init(&ei->i_raw_lock);
1043 INIT_LIST_HEAD(&ei->i_prealloc_list);
1044 spin_lock_init(&ei->i_prealloc_lock);
1045 ext4_es_init_tree(&ei->i_es_tree);
1046 rwlock_init(&ei->i_es_lock);
1047 INIT_LIST_HEAD(&ei->i_es_list);
1048 ei->i_es_all_nr = 0;
1049 ei->i_es_shk_nr = 0;
1050 ei->i_es_shrink_lblk = 0;
1051 ei->i_reserved_data_blocks = 0;
1052 ei->i_da_metadata_calc_len = 0;
1053 ei->i_da_metadata_calc_last_lblock = 0;
1054 spin_lock_init(&(ei->i_block_reservation_lock));
1055 ext4_init_pending_tree(&ei->i_pending_tree);
1057 ei->i_reserved_quota = 0;
1058 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1061 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1062 spin_lock_init(&ei->i_completed_io_lock);
1064 ei->i_datasync_tid = 0;
1065 atomic_set(&ei->i_unwritten, 0);
1066 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1067 return &ei->vfs_inode;
1070 static int ext4_drop_inode(struct inode *inode)
1072 int drop = generic_drop_inode(inode);
1074 trace_ext4_drop_inode(inode, drop);
1078 static void ext4_i_callback(struct rcu_head *head)
1080 struct inode *inode = container_of(head, struct inode, i_rcu);
1081 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1084 static void ext4_destroy_inode(struct inode *inode)
1086 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1087 ext4_msg(inode->i_sb, KERN_ERR,
1088 "Inode %lu (%p): orphan list check failed!",
1089 inode->i_ino, EXT4_I(inode));
1090 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1091 EXT4_I(inode), sizeof(struct ext4_inode_info),
1095 call_rcu(&inode->i_rcu, ext4_i_callback);
1098 static void init_once(void *foo)
1100 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1102 INIT_LIST_HEAD(&ei->i_orphan);
1103 init_rwsem(&ei->xattr_sem);
1104 init_rwsem(&ei->i_data_sem);
1105 init_rwsem(&ei->i_mmap_sem);
1106 inode_init_once(&ei->vfs_inode);
1109 static int __init init_inodecache(void)
1111 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1112 sizeof(struct ext4_inode_info), 0,
1113 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1115 offsetof(struct ext4_inode_info, i_data),
1116 sizeof_field(struct ext4_inode_info, i_data),
1118 if (ext4_inode_cachep == NULL)
1123 static void destroy_inodecache(void)
1126 * Make sure all delayed rcu free inodes are flushed before we
1130 kmem_cache_destroy(ext4_inode_cachep);
1133 void ext4_clear_inode(struct inode *inode)
1135 invalidate_inode_buffers(inode);
1138 ext4_discard_preallocations(inode);
1139 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1140 if (EXT4_I(inode)->jinode) {
1141 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1142 EXT4_I(inode)->jinode);
1143 jbd2_free_inode(EXT4_I(inode)->jinode);
1144 EXT4_I(inode)->jinode = NULL;
1146 fscrypt_put_encryption_info(inode);
1149 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1150 u64 ino, u32 generation)
1152 struct inode *inode;
1154 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1155 return ERR_PTR(-ESTALE);
1156 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1157 return ERR_PTR(-ESTALE);
1159 /* iget isn't really right if the inode is currently unallocated!!
1161 * ext4_read_inode will return a bad_inode if the inode had been
1162 * deleted, so we should be safe.
1164 * Currently we don't know the generation for parent directory, so
1165 * a generation of 0 means "accept any"
1167 inode = ext4_iget_normal(sb, ino);
1169 return ERR_CAST(inode);
1170 if (generation && inode->i_generation != generation) {
1172 return ERR_PTR(-ESTALE);
1178 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1179 int fh_len, int fh_type)
1181 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1182 ext4_nfs_get_inode);
1185 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1186 int fh_len, int fh_type)
1188 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1189 ext4_nfs_get_inode);
1193 * Try to release metadata pages (indirect blocks, directories) which are
1194 * mapped via the block device. Since these pages could have journal heads
1195 * which would prevent try_to_free_buffers() from freeing them, we must use
1196 * jbd2 layer's try_to_free_buffers() function to release them.
1198 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1201 journal_t *journal = EXT4_SB(sb)->s_journal;
1203 WARN_ON(PageChecked(page));
1204 if (!page_has_buffers(page))
1207 return jbd2_journal_try_to_free_buffers(journal, page,
1208 wait & ~__GFP_DIRECT_RECLAIM);
1209 return try_to_free_buffers(page);
1212 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1213 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1215 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1216 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1219 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1222 handle_t *handle = fs_data;
1223 int res, res2, credits, retries = 0;
1226 * Encrypting the root directory is not allowed because e2fsck expects
1227 * lost+found to exist and be unencrypted, and encrypting the root
1228 * directory would imply encrypting the lost+found directory as well as
1229 * the filename "lost+found" itself.
1231 if (inode->i_ino == EXT4_ROOT_INO)
1234 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1237 res = ext4_convert_inline_data(inode);
1242 * If a journal handle was specified, then the encryption context is
1243 * being set on a new inode via inheritance and is part of a larger
1244 * transaction to create the inode. Otherwise the encryption context is
1245 * being set on an existing inode in its own transaction. Only in the
1246 * latter case should the "retry on ENOSPC" logic be used.
1250 res = ext4_xattr_set_handle(handle, inode,
1251 EXT4_XATTR_INDEX_ENCRYPTION,
1252 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1255 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1256 ext4_clear_inode_state(inode,
1257 EXT4_STATE_MAY_INLINE_DATA);
1259 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1260 * S_DAX may be disabled
1262 ext4_set_inode_flags(inode);
1267 res = dquot_initialize(inode);
1271 res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1276 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1278 return PTR_ERR(handle);
1280 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1281 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1284 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1286 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1287 * S_DAX may be disabled
1289 ext4_set_inode_flags(inode);
1290 res = ext4_mark_inode_dirty(handle, inode);
1292 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1294 res2 = ext4_journal_stop(handle);
1296 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1303 static bool ext4_dummy_context(struct inode *inode)
1305 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb));
1308 static const struct fscrypt_operations ext4_cryptops = {
1309 .key_prefix = "ext4:",
1310 .get_context = ext4_get_context,
1311 .set_context = ext4_set_context,
1312 .dummy_context = ext4_dummy_context,
1313 .empty_dir = ext4_empty_dir,
1314 .max_namelen = EXT4_NAME_LEN,
1319 static const char * const quotatypes[] = INITQFNAMES;
1320 #define QTYPE2NAME(t) (quotatypes[t])
1322 static int ext4_write_dquot(struct dquot *dquot);
1323 static int ext4_acquire_dquot(struct dquot *dquot);
1324 static int ext4_release_dquot(struct dquot *dquot);
1325 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1326 static int ext4_write_info(struct super_block *sb, int type);
1327 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1328 const struct path *path);
1329 static int ext4_quota_on_mount(struct super_block *sb, int type);
1330 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1331 size_t len, loff_t off);
1332 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1333 const char *data, size_t len, loff_t off);
1334 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1335 unsigned int flags);
1336 static int ext4_enable_quotas(struct super_block *sb);
1337 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1339 static struct dquot **ext4_get_dquots(struct inode *inode)
1341 return EXT4_I(inode)->i_dquot;
1344 static const struct dquot_operations ext4_quota_operations = {
1345 .get_reserved_space = ext4_get_reserved_space,
1346 .write_dquot = ext4_write_dquot,
1347 .acquire_dquot = ext4_acquire_dquot,
1348 .release_dquot = ext4_release_dquot,
1349 .mark_dirty = ext4_mark_dquot_dirty,
1350 .write_info = ext4_write_info,
1351 .alloc_dquot = dquot_alloc,
1352 .destroy_dquot = dquot_destroy,
1353 .get_projid = ext4_get_projid,
1354 .get_inode_usage = ext4_get_inode_usage,
1355 .get_next_id = ext4_get_next_id,
1358 static const struct quotactl_ops ext4_qctl_operations = {
1359 .quota_on = ext4_quota_on,
1360 .quota_off = ext4_quota_off,
1361 .quota_sync = dquot_quota_sync,
1362 .get_state = dquot_get_state,
1363 .set_info = dquot_set_dqinfo,
1364 .get_dqblk = dquot_get_dqblk,
1365 .set_dqblk = dquot_set_dqblk,
1366 .get_nextdqblk = dquot_get_next_dqblk,
1370 static const struct super_operations ext4_sops = {
1371 .alloc_inode = ext4_alloc_inode,
1372 .destroy_inode = ext4_destroy_inode,
1373 .write_inode = ext4_write_inode,
1374 .dirty_inode = ext4_dirty_inode,
1375 .drop_inode = ext4_drop_inode,
1376 .evict_inode = ext4_evict_inode,
1377 .put_super = ext4_put_super,
1378 .sync_fs = ext4_sync_fs,
1379 .freeze_fs = ext4_freeze,
1380 .unfreeze_fs = ext4_unfreeze,
1381 .statfs = ext4_statfs,
1382 .remount_fs = ext4_remount,
1383 .show_options = ext4_show_options,
1385 .quota_read = ext4_quota_read,
1386 .quota_write = ext4_quota_write,
1387 .get_dquots = ext4_get_dquots,
1389 .bdev_try_to_free_page = bdev_try_to_free_page,
1392 static const struct export_operations ext4_export_ops = {
1393 .fh_to_dentry = ext4_fh_to_dentry,
1394 .fh_to_parent = ext4_fh_to_parent,
1395 .get_parent = ext4_get_parent,
1399 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1400 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1401 Opt_nouid32, Opt_debug, Opt_removed,
1402 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1403 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1404 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1405 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1406 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1407 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1408 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1409 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1410 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1411 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1412 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1413 Opt_nowarn_on_error, Opt_mblk_io_submit,
1414 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1415 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1416 Opt_inode_readahead_blks, Opt_journal_ioprio,
1417 Opt_dioread_nolock, Opt_dioread_lock,
1418 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1419 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1422 static const match_table_t tokens = {
1423 {Opt_bsd_df, "bsddf"},
1424 {Opt_minix_df, "minixdf"},
1425 {Opt_grpid, "grpid"},
1426 {Opt_grpid, "bsdgroups"},
1427 {Opt_nogrpid, "nogrpid"},
1428 {Opt_nogrpid, "sysvgroups"},
1429 {Opt_resgid, "resgid=%u"},
1430 {Opt_resuid, "resuid=%u"},
1432 {Opt_err_cont, "errors=continue"},
1433 {Opt_err_panic, "errors=panic"},
1434 {Opt_err_ro, "errors=remount-ro"},
1435 {Opt_nouid32, "nouid32"},
1436 {Opt_debug, "debug"},
1437 {Opt_removed, "oldalloc"},
1438 {Opt_removed, "orlov"},
1439 {Opt_user_xattr, "user_xattr"},
1440 {Opt_nouser_xattr, "nouser_xattr"},
1442 {Opt_noacl, "noacl"},
1443 {Opt_noload, "norecovery"},
1444 {Opt_noload, "noload"},
1445 {Opt_removed, "nobh"},
1446 {Opt_removed, "bh"},
1447 {Opt_commit, "commit=%u"},
1448 {Opt_min_batch_time, "min_batch_time=%u"},
1449 {Opt_max_batch_time, "max_batch_time=%u"},
1450 {Opt_journal_dev, "journal_dev=%u"},
1451 {Opt_journal_path, "journal_path=%s"},
1452 {Opt_journal_checksum, "journal_checksum"},
1453 {Opt_nojournal_checksum, "nojournal_checksum"},
1454 {Opt_journal_async_commit, "journal_async_commit"},
1455 {Opt_abort, "abort"},
1456 {Opt_data_journal, "data=journal"},
1457 {Opt_data_ordered, "data=ordered"},
1458 {Opt_data_writeback, "data=writeback"},
1459 {Opt_data_err_abort, "data_err=abort"},
1460 {Opt_data_err_ignore, "data_err=ignore"},
1461 {Opt_offusrjquota, "usrjquota="},
1462 {Opt_usrjquota, "usrjquota=%s"},
1463 {Opt_offgrpjquota, "grpjquota="},
1464 {Opt_grpjquota, "grpjquota=%s"},
1465 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1466 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1467 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1468 {Opt_grpquota, "grpquota"},
1469 {Opt_noquota, "noquota"},
1470 {Opt_quota, "quota"},
1471 {Opt_usrquota, "usrquota"},
1472 {Opt_prjquota, "prjquota"},
1473 {Opt_barrier, "barrier=%u"},
1474 {Opt_barrier, "barrier"},
1475 {Opt_nobarrier, "nobarrier"},
1476 {Opt_i_version, "i_version"},
1478 {Opt_stripe, "stripe=%u"},
1479 {Opt_delalloc, "delalloc"},
1480 {Opt_warn_on_error, "warn_on_error"},
1481 {Opt_nowarn_on_error, "nowarn_on_error"},
1482 {Opt_lazytime, "lazytime"},
1483 {Opt_nolazytime, "nolazytime"},
1484 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1485 {Opt_nodelalloc, "nodelalloc"},
1486 {Opt_removed, "mblk_io_submit"},
1487 {Opt_removed, "nomblk_io_submit"},
1488 {Opt_block_validity, "block_validity"},
1489 {Opt_noblock_validity, "noblock_validity"},
1490 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1491 {Opt_journal_ioprio, "journal_ioprio=%u"},
1492 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1493 {Opt_auto_da_alloc, "auto_da_alloc"},
1494 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1495 {Opt_dioread_nolock, "dioread_nolock"},
1496 {Opt_dioread_lock, "dioread_lock"},
1497 {Opt_discard, "discard"},
1498 {Opt_nodiscard, "nodiscard"},
1499 {Opt_init_itable, "init_itable=%u"},
1500 {Opt_init_itable, "init_itable"},
1501 {Opt_noinit_itable, "noinit_itable"},
1502 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1503 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1504 {Opt_nombcache, "nombcache"},
1505 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */
1506 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1507 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1508 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1509 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1510 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1514 static ext4_fsblk_t get_sb_block(void **data)
1516 ext4_fsblk_t sb_block;
1517 char *options = (char *) *data;
1519 if (!options || strncmp(options, "sb=", 3) != 0)
1520 return 1; /* Default location */
1523 /* TODO: use simple_strtoll with >32bit ext4 */
1524 sb_block = simple_strtoul(options, &options, 0);
1525 if (*options && *options != ',') {
1526 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1530 if (*options == ',')
1532 *data = (void *) options;
1537 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1538 static const char deprecated_msg[] =
1539 "Mount option \"%s\" will be removed by %s\n"
1540 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1543 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1545 struct ext4_sb_info *sbi = EXT4_SB(sb);
1546 char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1549 if (sb_any_quota_loaded(sb) && !old_qname) {
1550 ext4_msg(sb, KERN_ERR,
1551 "Cannot change journaled "
1552 "quota options when quota turned on");
1555 if (ext4_has_feature_quota(sb)) {
1556 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1557 "ignored when QUOTA feature is enabled");
1560 qname = match_strdup(args);
1562 ext4_msg(sb, KERN_ERR,
1563 "Not enough memory for storing quotafile name");
1567 if (strcmp(old_qname, qname) == 0)
1570 ext4_msg(sb, KERN_ERR,
1571 "%s quota file already specified",
1575 if (strchr(qname, '/')) {
1576 ext4_msg(sb, KERN_ERR,
1577 "quotafile must be on filesystem root");
1580 rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1588 static int clear_qf_name(struct super_block *sb, int qtype)
1591 struct ext4_sb_info *sbi = EXT4_SB(sb);
1592 char *old_qname = get_qf_name(sb, sbi, qtype);
1594 if (sb_any_quota_loaded(sb) && old_qname) {
1595 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1596 " when quota turned on");
1599 rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1606 #define MOPT_SET 0x0001
1607 #define MOPT_CLEAR 0x0002
1608 #define MOPT_NOSUPPORT 0x0004
1609 #define MOPT_EXPLICIT 0x0008
1610 #define MOPT_CLEAR_ERR 0x0010
1611 #define MOPT_GTE0 0x0020
1614 #define MOPT_QFMT 0x0040
1616 #define MOPT_Q MOPT_NOSUPPORT
1617 #define MOPT_QFMT MOPT_NOSUPPORT
1619 #define MOPT_DATAJ 0x0080
1620 #define MOPT_NO_EXT2 0x0100
1621 #define MOPT_NO_EXT3 0x0200
1622 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1623 #define MOPT_STRING 0x0400
1625 static const struct mount_opts {
1629 } ext4_mount_opts[] = {
1630 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1631 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1632 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1633 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1634 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1635 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1636 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1637 MOPT_EXT4_ONLY | MOPT_SET},
1638 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1639 MOPT_EXT4_ONLY | MOPT_CLEAR},
1640 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1641 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1642 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1643 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1644 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1645 MOPT_EXT4_ONLY | MOPT_CLEAR},
1646 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1647 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1648 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1649 MOPT_EXT4_ONLY | MOPT_CLEAR},
1650 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1651 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1652 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1653 EXT4_MOUNT_JOURNAL_CHECKSUM),
1654 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1655 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1656 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1657 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1658 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1659 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1661 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1663 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1664 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1665 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1666 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1667 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1668 {Opt_commit, 0, MOPT_GTE0},
1669 {Opt_max_batch_time, 0, MOPT_GTE0},
1670 {Opt_min_batch_time, 0, MOPT_GTE0},
1671 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1672 {Opt_init_itable, 0, MOPT_GTE0},
1673 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1674 {Opt_stripe, 0, MOPT_GTE0},
1675 {Opt_resuid, 0, MOPT_GTE0},
1676 {Opt_resgid, 0, MOPT_GTE0},
1677 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1678 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1679 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1680 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1681 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1682 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1683 MOPT_NO_EXT2 | MOPT_DATAJ},
1684 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1685 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1686 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1687 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1688 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1690 {Opt_acl, 0, MOPT_NOSUPPORT},
1691 {Opt_noacl, 0, MOPT_NOSUPPORT},
1693 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1694 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1695 {Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1696 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1697 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1699 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1701 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1703 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1704 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1705 MOPT_CLEAR | MOPT_Q},
1706 {Opt_usrjquota, 0, MOPT_Q},
1707 {Opt_grpjquota, 0, MOPT_Q},
1708 {Opt_offusrjquota, 0, MOPT_Q},
1709 {Opt_offgrpjquota, 0, MOPT_Q},
1710 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1711 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1712 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1713 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1714 {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1715 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1719 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1720 substring_t *args, unsigned long *journal_devnum,
1721 unsigned int *journal_ioprio, int is_remount)
1723 struct ext4_sb_info *sbi = EXT4_SB(sb);
1724 const struct mount_opts *m;
1730 if (token == Opt_usrjquota)
1731 return set_qf_name(sb, USRQUOTA, &args[0]);
1732 else if (token == Opt_grpjquota)
1733 return set_qf_name(sb, GRPQUOTA, &args[0]);
1734 else if (token == Opt_offusrjquota)
1735 return clear_qf_name(sb, USRQUOTA);
1736 else if (token == Opt_offgrpjquota)
1737 return clear_qf_name(sb, GRPQUOTA);
1741 case Opt_nouser_xattr:
1742 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1745 return 1; /* handled by get_sb_block() */
1747 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1750 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1753 sb->s_flags |= SB_I_VERSION;
1756 sb->s_flags |= SB_LAZYTIME;
1758 case Opt_nolazytime:
1759 sb->s_flags &= ~SB_LAZYTIME;
1763 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1764 if (token == m->token)
1767 if (m->token == Opt_err) {
1768 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1769 "or missing value", opt);
1773 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1774 ext4_msg(sb, KERN_ERR,
1775 "Mount option \"%s\" incompatible with ext2", opt);
1778 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1779 ext4_msg(sb, KERN_ERR,
1780 "Mount option \"%s\" incompatible with ext3", opt);
1784 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1786 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1788 if (m->flags & MOPT_EXPLICIT) {
1789 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1790 set_opt2(sb, EXPLICIT_DELALLOC);
1791 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1792 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1796 if (m->flags & MOPT_CLEAR_ERR)
1797 clear_opt(sb, ERRORS_MASK);
1798 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1799 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1800 "options when quota turned on");
1804 if (m->flags & MOPT_NOSUPPORT) {
1805 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1806 } else if (token == Opt_commit) {
1808 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1809 sbi->s_commit_interval = HZ * arg;
1810 } else if (token == Opt_debug_want_extra_isize) {
1811 sbi->s_want_extra_isize = arg;
1812 } else if (token == Opt_max_batch_time) {
1813 sbi->s_max_batch_time = arg;
1814 } else if (token == Opt_min_batch_time) {
1815 sbi->s_min_batch_time = arg;
1816 } else if (token == Opt_inode_readahead_blks) {
1817 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1818 ext4_msg(sb, KERN_ERR,
1819 "EXT4-fs: inode_readahead_blks must be "
1820 "0 or a power of 2 smaller than 2^31");
1823 sbi->s_inode_readahead_blks = arg;
1824 } else if (token == Opt_init_itable) {
1825 set_opt(sb, INIT_INODE_TABLE);
1827 arg = EXT4_DEF_LI_WAIT_MULT;
1828 sbi->s_li_wait_mult = arg;
1829 } else if (token == Opt_max_dir_size_kb) {
1830 sbi->s_max_dir_size_kb = arg;
1831 } else if (token == Opt_stripe) {
1832 sbi->s_stripe = arg;
1833 } else if (token == Opt_resuid) {
1834 uid = make_kuid(current_user_ns(), arg);
1835 if (!uid_valid(uid)) {
1836 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1839 sbi->s_resuid = uid;
1840 } else if (token == Opt_resgid) {
1841 gid = make_kgid(current_user_ns(), arg);
1842 if (!gid_valid(gid)) {
1843 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1846 sbi->s_resgid = gid;
1847 } else if (token == Opt_journal_dev) {
1849 ext4_msg(sb, KERN_ERR,
1850 "Cannot specify journal on remount");
1853 *journal_devnum = arg;
1854 } else if (token == Opt_journal_path) {
1856 struct inode *journal_inode;
1861 ext4_msg(sb, KERN_ERR,
1862 "Cannot specify journal on remount");
1865 journal_path = match_strdup(&args[0]);
1866 if (!journal_path) {
1867 ext4_msg(sb, KERN_ERR, "error: could not dup "
1868 "journal device string");
1872 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1874 ext4_msg(sb, KERN_ERR, "error: could not find "
1875 "journal device path: error %d", error);
1876 kfree(journal_path);
1880 journal_inode = d_inode(path.dentry);
1881 if (!S_ISBLK(journal_inode->i_mode)) {
1882 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1883 "is not a block device", journal_path);
1885 kfree(journal_path);
1889 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1891 kfree(journal_path);
1892 } else if (token == Opt_journal_ioprio) {
1894 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1899 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1900 } else if (token == Opt_test_dummy_encryption) {
1901 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1902 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1903 ext4_msg(sb, KERN_WARNING,
1904 "Test dummy encryption mode enabled");
1906 ext4_msg(sb, KERN_WARNING,
1907 "Test dummy encryption mount option ignored");
1909 } else if (m->flags & MOPT_DATAJ) {
1911 if (!sbi->s_journal)
1912 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1913 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1914 ext4_msg(sb, KERN_ERR,
1915 "Cannot change data mode on remount");
1919 clear_opt(sb, DATA_FLAGS);
1920 sbi->s_mount_opt |= m->mount_opt;
1923 } else if (m->flags & MOPT_QFMT) {
1924 if (sb_any_quota_loaded(sb) &&
1925 sbi->s_jquota_fmt != m->mount_opt) {
1926 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1927 "quota options when quota turned on");
1930 if (ext4_has_feature_quota(sb)) {
1931 ext4_msg(sb, KERN_INFO,
1932 "Quota format mount options ignored "
1933 "when QUOTA feature is enabled");
1936 sbi->s_jquota_fmt = m->mount_opt;
1938 } else if (token == Opt_dax) {
1939 #ifdef CONFIG_FS_DAX
1940 ext4_msg(sb, KERN_WARNING,
1941 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1942 sbi->s_mount_opt |= m->mount_opt;
1944 ext4_msg(sb, KERN_INFO, "dax option not supported");
1947 } else if (token == Opt_data_err_abort) {
1948 sbi->s_mount_opt |= m->mount_opt;
1949 } else if (token == Opt_data_err_ignore) {
1950 sbi->s_mount_opt &= ~m->mount_opt;
1954 if (m->flags & MOPT_CLEAR)
1956 else if (unlikely(!(m->flags & MOPT_SET))) {
1957 ext4_msg(sb, KERN_WARNING,
1958 "buggy handling of option %s", opt);
1963 sbi->s_mount_opt |= m->mount_opt;
1965 sbi->s_mount_opt &= ~m->mount_opt;
1970 static int parse_options(char *options, struct super_block *sb,
1971 unsigned long *journal_devnum,
1972 unsigned int *journal_ioprio,
1975 struct ext4_sb_info *sbi = EXT4_SB(sb);
1976 char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
1977 substring_t args[MAX_OPT_ARGS];
1983 while ((p = strsep(&options, ",")) != NULL) {
1987 * Initialize args struct so we know whether arg was
1988 * found; some options take optional arguments.
1990 args[0].to = args[0].from = NULL;
1991 token = match_token(p, tokens, args);
1992 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1993 journal_ioprio, is_remount) < 0)
1998 * We do the test below only for project quotas. 'usrquota' and
1999 * 'grpquota' mount options are allowed even without quota feature
2000 * to support legacy quotas in quota files.
2002 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
2003 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
2004 "Cannot enable project quota enforcement.");
2007 usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
2008 grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
2009 if (usr_qf_name || grp_qf_name) {
2010 if (test_opt(sb, USRQUOTA) && usr_qf_name)
2011 clear_opt(sb, USRQUOTA);
2013 if (test_opt(sb, GRPQUOTA) && grp_qf_name)
2014 clear_opt(sb, GRPQUOTA);
2016 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2017 ext4_msg(sb, KERN_ERR, "old and new quota "
2022 if (!sbi->s_jquota_fmt) {
2023 ext4_msg(sb, KERN_ERR, "journaled quota format "
2029 if (test_opt(sb, DIOREAD_NOLOCK)) {
2031 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2033 if (blocksize < PAGE_SIZE) {
2034 ext4_msg(sb, KERN_ERR, "can't mount with "
2035 "dioread_nolock if block size != PAGE_SIZE");
2042 static inline void ext4_show_quota_options(struct seq_file *seq,
2043 struct super_block *sb)
2045 #if defined(CONFIG_QUOTA)
2046 struct ext4_sb_info *sbi = EXT4_SB(sb);
2047 char *usr_qf_name, *grp_qf_name;
2049 if (sbi->s_jquota_fmt) {
2052 switch (sbi->s_jquota_fmt) {
2063 seq_printf(seq, ",jqfmt=%s", fmtname);
2067 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2068 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2070 seq_show_option(seq, "usrjquota", usr_qf_name);
2072 seq_show_option(seq, "grpjquota", grp_qf_name);
2077 static const char *token2str(int token)
2079 const struct match_token *t;
2081 for (t = tokens; t->token != Opt_err; t++)
2082 if (t->token == token && !strchr(t->pattern, '='))
2089 * - it's set to a non-default value OR
2090 * - if the per-sb default is different from the global default
2092 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2095 struct ext4_sb_info *sbi = EXT4_SB(sb);
2096 struct ext4_super_block *es = sbi->s_es;
2097 int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2098 const struct mount_opts *m;
2099 char sep = nodefs ? '\n' : ',';
2101 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2102 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2104 if (sbi->s_sb_block != 1)
2105 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2107 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2108 int want_set = m->flags & MOPT_SET;
2109 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2110 (m->flags & MOPT_CLEAR_ERR))
2112 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2113 continue; /* skip if same as the default */
2115 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2116 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2117 continue; /* select Opt_noFoo vs Opt_Foo */
2118 SEQ_OPTS_PRINT("%s", token2str(m->token));
2121 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2122 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2123 SEQ_OPTS_PRINT("resuid=%u",
2124 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2125 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2126 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2127 SEQ_OPTS_PRINT("resgid=%u",
2128 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2129 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2130 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2131 SEQ_OPTS_PUTS("errors=remount-ro");
2132 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2133 SEQ_OPTS_PUTS("errors=continue");
2134 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2135 SEQ_OPTS_PUTS("errors=panic");
2136 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2137 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2138 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2139 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2140 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2141 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2142 if (sb->s_flags & SB_I_VERSION)
2143 SEQ_OPTS_PUTS("i_version");
2144 if (nodefs || sbi->s_stripe)
2145 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2146 if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2147 (sbi->s_mount_opt ^ def_mount_opt)) {
2148 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2149 SEQ_OPTS_PUTS("data=journal");
2150 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2151 SEQ_OPTS_PUTS("data=ordered");
2152 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2153 SEQ_OPTS_PUTS("data=writeback");
2156 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2157 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2158 sbi->s_inode_readahead_blks);
2160 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2161 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2162 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2163 if (nodefs || sbi->s_max_dir_size_kb)
2164 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2165 if (test_opt(sb, DATA_ERR_ABORT))
2166 SEQ_OPTS_PUTS("data_err=abort");
2167 if (DUMMY_ENCRYPTION_ENABLED(sbi))
2168 SEQ_OPTS_PUTS("test_dummy_encryption");
2170 ext4_show_quota_options(seq, sb);
2174 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2176 return _ext4_show_options(seq, root->d_sb, 0);
2179 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2181 struct super_block *sb = seq->private;
2184 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2185 rc = _ext4_show_options(seq, sb, 1);
2186 seq_puts(seq, "\n");
2190 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2193 struct ext4_sb_info *sbi = EXT4_SB(sb);
2196 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2197 ext4_msg(sb, KERN_ERR, "revision level too high, "
2198 "forcing read-only mode");
2203 if (!(sbi->s_mount_state & EXT4_VALID_FS))
2204 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2205 "running e2fsck is recommended");
2206 else if (sbi->s_mount_state & EXT4_ERROR_FS)
2207 ext4_msg(sb, KERN_WARNING,
2208 "warning: mounting fs with errors, "
2209 "running e2fsck is recommended");
2210 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2211 le16_to_cpu(es->s_mnt_count) >=
2212 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2213 ext4_msg(sb, KERN_WARNING,
2214 "warning: maximal mount count reached, "
2215 "running e2fsck is recommended");
2216 else if (le32_to_cpu(es->s_checkinterval) &&
2217 (ext4_get_tstamp(es, s_lastcheck) +
2218 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
2219 ext4_msg(sb, KERN_WARNING,
2220 "warning: checktime reached, "
2221 "running e2fsck is recommended");
2222 if (!sbi->s_journal)
2223 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2224 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2225 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2226 le16_add_cpu(&es->s_mnt_count, 1);
2227 ext4_update_tstamp(es, s_mtime);
2228 ext4_update_dynamic_rev(sb);
2230 ext4_set_feature_journal_needs_recovery(sb);
2232 err = ext4_commit_super(sb, 1);
2234 if (test_opt(sb, DEBUG))
2235 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2236 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2238 sbi->s_groups_count,
2239 EXT4_BLOCKS_PER_GROUP(sb),
2240 EXT4_INODES_PER_GROUP(sb),
2241 sbi->s_mount_opt, sbi->s_mount_opt2);
2243 cleancache_init_fs(sb);
2247 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2249 struct ext4_sb_info *sbi = EXT4_SB(sb);
2250 struct flex_groups *new_groups;
2253 if (!sbi->s_log_groups_per_flex)
2256 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2257 if (size <= sbi->s_flex_groups_allocated)
2260 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2261 new_groups = kvzalloc(size, GFP_KERNEL);
2263 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2264 size / (int) sizeof(struct flex_groups));
2268 if (sbi->s_flex_groups) {
2269 memcpy(new_groups, sbi->s_flex_groups,
2270 (sbi->s_flex_groups_allocated *
2271 sizeof(struct flex_groups)));
2272 kvfree(sbi->s_flex_groups);
2274 sbi->s_flex_groups = new_groups;
2275 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2279 static int ext4_fill_flex_info(struct super_block *sb)
2281 struct ext4_sb_info *sbi = EXT4_SB(sb);
2282 struct ext4_group_desc *gdp = NULL;
2283 ext4_group_t flex_group;
2286 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2287 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2288 sbi->s_log_groups_per_flex = 0;
2292 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2296 for (i = 0; i < sbi->s_groups_count; i++) {
2297 gdp = ext4_get_group_desc(sb, i, NULL);
2299 flex_group = ext4_flex_group(sbi, i);
2300 atomic_add(ext4_free_inodes_count(sb, gdp),
2301 &sbi->s_flex_groups[flex_group].free_inodes);
2302 atomic64_add(ext4_free_group_clusters(sb, gdp),
2303 &sbi->s_flex_groups[flex_group].free_clusters);
2304 atomic_add(ext4_used_dirs_count(sb, gdp),
2305 &sbi->s_flex_groups[flex_group].used_dirs);
2313 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2314 struct ext4_group_desc *gdp)
2316 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2318 __le32 le_group = cpu_to_le32(block_group);
2319 struct ext4_sb_info *sbi = EXT4_SB(sb);
2321 if (ext4_has_metadata_csum(sbi->s_sb)) {
2322 /* Use new metadata_csum algorithm */
2324 __u16 dummy_csum = 0;
2326 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2328 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2329 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2330 sizeof(dummy_csum));
2331 offset += sizeof(dummy_csum);
2332 if (offset < sbi->s_desc_size)
2333 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2334 sbi->s_desc_size - offset);
2336 crc = csum32 & 0xFFFF;
2340 /* old crc16 code */
2341 if (!ext4_has_feature_gdt_csum(sb))
2344 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2345 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2346 crc = crc16(crc, (__u8 *)gdp, offset);
2347 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2348 /* for checksum of struct ext4_group_desc do the rest...*/
2349 if (ext4_has_feature_64bit(sb) &&
2350 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2351 crc = crc16(crc, (__u8 *)gdp + offset,
2352 le16_to_cpu(sbi->s_es->s_desc_size) -
2356 return cpu_to_le16(crc);
2359 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2360 struct ext4_group_desc *gdp)
2362 if (ext4_has_group_desc_csum(sb) &&
2363 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2369 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2370 struct ext4_group_desc *gdp)
2372 if (!ext4_has_group_desc_csum(sb))
2374 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2377 /* Called at mount-time, super-block is locked */
2378 static int ext4_check_descriptors(struct super_block *sb,
2379 ext4_fsblk_t sb_block,
2380 ext4_group_t *first_not_zeroed)
2382 struct ext4_sb_info *sbi = EXT4_SB(sb);
2383 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2384 ext4_fsblk_t last_block;
2385 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2386 ext4_fsblk_t block_bitmap;
2387 ext4_fsblk_t inode_bitmap;
2388 ext4_fsblk_t inode_table;
2389 int flexbg_flag = 0;
2390 ext4_group_t i, grp = sbi->s_groups_count;
2392 if (ext4_has_feature_flex_bg(sb))
2395 ext4_debug("Checking group descriptors");
2397 for (i = 0; i < sbi->s_groups_count; i++) {
2398 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2400 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2401 last_block = ext4_blocks_count(sbi->s_es) - 1;
2403 last_block = first_block +
2404 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2406 if ((grp == sbi->s_groups_count) &&
2407 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2410 block_bitmap = ext4_block_bitmap(sb, gdp);
2411 if (block_bitmap == sb_block) {
2412 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2413 "Block bitmap for group %u overlaps "
2418 if (block_bitmap >= sb_block + 1 &&
2419 block_bitmap <= last_bg_block) {
2420 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2421 "Block bitmap for group %u overlaps "
2422 "block group descriptors", i);
2426 if (block_bitmap < first_block || block_bitmap > last_block) {
2427 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2428 "Block bitmap for group %u not in group "
2429 "(block %llu)!", i, block_bitmap);
2432 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2433 if (inode_bitmap == sb_block) {
2434 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2435 "Inode bitmap for group %u overlaps "
2440 if (inode_bitmap >= sb_block + 1 &&
2441 inode_bitmap <= last_bg_block) {
2442 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2443 "Inode bitmap for group %u overlaps "
2444 "block group descriptors", i);
2448 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2449 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2450 "Inode bitmap for group %u not in group "
2451 "(block %llu)!", i, inode_bitmap);
2454 inode_table = ext4_inode_table(sb, gdp);
2455 if (inode_table == sb_block) {
2456 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2457 "Inode table for group %u overlaps "
2462 if (inode_table >= sb_block + 1 &&
2463 inode_table <= last_bg_block) {
2464 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2465 "Inode table for group %u overlaps "
2466 "block group descriptors", i);
2470 if (inode_table < first_block ||
2471 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2472 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2473 "Inode table for group %u not in group "
2474 "(block %llu)!", i, inode_table);
2477 ext4_lock_group(sb, i);
2478 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2479 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2480 "Checksum for group %u failed (%u!=%u)",
2481 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2482 gdp)), le16_to_cpu(gdp->bg_checksum));
2483 if (!sb_rdonly(sb)) {
2484 ext4_unlock_group(sb, i);
2488 ext4_unlock_group(sb, i);
2490 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2492 if (NULL != first_not_zeroed)
2493 *first_not_zeroed = grp;
2497 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2498 * the superblock) which were deleted from all directories, but held open by
2499 * a process at the time of a crash. We walk the list and try to delete these
2500 * inodes at recovery time (only with a read-write filesystem).
2502 * In order to keep the orphan inode chain consistent during traversal (in
2503 * case of crash during recovery), we link each inode into the superblock
2504 * orphan list_head and handle it the same way as an inode deletion during
2505 * normal operation (which journals the operations for us).
2507 * We only do an iget() and an iput() on each inode, which is very safe if we
2508 * accidentally point at an in-use or already deleted inode. The worst that
2509 * can happen in this case is that we get a "bit already cleared" message from
2510 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2511 * e2fsck was run on this filesystem, and it must have already done the orphan
2512 * inode cleanup for us, so we can safely abort without any further action.
2514 static void ext4_orphan_cleanup(struct super_block *sb,
2515 struct ext4_super_block *es)
2517 unsigned int s_flags = sb->s_flags;
2518 int ret, nr_orphans = 0, nr_truncates = 0;
2520 int quota_update = 0;
2523 if (!es->s_last_orphan) {
2524 jbd_debug(4, "no orphan inodes to clean up\n");
2528 if (bdev_read_only(sb->s_bdev)) {
2529 ext4_msg(sb, KERN_ERR, "write access "
2530 "unavailable, skipping orphan cleanup");
2534 /* Check if feature set would not allow a r/w mount */
2535 if (!ext4_feature_set_ok(sb, 0)) {
2536 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2537 "unknown ROCOMPAT features");
2541 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2542 /* don't clear list on RO mount w/ errors */
2543 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
2544 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2545 "clearing orphan list.\n");
2546 es->s_last_orphan = 0;
2548 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2552 if (s_flags & SB_RDONLY) {
2553 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2554 sb->s_flags &= ~SB_RDONLY;
2557 /* Needed for iput() to work correctly and not trash data */
2558 sb->s_flags |= SB_ACTIVE;
2561 * Turn on quotas which were not enabled for read-only mounts if
2562 * filesystem has quota feature, so that they are updated correctly.
2564 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
2565 int ret = ext4_enable_quotas(sb);
2570 ext4_msg(sb, KERN_ERR,
2571 "Cannot turn on quotas: error %d", ret);
2574 /* Turn on journaled quotas used for old sytle */
2575 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2576 if (EXT4_SB(sb)->s_qf_names[i]) {
2577 int ret = ext4_quota_on_mount(sb, i);
2582 ext4_msg(sb, KERN_ERR,
2583 "Cannot turn on journaled "
2584 "quota: type %d: error %d", i, ret);
2589 while (es->s_last_orphan) {
2590 struct inode *inode;
2593 * We may have encountered an error during cleanup; if
2594 * so, skip the rest.
2596 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2597 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2598 es->s_last_orphan = 0;
2602 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2603 if (IS_ERR(inode)) {
2604 es->s_last_orphan = 0;
2608 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2609 dquot_initialize(inode);
2610 if (inode->i_nlink) {
2611 if (test_opt(sb, DEBUG))
2612 ext4_msg(sb, KERN_DEBUG,
2613 "%s: truncating inode %lu to %lld bytes",
2614 __func__, inode->i_ino, inode->i_size);
2615 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2616 inode->i_ino, inode->i_size);
2618 truncate_inode_pages(inode->i_mapping, inode->i_size);
2619 ret = ext4_truncate(inode);
2621 ext4_std_error(inode->i_sb, ret);
2622 inode_unlock(inode);
2625 if (test_opt(sb, DEBUG))
2626 ext4_msg(sb, KERN_DEBUG,
2627 "%s: deleting unreferenced inode %lu",
2628 __func__, inode->i_ino);
2629 jbd_debug(2, "deleting unreferenced inode %lu\n",
2633 iput(inode); /* The delete magic happens here! */
2636 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2639 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2640 PLURAL(nr_orphans));
2642 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2643 PLURAL(nr_truncates));
2645 /* Turn off quotas if they were enabled for orphan cleanup */
2647 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2648 if (sb_dqopt(sb)->files[i])
2649 dquot_quota_off(sb, i);
2653 sb->s_flags = s_flags; /* Restore SB_RDONLY status */
2657 * Maximal extent format file size.
2658 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2659 * extent format containers, within a sector_t, and within i_blocks
2660 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2661 * so that won't be a limiting factor.
2663 * However there is other limiting factor. We do store extents in the form
2664 * of starting block and length, hence the resulting length of the extent
2665 * covering maximum file size must fit into on-disk format containers as
2666 * well. Given that length is always by 1 unit bigger than max unit (because
2667 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2669 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2671 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2674 loff_t upper_limit = MAX_LFS_FILESIZE;
2676 /* small i_blocks in vfs inode? */
2677 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2679 * CONFIG_LBDAF is not enabled implies the inode
2680 * i_block represent total blocks in 512 bytes
2681 * 32 == size of vfs inode i_blocks * 8
2683 upper_limit = (1LL << 32) - 1;
2685 /* total blocks in file system block size */
2686 upper_limit >>= (blkbits - 9);
2687 upper_limit <<= blkbits;
2691 * 32-bit extent-start container, ee_block. We lower the maxbytes
2692 * by one fs block, so ee_len can cover the extent of maximum file
2695 res = (1LL << 32) - 1;
2698 /* Sanity check against vm- & vfs- imposed limits */
2699 if (res > upper_limit)
2706 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2707 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2708 * We need to be 1 filesystem block less than the 2^48 sector limit.
2710 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2712 loff_t res = EXT4_NDIR_BLOCKS;
2715 /* This is calculated to be the largest file size for a dense, block
2716 * mapped file such that the file's total number of 512-byte sectors,
2717 * including data and all indirect blocks, does not exceed (2^48 - 1).
2719 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2720 * number of 512-byte sectors of the file.
2723 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2725 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2726 * the inode i_block field represents total file blocks in
2727 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2729 upper_limit = (1LL << 32) - 1;
2731 /* total blocks in file system block size */
2732 upper_limit >>= (bits - 9);
2736 * We use 48 bit ext4_inode i_blocks
2737 * With EXT4_HUGE_FILE_FL set the i_blocks
2738 * represent total number of blocks in
2739 * file system block size
2741 upper_limit = (1LL << 48) - 1;
2745 /* indirect blocks */
2747 /* double indirect blocks */
2748 meta_blocks += 1 + (1LL << (bits-2));
2749 /* tripple indirect blocks */
2750 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2752 upper_limit -= meta_blocks;
2753 upper_limit <<= bits;
2755 res += 1LL << (bits-2);
2756 res += 1LL << (2*(bits-2));
2757 res += 1LL << (3*(bits-2));
2759 if (res > upper_limit)
2762 if (res > MAX_LFS_FILESIZE)
2763 res = MAX_LFS_FILESIZE;
2768 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2769 ext4_fsblk_t logical_sb_block, int nr)
2771 struct ext4_sb_info *sbi = EXT4_SB(sb);
2772 ext4_group_t bg, first_meta_bg;
2775 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2777 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2778 return logical_sb_block + nr + 1;
2779 bg = sbi->s_desc_per_block * nr;
2780 if (ext4_bg_has_super(sb, bg))
2784 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2785 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2786 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2789 if (sb->s_blocksize == 1024 && nr == 0 &&
2790 le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
2793 return (has_super + ext4_group_first_block_no(sb, bg));
2797 * ext4_get_stripe_size: Get the stripe size.
2798 * @sbi: In memory super block info
2800 * If we have specified it via mount option, then
2801 * use the mount option value. If the value specified at mount time is
2802 * greater than the blocks per group use the super block value.
2803 * If the super block value is greater than blocks per group return 0.
2804 * Allocator needs it be less than blocks per group.
2807 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2809 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2810 unsigned long stripe_width =
2811 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2814 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2815 ret = sbi->s_stripe;
2816 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
2818 else if (stride && stride <= sbi->s_blocks_per_group)
2824 * If the stripe width is 1, this makes no sense and
2825 * we set it to 0 to turn off stripe handling code.
2834 * Check whether this filesystem can be mounted based on
2835 * the features present and the RDONLY/RDWR mount requested.
2836 * Returns 1 if this filesystem can be mounted as requested,
2837 * 0 if it cannot be.
2839 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2841 if (ext4_has_unknown_ext4_incompat_features(sb)) {
2842 ext4_msg(sb, KERN_ERR,
2843 "Couldn't mount because of "
2844 "unsupported optional features (%x)",
2845 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2846 ~EXT4_FEATURE_INCOMPAT_SUPP));
2853 if (ext4_has_feature_readonly(sb)) {
2854 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2855 sb->s_flags |= SB_RDONLY;
2859 /* Check that feature set is OK for a read-write mount */
2860 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2861 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2862 "unsupported optional features (%x)",
2863 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2864 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2868 * Large file size enabled file system can only be mounted
2869 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2871 if (ext4_has_feature_huge_file(sb)) {
2872 if (sizeof(blkcnt_t) < sizeof(u64)) {
2873 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2874 "cannot be mounted RDWR without "
2879 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2880 ext4_msg(sb, KERN_ERR,
2881 "Can't support bigalloc feature without "
2882 "extents feature\n");
2886 #ifndef CONFIG_QUOTA
2887 if (ext4_has_feature_quota(sb) && !readonly) {
2888 ext4_msg(sb, KERN_ERR,
2889 "Filesystem with quota feature cannot be mounted RDWR "
2890 "without CONFIG_QUOTA");
2893 if (ext4_has_feature_project(sb) && !readonly) {
2894 ext4_msg(sb, KERN_ERR,
2895 "Filesystem with project quota feature cannot be mounted RDWR "
2896 "without CONFIG_QUOTA");
2899 #endif /* CONFIG_QUOTA */
2904 * This function is called once a day if we have errors logged
2905 * on the file system
2907 static void print_daily_error_info(struct timer_list *t)
2909 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
2910 struct super_block *sb = sbi->s_sb;
2911 struct ext4_super_block *es = sbi->s_es;
2913 if (es->s_error_count)
2914 /* fsck newer than v1.41.13 is needed to clean this condition. */
2915 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2916 le32_to_cpu(es->s_error_count));
2917 if (es->s_first_error_time) {
2918 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
2920 ext4_get_tstamp(es, s_first_error_time),
2921 (int) sizeof(es->s_first_error_func),
2922 es->s_first_error_func,
2923 le32_to_cpu(es->s_first_error_line));
2924 if (es->s_first_error_ino)
2925 printk(KERN_CONT ": inode %u",
2926 le32_to_cpu(es->s_first_error_ino));
2927 if (es->s_first_error_block)
2928 printk(KERN_CONT ": block %llu", (unsigned long long)
2929 le64_to_cpu(es->s_first_error_block));
2930 printk(KERN_CONT "\n");
2932 if (es->s_last_error_time) {
2933 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
2935 ext4_get_tstamp(es, s_last_error_time),
2936 (int) sizeof(es->s_last_error_func),
2937 es->s_last_error_func,
2938 le32_to_cpu(es->s_last_error_line));
2939 if (es->s_last_error_ino)
2940 printk(KERN_CONT ": inode %u",
2941 le32_to_cpu(es->s_last_error_ino));
2942 if (es->s_last_error_block)
2943 printk(KERN_CONT ": block %llu", (unsigned long long)
2944 le64_to_cpu(es->s_last_error_block));
2945 printk(KERN_CONT "\n");
2947 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2950 /* Find next suitable group and run ext4_init_inode_table */
2951 static int ext4_run_li_request(struct ext4_li_request *elr)
2953 struct ext4_group_desc *gdp = NULL;
2954 ext4_group_t group, ngroups;
2955 struct super_block *sb;
2956 unsigned long timeout = 0;
2960 ngroups = EXT4_SB(sb)->s_groups_count;
2962 for (group = elr->lr_next_group; group < ngroups; group++) {
2963 gdp = ext4_get_group_desc(sb, group, NULL);
2969 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2973 if (group >= ngroups)
2978 ret = ext4_init_inode_table(sb, group,
2979 elr->lr_timeout ? 0 : 1);
2980 if (elr->lr_timeout == 0) {
2981 timeout = (jiffies - timeout) *
2982 elr->lr_sbi->s_li_wait_mult;
2983 elr->lr_timeout = timeout;
2985 elr->lr_next_sched = jiffies + elr->lr_timeout;
2986 elr->lr_next_group = group + 1;
2992 * Remove lr_request from the list_request and free the
2993 * request structure. Should be called with li_list_mtx held
2995 static void ext4_remove_li_request(struct ext4_li_request *elr)
2997 struct ext4_sb_info *sbi;
3004 list_del(&elr->lr_request);
3005 sbi->s_li_request = NULL;
3009 static void ext4_unregister_li_request(struct super_block *sb)
3011 mutex_lock(&ext4_li_mtx);
3012 if (!ext4_li_info) {
3013 mutex_unlock(&ext4_li_mtx);
3017 mutex_lock(&ext4_li_info->li_list_mtx);
3018 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3019 mutex_unlock(&ext4_li_info->li_list_mtx);
3020 mutex_unlock(&ext4_li_mtx);
3023 static struct task_struct *ext4_lazyinit_task;
3026 * This is the function where ext4lazyinit thread lives. It walks
3027 * through the request list searching for next scheduled filesystem.
3028 * When such a fs is found, run the lazy initialization request
3029 * (ext4_rn_li_request) and keep track of the time spend in this
3030 * function. Based on that time we compute next schedule time of
3031 * the request. When walking through the list is complete, compute
3032 * next waking time and put itself into sleep.
3034 static int ext4_lazyinit_thread(void *arg)
3036 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3037 struct list_head *pos, *n;
3038 struct ext4_li_request *elr;
3039 unsigned long next_wakeup, cur;
3041 BUG_ON(NULL == eli);
3045 next_wakeup = MAX_JIFFY_OFFSET;
3047 mutex_lock(&eli->li_list_mtx);
3048 if (list_empty(&eli->li_request_list)) {
3049 mutex_unlock(&eli->li_list_mtx);
3052 list_for_each_safe(pos, n, &eli->li_request_list) {
3055 elr = list_entry(pos, struct ext4_li_request,
3058 if (time_before(jiffies, elr->lr_next_sched)) {
3059 if (time_before(elr->lr_next_sched, next_wakeup))
3060 next_wakeup = elr->lr_next_sched;
3063 if (down_read_trylock(&elr->lr_super->s_umount)) {
3064 if (sb_start_write_trylock(elr->lr_super)) {
3067 * We hold sb->s_umount, sb can not
3068 * be removed from the list, it is
3069 * now safe to drop li_list_mtx
3071 mutex_unlock(&eli->li_list_mtx);
3072 err = ext4_run_li_request(elr);
3073 sb_end_write(elr->lr_super);
3074 mutex_lock(&eli->li_list_mtx);
3077 up_read((&elr->lr_super->s_umount));
3079 /* error, remove the lazy_init job */
3081 ext4_remove_li_request(elr);
3085 elr->lr_next_sched = jiffies +
3087 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3089 if (time_before(elr->lr_next_sched, next_wakeup))
3090 next_wakeup = elr->lr_next_sched;
3092 mutex_unlock(&eli->li_list_mtx);
3097 if ((time_after_eq(cur, next_wakeup)) ||
3098 (MAX_JIFFY_OFFSET == next_wakeup)) {
3103 schedule_timeout_interruptible(next_wakeup - cur);
3105 if (kthread_should_stop()) {
3106 ext4_clear_request_list();
3113 * It looks like the request list is empty, but we need
3114 * to check it under the li_list_mtx lock, to prevent any
3115 * additions into it, and of course we should lock ext4_li_mtx
3116 * to atomically free the list and ext4_li_info, because at
3117 * this point another ext4 filesystem could be registering
3120 mutex_lock(&ext4_li_mtx);
3121 mutex_lock(&eli->li_list_mtx);
3122 if (!list_empty(&eli->li_request_list)) {
3123 mutex_unlock(&eli->li_list_mtx);
3124 mutex_unlock(&ext4_li_mtx);
3127 mutex_unlock(&eli->li_list_mtx);
3128 kfree(ext4_li_info);
3129 ext4_li_info = NULL;
3130 mutex_unlock(&ext4_li_mtx);
3135 static void ext4_clear_request_list(void)
3137 struct list_head *pos, *n;
3138 struct ext4_li_request *elr;
3140 mutex_lock(&ext4_li_info->li_list_mtx);
3141 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3142 elr = list_entry(pos, struct ext4_li_request,
3144 ext4_remove_li_request(elr);
3146 mutex_unlock(&ext4_li_info->li_list_mtx);
3149 static int ext4_run_lazyinit_thread(void)
3151 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3152 ext4_li_info, "ext4lazyinit");
3153 if (IS_ERR(ext4_lazyinit_task)) {
3154 int err = PTR_ERR(ext4_lazyinit_task);
3155 ext4_clear_request_list();
3156 kfree(ext4_li_info);
3157 ext4_li_info = NULL;
3158 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3159 "initialization thread\n",
3163 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3168 * Check whether it make sense to run itable init. thread or not.
3169 * If there is at least one uninitialized inode table, return
3170 * corresponding group number, else the loop goes through all
3171 * groups and return total number of groups.
3173 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3175 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3176 struct ext4_group_desc *gdp = NULL;
3178 if (!ext4_has_group_desc_csum(sb))
3181 for (group = 0; group < ngroups; group++) {
3182 gdp = ext4_get_group_desc(sb, group, NULL);
3186 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3193 static int ext4_li_info_new(void)
3195 struct ext4_lazy_init *eli = NULL;
3197 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3201 INIT_LIST_HEAD(&eli->li_request_list);
3202 mutex_init(&eli->li_list_mtx);
3204 eli->li_state |= EXT4_LAZYINIT_QUIT;
3211 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,