Merge branch 'work.preadv2' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[sfrench/cifs-2.6.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51                               struct ext4_inode_info *ei)
52 {
53         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54         __u16 csum_lo;
55         __u16 csum_hi = 0;
56         __u32 csum;
57
58         csum_lo = le16_to_cpu(raw->i_checksum_lo);
59         raw->i_checksum_lo = 0;
60         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
63                 raw->i_checksum_hi = 0;
64         }
65
66         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67                            EXT4_INODE_SIZE(inode->i_sb));
68
69         raw->i_checksum_lo = cpu_to_le16(csum_lo);
70         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
73
74         return csum;
75 }
76
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78                                   struct ext4_inode_info *ei)
79 {
80         __u32 provided, calculated;
81
82         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83             cpu_to_le32(EXT4_OS_LINUX) ||
84             !ext4_has_metadata_csum(inode->i_sb))
85                 return 1;
86
87         provided = le16_to_cpu(raw->i_checksum_lo);
88         calculated = ext4_inode_csum(inode, raw, ei);
89         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
90             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
91                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
92         else
93                 calculated &= 0xFFFF;
94
95         return provided == calculated;
96 }
97
98 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
99                                 struct ext4_inode_info *ei)
100 {
101         __u32 csum;
102
103         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
104             cpu_to_le32(EXT4_OS_LINUX) ||
105             !ext4_has_metadata_csum(inode->i_sb))
106                 return;
107
108         csum = ext4_inode_csum(inode, raw, ei);
109         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
110         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
111             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
112                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
113 }
114
115 static inline int ext4_begin_ordered_truncate(struct inode *inode,
116                                               loff_t new_size)
117 {
118         trace_ext4_begin_ordered_truncate(inode, new_size);
119         /*
120          * If jinode is zero, then we never opened the file for
121          * writing, so there's no need to call
122          * jbd2_journal_begin_ordered_truncate() since there's no
123          * outstanding writes we need to flush.
124          */
125         if (!EXT4_I(inode)->jinode)
126                 return 0;
127         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
128                                                    EXT4_I(inode)->jinode,
129                                                    new_size);
130 }
131
132 static void ext4_invalidatepage(struct page *page, unsigned int offset,
133                                 unsigned int length);
134 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
135 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
136 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
137                                   int pextents);
138
139 /*
140  * Test whether an inode is a fast symlink.
141  */
142 int ext4_inode_is_fast_symlink(struct inode *inode)
143 {
144         int ea_blocks = EXT4_I(inode)->i_file_acl ?
145                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
146
147         if (ext4_has_inline_data(inode))
148                 return 0;
149
150         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152
153 /*
154  * Restart the transaction associated with *handle.  This does a commit,
155  * so before we call here everything must be consistently dirtied against
156  * this transaction.
157  */
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159                                  int nblocks)
160 {
161         int ret;
162
163         /*
164          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
165          * moment, get_block can be called only for blocks inside i_size since
166          * page cache has been already dropped and writes are blocked by
167          * i_mutex. So we can safely drop the i_data_sem here.
168          */
169         BUG_ON(EXT4_JOURNAL(inode) == NULL);
170         jbd_debug(2, "restarting handle %p\n", handle);
171         up_write(&EXT4_I(inode)->i_data_sem);
172         ret = ext4_journal_restart(handle, nblocks);
173         down_write(&EXT4_I(inode)->i_data_sem);
174         ext4_discard_preallocations(inode);
175
176         return ret;
177 }
178
179 /*
180  * Called at the last iput() if i_nlink is zero.
181  */
182 void ext4_evict_inode(struct inode *inode)
183 {
184         handle_t *handle;
185         int err;
186
187         trace_ext4_evict_inode(inode);
188
189         if (inode->i_nlink) {
190                 /*
191                  * When journalling data dirty buffers are tracked only in the
192                  * journal. So although mm thinks everything is clean and
193                  * ready for reaping the inode might still have some pages to
194                  * write in the running transaction or waiting to be
195                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
196                  * (via truncate_inode_pages()) to discard these buffers can
197                  * cause data loss. Also even if we did not discard these
198                  * buffers, we would have no way to find them after the inode
199                  * is reaped and thus user could see stale data if he tries to
200                  * read them before the transaction is checkpointed. So be
201                  * careful and force everything to disk here... We use
202                  * ei->i_datasync_tid to store the newest transaction
203                  * containing inode's data.
204                  *
205                  * Note that directories do not have this problem because they
206                  * don't use page cache.
207                  */
208                 if (ext4_should_journal_data(inode) &&
209                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210                     inode->i_ino != EXT4_JOURNAL_INO) {
211                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
214                         jbd2_complete_transaction(journal, commit_tid);
215                         filemap_write_and_wait(&inode->i_data);
216                 }
217                 truncate_inode_pages_final(&inode->i_data);
218
219                 goto no_delete;
220         }
221
222         if (is_bad_inode(inode))
223                 goto no_delete;
224         dquot_initialize(inode);
225
226         if (ext4_should_order_data(inode))
227                 ext4_begin_ordered_truncate(inode, 0);
228         truncate_inode_pages_final(&inode->i_data);
229
230         /*
231          * Protect us against freezing - iput() caller didn't have to have any
232          * protection against it
233          */
234         sb_start_intwrite(inode->i_sb);
235         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
236                                     ext4_blocks_for_truncate(inode)+3);
237         if (IS_ERR(handle)) {
238                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
239                 /*
240                  * If we're going to skip the normal cleanup, we still need to
241                  * make sure that the in-core orphan linked list is properly
242                  * cleaned up.
243                  */
244                 ext4_orphan_del(NULL, inode);
245                 sb_end_intwrite(inode->i_sb);
246                 goto no_delete;
247         }
248
249         if (IS_SYNC(inode))
250                 ext4_handle_sync(handle);
251         inode->i_size = 0;
252         err = ext4_mark_inode_dirty(handle, inode);
253         if (err) {
254                 ext4_warning(inode->i_sb,
255                              "couldn't mark inode dirty (err %d)", err);
256                 goto stop_handle;
257         }
258         if (inode->i_blocks)
259                 ext4_truncate(inode);
260
261         /*
262          * ext4_ext_truncate() doesn't reserve any slop when it
263          * restarts journal transactions; therefore there may not be
264          * enough credits left in the handle to remove the inode from
265          * the orphan list and set the dtime field.
266          */
267         if (!ext4_handle_has_enough_credits(handle, 3)) {
268                 err = ext4_journal_extend(handle, 3);
269                 if (err > 0)
270                         err = ext4_journal_restart(handle, 3);
271                 if (err != 0) {
272                         ext4_warning(inode->i_sb,
273                                      "couldn't extend journal (err %d)", err);
274                 stop_handle:
275                         ext4_journal_stop(handle);
276                         ext4_orphan_del(NULL, inode);
277                         sb_end_intwrite(inode->i_sb);
278                         goto no_delete;
279                 }
280         }
281
282         /*
283          * Kill off the orphan record which ext4_truncate created.
284          * AKPM: I think this can be inside the above `if'.
285          * Note that ext4_orphan_del() has to be able to cope with the
286          * deletion of a non-existent orphan - this is because we don't
287          * know if ext4_truncate() actually created an orphan record.
288          * (Well, we could do this if we need to, but heck - it works)
289          */
290         ext4_orphan_del(handle, inode);
291         EXT4_I(inode)->i_dtime  = get_seconds();
292
293         /*
294          * One subtle ordering requirement: if anything has gone wrong
295          * (transaction abort, IO errors, whatever), then we can still
296          * do these next steps (the fs will already have been marked as
297          * having errors), but we can't free the inode if the mark_dirty
298          * fails.
299          */
300         if (ext4_mark_inode_dirty(handle, inode))
301                 /* If that failed, just do the required in-core inode clear. */
302                 ext4_clear_inode(inode);
303         else
304                 ext4_free_inode(handle, inode);
305         ext4_journal_stop(handle);
306         sb_end_intwrite(inode->i_sb);
307         return;
308 no_delete:
309         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
310 }
311
312 #ifdef CONFIG_QUOTA
313 qsize_t *ext4_get_reserved_space(struct inode *inode)
314 {
315         return &EXT4_I(inode)->i_reserved_quota;
316 }
317 #endif
318
319 /*
320  * Called with i_data_sem down, which is important since we can call
321  * ext4_discard_preallocations() from here.
322  */
323 void ext4_da_update_reserve_space(struct inode *inode,
324                                         int used, int quota_claim)
325 {
326         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
327         struct ext4_inode_info *ei = EXT4_I(inode);
328
329         spin_lock(&ei->i_block_reservation_lock);
330         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
331         if (unlikely(used > ei->i_reserved_data_blocks)) {
332                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
333                          "with only %d reserved data blocks",
334                          __func__, inode->i_ino, used,
335                          ei->i_reserved_data_blocks);
336                 WARN_ON(1);
337                 used = ei->i_reserved_data_blocks;
338         }
339
340         /* Update per-inode reservations */
341         ei->i_reserved_data_blocks -= used;
342         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
343
344         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
345
346         /* Update quota subsystem for data blocks */
347         if (quota_claim)
348                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
349         else {
350                 /*
351                  * We did fallocate with an offset that is already delayed
352                  * allocated. So on delayed allocated writeback we should
353                  * not re-claim the quota for fallocated blocks.
354                  */
355                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
356         }
357
358         /*
359          * If we have done all the pending block allocations and if
360          * there aren't any writers on the inode, we can discard the
361          * inode's preallocations.
362          */
363         if ((ei->i_reserved_data_blocks == 0) &&
364             (atomic_read(&inode->i_writecount) == 0))
365                 ext4_discard_preallocations(inode);
366 }
367
368 static int __check_block_validity(struct inode *inode, const char *func,
369                                 unsigned int line,
370                                 struct ext4_map_blocks *map)
371 {
372         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
373                                    map->m_len)) {
374                 ext4_error_inode(inode, func, line, map->m_pblk,
375                                  "lblock %lu mapped to illegal pblock "
376                                  "(length %d)", (unsigned long) map->m_lblk,
377                                  map->m_len);
378                 return -EFSCORRUPTED;
379         }
380         return 0;
381 }
382
383 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
384                        ext4_lblk_t len)
385 {
386         int ret;
387
388         if (ext4_encrypted_inode(inode))
389                 return ext4_encrypted_zeroout(inode, lblk, pblk, len);
390
391         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
392         if (ret > 0)
393                 ret = 0;
394
395         return ret;
396 }
397
398 #define check_block_validity(inode, map)        \
399         __check_block_validity((inode), __func__, __LINE__, (map))
400
401 #ifdef ES_AGGRESSIVE_TEST
402 static void ext4_map_blocks_es_recheck(handle_t *handle,
403                                        struct inode *inode,
404                                        struct ext4_map_blocks *es_map,
405                                        struct ext4_map_blocks *map,
406                                        int flags)
407 {
408         int retval;
409
410         map->m_flags = 0;
411         /*
412          * There is a race window that the result is not the same.
413          * e.g. xfstests #223 when dioread_nolock enables.  The reason
414          * is that we lookup a block mapping in extent status tree with
415          * out taking i_data_sem.  So at the time the unwritten extent
416          * could be converted.
417          */
418         down_read(&EXT4_I(inode)->i_data_sem);
419         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
420                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
421                                              EXT4_GET_BLOCKS_KEEP_SIZE);
422         } else {
423                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
424                                              EXT4_GET_BLOCKS_KEEP_SIZE);
425         }
426         up_read((&EXT4_I(inode)->i_data_sem));
427
428         /*
429          * We don't check m_len because extent will be collpased in status
430          * tree.  So the m_len might not equal.
431          */
432         if (es_map->m_lblk != map->m_lblk ||
433             es_map->m_flags != map->m_flags ||
434             es_map->m_pblk != map->m_pblk) {
435                 printk("ES cache assertion failed for inode: %lu "
436                        "es_cached ex [%d/%d/%llu/%x] != "
437                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
438                        inode->i_ino, es_map->m_lblk, es_map->m_len,
439                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
440                        map->m_len, map->m_pblk, map->m_flags,
441                        retval, flags);
442         }
443 }
444 #endif /* ES_AGGRESSIVE_TEST */
445
446 /*
447  * The ext4_map_blocks() function tries to look up the requested blocks,
448  * and returns if the blocks are already mapped.
449  *
450  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
451  * and store the allocated blocks in the result buffer head and mark it
452  * mapped.
453  *
454  * If file type is extents based, it will call ext4_ext_map_blocks(),
455  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
456  * based files
457  *
458  * On success, it returns the number of blocks being mapped or allocated.  if
459  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
460  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
461  *
462  * It returns 0 if plain look up failed (blocks have not been allocated), in
463  * that case, @map is returned as unmapped but we still do fill map->m_len to
464  * indicate the length of a hole starting at map->m_lblk.
465  *
466  * It returns the error in case of allocation failure.
467  */
468 int ext4_map_blocks(handle_t *handle, struct inode *inode,
469                     struct ext4_map_blocks *map, int flags)
470 {
471         struct extent_status es;
472         int retval;
473         int ret = 0;
474 #ifdef ES_AGGRESSIVE_TEST
475         struct ext4_map_blocks orig_map;
476
477         memcpy(&orig_map, map, sizeof(*map));
478 #endif
479
480         map->m_flags = 0;
481         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
482                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
483                   (unsigned long) map->m_lblk);
484
485         /*
486          * ext4_map_blocks returns an int, and m_len is an unsigned int
487          */
488         if (unlikely(map->m_len > INT_MAX))
489                 map->m_len = INT_MAX;
490
491         /* We can handle the block number less than EXT_MAX_BLOCKS */
492         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
493                 return -EFSCORRUPTED;
494
495         /* Lookup extent status tree firstly */
496         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
497                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
498                         map->m_pblk = ext4_es_pblock(&es) +
499                                         map->m_lblk - es.es_lblk;
500                         map->m_flags |= ext4_es_is_written(&es) ?
501                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
502                         retval = es.es_len - (map->m_lblk - es.es_lblk);
503                         if (retval > map->m_len)
504                                 retval = map->m_len;
505                         map->m_len = retval;
506                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
507                         map->m_pblk = 0;
508                         retval = es.es_len - (map->m_lblk - es.es_lblk);
509                         if (retval > map->m_len)
510                                 retval = map->m_len;
511                         map->m_len = retval;
512                         retval = 0;
513                 } else {
514                         BUG_ON(1);
515                 }
516 #ifdef ES_AGGRESSIVE_TEST
517                 ext4_map_blocks_es_recheck(handle, inode, map,
518                                            &orig_map, flags);
519 #endif
520                 goto found;
521         }
522
523         /*
524          * Try to see if we can get the block without requesting a new
525          * file system block.
526          */
527         down_read(&EXT4_I(inode)->i_data_sem);
528         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
529                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
530                                              EXT4_GET_BLOCKS_KEEP_SIZE);
531         } else {
532                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
533                                              EXT4_GET_BLOCKS_KEEP_SIZE);
534         }
535         if (retval > 0) {
536                 unsigned int status;
537
538                 if (unlikely(retval != map->m_len)) {
539                         ext4_warning(inode->i_sb,
540                                      "ES len assertion failed for inode "
541                                      "%lu: retval %d != map->m_len %d",
542                                      inode->i_ino, retval, map->m_len);
543                         WARN_ON(1);
544                 }
545
546                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
547                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
548                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
549                     !(status & EXTENT_STATUS_WRITTEN) &&
550                     ext4_find_delalloc_range(inode, map->m_lblk,
551                                              map->m_lblk + map->m_len - 1))
552                         status |= EXTENT_STATUS_DELAYED;
553                 ret = ext4_es_insert_extent(inode, map->m_lblk,
554                                             map->m_len, map->m_pblk, status);
555                 if (ret < 0)
556                         retval = ret;
557         }
558         up_read((&EXT4_I(inode)->i_data_sem));
559
560 found:
561         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
562                 ret = check_block_validity(inode, map);
563                 if (ret != 0)
564                         return ret;
565         }
566
567         /* If it is only a block(s) look up */
568         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
569                 return retval;
570
571         /*
572          * Returns if the blocks have already allocated
573          *
574          * Note that if blocks have been preallocated
575          * ext4_ext_get_block() returns the create = 0
576          * with buffer head unmapped.
577          */
578         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
579                 /*
580                  * If we need to convert extent to unwritten
581                  * we continue and do the actual work in
582                  * ext4_ext_map_blocks()
583                  */
584                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
585                         return retval;
586
587         /*
588          * Here we clear m_flags because after allocating an new extent,
589          * it will be set again.
590          */
591         map->m_flags &= ~EXT4_MAP_FLAGS;
592
593         /*
594          * New blocks allocate and/or writing to unwritten extent
595          * will possibly result in updating i_data, so we take
596          * the write lock of i_data_sem, and call get_block()
597          * with create == 1 flag.
598          */
599         down_write(&EXT4_I(inode)->i_data_sem);
600
601         /*
602          * We need to check for EXT4 here because migrate
603          * could have changed the inode type in between
604          */
605         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
606                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
607         } else {
608                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
609
610                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
611                         /*
612                          * We allocated new blocks which will result in
613                          * i_data's format changing.  Force the migrate
614                          * to fail by clearing migrate flags
615                          */
616                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
617                 }
618
619                 /*
620                  * Update reserved blocks/metadata blocks after successful
621                  * block allocation which had been deferred till now. We don't
622                  * support fallocate for non extent files. So we can update
623                  * reserve space here.
624                  */
625                 if ((retval > 0) &&
626                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
627                         ext4_da_update_reserve_space(inode, retval, 1);
628         }
629
630         if (retval > 0) {
631                 unsigned int status;
632
633                 if (unlikely(retval != map->m_len)) {
634                         ext4_warning(inode->i_sb,
635                                      "ES len assertion failed for inode "
636                                      "%lu: retval %d != map->m_len %d",
637                                      inode->i_ino, retval, map->m_len);
638                         WARN_ON(1);
639                 }
640
641                 /*
642                  * We have to zeroout blocks before inserting them into extent
643                  * status tree. Otherwise someone could look them up there and
644                  * use them before they are really zeroed.
645                  */
646                 if (flags & EXT4_GET_BLOCKS_ZERO &&
647                     map->m_flags & EXT4_MAP_MAPPED &&
648                     map->m_flags & EXT4_MAP_NEW) {
649                         ret = ext4_issue_zeroout(inode, map->m_lblk,
650                                                  map->m_pblk, map->m_len);
651                         if (ret) {
652                                 retval = ret;
653                                 goto out_sem;
654                         }
655                 }
656
657                 /*
658                  * If the extent has been zeroed out, we don't need to update
659                  * extent status tree.
660                  */
661                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
662                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
663                         if (ext4_es_is_written(&es))
664                                 goto out_sem;
665                 }
666                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
667                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
668                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
669                     !(status & EXTENT_STATUS_WRITTEN) &&
670                     ext4_find_delalloc_range(inode, map->m_lblk,
671                                              map->m_lblk + map->m_len - 1))
672                         status |= EXTENT_STATUS_DELAYED;
673                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
674                                             map->m_pblk, status);
675                 if (ret < 0) {
676                         retval = ret;
677                         goto out_sem;
678                 }
679         }
680
681 out_sem:
682         up_write((&EXT4_I(inode)->i_data_sem));
683         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
684                 ret = check_block_validity(inode, map);
685                 if (ret != 0)
686                         return ret;
687         }
688         return retval;
689 }
690
691 /*
692  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
693  * we have to be careful as someone else may be manipulating b_state as well.
694  */
695 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
696 {
697         unsigned long old_state;
698         unsigned long new_state;
699
700         flags &= EXT4_MAP_FLAGS;
701
702         /* Dummy buffer_head? Set non-atomically. */
703         if (!bh->b_page) {
704                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
705                 return;
706         }
707         /*
708          * Someone else may be modifying b_state. Be careful! This is ugly but
709          * once we get rid of using bh as a container for mapping information
710          * to pass to / from get_block functions, this can go away.
711          */
712         do {
713                 old_state = READ_ONCE(bh->b_state);
714                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
715         } while (unlikely(
716                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
717 }
718
719 static int _ext4_get_block(struct inode *inode, sector_t iblock,
720                            struct buffer_head *bh, int flags)
721 {
722         struct ext4_map_blocks map;
723         int ret = 0;
724
725         if (ext4_has_inline_data(inode))
726                 return -ERANGE;
727
728         map.m_lblk = iblock;
729         map.m_len = bh->b_size >> inode->i_blkbits;
730
731         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
732                               flags);
733         if (ret > 0) {
734                 map_bh(bh, inode->i_sb, map.m_pblk);
735                 ext4_update_bh_state(bh, map.m_flags);
736                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
737                 ret = 0;
738         }
739         return ret;
740 }
741
742 int ext4_get_block(struct inode *inode, sector_t iblock,
743                    struct buffer_head *bh, int create)
744 {
745         return _ext4_get_block(inode, iblock, bh,
746                                create ? EXT4_GET_BLOCKS_CREATE : 0);
747 }
748
749 /*
750  * Get block function used when preparing for buffered write if we require
751  * creating an unwritten extent if blocks haven't been allocated.  The extent
752  * will be converted to written after the IO is complete.
753  */
754 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
755                              struct buffer_head *bh_result, int create)
756 {
757         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
758                    inode->i_ino, create);
759         return _ext4_get_block(inode, iblock, bh_result,
760                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
761 }
762
763 /* Maximum number of blocks we map for direct IO at once. */
764 #define DIO_MAX_BLOCKS 4096
765
766 /*
767  * Get blocks function for the cases that need to start a transaction -
768  * generally difference cases of direct IO and DAX IO. It also handles retries
769  * in case of ENOSPC.
770  */
771 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
772                                 struct buffer_head *bh_result, int flags)
773 {
774         int dio_credits;
775         handle_t *handle;
776         int retries = 0;
777         int ret;
778
779         /* Trim mapping request to maximum we can map at once for DIO */
780         if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
781                 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
782         dio_credits = ext4_chunk_trans_blocks(inode,
783                                       bh_result->b_size >> inode->i_blkbits);
784 retry:
785         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
786         if (IS_ERR(handle))
787                 return PTR_ERR(handle);
788
789         ret = _ext4_get_block(inode, iblock, bh_result, flags);
790         ext4_journal_stop(handle);
791
792         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
793                 goto retry;
794         return ret;
795 }
796
797 /* Get block function for DIO reads and writes to inodes without extents */
798 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
799                        struct buffer_head *bh, int create)
800 {
801         /* We don't expect handle for direct IO */
802         WARN_ON_ONCE(ext4_journal_current_handle());
803
804         if (!create)
805                 return _ext4_get_block(inode, iblock, bh, 0);
806         return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
807 }
808
809 /*
810  * Get block function for AIO DIO writes when we create unwritten extent if
811  * blocks are not allocated yet. The extent will be converted to written
812  * after IO is complete.
813  */
814 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
815                 sector_t iblock, struct buffer_head *bh_result, int create)
816 {
817         int ret;
818
819         /* We don't expect handle for direct IO */
820         WARN_ON_ONCE(ext4_journal_current_handle());
821
822         ret = ext4_get_block_trans(inode, iblock, bh_result,
823                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
824
825         /*
826          * When doing DIO using unwritten extents, we need io_end to convert
827          * unwritten extents to written on IO completion. We allocate io_end
828          * once we spot unwritten extent and store it in b_private. Generic
829          * DIO code keeps b_private set and furthermore passes the value to
830          * our completion callback in 'private' argument.
831          */
832         if (!ret && buffer_unwritten(bh_result)) {
833                 if (!bh_result->b_private) {
834                         ext4_io_end_t *io_end;
835
836                         io_end = ext4_init_io_end(inode, GFP_KERNEL);
837                         if (!io_end)
838                                 return -ENOMEM;
839                         bh_result->b_private = io_end;
840                         ext4_set_io_unwritten_flag(inode, io_end);
841                 }
842                 set_buffer_defer_completion(bh_result);
843         }
844
845         return ret;
846 }
847
848 /*
849  * Get block function for non-AIO DIO writes when we create unwritten extent if
850  * blocks are not allocated yet. The extent will be converted to written
851  * after IO is complete from ext4_ext_direct_IO() function.
852  */
853 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
854                 sector_t iblock, struct buffer_head *bh_result, int create)
855 {
856         int ret;
857
858         /* We don't expect handle for direct IO */
859         WARN_ON_ONCE(ext4_journal_current_handle());
860
861         ret = ext4_get_block_trans(inode, iblock, bh_result,
862                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
863
864         /*
865          * Mark inode as having pending DIO writes to unwritten extents.
866          * ext4_ext_direct_IO() checks this flag and converts extents to
867          * written.
868          */
869         if (!ret && buffer_unwritten(bh_result))
870                 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
871
872         return ret;
873 }
874
875 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
876                    struct buffer_head *bh_result, int create)
877 {
878         int ret;
879
880         ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
881                    inode->i_ino, create);
882         /* We don't expect handle for direct IO */
883         WARN_ON_ONCE(ext4_journal_current_handle());
884
885         ret = _ext4_get_block(inode, iblock, bh_result, 0);
886         /*
887          * Blocks should have been preallocated! ext4_file_write_iter() checks
888          * that.
889          */
890         WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
891
892         return ret;
893 }
894
895
896 /*
897  * `handle' can be NULL if create is zero
898  */
899 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
900                                 ext4_lblk_t block, int map_flags)
901 {
902         struct ext4_map_blocks map;
903         struct buffer_head *bh;
904         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
905         int err;
906
907         J_ASSERT(handle != NULL || create == 0);
908
909         map.m_lblk = block;
910         map.m_len = 1;
911         err = ext4_map_blocks(handle, inode, &map, map_flags);
912
913         if (err == 0)
914                 return create ? ERR_PTR(-ENOSPC) : NULL;
915         if (err < 0)
916                 return ERR_PTR(err);
917
918         bh = sb_getblk(inode->i_sb, map.m_pblk);
919         if (unlikely(!bh))
920                 return ERR_PTR(-ENOMEM);
921         if (map.m_flags & EXT4_MAP_NEW) {
922                 J_ASSERT(create != 0);
923                 J_ASSERT(handle != NULL);
924
925                 /*
926                  * Now that we do not always journal data, we should
927                  * keep in mind whether this should always journal the
928                  * new buffer as metadata.  For now, regular file
929                  * writes use ext4_get_block instead, so it's not a
930                  * problem.
931                  */
932                 lock_buffer(bh);
933                 BUFFER_TRACE(bh, "call get_create_access");
934                 err = ext4_journal_get_create_access(handle, bh);
935                 if (unlikely(err)) {
936                         unlock_buffer(bh);
937                         goto errout;
938                 }
939                 if (!buffer_uptodate(bh)) {
940                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
941                         set_buffer_uptodate(bh);
942                 }
943                 unlock_buffer(bh);
944                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
945                 err = ext4_handle_dirty_metadata(handle, inode, bh);
946                 if (unlikely(err))
947                         goto errout;
948         } else
949                 BUFFER_TRACE(bh, "not a new buffer");
950         return bh;
951 errout:
952         brelse(bh);
953         return ERR_PTR(err);
954 }
955
956 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
957                                ext4_lblk_t block, int map_flags)
958 {
959         struct buffer_head *bh;
960
961         bh = ext4_getblk(handle, inode, block, map_flags);
962         if (IS_ERR(bh))
963                 return bh;
964         if (!bh || buffer_uptodate(bh))
965                 return bh;
966         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
967         wait_on_buffer(bh);
968         if (buffer_uptodate(bh))
969                 return bh;
970         put_bh(bh);
971         return ERR_PTR(-EIO);
972 }
973
974 int ext4_walk_page_buffers(handle_t *handle,
975                            struct buffer_head *head,
976                            unsigned from,
977                            unsigned to,
978                            int *partial,
979                            int (*fn)(handle_t *handle,
980                                      struct buffer_head *bh))
981 {
982         struct buffer_head *bh;
983         unsigned block_start, block_end;
984         unsigned blocksize = head->b_size;
985         int err, ret = 0;
986         struct buffer_head *next;
987
988         for (bh = head, block_start = 0;
989              ret == 0 && (bh != head || !block_start);
990              block_start = block_end, bh = next) {
991                 next = bh->b_this_page;
992                 block_end = block_start + blocksize;
993                 if (block_end <= from || block_start >= to) {
994                         if (partial && !buffer_uptodate(bh))
995                                 *partial = 1;
996                         continue;
997                 }
998                 err = (*fn)(handle, bh);
999                 if (!ret)
1000                         ret = err;
1001         }
1002         return ret;
1003 }
1004
1005 /*
1006  * To preserve ordering, it is essential that the hole instantiation and
1007  * the data write be encapsulated in a single transaction.  We cannot
1008  * close off a transaction and start a new one between the ext4_get_block()
1009  * and the commit_write().  So doing the jbd2_journal_start at the start of
1010  * prepare_write() is the right place.
1011  *
1012  * Also, this function can nest inside ext4_writepage().  In that case, we
1013  * *know* that ext4_writepage() has generated enough buffer credits to do the
1014  * whole page.  So we won't block on the journal in that case, which is good,
1015  * because the caller may be PF_MEMALLOC.
1016  *
1017  * By accident, ext4 can be reentered when a transaction is open via
1018  * quota file writes.  If we were to commit the transaction while thus
1019  * reentered, there can be a deadlock - we would be holding a quota
1020  * lock, and the commit would never complete if another thread had a
1021  * transaction open and was blocking on the quota lock - a ranking
1022  * violation.
1023  *
1024  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1025  * will _not_ run commit under these circumstances because handle->h_ref
1026  * is elevated.  We'll still have enough credits for the tiny quotafile
1027  * write.
1028  */
1029 int do_journal_get_write_access(handle_t *handle,
1030                                 struct buffer_head *bh)
1031 {
1032         int dirty = buffer_dirty(bh);
1033         int ret;
1034
1035         if (!buffer_mapped(bh) || buffer_freed(bh))
1036                 return 0;
1037         /*
1038          * __block_write_begin() could have dirtied some buffers. Clean
1039          * the dirty bit as jbd2_journal_get_write_access() could complain
1040          * otherwise about fs integrity issues. Setting of the dirty bit
1041          * by __block_write_begin() isn't a real problem here as we clear
1042          * the bit before releasing a page lock and thus writeback cannot
1043          * ever write the buffer.
1044          */
1045         if (dirty)
1046                 clear_buffer_dirty(bh);
1047         BUFFER_TRACE(bh, "get write access");
1048         ret = ext4_journal_get_write_access(handle, bh);
1049         if (!ret && dirty)
1050                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1051         return ret;
1052 }
1053
1054 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1055 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1056                                   get_block_t *get_block)
1057 {
1058         unsigned from = pos & (PAGE_SIZE - 1);
1059         unsigned to = from + len;
1060         struct inode *inode = page->mapping->host;
1061         unsigned block_start, block_end;
1062         sector_t block;
1063         int err = 0;
1064         unsigned blocksize = inode->i_sb->s_blocksize;
1065         unsigned bbits;
1066         struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1067         bool decrypt = false;
1068
1069         BUG_ON(!PageLocked(page));
1070         BUG_ON(from > PAGE_SIZE);
1071         BUG_ON(to > PAGE_SIZE);
1072         BUG_ON(from > to);
1073
1074         if (!page_has_buffers(page))
1075                 create_empty_buffers(page, blocksize, 0);
1076         head = page_buffers(page);
1077         bbits = ilog2(blocksize);
1078         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1079
1080         for (bh = head, block_start = 0; bh != head || !block_start;
1081             block++, block_start = block_end, bh = bh->b_this_page) {
1082                 block_end = block_start + blocksize;
1083                 if (block_end <= from || block_start >= to) {
1084                         if (PageUptodate(page)) {
1085                                 if (!buffer_uptodate(bh))
1086                                         set_buffer_uptodate(bh);
1087                         }
1088                         continue;
1089                 }
1090                 if (buffer_new(bh))
1091                         clear_buffer_new(bh);
1092                 if (!buffer_mapped(bh)) {
1093                         WARN_ON(bh->b_size != blocksize);
1094                         err = get_block(inode, block, bh, 1);
1095                         if (err)
1096                                 break;
1097                         if (buffer_new(bh)) {
1098                                 unmap_underlying_metadata(bh->b_bdev,
1099                                                           bh->b_blocknr);
1100                                 if (PageUptodate(page)) {
1101                                         clear_buffer_new(bh);
1102                                         set_buffer_uptodate(bh);
1103                                         mark_buffer_dirty(bh);
1104                                         continue;
1105                                 }
1106                                 if (block_end > to || block_start < from)
1107                                         zero_user_segments(page, to, block_end,
1108                                                            block_start, from);
1109                                 continue;
1110                         }
1111                 }
1112                 if (PageUptodate(page)) {
1113                         if (!buffer_uptodate(bh))
1114                                 set_buffer_uptodate(bh);
1115                         continue;
1116                 }
1117                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1118                     !buffer_unwritten(bh) &&
1119                     (block_start < from || block_end > to)) {
1120                         ll_rw_block(READ, 1, &bh);
1121                         *wait_bh++ = bh;
1122                         decrypt = ext4_encrypted_inode(inode) &&
1123                                 S_ISREG(inode->i_mode);
1124                 }
1125         }
1126         /*
1127          * If we issued read requests, let them complete.
1128          */
1129         while (wait_bh > wait) {
1130                 wait_on_buffer(*--wait_bh);
1131                 if (!buffer_uptodate(*wait_bh))
1132                         err = -EIO;
1133         }
1134         if (unlikely(err))
1135                 page_zero_new_buffers(page, from, to);
1136         else if (decrypt)
1137                 err = ext4_decrypt(page);
1138         return err;
1139 }
1140 #endif
1141
1142 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1143                             loff_t pos, unsigned len, unsigned flags,
1144                             struct page **pagep, void **fsdata)
1145 {
1146         struct inode *inode = mapping->host;
1147         int ret, needed_blocks;
1148         handle_t *handle;
1149         int retries = 0;
1150         struct page *page;
1151         pgoff_t index;
1152         unsigned from, to;
1153
1154         trace_ext4_write_begin(inode, pos, len, flags);
1155         /*
1156          * Reserve one block more for addition to orphan list in case
1157          * we allocate blocks but write fails for some reason
1158          */
1159         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1160         index = pos >> PAGE_SHIFT;
1161         from = pos & (PAGE_SIZE - 1);
1162         to = from + len;
1163
1164         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1165                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1166                                                     flags, pagep);
1167                 if (ret < 0)
1168                         return ret;
1169                 if (ret == 1)
1170                         return 0;
1171         }
1172
1173         /*
1174          * grab_cache_page_write_begin() can take a long time if the
1175          * system is thrashing due to memory pressure, or if the page
1176          * is being written back.  So grab it first before we start
1177          * the transaction handle.  This also allows us to allocate
1178          * the page (if needed) without using GFP_NOFS.
1179          */
1180 retry_grab:
1181         page = grab_cache_page_write_begin(mapping, index, flags);
1182         if (!page)
1183                 return -ENOMEM;
1184         unlock_page(page);
1185
1186 retry_journal:
1187         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1188         if (IS_ERR(handle)) {
1189                 put_page(page);
1190                 return PTR_ERR(handle);
1191         }
1192
1193         lock_page(page);
1194         if (page->mapping != mapping) {
1195                 /* The page got truncated from under us */
1196                 unlock_page(page);
1197                 put_page(page);
1198                 ext4_journal_stop(handle);
1199                 goto retry_grab;
1200         }
1201         /* In case writeback began while the page was unlocked */
1202         wait_for_stable_page(page);
1203
1204 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1205         if (ext4_should_dioread_nolock(inode))
1206                 ret = ext4_block_write_begin(page, pos, len,
1207                                              ext4_get_block_unwritten);
1208         else
1209                 ret = ext4_block_write_begin(page, pos, len,
1210                                              ext4_get_block);
1211 #else
1212         if (ext4_should_dioread_nolock(inode))
1213                 ret = __block_write_begin(page, pos, len,
1214                                           ext4_get_block_unwritten);
1215         else
1216                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1217 #endif
1218         if (!ret && ext4_should_journal_data(inode)) {
1219                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1220                                              from, to, NULL,
1221                                              do_journal_get_write_access);
1222         }
1223
1224         if (ret) {
1225                 unlock_page(page);
1226                 /*
1227                  * __block_write_begin may have instantiated a few blocks
1228                  * outside i_size.  Trim these off again. Don't need
1229                  * i_size_read because we hold i_mutex.
1230                  *
1231                  * Add inode to orphan list in case we crash before
1232                  * truncate finishes
1233                  */
1234                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1235                         ext4_orphan_add(handle, inode);
1236
1237                 ext4_journal_stop(handle);
1238                 if (pos + len > inode->i_size) {
1239                         ext4_truncate_failed_write(inode);
1240                         /*
1241                          * If truncate failed early the inode might
1242                          * still be on the orphan list; we need to
1243                          * make sure the inode is removed from the
1244                          * orphan list in that case.
1245                          */
1246                         if (inode->i_nlink)
1247                                 ext4_orphan_del(NULL, inode);
1248                 }
1249
1250                 if (ret == -ENOSPC &&
1251                     ext4_should_retry_alloc(inode->i_sb, &retries))
1252                         goto retry_journal;
1253                 put_page(page);
1254                 return ret;
1255         }
1256         *pagep = page;
1257         return ret;
1258 }
1259
1260 /* For write_end() in data=journal mode */
1261 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1262 {
1263         int ret;
1264         if (!buffer_mapped(bh) || buffer_freed(bh))
1265                 return 0;
1266         set_buffer_uptodate(bh);
1267         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1268         clear_buffer_meta(bh);
1269         clear_buffer_prio(bh);
1270         return ret;
1271 }
1272
1273 /*
1274  * We need to pick up the new inode size which generic_commit_write gave us
1275  * `file' can be NULL - eg, when called from page_symlink().
1276  *
1277  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1278  * buffers are managed internally.
1279  */
1280 static int ext4_write_end(struct file *file,
1281                           struct address_space *mapping,
1282                           loff_t pos, unsigned len, unsigned copied,
1283                           struct page *page, void *fsdata)
1284 {
1285         handle_t *handle = ext4_journal_current_handle();
1286         struct inode *inode = mapping->host;
1287         loff_t old_size = inode->i_size;
1288         int ret = 0, ret2;
1289         int i_size_changed = 0;
1290
1291         trace_ext4_write_end(inode, pos, len, copied);
1292         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1293                 ret = ext4_jbd2_file_inode(handle, inode);
1294                 if (ret) {
1295                         unlock_page(page);
1296                         put_page(page);
1297                         goto errout;
1298                 }
1299         }
1300
1301         if (ext4_has_inline_data(inode)) {
1302                 ret = ext4_write_inline_data_end(inode, pos, len,
1303                                                  copied, page);
1304                 if (ret < 0)
1305                         goto errout;
1306                 copied = ret;
1307         } else
1308                 copied = block_write_end(file, mapping, pos,
1309                                          len, copied, page, fsdata);
1310         /*
1311          * it's important to update i_size while still holding page lock:
1312          * page writeout could otherwise come in and zero beyond i_size.
1313          */
1314         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1315         unlock_page(page);
1316         put_page(page);
1317
1318         if (old_size < pos)
1319                 pagecache_isize_extended(inode, old_size, pos);
1320         /*
1321          * Don't mark the inode dirty under page lock. First, it unnecessarily
1322          * makes the holding time of page lock longer. Second, it forces lock
1323          * ordering of page lock and transaction start for journaling
1324          * filesystems.
1325          */
1326         if (i_size_changed)
1327                 ext4_mark_inode_dirty(handle, inode);
1328
1329         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1330                 /* if we have allocated more blocks and copied
1331                  * less. We will have blocks allocated outside
1332                  * inode->i_size. So truncate them
1333                  */
1334                 ext4_orphan_add(handle, inode);
1335 errout:
1336         ret2 = ext4_journal_stop(handle);
1337         if (!ret)
1338                 ret = ret2;
1339
1340         if (pos + len > inode->i_size) {
1341                 ext4_truncate_failed_write(inode);
1342                 /*
1343                  * If truncate failed early the inode might still be
1344                  * on the orphan list; we need to make sure the inode
1345                  * is removed from the orphan list in that case.
1346                  */
1347                 if (inode->i_nlink)
1348                         ext4_orphan_del(NULL, inode);
1349         }
1350
1351         return ret ? ret : copied;
1352 }
1353
1354 /*
1355  * This is a private version of page_zero_new_buffers() which doesn't
1356  * set the buffer to be dirty, since in data=journalled mode we need
1357  * to call ext4_handle_dirty_metadata() instead.
1358  */
1359 static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
1360 {
1361         unsigned int block_start = 0, block_end;
1362         struct buffer_head *head, *bh;
1363
1364         bh = head = page_buffers(page);
1365         do {
1366                 block_end = block_start + bh->b_size;
1367                 if (buffer_new(bh)) {
1368                         if (block_end > from && block_start < to) {
1369                                 if (!PageUptodate(page)) {
1370                                         unsigned start, size;
1371
1372                                         start = max(from, block_start);
1373                                         size = min(to, block_end) - start;
1374
1375                                         zero_user(page, start, size);
1376                                         set_buffer_uptodate(bh);
1377                                 }
1378                                 clear_buffer_new(bh);
1379                         }
1380                 }
1381                 block_start = block_end;
1382                 bh = bh->b_this_page;
1383         } while (bh != head);
1384 }
1385
1386 static int ext4_journalled_write_end(struct file *file,
1387                                      struct address_space *mapping,
1388                                      loff_t pos, unsigned len, unsigned copied,
1389                                      struct page *page, void *fsdata)
1390 {
1391         handle_t *handle = ext4_journal_current_handle();
1392         struct inode *inode = mapping->host;
1393         loff_t old_size = inode->i_size;
1394         int ret = 0, ret2;
1395         int partial = 0;
1396         unsigned from, to;
1397         int size_changed = 0;
1398
1399         trace_ext4_journalled_write_end(inode, pos, len, copied);
1400         from = pos & (PAGE_SIZE - 1);
1401         to = from + len;
1402
1403         BUG_ON(!ext4_handle_valid(handle));
1404
1405         if (ext4_has_inline_data(inode))
1406                 copied = ext4_write_inline_data_end(inode, pos, len,
1407                                                     copied, page);
1408         else {
1409                 if (copied < len) {
1410                         if (!PageUptodate(page))
1411                                 copied = 0;
1412                         zero_new_buffers(page, from+copied, to);
1413                 }
1414
1415                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1416                                              to, &partial, write_end_fn);
1417                 if (!partial)
1418                         SetPageUptodate(page);
1419         }
1420         size_changed = ext4_update_inode_size(inode, pos + copied);
1421         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1422         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1423         unlock_page(page);
1424         put_page(page);
1425
1426         if (old_size < pos)
1427                 pagecache_isize_extended(inode, old_size, pos);
1428
1429         if (size_changed) {
1430                 ret2 = ext4_mark_inode_dirty(handle, inode);
1431                 if (!ret)
1432                         ret = ret2;
1433         }
1434
1435         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1436                 /* if we have allocated more blocks and copied
1437                  * less. We will have blocks allocated outside
1438                  * inode->i_size. So truncate them
1439                  */
1440                 ext4_orphan_add(handle, inode);
1441
1442         ret2 = ext4_journal_stop(handle);
1443         if (!ret)
1444                 ret = ret2;
1445         if (pos + len > inode->i_size) {
1446                 ext4_truncate_failed_write(inode);
1447                 /*
1448                  * If truncate failed early the inode might still be
1449                  * on the orphan list; we need to make sure the inode
1450                  * is removed from the orphan list in that case.
1451                  */
1452                 if (inode->i_nlink)
1453                         ext4_orphan_del(NULL, inode);
1454         }
1455
1456         return ret ? ret : copied;
1457 }
1458
1459 /*
1460  * Reserve space for a single cluster
1461  */
1462 static int ext4_da_reserve_space(struct inode *inode)
1463 {
1464         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1465         struct ext4_inode_info *ei = EXT4_I(inode);
1466         int ret;
1467
1468         /*
1469          * We will charge metadata quota at writeout time; this saves
1470          * us from metadata over-estimation, though we may go over by
1471          * a small amount in the end.  Here we just reserve for data.
1472          */
1473         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1474         if (ret)
1475                 return ret;
1476
1477         spin_lock(&ei->i_block_reservation_lock);
1478         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1479                 spin_unlock(&ei->i_block_reservation_lock);
1480                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1481                 return -ENOSPC;
1482         }
1483         ei->i_reserved_data_blocks++;
1484         trace_ext4_da_reserve_space(inode);
1485         spin_unlock(&ei->i_block_reservation_lock);
1486
1487         return 0;       /* success */
1488 }
1489
1490 static void ext4_da_release_space(struct inode *inode, int to_free)
1491 {
1492         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1493         struct ext4_inode_info *ei = EXT4_I(inode);
1494
1495         if (!to_free)
1496                 return;         /* Nothing to release, exit */
1497
1498         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1499
1500         trace_ext4_da_release_space(inode, to_free);
1501         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1502                 /*
1503                  * if there aren't enough reserved blocks, then the
1504                  * counter is messed up somewhere.  Since this
1505                  * function is called from invalidate page, it's
1506                  * harmless to return without any action.
1507                  */
1508                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1509                          "ino %lu, to_free %d with only %d reserved "
1510                          "data blocks", inode->i_ino, to_free,
1511                          ei->i_reserved_data_blocks);
1512                 WARN_ON(1);
1513                 to_free = ei->i_reserved_data_blocks;
1514         }
1515         ei->i_reserved_data_blocks -= to_free;
1516
1517         /* update fs dirty data blocks counter */
1518         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1519
1520         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1521
1522         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1523 }
1524
1525 static void ext4_da_page_release_reservation(struct page *page,
1526                                              unsigned int offset,
1527                                              unsigned int length)
1528 {
1529         int to_release = 0, contiguous_blks = 0;
1530         struct buffer_head *head, *bh;
1531         unsigned int curr_off = 0;
1532         struct inode *inode = page->mapping->host;
1533         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1534         unsigned int stop = offset + length;
1535         int num_clusters;
1536         ext4_fsblk_t lblk;
1537
1538         BUG_ON(stop > PAGE_SIZE || stop < length);
1539
1540         head = page_buffers(page);
1541         bh = head;
1542         do {
1543                 unsigned int next_off = curr_off + bh->b_size;
1544
1545                 if (next_off > stop)
1546                         break;
1547
1548                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1549                         to_release++;
1550                         contiguous_blks++;
1551                         clear_buffer_delay(bh);
1552                 } else if (contiguous_blks) {
1553                         lblk = page->index <<
1554                                (PAGE_SHIFT - inode->i_blkbits);
1555                         lblk += (curr_off >> inode->i_blkbits) -
1556                                 contiguous_blks;
1557                         ext4_es_remove_extent(inode, lblk, contiguous_blks);
1558                         contiguous_blks = 0;
1559                 }
1560                 curr_off = next_off;
1561         } while ((bh = bh->b_this_page) != head);
1562
1563         if (contiguous_blks) {
1564                 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1565                 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1566                 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1567         }
1568
1569         /* If we have released all the blocks belonging to a cluster, then we
1570          * need to release the reserved space for that cluster. */
1571         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1572         while (num_clusters > 0) {
1573                 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1574                         ((num_clusters - 1) << sbi->s_cluster_bits);
1575                 if (sbi->s_cluster_ratio == 1 ||
1576                     !ext4_find_delalloc_cluster(inode, lblk))
1577                         ext4_da_release_space(inode, 1);
1578
1579                 num_clusters--;
1580         }
1581 }
1582
1583 /*
1584  * Delayed allocation stuff
1585  */
1586
1587 struct mpage_da_data {
1588         struct inode *inode;
1589         struct writeback_control *wbc;
1590
1591         pgoff_t first_page;     /* The first page to write */
1592         pgoff_t next_page;      /* Current page to examine */
1593         pgoff_t last_page;      /* Last page to examine */
1594         /*
1595          * Extent to map - this can be after first_page because that can be
1596          * fully mapped. We somewhat abuse m_flags to store whether the extent
1597          * is delalloc or unwritten.
1598          */
1599         struct ext4_map_blocks map;
1600         struct ext4_io_submit io_submit;        /* IO submission data */
1601 };
1602
1603 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1604                                        bool invalidate)
1605 {
1606         int nr_pages, i;
1607         pgoff_t index, end;
1608         struct pagevec pvec;
1609         struct inode *inode = mpd->inode;
1610         struct address_space *mapping = inode->i_mapping;
1611
1612         /* This is necessary when next_page == 0. */
1613         if (mpd->first_page >= mpd->next_page)
1614                 return;
1615
1616         index = mpd->first_page;
1617         end   = mpd->next_page - 1;
1618         if (invalidate) {
1619                 ext4_lblk_t start, last;
1620                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1621                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1622                 ext4_es_remove_extent(inode, start, last - start + 1);
1623         }
1624
1625         pagevec_init(&pvec, 0);
1626         while (index <= end) {
1627                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1628                 if (nr_pages == 0)
1629                         break;
1630                 for (i = 0; i < nr_pages; i++) {
1631                         struct page *page = pvec.pages[i];
1632                         if (page->index > end)
1633                                 break;
1634                         BUG_ON(!PageLocked(page));
1635                         BUG_ON(PageWriteback(page));
1636                         if (invalidate) {
1637                                 block_invalidatepage(page, 0, PAGE_SIZE);
1638                                 ClearPageUptodate(page);
1639                         }
1640                         unlock_page(page);
1641                 }
1642                 index = pvec.pages[nr_pages - 1]->index + 1;
1643                 pagevec_release(&pvec);
1644         }
1645 }
1646
1647 static void ext4_print_free_blocks(struct inode *inode)
1648 {
1649         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1650         struct super_block *sb = inode->i_sb;
1651         struct ext4_inode_info *ei = EXT4_I(inode);
1652
1653         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1654                EXT4_C2B(EXT4_SB(inode->i_sb),
1655                         ext4_count_free_clusters(sb)));
1656         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1657         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1658                (long long) EXT4_C2B(EXT4_SB(sb),
1659                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1660         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1661                (long long) EXT4_C2B(EXT4_SB(sb),
1662                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1663         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1664         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1665                  ei->i_reserved_data_blocks);
1666         return;
1667 }
1668
1669 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1670 {
1671         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1672 }
1673
1674 /*
1675  * This function is grabs code from the very beginning of
1676  * ext4_map_blocks, but assumes that the caller is from delayed write
1677  * time. This function looks up the requested blocks and sets the
1678  * buffer delay bit under the protection of i_data_sem.
1679  */
1680 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1681                               struct ext4_map_blocks *map,
1682                               struct buffer_head *bh)
1683 {
1684         struct extent_status es;
1685         int retval;
1686         sector_t invalid_block = ~((sector_t) 0xffff);
1687 #ifdef ES_AGGRESSIVE_TEST
1688         struct ext4_map_blocks orig_map;
1689
1690         memcpy(&orig_map, map, sizeof(*map));
1691 #endif
1692
1693         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1694                 invalid_block = ~0;
1695
1696         map->m_flags = 0;
1697         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1698                   "logical block %lu\n", inode->i_ino, map->m_len,
1699                   (unsigned long) map->m_lblk);
1700
1701         /* Lookup extent status tree firstly */
1702         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1703                 if (ext4_es_is_hole(&es)) {
1704                         retval = 0;
1705                         down_read(&EXT4_I(inode)->i_data_sem);
1706                         goto add_delayed;
1707                 }
1708
1709                 /*
1710                  * Delayed extent could be allocated by fallocate.
1711                  * So we need to check it.
1712                  */
1713                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1714                         map_bh(bh, inode->i_sb, invalid_block);
1715                         set_buffer_new(bh);
1716                         set_buffer_delay(bh);
1717                         return 0;
1718                 }
1719
1720                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1721                 retval = es.es_len - (iblock - es.es_lblk);
1722                 if (retval > map->m_len)
1723                         retval = map->m_len;
1724                 map->m_len = retval;
1725                 if (ext4_es_is_written(&es))
1726                         map->m_flags |= EXT4_MAP_MAPPED;
1727                 else if (ext4_es_is_unwritten(&es))
1728                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1729                 else
1730                         BUG_ON(1);
1731
1732 #ifdef ES_AGGRESSIVE_TEST
1733                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1734 #endif
1735                 return retval;
1736         }
1737
1738         /*
1739          * Try to see if we can get the block without requesting a new
1740          * file system block.
1741          */
1742         down_read(&EXT4_I(inode)->i_data_sem);
1743         if (ext4_has_inline_data(inode))
1744                 retval = 0;
1745         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1746                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1747         else
1748                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1749
1750 add_delayed:
1751         if (retval == 0) {
1752                 int ret;
1753                 /*
1754                  * XXX: __block_prepare_write() unmaps passed block,
1755                  * is it OK?
1756                  */
1757                 /*
1758                  * If the block was allocated from previously allocated cluster,
1759                  * then we don't need to reserve it again. However we still need
1760                  * to reserve metadata for every block we're going to write.
1761                  */
1762                 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1763                     !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1764                         ret = ext4_da_reserve_space(inode);
1765                         if (ret) {
1766                                 /* not enough space to reserve */
1767                                 retval = ret;
1768                                 goto out_unlock;
1769                         }
1770                 }
1771
1772                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1773                                             ~0, EXTENT_STATUS_DELAYED);
1774                 if (ret) {
1775                         retval = ret;
1776                         goto out_unlock;
1777                 }
1778
1779                 map_bh(bh, inode->i_sb, invalid_block);
1780                 set_buffer_new(bh);
1781                 set_buffer_delay(bh);
1782         } else if (retval > 0) {
1783                 int ret;
1784                 unsigned int status;
1785
1786                 if (unlikely(retval != map->m_len)) {
1787                         ext4_warning(inode->i_sb,
1788                                      "ES len assertion failed for inode "
1789                                      "%lu: retval %d != map->m_len %d",
1790                                      inode->i_ino, retval, map->m_len);
1791                         WARN_ON(1);
1792                 }
1793
1794                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1795                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1796                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1797                                             map->m_pblk, status);
1798                 if (ret != 0)
1799                         retval = ret;
1800         }
1801
1802 out_unlock:
1803         up_read((&EXT4_I(inode)->i_data_sem));
1804
1805         return retval;
1806 }
1807
1808 /*
1809  * This is a special get_block_t callback which is used by
1810  * ext4_da_write_begin().  It will either return mapped block or
1811  * reserve space for a single block.
1812  *
1813  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1814  * We also have b_blocknr = -1 and b_bdev initialized properly
1815  *
1816  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1817  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1818  * initialized properly.
1819  */
1820 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1821                            struct buffer_head *bh, int create)
1822 {
1823         struct ext4_map_blocks map;
1824         int ret = 0;
1825
1826         BUG_ON(create == 0);
1827         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1828
1829         map.m_lblk = iblock;
1830         map.m_len = 1;
1831
1832         /*
1833          * first, we need to know whether the block is allocated already
1834          * preallocated blocks are unmapped but should treated
1835          * the same as allocated blocks.
1836          */
1837         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1838         if (ret <= 0)
1839                 return ret;
1840
1841         map_bh(bh, inode->i_sb, map.m_pblk);
1842         ext4_update_bh_state(bh, map.m_flags);
1843
1844         if (buffer_unwritten(bh)) {
1845                 /* A delayed write to unwritten bh should be marked
1846                  * new and mapped.  Mapped ensures that we don't do
1847                  * get_block multiple times when we write to the same
1848                  * offset and new ensures that we do proper zero out
1849                  * for partial write.
1850                  */
1851                 set_buffer_new(bh);
1852                 set_buffer_mapped(bh);
1853         }
1854         return 0;
1855 }
1856
1857 static int bget_one(handle_t *handle, struct buffer_head *bh)
1858 {
1859         get_bh(bh);
1860         return 0;
1861 }
1862
1863 static int bput_one(handle_t *handle, struct buffer_head *bh)
1864 {
1865         put_bh(bh);
1866         return 0;
1867 }
1868
1869 static int __ext4_journalled_writepage(struct page *page,
1870                                        unsigned int len)
1871 {
1872         struct address_space *mapping = page->mapping;
1873         struct inode *inode = mapping->host;
1874         struct buffer_head *page_bufs = NULL;
1875         handle_t *handle = NULL;
1876         int ret = 0, err = 0;
1877         int inline_data = ext4_has_inline_data(inode);
1878         struct buffer_head *inode_bh = NULL;
1879
1880         ClearPageChecked(page);
1881
1882         if (inline_data) {
1883                 BUG_ON(page->index != 0);
1884                 BUG_ON(len > ext4_get_max_inline_size(inode));
1885                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1886                 if (inode_bh == NULL)
1887                         goto out;
1888         } else {
1889                 page_bufs = page_buffers(page);
1890                 if (!page_bufs) {
1891                         BUG();
1892                         goto out;
1893                 }
1894                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1895                                        NULL, bget_one);
1896         }
1897         /*
1898          * We need to release the page lock before we start the
1899          * journal, so grab a reference so the page won't disappear
1900          * out from under us.
1901          */
1902         get_page(page);
1903         unlock_page(page);
1904
1905         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1906                                     ext4_writepage_trans_blocks(inode));
1907         if (IS_ERR(handle)) {
1908                 ret = PTR_ERR(handle);
1909                 put_page(page);
1910                 goto out_no_pagelock;
1911         }
1912         BUG_ON(!ext4_handle_valid(handle));
1913
1914         lock_page(page);
1915         put_page(page);
1916         if (page->mapping != mapping) {
1917                 /* The page got truncated from under us */
1918                 ext4_journal_stop(handle);
1919                 ret = 0;
1920                 goto out;
1921         }
1922
1923         if (inline_data) {
1924                 BUFFER_TRACE(inode_bh, "get write access");
1925                 ret = ext4_journal_get_write_access(handle, inode_bh);
1926
1927                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1928
1929         } else {
1930                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1931                                              do_journal_get_write_access);
1932
1933                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1934                                              write_end_fn);
1935         }
1936         if (ret == 0)
1937                 ret = err;
1938         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1939         err = ext4_journal_stop(handle);
1940         if (!ret)
1941                 ret = err;
1942
1943         if (!ext4_has_inline_data(inode))
1944                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1945                                        NULL, bput_one);
1946         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1947 out:
1948         unlock_page(page);
1949 out_no_pagelock:
1950         brelse(inode_bh);
1951         return ret;
1952 }
1953
1954 /*
1955  * Note that we don't need to start a transaction unless we're journaling data
1956  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1957  * need to file the inode to the transaction's list in ordered mode because if
1958  * we are writing back data added by write(), the inode is already there and if
1959  * we are writing back data modified via mmap(), no one guarantees in which
1960  * transaction the data will hit the disk. In case we are journaling data, we
1961  * cannot start transaction directly because transaction start ranks above page
1962  * lock so we have to do some magic.
1963  *
1964  * This function can get called via...
1965  *   - ext4_writepages after taking page lock (have journal handle)
1966  *   - journal_submit_inode_data_buffers (no journal handle)
1967  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1968  *   - grab_page_cache when doing write_begin (have journal handle)
1969  *
1970  * We don't do any block allocation in this function. If we have page with
1971  * multiple blocks we need to write those buffer_heads that are mapped. This
1972  * is important for mmaped based write. So if we do with blocksize 1K
1973  * truncate(f, 1024);
1974  * a = mmap(f, 0, 4096);
1975  * a[0] = 'a';
1976  * truncate(f, 4096);
1977  * we have in the page first buffer_head mapped via page_mkwrite call back
1978  * but other buffer_heads would be unmapped but dirty (dirty done via the
1979  * do_wp_page). So writepage should write the first block. If we modify
1980  * the mmap area beyond 1024 we will again get a page_fault and the
1981  * page_mkwrite callback will do the block allocation and mark the
1982  * buffer_heads mapped.
1983  *
1984  * We redirty the page if we have any buffer_heads that is either delay or
1985  * unwritten in the page.
1986  *
1987  * We can get recursively called as show below.
1988  *
1989  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1990  *              ext4_writepage()
1991  *
1992  * But since we don't do any block allocation we should not deadlock.
1993  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1994  */
1995 static int ext4_writepage(struct page *page,
1996                           struct writeback_control *wbc)
1997 {
1998         int ret = 0;
1999         loff_t size;
2000         unsigned int len;
2001         struct buffer_head *page_bufs = NULL;
2002         struct inode *inode = page->mapping->host;
2003         struct ext4_io_submit io_submit;
2004         bool keep_towrite = false;
2005
2006         trace_ext4_writepage(page);
2007         size = i_size_read(inode);
2008         if (page->index == size >> PAGE_SHIFT)
2009                 len = size & ~PAGE_MASK;
2010         else
2011                 len = PAGE_SIZE;
2012
2013         page_bufs = page_buffers(page);
2014         /*
2015          * We cannot do block allocation or other extent handling in this
2016          * function. If there are buffers needing that, we have to redirty
2017          * the page. But we may reach here when we do a journal commit via
2018          * journal_submit_inode_data_buffers() and in that case we must write
2019          * allocated buffers to achieve data=ordered mode guarantees.
2020          *
2021          * Also, if there is only one buffer per page (the fs block
2022          * size == the page size), if one buffer needs block
2023          * allocation or needs to modify the extent tree to clear the
2024          * unwritten flag, we know that the page can't be written at
2025          * all, so we might as well refuse the write immediately.
2026          * Unfortunately if the block size != page size, we can't as
2027          * easily detect this case using ext4_walk_page_buffers(), but
2028          * for the extremely common case, this is an optimization that
2029          * skips a useless round trip through ext4_bio_write_page().
2030          */
2031         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2032                                    ext4_bh_delay_or_unwritten)) {
2033                 redirty_page_for_writepage(wbc, page);
2034                 if ((current->flags & PF_MEMALLOC) ||
2035                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2036                         /*
2037                          * For memory cleaning there's no point in writing only
2038                          * some buffers. So just bail out. Warn if we came here
2039                          * from direct reclaim.
2040                          */
2041                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2042                                                         == PF_MEMALLOC);
2043                         unlock_page(page);
2044                         return 0;
2045                 }
2046                 keep_towrite = true;
2047         }
2048
2049         if (PageChecked(page) && ext4_should_journal_data(inode))
2050                 /*
2051                  * It's mmapped pagecache.  Add buffers and journal it.  There
2052                  * doesn't seem much point in redirtying the page here.
2053                  */
2054                 return __ext4_journalled_writepage(page, len);
2055
2056         ext4_io_submit_init(&io_submit, wbc);
2057         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2058         if (!io_submit.io_end) {
2059                 redirty_page_for_writepage(wbc, page);
2060                 unlock_page(page);
2061                 return -ENOMEM;
2062         }
2063         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2064         ext4_io_submit(&io_submit);
2065         /* Drop io_end reference we got from init */
2066         ext4_put_io_end_defer(io_submit.io_end);
2067         return ret;
2068 }
2069
2070 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2071 {
2072         int len;
2073         loff_t size = i_size_read(mpd->inode);
2074         int err;
2075
2076         BUG_ON(page->index != mpd->first_page);
2077         if (page->index == size >> PAGE_SHIFT)
2078                 len = size & ~PAGE_MASK;
2079         else
2080                 len = PAGE_SIZE;
2081         clear_page_dirty_for_io(page);
2082         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2083         if (!err)
2084                 mpd->wbc->nr_to_write--;
2085         mpd->first_page++;
2086
2087         return err;
2088 }
2089
2090 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2091
2092 /*
2093  * mballoc gives us at most this number of blocks...
2094  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2095  * The rest of mballoc seems to handle chunks up to full group size.
2096  */
2097 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2098
2099 /*
2100  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2101  *
2102  * @mpd - extent of blocks
2103  * @lblk - logical number of the block in the file
2104  * @bh - buffer head we want to add to the extent
2105  *
2106  * The function is used to collect contig. blocks in the same state. If the
2107  * buffer doesn't require mapping for writeback and we haven't started the
2108  * extent of buffers to map yet, the function returns 'true' immediately - the
2109  * caller can write the buffer right away. Otherwise the function returns true
2110  * if the block has been added to the extent, false if the block couldn't be
2111  * added.
2112  */
2113 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2114                                    struct buffer_head *bh)
2115 {
2116         struct ext4_map_blocks *map = &mpd->map;
2117
2118         /* Buffer that doesn't need mapping for writeback? */
2119         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2120             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2121                 /* So far no extent to map => we write the buffer right away */
2122                 if (map->m_len == 0)
2123                         return true;
2124                 return false;
2125         }
2126
2127         /* First block in the extent? */
2128         if (map->m_len == 0) {
2129                 map->m_lblk = lblk;
2130                 map->m_len = 1;
2131                 map->m_flags = bh->b_state & BH_FLAGS;
2132                 return true;
2133         }
2134
2135         /* Don't go larger than mballoc is willing to allocate */
2136         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2137                 return false;
2138
2139         /* Can we merge the block to our big extent? */
2140         if (lblk == map->m_lblk + map->m_len &&
2141             (bh->b_state & BH_FLAGS) == map->m_flags) {
2142                 map->m_len++;
2143                 return true;
2144         }
2145         return false;
2146 }
2147
2148 /*
2149  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2150  *
2151  * @mpd - extent of blocks for mapping
2152  * @head - the first buffer in the page
2153  * @bh - buffer we should start processing from
2154  * @lblk - logical number of the block in the file corresponding to @bh
2155  *
2156  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2157  * the page for IO if all buffers in this page were mapped and there's no
2158  * accumulated extent of buffers to map or add buffers in the page to the
2159  * extent of buffers to map. The function returns 1 if the caller can continue
2160  * by processing the next page, 0 if it should stop adding buffers to the
2161  * extent to map because we cannot extend it anymore. It can also return value
2162  * < 0 in case of error during IO submission.
2163  */
2164 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2165                                    struct buffer_head *head,
2166                                    struct buffer_head *bh,
2167                                    ext4_lblk_t lblk)
2168 {
2169         struct inode *inode = mpd->inode;
2170         int err;
2171         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2172                                                         >> inode->i_blkbits;
2173
2174         do {
2175                 BUG_ON(buffer_locked(bh));
2176
2177                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2178                         /* Found extent to map? */
2179                         if (mpd->map.m_len)
2180                                 return 0;
2181                         /* Everything mapped so far and we hit EOF */
2182                         break;
2183                 }
2184         } while (lblk++, (bh = bh->b_this_page) != head);
2185         /* So far everything mapped? Submit the page for IO. */
2186         if (mpd->map.m_len == 0) {
2187                 err = mpage_submit_page(mpd, head->b_page);
2188                 if (err < 0)
2189                         return err;
2190         }
2191         return lblk < blocks;
2192 }
2193
2194 /*
2195  * mpage_map_buffers - update buffers corresponding to changed extent and
2196  *                     submit fully mapped pages for IO
2197  *
2198  * @mpd - description of extent to map, on return next extent to map
2199  *
2200  * Scan buffers corresponding to changed extent (we expect corresponding pages
2201  * to be already locked) and update buffer state according to new extent state.
2202  * We map delalloc buffers to their physical location, clear unwritten bits,
2203  * and mark buffers as uninit when we perform writes to unwritten extents
2204  * and do extent conversion after IO is finished. If the last page is not fully
2205  * mapped, we update @map to the next extent in the last page that needs
2206  * mapping. Otherwise we submit the page for IO.
2207  */
2208 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2209 {
2210         struct pagevec pvec;
2211         int nr_pages, i;
2212         struct inode *inode = mpd->inode;
2213         struct buffer_head *head, *bh;
2214         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2215         pgoff_t start, end;
2216         ext4_lblk_t lblk;
2217         sector_t pblock;
2218         int err;
2219
2220         start = mpd->map.m_lblk >> bpp_bits;
2221         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2222         lblk = start << bpp_bits;
2223         pblock = mpd->map.m_pblk;
2224
2225         pagevec_init(&pvec, 0);
2226         while (start <= end) {
2227                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2228                                           PAGEVEC_SIZE);
2229                 if (nr_pages == 0)
2230                         break;
2231                 for (i = 0; i < nr_pages; i++) {
2232                         struct page *page = pvec.pages[i];
2233
2234                         if (page->index > end)
2235                                 break;
2236                         /* Up to 'end' pages must be contiguous */
2237                         BUG_ON(page->index != start);
2238                         bh = head = page_buffers(page);
2239                         do {
2240                                 if (lblk < mpd->map.m_lblk)
2241                                         continue;
2242                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2243                                         /*
2244                                          * Buffer after end of mapped extent.
2245                                          * Find next buffer in the page to map.
2246                                          */
2247                                         mpd->map.m_len = 0;
2248                                         mpd->map.m_flags = 0;
2249                                         /*
2250                                          * FIXME: If dioread_nolock supports
2251                                          * blocksize < pagesize, we need to make
2252                                          * sure we add size mapped so far to
2253                                          * io_end->size as the following call
2254                                          * can submit the page for IO.
2255                                          */
2256                                         err = mpage_process_page_bufs(mpd, head,
2257                                                                       bh, lblk);
2258                                         pagevec_release(&pvec);
2259                                         if (err > 0)
2260                                                 err = 0;
2261                                         return err;
2262                                 }
2263                                 if (buffer_delay(bh)) {
2264                                         clear_buffer_delay(bh);
2265                                         bh->b_blocknr = pblock++;
2266                                 }
2267                                 clear_buffer_unwritten(bh);
2268                         } while (lblk++, (bh = bh->b_this_page) != head);
2269
2270                         /*
2271                          * FIXME: This is going to break if dioread_nolock
2272                          * supports blocksize < pagesize as we will try to
2273                          * convert potentially unmapped parts of inode.
2274                          */
2275                         mpd->io_submit.io_end->size += PAGE_SIZE;
2276                         /* Page fully mapped - let IO run! */
2277                         err = mpage_submit_page(mpd, page);
2278                         if (err < 0) {
2279                                 pagevec_release(&pvec);
2280                                 return err;
2281                         }
2282                         start++;
2283                 }
2284                 pagevec_release(&pvec);
2285         }
2286         /* Extent fully mapped and matches with page boundary. We are done. */
2287         mpd->map.m_len = 0;
2288         mpd->map.m_flags = 0;
2289         return 0;
2290 }
2291
2292 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2293 {
2294         struct inode *inode = mpd->inode;
2295         struct ext4_map_blocks *map = &mpd->map;
2296         int get_blocks_flags;
2297         int err, dioread_nolock;
2298
2299         trace_ext4_da_write_pages_extent(inode, map);
2300         /*
2301          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2302          * to convert an unwritten extent to be initialized (in the case
2303          * where we have written into one or more preallocated blocks).  It is
2304          * possible that we're going to need more metadata blocks than
2305          * previously reserved. However we must not fail because we're in
2306          * writeback and there is nothing we can do about it so it might result
2307          * in data loss.  So use reserved blocks to allocate metadata if
2308          * possible.
2309          *
2310          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2311          * the blocks in question are delalloc blocks.  This indicates
2312          * that the blocks and quotas has already been checked when
2313          * the data was copied into the page cache.
2314          */
2315         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2316                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
2317         dioread_nolock = ext4_should_dioread_nolock(inode);
2318         if (dioread_nolock)
2319                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2320         if (map->m_flags & (1 << BH_Delay))
2321                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2322
2323         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2324         if (err < 0)
2325                 return err;
2326         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2327                 if (!mpd->io_submit.io_end->handle &&
2328                     ext4_handle_valid(handle)) {
2329                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2330                         handle->h_rsv_handle = NULL;
2331                 }
2332                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2333         }
2334
2335         BUG_ON(map->m_len == 0);
2336         if (map->m_flags & EXT4_MAP_NEW) {
2337                 struct block_device *bdev = inode->i_sb->s_bdev;
2338                 int i;
2339
2340                 for (i = 0; i < map->m_len; i++)
2341                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2342         }
2343         return 0;
2344 }
2345
2346 /*
2347  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2348  *                               mpd->len and submit pages underlying it for IO
2349  *
2350  * @handle - handle for journal operations
2351  * @mpd - extent to map
2352  * @give_up_on_write - we set this to true iff there is a fatal error and there
2353  *                     is no hope of writing the data. The caller should discard
2354  *                     dirty pages to avoid infinite loops.
2355  *
2356  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2357  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2358  * them to initialized or split the described range from larger unwritten
2359  * extent. Note that we need not map all the described range since allocation
2360  * can return less blocks or the range is covered by more unwritten extents. We
2361  * cannot map more because we are limited by reserved transaction credits. On
2362  * the other hand we always make sure that the last touched page is fully
2363  * mapped so that it can be written out (and thus forward progress is
2364  * guaranteed). After mapping we submit all mapped pages for IO.
2365  */
2366 static int mpage_map_and_submit_extent(handle_t *handle,
2367                                        struct mpage_da_data *mpd,
2368                                        bool *give_up_on_write)
2369 {
2370         struct inode *inode = mpd->inode;
2371         struct ext4_map_blocks *map = &mpd->map;
2372         int err;
2373         loff_t disksize;
2374         int progress = 0;
2375
2376         mpd->io_submit.io_end->offset =
2377                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2378         do {
2379                 err = mpage_map_one_extent(handle, mpd);
2380                 if (err < 0) {
2381                         struct super_block *sb = inode->i_sb;
2382
2383                         if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2384                                 goto invalidate_dirty_pages;
2385                         /*
2386                          * Let the uper layers retry transient errors.
2387                          * In the case of ENOSPC, if ext4_count_free_blocks()
2388                          * is non-zero, a commit should free up blocks.
2389                          */
2390                         if ((err == -ENOMEM) ||
2391                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2392                                 if (progress)
2393                                         goto update_disksize;
2394                                 return err;
2395                         }
2396                         ext4_msg(sb, KERN_CRIT,
2397                                  "Delayed block allocation failed for "
2398                                  "inode %lu at logical offset %llu with"
2399                                  " max blocks %u with error %d",
2400                                  inode->i_ino,
2401                                  (unsigned long long)map->m_lblk,
2402                                  (unsigned)map->m_len, -err);
2403                         ext4_msg(sb, KERN_CRIT,
2404                                  "This should not happen!! Data will "
2405                                  "be lost\n");
2406                         if (err == -ENOSPC)
2407                                 ext4_print_free_blocks(inode);
2408                 invalidate_dirty_pages:
2409                         *give_up_on_write = true;
2410                         return err;
2411                 }
2412                 progress = 1;
2413                 /*
2414                  * Update buffer state, submit mapped pages, and get us new
2415                  * extent to map
2416                  */
2417                 err = mpage_map_and_submit_buffers(mpd);
2418                 if (err < 0)
2419                         goto update_disksize;
2420         } while (map->m_len);
2421
2422 update_disksize:
2423         /*
2424          * Update on-disk size after IO is submitted.  Races with
2425          * truncate are avoided by checking i_size under i_data_sem.
2426          */
2427         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2428         if (disksize > EXT4_I(inode)->i_disksize) {
2429                 int err2;
2430                 loff_t i_size;
2431
2432                 down_write(&EXT4_I(inode)->i_data_sem);
2433                 i_size = i_size_read(inode);
2434                 if (disksize > i_size)
2435                         disksize = i_size;
2436                 if (disksize > EXT4_I(inode)->i_disksize)
2437                         EXT4_I(inode)->i_disksize = disksize;
2438                 err2 = ext4_mark_inode_dirty(handle, inode);
2439                 up_write(&EXT4_I(inode)->i_data_sem);
2440                 if (err2)
2441                         ext4_error(inode->i_sb,
2442                                    "Failed to mark inode %lu dirty",
2443                                    inode->i_ino);
2444                 if (!err)
2445                         err = err2;
2446         }
2447         return err;
2448 }
2449
2450 /*
2451  * Calculate the total number of credits to reserve for one writepages
2452  * iteration. This is called from ext4_writepages(). We map an extent of
2453  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2454  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2455  * bpp - 1 blocks in bpp different extents.
2456  */
2457 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2458 {
2459         int bpp = ext4_journal_blocks_per_page(inode);
2460
2461         return ext4_meta_trans_blocks(inode,
2462                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2463 }
2464
2465 /*
2466  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2467  *                               and underlying extent to map
2468  *
2469  * @mpd - where to look for pages
2470  *
2471  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2472  * IO immediately. When we find a page which isn't mapped we start accumulating
2473  * extent of buffers underlying these pages that needs mapping (formed by
2474  * either delayed or unwritten buffers). We also lock the pages containing
2475  * these buffers. The extent found is returned in @mpd structure (starting at
2476  * mpd->lblk with length mpd->len blocks).
2477  *
2478  * Note that this function can attach bios to one io_end structure which are
2479  * neither logically nor physically contiguous. Although it may seem as an
2480  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2481  * case as we need to track IO to all buffers underlying a page in one io_end.
2482  */
2483 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2484 {
2485         struct address_space *mapping = mpd->inode->i_mapping;
2486         struct pagevec pvec;
2487         unsigned int nr_pages;
2488         long left = mpd->wbc->nr_to_write;
2489         pgoff_t index = mpd->first_page;
2490         pgoff_t end = mpd->last_page;
2491         int tag;
2492         int i, err = 0;
2493         int blkbits = mpd->inode->i_blkbits;
2494         ext4_lblk_t lblk;
2495         struct buffer_head *head;
2496
2497         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2498                 tag = PAGECACHE_TAG_TOWRITE;
2499         else
2500                 tag = PAGECACHE_TAG_DIRTY;
2501
2502         pagevec_init(&pvec, 0);
2503         mpd->map.m_len = 0;
2504         mpd->next_page = index;
2505         while (index <= end) {
2506                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2507                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2508                 if (nr_pages == 0)
2509                         goto out;
2510
2511                 for (i = 0; i < nr_pages; i++) {
2512                         struct page *page = pvec.pages[i];
2513
2514                         /*
2515                          * At this point, the page may be truncated or
2516                          * invalidated (changing page->mapping to NULL), or
2517                          * even swizzled back from swapper_space to tmpfs file
2518                          * mapping. However, page->index will not change
2519                          * because we have a reference on the page.
2520                          */
2521                         if (page->index > end)
2522                                 goto out;
2523
2524                         /*
2525                          * Accumulated enough dirty pages? This doesn't apply
2526                          * to WB_SYNC_ALL mode. For integrity sync we have to
2527                          * keep going because someone may be concurrently
2528                          * dirtying pages, and we might have synced a lot of
2529                          * newly appeared dirty pages, but have not synced all
2530                          * of the old dirty pages.
2531                          */
2532                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2533                                 goto out;
2534
2535                         /* If we can't merge this page, we are done. */
2536                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2537                                 goto out;
2538
2539                         lock_page(page);
2540                         /*
2541                          * If the page is no longer dirty, or its mapping no
2542                          * longer corresponds to inode we are writing (which
2543                          * means it has been truncated or invalidated), or the
2544                          * page is already under writeback and we are not doing
2545                          * a data integrity writeback, skip the page
2546                          */
2547                         if (!PageDirty(page) ||
2548                             (PageWriteback(page) &&
2549                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2550                             unlikely(page->mapping != mapping)) {
2551                                 unlock_page(page);
2552                                 continue;
2553                         }
2554
2555                         wait_on_page_writeback(page);
2556                         BUG_ON(PageWriteback(page));
2557
2558                         if (mpd->map.m_len == 0)
2559                                 mpd->first_page = page->index;
2560                         mpd->next_page = page->index + 1;
2561                         /* Add all dirty buffers to mpd */
2562                         lblk = ((ext4_lblk_t)page->index) <<
2563                                 (PAGE_SHIFT - blkbits);
2564                         head = page_buffers(page);
2565                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2566                         if (err <= 0)
2567                                 goto out;
2568                         err = 0;
2569                         left--;
2570                 }
2571                 pagevec_release(&pvec);
2572                 cond_resched();
2573         }
2574         return 0;
2575 out:
2576         pagevec_release(&pvec);
2577         return err;
2578 }
2579
2580 static int __writepage(struct page *page, struct writeback_control *wbc,
2581                        void *data)
2582 {
2583         struct address_space *mapping = data;
2584         int ret = ext4_writepage(page, wbc);
2585         mapping_set_error(mapping, ret);
2586         return ret;
2587 }
2588
2589 static int ext4_writepages(struct address_space *mapping,
2590                            struct writeback_control *wbc)
2591 {
2592         pgoff_t writeback_index = 0;
2593         long nr_to_write = wbc->nr_to_write;
2594         int range_whole = 0;
2595         int cycled = 1;
2596         handle_t *handle = NULL;
2597         struct mpage_da_data mpd;
2598         struct inode *inode = mapping->host;
2599         int needed_blocks, rsv_blocks = 0, ret = 0;
2600         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2601         bool done;
2602         struct blk_plug plug;
2603         bool give_up_on_write = false;
2604
2605         trace_ext4_writepages(inode, wbc);
2606
2607         if (dax_mapping(mapping))
2608                 return dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2609                                                    wbc);
2610
2611         /*
2612          * No pages to write? This is mainly a kludge to avoid starting
2613          * a transaction for special inodes like journal inode on last iput()
2614          * because that could violate lock ordering on umount
2615          */
2616         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2617                 goto out_writepages;
2618
2619         if (ext4_should_journal_data(inode)) {
2620                 struct blk_plug plug;
2621
2622                 blk_start_plug(&plug);
2623                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2624                 blk_finish_plug(&plug);
2625                 goto out_writepages;
2626         }
2627
2628         /*
2629          * If the filesystem has aborted, it is read-only, so return
2630          * right away instead of dumping stack traces later on that
2631          * will obscure the real source of the problem.  We test
2632          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2633          * the latter could be true if the filesystem is mounted
2634          * read-only, and in that case, ext4_writepages should
2635          * *never* be called, so if that ever happens, we would want
2636          * the stack trace.
2637          */
2638         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2639                 ret = -EROFS;
2640                 goto out_writepages;
2641         }
2642
2643         if (ext4_should_dioread_nolock(inode)) {
2644                 /*
2645                  * We may need to convert up to one extent per block in
2646                  * the page and we may dirty the inode.
2647                  */
2648                 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2649         }
2650
2651         /*
2652          * If we have inline data and arrive here, it means that
2653          * we will soon create the block for the 1st page, so
2654          * we'd better clear the inline data here.
2655          */
2656         if (ext4_has_inline_data(inode)) {
2657                 /* Just inode will be modified... */
2658                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2659                 if (IS_ERR(handle)) {
2660                         ret = PTR_ERR(handle);
2661                         goto out_writepages;
2662                 }
2663                 BUG_ON(ext4_test_inode_state(inode,
2664                                 EXT4_STATE_MAY_INLINE_DATA));
2665                 ext4_destroy_inline_data(handle, inode);
2666                 ext4_journal_stop(handle);
2667         }
2668
2669         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2670                 range_whole = 1;
2671
2672         if (wbc->range_cyclic) {
2673                 writeback_index = mapping->writeback_index;
2674                 if (writeback_index)
2675                         cycled = 0;
2676                 mpd.first_page = writeback_index;
2677                 mpd.last_page = -1;
2678         } else {
2679                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2680                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2681         }
2682
2683         mpd.inode = inode;
2684         mpd.wbc = wbc;
2685         ext4_io_submit_init(&mpd.io_submit, wbc);
2686 retry:
2687         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2688                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2689         done = false;
2690         blk_start_plug(&plug);
2691         while (!done && mpd.first_page <= mpd.last_page) {
2692                 /* For each extent of pages we use new io_end */
2693                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2694                 if (!mpd.io_submit.io_end) {
2695                         ret = -ENOMEM;
2696                         break;
2697                 }
2698
2699                 /*
2700                  * We have two constraints: We find one extent to map and we
2701                  * must always write out whole page (makes a difference when
2702                  * blocksize < pagesize) so that we don't block on IO when we
2703                  * try to write out the rest of the page. Journalled mode is
2704                  * not supported by delalloc.
2705                  */
2706                 BUG_ON(ext4_should_journal_data(inode));
2707                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2708
2709                 /* start a new transaction */
2710                 handle = ext4_journal_start_with_reserve(inode,
2711                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2712                 if (IS_ERR(handle)) {
2713                         ret = PTR_ERR(handle);
2714                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2715                                "%ld pages, ino %lu; err %d", __func__,
2716                                 wbc->nr_to_write, inode->i_ino, ret);
2717                         /* Release allocated io_end */
2718                         ext4_put_io_end(mpd.io_submit.io_end);
2719                         break;
2720                 }
2721
2722                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2723                 ret = mpage_prepare_extent_to_map(&mpd);
2724                 if (!ret) {
2725                         if (mpd.map.m_len)
2726                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2727                                         &give_up_on_write);
2728                         else {
2729                                 /*
2730                                  * We scanned the whole range (or exhausted
2731                                  * nr_to_write), submitted what was mapped and
2732                                  * didn't find anything needing mapping. We are
2733                                  * done.
2734                                  */
2735                                 done = true;
2736                         }
2737                 }
2738                 ext4_journal_stop(handle);
2739                 /* Submit prepared bio */
2740                 ext4_io_submit(&mpd.io_submit);
2741                 /* Unlock pages we didn't use */
2742                 mpage_release_unused_pages(&mpd, give_up_on_write);
2743                 /* Drop our io_end reference we got from init */
2744                 ext4_put_io_end(mpd.io_submit.io_end);
2745
2746                 if (ret == -ENOSPC && sbi->s_journal) {
2747                         /*
2748                          * Commit the transaction which would
2749                          * free blocks released in the transaction
2750                          * and try again
2751                          */
2752                         jbd2_journal_force_commit_nested(sbi->s_journal);
2753                         ret = 0;
2754                         continue;
2755                 }
2756                 /* Fatal error - ENOMEM, EIO... */
2757                 if (ret)
2758                         break;
2759         }
2760         blk_finish_plug(&plug);
2761         if (!ret && !cycled && wbc->nr_to_write > 0) {
2762                 cycled = 1;
2763                 mpd.last_page = writeback_index - 1;
2764                 mpd.first_page = 0;
2765                 goto retry;
2766         }
2767
2768         /* Update index */
2769         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2770                 /*
2771                  * Set the writeback_index so that range_cyclic
2772                  * mode will write it back later
2773                  */
2774                 mapping->writeback_index = mpd.first_page;
2775
2776 out_writepages:
2777         trace_ext4_writepages_result(inode, wbc, ret,
2778                                      nr_to_write - wbc->nr_to_write);
2779         return ret;
2780 }
2781
2782 static int ext4_nonda_switch(struct super_block *sb)
2783 {
2784         s64 free_clusters, dirty_clusters;
2785         struct ext4_sb_info *sbi = EXT4_SB(sb);
2786
2787         /*
2788          * switch to non delalloc mode if we are running low
2789          * on free block. The free block accounting via percpu
2790          * counters can get slightly wrong with percpu_counter_batch getting
2791          * accumulated on each CPU without updating global counters
2792          * Delalloc need an accurate free block accounting. So switch
2793          * to non delalloc when we are near to error range.
2794          */
2795         free_clusters =
2796                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2797         dirty_clusters =
2798                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2799         /*
2800          * Start pushing delalloc when 1/2 of free blocks are dirty.
2801          */
2802         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2803                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2804
2805         if (2 * free_clusters < 3 * dirty_clusters ||
2806             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2807                 /*
2808                  * free block count is less than 150% of dirty blocks
2809                  * or free blocks is less than watermark
2810                  */
2811                 return 1;
2812         }
2813         return 0;
2814 }
2815
2816 /* We always reserve for an inode update; the superblock could be there too */
2817 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2818 {
2819         if (likely(ext4_has_feature_large_file(inode->i_sb)))
2820                 return 1;
2821
2822         if (pos + len <= 0x7fffffffULL)
2823                 return 1;
2824
2825         /* We might need to update the superblock to set LARGE_FILE */
2826         return 2;
2827 }
2828
2829 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2830                                loff_t pos, unsigned len, unsigned flags,
2831                                struct page **pagep, void **fsdata)
2832 {
2833         int ret, retries = 0;
2834         struct page *page;
2835         pgoff_t index;
2836         struct inode *inode = mapping->host;
2837         handle_t *handle;
2838
2839         index = pos >> PAGE_SHIFT;
2840
2841         if (ext4_nonda_switch(inode->i_sb)) {
2842                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2843                 return ext4_write_begin(file, mapping, pos,
2844                                         len, flags, pagep, fsdata);
2845         }
2846         *fsdata = (void *)0;
2847         trace_ext4_da_write_begin(inode, pos, len, flags);
2848
2849         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2850                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2851                                                       pos, len, flags,
2852                                                       pagep, fsdata);
2853                 if (ret < 0)
2854                         return ret;
2855                 if (ret == 1)
2856                         return 0;
2857         }
2858
2859         /*
2860          * grab_cache_page_write_begin() can take a long time if the
2861          * system is thrashing due to memory pressure, or if the page
2862          * is being written back.  So grab it first before we start
2863          * the transaction handle.  This also allows us to allocate
2864          * the page (if needed) without using GFP_NOFS.
2865          */
2866 retry_grab:
2867         page = grab_cache_page_write_begin(mapping, index, flags);
2868         if (!page)
2869                 return -ENOMEM;
2870         unlock_page(page);
2871
2872         /*
2873          * With delayed allocation, we don't log the i_disksize update
2874          * if there is delayed block allocation. But we still need
2875          * to journalling the i_disksize update if writes to the end
2876          * of file which has an already mapped buffer.
2877          */
2878 retry_journal:
2879         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2880                                 ext4_da_write_credits(inode, pos, len));
2881         if (IS_ERR(handle)) {
2882                 put_page(page);
2883                 return PTR_ERR(handle);
2884         }
2885
2886         lock_page(page);
2887         if (page->mapping != mapping) {
2888                 /* The page got truncated from under us */
2889                 unlock_page(page);
2890                 put_page(page);
2891                 ext4_journal_stop(handle);
2892                 goto retry_grab;
2893         }
2894         /* In case writeback began while the page was unlocked */
2895         wait_for_stable_page(page);
2896
2897 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2898         ret = ext4_block_write_begin(page, pos, len,
2899                                      ext4_da_get_block_prep);
2900 #else
2901         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2902 #endif
2903         if (ret < 0) {
2904                 unlock_page(page);
2905                 ext4_journal_stop(handle);
2906                 /*
2907                  * block_write_begin may have instantiated a few blocks
2908                  * outside i_size.  Trim these off again. Don't need
2909                  * i_size_read because we hold i_mutex.
2910                  */
2911                 if (pos + len > inode->i_size)
2912                         ext4_truncate_failed_write(inode);
2913
2914                 if (ret == -ENOSPC &&
2915                     ext4_should_retry_alloc(inode->i_sb, &retries))
2916                         goto retry_journal;
2917
2918                 put_page(page);
2919                 return ret;
2920         }
2921
2922         *pagep = page;
2923         return ret;
2924 }
2925
2926 /*
2927  * Check if we should update i_disksize
2928  * when write to the end of file but not require block allocation
2929  */
2930 static int ext4_da_should_update_i_disksize(struct page *page,
2931                                             unsigned long offset)
2932 {
2933         struct buffer_head *bh;
2934         struct inode *inode = page->mapping->host;
2935         unsigned int idx;
2936         int i;
2937
2938         bh = page_buffers(page);
2939         idx = offset >> inode->i_blkbits;
2940
2941         for (i = 0; i < idx; i++)
2942                 bh = bh->b_this_page;
2943
2944         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2945                 return 0;
2946         return 1;
2947 }
2948
2949 static int ext4_da_write_end(struct file *file,
2950                              struct address_space *mapping,
2951                              loff_t pos, unsigned len, unsigned copied,
2952                              struct page *page, void *fsdata)
2953 {
2954         struct inode *inode = mapping->host;
2955         int ret = 0, ret2;
2956         handle_t *handle = ext4_journal_current_handle();
2957         loff_t new_i_size;
2958         unsigned long start, end;
2959         int write_mode = (int)(unsigned long)fsdata;
2960
2961         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2962                 return ext4_write_end(file, mapping, pos,
2963                                       len, copied, page, fsdata);
2964
2965         trace_ext4_da_write_end(inode, pos, len, copied);
2966         start = pos & (PAGE_SIZE - 1);
2967         end = start + copied - 1;
2968
2969         /*
2970          * generic_write_end() will run mark_inode_dirty() if i_size
2971          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2972          * into that.
2973          */
2974         new_i_size = pos + copied;
2975         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2976                 if (ext4_has_inline_data(inode) ||
2977                     ext4_da_should_update_i_disksize(page, end)) {
2978                         ext4_update_i_disksize(inode, new_i_size);
2979                         /* We need to mark inode dirty even if
2980                          * new_i_size is less that inode->i_size
2981                          * bu greater than i_disksize.(hint delalloc)
2982                          */
2983                         ext4_mark_inode_dirty(handle, inode);
2984                 }
2985         }
2986
2987         if (write_mode != CONVERT_INLINE_DATA &&
2988             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2989             ext4_has_inline_data(inode))
2990                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2991                                                      page);
2992         else
2993                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2994                                                         page, fsdata);
2995
2996         copied = ret2;
2997         if (ret2 < 0)
2998                 ret = ret2;
2999         ret2 = ext4_journal_stop(handle);
3000         if (!ret)
3001                 ret = ret2;
3002
3003         return ret ? ret : copied;
3004 }
3005
3006 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3007                                    unsigned int length)
3008 {
3009         /*
3010          * Drop reserved blocks
3011          */
3012         BUG_ON(!PageLocked(page));
3013         if (!page_has_buffers(page))
3014                 goto out;
3015
3016         ext4_da_page_release_reservation(page, offset, length);
3017
3018 out:
3019         ext4_invalidatepage(page, offset, length);
3020
3021         return;
3022 }
3023
3024 /*
3025  * Force all delayed allocation blocks to be allocated for a given inode.
3026  */
3027 int ext4_alloc_da_blocks(struct inode *inode)
3028 {
3029         trace_ext4_alloc_da_blocks(inode);
3030
3031         if (!EXT4_I(inode)->i_reserved_data_blocks)
3032                 return 0;
3033
3034         /*
3035          * We do something simple for now.  The filemap_flush() will
3036          * also start triggering a write of the data blocks, which is
3037          * not strictly speaking necessary (and for users of
3038          * laptop_mode, not even desirable).  However, to do otherwise
3039          * would require replicating code paths in:
3040          *
3041          * ext4_writepages() ->
3042          *    write_cache_pages() ---> (via passed in callback function)
3043          *        __mpage_da_writepage() -->
3044          *           mpage_add_bh_to_extent()
3045          *           mpage_da_map_blocks()
3046          *
3047          * The problem is that write_cache_pages(), located in
3048          * mm/page-writeback.c, marks pages clean in preparation for
3049          * doing I/O, which is not desirable if we're not planning on
3050          * doing I/O at all.
3051          *
3052          * We could call write_cache_pages(), and then redirty all of
3053          * the pages by calling redirty_page_for_writepage() but that
3054          * would be ugly in the extreme.  So instead we would need to
3055          * replicate parts of the code in the above functions,
3056          * simplifying them because we wouldn't actually intend to
3057          * write out the pages, but rather only collect contiguous
3058          * logical block extents, call the multi-block allocator, and
3059          * then update the buffer heads with the block allocations.
3060          *
3061          * For now, though, we'll cheat by calling filemap_flush(),
3062          * which will map the blocks, and start the I/O, but not
3063          * actually wait for the I/O to complete.
3064          */
3065         return filemap_flush(inode->i_mapping);
3066 }
3067
3068 /*
3069  * bmap() is special.  It gets used by applications such as lilo and by
3070  * the swapper to find the on-disk block of a specific piece of data.
3071  *
3072  * Naturally, this is dangerous if the block concerned is still in the
3073  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3074  * filesystem and enables swap, then they may get a nasty shock when the
3075  * data getting swapped to that swapfile suddenly gets overwritten by
3076  * the original zero's written out previously to the journal and
3077  * awaiting writeback in the kernel's buffer cache.
3078  *
3079  * So, if we see any bmap calls here on a modified, data-journaled file,
3080  * take extra steps to flush any blocks which might be in the cache.
3081  */
3082 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3083 {
3084         struct inode *inode = mapping->host;
3085         journal_t *journal;
3086         int err;
3087
3088         /*
3089          * We can get here for an inline file via the FIBMAP ioctl
3090          */
3091         if (ext4_has_inline_data(inode))
3092                 return 0;
3093
3094         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3095                         test_opt(inode->i_sb, DELALLOC)) {
3096                 /*
3097                  * With delalloc we want to sync the file
3098                  * so that we can make sure we allocate
3099                  * blocks for file
3100                  */
3101                 filemap_write_and_wait(mapping);
3102         }
3103
3104         if (EXT4_JOURNAL(inode) &&
3105             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3106                 /*
3107                  * This is a REALLY heavyweight approach, but the use of
3108                  * bmap on dirty files is expected to be extremely rare:
3109                  * only if we run lilo or swapon on a freshly made file
3110                  * do we expect this to happen.
3111                  *
3112                  * (bmap requires CAP_SYS_RAWIO so this does not
3113                  * represent an unprivileged user DOS attack --- we'd be
3114                  * in trouble if mortal users could trigger this path at
3115                  * will.)
3116                  *
3117                  * NB. EXT4_STATE_JDATA is not set on files other than
3118                  * regular files.  If somebody wants to bmap a directory
3119                  * or symlink and gets confused because the buffer
3120                  * hasn't yet been flushed to disk, they deserve
3121                  * everything they get.
3122                  */
3123
3124                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3125                 journal = EXT4_JOURNAL(inode);
3126                 jbd2_journal_lock_updates(journal);
3127                 err = jbd2_journal_flush(journal);
3128                 jbd2_journal_unlock_updates(journal);
3129
3130                 if (err)
3131                         return 0;
3132         }
3133
3134         return generic_block_bmap(mapping, block, ext4_get_block);
3135 }
3136
3137 static int ext4_readpage(struct file *file, struct page *page)
3138 {
3139         int ret = -EAGAIN;
3140         struct inode *inode = page->mapping->host;
3141
3142         trace_ext4_readpage(page);
3143
3144         if (ext4_has_inline_data(inode))
3145                 ret = ext4_readpage_inline(inode, page);
3146
3147         if (ret == -EAGAIN)
3148                 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3149
3150         return ret;
3151 }
3152
3153 static int
3154 ext4_readpages(struct file *file, struct address_space *mapping,
3155                 struct list_head *pages, unsigned nr_pages)
3156 {
3157         struct inode *inode = mapping->host;
3158
3159         /* If the file has inline data, no need to do readpages. */
3160         if (ext4_has_inline_data(inode))
3161                 return 0;
3162
3163         return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3164 }
3165
3166 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3167                                 unsigned int length)
3168 {
3169         trace_ext4_invalidatepage(page, offset, length);
3170
3171         /* No journalling happens on data buffers when this function is used */
3172         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3173
3174         block_invalidatepage(page, offset, length);
3175 }
3176
3177 static int __ext4_journalled_invalidatepage(struct page *page,
3178                                             unsigned int offset,
3179                                             unsigned int length)
3180 {
3181         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3182
3183         trace_ext4_journalled_invalidatepage(page, offset, length);
3184
3185         /*
3186          * If it's a full truncate we just forget about the pending dirtying
3187          */
3188         if (offset == 0 && length == PAGE_SIZE)
3189                 ClearPageChecked(page);
3190
3191         return jbd2_journal_invalidatepage(journal, page, offset, length);
3192 }
3193
3194 /* Wrapper for aops... */
3195 static void ext4_journalled_invalidatepage(struct page *page,
3196                                            unsigned int offset,
3197                                            unsigned int length)
3198 {
3199         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3200 }
3201
3202 static int ext4_releasepage(struct page *page, gfp_t wait)
3203 {
3204         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3205
3206         trace_ext4_releasepage(page);
3207
3208         /* Page has dirty journalled data -> cannot release */
3209         if (PageChecked(page))
3210                 return 0;
3211         if (journal)
3212                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3213         else
3214                 return try_to_free_buffers(page);
3215 }
3216
3217 #ifdef CONFIG_FS_DAX
3218 int ext4_dax_mmap_get_block(struct inode *inode, sector_t iblock,
3219                             struct buffer_head *bh_result, int create)
3220 {
3221         int ret, err;
3222         int credits;
3223         struct ext4_map_blocks map;
3224         handle_t *handle = NULL;
3225         int flags = 0;
3226
3227         ext4_debug("ext4_dax_mmap_get_block: inode %lu, create flag %d\n",
3228                    inode->i_ino, create);
3229         map.m_lblk = iblock;
3230         map.m_len = bh_result->b_size >> inode->i_blkbits;
3231         credits = ext4_chunk_trans_blocks(inode, map.m_len);
3232         if (create) {
3233                 flags |= EXT4_GET_BLOCKS_PRE_IO | EXT4_GET_BLOCKS_CREATE_ZERO;
3234                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits);
3235                 if (IS_ERR(handle)) {
3236                         ret = PTR_ERR(handle);
3237                         return ret;
3238                 }
3239         }
3240
3241         ret = ext4_map_blocks(handle, inode, &map, flags);
3242         if (create) {
3243                 err = ext4_journal_stop(handle);
3244                 if (ret >= 0 && err < 0)
3245                         ret = err;
3246         }
3247         if (ret <= 0)
3248                 goto out;
3249         if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3250                 int err2;
3251
3252                 /*
3253                  * We are protected by i_mmap_sem so we know block cannot go
3254                  * away from under us even though we dropped i_data_sem.
3255                  * Convert extent to written and write zeros there.
3256                  *
3257                  * Note: We may get here even when create == 0.
3258                  */
3259                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits);
3260                 if (IS_ERR(handle)) {
3261                         ret = PTR_ERR(handle);
3262                         goto out;
3263                 }
3264
3265                 err = ext4_map_blocks(handle, inode, &map,
3266                       EXT4_GET_BLOCKS_CONVERT | EXT4_GET_BLOCKS_CREATE_ZERO);
3267                 if (err < 0)
3268                         ret = err;
3269                 err2 = ext4_journal_stop(handle);
3270                 if (err2 < 0 && ret > 0)
3271                         ret = err2;
3272         }
3273 out:
3274         WARN_ON_ONCE(ret == 0 && create);
3275         if (ret > 0) {
3276                 map_bh(bh_result, inode->i_sb, map.m_pblk);
3277                 /*
3278                  * At least for now we have to clear BH_New so that DAX code
3279                  * doesn't attempt to zero blocks again in a racy way.
3280                  */
3281                 map.m_flags &= ~EXT4_MAP_NEW;
3282                 ext4_update_bh_state(bh_result, map.m_flags);
3283                 bh_result->b_size = map.m_len << inode->i_blkbits;
3284                 ret = 0;
3285         }
3286         return ret;
3287 }
3288 #endif
3289
3290 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3291                             ssize_t size, void *private)
3292 {
3293         ext4_io_end_t *io_end = private;
3294
3295         /* if not async direct IO just return */
3296         if (!io_end)
3297                 return 0;
3298
3299         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3300                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3301                   io_end, io_end->inode->i_ino, iocb, offset, size);
3302
3303         /*
3304          * Error during AIO DIO. We cannot convert unwritten extents as the
3305          * data was not written. Just clear the unwritten flag and drop io_end.
3306          */
3307         if (size <= 0) {
3308                 ext4_clear_io_unwritten_flag(io_end);
3309                 size = 0;
3310         }
3311         io_end->offset = offset;
3312         io_end->size = size;
3313         ext4_put_io_end(io_end);
3314
3315         return 0;
3316 }
3317
3318 /*
3319  * For ext4 extent files, ext4 will do direct-io write to holes,
3320  * preallocated extents, and those write extend the file, no need to
3321  * fall back to buffered IO.
3322  *
3323  * For holes, we fallocate those blocks, mark them as unwritten
3324  * If those blocks were preallocated, we mark sure they are split, but
3325  * still keep the range to write as unwritten.
3326  *
3327  * The unwritten extents will be converted to written when DIO is completed.
3328  * For async direct IO, since the IO may still pending when return, we
3329  * set up an end_io call back function, which will do the conversion
3330  * when async direct IO completed.
3331  *
3332  * If the O_DIRECT write will extend the file then add this inode to the
3333  * orphan list.  So recovery will truncate it back to the original size
3334  * if the machine crashes during the write.
3335  *
3336  */
3337 static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3338 {
3339         struct file *file = iocb->ki_filp;
3340         struct inode *inode = file->f_mapping->host;
3341         ssize_t ret;
3342         loff_t offset = iocb->ki_pos;
3343         size_t count = iov_iter_count(iter);
3344         int overwrite = 0;
3345         get_block_t *get_block_func = NULL;
3346         int dio_flags = 0;
3347         loff_t final_size = offset + count;
3348
3349         /* Use the old path for reads and writes beyond i_size. */
3350         if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3351                 return ext4_ind_direct_IO(iocb, iter);
3352
3353         BUG_ON(iocb->private == NULL);
3354
3355         /*
3356          * Make all waiters for direct IO properly wait also for extent
3357          * conversion. This also disallows race between truncate() and
3358          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3359          */
3360         if (iov_iter_rw(iter) == WRITE)
3361                 inode_dio_begin(inode);
3362
3363         /* If we do a overwrite dio, i_mutex locking can be released */
3364         overwrite = *((int *)iocb->private);
3365
3366         if (overwrite)
3367                 inode_unlock(inode);
3368
3369         /*
3370          * We could direct write to holes and fallocate.
3371          *
3372          * Allocated blocks to fill the hole are marked as unwritten to prevent
3373          * parallel buffered read to expose the stale data before DIO complete
3374          * the data IO.
3375          *
3376          * As to previously fallocated extents, ext4 get_block will just simply
3377          * mark the buffer mapped but still keep the extents unwritten.
3378          *
3379          * For non AIO case, we will convert those unwritten extents to written
3380          * after return back from blockdev_direct_IO. That way we save us from
3381          * allocating io_end structure and also the overhead of offloading
3382          * the extent convertion to a workqueue.
3383          *
3384          * For async DIO, the conversion needs to be deferred when the
3385          * IO is completed. The ext4 end_io callback function will be
3386          * called to take care of the conversion work.  Here for async
3387          * case, we allocate an io_end structure to hook to the iocb.
3388          */
3389         iocb->private = NULL;
3390         if (overwrite)
3391                 get_block_func = ext4_dio_get_block_overwrite;
3392         else if (is_sync_kiocb(iocb)) {
3393                 get_block_func = ext4_dio_get_block_unwritten_sync;
3394                 dio_flags = DIO_LOCKING;
3395         } else {
3396                 get_block_func = ext4_dio_get_block_unwritten_async;
3397                 dio_flags = DIO_LOCKING;
3398         }
3399 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3400         BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3401 #endif
3402         if (IS_DAX(inode))
3403                 ret = dax_do_io(iocb, inode, iter, get_block_func,
3404                                 ext4_end_io_dio, dio_flags);
3405         else
3406                 ret = __blockdev_direct_IO(iocb, inode,
3407                                            inode->i_sb->s_bdev, iter,
3408                                            get_block_func,
3409                                            ext4_end_io_dio, NULL, dio_flags);
3410
3411         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3412                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3413                 int err;
3414                 /*
3415                  * for non AIO case, since the IO is already
3416                  * completed, we could do the conversion right here
3417                  */
3418                 err = ext4_convert_unwritten_extents(NULL, inode,
3419                                                      offset, ret);
3420                 if (err < 0)
3421                         ret = err;
3422                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3423         }
3424
3425         if (iov_iter_rw(iter) == WRITE)
3426                 inode_dio_end(inode);
3427         /* take i_mutex locking again if we do a ovewrite dio */
3428         if (overwrite)
3429                 inode_lock(inode);
3430
3431         return ret;
3432 }
3433
3434 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3435 {
3436         struct file *file = iocb->ki_filp;
3437         struct inode *inode = file->f_mapping->host;
3438         size_t count = iov_iter_count(iter);
3439         loff_t offset = iocb->ki_pos;
3440         ssize_t ret;
3441
3442 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3443         if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3444                 return 0;
3445 #endif
3446
3447         /*
3448          * If we are doing data journalling we don't support O_DIRECT
3449          */
3450         if (ext4_should_journal_data(inode))
3451                 return 0;
3452
3453         /* Let buffer I/O handle the inline data case. */
3454         if (ext4_has_inline_data(inode))
3455                 return 0;
3456
3457         trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3458         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3459                 ret = ext4_ext_direct_IO(iocb, iter);
3460         else
3461                 ret = ext4_ind_direct_IO(iocb, iter);
3462         trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3463         return ret;
3464 }
3465
3466 /*
3467  * Pages can be marked dirty completely asynchronously from ext4's journalling
3468  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3469  * much here because ->set_page_dirty is called under VFS locks.  The page is
3470  * not necessarily locked.
3471  *
3472  * We cannot just dirty the page and leave attached buffers clean, because the
3473  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3474  * or jbddirty because all the journalling code will explode.
3475  *
3476  * So what we do is to mark the page "pending dirty" and next time writepage
3477  * is called, propagate that into the buffers appropriately.
3478  */
3479 static int ext4_journalled_set_page_dirty(struct page *page)
3480 {
3481         SetPageChecked(page);
3482         return __set_page_dirty_nobuffers(page);
3483 }
3484
3485 static const struct address_space_operations ext4_aops = {
3486         .readpage               = ext4_readpage,
3487         .readpages              = ext4_readpages,
3488         .writepage              = ext4_writepage,
3489         .writepages             = ext4_writepages,
3490         .write_begin            = ext4_write_begin,
3491         .write_end              = ext4_write_end,
3492         .bmap                   = ext4_bmap,
3493         .invalidatepage         = ext4_invalidatepage,
3494         .releasepage            = ext4_releasepage,
3495         .direct_IO              = ext4_direct_IO,
3496         .migratepage            = buffer_migrate_page,
3497         .is_partially_uptodate  = block_is_partially_uptodate,
3498         .error_remove_page      = generic_error_remove_page,
3499 };
3500
3501 static const struct address_space_operations ext4_journalled_aops = {
3502         .readpage               = ext4_readpage,
3503         .readpages              = ext4_readpages,
3504         .writepage              = ext4_writepage,
3505         .writepages             = ext4_writepages,
3506         .write_begin            = ext4_write_begin,
3507         .write_end              = ext4_journalled_write_end,
3508         .set_page_dirty         = ext4_journalled_set_page_dirty,
3509         .bmap                   = ext4_bmap,
3510         .invalidatepage         = ext4_journalled_invalidatepage,
3511         .releasepage            = ext4_releasepage,
3512         .direct_IO              = ext4_direct_IO,
3513         .is_partially_uptodate  = block_is_partially_uptodate,
3514         .error_remove_page      = generic_error_remove_page,
3515 };
3516
3517 static const struct address_space_operations ext4_da_aops = {
3518         .readpage               = ext4_readpage,
3519         .readpages              = ext4_readpages,
3520         .writepage              = ext4_writepage,
3521         .writepages             = ext4_writepages,
3522         .write_begin            = ext4_da_write_begin,
3523         .write_end              = ext4_da_write_end,
3524         .bmap                   = ext4_bmap,
3525         .invalidatepage         = ext4_da_invalidatepage,
3526         .releasepage            = ext4_releasepage,
3527         .direct_IO              = ext4_direct_IO,
3528         .migratepage            = buffer_migrate_page,
3529         .is_partially_uptodate  = block_is_partially_uptodate,
3530         .error_remove_page      = generic_error_remove_page,
3531 };
3532
3533 void ext4_set_aops(struct inode *inode)
3534 {
3535         switch (ext4_inode_journal_mode(inode)) {
3536         case EXT4_INODE_ORDERED_DATA_MODE:
3537                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3538                 break;
3539         case EXT4_INODE_WRITEBACK_DATA_MODE:
3540                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3541                 break;
3542         case EXT4_INODE_JOURNAL_DATA_MODE:
3543                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3544                 return;
3545         default:
3546                 BUG();
3547         }
3548         if (test_opt(inode->i_sb, DELALLOC))
3549                 inode->i_mapping->a_ops = &ext4_da_aops;
3550         else
3551                 inode->i_mapping->a_ops = &ext4_aops;
3552 }
3553
3554 static int __ext4_block_zero_page_range(handle_t *handle,
3555                 struct address_space *mapping, loff_t from, loff_t length)
3556 {
3557         ext4_fsblk_t index = from >> PAGE_SHIFT;
3558         unsigned offset = from & (PAGE_SIZE-1);
3559         unsigned blocksize, pos;
3560         ext4_lblk_t iblock;
3561         struct inode *inode = mapping->host;
3562         struct buffer_head *bh;
3563         struct page *page;
3564         int err = 0;
3565
3566         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3567                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3568         if (!page)
3569                 return -ENOMEM;
3570
3571         blocksize = inode->i_sb->s_blocksize;
3572
3573         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3574
3575         if (!page_has_buffers(page))
3576                 create_empty_buffers(page, blocksize, 0);
3577
3578         /* Find the buffer that contains "offset" */
3579         bh = page_buffers(page);
3580         pos = blocksize;
3581         while (offset >= pos) {
3582                 bh = bh->b_this_page;
3583                 iblock++;
3584                 pos += blocksize;
3585         }
3586         if (buffer_freed(bh)) {
3587                 BUFFER_TRACE(bh, "freed: skip");
3588                 goto unlock;
3589         }
3590         if (!buffer_mapped(bh)) {
3591                 BUFFER_TRACE(bh, "unmapped");
3592                 ext4_get_block(inode, iblock, bh, 0);
3593                 /* unmapped? It's a hole - nothing to do */
3594                 if (!buffer_mapped(bh)) {
3595                         BUFFER_TRACE(bh, "still unmapped");
3596                         goto unlock;
3597                 }
3598         }
3599
3600         /* Ok, it's mapped. Make sure it's up-to-date */
3601         if (PageUptodate(page))
3602                 set_buffer_uptodate(bh);
3603
3604         if (!buffer_uptodate(bh)) {
3605                 err = -EIO;
3606                 ll_rw_block(READ, 1, &bh);
3607                 wait_on_buffer(bh);
3608                 /* Uhhuh. Read error. Complain and punt. */
3609                 if (!buffer_uptodate(bh))
3610                         goto unlock;
3611                 if (S_ISREG(inode->i_mode) &&
3612                     ext4_encrypted_inode(inode)) {
3613                         /* We expect the key to be set. */
3614                         BUG_ON(!ext4_has_encryption_key(inode));
3615                         BUG_ON(blocksize != PAGE_SIZE);
3616                         WARN_ON_ONCE(ext4_decrypt(page));
3617                 }
3618         }
3619         if (ext4_should_journal_data(inode)) {
3620                 BUFFER_TRACE(bh, "get write access");
3621                 err = ext4_journal_get_write_access(handle, bh);
3622                 if (err)
3623                         goto unlock;
3624         }
3625         zero_user(page, offset, length);
3626         BUFFER_TRACE(bh, "zeroed end of block");
3627
3628         if (ext4_should_journal_data(inode)) {
3629                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3630         } else {
3631                 err = 0;
3632                 mark_buffer_dirty(bh);
3633                 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3634                         err = ext4_jbd2_file_inode(handle, inode);
3635         }
3636
3637 unlock:
3638         unlock_page(page);
3639         put_page(page);
3640         return err;
3641 }
3642
3643 /*
3644  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3645  * starting from file offset 'from'.  The range to be zero'd must
3646  * be contained with in one block.  If the specified range exceeds
3647  * the end of the block it will be shortened to end of the block
3648  * that cooresponds to 'from'
3649  */
3650 static int ext4_block_zero_page_range(handle_t *handle,
3651                 struct address_space *mapping, loff_t from, loff_t length)
3652 {
3653         struct inode *inode = mapping->host;
3654         unsigned offset = from & (PAGE_SIZE-1);
3655         unsigned blocksize = inode->i_sb->s_blocksize;
3656         unsigned max = blocksize - (offset & (blocksize - 1));
3657
3658         /*
3659          * correct length if it does not fall between
3660          * 'from' and the end of the block
3661          */
3662         if (length > max || length < 0)
3663                 length = max;
3664
3665         if (IS_DAX(inode))
3666                 return dax_zero_page_range(inode, from, length, ext4_get_block);
3667         return __ext4_block_zero_page_range(handle, mapping, from, length);
3668 }
3669
3670 /*
3671  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3672  * up to the end of the block which corresponds to `from'.
3673  * This required during truncate. We need to physically zero the tail end
3674  * of that block so it doesn't yield old data if the file is later grown.
3675  */
3676 static int ext4_block_truncate_page(handle_t *handle,
3677                 struct address_space *mapping, loff_t from)
3678 {
3679         unsigned offset = from & (PAGE_SIZE-1);
3680         unsigned length;
3681         unsigned blocksize;
3682         struct inode *inode = mapping->host;
3683
3684         blocksize = inode->i_sb->s_blocksize;
3685         length = blocksize - (offset & (blocksize - 1));
3686
3687         return ext4_block_zero_page_range(handle, mapping, from, length);
3688 }
3689
3690 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3691                              loff_t lstart, loff_t length)
3692 {
3693         struct super_block *sb = inode->i_sb;
3694         struct address_space *mapping = inode->i_mapping;
3695         unsigned partial_start, partial_end;
3696         ext4_fsblk_t start, end;
3697         loff_t byte_end = (lstart + length - 1);
3698         int err = 0;
3699
3700         partial_start = lstart & (sb->s_blocksize - 1);
3701         partial_end = byte_end & (sb->s_blocksize - 1);
3702
3703         start = lstart >> sb->s_blocksize_bits;
3704         end = byte_end >> sb->s_blocksize_bits;
3705
3706         /* Handle partial zero within the single block */
3707         if (start == end &&
3708             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3709                 err = ext4_block_zero_page_range(handle, mapping,
3710                                                  lstart, length);
3711                 return err;
3712         }
3713         /* Handle partial zero out on the start of the range */
3714         if (partial_start) {
3715                 err = ext4_block_zero_page_range(handle, mapping,
3716                                                  lstart, sb->s_blocksize);
3717                 if (err)
3718                         return err;
3719         }
3720         /* Handle partial zero out on the end of the range */
3721         if (partial_end != sb->s_blocksize - 1)
3722                 err = ext4_block_zero_page_range(handle, mapping,
3723                                                  byte_end - partial_end,
3724                                                  partial_end + 1);
3725         return err;
3726 }
3727
3728 int ext4_can_truncate(struct inode *inode)
3729 {
3730         if (S_ISREG(inode->i_mode))
3731                 return 1;
3732         if (S_ISDIR(inode->i_mode))
3733                 return 1;
3734         if (S_ISLNK(inode->i_mode))
3735                 return !ext4_inode_is_fast_symlink(inode);
3736         return 0;
3737 }
3738
3739 /*
3740  * We have to make sure i_disksize gets properly updated before we truncate
3741  * page cache due to hole punching or zero range. Otherwise i_disksize update
3742  * can get lost as it may have been postponed to submission of writeback but
3743  * that will never happen after we truncate page cache.
3744  */
3745 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3746                                       loff_t len)
3747 {
3748         handle_t *handle;
3749         loff_t size = i_size_read(inode);
3750
3751         WARN_ON(!inode_is_locked(inode));
3752         if (offset > size || offset + len < size)
3753                 return 0;
3754
3755         if (EXT4_I(inode)->i_disksize >= size)
3756                 return 0;
3757
3758         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3759         if (IS_ERR(handle))
3760                 return PTR_ERR(handle);
3761         ext4_update_i_disksize(inode, size);
3762         ext4_mark_inode_dirty(handle, inode);
3763         ext4_journal_stop(handle);
3764
3765         return 0;
3766 }
3767
3768 /*
3769  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3770  * associated with the given offset and length
3771  *
3772  * @inode:  File inode
3773  * @offset: The offset where the hole will begin
3774  * @len:    The length of the hole
3775  *
3776  * Returns: 0 on success or negative on failure
3777  */
3778
3779 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3780 {
3781         struct super_block *sb = inode->i_sb;
3782         ext4_lblk_t first_block, stop_block;
3783         struct address_space *mapping = inode->i_mapping;
3784         loff_t first_block_offset, last_block_offset;
3785         handle_t *handle;
3786         unsigned int credits;
3787         int ret = 0;
3788
3789         if (!S_ISREG(inode->i_mode))
3790                 return -EOPNOTSUPP;
3791
3792         trace_ext4_punch_hole(inode, offset, length, 0);
3793
3794         /*
3795          * Write out all dirty pages to avoid race conditions
3796          * Then release them.
3797          */
3798         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3799                 ret = filemap_write_and_wait_range(mapping, offset,
3800                                                    offset + length - 1);
3801                 if (ret)
3802                         return ret;
3803         }
3804
3805         inode_lock(inode);
3806
3807         /* No need to punch hole beyond i_size */
3808         if (offset >= inode->i_size)
3809                 goto out_mutex;
3810
3811         /*
3812          * If the hole extends beyond i_size, set the hole
3813          * to end after the page that contains i_size
3814          */
3815         if (offset + length > inode->i_size) {
3816                 length = inode->i_size +
3817                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3818                    offset;
3819         }
3820
3821         if (offset & (sb->s_blocksize - 1) ||
3822             (offset + length) & (sb->s_blocksize - 1)) {
3823                 /*
3824                  * Attach jinode to inode for jbd2 if we do any zeroing of
3825                  * partial block
3826                  */
3827                 ret = ext4_inode_attach_jinode(inode);
3828                 if (ret < 0)
3829                         goto out_mutex;
3830
3831         }
3832
3833         /* Wait all existing dio workers, newcomers will block on i_mutex */
3834         ext4_inode_block_unlocked_dio(inode);
3835         inode_dio_wait(inode);
3836
3837         /*
3838          * Prevent page faults from reinstantiating pages we have released from
3839          * page cache.
3840          */
3841         down_write(&EXT4_I(inode)->i_mmap_sem);
3842         first_block_offset = round_up(offset, sb->s_blocksize);
3843         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3844
3845         /* Now release the pages and zero block aligned part of pages*/
3846         if (last_block_offset > first_block_offset) {
3847                 ret = ext4_update_disksize_before_punch(inode, offset, length);
3848                 if (ret)
3849                         goto out_dio;
3850                 truncate_pagecache_range(inode, first_block_offset,
3851                                          last_block_offset);
3852         }
3853
3854         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3855                 credits = ext4_writepage_trans_blocks(inode);
3856         else
3857                 credits = ext4_blocks_for_truncate(inode);
3858         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3859         if (IS_ERR(handle)) {
3860                 ret = PTR_ERR(handle);
3861                 ext4_std_error(sb, ret);
3862                 goto out_dio;
3863         }
3864
3865         ret = ext4_zero_partial_blocks(handle, inode, offset,
3866                                        length);
3867         if (ret)
3868                 goto out_stop;
3869
3870         first_block = (offset + sb->s_blocksize - 1) >>
3871                 EXT4_BLOCK_SIZE_BITS(sb);
3872         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3873
3874         /* If there are no blocks to remove, return now */
3875         if (first_block >= stop_block)
3876                 goto out_stop;
3877
3878         down_write(&EXT4_I(inode)->i_data_sem);
3879         ext4_discard_preallocations(inode);
3880
3881         ret = ext4_es_remove_extent(inode, first_block,
3882                                     stop_block - first_block);
3883         if (ret) {
3884                 up_write(&EXT4_I(inode)->i_data_sem);
3885                 goto out_stop;
3886         }
3887
3888         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3889                 ret = ext4_ext_remove_space(inode, first_block,
3890                                             stop_block - 1);
3891         else
3892                 ret = ext4_ind_remove_space(handle, inode, first_block,
3893                                             stop_block);
3894
3895         up_write(&EXT4_I(inode)->i_data_sem);
3896         if (IS_SYNC(inode))
3897                 ext4_handle_sync(handle);
3898
3899         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3900         ext4_mark_inode_dirty(handle, inode);
3901 out_stop:
3902         ext4_journal_stop(handle);
3903 out_dio:
3904         up_write(&EXT4_I(inode)->i_mmap_sem);
3905         ext4_inode_resume_unlocked_dio(inode);
3906 out_mutex:
3907         inode_unlock(inode);
3908         return ret;
3909 }
3910
3911 int ext4_inode_attach_jinode(struct inode *inode)
3912 {
3913         struct ext4_inode_info *ei = EXT4_I(inode);
3914         struct jbd2_inode *jinode;
3915
3916         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3917                 return 0;
3918
3919         jinode = jbd2_alloc_inode(GFP_KERNEL);
3920         spin_lock(&inode->i_lock);
3921         if (!ei->jinode) {
3922                 if (!jinode) {
3923                         spin_unlock(&inode->i_lock);
3924                         return -ENOMEM;
3925                 }
3926                 ei->jinode = jinode;
3927                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3928                 jinode = NULL;
3929         }
3930         spin_unlock(&inode->i_lock);
3931         if (unlikely(jinode != NULL))
3932                 jbd2_free_inode(jinode);
3933         return 0;
3934 }
3935
3936 /*
3937  * ext4_truncate()
3938  *
3939  * We block out ext4_get_block() block instantiations across the entire
3940  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3941  * simultaneously on behalf of the same inode.
3942  *
3943  * As we work through the truncate and commit bits of it to the journal there
3944  * is one core, guiding principle: the file's tree must always be consistent on
3945  * disk.  We must be able to restart the truncate after a crash.
3946  *
3947  * The file's tree may be transiently inconsistent in memory (although it
3948  * probably isn't), but whenever we close off and commit a journal transaction,
3949  * the contents of (the filesystem + the journal) must be consistent and
3950  * restartable.  It's pretty simple, really: bottom up, right to left (although
3951  * left-to-right works OK too).
3952  *
3953  * Note that at recovery time, journal replay occurs *before* the restart of
3954  * truncate against the orphan inode list.
3955  *
3956  * The committed inode has the new, desired i_size (which is the same as
3957  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3958  * that this inode's truncate did not complete and it will again call
3959  * ext4_truncate() to have another go.  So there will be instantiated blocks
3960  * to the right of the truncation point in a crashed ext4 filesystem.  But
3961  * that's fine - as long as they are linked from the inode, the post-crash
3962  * ext4_truncate() run will find them and release them.
3963  */
3964 void ext4_truncate(struct inode *inode)
3965 {
3966         struct ext4_inode_info *ei = EXT4_I(inode);
3967         unsigned int credits;
3968         handle_t *handle;
3969         struct address_space *mapping = inode->i_mapping;
3970
3971         /*
3972          * There is a possibility that we're either freeing the inode
3973          * or it's a completely new inode. In those cases we might not
3974          * have i_mutex locked because it's not necessary.
3975          */
3976         if (!(inode->i_state & (I_NEW|I_FREEING)))
3977                 WARN_ON(!inode_is_locked(inode));
3978         trace_ext4_truncate_enter(inode);
3979
3980         if (!ext4_can_truncate(inode))
3981                 return;
3982
3983         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3984
3985         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3986                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3987
3988         if (ext4_has_inline_data(inode)) {
3989                 int has_inline = 1;
3990
3991                 ext4_inline_data_truncate(inode, &has_inline);
3992                 if (has_inline)
3993                         return;
3994         }
3995
3996         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3997         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3998                 if (ext4_inode_attach_jinode(inode) < 0)
3999                         return;
4000         }
4001
4002         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4003                 credits = ext4_writepage_trans_blocks(inode);
4004         else
4005                 credits = ext4_blocks_for_truncate(inode);
4006
4007         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4008         if (IS_ERR(handle)) {
4009                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
4010                 return;
4011         }
4012
4013         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4014                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4015
4016         /*
4017          * We add the inode to the orphan list, so that if this
4018          * truncate spans multiple transactions, and we crash, we will
4019          * resume the truncate when the filesystem recovers.  It also
4020          * marks the inode dirty, to catch the new size.
4021          *
4022          * Implication: the file must always be in a sane, consistent
4023          * truncatable state while each transaction commits.
4024          */
4025         if (ext4_orphan_add(handle, inode))
4026                 goto out_stop;
4027
4028         down_write(&EXT4_I(inode)->i_data_sem);
4029
4030         ext4_discard_preallocations(inode);
4031
4032         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4033                 ext4_ext_truncate(handle, inode);
4034         else
4035                 ext4_ind_truncate(handle, inode);
4036
4037         up_write(&ei->i_data_sem);
4038
4039         if (IS_SYNC(inode))
4040                 ext4_handle_sync(handle);
4041
4042 out_stop:
4043         /*
4044          * If this was a simple ftruncate() and the file will remain alive,
4045          * then we need to clear up the orphan record which we created above.
4046          * However, if this was a real unlink then we were called by
4047          * ext4_evict_inode(), and we allow that function to clean up the
4048          * orphan info for us.
4049          */
4050         if (inode->i_nlink)
4051                 ext4_orphan_del(handle, inode);
4052
4053         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4054         ext4_mark_inode_dirty(handle, inode);
4055         ext4_journal_stop(handle);
4056
4057         trace_ext4_truncate_exit(inode);
4058 }
4059
4060 /*
4061  * ext4_get_inode_loc returns with an extra refcount against the inode's
4062  * underlying buffer_head on success. If 'in_mem' is true, we have all
4063  * data in memory that is needed to recreate the on-disk version of this
4064  * inode.
4065  */
4066 static int __ext4_get_inode_loc(struct inode *inode,
4067                                 struct ext4_iloc *iloc, int in_mem)
4068 {
4069         struct ext4_group_desc  *gdp;
4070         struct buffer_head      *bh;
4071         struct super_block      *sb = inode->i_sb;
4072         ext4_fsblk_t            block;
4073         int                     inodes_per_block, inode_offset;
4074
4075         iloc->bh = NULL;
4076         if (!ext4_valid_inum(sb, inode->i_ino))
4077                 return -EFSCORRUPTED;
4078
4079         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4080         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4081         if (!gdp)
4082                 return -EIO;
4083
4084         /*
4085          * Figure out the offset within the block group inode table
4086          */
4087         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4088         inode_offset = ((inode->i_ino - 1) %
4089                         EXT4_INODES_PER_GROUP(sb));
4090         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4091         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4092
4093         bh = sb_getblk(sb, block);
4094         if (unlikely(!bh))
4095                 return -ENOMEM;
4096         if (!buffer_uptodate(bh)) {
4097                 lock_buffer(bh);
4098
4099                 /*
4100                  * If the buffer has the write error flag, we have failed
4101                  * to write out another inode in the same block.  In this
4102                  * case, we don't have to read the block because we may
4103                  * read the old inode data successfully.
4104                  */
4105                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4106                         set_buffer_uptodate(bh);
4107
4108                 if (buffer_uptodate(bh)) {
4109                         /* someone brought it uptodate while we waited */
4110                         unlock_buffer(bh);
4111                         goto has_buffer;
4112                 }
4113
4114                 /*
4115                  * If we have all information of the inode in memory and this
4116                  * is the only valid inode in the block, we need not read the
4117                  * block.
4118                  */
4119                 if (in_mem) {
4120                         struct buffer_head *bitmap_bh;
4121                         int i, start;
4122
4123                         start = inode_offset & ~(inodes_per_block - 1);
4124
4125                         /* Is the inode bitmap in cache? */
4126                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4127                         if (unlikely(!bitmap_bh))
4128                                 goto make_io;
4129
4130                         /*
4131                          * If the inode bitmap isn't in cache then the
4132                          * optimisation may end up performing two reads instead
4133                          * of one, so skip it.
4134                          */
4135                         if (!buffer_uptodate(bitmap_bh)) {
4136                                 brelse(bitmap_bh);
4137                                 goto make_io;
4138                         }
4139                         for (i = start; i < start + inodes_per_block; i++) {
4140                                 if (i == inode_offset)
4141                                         continue;
4142                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4143                                         break;
4144                         }
4145                         brelse(bitmap_bh);
4146                         if (i == start + inodes_per_block) {
4147                                 /* all other inodes are free, so skip I/O */
4148                                 memset(bh->b_data, 0, bh->b_size);
4149                                 set_buffer_uptodate(bh);
4150                                 unlock_buffer(bh);
4151                                 goto has_buffer;
4152                         }
4153                 }
4154
4155 make_io:
4156                 /*
4157                  * If we need to do any I/O, try to pre-readahead extra
4158                  * blocks from the inode table.
4159                  */
4160                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4161                         ext4_fsblk_t b, end, table;
4162                         unsigned num;
4163                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4164
4165                         table = ext4_inode_table(sb, gdp);
4166                         /* s_inode_readahead_blks is always a power of 2 */
4167                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4168                         if (table > b)
4169                                 b = table;
4170                         end = b + ra_blks;
4171                         num = EXT4_INODES_PER_GROUP(sb);
4172                         if (ext4_has_group_desc_csum(sb))
4173                                 num -= ext4_itable_unused_count(sb, gdp);
4174                         table += num / inodes_per_block;
4175                         if (end > table)
4176                                 end = table;
4177                         while (b <= end)
4178                                 sb_breadahead(sb, b++);
4179                 }
4180
4181                 /*
4182                  * There are other valid inodes in the buffer, this inode
4183                  * has in-inode xattrs, or we don't have this inode in memory.
4184                  * Read the block from disk.
4185                  */
4186                 trace_ext4_load_inode(inode);
4187                 get_bh(bh);
4188                 bh->b_end_io = end_buffer_read_sync;
4189                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
4190                 wait_on_buffer(bh);
4191                 if (!buffer_uptodate(bh)) {
4192                         EXT4_ERROR_INODE_BLOCK(inode, block,
4193                                                "unable to read itable block");
4194                         brelse(bh);
4195                         return -EIO;
4196                 }
4197         }
4198 has_buffer:
4199         iloc->bh = bh;
4200         return 0;
4201 }
4202
4203 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4204 {
4205         /* We have all inode data except xattrs in memory here. */
4206         return __ext4_get_inode_loc(inode, iloc,
4207                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4208 }
4209
4210 void ext4_set_inode_flags(struct inode *inode)
4211 {
4212         unsigned int flags = EXT4_I(inode)->i_flags;
4213         unsigned int new_fl = 0;
4214
4215         if (flags & EXT4_SYNC_FL)
4216                 new_fl |= S_SYNC;
4217         if (flags & EXT4_APPEND_FL)
4218                 new_fl |= S_APPEND;
4219         if (flags & EXT4_IMMUTABLE_FL)
4220                 new_fl |= S_IMMUTABLE;
4221         if (flags & EXT4_NOATIME_FL)
4222                 new_fl |= S_NOATIME;
4223         if (flags & EXT4_DIRSYNC_FL)
4224                 new_fl |= S_DIRSYNC;
4225         if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
4226                 new_fl |= S_DAX;
4227         inode_set_flags(inode, new_fl,
4228                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4229 }
4230
4231 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4232 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4233 {
4234         unsigned int vfs_fl;
4235         unsigned long old_fl, new_fl;
4236
4237         do {
4238                 vfs_fl = ei->vfs_inode.i_flags;
4239                 old_fl = ei->i_flags;
4240                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4241                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4242                                 EXT4_DIRSYNC_FL);
4243                 if (vfs_fl & S_SYNC)
4244                         new_fl |= EXT4_SYNC_FL;
4245                 if (vfs_fl & S_APPEND)
4246                         new_fl |= EXT4_APPEND_FL;
4247                 if (vfs_fl & S_IMMUTABLE)
4248                         new_fl |= EXT4_IMMUTABLE_FL;
4249                 if (vfs_fl & S_NOATIME)
4250                         new_fl |= EXT4_NOATIME_FL;
4251                 if (vfs_fl & S_DIRSYNC)
4252                         new_fl |= EXT4_DIRSYNC_FL;
4253         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4254 }
4255
4256 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4257                                   struct ext4_inode_info *ei)
4258 {
4259         blkcnt_t i_blocks ;
4260         struct inode *inode = &(ei->vfs_inode);
4261         struct super_block *sb = inode->i_sb;
4262
4263         if (ext4_has_feature_huge_file(sb)) {
4264                 /* we are using combined 48 bit field */
4265                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4266                                         le32_to_cpu(raw_inode->i_blocks_lo);
4267                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4268                         /* i_blocks represent file system block size */
4269                         return i_blocks  << (inode->i_blkbits - 9);
4270                 } else {
4271                         return i_blocks;
4272                 }
4273         } else {
4274                 return le32_to_cpu(raw_inode->i_blocks_lo);
4275         }
4276 }
4277
4278 static inline void ext4_iget_extra_inode(struct inode *inode,
4279                                          struct ext4_inode *raw_inode,
4280                                          struct ext4_inode_info *ei)
4281 {
4282         __le32 *magic = (void *)raw_inode +
4283                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4284         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4285                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4286                 ext4_find_inline_data_nolock(inode);
4287         } else
4288                 EXT4_I(inode)->i_inline_off = 0;
4289 }
4290
4291 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4292 {
4293         if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, EXT4_FEATURE_RO_COMPAT_PROJECT))
4294                 return -EOPNOTSUPP;
4295         *projid = EXT4_I(inode)->i_projid;
4296         return 0;
4297 }
4298
4299 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4300 {
4301         struct ext4_iloc iloc;
4302         struct ext4_inode *raw_inode;
4303         struct ext4_inode_info *ei;
4304         struct inode *inode;
4305         journal_t *journal = EXT4_SB(sb)->s_journal;
4306         long ret;
4307         int block;
4308         uid_t i_uid;
4309         gid_t i_gid;
4310         projid_t i_projid;
4311
4312         inode = iget_locked(sb, ino);
4313         if (!inode)
4314                 return ERR_PTR(-ENOMEM);
4315         if (!(inode->i_state & I_NEW))
4316                 return inode;
4317
4318         ei = EXT4_I(inode);
4319         iloc.bh = NULL;
4320
4321         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4322         if (ret < 0)
4323                 goto bad_inode;
4324         raw_inode = ext4_raw_inode(&iloc);
4325
4326         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4327                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4328                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4329                     EXT4_INODE_SIZE(inode->i_sb)) {
4330                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4331                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4332                                 EXT4_INODE_SIZE(inode->i_sb));
4333                         ret = -EFSCORRUPTED;
4334                         goto bad_inode;
4335                 }
4336         } else
4337                 ei->i_extra_isize = 0;
4338
4339         /* Precompute checksum seed for inode metadata */
4340         if (ext4_has_metadata_csum(sb)) {
4341                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4342                 __u32 csum;
4343                 __le32 inum = cpu_to_le32(inode->i_ino);
4344                 __le32 gen = raw_inode->i_generation;
4345                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4346                                    sizeof(inum));
4347                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4348                                               sizeof(gen));
4349         }
4350
4351         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4352                 EXT4_ERROR_INODE(inode, "checksum invalid");
4353                 ret = -EFSBADCRC;
4354                 goto bad_inode;
4355         }
4356
4357         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4358         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4359         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4360         if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4361             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4362             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4363                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4364         else
4365                 i_projid = EXT4_DEF_PROJID;
4366
4367         if (!(test_opt(inode->i_sb, NO_UID32))) {
4368                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4369                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4370         }
4371         i_uid_write(inode, i_uid);
4372         i_gid_write(inode, i_gid);
4373         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4374         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4375
4376         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4377         ei->i_inline_off = 0;
4378         ei->i_dir_start_lookup = 0;
4379         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4380         /* We now have enough fields to check if the inode was active or not.
4381          * This is needed because nfsd might try to access dead inodes
4382          * the test is that same one that e2fsck uses
4383          * NeilBrown 1999oct15
4384          */
4385         if (inode->i_nlink == 0) {
4386                 if ((inode->i_mode == 0 ||
4387                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4388                     ino != EXT4_BOOT_LOADER_INO) {
4389                         /* this inode is deleted */
4390                         ret = -ESTALE;
4391                         goto bad_inode;
4392                 }
4393                 /* The only unlinked inodes we let through here have
4394                  * valid i_mode and are being read by the orphan
4395                  * recovery code: that's fine, we're about to complete
4396                  * the process of deleting those.
4397                  * OR it is the EXT4_BOOT_LOADER_INO which is
4398                  * not initialized on a new filesystem. */
4399         }
4400         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4401         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4402         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4403         if (ext4_has_feature_64bit(sb))
4404                 ei->i_file_acl |=
4405                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4406         inode->i_size = ext4_isize(raw_inode);
4407         ei->i_disksize = inode->i_size;
4408 #ifdef CONFIG_QUOTA
4409         ei->i_reserved_quota = 0;
4410 #endif
4411         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4412         ei->i_block_group = iloc.block_group;
4413         ei->i_last_alloc_group = ~0;
4414         /*
4415          * NOTE! The in-memory inode i_data array is in little-endian order
4416          * even on big-endian machines: we do NOT byteswap the block numbers!
4417          */
4418         for (block = 0; block < EXT4_N_BLOCKS; block++)
4419                 ei->i_data[block] = raw_inode->i_block[block];
4420         INIT_LIST_HEAD(&ei->i_orphan);
4421
4422         /*
4423          * Set transaction id's of transactions that have to be committed
4424          * to finish f[data]sync. We set them to currently running transaction
4425          * as we cannot be sure that the inode or some of its metadata isn't
4426          * part of the transaction - the inode could have been reclaimed and
4427          * now it is reread from disk.
4428          */
4429         if (journal) {
4430                 transaction_t *transaction;
4431                 tid_t tid;
4432
4433                 read_lock(&journal->j_state_lock);
4434                 if (journal->j_running_transaction)
4435                         transaction = journal->j_running_transaction;
4436                 else
4437                         transaction = journal->j_committing_transaction;
4438                 if (transaction)
4439                         tid = transaction->t_tid;
4440                 else
4441                         tid = journal->j_commit_sequence;
4442                 read_unlock(&journal->j_state_lock);
4443                 ei->i_sync_tid = tid;
4444                 ei->i_datasync_tid = tid;
4445         }
4446
4447         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4448                 if (ei->i_extra_isize == 0) {
4449                         /* The extra space is currently unused. Use it. */
4450                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4451                                             EXT4_GOOD_OLD_INODE_SIZE;
4452                 } else {
4453                         ext4_iget_extra_inode(inode, raw_inode, ei);
4454                 }
4455         }
4456
4457         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4458         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4459         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4460         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4461
4462         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4463                 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4464                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4465                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4466                                 inode->i_version |=
4467                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4468                 }
4469         }
4470
4471         ret = 0;
4472         if (ei->i_file_acl &&
4473             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4474                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4475                                  ei->i_file_acl);
4476                 ret = -EFSCORRUPTED;
4477                 goto bad_inode;
4478         } else if (!ext4_has_inline_data(inode)) {
4479                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4480                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4481                             (S_ISLNK(inode->i_mode) &&
4482                              !ext4_inode_is_fast_symlink(inode))))
4483                                 /* Validate extent which is part of inode */
4484                                 ret = ext4_ext_check_inode(inode);
4485                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4486                            (S_ISLNK(inode->i_mode) &&
4487                             !ext4_inode_is_fast_symlink(inode))) {
4488                         /* Validate block references which are part of inode */
4489                         ret = ext4_ind_check_inode(inode);
4490                 }
4491         }
4492         if (ret)
4493                 goto bad_inode;
4494
4495         if (S_ISREG(inode->i_mode)) {
4496                 inode->i_op = &ext4_file_inode_operations;
4497                 inode->i_fop = &ext4_file_operations;
4498                 ext4_set_aops(inode);
4499         } else if (S_ISDIR(inode->i_mode)) {
4500                 inode->i_op = &ext4_dir_inode_operations;
4501                 inode->i_fop = &ext4_dir_operations;
4502         } else if (S_ISLNK(inode->i_mode)) {
4503                 if (ext4_encrypted_inode(inode)) {
4504                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4505                         ext4_set_aops(inode);
4506                 } else if (ext4_inode_is_fast_symlink(inode)) {
4507                         inode->i_link = (char *)ei->i_data;
4508                         inode->i_op = &ext4_fast_symlink_inode_operations;
4509                         nd_terminate_link(ei->i_data, inode->i_size,
4510                                 sizeof(ei->i_data) - 1);
4511                 } else {
4512                         inode->i_op = &ext4_symlink_inode_operations;
4513                         ext4_set_aops(inode);
4514                 }
4515                 inode_nohighmem(inode);
4516         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4517               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4518                 inode->i_op = &ext4_special_inode_operations;
4519                 if (raw_inode->i_block[0])
4520                         init_special_inode(inode, inode->i_mode,
4521                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4522                 else
4523                         init_special_inode(inode, inode->i_mode,
4524                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4525         } else if (ino == EXT4_BOOT_LOADER_INO) {
4526                 make_bad_inode(inode);
4527         } else {
4528                 ret = -EFSCORRUPTED;
4529                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4530                 goto bad_inode;
4531         }
4532         brelse(iloc.bh);
4533         ext4_set_inode_flags(inode);
4534         unlock_new_inode(inode);
4535         return inode;
4536
4537 bad_inode:
4538         brelse(iloc.bh);
4539         iget_failed(inode);
4540         return ERR_PTR(ret);
4541 }
4542
4543 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4544 {
4545         if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4546                 return ERR_PTR(-EFSCORRUPTED);
4547         return ext4_iget(sb, ino);
4548 }
4549
4550 static int ext4_inode_blocks_set(handle_t *handle,
4551                                 struct ext4_inode *raw_inode,
4552                                 struct ext4_inode_info *ei)
4553 {
4554         struct inode *inode = &(ei->vfs_inode);
4555         u64 i_blocks = inode->i_blocks;
4556         struct super_block *sb = inode->i_sb;
4557
4558         if (i_blocks <= ~0U) {
4559                 /*
4560                  * i_blocks can be represented in a 32 bit variable
4561                  * as multiple of 512 bytes
4562                  */
4563                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4564                 raw_inode->i_blocks_high = 0;
4565                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4566                 return 0;
4567         }
4568         if (!ext4_has_feature_huge_file(sb))
4569                 return -EFBIG;
4570
4571         if (i_blocks <= 0xffffffffffffULL) {
4572                 /*
4573                  * i_blocks can be represented in a 48 bit variable
4574                  * as multiple of 512 bytes
4575                  */
4576                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4577                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4578                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4579         } else {
4580                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4581                 /* i_block is stored in file system block size */
4582                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4583                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4584                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4585         }
4586         return 0;
4587 }
4588
4589 struct other_inode {
4590         unsigned long           orig_ino;
4591         struct ext4_inode       *raw_inode;
4592 };
4593
4594 static int other_inode_match(struct inode * inode, unsigned long ino,
4595                              void *data)
4596 {
4597         struct other_inode *oi = (struct other_inode *) data;
4598
4599         if ((inode->i_ino != ino) ||
4600             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4601                                I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4602             ((inode->i_state & I_DIRTY_TIME) == 0))
4603                 return 0;
4604         spin_lock(&inode->i_lock);
4605         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4606                                 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4607             (inode->i_state & I_DIRTY_TIME)) {
4608                 struct ext4_inode_info  *ei = EXT4_I(inode);
4609
4610                 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4611                 spin_unlock(&inode->i_lock);
4612
4613                 spin_lock(&ei->i_raw_lock);
4614                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4615                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4616                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4617                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4618                 spin_unlock(&ei->i_raw_lock);
4619                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4620                 return -1;
4621         }
4622         spin_unlock(&inode->i_lock);
4623         return -1;
4624 }
4625
4626 /*
4627  * Opportunistically update the other time fields for other inodes in
4628  * the same inode table block.
4629  */
4630 static void ext4_update_other_inodes_time(struct super_block *sb,
4631                                           unsigned long orig_ino, char *buf)
4632 {
4633         struct other_inode oi;
4634         unsigned long ino;
4635         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4636         int inode_size = EXT4_INODE_SIZE(sb);
4637
4638         oi.orig_ino = orig_ino;
4639         /*
4640          * Calculate the first inode in the inode table block.  Inode
4641          * numbers are one-based.  That is, the first inode in a block
4642          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4643          */
4644         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4645         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4646                 if (ino == orig_ino)
4647                         continue;
4648                 oi.raw_inode = (struct ext4_inode *) buf;
4649                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4650         }
4651 }
4652
4653 /*
4654  * Post the struct inode info into an on-disk inode location in the
4655  * buffer-cache.  This gobbles the caller's reference to the
4656  * buffer_head in the inode location struct.
4657  *
4658  * The caller must have write access to iloc->bh.
4659  */
4660 static int ext4_do_update_inode(handle_t *handle,
4661                                 struct inode *inode,
4662                                 struct ext4_iloc *iloc)
4663 {
4664         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4665         struct ext4_inode_info *ei = EXT4_I(inode);
4666         struct buffer_head *bh = iloc->bh;
4667         struct super_block *sb = inode->i_sb;
4668         int err = 0, rc, block;
4669         int need_datasync = 0, set_large_file = 0;
4670         uid_t i_uid;
4671         gid_t i_gid;
4672         projid_t i_projid;
4673
4674         spin_lock(&ei->i_raw_lock);
4675
4676         /* For fields not tracked in the in-memory inode,
4677          * initialise them to zero for new inodes. */
4678         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4679                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4680
4681         ext4_get_inode_flags(ei);
4682         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4683         i_uid = i_uid_read(inode);
4684         i_gid = i_gid_read(inode);
4685         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4686         if (!(test_opt(inode->i_sb, NO_UID32))) {
4687                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4688                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4689 /*
4690  * Fix up interoperability with old kernels. Otherwise, old inodes get
4691  * re-used with the upper 16 bits of the uid/gid intact
4692  */
4693                 if (!ei->i_dtime) {
4694                         raw_inode->i_uid_high =
4695                                 cpu_to_le16(high_16_bits(i_uid));
4696                         raw_inode->i_gid_high =
4697                                 cpu_to_le16(high_16_bits(i_gid));
4698                 } else {
4699                         raw_inode->i_uid_high = 0;
4700                         raw_inode->i_gid_high = 0;
4701                 }
4702         } else {
4703                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4704                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4705                 raw_inode->i_uid_high = 0;
4706                 raw_inode->i_gid_high = 0;
4707         }
4708         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4709
4710         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4711         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4712         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4713         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4714
4715         err = ext4_inode_blocks_set(handle, raw_inode, ei);
4716         if (err) {
4717                 spin_unlock(&ei->i_raw_lock);
4718                 goto out_brelse;
4719         }
4720         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4721         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4722         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4723                 raw_inode->i_file_acl_high =
4724                         cpu_to_le16(ei->i_file_acl >> 32);
4725         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4726         if (ei->i_disksize != ext4_isize(raw_inode)) {
4727                 ext4_isize_set(raw_inode, ei->i_disksize);
4728                 need_datasync = 1;
4729         }
4730         if (ei->i_disksize > 0x7fffffffULL) {
4731                 if (!ext4_has_feature_large_file(sb) ||
4732                                 EXT4_SB(sb)->s_es->s_rev_level ==
4733                     cpu_to_le32(EXT4_GOOD_OLD_REV))
4734                         set_large_file = 1;
4735         }
4736         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4737         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4738                 if (old_valid_dev(inode->i_rdev)) {
4739                         raw_inode->i_block[0] =
4740                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4741                         raw_inode->i_block[1] = 0;
4742                 } else {
4743                         raw_inode->i_block[0] = 0;
4744                         raw_inode->i_block[1] =
4745                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4746                         raw_inode->i_block[2] = 0;
4747                 }
4748         } else if (!ext4_has_inline_data(inode)) {
4749                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4750                         raw_inode->i_block[block] = ei->i_data[block];
4751         }
4752
4753         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4754                 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4755                 if (ei->i_extra_isize) {
4756                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4757                                 raw_inode->i_version_hi =
4758                                         cpu_to_le32(inode->i_version >> 32);
4759                         raw_inode->i_extra_isize =
4760                                 cpu_to_le16(ei->i_extra_isize);
4761                 }
4762         }
4763
4764         BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
4765                         EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4766                i_projid != EXT4_DEF_PROJID);
4767
4768         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4769             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4770                 raw_inode->i_projid = cpu_to_le32(i_projid);
4771
4772         ext4_inode_csum_set(inode, raw_inode, ei);
4773         spin_unlock(&ei->i_raw_lock);
4774         if (inode->i_sb->s_flags & MS_LAZYTIME)
4775                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4776                                               bh->b_data);
4777
4778         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4779         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4780         if (!err)
4781                 err = rc;
4782         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4783         if (set_large_file) {
4784                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4785                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4786                 if (err)
4787                         goto out_brelse;
4788                 ext4_update_dynamic_rev(sb);
4789                 ext4_set_feature_large_file(sb);
4790                 ext4_handle_sync(handle);
4791                 err = ext4_handle_dirty_super(handle, sb);
4792         }
4793         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4794 out_brelse:
4795         brelse(bh);
4796         ext4_std_error(inode->i_sb, err);
4797         return err;
4798 }
4799
4800 /*
4801  * ext4_write_inode()
4802  *
4803  * We are called from a few places:
4804  *
4805  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4806  *   Here, there will be no transaction running. We wait for any running
4807  *   transaction to commit.
4808  *
4809  * - Within flush work (sys_sync(), kupdate and such).
4810  *   We wait on commit, if told to.
4811  *
4812  * - Within iput_final() -> write_inode_now()
4813  *   We wait on commit, if told to.
4814  *
4815  * In all cases it is actually safe for us to return without doing anything,
4816  * because the inode has been copied into a raw inode buffer in
4817  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4818  * writeback.
4819  *
4820  * Note that we are absolutely dependent upon all inode dirtiers doing the
4821  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4822  * which we are interested.
4823  *
4824  * It would be a bug for them to not do this.  The code:
4825  *
4826  *      mark_inode_dirty(inode)
4827  *      stuff();
4828  *      inode->i_size = expr;
4829  *
4830  * is in error because write_inode() could occur while `stuff()' is running,
4831  * and the new i_size will be lost.  Plus the inode will no longer be on the
4832  * superblock's dirty inode list.
4833  */
4834 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4835 {
4836         int err;
4837
4838         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4839                 return 0;
4840
4841         if (EXT4_SB(inode->i_sb)->s_journal) {
4842                 if (ext4_journal_current_handle()) {
4843                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4844                         dump_stack();
4845                         return -EIO;
4846                 }
4847
4848                 /*
4849                  * No need to force transaction in WB_SYNC_NONE mode. Also
4850                  * ext4_sync_fs() will force the commit after everything is
4851                  * written.
4852                  */
4853                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4854                         return 0;
4855
4856                 err = ext4_force_commit(inode->i_sb);
4857         } else {
4858                 struct ext4_iloc iloc;
4859
4860                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4861                 if (err)
4862                         return err;
4863                 /*
4864                  * sync(2) will flush the whole buffer cache. No need to do
4865                  * it here separately for each inode.
4866                  */
4867                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4868                         sync_dirty_buffer(iloc.bh);
4869                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4870                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4871                                          "IO error syncing inode");
4872                         err = -EIO;
4873                 }
4874                 brelse(iloc.bh);
4875         }
4876         return err;
4877 }
4878
4879 /*
4880  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4881  * buffers that are attached to a page stradding i_size and are undergoing
4882  * commit. In that case we have to wait for commit to finish and try again.
4883  */
4884 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4885 {
4886         struct page *page;
4887         unsigned offset;
4888         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4889         tid_t commit_tid = 0;
4890         int ret;
4891
4892         offset = inode->i_size & (PAGE_SIZE - 1);
4893         /*
4894          * All buffers in the last page remain valid? Then there's nothing to
4895          * do. We do the check mainly to optimize the common PAGE_SIZE ==
4896          * blocksize case
4897          */
4898         if (offset > PAGE_SIZE - (1 << inode->i_blkbits))
4899                 return;
4900         while (1) {
4901                 page = find_lock_page(inode->i_mapping,
4902                                       inode->i_size >> PAGE_SHIFT);
4903                 if (!page)
4904                         return;
4905                 ret = __ext4_journalled_invalidatepage(page, offset,
4906                                                 PAGE_SIZE - offset);
4907                 unlock_page(page);
4908                 put_page(page);
4909                 if (ret != -EBUSY)
4910                         return;
4911                 commit_tid = 0;
4912                 read_lock(&journal->j_state_lock);
4913                 if (journal->j_committing_transaction)
4914                         commit_tid = journal->j_committing_transaction->t_tid;
4915                 read_unlock(&journal->j_state_lock);
4916                 if (commit_tid)
4917                         jbd2_log_wait_commit(journal, commit_tid);
4918         }
4919 }
4920
4921 /*
4922  * ext4_setattr()
4923  *
4924  * Called from notify_change.
4925  *
4926  * We want to trap VFS attempts to truncate the file as soon as
4927  * possible.  In particular, we want to make sure that when the VFS
4928  * shrinks i_size, we put the inode on the orphan list and modify
4929  * i_disksize immediately, so that during the subsequent flushing of
4930  * dirty pages and freeing of disk blocks, we can guarantee that any
4931  * commit will leave the blocks being flushed in an unused state on
4932  * disk.  (On recovery, the inode will get truncated and the blocks will
4933  * be freed, so we have a strong guarantee that no future commit will
4934  * leave these blocks visible to the user.)
4935  *
4936  * Another thing we have to assure is that if we are in ordered mode
4937  * and inode is still attached to the committing transaction, we must
4938  * we start writeout of all the dirty pages which are being truncated.
4939  * This way we are sure that all the data written in the previous
4940  * transaction are already on disk (truncate waits for pages under
4941  * writeback).
4942  *
4943  * Called with inode->i_mutex down.
4944  */
4945 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4946 {
4947         struct inode *inode = d_inode(dentry);
4948         int error, rc = 0;
4949         int orphan = 0;
4950         const unsigned int ia_valid = attr->ia_valid;
4951
4952         error = inode_change_ok(inode, attr);
4953         if (error)
4954                 return error;
4955
4956         if (is_quota_modification(inode, attr)) {
4957                 error = dquot_initialize(inode);
4958                 if (error)
4959                         return error;
4960         }
4961         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4962             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4963                 handle_t *handle;
4964
4965                 /* (user+group)*(old+new) structure, inode write (sb,
4966                  * inode block, ? - but truncate inode update has it) */
4967                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4968                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4969                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4970                 if (IS_ERR(handle)) {
4971                         error = PTR_ERR(handle);
4972                         goto err_out;
4973                 }
4974                 error = dquot_transfer(inode, attr);
4975                 if (error) {
4976                         ext4_journal_stop(handle);
4977                         return error;
4978                 }
4979                 /* Update corresponding info in inode so that everything is in
4980                  * one transaction */
4981                 if (attr->ia_valid & ATTR_UID)
4982                         inode->i_uid = attr->ia_uid;
4983                 if (attr->ia_valid & ATTR_GID)
4984                         inode->i_gid = attr->ia_gid;
4985                 error = ext4_mark_inode_dirty(handle, inode);
4986                 ext4_journal_stop(handle);
4987         }
4988
4989         if (attr->ia_valid & ATTR_SIZE) {
4990                 handle_t *handle;
4991                 loff_t oldsize = inode->i_size;
4992                 int shrink = (attr->ia_size <= inode->i_size);
4993
4994                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4995                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4996
4997                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4998                                 return -EFBIG;
4999                 }
5000                 if (!S_ISREG(inode->i_mode))
5001                         return -EINVAL;
5002
5003                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5004                         inode_inc_iversion(inode);
5005
5006                 if (ext4_should_order_data(inode) &&
5007                     (attr->ia_size < inode->i_size)) {
5008                         error = ext4_begin_ordered_truncate(inode,
5009                                                             attr->ia_size);
5010                         if (error)
5011                                 goto err_out;
5012                 }
5013                 if (attr->ia_size != inode->i_size) {
5014                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5015                         if (IS_ERR(handle)) {
5016                                 error = PTR_ERR(handle);
5017                                 goto err_out;
5018                         }
5019                         if (ext4_handle_valid(handle) && shrink) {
5020                                 error = ext4_orphan_add(handle, inode);
5021                                 orphan = 1;
5022                         }
5023                         /*
5024                          * Update c/mtime on truncate up, ext4_truncate() will
5025                          * update c/mtime in shrink case below
5026                          */
5027                         if (!shrink) {
5028                                 inode->i_mtime = ext4_current_time(inode);
5029                                 inode->i_ctime = inode->i_mtime;
5030                         }
5031                         down_write(&EXT4_I(inode)->i_data_sem);
5032                         EXT4_I(inode)->i_disksize = attr->ia_size;
5033                         rc = ext4_mark_inode_dirty(handle, inode);
5034                         if (!error)
5035                                 error = rc;
5036                         /*
5037                          * We have to update i_size under i_data_sem together
5038                          * with i_disksize to avoid races with writeback code
5039                          * running ext4_wb_update_i_disksize().
5040                          */
5041                         if (!error)
5042                                 i_size_write(inode, attr->ia_size);
5043                         up_write(&EXT4_I(inode)->i_data_sem);
5044                         ext4_journal_stop(handle);
5045                         if (error) {
5046                                 if (orphan)
5047                                         ext4_orphan_del(NULL, inode);
5048                                 goto err_out;
5049                         }
5050                 }
5051                 if (!shrink)
5052                         pagecache_isize_extended(inode, oldsize, inode->i_size);
5053
5054                 /*
5055                  * Blocks are going to be removed from the inode. Wait
5056                  * for dio in flight.  Temporarily disable
5057                  * dioread_nolock to prevent livelock.
5058                  */
5059                 if (orphan) {
5060                         if (!ext4_should_journal_data(inode)) {
5061                                 ext4_inode_block_unlocked_dio(inode);
5062                                 inode_dio_wait(inode);
5063                                 ext4_inode_resume_unlocked_dio(inode);
5064                         } else
5065                                 ext4_wait_for_tail_page_commit(inode);
5066                 }
5067                 down_write(&EXT4_I(inode)->i_mmap_sem);
5068                 /*
5069                  * Truncate pagecache after we've waited for commit
5070                  * in data=journal mode to make pages freeable.
5071                  */
5072                 truncate_pagecache(inode, inode->i_size);
5073                 if (shrink)
5074                         ext4_truncate(inode);
5075                 up_write(&EXT4_I(inode)->i_mmap_sem);
5076         }
5077
5078         if (!rc) {
5079                 setattr_copy(inode, attr);
5080                 mark_inode_dirty(inode);
5081         }
5082
5083         /*
5084          * If the call to ext4_truncate failed to get a transaction handle at
5085          * all, we need to clean up the in-core orphan list manually.
5086          */
5087         if (orphan && inode->i_nlink)
5088                 ext4_orphan_del(NULL, inode);
5089
5090         if (!rc && (ia_valid & ATTR_MODE))
5091                 rc = posix_acl_chmod(inode, inode->i_mode);
5092
5093 err_out:
5094         ext4_std_error(inode->i_sb, error);
5095         if (!error)
5096                 error = rc;
5097         return error;
5098 }
5099
5100 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5101                  struct kstat *stat)
5102 {
5103         struct inode *inode;
5104         unsigned long long delalloc_blocks;
5105
5106         inode = d_inode(dentry);
5107         generic_fillattr(inode, stat);
5108
5109         /*
5110          * If there is inline data in the inode, the inode will normally not
5111          * have data blocks allocated (it may have an external xattr block).
5112          * Report at least one sector for such files, so tools like tar, rsync,
5113          * others doen't incorrectly think the file is completely sparse.
5114          */
5115         if (unlikely(ext4_has_inline_data(inode)))
5116                 stat->blocks += (stat->size + 511) >> 9;
5117
5118         /*
5119          * We can't update i_blocks if the block allocation is delayed
5120          * otherwise in the case of system crash before the real block
5121          * allocation is done, we will have i_blocks inconsistent with
5122          * on-disk file blocks.
5123          * We always keep i_blocks updated together with real
5124          * allocation. But to not confuse with user, stat
5125          * will return the blocks that include the delayed allocation
5126          * blocks for this file.
5127          */
5128         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5129                                    EXT4_I(inode)->i_reserved_data_blocks);
5130         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5131         return 0;
5132 }
5133
5134 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5135                                    int pextents)
5136 {
5137         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5138                 return ext4_ind_trans_blocks(inode, lblocks);
5139         return ext4_ext_index_trans_blocks(inode, pextents);
5140 }
5141
5142 /*
5143  * Account for index blocks, block groups bitmaps and block group
5144  * descriptor blocks if modify datablocks and index blocks
5145  * worse case, the indexs blocks spread over different block groups
5146  *
5147  * If datablocks are discontiguous, they are possible to spread over
5148  * different block groups too. If they are contiguous, with flexbg,
5149  * they could still across block group boundary.
5150  *
5151  * Also account for superblock, inode, quota and xattr blocks
5152  */
5153 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5154                                   int pextents)
5155 {
5156         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5157         int gdpblocks;
5158         int idxblocks;
5159         int ret = 0;
5160
5161         /*
5162          * How many index blocks need to touch to map @lblocks logical blocks
5163          * to @pextents physical extents?
5164          */
5165         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5166
5167         ret = idxblocks;
5168
5169         /*
5170          * Now let's see how many group bitmaps and group descriptors need
5171          * to account
5172          */
5173         groups = idxblocks + pextents;
5174         gdpblocks = groups;
5175         if (groups > ngroups)
5176                 groups = ngroups;
5177         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5178                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5179
5180         /* bitmaps and block group descriptor blocks */
5181         ret += groups + gdpblocks;
5182
5183         /* Blocks for super block, inode, quota and xattr blocks */
5184         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5185
5186         return ret;
5187 }
5188
5189 /*
5190  * Calculate the total number of credits to reserve to fit
5191  * the modification of a single pages into a single transaction,
5192  * which may include multiple chunks of block allocations.
5193  *
5194  * This could be called via ext4_write_begin()
5195  *
5196  * We need to consider the worse case, when
5197  * one new block per extent.
5198  */
5199 int ext4_writepage_trans_blocks(struct inode *inode)
5200 {
5201         int bpp = ext4_journal_blocks_per_page(inode);
5202         int ret;
5203
5204         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5205
5206         /* Account for data blocks for journalled mode */
5207         if (ext4_should_journal_data(inode))
5208                 ret += bpp;
5209         return ret;
5210 }
5211
5212 /*
5213  * Calculate the journal credits for a chunk of data modification.
5214  *
5215  * This is called from DIO, fallocate or whoever calling
5216  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5217  *
5218  * journal buffers for data blocks are not included here, as DIO
5219  * and fallocate do no need to journal data buffers.
5220  */
5221 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5222 {
5223         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5224 }
5225
5226 /*
5227  * The caller must have previously called ext4_reserve_inode_write().
5228  * Give this, we know that the caller already has write access to iloc->bh.
5229  */
5230 int ext4_mark_iloc_dirty(handle_t *handle,
5231                          struct inode *inode, struct ext4_iloc *iloc)
5232 {
5233         int err = 0;
5234
5235         if (IS_I_VERSION(inode))
5236                 inode_inc_iversion(inode);
5237
5238         /* the do_update_inode consumes one bh->b_count */
5239         get_bh(iloc->bh);
5240
5241         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5242         err = ext4_do_update_inode(handle, inode, iloc);
5243         put_bh(iloc->bh);
5244         return err;
5245 }
5246
5247 /*
5248  * On success, We end up with an outstanding reference count against
5249  * iloc->bh.  This _must_ be cleaned up later.
5250  */
5251
5252 int
5253 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5254                          struct ext4_iloc *iloc)
5255 {
5256         int err;
5257
5258         err = ext4_get_inode_loc(inode, iloc);
5259         if (!err) {
5260                 BUFFER_TRACE(iloc->bh, "get_write_access");
5261                 err = ext4_journal_get_write_access(handle, iloc->bh);
5262                 if (err) {
5263                         brelse(iloc->bh);
5264                         iloc->bh = NULL;
5265                 }
5266         }
5267         ext4_std_error(inode->i_sb, err);
5268         return err;
5269 }
5270
5271 /*
5272  * Expand an inode by new_extra_isize bytes.
5273  * Returns 0 on success or negative error number on failure.
5274  */
5275 static int ext4_expand_extra_isize(struct inode *inode,
5276                                    unsigned int new_extra_isize,
5277                                    struct ext4_iloc iloc,
5278                                    handle_t *handle)
5279 {
5280         struct ext4_inode *raw_inode;
5281         struct ext4_xattr_ibody_header *header;
5282
5283         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5284                 return 0;
5285
5286         raw_inode = ext4_raw_inode(&iloc);
5287
5288         header = IHDR(inode, raw_inode);
5289
5290         /* No extended attributes present */
5291         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5292             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5293                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5294                         new_extra_isize);
5295                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5296                 return 0;
5297         }
5298
5299         /* try to expand with EAs present */
5300         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5301                                           raw_inode, handle);
5302 }
5303
5304 /*
5305  * What we do here is to mark the in-core inode as clean with respect to inode
5306  * dirtiness (it may still be data-dirty).
5307  * This means that the in-core inode may be reaped by prune_icache
5308  * without having to perform any I/O.  This is a very good thing,
5309  * because *any* task may call prune_icache - even ones which
5310  * have a transaction open against a different journal.
5311  *
5312  * Is this cheating?  Not really.  Sure, we haven't written the
5313  * inode out, but prune_icache isn't a user-visible syncing function.
5314  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5315  * we start and wait on commits.
5316  */
5317 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5318 {
5319         struct ext4_iloc iloc;
5320         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5321         static unsigned int mnt_count;
5322         int err, ret;
5323
5324         might_sleep();
5325         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5326         err = ext4_reserve_inode_write(handle, inode, &iloc);
5327         if (err)
5328                 return err;
5329         if (ext4_handle_valid(handle) &&
5330             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5331             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5332                 /*
5333                  * We need extra buffer credits since we may write into EA block
5334                  * with this same handle. If journal_extend fails, then it will
5335                  * only result in a minor loss of functionality for that inode.
5336                  * If this is felt to be critical, then e2fsck should be run to
5337                  * force a large enough s_min_extra_isize.
5338                  */
5339                 if ((jbd2_journal_extend(handle,
5340                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5341                         ret = ext4_expand_extra_isize(inode,
5342                                                       sbi->s_want_extra_isize,
5343                                                       iloc, handle);
5344                         if (ret) {
5345                                 ext4_set_inode_state(inode,
5346                                                      EXT4_STATE_NO_EXPAND);
5347                                 if (mnt_count !=
5348                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5349                                         ext4_warning(inode->i_sb,
5350                                         "Unable to expand inode %lu. Delete"
5351                                         " some EAs or run e2fsck.",
5352                                         inode->i_ino);
5353                                         mnt_count =
5354                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5355                                 }
5356                         }
5357                 }
5358         }
5359         return ext4_mark_iloc_dirty(handle, inode, &iloc);
5360 }
5361
5362 /*
5363  * ext4_dirty_inode() is called from __mark_inode_dirty()
5364  *
5365  * We're really interested in the case where a file is being extended.
5366  * i_size has been changed by generic_commit_write() and we thus need
5367  * to include the updated inode in the current transaction.
5368  *
5369  * Also, dquot_alloc_block() will always dirty the inode when blocks
5370  * are allocated to the file.
5371  *
5372  * If the inode is marked synchronous, we don't honour that here - doing
5373  * so would cause a commit on atime updates, which we don't bother doing.
5374  * We handle synchronous inodes at the highest possible level.
5375  *
5376  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5377  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5378  * to copy into the on-disk inode structure are the timestamp files.
5379  */
5380 void ext4_dirty_inode(struct inode *inode, int flags)
5381 {
5382         handle_t *handle;
5383
5384         if (flags == I_DIRTY_TIME)
5385                 return;
5386         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5387         if (IS_ERR(handle))
5388                 goto out;
5389
5390         ext4_mark_inode_dirty(handle, inode);
5391
5392         ext4_journal_stop(handle);
5393 out:
5394         return;
5395 }
5396
5397 #if 0
5398 /*
5399  * Bind an inode's backing buffer_head into this transaction, to prevent
5400  * it from being flushed to disk early.  Unlike
5401  * ext4_reserve_inode_write, this leaves behind no bh reference and
5402  * returns no iloc structure, so the caller needs to repeat the iloc
5403  * lookup to mark the inode dirty later.
5404  */
5405 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5406 {
5407         struct ext4_iloc iloc;
5408
5409         int err = 0;
5410         if (handle) {
5411                 err = ext4_get_inode_loc(inode, &iloc);
5412                 if (!err) {
5413                         BUFFER_TRACE(iloc.bh, "get_write_access");
5414                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5415                         if (!err)
5416                                 err = ext4_handle_dirty_metadata(handle,
5417                                                                  NULL,
5418                                                                  iloc.bh);
5419                         brelse(iloc.bh);
5420                 }
5421         }
5422         ext4_std_error(inode->i_sb, err);
5423         return err;
5424 }
5425 #endif
5426
5427 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5428 {
5429         journal_t *journal;
5430         handle_t *handle;
5431         int err;
5432
5433         /*
5434          * We have to be very careful here: changing a data block's
5435          * journaling status dynamically is dangerous.  If we write a
5436          * data block to the journal, change the status and then delete
5437          * that block, we risk forgetting to revoke the old log record
5438          * from the journal and so a subsequent replay can corrupt data.
5439          * So, first we make sure that the journal is empty and that
5440          * nobody is changing anything.
5441          */
5442
5443         journal = EXT4_JOURNAL(inode);
5444         if (!journal)
5445                 return 0;
5446         if (is_journal_aborted(journal))
5447                 return -EROFS;
5448         /* We have to allocate physical blocks for delalloc blocks
5449          * before flushing journal. otherwise delalloc blocks can not
5450          * be allocated any more. even more truncate on delalloc blocks
5451          * could trigger BUG by flushing delalloc blocks in journal.
5452          * There is no delalloc block in non-journal data mode.
5453          */
5454         if (val && test_opt(inode->i_sb, DELALLOC)) {
5455                 err = ext4_alloc_da_blocks(inode);
5456                 if (err < 0)
5457                         return err;
5458         }
5459
5460         /* Wait for all existing dio workers */
5461         ext4_inode_block_unlocked_dio(inode);
5462         inode_dio_wait(inode);
5463
5464         jbd2_journal_lock_updates(journal);
5465
5466         /*
5467          * OK, there are no updates running now, and all cached data is
5468          * synced to disk.  We are now in a completely consistent state
5469          * which doesn't have anything in the journal, and we know that
5470          * no filesystem updates are running, so it is safe to modify
5471          * the inode's in-core data-journaling state flag now.
5472          */
5473
5474         if (val)
5475                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5476         else {
5477                 err = jbd2_journal_flush(journal);
5478                 if (err < 0) {
5479                         jbd2_journal_unlock_updates(journal);
5480                         ext4_inode_resume_unlocked_dio(inode);
5481                         return err;
5482                 }
5483                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5484         }
5485         ext4_set_aops(inode);
5486
5487         jbd2_journal_unlock_updates(journal);
5488         ext4_inode_resume_unlocked_dio(inode);
5489
5490         /* Finally we can mark the inode as dirty. */
5491
5492         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5493         if (IS_ERR(handle))
5494                 return PTR_ERR(handle);
5495
5496         err = ext4_mark_inode_dirty(handle, inode);
5497         ext4_handle_sync(handle);
5498         ext4_journal_stop(handle);
5499         ext4_std_error(inode->i_sb, err);
5500
5501         return err;
5502 }
5503
5504 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5505 {
5506         return !buffer_mapped(bh);
5507 }
5508
5509 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5510 {
5511         struct page *page = vmf->page;
5512         loff_t size;
5513         unsigned long len;
5514         int ret;
5515         struct file *file = vma->vm_file;
5516         struct inode *inode = file_inode(file);
5517         struct address_space *mapping = inode->i_mapping;
5518         handle_t *handle;
5519         get_block_t *get_block;
5520         int retries = 0;
5521
5522         sb_start_pagefault(inode->i_sb);
5523         file_update_time(vma->vm_file);
5524
5525         down_read(&EXT4_I(inode)->i_mmap_sem);
5526         /* Delalloc case is easy... */
5527         if (test_opt(inode->i_sb, DELALLOC) &&
5528             !ext4_should_journal_data(inode) &&
5529             !ext4_nonda_switch(inode->i_sb)) {
5530                 do {
5531                         ret = block_page_mkwrite(vma, vmf,
5532                                                    ext4_da_get_block_prep);
5533                 } while (ret == -ENOSPC &&
5534                        ext4_should_retry_alloc(inode->i_sb, &retries));
5535                 goto out_ret;
5536         }
5537
5538         lock_page(page);
5539         size = i_size_read(inode);
5540         /* Page got truncated from under us? */
5541         if (page->mapping != mapping || page_offset(page) > size) {
5542                 unlock_page(page);
5543                 ret = VM_FAULT_NOPAGE;
5544                 goto out;
5545         }
5546
5547         if (page->index == size >> PAGE_SHIFT)
5548                 len = size & ~PAGE_MASK;
5549         else
5550                 len = PAGE_SIZE;
5551         /*
5552          * Return if we have all the buffers mapped. This avoids the need to do
5553          * journal_start/journal_stop which can block and take a long time
5554          */
5555         if (page_has_buffers(page)) {
5556                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5557                                             0, len, NULL,
5558                                             ext4_bh_unmapped)) {
5559                         /* Wait so that we don't change page under IO */
5560                         wait_for_stable_page(page);
5561                         ret = VM_FAULT_LOCKED;
5562                         goto out;
5563                 }
5564         }
5565         unlock_page(page);
5566         /* OK, we need to fill the hole... */
5567         if (ext4_should_dioread_nolock(inode))
5568                 get_block = ext4_get_block_unwritten;
5569         else
5570                 get_block = ext4_get_block;
5571 retry_alloc:
5572         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5573                                     ext4_writepage_trans_blocks(inode));
5574         if (IS_ERR(handle)) {
5575                 ret = VM_FAULT_SIGBUS;
5576                 goto out;
5577         }
5578         ret = block_page_mkwrite(vma, vmf, get_block);
5579         if (!ret && ext4_should_journal_data(inode)) {
5580                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5581                           PAGE_SIZE, NULL, do_journal_get_write_access)) {
5582                         unlock_page(page);
5583                         ret = VM_FAULT_SIGBUS;
5584                         ext4_journal_stop(handle);
5585                         goto out;
5586                 }
5587                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5588         }
5589         ext4_journal_stop(handle);
5590         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5591                 goto retry_alloc;
5592 out_ret:
5593         ret = block_page_mkwrite_return(ret);
5594 out:
5595         up_read(&EXT4_I(inode)->i_mmap_sem);
5596         sb_end_pagefault(inode->i_sb);
5597         return ret;
5598 }
5599
5600 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5601 {
5602         struct inode *inode = file_inode(vma->vm_file);
5603         int err;
5604
5605         down_read(&EXT4_I(inode)->i_mmap_sem);
5606         err = filemap_fault(vma, vmf);
5607         up_read(&EXT4_I(inode)->i_mmap_sem);
5608
5609         return err;
5610 }
5611
5612 /*
5613  * Find the first extent at or after @lblk in an inode that is not a hole.
5614  * Search for @map_len blocks at most. The extent is returned in @result.
5615  *
5616  * The function returns 1 if we found an extent. The function returns 0 in
5617  * case there is no extent at or after @lblk and in that case also sets
5618  * @result->es_len to 0. In case of error, the error code is returned.
5619  */
5620 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
5621                          unsigned int map_len, struct extent_status *result)
5622 {
5623         struct ext4_map_blocks map;
5624         struct extent_status es = {};
5625         int ret;
5626
5627         map.m_lblk = lblk;
5628         map.m_len = map_len;
5629
5630         /*
5631          * For non-extent based files this loop may iterate several times since
5632          * we do not determine full hole size.
5633          */
5634         while (map.m_len > 0) {
5635                 ret = ext4_map_blocks(NULL, inode, &map, 0);
5636                 if (ret < 0)
5637                         return ret;
5638                 /* There's extent covering m_lblk? Just return it. */
5639                 if (ret > 0) {
5640                         int status;
5641
5642                         ext4_es_store_pblock(result, map.m_pblk);
5643                         result->es_lblk = map.m_lblk;
5644                         result->es_len = map.m_len;
5645                         if (map.m_flags & EXT4_MAP_UNWRITTEN)
5646                                 status = EXTENT_STATUS_UNWRITTEN;
5647                         else
5648                                 status = EXTENT_STATUS_WRITTEN;
5649                         ext4_es_store_status(result, status);
5650                         return 1;
5651                 }
5652                 ext4_es_find_delayed_extent_range(inode, map.m_lblk,
5653                                                   map.m_lblk + map.m_len - 1,
5654                                                   &es);
5655                 /* Is delalloc data before next block in extent tree? */
5656                 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
5657                         ext4_lblk_t offset = 0;
5658
5659                         if (es.es_lblk < lblk)
5660                                 offset = lblk - es.es_lblk;
5661                         result->es_lblk = es.es_lblk + offset;
5662                         ext4_es_store_pblock(result,
5663                                              ext4_es_pblock(&es) + offset);
5664                         result->es_len = es.es_len - offset;
5665                         ext4_es_store_status(result, ext4_es_status(&es));
5666
5667                         return 1;
5668                 }
5669                 /* There's a hole at m_lblk, advance us after it */
5670                 map.m_lblk += map.m_len;
5671                 map_len -= map.m_len;
5672                 map.m_len = map_len;
5673                 cond_resched();
5674         }
5675         result->es_len = 0;
5676         return 0;
5677 }