Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma
[sfrench/cifs-2.6.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51                               struct ext4_inode_info *ei)
52 {
53         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54         __u16 csum_lo;
55         __u16 csum_hi = 0;
56         __u32 csum;
57
58         csum_lo = le16_to_cpu(raw->i_checksum_lo);
59         raw->i_checksum_lo = 0;
60         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
63                 raw->i_checksum_hi = 0;
64         }
65
66         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67                            EXT4_INODE_SIZE(inode->i_sb));
68
69         raw->i_checksum_lo = cpu_to_le16(csum_lo);
70         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
73
74         return csum;
75 }
76
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78                                   struct ext4_inode_info *ei)
79 {
80         __u32 provided, calculated;
81
82         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83             cpu_to_le32(EXT4_OS_LINUX) ||
84             !ext4_has_metadata_csum(inode->i_sb))
85                 return 1;
86
87         provided = le16_to_cpu(raw->i_checksum_lo);
88         calculated = ext4_inode_csum(inode, raw, ei);
89         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
90             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
91                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
92         else
93                 calculated &= 0xFFFF;
94
95         return provided == calculated;
96 }
97
98 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
99                                 struct ext4_inode_info *ei)
100 {
101         __u32 csum;
102
103         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
104             cpu_to_le32(EXT4_OS_LINUX) ||
105             !ext4_has_metadata_csum(inode->i_sb))
106                 return;
107
108         csum = ext4_inode_csum(inode, raw, ei);
109         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
110         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
111             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
112                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
113 }
114
115 static inline int ext4_begin_ordered_truncate(struct inode *inode,
116                                               loff_t new_size)
117 {
118         trace_ext4_begin_ordered_truncate(inode, new_size);
119         /*
120          * If jinode is zero, then we never opened the file for
121          * writing, so there's no need to call
122          * jbd2_journal_begin_ordered_truncate() since there's no
123          * outstanding writes we need to flush.
124          */
125         if (!EXT4_I(inode)->jinode)
126                 return 0;
127         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
128                                                    EXT4_I(inode)->jinode,
129                                                    new_size);
130 }
131
132 static void ext4_invalidatepage(struct page *page, unsigned int offset,
133                                 unsigned int length);
134 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
135 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
136 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
137                                   int pextents);
138
139 /*
140  * Test whether an inode is a fast symlink.
141  */
142 int ext4_inode_is_fast_symlink(struct inode *inode)
143 {
144         int ea_blocks = EXT4_I(inode)->i_file_acl ?
145                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
146
147         if (ext4_has_inline_data(inode))
148                 return 0;
149
150         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152
153 /*
154  * Restart the transaction associated with *handle.  This does a commit,
155  * so before we call here everything must be consistently dirtied against
156  * this transaction.
157  */
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159                                  int nblocks)
160 {
161         int ret;
162
163         /*
164          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
165          * moment, get_block can be called only for blocks inside i_size since
166          * page cache has been already dropped and writes are blocked by
167          * i_mutex. So we can safely drop the i_data_sem here.
168          */
169         BUG_ON(EXT4_JOURNAL(inode) == NULL);
170         jbd_debug(2, "restarting handle %p\n", handle);
171         up_write(&EXT4_I(inode)->i_data_sem);
172         ret = ext4_journal_restart(handle, nblocks);
173         down_write(&EXT4_I(inode)->i_data_sem);
174         ext4_discard_preallocations(inode);
175
176         return ret;
177 }
178
179 /*
180  * Called at the last iput() if i_nlink is zero.
181  */
182 void ext4_evict_inode(struct inode *inode)
183 {
184         handle_t *handle;
185         int err;
186
187         trace_ext4_evict_inode(inode);
188
189         if (inode->i_nlink) {
190                 /*
191                  * When journalling data dirty buffers are tracked only in the
192                  * journal. So although mm thinks everything is clean and
193                  * ready for reaping the inode might still have some pages to
194                  * write in the running transaction or waiting to be
195                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
196                  * (via truncate_inode_pages()) to discard these buffers can
197                  * cause data loss. Also even if we did not discard these
198                  * buffers, we would have no way to find them after the inode
199                  * is reaped and thus user could see stale data if he tries to
200                  * read them before the transaction is checkpointed. So be
201                  * careful and force everything to disk here... We use
202                  * ei->i_datasync_tid to store the newest transaction
203                  * containing inode's data.
204                  *
205                  * Note that directories do not have this problem because they
206                  * don't use page cache.
207                  */
208                 if (ext4_should_journal_data(inode) &&
209                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210                     inode->i_ino != EXT4_JOURNAL_INO) {
211                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
214                         jbd2_complete_transaction(journal, commit_tid);
215                         filemap_write_and_wait(&inode->i_data);
216                 }
217                 truncate_inode_pages_final(&inode->i_data);
218
219                 goto no_delete;
220         }
221
222         if (is_bad_inode(inode))
223                 goto no_delete;
224         dquot_initialize(inode);
225
226         if (ext4_should_order_data(inode))
227                 ext4_begin_ordered_truncate(inode, 0);
228         truncate_inode_pages_final(&inode->i_data);
229
230         /*
231          * Protect us against freezing - iput() caller didn't have to have any
232          * protection against it
233          */
234         sb_start_intwrite(inode->i_sb);
235         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
236                                     ext4_blocks_for_truncate(inode)+3);
237         if (IS_ERR(handle)) {
238                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
239                 /*
240                  * If we're going to skip the normal cleanup, we still need to
241                  * make sure that the in-core orphan linked list is properly
242                  * cleaned up.
243                  */
244                 ext4_orphan_del(NULL, inode);
245                 sb_end_intwrite(inode->i_sb);
246                 goto no_delete;
247         }
248
249         if (IS_SYNC(inode))
250                 ext4_handle_sync(handle);
251         inode->i_size = 0;
252         err = ext4_mark_inode_dirty(handle, inode);
253         if (err) {
254                 ext4_warning(inode->i_sb,
255                              "couldn't mark inode dirty (err %d)", err);
256                 goto stop_handle;
257         }
258         if (inode->i_blocks)
259                 ext4_truncate(inode);
260
261         /*
262          * ext4_ext_truncate() doesn't reserve any slop when it
263          * restarts journal transactions; therefore there may not be
264          * enough credits left in the handle to remove the inode from
265          * the orphan list and set the dtime field.
266          */
267         if (!ext4_handle_has_enough_credits(handle, 3)) {
268                 err = ext4_journal_extend(handle, 3);
269                 if (err > 0)
270                         err = ext4_journal_restart(handle, 3);
271                 if (err != 0) {
272                         ext4_warning(inode->i_sb,
273                                      "couldn't extend journal (err %d)", err);
274                 stop_handle:
275                         ext4_journal_stop(handle);
276                         ext4_orphan_del(NULL, inode);
277                         sb_end_intwrite(inode->i_sb);
278                         goto no_delete;
279                 }
280         }
281
282         /*
283          * Kill off the orphan record which ext4_truncate created.
284          * AKPM: I think this can be inside the above `if'.
285          * Note that ext4_orphan_del() has to be able to cope with the
286          * deletion of a non-existent orphan - this is because we don't
287          * know if ext4_truncate() actually created an orphan record.
288          * (Well, we could do this if we need to, but heck - it works)
289          */
290         ext4_orphan_del(handle, inode);
291         EXT4_I(inode)->i_dtime  = get_seconds();
292
293         /*
294          * One subtle ordering requirement: if anything has gone wrong
295          * (transaction abort, IO errors, whatever), then we can still
296          * do these next steps (the fs will already have been marked as
297          * having errors), but we can't free the inode if the mark_dirty
298          * fails.
299          */
300         if (ext4_mark_inode_dirty(handle, inode))
301                 /* If that failed, just do the required in-core inode clear. */
302                 ext4_clear_inode(inode);
303         else
304                 ext4_free_inode(handle, inode);
305         ext4_journal_stop(handle);
306         sb_end_intwrite(inode->i_sb);
307         return;
308 no_delete:
309         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
310 }
311
312 #ifdef CONFIG_QUOTA
313 qsize_t *ext4_get_reserved_space(struct inode *inode)
314 {
315         return &EXT4_I(inode)->i_reserved_quota;
316 }
317 #endif
318
319 /*
320  * Called with i_data_sem down, which is important since we can call
321  * ext4_discard_preallocations() from here.
322  */
323 void ext4_da_update_reserve_space(struct inode *inode,
324                                         int used, int quota_claim)
325 {
326         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
327         struct ext4_inode_info *ei = EXT4_I(inode);
328
329         spin_lock(&ei->i_block_reservation_lock);
330         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
331         if (unlikely(used > ei->i_reserved_data_blocks)) {
332                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
333                          "with only %d reserved data blocks",
334                          __func__, inode->i_ino, used,
335                          ei->i_reserved_data_blocks);
336                 WARN_ON(1);
337                 used = ei->i_reserved_data_blocks;
338         }
339
340         /* Update per-inode reservations */
341         ei->i_reserved_data_blocks -= used;
342         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
343
344         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
345
346         /* Update quota subsystem for data blocks */
347         if (quota_claim)
348                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
349         else {
350                 /*
351                  * We did fallocate with an offset that is already delayed
352                  * allocated. So on delayed allocated writeback we should
353                  * not re-claim the quota for fallocated blocks.
354                  */
355                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
356         }
357
358         /*
359          * If we have done all the pending block allocations and if
360          * there aren't any writers on the inode, we can discard the
361          * inode's preallocations.
362          */
363         if ((ei->i_reserved_data_blocks == 0) &&
364             (atomic_read(&inode->i_writecount) == 0))
365                 ext4_discard_preallocations(inode);
366 }
367
368 static int __check_block_validity(struct inode *inode, const char *func,
369                                 unsigned int line,
370                                 struct ext4_map_blocks *map)
371 {
372         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
373                                    map->m_len)) {
374                 ext4_error_inode(inode, func, line, map->m_pblk,
375                                  "lblock %lu mapped to illegal pblock "
376                                  "(length %d)", (unsigned long) map->m_lblk,
377                                  map->m_len);
378                 return -EFSCORRUPTED;
379         }
380         return 0;
381 }
382
383 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
384                        ext4_lblk_t len)
385 {
386         int ret;
387
388         if (ext4_encrypted_inode(inode))
389                 return ext4_encrypted_zeroout(inode, lblk, pblk, len);
390
391         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
392         if (ret > 0)
393                 ret = 0;
394
395         return ret;
396 }
397
398 #define check_block_validity(inode, map)        \
399         __check_block_validity((inode), __func__, __LINE__, (map))
400
401 #ifdef ES_AGGRESSIVE_TEST
402 static void ext4_map_blocks_es_recheck(handle_t *handle,
403                                        struct inode *inode,
404                                        struct ext4_map_blocks *es_map,
405                                        struct ext4_map_blocks *map,
406                                        int flags)
407 {
408         int retval;
409
410         map->m_flags = 0;
411         /*
412          * There is a race window that the result is not the same.
413          * e.g. xfstests #223 when dioread_nolock enables.  The reason
414          * is that we lookup a block mapping in extent status tree with
415          * out taking i_data_sem.  So at the time the unwritten extent
416          * could be converted.
417          */
418         down_read(&EXT4_I(inode)->i_data_sem);
419         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
420                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
421                                              EXT4_GET_BLOCKS_KEEP_SIZE);
422         } else {
423                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
424                                              EXT4_GET_BLOCKS_KEEP_SIZE);
425         }
426         up_read((&EXT4_I(inode)->i_data_sem));
427
428         /*
429          * We don't check m_len because extent will be collpased in status
430          * tree.  So the m_len might not equal.
431          */
432         if (es_map->m_lblk != map->m_lblk ||
433             es_map->m_flags != map->m_flags ||
434             es_map->m_pblk != map->m_pblk) {
435                 printk("ES cache assertion failed for inode: %lu "
436                        "es_cached ex [%d/%d/%llu/%x] != "
437                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
438                        inode->i_ino, es_map->m_lblk, es_map->m_len,
439                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
440                        map->m_len, map->m_pblk, map->m_flags,
441                        retval, flags);
442         }
443 }
444 #endif /* ES_AGGRESSIVE_TEST */
445
446 /*
447  * The ext4_map_blocks() function tries to look up the requested blocks,
448  * and returns if the blocks are already mapped.
449  *
450  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
451  * and store the allocated blocks in the result buffer head and mark it
452  * mapped.
453  *
454  * If file type is extents based, it will call ext4_ext_map_blocks(),
455  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
456  * based files
457  *
458  * On success, it returns the number of blocks being mapped or allocated.  if
459  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
460  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
461  *
462  * It returns 0 if plain look up failed (blocks have not been allocated), in
463  * that case, @map is returned as unmapped but we still do fill map->m_len to
464  * indicate the length of a hole starting at map->m_lblk.
465  *
466  * It returns the error in case of allocation failure.
467  */
468 int ext4_map_blocks(handle_t *handle, struct inode *inode,
469                     struct ext4_map_blocks *map, int flags)
470 {
471         struct extent_status es;
472         int retval;
473         int ret = 0;
474 #ifdef ES_AGGRESSIVE_TEST
475         struct ext4_map_blocks orig_map;
476
477         memcpy(&orig_map, map, sizeof(*map));
478 #endif
479
480         map->m_flags = 0;
481         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
482                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
483                   (unsigned long) map->m_lblk);
484
485         /*
486          * ext4_map_blocks returns an int, and m_len is an unsigned int
487          */
488         if (unlikely(map->m_len > INT_MAX))
489                 map->m_len = INT_MAX;
490
491         /* We can handle the block number less than EXT_MAX_BLOCKS */
492         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
493                 return -EFSCORRUPTED;
494
495         /* Lookup extent status tree firstly */
496         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
497                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
498                         map->m_pblk = ext4_es_pblock(&es) +
499                                         map->m_lblk - es.es_lblk;
500                         map->m_flags |= ext4_es_is_written(&es) ?
501                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
502                         retval = es.es_len - (map->m_lblk - es.es_lblk);
503                         if (retval > map->m_len)
504                                 retval = map->m_len;
505                         map->m_len = retval;
506                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
507                         map->m_pblk = 0;
508                         retval = es.es_len - (map->m_lblk - es.es_lblk);
509                         if (retval > map->m_len)
510                                 retval = map->m_len;
511                         map->m_len = retval;
512                         retval = 0;
513                 } else {
514                         BUG_ON(1);
515                 }
516 #ifdef ES_AGGRESSIVE_TEST
517                 ext4_map_blocks_es_recheck(handle, inode, map,
518                                            &orig_map, flags);
519 #endif
520                 goto found;
521         }
522
523         /*
524          * Try to see if we can get the block without requesting a new
525          * file system block.
526          */
527         down_read(&EXT4_I(inode)->i_data_sem);
528         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
529                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
530                                              EXT4_GET_BLOCKS_KEEP_SIZE);
531         } else {
532                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
533                                              EXT4_GET_BLOCKS_KEEP_SIZE);
534         }
535         if (retval > 0) {
536                 unsigned int status;
537
538                 if (unlikely(retval != map->m_len)) {
539                         ext4_warning(inode->i_sb,
540                                      "ES len assertion failed for inode "
541                                      "%lu: retval %d != map->m_len %d",
542                                      inode->i_ino, retval, map->m_len);
543                         WARN_ON(1);
544                 }
545
546                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
547                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
548                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
549                     !(status & EXTENT_STATUS_WRITTEN) &&
550                     ext4_find_delalloc_range(inode, map->m_lblk,
551                                              map->m_lblk + map->m_len - 1))
552                         status |= EXTENT_STATUS_DELAYED;
553                 ret = ext4_es_insert_extent(inode, map->m_lblk,
554                                             map->m_len, map->m_pblk, status);
555                 if (ret < 0)
556                         retval = ret;
557         }
558         up_read((&EXT4_I(inode)->i_data_sem));
559
560 found:
561         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
562                 ret = check_block_validity(inode, map);
563                 if (ret != 0)
564                         return ret;
565         }
566
567         /* If it is only a block(s) look up */
568         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
569                 return retval;
570
571         /*
572          * Returns if the blocks have already allocated
573          *
574          * Note that if blocks have been preallocated
575          * ext4_ext_get_block() returns the create = 0
576          * with buffer head unmapped.
577          */
578         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
579                 /*
580                  * If we need to convert extent to unwritten
581                  * we continue and do the actual work in
582                  * ext4_ext_map_blocks()
583                  */
584                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
585                         return retval;
586
587         /*
588          * Here we clear m_flags because after allocating an new extent,
589          * it will be set again.
590          */
591         map->m_flags &= ~EXT4_MAP_FLAGS;
592
593         /*
594          * New blocks allocate and/or writing to unwritten extent
595          * will possibly result in updating i_data, so we take
596          * the write lock of i_data_sem, and call get_block()
597          * with create == 1 flag.
598          */
599         down_write(&EXT4_I(inode)->i_data_sem);
600
601         /*
602          * We need to check for EXT4 here because migrate
603          * could have changed the inode type in between
604          */
605         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
606                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
607         } else {
608                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
609
610                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
611                         /*
612                          * We allocated new blocks which will result in
613                          * i_data's format changing.  Force the migrate
614                          * to fail by clearing migrate flags
615                          */
616                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
617                 }
618
619                 /*
620                  * Update reserved blocks/metadata blocks after successful
621                  * block allocation which had been deferred till now. We don't
622                  * support fallocate for non extent files. So we can update
623                  * reserve space here.
624                  */
625                 if ((retval > 0) &&
626                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
627                         ext4_da_update_reserve_space(inode, retval, 1);
628         }
629
630         if (retval > 0) {
631                 unsigned int status;
632
633                 if (unlikely(retval != map->m_len)) {
634                         ext4_warning(inode->i_sb,
635                                      "ES len assertion failed for inode "
636                                      "%lu: retval %d != map->m_len %d",
637                                      inode->i_ino, retval, map->m_len);
638                         WARN_ON(1);
639                 }
640
641                 /*
642                  * We have to zeroout blocks before inserting them into extent
643                  * status tree. Otherwise someone could look them up there and
644                  * use them before they are really zeroed.
645                  */
646                 if (flags & EXT4_GET_BLOCKS_ZERO &&
647                     map->m_flags & EXT4_MAP_MAPPED &&
648                     map->m_flags & EXT4_MAP_NEW) {
649                         ret = ext4_issue_zeroout(inode, map->m_lblk,
650                                                  map->m_pblk, map->m_len);
651                         if (ret) {
652                                 retval = ret;
653                                 goto out_sem;
654                         }
655                 }
656
657                 /*
658                  * If the extent has been zeroed out, we don't need to update
659                  * extent status tree.
660                  */
661                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
662                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
663                         if (ext4_es_is_written(&es))
664                                 goto out_sem;
665                 }
666                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
667                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
668                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
669                     !(status & EXTENT_STATUS_WRITTEN) &&
670                     ext4_find_delalloc_range(inode, map->m_lblk,
671                                              map->m_lblk + map->m_len - 1))
672                         status |= EXTENT_STATUS_DELAYED;
673                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
674                                             map->m_pblk, status);
675                 if (ret < 0) {
676                         retval = ret;
677                         goto out_sem;
678                 }
679         }
680
681 out_sem:
682         up_write((&EXT4_I(inode)->i_data_sem));
683         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
684                 ret = check_block_validity(inode, map);
685                 if (ret != 0)
686                         return ret;
687         }
688         return retval;
689 }
690
691 /*
692  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
693  * we have to be careful as someone else may be manipulating b_state as well.
694  */
695 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
696 {
697         unsigned long old_state;
698         unsigned long new_state;
699
700         flags &= EXT4_MAP_FLAGS;
701
702         /* Dummy buffer_head? Set non-atomically. */
703         if (!bh->b_page) {
704                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
705                 return;
706         }
707         /*
708          * Someone else may be modifying b_state. Be careful! This is ugly but
709          * once we get rid of using bh as a container for mapping information
710          * to pass to / from get_block functions, this can go away.
711          */
712         do {
713                 old_state = READ_ONCE(bh->b_state);
714                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
715         } while (unlikely(
716                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
717 }
718
719 static int _ext4_get_block(struct inode *inode, sector_t iblock,
720                            struct buffer_head *bh, int flags)
721 {
722         struct ext4_map_blocks map;
723         int ret = 0;
724
725         if (ext4_has_inline_data(inode))
726                 return -ERANGE;
727
728         map.m_lblk = iblock;
729         map.m_len = bh->b_size >> inode->i_blkbits;
730
731         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
732                               flags);
733         if (ret > 0) {
734                 map_bh(bh, inode->i_sb, map.m_pblk);
735                 ext4_update_bh_state(bh, map.m_flags);
736                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
737                 ret = 0;
738         }
739         return ret;
740 }
741
742 int ext4_get_block(struct inode *inode, sector_t iblock,
743                    struct buffer_head *bh, int create)
744 {
745         return _ext4_get_block(inode, iblock, bh,
746                                create ? EXT4_GET_BLOCKS_CREATE : 0);
747 }
748
749 /*
750  * Get block function used when preparing for buffered write if we require
751  * creating an unwritten extent if blocks haven't been allocated.  The extent
752  * will be converted to written after the IO is complete.
753  */
754 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
755                              struct buffer_head *bh_result, int create)
756 {
757         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
758                    inode->i_ino, create);
759         return _ext4_get_block(inode, iblock, bh_result,
760                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
761 }
762
763 /* Maximum number of blocks we map for direct IO at once. */
764 #define DIO_MAX_BLOCKS 4096
765
766 static handle_t *start_dio_trans(struct inode *inode,
767                                  struct buffer_head *bh_result)
768 {
769         int dio_credits;
770
771         /* Trim mapping request to maximum we can map at once for DIO */
772         if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
773                 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
774         dio_credits = ext4_chunk_trans_blocks(inode,
775                                       bh_result->b_size >> inode->i_blkbits);
776         return ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
777 }
778
779 /* Get block function for DIO reads and writes to inodes without extents */
780 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
781                        struct buffer_head *bh, int create)
782 {
783         handle_t *handle;
784         int ret;
785
786         /* We don't expect handle for direct IO */
787         WARN_ON_ONCE(ext4_journal_current_handle());
788
789         if (create) {
790                 handle = start_dio_trans(inode, bh);
791                 if (IS_ERR(handle))
792                         return PTR_ERR(handle);
793         }
794         ret = _ext4_get_block(inode, iblock, bh,
795                               create ? EXT4_GET_BLOCKS_CREATE : 0);
796         if (create)
797                 ext4_journal_stop(handle);
798         return ret;
799 }
800
801 /*
802  * Get block function for AIO DIO writes when we create unwritten extent if
803  * blocks are not allocated yet. The extent will be converted to written
804  * after IO is complete.
805  */
806 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
807                 sector_t iblock, struct buffer_head *bh_result, int create)
808 {
809         handle_t *handle;
810         int ret;
811
812         /* We don't expect handle for direct IO */
813         WARN_ON_ONCE(ext4_journal_current_handle());
814
815         handle = start_dio_trans(inode, bh_result);
816         if (IS_ERR(handle))
817                 return PTR_ERR(handle);
818         ret = _ext4_get_block(inode, iblock, bh_result,
819                               EXT4_GET_BLOCKS_IO_CREATE_EXT);
820         ext4_journal_stop(handle);
821
822         /*
823          * When doing DIO using unwritten extents, we need io_end to convert
824          * unwritten extents to written on IO completion. We allocate io_end
825          * once we spot unwritten extent and store it in b_private. Generic
826          * DIO code keeps b_private set and furthermore passes the value to
827          * our completion callback in 'private' argument.
828          */
829         if (!ret && buffer_unwritten(bh_result)) {
830                 if (!bh_result->b_private) {
831                         ext4_io_end_t *io_end;
832
833                         io_end = ext4_init_io_end(inode, GFP_KERNEL);
834                         if (!io_end)
835                                 return -ENOMEM;
836                         bh_result->b_private = io_end;
837                         ext4_set_io_unwritten_flag(inode, io_end);
838                 }
839                 set_buffer_defer_completion(bh_result);
840         }
841
842         return ret;
843 }
844
845 /*
846  * Get block function for non-AIO DIO writes when we create unwritten extent if
847  * blocks are not allocated yet. The extent will be converted to written
848  * after IO is complete from ext4_ext_direct_IO() function.
849  */
850 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
851                 sector_t iblock, struct buffer_head *bh_result, int create)
852 {
853         handle_t *handle;
854         int ret;
855
856         /* We don't expect handle for direct IO */
857         WARN_ON_ONCE(ext4_journal_current_handle());
858
859         handle = start_dio_trans(inode, bh_result);
860         if (IS_ERR(handle))
861                 return PTR_ERR(handle);
862         ret = _ext4_get_block(inode, iblock, bh_result,
863                               EXT4_GET_BLOCKS_IO_CREATE_EXT);
864         ext4_journal_stop(handle);
865
866         /*
867          * Mark inode as having pending DIO writes to unwritten extents.
868          * ext4_ext_direct_IO() checks this flag and converts extents to
869          * written.
870          */
871         if (!ret && buffer_unwritten(bh_result))
872                 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
873
874         return ret;
875 }
876
877 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
878                    struct buffer_head *bh_result, int create)
879 {
880         int ret;
881
882         ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
883                    inode->i_ino, create);
884         /* We don't expect handle for direct IO */
885         WARN_ON_ONCE(ext4_journal_current_handle());
886
887         ret = _ext4_get_block(inode, iblock, bh_result, 0);
888         /*
889          * Blocks should have been preallocated! ext4_file_write_iter() checks
890          * that.
891          */
892         WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
893
894         return ret;
895 }
896
897
898 /*
899  * `handle' can be NULL if create is zero
900  */
901 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
902                                 ext4_lblk_t block, int map_flags)
903 {
904         struct ext4_map_blocks map;
905         struct buffer_head *bh;
906         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
907         int err;
908
909         J_ASSERT(handle != NULL || create == 0);
910
911         map.m_lblk = block;
912         map.m_len = 1;
913         err = ext4_map_blocks(handle, inode, &map, map_flags);
914
915         if (err == 0)
916                 return create ? ERR_PTR(-ENOSPC) : NULL;
917         if (err < 0)
918                 return ERR_PTR(err);
919
920         bh = sb_getblk(inode->i_sb, map.m_pblk);
921         if (unlikely(!bh))
922                 return ERR_PTR(-ENOMEM);
923         if (map.m_flags & EXT4_MAP_NEW) {
924                 J_ASSERT(create != 0);
925                 J_ASSERT(handle != NULL);
926
927                 /*
928                  * Now that we do not always journal data, we should
929                  * keep in mind whether this should always journal the
930                  * new buffer as metadata.  For now, regular file
931                  * writes use ext4_get_block instead, so it's not a
932                  * problem.
933                  */
934                 lock_buffer(bh);
935                 BUFFER_TRACE(bh, "call get_create_access");
936                 err = ext4_journal_get_create_access(handle, bh);
937                 if (unlikely(err)) {
938                         unlock_buffer(bh);
939                         goto errout;
940                 }
941                 if (!buffer_uptodate(bh)) {
942                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
943                         set_buffer_uptodate(bh);
944                 }
945                 unlock_buffer(bh);
946                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
947                 err = ext4_handle_dirty_metadata(handle, inode, bh);
948                 if (unlikely(err))
949                         goto errout;
950         } else
951                 BUFFER_TRACE(bh, "not a new buffer");
952         return bh;
953 errout:
954         brelse(bh);
955         return ERR_PTR(err);
956 }
957
958 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
959                                ext4_lblk_t block, int map_flags)
960 {
961         struct buffer_head *bh;
962
963         bh = ext4_getblk(handle, inode, block, map_flags);
964         if (IS_ERR(bh))
965                 return bh;
966         if (!bh || buffer_uptodate(bh))
967                 return bh;
968         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
969         wait_on_buffer(bh);
970         if (buffer_uptodate(bh))
971                 return bh;
972         put_bh(bh);
973         return ERR_PTR(-EIO);
974 }
975
976 int ext4_walk_page_buffers(handle_t *handle,
977                            struct buffer_head *head,
978                            unsigned from,
979                            unsigned to,
980                            int *partial,
981                            int (*fn)(handle_t *handle,
982                                      struct buffer_head *bh))
983 {
984         struct buffer_head *bh;
985         unsigned block_start, block_end;
986         unsigned blocksize = head->b_size;
987         int err, ret = 0;
988         struct buffer_head *next;
989
990         for (bh = head, block_start = 0;
991              ret == 0 && (bh != head || !block_start);
992              block_start = block_end, bh = next) {
993                 next = bh->b_this_page;
994                 block_end = block_start + blocksize;
995                 if (block_end <= from || block_start >= to) {
996                         if (partial && !buffer_uptodate(bh))
997                                 *partial = 1;
998                         continue;
999                 }
1000                 err = (*fn)(handle, bh);
1001                 if (!ret)
1002                         ret = err;
1003         }
1004         return ret;
1005 }
1006
1007 /*
1008  * To preserve ordering, it is essential that the hole instantiation and
1009  * the data write be encapsulated in a single transaction.  We cannot
1010  * close off a transaction and start a new one between the ext4_get_block()
1011  * and the commit_write().  So doing the jbd2_journal_start at the start of
1012  * prepare_write() is the right place.
1013  *
1014  * Also, this function can nest inside ext4_writepage().  In that case, we
1015  * *know* that ext4_writepage() has generated enough buffer credits to do the
1016  * whole page.  So we won't block on the journal in that case, which is good,
1017  * because the caller may be PF_MEMALLOC.
1018  *
1019  * By accident, ext4 can be reentered when a transaction is open via
1020  * quota file writes.  If we were to commit the transaction while thus
1021  * reentered, there can be a deadlock - we would be holding a quota
1022  * lock, and the commit would never complete if another thread had a
1023  * transaction open and was blocking on the quota lock - a ranking
1024  * violation.
1025  *
1026  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1027  * will _not_ run commit under these circumstances because handle->h_ref
1028  * is elevated.  We'll still have enough credits for the tiny quotafile
1029  * write.
1030  */
1031 int do_journal_get_write_access(handle_t *handle,
1032                                 struct buffer_head *bh)
1033 {
1034         int dirty = buffer_dirty(bh);
1035         int ret;
1036
1037         if (!buffer_mapped(bh) || buffer_freed(bh))
1038                 return 0;
1039         /*
1040          * __block_write_begin() could have dirtied some buffers. Clean
1041          * the dirty bit as jbd2_journal_get_write_access() could complain
1042          * otherwise about fs integrity issues. Setting of the dirty bit
1043          * by __block_write_begin() isn't a real problem here as we clear
1044          * the bit before releasing a page lock and thus writeback cannot
1045          * ever write the buffer.
1046          */
1047         if (dirty)
1048                 clear_buffer_dirty(bh);
1049         BUFFER_TRACE(bh, "get write access");
1050         ret = ext4_journal_get_write_access(handle, bh);
1051         if (!ret && dirty)
1052                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1053         return ret;
1054 }
1055
1056 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1057 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1058                                   get_block_t *get_block)
1059 {
1060         unsigned from = pos & (PAGE_SIZE - 1);
1061         unsigned to = from + len;
1062         struct inode *inode = page->mapping->host;
1063         unsigned block_start, block_end;
1064         sector_t block;
1065         int err = 0;
1066         unsigned blocksize = inode->i_sb->s_blocksize;
1067         unsigned bbits;
1068         struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1069         bool decrypt = false;
1070
1071         BUG_ON(!PageLocked(page));
1072         BUG_ON(from > PAGE_SIZE);
1073         BUG_ON(to > PAGE_SIZE);
1074         BUG_ON(from > to);
1075
1076         if (!page_has_buffers(page))
1077                 create_empty_buffers(page, blocksize, 0);
1078         head = page_buffers(page);
1079         bbits = ilog2(blocksize);
1080         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1081
1082         for (bh = head, block_start = 0; bh != head || !block_start;
1083             block++, block_start = block_end, bh = bh->b_this_page) {
1084                 block_end = block_start + blocksize;
1085                 if (block_end <= from || block_start >= to) {
1086                         if (PageUptodate(page)) {
1087                                 if (!buffer_uptodate(bh))
1088                                         set_buffer_uptodate(bh);
1089                         }
1090                         continue;
1091                 }
1092                 if (buffer_new(bh))
1093                         clear_buffer_new(bh);
1094                 if (!buffer_mapped(bh)) {
1095                         WARN_ON(bh->b_size != blocksize);
1096                         err = get_block(inode, block, bh, 1);
1097                         if (err)
1098                                 break;
1099                         if (buffer_new(bh)) {
1100                                 unmap_underlying_metadata(bh->b_bdev,
1101                                                           bh->b_blocknr);
1102                                 if (PageUptodate(page)) {
1103                                         clear_buffer_new(bh);
1104                                         set_buffer_uptodate(bh);
1105                                         mark_buffer_dirty(bh);
1106                                         continue;
1107                                 }
1108                                 if (block_end > to || block_start < from)
1109                                         zero_user_segments(page, to, block_end,
1110                                                            block_start, from);
1111                                 continue;
1112                         }
1113                 }
1114                 if (PageUptodate(page)) {
1115                         if (!buffer_uptodate(bh))
1116                                 set_buffer_uptodate(bh);
1117                         continue;
1118                 }
1119                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1120                     !buffer_unwritten(bh) &&
1121                     (block_start < from || block_end > to)) {
1122                         ll_rw_block(READ, 1, &bh);
1123                         *wait_bh++ = bh;
1124                         decrypt = ext4_encrypted_inode(inode) &&
1125                                 S_ISREG(inode->i_mode);
1126                 }
1127         }
1128         /*
1129          * If we issued read requests, let them complete.
1130          */
1131         while (wait_bh > wait) {
1132                 wait_on_buffer(*--wait_bh);
1133                 if (!buffer_uptodate(*wait_bh))
1134                         err = -EIO;
1135         }
1136         if (unlikely(err))
1137                 page_zero_new_buffers(page, from, to);
1138         else if (decrypt)
1139                 err = ext4_decrypt(page);
1140         return err;
1141 }
1142 #endif
1143
1144 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1145                             loff_t pos, unsigned len, unsigned flags,
1146                             struct page **pagep, void **fsdata)
1147 {
1148         struct inode *inode = mapping->host;
1149         int ret, needed_blocks;
1150         handle_t *handle;
1151         int retries = 0;
1152         struct page *page;
1153         pgoff_t index;
1154         unsigned from, to;
1155
1156         trace_ext4_write_begin(inode, pos, len, flags);
1157         /*
1158          * Reserve one block more for addition to orphan list in case
1159          * we allocate blocks but write fails for some reason
1160          */
1161         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1162         index = pos >> PAGE_SHIFT;
1163         from = pos & (PAGE_SIZE - 1);
1164         to = from + len;
1165
1166         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1167                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1168                                                     flags, pagep);
1169                 if (ret < 0)
1170                         return ret;
1171                 if (ret == 1)
1172                         return 0;
1173         }
1174
1175         /*
1176          * grab_cache_page_write_begin() can take a long time if the
1177          * system is thrashing due to memory pressure, or if the page
1178          * is being written back.  So grab it first before we start
1179          * the transaction handle.  This also allows us to allocate
1180          * the page (if needed) without using GFP_NOFS.
1181          */
1182 retry_grab:
1183         page = grab_cache_page_write_begin(mapping, index, flags);
1184         if (!page)
1185                 return -ENOMEM;
1186         unlock_page(page);
1187
1188 retry_journal:
1189         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1190         if (IS_ERR(handle)) {
1191                 put_page(page);
1192                 return PTR_ERR(handle);
1193         }
1194
1195         lock_page(page);
1196         if (page->mapping != mapping) {
1197                 /* The page got truncated from under us */
1198                 unlock_page(page);
1199                 put_page(page);
1200                 ext4_journal_stop(handle);
1201                 goto retry_grab;
1202         }
1203         /* In case writeback began while the page was unlocked */
1204         wait_for_stable_page(page);
1205
1206 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1207         if (ext4_should_dioread_nolock(inode))
1208                 ret = ext4_block_write_begin(page, pos, len,
1209                                              ext4_get_block_unwritten);
1210         else
1211                 ret = ext4_block_write_begin(page, pos, len,
1212                                              ext4_get_block);
1213 #else
1214         if (ext4_should_dioread_nolock(inode))
1215                 ret = __block_write_begin(page, pos, len,
1216                                           ext4_get_block_unwritten);
1217         else
1218                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1219 #endif
1220         if (!ret && ext4_should_journal_data(inode)) {
1221                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1222                                              from, to, NULL,
1223                                              do_journal_get_write_access);
1224         }
1225
1226         if (ret) {
1227                 unlock_page(page);
1228                 /*
1229                  * __block_write_begin may have instantiated a few blocks
1230                  * outside i_size.  Trim these off again. Don't need
1231                  * i_size_read because we hold i_mutex.
1232                  *
1233                  * Add inode to orphan list in case we crash before
1234                  * truncate finishes
1235                  */
1236                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1237                         ext4_orphan_add(handle, inode);
1238
1239                 ext4_journal_stop(handle);
1240                 if (pos + len > inode->i_size) {
1241                         ext4_truncate_failed_write(inode);
1242                         /*
1243                          * If truncate failed early the inode might
1244                          * still be on the orphan list; we need to
1245                          * make sure the inode is removed from the
1246                          * orphan list in that case.
1247                          */
1248                         if (inode->i_nlink)
1249                                 ext4_orphan_del(NULL, inode);
1250                 }
1251
1252                 if (ret == -ENOSPC &&
1253                     ext4_should_retry_alloc(inode->i_sb, &retries))
1254                         goto retry_journal;
1255                 put_page(page);
1256                 return ret;
1257         }
1258         *pagep = page;
1259         return ret;
1260 }
1261
1262 /* For write_end() in data=journal mode */
1263 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1264 {
1265         int ret;
1266         if (!buffer_mapped(bh) || buffer_freed(bh))
1267                 return 0;
1268         set_buffer_uptodate(bh);
1269         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1270         clear_buffer_meta(bh);
1271         clear_buffer_prio(bh);
1272         return ret;
1273 }
1274
1275 /*
1276  * We need to pick up the new inode size which generic_commit_write gave us
1277  * `file' can be NULL - eg, when called from page_symlink().
1278  *
1279  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1280  * buffers are managed internally.
1281  */
1282 static int ext4_write_end(struct file *file,
1283                           struct address_space *mapping,
1284                           loff_t pos, unsigned len, unsigned copied,
1285                           struct page *page, void *fsdata)
1286 {
1287         handle_t *handle = ext4_journal_current_handle();
1288         struct inode *inode = mapping->host;
1289         loff_t old_size = inode->i_size;
1290         int ret = 0, ret2;
1291         int i_size_changed = 0;
1292
1293         trace_ext4_write_end(inode, pos, len, copied);
1294         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1295                 ret = ext4_jbd2_file_inode(handle, inode);
1296                 if (ret) {
1297                         unlock_page(page);
1298                         put_page(page);
1299                         goto errout;
1300                 }
1301         }
1302
1303         if (ext4_has_inline_data(inode)) {
1304                 ret = ext4_write_inline_data_end(inode, pos, len,
1305                                                  copied, page);
1306                 if (ret < 0)
1307                         goto errout;
1308                 copied = ret;
1309         } else
1310                 copied = block_write_end(file, mapping, pos,
1311                                          len, copied, page, fsdata);
1312         /*
1313          * it's important to update i_size while still holding page lock:
1314          * page writeout could otherwise come in and zero beyond i_size.
1315          */
1316         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1317         unlock_page(page);
1318         put_page(page);
1319
1320         if (old_size < pos)
1321                 pagecache_isize_extended(inode, old_size, pos);
1322         /*
1323          * Don't mark the inode dirty under page lock. First, it unnecessarily
1324          * makes the holding time of page lock longer. Second, it forces lock
1325          * ordering of page lock and transaction start for journaling
1326          * filesystems.
1327          */
1328         if (i_size_changed)
1329                 ext4_mark_inode_dirty(handle, inode);
1330
1331         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1332                 /* if we have allocated more blocks and copied
1333                  * less. We will have blocks allocated outside
1334                  * inode->i_size. So truncate them
1335                  */
1336                 ext4_orphan_add(handle, inode);
1337 errout:
1338         ret2 = ext4_journal_stop(handle);
1339         if (!ret)
1340                 ret = ret2;
1341
1342         if (pos + len > inode->i_size) {
1343                 ext4_truncate_failed_write(inode);
1344                 /*
1345                  * If truncate failed early the inode might still be
1346                  * on the orphan list; we need to make sure the inode
1347                  * is removed from the orphan list in that case.
1348                  */
1349                 if (inode->i_nlink)
1350                         ext4_orphan_del(NULL, inode);
1351         }
1352
1353         return ret ? ret : copied;
1354 }
1355
1356 /*
1357  * This is a private version of page_zero_new_buffers() which doesn't
1358  * set the buffer to be dirty, since in data=journalled mode we need
1359  * to call ext4_handle_dirty_metadata() instead.
1360  */
1361 static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
1362 {
1363         unsigned int block_start = 0, block_end;
1364         struct buffer_head *head, *bh;
1365
1366         bh = head = page_buffers(page);
1367         do {
1368                 block_end = block_start + bh->b_size;
1369                 if (buffer_new(bh)) {
1370                         if (block_end > from && block_start < to) {
1371                                 if (!PageUptodate(page)) {
1372                                         unsigned start, size;
1373
1374                                         start = max(from, block_start);
1375                                         size = min(to, block_end) - start;
1376
1377                                         zero_user(page, start, size);
1378                                         set_buffer_uptodate(bh);
1379                                 }
1380                                 clear_buffer_new(bh);
1381                         }
1382                 }
1383                 block_start = block_end;
1384                 bh = bh->b_this_page;
1385         } while (bh != head);
1386 }
1387
1388 static int ext4_journalled_write_end(struct file *file,
1389                                      struct address_space *mapping,
1390                                      loff_t pos, unsigned len, unsigned copied,
1391                                      struct page *page, void *fsdata)
1392 {
1393         handle_t *handle = ext4_journal_current_handle();
1394         struct inode *inode = mapping->host;
1395         loff_t old_size = inode->i_size;
1396         int ret = 0, ret2;
1397         int partial = 0;
1398         unsigned from, to;
1399         int size_changed = 0;
1400
1401         trace_ext4_journalled_write_end(inode, pos, len, copied);
1402         from = pos & (PAGE_SIZE - 1);
1403         to = from + len;
1404
1405         BUG_ON(!ext4_handle_valid(handle));
1406
1407         if (ext4_has_inline_data(inode))
1408                 copied = ext4_write_inline_data_end(inode, pos, len,
1409                                                     copied, page);
1410         else {
1411                 if (copied < len) {
1412                         if (!PageUptodate(page))
1413                                 copied = 0;
1414                         zero_new_buffers(page, from+copied, to);
1415                 }
1416
1417                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1418                                              to, &partial, write_end_fn);
1419                 if (!partial)
1420                         SetPageUptodate(page);
1421         }
1422         size_changed = ext4_update_inode_size(inode, pos + copied);
1423         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1424         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1425         unlock_page(page);
1426         put_page(page);
1427
1428         if (old_size < pos)
1429                 pagecache_isize_extended(inode, old_size, pos);
1430
1431         if (size_changed) {
1432                 ret2 = ext4_mark_inode_dirty(handle, inode);
1433                 if (!ret)
1434                         ret = ret2;
1435         }
1436
1437         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1438                 /* if we have allocated more blocks and copied
1439                  * less. We will have blocks allocated outside
1440                  * inode->i_size. So truncate them
1441                  */
1442                 ext4_orphan_add(handle, inode);
1443
1444         ret2 = ext4_journal_stop(handle);
1445         if (!ret)
1446                 ret = ret2;
1447         if (pos + len > inode->i_size) {
1448                 ext4_truncate_failed_write(inode);
1449                 /*
1450                  * If truncate failed early the inode might still be
1451                  * on the orphan list; we need to make sure the inode
1452                  * is removed from the orphan list in that case.
1453                  */
1454                 if (inode->i_nlink)
1455                         ext4_orphan_del(NULL, inode);
1456         }
1457
1458         return ret ? ret : copied;
1459 }
1460
1461 /*
1462  * Reserve space for a single cluster
1463  */
1464 static int ext4_da_reserve_space(struct inode *inode)
1465 {
1466         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1467         struct ext4_inode_info *ei = EXT4_I(inode);
1468         int ret;
1469
1470         /*
1471          * We will charge metadata quota at writeout time; this saves
1472          * us from metadata over-estimation, though we may go over by
1473          * a small amount in the end.  Here we just reserve for data.
1474          */
1475         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1476         if (ret)
1477                 return ret;
1478
1479         spin_lock(&ei->i_block_reservation_lock);
1480         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1481                 spin_unlock(&ei->i_block_reservation_lock);
1482                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1483                 return -ENOSPC;
1484         }
1485         ei->i_reserved_data_blocks++;
1486         trace_ext4_da_reserve_space(inode);
1487         spin_unlock(&ei->i_block_reservation_lock);
1488
1489         return 0;       /* success */
1490 }
1491
1492 static void ext4_da_release_space(struct inode *inode, int to_free)
1493 {
1494         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1495         struct ext4_inode_info *ei = EXT4_I(inode);
1496
1497         if (!to_free)
1498                 return;         /* Nothing to release, exit */
1499
1500         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1501
1502         trace_ext4_da_release_space(inode, to_free);
1503         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1504                 /*
1505                  * if there aren't enough reserved blocks, then the
1506                  * counter is messed up somewhere.  Since this
1507                  * function is called from invalidate page, it's
1508                  * harmless to return without any action.
1509                  */
1510                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1511                          "ino %lu, to_free %d with only %d reserved "
1512                          "data blocks", inode->i_ino, to_free,
1513                          ei->i_reserved_data_blocks);
1514                 WARN_ON(1);
1515                 to_free = ei->i_reserved_data_blocks;
1516         }
1517         ei->i_reserved_data_blocks -= to_free;
1518
1519         /* update fs dirty data blocks counter */
1520         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1521
1522         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1523
1524         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1525 }
1526
1527 static void ext4_da_page_release_reservation(struct page *page,
1528                                              unsigned int offset,
1529                                              unsigned int length)
1530 {
1531         int to_release = 0, contiguous_blks = 0;
1532         struct buffer_head *head, *bh;
1533         unsigned int curr_off = 0;
1534         struct inode *inode = page->mapping->host;
1535         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1536         unsigned int stop = offset + length;
1537         int num_clusters;
1538         ext4_fsblk_t lblk;
1539
1540         BUG_ON(stop > PAGE_SIZE || stop < length);
1541
1542         head = page_buffers(page);
1543         bh = head;
1544         do {
1545                 unsigned int next_off = curr_off + bh->b_size;
1546
1547                 if (next_off > stop)
1548                         break;
1549
1550                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1551                         to_release++;
1552                         contiguous_blks++;
1553                         clear_buffer_delay(bh);
1554                 } else if (contiguous_blks) {
1555                         lblk = page->index <<
1556                                (PAGE_SHIFT - inode->i_blkbits);
1557                         lblk += (curr_off >> inode->i_blkbits) -
1558                                 contiguous_blks;
1559                         ext4_es_remove_extent(inode, lblk, contiguous_blks);
1560                         contiguous_blks = 0;
1561                 }
1562                 curr_off = next_off;
1563         } while ((bh = bh->b_this_page) != head);
1564
1565         if (contiguous_blks) {
1566                 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1567                 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1568                 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1569         }
1570
1571         /* If we have released all the blocks belonging to a cluster, then we
1572          * need to release the reserved space for that cluster. */
1573         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1574         while (num_clusters > 0) {
1575                 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1576                         ((num_clusters - 1) << sbi->s_cluster_bits);
1577                 if (sbi->s_cluster_ratio == 1 ||
1578                     !ext4_find_delalloc_cluster(inode, lblk))
1579                         ext4_da_release_space(inode, 1);
1580
1581                 num_clusters--;
1582         }
1583 }
1584
1585 /*
1586  * Delayed allocation stuff
1587  */
1588
1589 struct mpage_da_data {
1590         struct inode *inode;
1591         struct writeback_control *wbc;
1592
1593         pgoff_t first_page;     /* The first page to write */
1594         pgoff_t next_page;      /* Current page to examine */
1595         pgoff_t last_page;      /* Last page to examine */
1596         /*
1597          * Extent to map - this can be after first_page because that can be
1598          * fully mapped. We somewhat abuse m_flags to store whether the extent
1599          * is delalloc or unwritten.
1600          */
1601         struct ext4_map_blocks map;
1602         struct ext4_io_submit io_submit;        /* IO submission data */
1603 };
1604
1605 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1606                                        bool invalidate)
1607 {
1608         int nr_pages, i;
1609         pgoff_t index, end;
1610         struct pagevec pvec;
1611         struct inode *inode = mpd->inode;
1612         struct address_space *mapping = inode->i_mapping;
1613
1614         /* This is necessary when next_page == 0. */
1615         if (mpd->first_page >= mpd->next_page)
1616                 return;
1617
1618         index = mpd->first_page;
1619         end   = mpd->next_page - 1;
1620         if (invalidate) {
1621                 ext4_lblk_t start, last;
1622                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1623                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1624                 ext4_es_remove_extent(inode, start, last - start + 1);
1625         }
1626
1627         pagevec_init(&pvec, 0);
1628         while (index <= end) {
1629                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1630                 if (nr_pages == 0)
1631                         break;
1632                 for (i = 0; i < nr_pages; i++) {
1633                         struct page *page = pvec.pages[i];
1634                         if (page->index > end)
1635                                 break;
1636                         BUG_ON(!PageLocked(page));
1637                         BUG_ON(PageWriteback(page));
1638                         if (invalidate) {
1639                                 block_invalidatepage(page, 0, PAGE_SIZE);
1640                                 ClearPageUptodate(page);
1641                         }
1642                         unlock_page(page);
1643                 }
1644                 index = pvec.pages[nr_pages - 1]->index + 1;
1645                 pagevec_release(&pvec);
1646         }
1647 }
1648
1649 static void ext4_print_free_blocks(struct inode *inode)
1650 {
1651         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1652         struct super_block *sb = inode->i_sb;
1653         struct ext4_inode_info *ei = EXT4_I(inode);
1654
1655         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1656                EXT4_C2B(EXT4_SB(inode->i_sb),
1657                         ext4_count_free_clusters(sb)));
1658         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1659         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1660                (long long) EXT4_C2B(EXT4_SB(sb),
1661                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1662         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1663                (long long) EXT4_C2B(EXT4_SB(sb),
1664                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1665         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1666         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1667                  ei->i_reserved_data_blocks);
1668         return;
1669 }
1670
1671 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1672 {
1673         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1674 }
1675
1676 /*
1677  * This function is grabs code from the very beginning of
1678  * ext4_map_blocks, but assumes that the caller is from delayed write
1679  * time. This function looks up the requested blocks and sets the
1680  * buffer delay bit under the protection of i_data_sem.
1681  */
1682 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1683                               struct ext4_map_blocks *map,
1684                               struct buffer_head *bh)
1685 {
1686         struct extent_status es;
1687         int retval;
1688         sector_t invalid_block = ~((sector_t) 0xffff);
1689 #ifdef ES_AGGRESSIVE_TEST
1690         struct ext4_map_blocks orig_map;
1691
1692         memcpy(&orig_map, map, sizeof(*map));
1693 #endif
1694
1695         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1696                 invalid_block = ~0;
1697
1698         map->m_flags = 0;
1699         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1700                   "logical block %lu\n", inode->i_ino, map->m_len,
1701                   (unsigned long) map->m_lblk);
1702
1703         /* Lookup extent status tree firstly */
1704         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1705                 if (ext4_es_is_hole(&es)) {
1706                         retval = 0;
1707                         down_read(&EXT4_I(inode)->i_data_sem);
1708                         goto add_delayed;
1709                 }
1710
1711                 /*
1712                  * Delayed extent could be allocated by fallocate.
1713                  * So we need to check it.
1714                  */
1715                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1716                         map_bh(bh, inode->i_sb, invalid_block);
1717                         set_buffer_new(bh);
1718                         set_buffer_delay(bh);
1719                         return 0;
1720                 }
1721
1722                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1723                 retval = es.es_len - (iblock - es.es_lblk);
1724                 if (retval > map->m_len)
1725                         retval = map->m_len;
1726                 map->m_len = retval;
1727                 if (ext4_es_is_written(&es))
1728                         map->m_flags |= EXT4_MAP_MAPPED;
1729                 else if (ext4_es_is_unwritten(&es))
1730                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1731                 else
1732                         BUG_ON(1);
1733
1734 #ifdef ES_AGGRESSIVE_TEST
1735                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1736 #endif
1737                 return retval;
1738         }
1739
1740         /*
1741          * Try to see if we can get the block without requesting a new
1742          * file system block.
1743          */
1744         down_read(&EXT4_I(inode)->i_data_sem);
1745         if (ext4_has_inline_data(inode))
1746                 retval = 0;
1747         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1748                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1749         else
1750                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1751
1752 add_delayed:
1753         if (retval == 0) {
1754                 int ret;
1755                 /*
1756                  * XXX: __block_prepare_write() unmaps passed block,
1757                  * is it OK?
1758                  */
1759                 /*
1760                  * If the block was allocated from previously allocated cluster,
1761                  * then we don't need to reserve it again. However we still need
1762                  * to reserve metadata for every block we're going to write.
1763                  */
1764                 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1765                     !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1766                         ret = ext4_da_reserve_space(inode);
1767                         if (ret) {
1768                                 /* not enough space to reserve */
1769                                 retval = ret;
1770                                 goto out_unlock;
1771                         }
1772                 }
1773
1774                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1775                                             ~0, EXTENT_STATUS_DELAYED);
1776                 if (ret) {
1777                         retval = ret;
1778                         goto out_unlock;
1779                 }
1780
1781                 map_bh(bh, inode->i_sb, invalid_block);
1782                 set_buffer_new(bh);
1783                 set_buffer_delay(bh);
1784         } else if (retval > 0) {
1785                 int ret;
1786                 unsigned int status;
1787
1788                 if (unlikely(retval != map->m_len)) {
1789                         ext4_warning(inode->i_sb,
1790                                      "ES len assertion failed for inode "
1791                                      "%lu: retval %d != map->m_len %d",
1792                                      inode->i_ino, retval, map->m_len);
1793                         WARN_ON(1);
1794                 }
1795
1796                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1797                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1798                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1799                                             map->m_pblk, status);
1800                 if (ret != 0)
1801                         retval = ret;
1802         }
1803
1804 out_unlock:
1805         up_read((&EXT4_I(inode)->i_data_sem));
1806
1807         return retval;
1808 }
1809
1810 /*
1811  * This is a special get_block_t callback which is used by
1812  * ext4_da_write_begin().  It will either return mapped block or
1813  * reserve space for a single block.
1814  *
1815  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1816  * We also have b_blocknr = -1 and b_bdev initialized properly
1817  *
1818  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1819  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1820  * initialized properly.
1821  */
1822 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1823                            struct buffer_head *bh, int create)
1824 {
1825         struct ext4_map_blocks map;
1826         int ret = 0;
1827
1828         BUG_ON(create == 0);
1829         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1830
1831         map.m_lblk = iblock;
1832         map.m_len = 1;
1833
1834         /*
1835          * first, we need to know whether the block is allocated already
1836          * preallocated blocks are unmapped but should treated
1837          * the same as allocated blocks.
1838          */
1839         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1840         if (ret <= 0)
1841                 return ret;
1842
1843         map_bh(bh, inode->i_sb, map.m_pblk);
1844         ext4_update_bh_state(bh, map.m_flags);
1845
1846         if (buffer_unwritten(bh)) {
1847                 /* A delayed write to unwritten bh should be marked
1848                  * new and mapped.  Mapped ensures that we don't do
1849                  * get_block multiple times when we write to the same
1850                  * offset and new ensures that we do proper zero out
1851                  * for partial write.
1852                  */
1853                 set_buffer_new(bh);
1854                 set_buffer_mapped(bh);
1855         }
1856         return 0;
1857 }
1858
1859 static int bget_one(handle_t *handle, struct buffer_head *bh)
1860 {
1861         get_bh(bh);
1862         return 0;
1863 }
1864
1865 static int bput_one(handle_t *handle, struct buffer_head *bh)
1866 {
1867         put_bh(bh);
1868         return 0;
1869 }
1870
1871 static int __ext4_journalled_writepage(struct page *page,
1872                                        unsigned int len)
1873 {
1874         struct address_space *mapping = page->mapping;
1875         struct inode *inode = mapping->host;
1876         struct buffer_head *page_bufs = NULL;
1877         handle_t *handle = NULL;
1878         int ret = 0, err = 0;
1879         int inline_data = ext4_has_inline_data(inode);
1880         struct buffer_head *inode_bh = NULL;
1881
1882         ClearPageChecked(page);
1883
1884         if (inline_data) {
1885                 BUG_ON(page->index != 0);
1886                 BUG_ON(len > ext4_get_max_inline_size(inode));
1887                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1888                 if (inode_bh == NULL)
1889                         goto out;
1890         } else {
1891                 page_bufs = page_buffers(page);
1892                 if (!page_bufs) {
1893                         BUG();
1894                         goto out;
1895                 }
1896                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1897                                        NULL, bget_one);
1898         }
1899         /*
1900          * We need to release the page lock before we start the
1901          * journal, so grab a reference so the page won't disappear
1902          * out from under us.
1903          */
1904         get_page(page);
1905         unlock_page(page);
1906
1907         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1908                                     ext4_writepage_trans_blocks(inode));
1909         if (IS_ERR(handle)) {
1910                 ret = PTR_ERR(handle);
1911                 put_page(page);
1912                 goto out_no_pagelock;
1913         }
1914         BUG_ON(!ext4_handle_valid(handle));
1915
1916         lock_page(page);
1917         put_page(page);
1918         if (page->mapping != mapping) {
1919                 /* The page got truncated from under us */
1920                 ext4_journal_stop(handle);
1921                 ret = 0;
1922                 goto out;
1923         }
1924
1925         if (inline_data) {
1926                 BUFFER_TRACE(inode_bh, "get write access");
1927                 ret = ext4_journal_get_write_access(handle, inode_bh);
1928
1929                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1930
1931         } else {
1932                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1933                                              do_journal_get_write_access);
1934
1935                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1936                                              write_end_fn);
1937         }
1938         if (ret == 0)
1939                 ret = err;
1940         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1941         err = ext4_journal_stop(handle);
1942         if (!ret)
1943                 ret = err;
1944
1945         if (!ext4_has_inline_data(inode))
1946                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1947                                        NULL, bput_one);
1948         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1949 out:
1950         unlock_page(page);
1951 out_no_pagelock:
1952         brelse(inode_bh);
1953         return ret;
1954 }
1955
1956 /*
1957  * Note that we don't need to start a transaction unless we're journaling data
1958  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1959  * need to file the inode to the transaction's list in ordered mode because if
1960  * we are writing back data added by write(), the inode is already there and if
1961  * we are writing back data modified via mmap(), no one guarantees in which
1962  * transaction the data will hit the disk. In case we are journaling data, we
1963  * cannot start transaction directly because transaction start ranks above page
1964  * lock so we have to do some magic.
1965  *
1966  * This function can get called via...
1967  *   - ext4_writepages after taking page lock (have journal handle)
1968  *   - journal_submit_inode_data_buffers (no journal handle)
1969  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1970  *   - grab_page_cache when doing write_begin (have journal handle)
1971  *
1972  * We don't do any block allocation in this function. If we have page with
1973  * multiple blocks we need to write those buffer_heads that are mapped. This
1974  * is important for mmaped based write. So if we do with blocksize 1K
1975  * truncate(f, 1024);
1976  * a = mmap(f, 0, 4096);
1977  * a[0] = 'a';
1978  * truncate(f, 4096);
1979  * we have in the page first buffer_head mapped via page_mkwrite call back
1980  * but other buffer_heads would be unmapped but dirty (dirty done via the
1981  * do_wp_page). So writepage should write the first block. If we modify
1982  * the mmap area beyond 1024 we will again get a page_fault and the
1983  * page_mkwrite callback will do the block allocation and mark the
1984  * buffer_heads mapped.
1985  *
1986  * We redirty the page if we have any buffer_heads that is either delay or
1987  * unwritten in the page.
1988  *
1989  * We can get recursively called as show below.
1990  *
1991  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1992  *              ext4_writepage()
1993  *
1994  * But since we don't do any block allocation we should not deadlock.
1995  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1996  */
1997 static int ext4_writepage(struct page *page,
1998                           struct writeback_control *wbc)
1999 {
2000         int ret = 0;
2001         loff_t size;
2002         unsigned int len;
2003         struct buffer_head *page_bufs = NULL;
2004         struct inode *inode = page->mapping->host;
2005         struct ext4_io_submit io_submit;
2006         bool keep_towrite = false;
2007
2008         trace_ext4_writepage(page);
2009         size = i_size_read(inode);
2010         if (page->index == size >> PAGE_SHIFT)
2011                 len = size & ~PAGE_MASK;
2012         else
2013                 len = PAGE_SIZE;
2014
2015         page_bufs = page_buffers(page);
2016         /*
2017          * We cannot do block allocation or other extent handling in this
2018          * function. If there are buffers needing that, we have to redirty
2019          * the page. But we may reach here when we do a journal commit via
2020          * journal_submit_inode_data_buffers() and in that case we must write
2021          * allocated buffers to achieve data=ordered mode guarantees.
2022          *
2023          * Also, if there is only one buffer per page (the fs block
2024          * size == the page size), if one buffer needs block
2025          * allocation or needs to modify the extent tree to clear the
2026          * unwritten flag, we know that the page can't be written at
2027          * all, so we might as well refuse the write immediately.
2028          * Unfortunately if the block size != page size, we can't as
2029          * easily detect this case using ext4_walk_page_buffers(), but
2030          * for the extremely common case, this is an optimization that
2031          * skips a useless round trip through ext4_bio_write_page().
2032          */
2033         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2034                                    ext4_bh_delay_or_unwritten)) {
2035                 redirty_page_for_writepage(wbc, page);
2036                 if ((current->flags & PF_MEMALLOC) ||
2037                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2038                         /*
2039                          * For memory cleaning there's no point in writing only
2040                          * some buffers. So just bail out. Warn if we came here
2041                          * from direct reclaim.
2042                          */
2043                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2044                                                         == PF_MEMALLOC);
2045                         unlock_page(page);
2046                         return 0;
2047                 }
2048                 keep_towrite = true;
2049         }
2050
2051         if (PageChecked(page) && ext4_should_journal_data(inode))
2052                 /*
2053                  * It's mmapped pagecache.  Add buffers and journal it.  There
2054                  * doesn't seem much point in redirtying the page here.
2055                  */
2056                 return __ext4_journalled_writepage(page, len);
2057
2058         ext4_io_submit_init(&io_submit, wbc);
2059         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2060         if (!io_submit.io_end) {
2061                 redirty_page_for_writepage(wbc, page);
2062                 unlock_page(page);
2063                 return -ENOMEM;
2064         }
2065         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2066         ext4_io_submit(&io_submit);
2067         /* Drop io_end reference we got from init */
2068         ext4_put_io_end_defer(io_submit.io_end);
2069         return ret;
2070 }
2071
2072 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2073 {
2074         int len;
2075         loff_t size = i_size_read(mpd->inode);
2076         int err;
2077
2078         BUG_ON(page->index != mpd->first_page);
2079         if (page->index == size >> PAGE_SHIFT)
2080                 len = size & ~PAGE_MASK;
2081         else
2082                 len = PAGE_SIZE;
2083         clear_page_dirty_for_io(page);
2084         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2085         if (!err)
2086                 mpd->wbc->nr_to_write--;
2087         mpd->first_page++;
2088
2089         return err;
2090 }
2091
2092 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2093
2094 /*
2095  * mballoc gives us at most this number of blocks...
2096  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2097  * The rest of mballoc seems to handle chunks up to full group size.
2098  */
2099 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2100
2101 /*
2102  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2103  *
2104  * @mpd - extent of blocks
2105  * @lblk - logical number of the block in the file
2106  * @bh - buffer head we want to add to the extent
2107  *
2108  * The function is used to collect contig. blocks in the same state. If the
2109  * buffer doesn't require mapping for writeback and we haven't started the
2110  * extent of buffers to map yet, the function returns 'true' immediately - the
2111  * caller can write the buffer right away. Otherwise the function returns true
2112  * if the block has been added to the extent, false if the block couldn't be
2113  * added.
2114  */
2115 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2116                                    struct buffer_head *bh)
2117 {
2118         struct ext4_map_blocks *map = &mpd->map;
2119
2120         /* Buffer that doesn't need mapping for writeback? */
2121         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2122             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2123                 /* So far no extent to map => we write the buffer right away */
2124                 if (map->m_len == 0)
2125                         return true;
2126                 return false;
2127         }
2128
2129         /* First block in the extent? */
2130         if (map->m_len == 0) {
2131                 map->m_lblk = lblk;
2132                 map->m_len = 1;
2133                 map->m_flags = bh->b_state & BH_FLAGS;
2134                 return true;
2135         }
2136
2137         /* Don't go larger than mballoc is willing to allocate */
2138         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2139                 return false;
2140
2141         /* Can we merge the block to our big extent? */
2142         if (lblk == map->m_lblk + map->m_len &&
2143             (bh->b_state & BH_FLAGS) == map->m_flags) {
2144                 map->m_len++;
2145                 return true;
2146         }
2147         return false;
2148 }
2149
2150 /*
2151  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2152  *
2153  * @mpd - extent of blocks for mapping
2154  * @head - the first buffer in the page
2155  * @bh - buffer we should start processing from
2156  * @lblk - logical number of the block in the file corresponding to @bh
2157  *
2158  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2159  * the page for IO if all buffers in this page were mapped and there's no
2160  * accumulated extent of buffers to map or add buffers in the page to the
2161  * extent of buffers to map. The function returns 1 if the caller can continue
2162  * by processing the next page, 0 if it should stop adding buffers to the
2163  * extent to map because we cannot extend it anymore. It can also return value
2164  * < 0 in case of error during IO submission.
2165  */
2166 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2167                                    struct buffer_head *head,
2168                                    struct buffer_head *bh,
2169                                    ext4_lblk_t lblk)
2170 {
2171         struct inode *inode = mpd->inode;
2172         int err;
2173         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2174                                                         >> inode->i_blkbits;
2175
2176         do {
2177                 BUG_ON(buffer_locked(bh));
2178
2179                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2180                         /* Found extent to map? */
2181                         if (mpd->map.m_len)
2182                                 return 0;
2183                         /* Everything mapped so far and we hit EOF */
2184                         break;
2185                 }
2186         } while (lblk++, (bh = bh->b_this_page) != head);
2187         /* So far everything mapped? Submit the page for IO. */
2188         if (mpd->map.m_len == 0) {
2189                 err = mpage_submit_page(mpd, head->b_page);
2190                 if (err < 0)
2191                         return err;
2192         }
2193         return lblk < blocks;
2194 }
2195
2196 /*
2197  * mpage_map_buffers - update buffers corresponding to changed extent and
2198  *                     submit fully mapped pages for IO
2199  *
2200  * @mpd - description of extent to map, on return next extent to map
2201  *
2202  * Scan buffers corresponding to changed extent (we expect corresponding pages
2203  * to be already locked) and update buffer state according to new extent state.
2204  * We map delalloc buffers to their physical location, clear unwritten bits,
2205  * and mark buffers as uninit when we perform writes to unwritten extents
2206  * and do extent conversion after IO is finished. If the last page is not fully
2207  * mapped, we update @map to the next extent in the last page that needs
2208  * mapping. Otherwise we submit the page for IO.
2209  */
2210 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2211 {
2212         struct pagevec pvec;
2213         int nr_pages, i;
2214         struct inode *inode = mpd->inode;
2215         struct buffer_head *head, *bh;
2216         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2217         pgoff_t start, end;
2218         ext4_lblk_t lblk;
2219         sector_t pblock;
2220         int err;
2221
2222         start = mpd->map.m_lblk >> bpp_bits;
2223         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2224         lblk = start << bpp_bits;
2225         pblock = mpd->map.m_pblk;
2226
2227         pagevec_init(&pvec, 0);
2228         while (start <= end) {
2229                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2230                                           PAGEVEC_SIZE);
2231                 if (nr_pages == 0)
2232                         break;
2233                 for (i = 0; i < nr_pages; i++) {
2234                         struct page *page = pvec.pages[i];
2235
2236                         if (page->index > end)
2237                                 break;
2238                         /* Up to 'end' pages must be contiguous */
2239                         BUG_ON(page->index != start);
2240                         bh = head = page_buffers(page);
2241                         do {
2242                                 if (lblk < mpd->map.m_lblk)
2243                                         continue;
2244                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2245                                         /*
2246                                          * Buffer after end of mapped extent.
2247                                          * Find next buffer in the page to map.
2248                                          */
2249                                         mpd->map.m_len = 0;
2250                                         mpd->map.m_flags = 0;
2251                                         /*
2252                                          * FIXME: If dioread_nolock supports
2253                                          * blocksize < pagesize, we need to make
2254                                          * sure we add size mapped so far to
2255                                          * io_end->size as the following call
2256                                          * can submit the page for IO.
2257                                          */
2258                                         err = mpage_process_page_bufs(mpd, head,
2259                                                                       bh, lblk);
2260                                         pagevec_release(&pvec);
2261                                         if (err > 0)
2262                                                 err = 0;
2263                                         return err;
2264                                 }
2265                                 if (buffer_delay(bh)) {
2266                                         clear_buffer_delay(bh);
2267                                         bh->b_blocknr = pblock++;
2268                                 }
2269                                 clear_buffer_unwritten(bh);
2270                         } while (lblk++, (bh = bh->b_this_page) != head);
2271
2272                         /*
2273                          * FIXME: This is going to break if dioread_nolock
2274                          * supports blocksize < pagesize as we will try to
2275                          * convert potentially unmapped parts of inode.
2276                          */
2277                         mpd->io_submit.io_end->size += PAGE_SIZE;
2278                         /* Page fully mapped - let IO run! */
2279                         err = mpage_submit_page(mpd, page);
2280                         if (err < 0) {
2281                                 pagevec_release(&pvec);
2282                                 return err;
2283                         }
2284                         start++;
2285                 }
2286                 pagevec_release(&pvec);
2287         }
2288         /* Extent fully mapped and matches with page boundary. We are done. */
2289         mpd->map.m_len = 0;
2290         mpd->map.m_flags = 0;
2291         return 0;
2292 }
2293
2294 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2295 {
2296         struct inode *inode = mpd->inode;
2297         struct ext4_map_blocks *map = &mpd->map;
2298         int get_blocks_flags;
2299         int err, dioread_nolock;
2300
2301         trace_ext4_da_write_pages_extent(inode, map);
2302         /*
2303          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2304          * to convert an unwritten extent to be initialized (in the case
2305          * where we have written into one or more preallocated blocks).  It is
2306          * possible that we're going to need more metadata blocks than
2307          * previously reserved. However we must not fail because we're in
2308          * writeback and there is nothing we can do about it so it might result
2309          * in data loss.  So use reserved blocks to allocate metadata if
2310          * possible.
2311          *
2312          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2313          * the blocks in question are delalloc blocks.  This indicates
2314          * that the blocks and quotas has already been checked when
2315          * the data was copied into the page cache.
2316          */
2317         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2318                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
2319         dioread_nolock = ext4_should_dioread_nolock(inode);
2320         if (dioread_nolock)
2321                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2322         if (map->m_flags & (1 << BH_Delay))
2323                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2324
2325         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2326         if (err < 0)
2327                 return err;
2328         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2329                 if (!mpd->io_submit.io_end->handle &&
2330                     ext4_handle_valid(handle)) {
2331                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2332                         handle->h_rsv_handle = NULL;
2333                 }
2334                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2335         }
2336
2337         BUG_ON(map->m_len == 0);
2338         if (map->m_flags & EXT4_MAP_NEW) {
2339                 struct block_device *bdev = inode->i_sb->s_bdev;
2340                 int i;
2341
2342                 for (i = 0; i < map->m_len; i++)
2343                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2344         }
2345         return 0;
2346 }
2347
2348 /*
2349  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2350  *                               mpd->len and submit pages underlying it for IO
2351  *
2352  * @handle - handle for journal operations
2353  * @mpd - extent to map
2354  * @give_up_on_write - we set this to true iff there is a fatal error and there
2355  *                     is no hope of writing the data. The caller should discard
2356  *                     dirty pages to avoid infinite loops.
2357  *
2358  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2359  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2360  * them to initialized or split the described range from larger unwritten
2361  * extent. Note that we need not map all the described range since allocation
2362  * can return less blocks or the range is covered by more unwritten extents. We
2363  * cannot map more because we are limited by reserved transaction credits. On
2364  * the other hand we always make sure that the last touched page is fully
2365  * mapped so that it can be written out (and thus forward progress is
2366  * guaranteed). After mapping we submit all mapped pages for IO.
2367  */
2368 static int mpage_map_and_submit_extent(handle_t *handle,
2369                                        struct mpage_da_data *mpd,
2370                                        bool *give_up_on_write)
2371 {
2372         struct inode *inode = mpd->inode;
2373         struct ext4_map_blocks *map = &mpd->map;
2374         int err;
2375         loff_t disksize;
2376         int progress = 0;
2377
2378         mpd->io_submit.io_end->offset =
2379                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2380         do {
2381                 err = mpage_map_one_extent(handle, mpd);
2382                 if (err < 0) {
2383                         struct super_block *sb = inode->i_sb;
2384
2385                         if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2386                                 goto invalidate_dirty_pages;
2387                         /*
2388                          * Let the uper layers retry transient errors.
2389                          * In the case of ENOSPC, if ext4_count_free_blocks()
2390                          * is non-zero, a commit should free up blocks.
2391                          */
2392                         if ((err == -ENOMEM) ||
2393                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2394                                 if (progress)
2395                                         goto update_disksize;
2396                                 return err;
2397                         }
2398                         ext4_msg(sb, KERN_CRIT,
2399                                  "Delayed block allocation failed for "
2400                                  "inode %lu at logical offset %llu with"
2401                                  " max blocks %u with error %d",
2402                                  inode->i_ino,
2403                                  (unsigned long long)map->m_lblk,
2404                                  (unsigned)map->m_len, -err);
2405                         ext4_msg(sb, KERN_CRIT,
2406                                  "This should not happen!! Data will "
2407                                  "be lost\n");
2408                         if (err == -ENOSPC)
2409                                 ext4_print_free_blocks(inode);
2410                 invalidate_dirty_pages:
2411                         *give_up_on_write = true;
2412                         return err;
2413                 }
2414                 progress = 1;
2415                 /*
2416                  * Update buffer state, submit mapped pages, and get us new
2417                  * extent to map
2418                  */
2419                 err = mpage_map_and_submit_buffers(mpd);
2420                 if (err < 0)
2421                         goto update_disksize;
2422         } while (map->m_len);
2423
2424 update_disksize:
2425         /*
2426          * Update on-disk size after IO is submitted.  Races with
2427          * truncate are avoided by checking i_size under i_data_sem.
2428          */
2429         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2430         if (disksize > EXT4_I(inode)->i_disksize) {
2431                 int err2;
2432                 loff_t i_size;
2433
2434                 down_write(&EXT4_I(inode)->i_data_sem);
2435                 i_size = i_size_read(inode);
2436                 if (disksize > i_size)
2437                         disksize = i_size;
2438                 if (disksize > EXT4_I(inode)->i_disksize)
2439                         EXT4_I(inode)->i_disksize = disksize;
2440                 err2 = ext4_mark_inode_dirty(handle, inode);
2441                 up_write(&EXT4_I(inode)->i_data_sem);
2442                 if (err2)
2443                         ext4_error(inode->i_sb,
2444                                    "Failed to mark inode %lu dirty",
2445                                    inode->i_ino);
2446                 if (!err)
2447                         err = err2;
2448         }
2449         return err;
2450 }
2451
2452 /*
2453  * Calculate the total number of credits to reserve for one writepages
2454  * iteration. This is called from ext4_writepages(). We map an extent of
2455  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2456  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2457  * bpp - 1 blocks in bpp different extents.
2458  */
2459 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2460 {
2461         int bpp = ext4_journal_blocks_per_page(inode);
2462
2463         return ext4_meta_trans_blocks(inode,
2464                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2465 }
2466
2467 /*
2468  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2469  *                               and underlying extent to map
2470  *
2471  * @mpd - where to look for pages
2472  *
2473  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2474  * IO immediately. When we find a page which isn't mapped we start accumulating
2475  * extent of buffers underlying these pages that needs mapping (formed by
2476  * either delayed or unwritten buffers). We also lock the pages containing
2477  * these buffers. The extent found is returned in @mpd structure (starting at
2478  * mpd->lblk with length mpd->len blocks).
2479  *
2480  * Note that this function can attach bios to one io_end structure which are
2481  * neither logically nor physically contiguous. Although it may seem as an
2482  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2483  * case as we need to track IO to all buffers underlying a page in one io_end.
2484  */
2485 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2486 {
2487         struct address_space *mapping = mpd->inode->i_mapping;
2488         struct pagevec pvec;
2489         unsigned int nr_pages;
2490         long left = mpd->wbc->nr_to_write;
2491         pgoff_t index = mpd->first_page;
2492         pgoff_t end = mpd->last_page;
2493         int tag;
2494         int i, err = 0;
2495         int blkbits = mpd->inode->i_blkbits;
2496         ext4_lblk_t lblk;
2497         struct buffer_head *head;
2498
2499         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2500                 tag = PAGECACHE_TAG_TOWRITE;
2501         else
2502                 tag = PAGECACHE_TAG_DIRTY;
2503
2504         pagevec_init(&pvec, 0);
2505         mpd->map.m_len = 0;
2506         mpd->next_page = index;
2507         while (index <= end) {
2508                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2509                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2510                 if (nr_pages == 0)
2511                         goto out;
2512
2513                 for (i = 0; i < nr_pages; i++) {
2514                         struct page *page = pvec.pages[i];
2515
2516                         /*
2517                          * At this point, the page may be truncated or
2518                          * invalidated (changing page->mapping to NULL), or
2519                          * even swizzled back from swapper_space to tmpfs file
2520                          * mapping. However, page->index will not change
2521                          * because we have a reference on the page.
2522                          */
2523                         if (page->index > end)
2524                                 goto out;
2525
2526                         /*
2527                          * Accumulated enough dirty pages? This doesn't apply
2528                          * to WB_SYNC_ALL mode. For integrity sync we have to
2529                          * keep going because someone may be concurrently
2530                          * dirtying pages, and we might have synced a lot of
2531                          * newly appeared dirty pages, but have not synced all
2532                          * of the old dirty pages.
2533                          */
2534                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2535                                 goto out;
2536
2537                         /* If we can't merge this page, we are done. */
2538                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2539                                 goto out;
2540
2541                         lock_page(page);
2542                         /*
2543                          * If the page is no longer dirty, or its mapping no
2544                          * longer corresponds to inode we are writing (which
2545                          * means it has been truncated or invalidated), or the
2546                          * page is already under writeback and we are not doing
2547                          * a data integrity writeback, skip the page
2548                          */
2549                         if (!PageDirty(page) ||
2550                             (PageWriteback(page) &&
2551                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2552                             unlikely(page->mapping != mapping)) {
2553                                 unlock_page(page);
2554                                 continue;
2555                         }
2556
2557                         wait_on_page_writeback(page);
2558                         BUG_ON(PageWriteback(page));
2559
2560                         if (mpd->map.m_len == 0)
2561                                 mpd->first_page = page->index;
2562                         mpd->next_page = page->index + 1;
2563                         /* Add all dirty buffers to mpd */
2564                         lblk = ((ext4_lblk_t)page->index) <<
2565                                 (PAGE_SHIFT - blkbits);
2566                         head = page_buffers(page);
2567                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2568                         if (err <= 0)
2569                                 goto out;
2570                         err = 0;
2571                         left--;
2572                 }
2573                 pagevec_release(&pvec);
2574                 cond_resched();
2575         }
2576         return 0;
2577 out:
2578         pagevec_release(&pvec);
2579         return err;
2580 }
2581
2582 static int __writepage(struct page *page, struct writeback_control *wbc,
2583                        void *data)
2584 {
2585         struct address_space *mapping = data;
2586         int ret = ext4_writepage(page, wbc);
2587         mapping_set_error(mapping, ret);
2588         return ret;
2589 }
2590
2591 static int ext4_writepages(struct address_space *mapping,
2592                            struct writeback_control *wbc)
2593 {
2594         pgoff_t writeback_index = 0;
2595         long nr_to_write = wbc->nr_to_write;
2596         int range_whole = 0;
2597         int cycled = 1;
2598         handle_t *handle = NULL;
2599         struct mpage_da_data mpd;
2600         struct inode *inode = mapping->host;
2601         int needed_blocks, rsv_blocks = 0, ret = 0;
2602         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2603         bool done;
2604         struct blk_plug plug;
2605         bool give_up_on_write = false;
2606
2607         trace_ext4_writepages(inode, wbc);
2608
2609         if (dax_mapping(mapping))
2610                 return dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2611                                                    wbc);
2612
2613         /*
2614          * No pages to write? This is mainly a kludge to avoid starting
2615          * a transaction for special inodes like journal inode on last iput()
2616          * because that could violate lock ordering on umount
2617          */
2618         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2619                 goto out_writepages;
2620
2621         if (ext4_should_journal_data(inode)) {
2622                 struct blk_plug plug;
2623
2624                 blk_start_plug(&plug);
2625                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2626                 blk_finish_plug(&plug);
2627                 goto out_writepages;
2628         }
2629
2630         /*
2631          * If the filesystem has aborted, it is read-only, so return
2632          * right away instead of dumping stack traces later on that
2633          * will obscure the real source of the problem.  We test
2634          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2635          * the latter could be true if the filesystem is mounted
2636          * read-only, and in that case, ext4_writepages should
2637          * *never* be called, so if that ever happens, we would want
2638          * the stack trace.
2639          */
2640         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2641                 ret = -EROFS;
2642                 goto out_writepages;
2643         }
2644
2645         if (ext4_should_dioread_nolock(inode)) {
2646                 /*
2647                  * We may need to convert up to one extent per block in
2648                  * the page and we may dirty the inode.
2649                  */
2650                 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2651         }
2652
2653         /*
2654          * If we have inline data and arrive here, it means that
2655          * we will soon create the block for the 1st page, so
2656          * we'd better clear the inline data here.
2657          */
2658         if (ext4_has_inline_data(inode)) {
2659                 /* Just inode will be modified... */
2660                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2661                 if (IS_ERR(handle)) {
2662                         ret = PTR_ERR(handle);
2663                         goto out_writepages;
2664                 }
2665                 BUG_ON(ext4_test_inode_state(inode,
2666                                 EXT4_STATE_MAY_INLINE_DATA));
2667                 ext4_destroy_inline_data(handle, inode);
2668                 ext4_journal_stop(handle);
2669         }
2670
2671         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2672                 range_whole = 1;
2673
2674         if (wbc->range_cyclic) {
2675                 writeback_index = mapping->writeback_index;
2676                 if (writeback_index)
2677                         cycled = 0;
2678                 mpd.first_page = writeback_index;
2679                 mpd.last_page = -1;
2680         } else {
2681                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2682                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2683         }
2684
2685         mpd.inode = inode;
2686         mpd.wbc = wbc;
2687         ext4_io_submit_init(&mpd.io_submit, wbc);
2688 retry:
2689         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2690                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2691         done = false;
2692         blk_start_plug(&plug);
2693         while (!done && mpd.first_page <= mpd.last_page) {
2694                 /* For each extent of pages we use new io_end */
2695                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2696                 if (!mpd.io_submit.io_end) {
2697                         ret = -ENOMEM;
2698                         break;
2699                 }
2700
2701                 /*
2702                  * We have two constraints: We find one extent to map and we
2703                  * must always write out whole page (makes a difference when
2704                  * blocksize < pagesize) so that we don't block on IO when we
2705                  * try to write out the rest of the page. Journalled mode is
2706                  * not supported by delalloc.
2707                  */
2708                 BUG_ON(ext4_should_journal_data(inode));
2709                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2710
2711                 /* start a new transaction */
2712                 handle = ext4_journal_start_with_reserve(inode,
2713                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2714                 if (IS_ERR(handle)) {
2715                         ret = PTR_ERR(handle);
2716                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2717                                "%ld pages, ino %lu; err %d", __func__,
2718                                 wbc->nr_to_write, inode->i_ino, ret);
2719                         /* Release allocated io_end */
2720                         ext4_put_io_end(mpd.io_submit.io_end);
2721                         break;
2722                 }
2723
2724                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2725                 ret = mpage_prepare_extent_to_map(&mpd);
2726                 if (!ret) {
2727                         if (mpd.map.m_len)
2728                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2729                                         &give_up_on_write);
2730                         else {
2731                                 /*
2732                                  * We scanned the whole range (or exhausted
2733                                  * nr_to_write), submitted what was mapped and
2734                                  * didn't find anything needing mapping. We are
2735                                  * done.
2736                                  */
2737                                 done = true;
2738                         }
2739                 }
2740                 ext4_journal_stop(handle);
2741                 /* Submit prepared bio */
2742                 ext4_io_submit(&mpd.io_submit);
2743                 /* Unlock pages we didn't use */
2744                 mpage_release_unused_pages(&mpd, give_up_on_write);
2745                 /* Drop our io_end reference we got from init */
2746                 ext4_put_io_end(mpd.io_submit.io_end);
2747
2748                 if (ret == -ENOSPC && sbi->s_journal) {
2749                         /*
2750                          * Commit the transaction which would
2751                          * free blocks released in the transaction
2752                          * and try again
2753                          */
2754                         jbd2_journal_force_commit_nested(sbi->s_journal);
2755                         ret = 0;
2756                         continue;
2757                 }
2758                 /* Fatal error - ENOMEM, EIO... */
2759                 if (ret)
2760                         break;
2761         }
2762         blk_finish_plug(&plug);
2763         if (!ret && !cycled && wbc->nr_to_write > 0) {
2764                 cycled = 1;
2765                 mpd.last_page = writeback_index - 1;
2766                 mpd.first_page = 0;
2767                 goto retry;
2768         }
2769
2770         /* Update index */
2771         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2772                 /*
2773                  * Set the writeback_index so that range_cyclic
2774                  * mode will write it back later
2775                  */
2776                 mapping->writeback_index = mpd.first_page;
2777
2778 out_writepages:
2779         trace_ext4_writepages_result(inode, wbc, ret,
2780                                      nr_to_write - wbc->nr_to_write);
2781         return ret;
2782 }
2783
2784 static int ext4_nonda_switch(struct super_block *sb)
2785 {
2786         s64 free_clusters, dirty_clusters;
2787         struct ext4_sb_info *sbi = EXT4_SB(sb);
2788
2789         /*
2790          * switch to non delalloc mode if we are running low
2791          * on free block. The free block accounting via percpu
2792          * counters can get slightly wrong with percpu_counter_batch getting
2793          * accumulated on each CPU without updating global counters
2794          * Delalloc need an accurate free block accounting. So switch
2795          * to non delalloc when we are near to error range.
2796          */
2797         free_clusters =
2798                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2799         dirty_clusters =
2800                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2801         /*
2802          * Start pushing delalloc when 1/2 of free blocks are dirty.
2803          */
2804         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2805                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2806
2807         if (2 * free_clusters < 3 * dirty_clusters ||
2808             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2809                 /*
2810                  * free block count is less than 150% of dirty blocks
2811                  * or free blocks is less than watermark
2812                  */
2813                 return 1;
2814         }
2815         return 0;
2816 }
2817
2818 /* We always reserve for an inode update; the superblock could be there too */
2819 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2820 {
2821         if (likely(ext4_has_feature_large_file(inode->i_sb)))
2822                 return 1;
2823
2824         if (pos + len <= 0x7fffffffULL)
2825                 return 1;
2826
2827         /* We might need to update the superblock to set LARGE_FILE */
2828         return 2;
2829 }
2830
2831 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2832                                loff_t pos, unsigned len, unsigned flags,
2833                                struct page **pagep, void **fsdata)
2834 {
2835         int ret, retries = 0;
2836         struct page *page;
2837         pgoff_t index;
2838         struct inode *inode = mapping->host;
2839         handle_t *handle;
2840
2841         index = pos >> PAGE_SHIFT;
2842
2843         if (ext4_nonda_switch(inode->i_sb)) {
2844                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2845                 return ext4_write_begin(file, mapping, pos,
2846                                         len, flags, pagep, fsdata);
2847         }
2848         *fsdata = (void *)0;
2849         trace_ext4_da_write_begin(inode, pos, len, flags);
2850
2851         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2852                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2853                                                       pos, len, flags,
2854                                                       pagep, fsdata);
2855                 if (ret < 0)
2856                         return ret;
2857                 if (ret == 1)
2858                         return 0;
2859         }
2860
2861         /*
2862          * grab_cache_page_write_begin() can take a long time if the
2863          * system is thrashing due to memory pressure, or if the page
2864          * is being written back.  So grab it first before we start
2865          * the transaction handle.  This also allows us to allocate
2866          * the page (if needed) without using GFP_NOFS.
2867          */
2868 retry_grab:
2869         page = grab_cache_page_write_begin(mapping, index, flags);
2870         if (!page)
2871                 return -ENOMEM;
2872         unlock_page(page);
2873
2874         /*
2875          * With delayed allocation, we don't log the i_disksize update
2876          * if there is delayed block allocation. But we still need
2877          * to journalling the i_disksize update if writes to the end
2878          * of file which has an already mapped buffer.
2879          */
2880 retry_journal:
2881         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2882                                 ext4_da_write_credits(inode, pos, len));
2883         if (IS_ERR(handle)) {
2884                 put_page(page);
2885                 return PTR_ERR(handle);
2886         }
2887
2888         lock_page(page);
2889         if (page->mapping != mapping) {
2890                 /* The page got truncated from under us */
2891                 unlock_page(page);
2892                 put_page(page);
2893                 ext4_journal_stop(handle);
2894                 goto retry_grab;
2895         }
2896         /* In case writeback began while the page was unlocked */
2897         wait_for_stable_page(page);
2898
2899 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2900         ret = ext4_block_write_begin(page, pos, len,
2901                                      ext4_da_get_block_prep);
2902 #else
2903         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2904 #endif
2905         if (ret < 0) {
2906                 unlock_page(page);
2907                 ext4_journal_stop(handle);
2908                 /*
2909                  * block_write_begin may have instantiated a few blocks
2910                  * outside i_size.  Trim these off again. Don't need
2911                  * i_size_read because we hold i_mutex.
2912                  */
2913                 if (pos + len > inode->i_size)
2914                         ext4_truncate_failed_write(inode);
2915
2916                 if (ret == -ENOSPC &&
2917                     ext4_should_retry_alloc(inode->i_sb, &retries))
2918                         goto retry_journal;
2919
2920                 put_page(page);
2921                 return ret;
2922         }
2923
2924         *pagep = page;
2925         return ret;
2926 }
2927
2928 /*
2929  * Check if we should update i_disksize
2930  * when write to the end of file but not require block allocation
2931  */
2932 static int ext4_da_should_update_i_disksize(struct page *page,
2933                                             unsigned long offset)
2934 {
2935         struct buffer_head *bh;
2936         struct inode *inode = page->mapping->host;
2937         unsigned int idx;
2938         int i;
2939
2940         bh = page_buffers(page);
2941         idx = offset >> inode->i_blkbits;
2942
2943         for (i = 0; i < idx; i++)
2944                 bh = bh->b_this_page;
2945
2946         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2947                 return 0;
2948         return 1;
2949 }
2950
2951 static int ext4_da_write_end(struct file *file,
2952                              struct address_space *mapping,
2953                              loff_t pos, unsigned len, unsigned copied,
2954                              struct page *page, void *fsdata)
2955 {
2956         struct inode *inode = mapping->host;
2957         int ret = 0, ret2;
2958         handle_t *handle = ext4_journal_current_handle();
2959         loff_t new_i_size;
2960         unsigned long start, end;
2961         int write_mode = (int)(unsigned long)fsdata;
2962
2963         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2964                 return ext4_write_end(file, mapping, pos,
2965                                       len, copied, page, fsdata);
2966
2967         trace_ext4_da_write_end(inode, pos, len, copied);
2968         start = pos & (PAGE_SIZE - 1);
2969         end = start + copied - 1;
2970
2971         /*
2972          * generic_write_end() will run mark_inode_dirty() if i_size
2973          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2974          * into that.
2975          */
2976         new_i_size = pos + copied;
2977         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2978                 if (ext4_has_inline_data(inode) ||
2979                     ext4_da_should_update_i_disksize(page, end)) {
2980                         ext4_update_i_disksize(inode, new_i_size);
2981                         /* We need to mark inode dirty even if
2982                          * new_i_size is less that inode->i_size
2983                          * bu greater than i_disksize.(hint delalloc)
2984                          */
2985                         ext4_mark_inode_dirty(handle, inode);
2986                 }
2987         }
2988
2989         if (write_mode != CONVERT_INLINE_DATA &&
2990             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2991             ext4_has_inline_data(inode))
2992                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2993                                                      page);
2994         else
2995                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2996                                                         page, fsdata);
2997
2998         copied = ret2;
2999         if (ret2 < 0)
3000                 ret = ret2;
3001         ret2 = ext4_journal_stop(handle);
3002         if (!ret)
3003                 ret = ret2;
3004
3005         return ret ? ret : copied;
3006 }
3007
3008 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3009                                    unsigned int length)
3010 {
3011         /*
3012          * Drop reserved blocks
3013          */
3014         BUG_ON(!PageLocked(page));
3015         if (!page_has_buffers(page))
3016                 goto out;
3017
3018         ext4_da_page_release_reservation(page, offset, length);
3019
3020 out:
3021         ext4_invalidatepage(page, offset, length);
3022
3023         return;
3024 }
3025
3026 /*
3027  * Force all delayed allocation blocks to be allocated for a given inode.
3028  */
3029 int ext4_alloc_da_blocks(struct inode *inode)
3030 {
3031         trace_ext4_alloc_da_blocks(inode);
3032
3033         if (!EXT4_I(inode)->i_reserved_data_blocks)
3034                 return 0;
3035
3036         /*
3037          * We do something simple for now.  The filemap_flush() will
3038          * also start triggering a write of the data blocks, which is
3039          * not strictly speaking necessary (and for users of
3040          * laptop_mode, not even desirable).  However, to do otherwise
3041          * would require replicating code paths in:
3042          *
3043          * ext4_writepages() ->
3044          *    write_cache_pages() ---> (via passed in callback function)
3045          *        __mpage_da_writepage() -->
3046          *           mpage_add_bh_to_extent()
3047          *           mpage_da_map_blocks()
3048          *
3049          * The problem is that write_cache_pages(), located in
3050          * mm/page-writeback.c, marks pages clean in preparation for
3051          * doing I/O, which is not desirable if we're not planning on
3052          * doing I/O at all.
3053          *
3054          * We could call write_cache_pages(), and then redirty all of
3055          * the pages by calling redirty_page_for_writepage() but that
3056          * would be ugly in the extreme.  So instead we would need to
3057          * replicate parts of the code in the above functions,
3058          * simplifying them because we wouldn't actually intend to
3059          * write out the pages, but rather only collect contiguous
3060          * logical block extents, call the multi-block allocator, and
3061          * then update the buffer heads with the block allocations.
3062          *
3063          * For now, though, we'll cheat by calling filemap_flush(),
3064          * which will map the blocks, and start the I/O, but not
3065          * actually wait for the I/O to complete.
3066          */
3067         return filemap_flush(inode->i_mapping);
3068 }
3069
3070 /*
3071  * bmap() is special.  It gets used by applications such as lilo and by
3072  * the swapper to find the on-disk block of a specific piece of data.
3073  *
3074  * Naturally, this is dangerous if the block concerned is still in the
3075  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3076  * filesystem and enables swap, then they may get a nasty shock when the
3077  * data getting swapped to that swapfile suddenly gets overwritten by
3078  * the original zero's written out previously to the journal and
3079  * awaiting writeback in the kernel's buffer cache.
3080  *
3081  * So, if we see any bmap calls here on a modified, data-journaled file,
3082  * take extra steps to flush any blocks which might be in the cache.
3083  */
3084 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3085 {
3086         struct inode *inode = mapping->host;
3087         journal_t *journal;
3088         int err;
3089
3090         /*
3091          * We can get here for an inline file via the FIBMAP ioctl
3092          */
3093         if (ext4_has_inline_data(inode))
3094                 return 0;
3095
3096         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3097                         test_opt(inode->i_sb, DELALLOC)) {
3098                 /*
3099                  * With delalloc we want to sync the file
3100                  * so that we can make sure we allocate
3101                  * blocks for file
3102                  */
3103                 filemap_write_and_wait(mapping);
3104         }
3105
3106         if (EXT4_JOURNAL(inode) &&
3107             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3108                 /*
3109                  * This is a REALLY heavyweight approach, but the use of
3110                  * bmap on dirty files is expected to be extremely rare:
3111                  * only if we run lilo or swapon on a freshly made file
3112                  * do we expect this to happen.
3113                  *
3114                  * (bmap requires CAP_SYS_RAWIO so this does not
3115                  * represent an unprivileged user DOS attack --- we'd be
3116                  * in trouble if mortal users could trigger this path at
3117                  * will.)
3118                  *
3119                  * NB. EXT4_STATE_JDATA is not set on files other than
3120                  * regular files.  If somebody wants to bmap a directory
3121                  * or symlink and gets confused because the buffer
3122                  * hasn't yet been flushed to disk, they deserve
3123                  * everything they get.
3124                  */
3125
3126                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3127                 journal = EXT4_JOURNAL(inode);
3128                 jbd2_journal_lock_updates(journal);
3129                 err = jbd2_journal_flush(journal);
3130                 jbd2_journal_unlock_updates(journal);
3131
3132                 if (err)
3133                         return 0;
3134         }
3135
3136         return generic_block_bmap(mapping, block, ext4_get_block);
3137 }
3138
3139 static int ext4_readpage(struct file *file, struct page *page)
3140 {
3141         int ret = -EAGAIN;
3142         struct inode *inode = page->mapping->host;
3143
3144         trace_ext4_readpage(page);
3145
3146         if (ext4_has_inline_data(inode))
3147                 ret = ext4_readpage_inline(inode, page);
3148
3149         if (ret == -EAGAIN)
3150                 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3151
3152         return ret;
3153 }
3154
3155 static int
3156 ext4_readpages(struct file *file, struct address_space *mapping,
3157                 struct list_head *pages, unsigned nr_pages)
3158 {
3159         struct inode *inode = mapping->host;
3160
3161         /* If the file has inline data, no need to do readpages. */
3162         if (ext4_has_inline_data(inode))
3163                 return 0;
3164
3165         return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3166 }
3167
3168 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3169                                 unsigned int length)
3170 {
3171         trace_ext4_invalidatepage(page, offset, length);
3172
3173         /* No journalling happens on data buffers when this function is used */
3174         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3175
3176         block_invalidatepage(page, offset, length);
3177 }
3178
3179 static int __ext4_journalled_invalidatepage(struct page *page,
3180                                             unsigned int offset,
3181                                             unsigned int length)
3182 {
3183         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3184
3185         trace_ext4_journalled_invalidatepage(page, offset, length);
3186
3187         /*
3188          * If it's a full truncate we just forget about the pending dirtying
3189          */
3190         if (offset == 0 && length == PAGE_SIZE)
3191                 ClearPageChecked(page);
3192
3193         return jbd2_journal_invalidatepage(journal, page, offset, length);
3194 }
3195
3196 /* Wrapper for aops... */
3197 static void ext4_journalled_invalidatepage(struct page *page,
3198                                            unsigned int offset,
3199                                            unsigned int length)
3200 {
3201         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3202 }
3203
3204 static int ext4_releasepage(struct page *page, gfp_t wait)
3205 {
3206         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3207
3208         trace_ext4_releasepage(page);
3209
3210         /* Page has dirty journalled data -> cannot release */
3211         if (PageChecked(page))
3212                 return 0;
3213         if (journal)
3214                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3215         else
3216                 return try_to_free_buffers(page);
3217 }
3218
3219 #ifdef CONFIG_FS_DAX
3220 int ext4_dax_mmap_get_block(struct inode *inode, sector_t iblock,
3221                             struct buffer_head *bh_result, int create)
3222 {
3223         int ret, err;
3224         int credits;
3225         struct ext4_map_blocks map;
3226         handle_t *handle = NULL;
3227         int flags = 0;
3228
3229         ext4_debug("ext4_dax_mmap_get_block: inode %lu, create flag %d\n",
3230                    inode->i_ino, create);
3231         map.m_lblk = iblock;
3232         map.m_len = bh_result->b_size >> inode->i_blkbits;
3233         credits = ext4_chunk_trans_blocks(inode, map.m_len);
3234         if (create) {
3235                 flags |= EXT4_GET_BLOCKS_PRE_IO | EXT4_GET_BLOCKS_CREATE_ZERO;
3236                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits);
3237                 if (IS_ERR(handle)) {
3238                         ret = PTR_ERR(handle);
3239                         return ret;
3240                 }
3241         }
3242
3243         ret = ext4_map_blocks(handle, inode, &map, flags);
3244         if (create) {
3245                 err = ext4_journal_stop(handle);
3246                 if (ret >= 0 && err < 0)
3247                         ret = err;
3248         }
3249         if (ret <= 0)
3250                 goto out;
3251         if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3252                 int err2;
3253
3254                 /*
3255                  * We are protected by i_mmap_sem so we know block cannot go
3256                  * away from under us even though we dropped i_data_sem.
3257                  * Convert extent to written and write zeros there.
3258                  *
3259                  * Note: We may get here even when create == 0.
3260                  */
3261                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits);
3262                 if (IS_ERR(handle)) {
3263                         ret = PTR_ERR(handle);
3264                         goto out;
3265                 }
3266
3267                 err = ext4_map_blocks(handle, inode, &map,
3268                       EXT4_GET_BLOCKS_CONVERT | EXT4_GET_BLOCKS_CREATE_ZERO);
3269                 if (err < 0)
3270                         ret = err;
3271                 err2 = ext4_journal_stop(handle);
3272                 if (err2 < 0 && ret > 0)
3273                         ret = err2;
3274         }
3275 out:
3276         WARN_ON_ONCE(ret == 0 && create);
3277         if (ret > 0) {
3278                 map_bh(bh_result, inode->i_sb, map.m_pblk);
3279                 /*
3280                  * At least for now we have to clear BH_New so that DAX code
3281                  * doesn't attempt to zero blocks again in a racy way.
3282                  */
3283                 map.m_flags &= ~EXT4_MAP_NEW;
3284                 ext4_update_bh_state(bh_result, map.m_flags);
3285                 bh_result->b_size = map.m_len << inode->i_blkbits;
3286                 ret = 0;
3287         }
3288         return ret;
3289 }
3290 #endif
3291
3292 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3293                             ssize_t size, void *private)
3294 {
3295         ext4_io_end_t *io_end = private;
3296
3297         /* if not async direct IO just return */
3298         if (!io_end)
3299                 return 0;
3300
3301         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3302                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3303                   io_end, io_end->inode->i_ino, iocb, offset, size);
3304
3305         /*
3306          * Error during AIO DIO. We cannot convert unwritten extents as the
3307          * data was not written. Just clear the unwritten flag and drop io_end.
3308          */
3309         if (size <= 0) {
3310                 ext4_clear_io_unwritten_flag(io_end);
3311                 size = 0;
3312         }
3313         io_end->offset = offset;
3314         io_end->size = size;
3315         ext4_put_io_end(io_end);
3316
3317         return 0;
3318 }
3319
3320 /*
3321  * For ext4 extent files, ext4 will do direct-io write to holes,
3322  * preallocated extents, and those write extend the file, no need to
3323  * fall back to buffered IO.
3324  *
3325  * For holes, we fallocate those blocks, mark them as unwritten
3326  * If those blocks were preallocated, we mark sure they are split, but
3327  * still keep the range to write as unwritten.
3328  *
3329  * The unwritten extents will be converted to written when DIO is completed.
3330  * For async direct IO, since the IO may still pending when return, we
3331  * set up an end_io call back function, which will do the conversion
3332  * when async direct IO completed.
3333  *
3334  * If the O_DIRECT write will extend the file then add this inode to the
3335  * orphan list.  So recovery will truncate it back to the original size
3336  * if the machine crashes during the write.
3337  *
3338  */
3339 static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3340                                   loff_t offset)
3341 {
3342         struct file *file = iocb->ki_filp;
3343         struct inode *inode = file->f_mapping->host;
3344         ssize_t ret;
3345         size_t count = iov_iter_count(iter);
3346         int overwrite = 0;
3347         get_block_t *get_block_func = NULL;
3348         int dio_flags = 0;
3349         loff_t final_size = offset + count;
3350
3351         /* Use the old path for reads and writes beyond i_size. */
3352         if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3353                 return ext4_ind_direct_IO(iocb, iter, offset);
3354
3355         BUG_ON(iocb->private == NULL);
3356
3357         /*
3358          * Make all waiters for direct IO properly wait also for extent
3359          * conversion. This also disallows race between truncate() and
3360          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3361          */
3362         if (iov_iter_rw(iter) == WRITE)
3363                 inode_dio_begin(inode);
3364
3365         /* If we do a overwrite dio, i_mutex locking can be released */
3366         overwrite = *((int *)iocb->private);
3367
3368         if (overwrite)
3369                 inode_unlock(inode);
3370
3371         /*
3372          * We could direct write to holes and fallocate.
3373          *
3374          * Allocated blocks to fill the hole are marked as unwritten to prevent
3375          * parallel buffered read to expose the stale data before DIO complete
3376          * the data IO.
3377          *
3378          * As to previously fallocated extents, ext4 get_block will just simply
3379          * mark the buffer mapped but still keep the extents unwritten.
3380          *
3381          * For non AIO case, we will convert those unwritten extents to written
3382          * after return back from blockdev_direct_IO. That way we save us from
3383          * allocating io_end structure and also the overhead of offloading
3384          * the extent convertion to a workqueue.
3385          *
3386          * For async DIO, the conversion needs to be deferred when the
3387          * IO is completed. The ext4 end_io callback function will be
3388          * called to take care of the conversion work.  Here for async
3389          * case, we allocate an io_end structure to hook to the iocb.
3390          */
3391         iocb->private = NULL;
3392         if (overwrite)
3393                 get_block_func = ext4_dio_get_block_overwrite;
3394         else if (is_sync_kiocb(iocb)) {
3395                 get_block_func = ext4_dio_get_block_unwritten_sync;
3396                 dio_flags = DIO_LOCKING;
3397         } else {
3398                 get_block_func = ext4_dio_get_block_unwritten_async;
3399                 dio_flags = DIO_LOCKING;
3400         }
3401 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3402         BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3403 #endif
3404         if (IS_DAX(inode))
3405                 ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
3406                                 ext4_end_io_dio, dio_flags);
3407         else
3408                 ret = __blockdev_direct_IO(iocb, inode,
3409                                            inode->i_sb->s_bdev, iter, offset,
3410                                            get_block_func,
3411                                            ext4_end_io_dio, NULL, dio_flags);
3412
3413         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3414                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3415                 int err;
3416                 /*
3417                  * for non AIO case, since the IO is already
3418                  * completed, we could do the conversion right here
3419                  */
3420                 err = ext4_convert_unwritten_extents(NULL, inode,
3421                                                      offset, ret);
3422                 if (err < 0)
3423                         ret = err;
3424                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3425         }
3426
3427         if (iov_iter_rw(iter) == WRITE)
3428                 inode_dio_end(inode);
3429         /* take i_mutex locking again if we do a ovewrite dio */
3430         if (overwrite)
3431                 inode_lock(inode);
3432
3433         return ret;
3434 }
3435
3436 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3437                               loff_t offset)
3438 {
3439         struct file *file = iocb->ki_filp;
3440         struct inode *inode = file->f_mapping->host;
3441         size_t count = iov_iter_count(iter);
3442         ssize_t ret;
3443
3444 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3445         if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3446                 return 0;
3447 #endif
3448
3449         /*
3450          * If we are doing data journalling we don't support O_DIRECT
3451          */
3452         if (ext4_should_journal_data(inode))
3453                 return 0;
3454
3455         /* Let buffer I/O handle the inline data case. */
3456         if (ext4_has_inline_data(inode))
3457                 return 0;
3458
3459         trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3460         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3461                 ret = ext4_ext_direct_IO(iocb, iter, offset);
3462         else
3463                 ret = ext4_ind_direct_IO(iocb, iter, offset);
3464         trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3465         return ret;
3466 }
3467
3468 /*
3469  * Pages can be marked dirty completely asynchronously from ext4's journalling
3470  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3471  * much here because ->set_page_dirty is called under VFS locks.  The page is
3472  * not necessarily locked.
3473  *
3474  * We cannot just dirty the page and leave attached buffers clean, because the
3475  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3476  * or jbddirty because all the journalling code will explode.
3477  *
3478  * So what we do is to mark the page "pending dirty" and next time writepage
3479  * is called, propagate that into the buffers appropriately.
3480  */
3481 static int ext4_journalled_set_page_dirty(struct page *page)
3482 {
3483         SetPageChecked(page);
3484         return __set_page_dirty_nobuffers(page);
3485 }
3486
3487 static const struct address_space_operations ext4_aops = {
3488         .readpage               = ext4_readpage,
3489         .readpages              = ext4_readpages,
3490         .writepage              = ext4_writepage,
3491         .writepages             = ext4_writepages,
3492         .write_begin            = ext4_write_begin,
3493         .write_end              = ext4_write_end,
3494         .bmap                   = ext4_bmap,
3495         .invalidatepage         = ext4_invalidatepage,
3496         .releasepage            = ext4_releasepage,
3497         .direct_IO              = ext4_direct_IO,
3498         .migratepage            = buffer_migrate_page,
3499         .is_partially_uptodate  = block_is_partially_uptodate,
3500         .error_remove_page      = generic_error_remove_page,
3501 };
3502
3503 static const struct address_space_operations ext4_journalled_aops = {
3504         .readpage               = ext4_readpage,
3505         .readpages              = ext4_readpages,
3506         .writepage              = ext4_writepage,
3507         .writepages             = ext4_writepages,
3508         .write_begin            = ext4_write_begin,
3509         .write_end              = ext4_journalled_write_end,
3510         .set_page_dirty         = ext4_journalled_set_page_dirty,
3511         .bmap                   = ext4_bmap,
3512         .invalidatepage         = ext4_journalled_invalidatepage,
3513         .releasepage            = ext4_releasepage,
3514         .direct_IO              = ext4_direct_IO,
3515         .is_partially_uptodate  = block_is_partially_uptodate,
3516         .error_remove_page      = generic_error_remove_page,
3517 };
3518
3519 static const struct address_space_operations ext4_da_aops = {
3520         .readpage               = ext4_readpage,
3521         .readpages              = ext4_readpages,
3522         .writepage              = ext4_writepage,
3523         .writepages             = ext4_writepages,
3524         .write_begin            = ext4_da_write_begin,
3525         .write_end              = ext4_da_write_end,
3526         .bmap                   = ext4_bmap,
3527         .invalidatepage         = ext4_da_invalidatepage,
3528         .releasepage            = ext4_releasepage,
3529         .direct_IO              = ext4_direct_IO,
3530         .migratepage            = buffer_migrate_page,
3531         .is_partially_uptodate  = block_is_partially_uptodate,
3532         .error_remove_page      = generic_error_remove_page,
3533 };
3534
3535 void ext4_set_aops(struct inode *inode)
3536 {
3537         switch (ext4_inode_journal_mode(inode)) {
3538         case EXT4_INODE_ORDERED_DATA_MODE:
3539                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3540                 break;
3541         case EXT4_INODE_WRITEBACK_DATA_MODE:
3542                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3543                 break;
3544         case EXT4_INODE_JOURNAL_DATA_MODE:
3545                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3546                 return;
3547         default:
3548                 BUG();
3549         }
3550         if (test_opt(inode->i_sb, DELALLOC))
3551                 inode->i_mapping->a_ops = &ext4_da_aops;
3552         else
3553                 inode->i_mapping->a_ops = &ext4_aops;
3554 }
3555
3556 static int __ext4_block_zero_page_range(handle_t *handle,
3557                 struct address_space *mapping, loff_t from, loff_t length)
3558 {
3559         ext4_fsblk_t index = from >> PAGE_SHIFT;
3560         unsigned offset = from & (PAGE_SIZE-1);
3561         unsigned blocksize, pos;
3562         ext4_lblk_t iblock;
3563         struct inode *inode = mapping->host;
3564         struct buffer_head *bh;
3565         struct page *page;
3566         int err = 0;
3567
3568         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3569                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3570         if (!page)
3571                 return -ENOMEM;
3572
3573         blocksize = inode->i_sb->s_blocksize;
3574
3575         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3576
3577         if (!page_has_buffers(page))
3578                 create_empty_buffers(page, blocksize, 0);
3579
3580         /* Find the buffer that contains "offset" */
3581         bh = page_buffers(page);
3582         pos = blocksize;
3583         while (offset >= pos) {
3584                 bh = bh->b_this_page;
3585                 iblock++;
3586                 pos += blocksize;
3587         }
3588         if (buffer_freed(bh)) {
3589                 BUFFER_TRACE(bh, "freed: skip");
3590                 goto unlock;
3591         }
3592         if (!buffer_mapped(bh)) {
3593                 BUFFER_TRACE(bh, "unmapped");
3594                 ext4_get_block(inode, iblock, bh, 0);
3595                 /* unmapped? It's a hole - nothing to do */
3596                 if (!buffer_mapped(bh)) {
3597                         BUFFER_TRACE(bh, "still unmapped");
3598                         goto unlock;
3599                 }
3600         }
3601
3602         /* Ok, it's mapped. Make sure it's up-to-date */
3603         if (PageUptodate(page))
3604                 set_buffer_uptodate(bh);
3605
3606         if (!buffer_uptodate(bh)) {
3607                 err = -EIO;
3608                 ll_rw_block(READ, 1, &bh);
3609                 wait_on_buffer(bh);
3610                 /* Uhhuh. Read error. Complain and punt. */
3611                 if (!buffer_uptodate(bh))
3612                         goto unlock;
3613                 if (S_ISREG(inode->i_mode) &&
3614                     ext4_encrypted_inode(inode)) {
3615                         /* We expect the key to be set. */
3616                         BUG_ON(!ext4_has_encryption_key(inode));
3617                         BUG_ON(blocksize != PAGE_SIZE);
3618                         WARN_ON_ONCE(ext4_decrypt(page));
3619                 }
3620         }
3621         if (ext4_should_journal_data(inode)) {
3622                 BUFFER_TRACE(bh, "get write access");
3623                 err = ext4_journal_get_write_access(handle, bh);
3624                 if (err)
3625                         goto unlock;
3626         }
3627         zero_user(page, offset, length);
3628         BUFFER_TRACE(bh, "zeroed end of block");
3629
3630         if (ext4_should_journal_data(inode)) {
3631                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3632         } else {
3633                 err = 0;
3634                 mark_buffer_dirty(bh);
3635                 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3636                         err = ext4_jbd2_file_inode(handle, inode);
3637         }
3638
3639 unlock:
3640         unlock_page(page);
3641         put_page(page);
3642         return err;
3643 }
3644
3645 /*
3646  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3647  * starting from file offset 'from'.  The range to be zero'd must
3648  * be contained with in one block.  If the specified range exceeds
3649  * the end of the block it will be shortened to end of the block
3650  * that cooresponds to 'from'
3651  */
3652 static int ext4_block_zero_page_range(handle_t *handle,
3653                 struct address_space *mapping, loff_t from, loff_t length)
3654 {
3655         struct inode *inode = mapping->host;
3656         unsigned offset = from & (PAGE_SIZE-1);
3657         unsigned blocksize = inode->i_sb->s_blocksize;
3658         unsigned max = blocksize - (offset & (blocksize - 1));
3659
3660         /*
3661          * correct length if it does not fall between
3662          * 'from' and the end of the block
3663          */
3664         if (length > max || length < 0)
3665                 length = max;
3666
3667         if (IS_DAX(inode))
3668                 return dax_zero_page_range(inode, from, length, ext4_get_block);
3669         return __ext4_block_zero_page_range(handle, mapping, from, length);
3670 }
3671
3672 /*
3673  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3674  * up to the end of the block which corresponds to `from'.
3675  * This required during truncate. We need to physically zero the tail end
3676  * of that block so it doesn't yield old data if the file is later grown.
3677  */
3678 static int ext4_block_truncate_page(handle_t *handle,
3679                 struct address_space *mapping, loff_t from)
3680 {
3681         unsigned offset = from & (PAGE_SIZE-1);
3682         unsigned length;
3683         unsigned blocksize;
3684         struct inode *inode = mapping->host;
3685
3686         blocksize = inode->i_sb->s_blocksize;
3687         length = blocksize - (offset & (blocksize - 1));
3688
3689         return ext4_block_zero_page_range(handle, mapping, from, length);
3690 }
3691
3692 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3693                              loff_t lstart, loff_t length)
3694 {
3695         struct super_block *sb = inode->i_sb;
3696         struct address_space *mapping = inode->i_mapping;
3697         unsigned partial_start, partial_end;
3698         ext4_fsblk_t start, end;
3699         loff_t byte_end = (lstart + length - 1);
3700         int err = 0;
3701
3702         partial_start = lstart & (sb->s_blocksize - 1);
3703         partial_end = byte_end & (sb->s_blocksize - 1);
3704
3705         start = lstart >> sb->s_blocksize_bits;
3706         end = byte_end >> sb->s_blocksize_bits;
3707
3708         /* Handle partial zero within the single block */
3709         if (start == end &&
3710             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3711                 err = ext4_block_zero_page_range(handle, mapping,
3712                                                  lstart, length);
3713                 return err;
3714         }
3715         /* Handle partial zero out on the start of the range */
3716         if (partial_start) {
3717                 err = ext4_block_zero_page_range(handle, mapping,
3718                                                  lstart, sb->s_blocksize);
3719                 if (err)
3720                         return err;
3721         }
3722         /* Handle partial zero out on the end of the range */
3723         if (partial_end != sb->s_blocksize - 1)
3724                 err = ext4_block_zero_page_range(handle, mapping,
3725                                                  byte_end - partial_end,
3726                                                  partial_end + 1);
3727         return err;
3728 }
3729
3730 int ext4_can_truncate(struct inode *inode)
3731 {
3732         if (S_ISREG(inode->i_mode))
3733                 return 1;
3734         if (S_ISDIR(inode->i_mode))
3735                 return 1;
3736         if (S_ISLNK(inode->i_mode))
3737                 return !ext4_inode_is_fast_symlink(inode);
3738         return 0;
3739 }
3740
3741 /*
3742  * We have to make sure i_disksize gets properly updated before we truncate
3743  * page cache due to hole punching or zero range. Otherwise i_disksize update
3744  * can get lost as it may have been postponed to submission of writeback but
3745  * that will never happen after we truncate page cache.
3746  */
3747 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3748                                       loff_t len)
3749 {
3750         handle_t *handle;
3751         loff_t size = i_size_read(inode);
3752
3753         WARN_ON(!inode_is_locked(inode));
3754         if (offset > size || offset + len < size)
3755                 return 0;
3756
3757         if (EXT4_I(inode)->i_disksize >= size)
3758                 return 0;
3759
3760         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3761         if (IS_ERR(handle))
3762                 return PTR_ERR(handle);
3763         ext4_update_i_disksize(inode, size);
3764         ext4_mark_inode_dirty(handle, inode);
3765         ext4_journal_stop(handle);
3766
3767         return 0;
3768 }
3769
3770 /*
3771  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3772  * associated with the given offset and length
3773  *
3774  * @inode:  File inode
3775  * @offset: The offset where the hole will begin
3776  * @len:    The length of the hole
3777  *
3778  * Returns: 0 on success or negative on failure
3779  */
3780
3781 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3782 {
3783         struct super_block *sb = inode->i_sb;
3784         ext4_lblk_t first_block, stop_block;
3785         struct address_space *mapping = inode->i_mapping;
3786         loff_t first_block_offset, last_block_offset;
3787         handle_t *handle;
3788         unsigned int credits;
3789         int ret = 0;
3790
3791         if (!S_ISREG(inode->i_mode))
3792                 return -EOPNOTSUPP;
3793
3794         trace_ext4_punch_hole(inode, offset, length, 0);
3795
3796         /*
3797          * Write out all dirty pages to avoid race conditions
3798          * Then release them.
3799          */
3800         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3801                 ret = filemap_write_and_wait_range(mapping, offset,
3802                                                    offset + length - 1);
3803                 if (ret)
3804                         return ret;
3805         }
3806
3807         inode_lock(inode);
3808
3809         /* No need to punch hole beyond i_size */
3810         if (offset >= inode->i_size)
3811                 goto out_mutex;
3812
3813         /*
3814          * If the hole extends beyond i_size, set the hole
3815          * to end after the page that contains i_size
3816          */
3817         if (offset + length > inode->i_size) {
3818                 length = inode->i_size +
3819                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3820                    offset;
3821         }
3822
3823         if (offset & (sb->s_blocksize - 1) ||
3824             (offset + length) & (sb->s_blocksize - 1)) {
3825                 /*
3826                  * Attach jinode to inode for jbd2 if we do any zeroing of
3827                  * partial block
3828                  */
3829                 ret = ext4_inode_attach_jinode(inode);
3830                 if (ret < 0)
3831                         goto out_mutex;
3832
3833         }
3834
3835         /* Wait all existing dio workers, newcomers will block on i_mutex */
3836         ext4_inode_block_unlocked_dio(inode);
3837         inode_dio_wait(inode);
3838
3839         /*
3840          * Prevent page faults from reinstantiating pages we have released from
3841          * page cache.
3842          */
3843         down_write(&EXT4_I(inode)->i_mmap_sem);
3844         first_block_offset = round_up(offset, sb->s_blocksize);
3845         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3846
3847         /* Now release the pages and zero block aligned part of pages*/
3848         if (last_block_offset > first_block_offset) {
3849                 ret = ext4_update_disksize_before_punch(inode, offset, length);
3850                 if (ret)
3851                         goto out_dio;
3852                 truncate_pagecache_range(inode, first_block_offset,
3853                                          last_block_offset);
3854         }
3855
3856         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3857                 credits = ext4_writepage_trans_blocks(inode);
3858         else
3859                 credits = ext4_blocks_for_truncate(inode);
3860         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3861         if (IS_ERR(handle)) {
3862                 ret = PTR_ERR(handle);
3863                 ext4_std_error(sb, ret);
3864                 goto out_dio;
3865         }
3866
3867         ret = ext4_zero_partial_blocks(handle, inode, offset,
3868                                        length);
3869         if (ret)
3870                 goto out_stop;
3871
3872         first_block = (offset + sb->s_blocksize - 1) >>
3873                 EXT4_BLOCK_SIZE_BITS(sb);
3874         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3875
3876         /* If there are no blocks to remove, return now */
3877         if (first_block >= stop_block)
3878                 goto out_stop;
3879
3880         down_write(&EXT4_I(inode)->i_data_sem);
3881         ext4_discard_preallocations(inode);
3882
3883         ret = ext4_es_remove_extent(inode, first_block,
3884                                     stop_block - first_block);
3885         if (ret) {
3886                 up_write(&EXT4_I(inode)->i_data_sem);
3887                 goto out_stop;
3888         }
3889
3890         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3891                 ret = ext4_ext_remove_space(inode, first_block,
3892                                             stop_block - 1);
3893         else
3894                 ret = ext4_ind_remove_space(handle, inode, first_block,
3895                                             stop_block);
3896
3897         up_write(&EXT4_I(inode)->i_data_sem);
3898         if (IS_SYNC(inode))
3899                 ext4_handle_sync(handle);
3900
3901         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3902         ext4_mark_inode_dirty(handle, inode);
3903 out_stop:
3904         ext4_journal_stop(handle);
3905 out_dio:
3906         up_write(&EXT4_I(inode)->i_mmap_sem);
3907         ext4_inode_resume_unlocked_dio(inode);
3908 out_mutex:
3909         inode_unlock(inode);
3910         return ret;
3911 }
3912
3913 int ext4_inode_attach_jinode(struct inode *inode)
3914 {
3915         struct ext4_inode_info *ei = EXT4_I(inode);
3916         struct jbd2_inode *jinode;
3917
3918         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3919                 return 0;
3920
3921         jinode = jbd2_alloc_inode(GFP_KERNEL);
3922         spin_lock(&inode->i_lock);
3923         if (!ei->jinode) {
3924                 if (!jinode) {
3925                         spin_unlock(&inode->i_lock);
3926                         return -ENOMEM;
3927                 }
3928                 ei->jinode = jinode;
3929                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3930                 jinode = NULL;
3931         }
3932         spin_unlock(&inode->i_lock);
3933         if (unlikely(jinode != NULL))
3934                 jbd2_free_inode(jinode);
3935         return 0;
3936 }
3937
3938 /*
3939  * ext4_truncate()
3940  *
3941  * We block out ext4_get_block() block instantiations across the entire
3942  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3943  * simultaneously on behalf of the same inode.
3944  *
3945  * As we work through the truncate and commit bits of it to the journal there
3946  * is one core, guiding principle: the file's tree must always be consistent on
3947  * disk.  We must be able to restart the truncate after a crash.
3948  *
3949  * The file's tree may be transiently inconsistent in memory (although it
3950  * probably isn't), but whenever we close off and commit a journal transaction,
3951  * the contents of (the filesystem + the journal) must be consistent and
3952  * restartable.  It's pretty simple, really: bottom up, right to left (although
3953  * left-to-right works OK too).
3954  *
3955  * Note that at recovery time, journal replay occurs *before* the restart of
3956  * truncate against the orphan inode list.
3957  *
3958  * The committed inode has the new, desired i_size (which is the same as
3959  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3960  * that this inode's truncate did not complete and it will again call
3961  * ext4_truncate() to have another go.  So there will be instantiated blocks
3962  * to the right of the truncation point in a crashed ext4 filesystem.  But
3963  * that's fine - as long as they are linked from the inode, the post-crash
3964  * ext4_truncate() run will find them and release them.
3965  */
3966 void ext4_truncate(struct inode *inode)
3967 {
3968         struct ext4_inode_info *ei = EXT4_I(inode);
3969         unsigned int credits;
3970         handle_t *handle;
3971         struct address_space *mapping = inode->i_mapping;
3972
3973         /*
3974          * There is a possibility that we're either freeing the inode
3975          * or it's a completely new inode. In those cases we might not
3976          * have i_mutex locked because it's not necessary.
3977          */
3978         if (!(inode->i_state & (I_NEW|I_FREEING)))
3979                 WARN_ON(!inode_is_locked(inode));
3980         trace_ext4_truncate_enter(inode);
3981
3982         if (!ext4_can_truncate(inode))
3983                 return;
3984
3985         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3986
3987         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3988                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3989
3990         if (ext4_has_inline_data(inode)) {
3991                 int has_inline = 1;
3992
3993                 ext4_inline_data_truncate(inode, &has_inline);
3994                 if (has_inline)
3995                         return;
3996         }
3997
3998         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3999         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4000                 if (ext4_inode_attach_jinode(inode) < 0)
4001                         return;
4002         }
4003
4004         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4005                 credits = ext4_writepage_trans_blocks(inode);
4006         else
4007                 credits = ext4_blocks_for_truncate(inode);
4008
4009         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4010         if (IS_ERR(handle)) {
4011                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
4012                 return;
4013         }
4014
4015         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4016                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4017
4018         /*
4019          * We add the inode to the orphan list, so that if this
4020          * truncate spans multiple transactions, and we crash, we will
4021          * resume the truncate when the filesystem recovers.  It also
4022          * marks the inode dirty, to catch the new size.
4023          *
4024          * Implication: the file must always be in a sane, consistent
4025          * truncatable state while each transaction commits.
4026          */
4027         if (ext4_orphan_add(handle, inode))
4028                 goto out_stop;
4029
4030         down_write(&EXT4_I(inode)->i_data_sem);
4031
4032         ext4_discard_preallocations(inode);
4033
4034         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4035                 ext4_ext_truncate(handle, inode);
4036         else
4037                 ext4_ind_truncate(handle, inode);
4038
4039         up_write(&ei->i_data_sem);
4040
4041         if (IS_SYNC(inode))
4042                 ext4_handle_sync(handle);
4043
4044 out_stop:
4045         /*
4046          * If this was a simple ftruncate() and the file will remain alive,
4047          * then we need to clear up the orphan record which we created above.
4048          * However, if this was a real unlink then we were called by
4049          * ext4_evict_inode(), and we allow that function to clean up the
4050          * orphan info for us.
4051          */
4052         if (inode->i_nlink)
4053                 ext4_orphan_del(handle, inode);
4054
4055         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4056         ext4_mark_inode_dirty(handle, inode);
4057         ext4_journal_stop(handle);
4058
4059         trace_ext4_truncate_exit(inode);
4060 }
4061
4062 /*
4063  * ext4_get_inode_loc returns with an extra refcount against the inode's
4064  * underlying buffer_head on success. If 'in_mem' is true, we have all
4065  * data in memory that is needed to recreate the on-disk version of this
4066  * inode.
4067  */
4068 static int __ext4_get_inode_loc(struct inode *inode,
4069                                 struct ext4_iloc *iloc, int in_mem)
4070 {
4071         struct ext4_group_desc  *gdp;
4072         struct buffer_head      *bh;
4073         struct super_block      *sb = inode->i_sb;
4074         ext4_fsblk_t            block;
4075         int                     inodes_per_block, inode_offset;
4076
4077         iloc->bh = NULL;
4078         if (!ext4_valid_inum(sb, inode->i_ino))
4079                 return -EFSCORRUPTED;
4080
4081         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4082         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4083         if (!gdp)
4084                 return -EIO;
4085
4086         /*
4087          * Figure out the offset within the block group inode table
4088          */
4089         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4090         inode_offset = ((inode->i_ino - 1) %
4091                         EXT4_INODES_PER_GROUP(sb));
4092         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4093         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4094
4095         bh = sb_getblk(sb, block);
4096         if (unlikely(!bh))
4097                 return -ENOMEM;
4098         if (!buffer_uptodate(bh)) {
4099                 lock_buffer(bh);
4100
4101                 /*
4102                  * If the buffer has the write error flag, we have failed
4103                  * to write out another inode in the same block.  In this
4104                  * case, we don't have to read the block because we may
4105                  * read the old inode data successfully.
4106                  */
4107                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4108                         set_buffer_uptodate(bh);
4109
4110                 if (buffer_uptodate(bh)) {
4111                         /* someone brought it uptodate while we waited */
4112                         unlock_buffer(bh);
4113                         goto has_buffer;
4114                 }
4115
4116                 /*
4117                  * If we have all information of the inode in memory and this
4118                  * is the only valid inode in the block, we need not read the
4119                  * block.
4120                  */
4121                 if (in_mem) {
4122                         struct buffer_head *bitmap_bh;
4123                         int i, start;
4124
4125                         start = inode_offset & ~(inodes_per_block - 1);
4126
4127                         /* Is the inode bitmap in cache? */
4128                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4129                         if (unlikely(!bitmap_bh))
4130                                 goto make_io;
4131
4132                         /*
4133                          * If the inode bitmap isn't in cache then the
4134                          * optimisation may end up performing two reads instead
4135                          * of one, so skip it.
4136                          */
4137                         if (!buffer_uptodate(bitmap_bh)) {
4138                                 brelse(bitmap_bh);
4139                                 goto make_io;
4140                         }
4141                         for (i = start; i < start + inodes_per_block; i++) {
4142                                 if (i == inode_offset)
4143                                         continue;
4144                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4145                                         break;
4146                         }
4147                         brelse(bitmap_bh);
4148                         if (i == start + inodes_per_block) {
4149                                 /* all other inodes are free, so skip I/O */
4150                                 memset(bh->b_data, 0, bh->b_size);
4151                                 set_buffer_uptodate(bh);
4152                                 unlock_buffer(bh);
4153                                 goto has_buffer;
4154                         }
4155                 }
4156
4157 make_io:
4158                 /*
4159                  * If we need to do any I/O, try to pre-readahead extra
4160                  * blocks from the inode table.
4161                  */
4162                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4163                         ext4_fsblk_t b, end, table;
4164                         unsigned num;
4165                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4166
4167                         table = ext4_inode_table(sb, gdp);
4168                         /* s_inode_readahead_blks is always a power of 2 */
4169                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4170                         if (table > b)
4171                                 b = table;
4172                         end = b + ra_blks;
4173                         num = EXT4_INODES_PER_GROUP(sb);
4174                         if (ext4_has_group_desc_csum(sb))
4175                                 num -= ext4_itable_unused_count(sb, gdp);
4176                         table += num / inodes_per_block;
4177                         if (end > table)
4178                                 end = table;
4179                         while (b <= end)
4180                                 sb_breadahead(sb, b++);
4181                 }
4182
4183                 /*
4184                  * There are other valid inodes in the buffer, this inode
4185                  * has in-inode xattrs, or we don't have this inode in memory.
4186                  * Read the block from disk.
4187                  */
4188                 trace_ext4_load_inode(inode);
4189                 get_bh(bh);
4190                 bh->b_end_io = end_buffer_read_sync;
4191                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
4192                 wait_on_buffer(bh);
4193                 if (!buffer_uptodate(bh)) {
4194                         EXT4_ERROR_INODE_BLOCK(inode, block,
4195                                                "unable to read itable block");
4196                         brelse(bh);
4197                         return -EIO;
4198                 }
4199         }
4200 has_buffer:
4201         iloc->bh = bh;
4202         return 0;
4203 }
4204
4205 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4206 {
4207         /* We have all inode data except xattrs in memory here. */
4208         return __ext4_get_inode_loc(inode, iloc,
4209                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4210 }
4211
4212 void ext4_set_inode_flags(struct inode *inode)
4213 {
4214         unsigned int flags = EXT4_I(inode)->i_flags;
4215         unsigned int new_fl = 0;
4216
4217         if (flags & EXT4_SYNC_FL)
4218                 new_fl |= S_SYNC;
4219         if (flags & EXT4_APPEND_FL)
4220                 new_fl |= S_APPEND;
4221         if (flags & EXT4_IMMUTABLE_FL)
4222                 new_fl |= S_IMMUTABLE;
4223         if (flags & EXT4_NOATIME_FL)
4224                 new_fl |= S_NOATIME;
4225         if (flags & EXT4_DIRSYNC_FL)
4226                 new_fl |= S_DIRSYNC;
4227         if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
4228                 new_fl |= S_DAX;
4229         inode_set_flags(inode, new_fl,
4230                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4231 }
4232
4233 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4234 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4235 {
4236         unsigned int vfs_fl;
4237         unsigned long old_fl, new_fl;
4238
4239         do {
4240                 vfs_fl = ei->vfs_inode.i_flags;
4241                 old_fl = ei->i_flags;
4242                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4243                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4244                                 EXT4_DIRSYNC_FL);
4245                 if (vfs_fl & S_SYNC)
4246                         new_fl |= EXT4_SYNC_FL;
4247                 if (vfs_fl & S_APPEND)
4248                         new_fl |= EXT4_APPEND_FL;
4249                 if (vfs_fl & S_IMMUTABLE)
4250                         new_fl |= EXT4_IMMUTABLE_FL;
4251                 if (vfs_fl & S_NOATIME)
4252                         new_fl |= EXT4_NOATIME_FL;
4253                 if (vfs_fl & S_DIRSYNC)
4254                         new_fl |= EXT4_DIRSYNC_FL;
4255         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4256 }
4257
4258 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4259                                   struct ext4_inode_info *ei)
4260 {
4261         blkcnt_t i_blocks ;
4262         struct inode *inode = &(ei->vfs_inode);
4263         struct super_block *sb = inode->i_sb;
4264
4265         if (ext4_has_feature_huge_file(sb)) {
4266                 /* we are using combined 48 bit field */
4267                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4268                                         le32_to_cpu(raw_inode->i_blocks_lo);
4269                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4270                         /* i_blocks represent file system block size */
4271                         return i_blocks  << (inode->i_blkbits - 9);
4272                 } else {
4273                         return i_blocks;
4274                 }
4275         } else {
4276                 return le32_to_cpu(raw_inode->i_blocks_lo);
4277         }
4278 }
4279
4280 static inline void ext4_iget_extra_inode(struct inode *inode,
4281                                          struct ext4_inode *raw_inode,
4282                                          struct ext4_inode_info *ei)
4283 {
4284         __le32 *magic = (void *)raw_inode +
4285                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4286         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4287                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4288                 ext4_find_inline_data_nolock(inode);
4289         } else
4290                 EXT4_I(inode)->i_inline_off = 0;
4291 }
4292
4293 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4294 {
4295         if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, EXT4_FEATURE_RO_COMPAT_PROJECT))
4296                 return -EOPNOTSUPP;
4297         *projid = EXT4_I(inode)->i_projid;
4298         return 0;
4299 }
4300
4301 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4302 {
4303         struct ext4_iloc iloc;
4304         struct ext4_inode *raw_inode;
4305         struct ext4_inode_info *ei;
4306         struct inode *inode;
4307         journal_t *journal = EXT4_SB(sb)->s_journal;
4308         long ret;
4309         int block;
4310         uid_t i_uid;
4311         gid_t i_gid;
4312         projid_t i_projid;
4313
4314         inode = iget_locked(sb, ino);
4315         if (!inode)
4316                 return ERR_PTR(-ENOMEM);
4317         if (!(inode->i_state & I_NEW))
4318                 return inode;
4319
4320         ei = EXT4_I(inode);
4321         iloc.bh = NULL;
4322
4323         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4324         if (ret < 0)
4325                 goto bad_inode;
4326         raw_inode = ext4_raw_inode(&iloc);
4327
4328         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4329                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4330                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4331                     EXT4_INODE_SIZE(inode->i_sb)) {
4332                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4333                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4334                                 EXT4_INODE_SIZE(inode->i_sb));
4335                         ret = -EFSCORRUPTED;
4336                         goto bad_inode;
4337                 }
4338         } else
4339                 ei->i_extra_isize = 0;
4340
4341         /* Precompute checksum seed for inode metadata */
4342         if (ext4_has_metadata_csum(sb)) {
4343                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4344                 __u32 csum;
4345                 __le32 inum = cpu_to_le32(inode->i_ino);
4346                 __le32 gen = raw_inode->i_generation;
4347                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4348                                    sizeof(inum));
4349                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4350                                               sizeof(gen));
4351         }
4352
4353         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4354                 EXT4_ERROR_INODE(inode, "checksum invalid");
4355                 ret = -EFSBADCRC;
4356                 goto bad_inode;
4357         }
4358
4359         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4360         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4361         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4362         if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4363             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4364             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4365                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4366         else
4367                 i_projid = EXT4_DEF_PROJID;
4368
4369         if (!(test_opt(inode->i_sb, NO_UID32))) {
4370                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4371                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4372         }
4373         i_uid_write(inode, i_uid);
4374         i_gid_write(inode, i_gid);
4375         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4376         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4377
4378         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4379         ei->i_inline_off = 0;
4380         ei->i_dir_start_lookup = 0;
4381         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4382         /* We now have enough fields to check if the inode was active or not.
4383          * This is needed because nfsd might try to access dead inodes
4384          * the test is that same one that e2fsck uses
4385          * NeilBrown 1999oct15
4386          */
4387         if (inode->i_nlink == 0) {
4388                 if ((inode->i_mode == 0 ||
4389                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4390                     ino != EXT4_BOOT_LOADER_INO) {
4391                         /* this inode is deleted */
4392                         ret = -ESTALE;
4393                         goto bad_inode;
4394                 }
4395                 /* The only unlinked inodes we let through here have
4396                  * valid i_mode and are being read by the orphan
4397                  * recovery code: that's fine, we're about to complete
4398                  * the process of deleting those.
4399                  * OR it is the EXT4_BOOT_LOADER_INO which is
4400                  * not initialized on a new filesystem. */
4401         }
4402         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4403         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4404         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4405         if (ext4_has_feature_64bit(sb))
4406                 ei->i_file_acl |=
4407                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4408         inode->i_size = ext4_isize(raw_inode);
4409         ei->i_disksize = inode->i_size;
4410 #ifdef CONFIG_QUOTA
4411         ei->i_reserved_quota = 0;
4412 #endif
4413         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4414         ei->i_block_group = iloc.block_group;
4415         ei->i_last_alloc_group = ~0;
4416         /*
4417          * NOTE! The in-memory inode i_data array is in little-endian order
4418          * even on big-endian machines: we do NOT byteswap the block numbers!
4419          */
4420         for (block = 0; block < EXT4_N_BLOCKS; block++)
4421                 ei->i_data[block] = raw_inode->i_block[block];
4422         INIT_LIST_HEAD(&ei->i_orphan);
4423
4424         /*
4425          * Set transaction id's of transactions that have to be committed
4426          * to finish f[data]sync. We set them to currently running transaction
4427          * as we cannot be sure that the inode or some of its metadata isn't
4428          * part of the transaction - the inode could have been reclaimed and
4429          * now it is reread from disk.
4430          */
4431         if (journal) {
4432                 transaction_t *transaction;
4433                 tid_t tid;
4434
4435                 read_lock(&journal->j_state_lock);
4436                 if (journal->j_running_transaction)
4437                         transaction = journal->j_running_transaction;
4438                 else
4439                         transaction = journal->j_committing_transaction;
4440                 if (transaction)
4441                         tid = transaction->t_tid;
4442                 else
4443                         tid = journal->j_commit_sequence;
4444                 read_unlock(&journal->j_state_lock);
4445                 ei->i_sync_tid = tid;
4446                 ei->i_datasync_tid = tid;
4447         }
4448
4449         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4450                 if (ei->i_extra_isize == 0) {
4451                         /* The extra space is currently unused. Use it. */
4452                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4453                                             EXT4_GOOD_OLD_INODE_SIZE;
4454                 } else {
4455                         ext4_iget_extra_inode(inode, raw_inode, ei);
4456                 }
4457         }
4458
4459         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4460         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4461         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4462         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4463
4464         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4465                 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4466                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4467                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4468                                 inode->i_version |=
4469                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4470                 }
4471         }
4472
4473         ret = 0;
4474         if (ei->i_file_acl &&
4475             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4476                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4477                                  ei->i_file_acl);
4478                 ret = -EFSCORRUPTED;
4479                 goto bad_inode;
4480         } else if (!ext4_has_inline_data(inode)) {
4481                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4482                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4483                             (S_ISLNK(inode->i_mode) &&
4484                              !ext4_inode_is_fast_symlink(inode))))
4485                                 /* Validate extent which is part of inode */
4486                                 ret = ext4_ext_check_inode(inode);
4487                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4488                            (S_ISLNK(inode->i_mode) &&
4489                             !ext4_inode_is_fast_symlink(inode))) {
4490                         /* Validate block references which are part of inode */
4491                         ret = ext4_ind_check_inode(inode);
4492                 }
4493         }
4494         if (ret)
4495                 goto bad_inode;
4496
4497         if (S_ISREG(inode->i_mode)) {
4498                 inode->i_op = &ext4_file_inode_operations;
4499                 inode->i_fop = &ext4_file_operations;
4500                 ext4_set_aops(inode);
4501         } else if (S_ISDIR(inode->i_mode)) {
4502                 inode->i_op = &ext4_dir_inode_operations;
4503                 inode->i_fop = &ext4_dir_operations;
4504         } else if (S_ISLNK(inode->i_mode)) {
4505                 if (ext4_encrypted_inode(inode)) {
4506                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4507                         ext4_set_aops(inode);
4508                 } else if (ext4_inode_is_fast_symlink(inode)) {
4509                         inode->i_link = (char *)ei->i_data;
4510                         inode->i_op = &ext4_fast_symlink_inode_operations;
4511                         nd_terminate_link(ei->i_data, inode->i_size,
4512                                 sizeof(ei->i_data) - 1);
4513                 } else {
4514                         inode->i_op = &ext4_symlink_inode_operations;
4515                         ext4_set_aops(inode);
4516                 }
4517                 inode_nohighmem(inode);
4518         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4519               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4520                 inode->i_op = &ext4_special_inode_operations;
4521                 if (raw_inode->i_block[0])
4522                         init_special_inode(inode, inode->i_mode,
4523                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4524                 else
4525                         init_special_inode(inode, inode->i_mode,
4526                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4527         } else if (ino == EXT4_BOOT_LOADER_INO) {
4528                 make_bad_inode(inode);
4529         } else {
4530                 ret = -EFSCORRUPTED;
4531                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4532                 goto bad_inode;
4533         }
4534         brelse(iloc.bh);
4535         ext4_set_inode_flags(inode);
4536         unlock_new_inode(inode);
4537         return inode;
4538
4539 bad_inode:
4540         brelse(iloc.bh);
4541         iget_failed(inode);
4542         return ERR_PTR(ret);
4543 }
4544
4545 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4546 {
4547         if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4548                 return ERR_PTR(-EFSCORRUPTED);
4549         return ext4_iget(sb, ino);
4550 }
4551
4552 static int ext4_inode_blocks_set(handle_t *handle,
4553                                 struct ext4_inode *raw_inode,
4554                                 struct ext4_inode_info *ei)
4555 {
4556         struct inode *inode = &(ei->vfs_inode);
4557         u64 i_blocks = inode->i_blocks;
4558         struct super_block *sb = inode->i_sb;
4559
4560         if (i_blocks <= ~0U) {
4561                 /*
4562                  * i_blocks can be represented in a 32 bit variable
4563                  * as multiple of 512 bytes
4564                  */
4565                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4566                 raw_inode->i_blocks_high = 0;
4567                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4568                 return 0;
4569         }
4570         if (!ext4_has_feature_huge_file(sb))
4571                 return -EFBIG;
4572
4573         if (i_blocks <= 0xffffffffffffULL) {
4574                 /*
4575                  * i_blocks can be represented in a 48 bit variable
4576                  * as multiple of 512 bytes
4577                  */
4578                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4579                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4580                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4581         } else {
4582                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4583                 /* i_block is stored in file system block size */
4584                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4585                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4586                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4587         }
4588         return 0;
4589 }
4590
4591 struct other_inode {
4592         unsigned long           orig_ino;
4593         struct ext4_inode       *raw_inode;
4594 };
4595
4596 static int other_inode_match(struct inode * inode, unsigned long ino,
4597                              void *data)
4598 {
4599         struct other_inode *oi = (struct other_inode *) data;
4600
4601         if ((inode->i_ino != ino) ||
4602             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4603                                I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4604             ((inode->i_state & I_DIRTY_TIME) == 0))
4605                 return 0;
4606         spin_lock(&inode->i_lock);
4607         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4608                                 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4609             (inode->i_state & I_DIRTY_TIME)) {
4610                 struct ext4_inode_info  *ei = EXT4_I(inode);
4611
4612                 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4613                 spin_unlock(&inode->i_lock);
4614
4615                 spin_lock(&ei->i_raw_lock);
4616                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4617                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4618                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4619                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4620                 spin_unlock(&ei->i_raw_lock);
4621                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4622                 return -1;
4623         }
4624         spin_unlock(&inode->i_lock);
4625         return -1;
4626 }
4627
4628 /*
4629  * Opportunistically update the other time fields for other inodes in
4630  * the same inode table block.
4631  */
4632 static void ext4_update_other_inodes_time(struct super_block *sb,
4633                                           unsigned long orig_ino, char *buf)
4634 {
4635         struct other_inode oi;
4636         unsigned long ino;
4637         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4638         int inode_size = EXT4_INODE_SIZE(sb);
4639
4640         oi.orig_ino = orig_ino;
4641         /*
4642          * Calculate the first inode in the inode table block.  Inode
4643          * numbers are one-based.  That is, the first inode in a block
4644          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4645          */
4646         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4647         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4648                 if (ino == orig_ino)
4649                         continue;
4650                 oi.raw_inode = (struct ext4_inode *) buf;
4651                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4652         }
4653 }
4654
4655 /*
4656  * Post the struct inode info into an on-disk inode location in the
4657  * buffer-cache.  This gobbles the caller's reference to the
4658  * buffer_head in the inode location struct.
4659  *
4660  * The caller must have write access to iloc->bh.
4661  */
4662 static int ext4_do_update_inode(handle_t *handle,
4663                                 struct inode *inode,
4664                                 struct ext4_iloc *iloc)
4665 {
4666         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4667         struct ext4_inode_info *ei = EXT4_I(inode);
4668         struct buffer_head *bh = iloc->bh;
4669         struct super_block *sb = inode->i_sb;
4670         int err = 0, rc, block;
4671         int need_datasync = 0, set_large_file = 0;
4672         uid_t i_uid;
4673         gid_t i_gid;
4674         projid_t i_projid;
4675
4676         spin_lock(&ei->i_raw_lock);
4677
4678         /* For fields not tracked in the in-memory inode,
4679          * initialise them to zero for new inodes. */
4680         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4681                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4682
4683         ext4_get_inode_flags(ei);
4684         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4685         i_uid = i_uid_read(inode);
4686         i_gid = i_gid_read(inode);
4687         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4688         if (!(test_opt(inode->i_sb, NO_UID32))) {
4689                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4690                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4691 /*
4692  * Fix up interoperability with old kernels. Otherwise, old inodes get
4693  * re-used with the upper 16 bits of the uid/gid intact
4694  */
4695                 if (!ei->i_dtime) {
4696                         raw_inode->i_uid_high =
4697                                 cpu_to_le16(high_16_bits(i_uid));
4698                         raw_inode->i_gid_high =
4699                                 cpu_to_le16(high_16_bits(i_gid));
4700                 } else {
4701                         raw_inode->i_uid_high = 0;
4702                         raw_inode->i_gid_high = 0;
4703                 }
4704         } else {
4705                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4706                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4707                 raw_inode->i_uid_high = 0;
4708                 raw_inode->i_gid_high = 0;
4709         }
4710         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4711
4712         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4713         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4714         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4715         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4716
4717         err = ext4_inode_blocks_set(handle, raw_inode, ei);
4718         if (err) {
4719                 spin_unlock(&ei->i_raw_lock);
4720                 goto out_brelse;
4721         }
4722         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4723         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4724         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4725                 raw_inode->i_file_acl_high =
4726                         cpu_to_le16(ei->i_file_acl >> 32);
4727         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4728         if (ei->i_disksize != ext4_isize(raw_inode)) {
4729                 ext4_isize_set(raw_inode, ei->i_disksize);
4730                 need_datasync = 1;
4731         }
4732         if (ei->i_disksize > 0x7fffffffULL) {
4733                 if (!ext4_has_feature_large_file(sb) ||
4734                                 EXT4_SB(sb)->s_es->s_rev_level ==
4735                     cpu_to_le32(EXT4_GOOD_OLD_REV))
4736                         set_large_file = 1;
4737         }
4738         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4739         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4740                 if (old_valid_dev(inode->i_rdev)) {
4741                         raw_inode->i_block[0] =
4742                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4743                         raw_inode->i_block[1] = 0;
4744                 } else {
4745                         raw_inode->i_block[0] = 0;
4746                         raw_inode->i_block[1] =
4747                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4748                         raw_inode->i_block[2] = 0;
4749                 }
4750         } else if (!ext4_has_inline_data(inode)) {
4751                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4752                         raw_inode->i_block[block] = ei->i_data[block];
4753         }
4754
4755         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4756                 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4757                 if (ei->i_extra_isize) {
4758                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4759                                 raw_inode->i_version_hi =
4760                                         cpu_to_le32(inode->i_version >> 32);
4761                         raw_inode->i_extra_isize =
4762                                 cpu_to_le16(ei->i_extra_isize);
4763                 }
4764         }
4765
4766         BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
4767                         EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4768                i_projid != EXT4_DEF_PROJID);
4769
4770         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4771             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4772                 raw_inode->i_projid = cpu_to_le32(i_projid);
4773
4774         ext4_inode_csum_set(inode, raw_inode, ei);
4775         spin_unlock(&ei->i_raw_lock);
4776         if (inode->i_sb->s_flags & MS_LAZYTIME)
4777                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4778                                               bh->b_data);
4779
4780         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4781         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4782         if (!err)
4783                 err = rc;
4784         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4785         if (set_large_file) {
4786                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4787                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4788                 if (err)
4789                         goto out_brelse;
4790                 ext4_update_dynamic_rev(sb);
4791                 ext4_set_feature_large_file(sb);
4792                 ext4_handle_sync(handle);
4793                 err = ext4_handle_dirty_super(handle, sb);
4794         }
4795         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4796 out_brelse:
4797         brelse(bh);
4798         ext4_std_error(inode->i_sb, err);
4799         return err;
4800 }
4801
4802 /*
4803  * ext4_write_inode()
4804  *
4805  * We are called from a few places:
4806  *
4807  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4808  *   Here, there will be no transaction running. We wait for any running
4809  *   transaction to commit.
4810  *
4811  * - Within flush work (sys_sync(), kupdate and such).
4812  *   We wait on commit, if told to.
4813  *
4814  * - Within iput_final() -> write_inode_now()
4815  *   We wait on commit, if told to.
4816  *
4817  * In all cases it is actually safe for us to return without doing anything,
4818  * because the inode has been copied into a raw inode buffer in
4819  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4820  * writeback.
4821  *
4822  * Note that we are absolutely dependent upon all inode dirtiers doing the
4823  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4824  * which we are interested.
4825  *
4826  * It would be a bug for them to not do this.  The code:
4827  *
4828  *      mark_inode_dirty(inode)
4829  *      stuff();
4830  *      inode->i_size = expr;
4831  *
4832  * is in error because write_inode() could occur while `stuff()' is running,
4833  * and the new i_size will be lost.  Plus the inode will no longer be on the
4834  * superblock's dirty inode list.
4835  */
4836 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4837 {
4838         int err;
4839
4840         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4841                 return 0;
4842
4843         if (EXT4_SB(inode->i_sb)->s_journal) {
4844                 if (ext4_journal_current_handle()) {
4845                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4846                         dump_stack();
4847                         return -EIO;
4848                 }
4849
4850                 /*
4851                  * No need to force transaction in WB_SYNC_NONE mode. Also
4852                  * ext4_sync_fs() will force the commit after everything is
4853                  * written.
4854                  */
4855                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4856                         return 0;
4857
4858                 err = ext4_force_commit(inode->i_sb);
4859         } else {
4860                 struct ext4_iloc iloc;
4861
4862                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4863                 if (err)
4864                         return err;
4865                 /*
4866                  * sync(2) will flush the whole buffer cache. No need to do
4867                  * it here separately for each inode.
4868                  */
4869                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4870                         sync_dirty_buffer(iloc.bh);
4871                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4872                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4873                                          "IO error syncing inode");
4874                         err = -EIO;
4875                 }
4876                 brelse(iloc.bh);
4877         }
4878         return err;
4879 }
4880
4881 /*
4882  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4883  * buffers that are attached to a page stradding i_size and are undergoing
4884  * commit. In that case we have to wait for commit to finish and try again.
4885  */
4886 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4887 {
4888         struct page *page;
4889         unsigned offset;
4890         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4891         tid_t commit_tid = 0;
4892         int ret;
4893
4894         offset = inode->i_size & (PAGE_SIZE - 1);
4895         /*
4896          * All buffers in the last page remain valid? Then there's nothing to
4897          * do. We do the check mainly to optimize the common PAGE_SIZE ==
4898          * blocksize case
4899          */
4900         if (offset > PAGE_SIZE - (1 << inode->i_blkbits))
4901                 return;
4902         while (1) {
4903                 page = find_lock_page(inode->i_mapping,
4904                                       inode->i_size >> PAGE_SHIFT);
4905                 if (!page)
4906                         return;
4907                 ret = __ext4_journalled_invalidatepage(page, offset,
4908                                                 PAGE_SIZE - offset);
4909                 unlock_page(page);
4910                 put_page(page);
4911                 if (ret != -EBUSY)
4912                         return;
4913                 commit_tid = 0;
4914                 read_lock(&journal->j_state_lock);
4915                 if (journal->j_committing_transaction)
4916                         commit_tid = journal->j_committing_transaction->t_tid;
4917                 read_unlock(&journal->j_state_lock);
4918                 if (commit_tid)
4919                         jbd2_log_wait_commit(journal, commit_tid);
4920         }
4921 }
4922
4923 /*
4924  * ext4_setattr()
4925  *
4926  * Called from notify_change.
4927  *
4928  * We want to trap VFS attempts to truncate the file as soon as
4929  * possible.  In particular, we want to make sure that when the VFS
4930  * shrinks i_size, we put the inode on the orphan list and modify
4931  * i_disksize immediately, so that during the subsequent flushing of
4932  * dirty pages and freeing of disk blocks, we can guarantee that any
4933  * commit will leave the blocks being flushed in an unused state on
4934  * disk.  (On recovery, the inode will get truncated and the blocks will
4935  * be freed, so we have a strong guarantee that no future commit will
4936  * leave these blocks visible to the user.)
4937  *
4938  * Another thing we have to assure is that if we are in ordered mode
4939  * and inode is still attached to the committing transaction, we must
4940  * we start writeout of all the dirty pages which are being truncated.
4941  * This way we are sure that all the data written in the previous
4942  * transaction are already on disk (truncate waits for pages under
4943  * writeback).
4944  *
4945  * Called with inode->i_mutex down.
4946  */
4947 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4948 {
4949         struct inode *inode = d_inode(dentry);
4950         int error, rc = 0;
4951         int orphan = 0;
4952         const unsigned int ia_valid = attr->ia_valid;
4953
4954         error = inode_change_ok(inode, attr);
4955         if (error)
4956                 return error;
4957
4958         if (is_quota_modification(inode, attr)) {
4959                 error = dquot_initialize(inode);
4960                 if (error)
4961                         return error;
4962         }
4963         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4964             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4965                 handle_t *handle;
4966
4967                 /* (user+group)*(old+new) structure, inode write (sb,
4968                  * inode block, ? - but truncate inode update has it) */
4969                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4970                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4971                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4972                 if (IS_ERR(handle)) {
4973                         error = PTR_ERR(handle);
4974                         goto err_out;
4975                 }
4976                 error = dquot_transfer(inode, attr);
4977                 if (error) {
4978                         ext4_journal_stop(handle);
4979                         return error;
4980                 }
4981                 /* Update corresponding info in inode so that everything is in
4982                  * one transaction */
4983                 if (attr->ia_valid & ATTR_UID)
4984                         inode->i_uid = attr->ia_uid;
4985                 if (attr->ia_valid & ATTR_GID)
4986                         inode->i_gid = attr->ia_gid;
4987                 error = ext4_mark_inode_dirty(handle, inode);
4988                 ext4_journal_stop(handle);
4989         }
4990
4991         if (attr->ia_valid & ATTR_SIZE) {
4992                 handle_t *handle;
4993                 loff_t oldsize = inode->i_size;
4994                 int shrink = (attr->ia_size <= inode->i_size);
4995
4996                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4997                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4998
4999                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
5000                                 return -EFBIG;
5001                 }
5002                 if (!S_ISREG(inode->i_mode))
5003                         return -EINVAL;
5004
5005                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5006                         inode_inc_iversion(inode);
5007
5008                 if (ext4_should_order_data(inode) &&
5009                     (attr->ia_size < inode->i_size)) {
5010                         error = ext4_begin_ordered_truncate(inode,
5011                                                             attr->ia_size);
5012                         if (error)
5013                                 goto err_out;
5014                 }
5015                 if (attr->ia_size != inode->i_size) {
5016                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5017                         if (IS_ERR(handle)) {
5018                                 error = PTR_ERR(handle);
5019                                 goto err_out;
5020                         }
5021                         if (ext4_handle_valid(handle) && shrink) {
5022                                 error = ext4_orphan_add(handle, inode);
5023                                 orphan = 1;
5024                         }
5025                         /*
5026                          * Update c/mtime on truncate up, ext4_truncate() will
5027                          * update c/mtime in shrink case below
5028                          */
5029                         if (!shrink) {
5030                                 inode->i_mtime = ext4_current_time(inode);
5031                                 inode->i_ctime = inode->i_mtime;
5032                         }
5033                         down_write(&EXT4_I(inode)->i_data_sem);
5034                         EXT4_I(inode)->i_disksize = attr->ia_size;
5035                         rc = ext4_mark_inode_dirty(handle, inode);
5036                         if (!error)
5037                                 error = rc;
5038                         /*
5039                          * We have to update i_size under i_data_sem together
5040                          * with i_disksize to avoid races with writeback code
5041                          * running ext4_wb_update_i_disksize().
5042                          */
5043                         if (!error)
5044                                 i_size_write(inode, attr->ia_size);
5045                         up_write(&EXT4_I(inode)->i_data_sem);
5046                         ext4_journal_stop(handle);
5047                         if (error) {
5048                                 if (orphan)
5049                                         ext4_orphan_del(NULL, inode);
5050                                 goto err_out;
5051                         }
5052                 }
5053                 if (!shrink)
5054                         pagecache_isize_extended(inode, oldsize, inode->i_size);
5055
5056                 /*
5057                  * Blocks are going to be removed from the inode. Wait
5058                  * for dio in flight.  Temporarily disable
5059                  * dioread_nolock to prevent livelock.
5060                  */
5061                 if (orphan) {
5062                         if (!ext4_should_journal_data(inode)) {
5063                                 ext4_inode_block_unlocked_dio(inode);
5064                                 inode_dio_wait(inode);
5065                                 ext4_inode_resume_unlocked_dio(inode);
5066                         } else
5067                                 ext4_wait_for_tail_page_commit(inode);
5068                 }
5069                 down_write(&EXT4_I(inode)->i_mmap_sem);
5070                 /*
5071                  * Truncate pagecache after we've waited for commit
5072                  * in data=journal mode to make pages freeable.
5073                  */
5074                 truncate_pagecache(inode, inode->i_size);
5075                 if (shrink)
5076                         ext4_truncate(inode);
5077                 up_write(&EXT4_I(inode)->i_mmap_sem);
5078         }
5079
5080         if (!rc) {
5081                 setattr_copy(inode, attr);
5082                 mark_inode_dirty(inode);
5083         }
5084
5085         /*
5086          * If the call to ext4_truncate failed to get a transaction handle at
5087          * all, we need to clean up the in-core orphan list manually.
5088          */
5089         if (orphan && inode->i_nlink)
5090                 ext4_orphan_del(NULL, inode);
5091
5092         if (!rc && (ia_valid & ATTR_MODE))
5093                 rc = posix_acl_chmod(inode, inode->i_mode);
5094
5095 err_out:
5096         ext4_std_error(inode->i_sb, error);
5097         if (!error)
5098                 error = rc;
5099         return error;
5100 }
5101
5102 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5103                  struct kstat *stat)
5104 {
5105         struct inode *inode;
5106         unsigned long long delalloc_blocks;
5107
5108         inode = d_inode(dentry);
5109         generic_fillattr(inode, stat);
5110
5111         /*
5112          * If there is inline data in the inode, the inode will normally not
5113          * have data blocks allocated (it may have an external xattr block).
5114          * Report at least one sector for such files, so tools like tar, rsync,
5115          * others doen't incorrectly think the file is completely sparse.
5116          */
5117         if (unlikely(ext4_has_inline_data(inode)))
5118                 stat->blocks += (stat->size + 511) >> 9;
5119
5120         /*
5121          * We can't update i_blocks if the block allocation is delayed
5122          * otherwise in the case of system crash before the real block
5123          * allocation is done, we will have i_blocks inconsistent with
5124          * on-disk file blocks.
5125          * We always keep i_blocks updated together with real
5126          * allocation. But to not confuse with user, stat
5127          * will return the blocks that include the delayed allocation
5128          * blocks for this file.
5129          */
5130         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5131                                    EXT4_I(inode)->i_reserved_data_blocks);
5132         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5133         return 0;
5134 }
5135
5136 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5137                                    int pextents)
5138 {
5139         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5140                 return ext4_ind_trans_blocks(inode, lblocks);
5141         return ext4_ext_index_trans_blocks(inode, pextents);
5142 }
5143
5144 /*
5145  * Account for index blocks, block groups bitmaps and block group
5146  * descriptor blocks if modify datablocks and index blocks
5147  * worse case, the indexs blocks spread over different block groups
5148  *
5149  * If datablocks are discontiguous, they are possible to spread over
5150  * different block groups too. If they are contiguous, with flexbg,
5151  * they could still across block group boundary.
5152  *
5153  * Also account for superblock, inode, quota and xattr blocks
5154  */
5155 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5156                                   int pextents)
5157 {
5158         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5159         int gdpblocks;
5160         int idxblocks;
5161         int ret = 0;
5162
5163         /*
5164          * How many index blocks need to touch to map @lblocks logical blocks
5165          * to @pextents physical extents?
5166          */
5167         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5168
5169         ret = idxblocks;
5170
5171         /*
5172          * Now let's see how many group bitmaps and group descriptors need
5173          * to account
5174          */
5175         groups = idxblocks + pextents;
5176         gdpblocks = groups;
5177         if (groups > ngroups)
5178                 groups = ngroups;
5179         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5180                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5181
5182         /* bitmaps and block group descriptor blocks */
5183         ret += groups + gdpblocks;
5184
5185         /* Blocks for super block, inode, quota and xattr blocks */
5186         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5187
5188         return ret;
5189 }
5190
5191 /*
5192  * Calculate the total number of credits to reserve to fit
5193  * the modification of a single pages into a single transaction,
5194  * which may include multiple chunks of block allocations.
5195  *
5196  * This could be called via ext4_write_begin()
5197  *
5198  * We need to consider the worse case, when
5199  * one new block per extent.
5200  */
5201 int ext4_writepage_trans_blocks(struct inode *inode)
5202 {
5203         int bpp = ext4_journal_blocks_per_page(inode);
5204         int ret;
5205
5206         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5207
5208         /* Account for data blocks for journalled mode */
5209         if (ext4_should_journal_data(inode))
5210                 ret += bpp;
5211         return ret;
5212 }
5213
5214 /*
5215  * Calculate the journal credits for a chunk of data modification.
5216  *
5217  * This is called from DIO, fallocate or whoever calling
5218  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5219  *
5220  * journal buffers for data blocks are not included here, as DIO
5221  * and fallocate do no need to journal data buffers.
5222  */
5223 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5224 {
5225         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5226 }
5227
5228 /*
5229  * The caller must have previously called ext4_reserve_inode_write().
5230  * Give this, we know that the caller already has write access to iloc->bh.
5231  */
5232 int ext4_mark_iloc_dirty(handle_t *handle,
5233                          struct inode *inode, struct ext4_iloc *iloc)
5234 {
5235         int err = 0;
5236
5237         if (IS_I_VERSION(inode))
5238                 inode_inc_iversion(inode);
5239
5240         /* the do_update_inode consumes one bh->b_count */
5241         get_bh(iloc->bh);
5242
5243         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5244         err = ext4_do_update_inode(handle, inode, iloc);
5245         put_bh(iloc->bh);
5246         return err;
5247 }
5248
5249 /*
5250  * On success, We end up with an outstanding reference count against
5251  * iloc->bh.  This _must_ be cleaned up later.
5252  */
5253
5254 int
5255 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5256                          struct ext4_iloc *iloc)
5257 {
5258         int err;
5259
5260         err = ext4_get_inode_loc(inode, iloc);
5261         if (!err) {
5262                 BUFFER_TRACE(iloc->bh, "get_write_access");
5263                 err = ext4_journal_get_write_access(handle, iloc->bh);
5264                 if (err) {
5265                         brelse(iloc->bh);
5266                         iloc->bh = NULL;
5267                 }
5268         }
5269         ext4_std_error(inode->i_sb, err);
5270         return err;
5271 }
5272
5273 /*
5274  * Expand an inode by new_extra_isize bytes.
5275  * Returns 0 on success or negative error number on failure.
5276  */
5277 static int ext4_expand_extra_isize(struct inode *inode,
5278                                    unsigned int new_extra_isize,
5279                                    struct ext4_iloc iloc,
5280                                    handle_t *handle)
5281 {
5282         struct ext4_inode *raw_inode;
5283         struct ext4_xattr_ibody_header *header;
5284
5285         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5286                 return 0;
5287
5288         raw_inode = ext4_raw_inode(&iloc);
5289
5290         header = IHDR(inode, raw_inode);
5291
5292         /* No extended attributes present */
5293         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5294             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5295                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5296                         new_extra_isize);
5297                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5298                 return 0;
5299         }
5300
5301         /* try to expand with EAs present */
5302         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5303                                           raw_inode, handle);
5304 }
5305
5306 /*
5307  * What we do here is to mark the in-core inode as clean with respect to inode
5308  * dirtiness (it may still be data-dirty).
5309  * This means that the in-core inode may be reaped by prune_icache
5310  * without having to perform any I/O.  This is a very good thing,
5311  * because *any* task may call prune_icache - even ones which
5312  * have a transaction open against a different journal.
5313  *
5314  * Is this cheating?  Not really.  Sure, we haven't written the
5315  * inode out, but prune_icache isn't a user-visible syncing function.
5316  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5317  * we start and wait on commits.
5318  */
5319 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5320 {
5321         struct ext4_iloc iloc;
5322         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5323         static unsigned int mnt_count;
5324         int err, ret;
5325
5326         might_sleep();
5327         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5328         err = ext4_reserve_inode_write(handle, inode, &iloc);
5329         if (err)
5330                 return err;
5331         if (ext4_handle_valid(handle) &&
5332             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5333             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5334                 /*
5335                  * We need extra buffer credits since we may write into EA block
5336                  * with this same handle. If journal_extend fails, then it will
5337                  * only result in a minor loss of functionality for that inode.
5338                  * If this is felt to be critical, then e2fsck should be run to
5339                  * force a large enough s_min_extra_isize.
5340                  */
5341                 if ((jbd2_journal_extend(handle,
5342                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5343                         ret = ext4_expand_extra_isize(inode,
5344                                                       sbi->s_want_extra_isize,
5345                                                       iloc, handle);
5346                         if (ret) {
5347                                 ext4_set_inode_state(inode,
5348                                                      EXT4_STATE_NO_EXPAND);
5349                                 if (mnt_count !=
5350                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5351                                         ext4_warning(inode->i_sb,
5352                                         "Unable to expand inode %lu. Delete"
5353                                         " some EAs or run e2fsck.",
5354                                         inode->i_ino);
5355                                         mnt_count =
5356                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5357                                 }
5358                         }
5359                 }
5360         }
5361         return ext4_mark_iloc_dirty(handle, inode, &iloc);
5362 }
5363
5364 /*
5365  * ext4_dirty_inode() is called from __mark_inode_dirty()
5366  *
5367  * We're really interested in the case where a file is being extended.
5368  * i_size has been changed by generic_commit_write() and we thus need
5369  * to include the updated inode in the current transaction.
5370  *
5371  * Also, dquot_alloc_block() will always dirty the inode when blocks
5372  * are allocated to the file.
5373  *
5374  * If the inode is marked synchronous, we don't honour that here - doing
5375  * so would cause a commit on atime updates, which we don't bother doing.
5376  * We handle synchronous inodes at the highest possible level.
5377  *
5378  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5379  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5380  * to copy into the on-disk inode structure are the timestamp files.
5381  */
5382 void ext4_dirty_inode(struct inode *inode, int flags)
5383 {
5384         handle_t *handle;
5385
5386         if (flags == I_DIRTY_TIME)
5387                 return;
5388         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5389         if (IS_ERR(handle))
5390                 goto out;
5391
5392         ext4_mark_inode_dirty(handle, inode);
5393
5394         ext4_journal_stop(handle);
5395 out:
5396         return;
5397 }
5398
5399 #if 0
5400 /*
5401  * Bind an inode's backing buffer_head into this transaction, to prevent
5402  * it from being flushed to disk early.  Unlike
5403  * ext4_reserve_inode_write, this leaves behind no bh reference and
5404  * returns no iloc structure, so the caller needs to repeat the iloc
5405  * lookup to mark the inode dirty later.
5406  */
5407 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5408 {
5409         struct ext4_iloc iloc;
5410
5411         int err = 0;
5412         if (handle) {
5413                 err = ext4_get_inode_loc(inode, &iloc);
5414                 if (!err) {
5415                         BUFFER_TRACE(iloc.bh, "get_write_access");
5416                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5417                         if (!err)
5418                                 err = ext4_handle_dirty_metadata(handle,
5419                                                                  NULL,
5420                                                                  iloc.bh);
5421                         brelse(iloc.bh);
5422                 }
5423         }
5424         ext4_std_error(inode->i_sb, err);
5425         return err;
5426 }
5427 #endif
5428
5429 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5430 {
5431         journal_t *journal;
5432         handle_t *handle;
5433         int err;
5434
5435         /*
5436          * We have to be very careful here: changing a data block's
5437          * journaling status dynamically is dangerous.  If we write a
5438          * data block to the journal, change the status and then delete
5439          * that block, we risk forgetting to revoke the old log record
5440          * from the journal and so a subsequent replay can corrupt data.
5441          * So, first we make sure that the journal is empty and that
5442          * nobody is changing anything.
5443          */
5444
5445         journal = EXT4_JOURNAL(inode);
5446         if (!journal)
5447                 return 0;
5448         if (is_journal_aborted(journal))
5449                 return -EROFS;
5450         /* We have to allocate physical blocks for delalloc blocks
5451          * before flushing journal. otherwise delalloc blocks can not
5452          * be allocated any more. even more truncate on delalloc blocks
5453          * could trigger BUG by flushing delalloc blocks in journal.
5454          * There is no delalloc block in non-journal data mode.
5455          */
5456         if (val && test_opt(inode->i_sb, DELALLOC)) {
5457                 err = ext4_alloc_da_blocks(inode);
5458                 if (err < 0)
5459                         return err;
5460         }
5461
5462         /* Wait for all existing dio workers */
5463         ext4_inode_block_unlocked_dio(inode);
5464         inode_dio_wait(inode);
5465
5466         jbd2_journal_lock_updates(journal);
5467
5468         /*
5469          * OK, there are no updates running now, and all cached data is
5470          * synced to disk.  We are now in a completely consistent state
5471          * which doesn't have anything in the journal, and we know that
5472          * no filesystem updates are running, so it is safe to modify
5473          * the inode's in-core data-journaling state flag now.
5474          */
5475
5476         if (val)
5477                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5478         else {
5479                 err = jbd2_journal_flush(journal);
5480                 if (err < 0) {
5481                         jbd2_journal_unlock_updates(journal);
5482                         ext4_inode_resume_unlocked_dio(inode);
5483                         return err;
5484                 }
5485                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5486         }
5487         ext4_set_aops(inode);
5488
5489         jbd2_journal_unlock_updates(journal);
5490         ext4_inode_resume_unlocked_dio(inode);
5491
5492         /* Finally we can mark the inode as dirty. */
5493
5494         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5495         if (IS_ERR(handle))
5496                 return PTR_ERR(handle);
5497
5498         err = ext4_mark_inode_dirty(handle, inode);
5499         ext4_handle_sync(handle);
5500         ext4_journal_stop(handle);
5501         ext4_std_error(inode->i_sb, err);
5502
5503         return err;
5504 }
5505
5506 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5507 {
5508         return !buffer_mapped(bh);
5509 }
5510
5511 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5512 {
5513         struct page *page = vmf->page;
5514         loff_t size;
5515         unsigned long len;
5516         int ret;
5517         struct file *file = vma->vm_file;
5518         struct inode *inode = file_inode(file);
5519         struct address_space *mapping = inode->i_mapping;
5520         handle_t *handle;
5521         get_block_t *get_block;
5522         int retries = 0;
5523
5524         sb_start_pagefault(inode->i_sb);
5525         file_update_time(vma->vm_file);
5526
5527         down_read(&EXT4_I(inode)->i_mmap_sem);
5528         /* Delalloc case is easy... */
5529         if (test_opt(inode->i_sb, DELALLOC) &&
5530             !ext4_should_journal_data(inode) &&
5531             !ext4_nonda_switch(inode->i_sb)) {
5532                 do {
5533                         ret = block_page_mkwrite(vma, vmf,
5534                                                    ext4_da_get_block_prep);
5535                 } while (ret == -ENOSPC &&
5536                        ext4_should_retry_alloc(inode->i_sb, &retries));
5537                 goto out_ret;
5538         }
5539
5540         lock_page(page);
5541         size = i_size_read(inode);
5542         /* Page got truncated from under us? */
5543         if (page->mapping != mapping || page_offset(page) > size) {
5544                 unlock_page(page);
5545                 ret = VM_FAULT_NOPAGE;
5546                 goto out;
5547         }
5548
5549         if (page->index == size >> PAGE_SHIFT)
5550                 len = size & ~PAGE_MASK;
5551         else
5552                 len = PAGE_SIZE;
5553         /*
5554          * Return if we have all the buffers mapped. This avoids the need to do
5555          * journal_start/journal_stop which can block and take a long time
5556          */
5557         if (page_has_buffers(page)) {
5558                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5559                                             0, len, NULL,
5560                                             ext4_bh_unmapped)) {
5561                         /* Wait so that we don't change page under IO */
5562                         wait_for_stable_page(page);
5563                         ret = VM_FAULT_LOCKED;
5564                         goto out;
5565                 }
5566         }
5567         unlock_page(page);
5568         /* OK, we need to fill the hole... */
5569         if (ext4_should_dioread_nolock(inode))
5570                 get_block = ext4_get_block_unwritten;
5571         else
5572                 get_block = ext4_get_block;
5573 retry_alloc:
5574         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5575                                     ext4_writepage_trans_blocks(inode));
5576         if (IS_ERR(handle)) {
5577                 ret = VM_FAULT_SIGBUS;
5578                 goto out;
5579         }
5580         ret = block_page_mkwrite(vma, vmf, get_block);
5581         if (!ret && ext4_should_journal_data(inode)) {
5582                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5583                           PAGE_SIZE, NULL, do_journal_get_write_access)) {
5584                         unlock_page(page);
5585                         ret = VM_FAULT_SIGBUS;
5586                         ext4_journal_stop(handle);
5587                         goto out;
5588                 }
5589                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5590         }
5591         ext4_journal_stop(handle);
5592         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5593                 goto retry_alloc;
5594 out_ret:
5595         ret = block_page_mkwrite_return(ret);
5596 out:
5597         up_read(&EXT4_I(inode)->i_mmap_sem);
5598         sb_end_pagefault(inode->i_sb);
5599         return ret;
5600 }
5601
5602 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5603 {
5604         struct inode *inode = file_inode(vma->vm_file);
5605         int err;
5606
5607         down_read(&EXT4_I(inode)->i_mmap_sem);
5608         err = filemap_fault(vma, vmf);
5609         up_read(&EXT4_I(inode)->i_mmap_sem);
5610
5611         return err;
5612 }
5613
5614 /*
5615  * Find the first extent at or after @lblk in an inode that is not a hole.
5616  * Search for @map_len blocks at most. The extent is returned in @result.
5617  *
5618  * The function returns 1 if we found an extent. The function returns 0 in
5619  * case there is no extent at or after @lblk and in that case also sets
5620  * @result->es_len to 0. In case of error, the error code is returned.
5621  */
5622 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
5623                          unsigned int map_len, struct extent_status *result)
5624 {
5625         struct ext4_map_blocks map;
5626         struct extent_status es = {};
5627         int ret;
5628
5629         map.m_lblk = lblk;
5630         map.m_len = map_len;
5631
5632         /*
5633          * For non-extent based files this loop may iterate several times since
5634          * we do not determine full hole size.
5635          */
5636         while (map.m_len > 0) {
5637                 ret = ext4_map_blocks(NULL, inode, &map, 0);
5638                 if (ret < 0)
5639                         return ret;
5640                 /* There's extent covering m_lblk? Just return it. */
5641                 if (ret > 0) {
5642                         int status;
5643
5644                         ext4_es_store_pblock(result, map.m_pblk);
5645                         result->es_lblk = map.m_lblk;
5646                         result->es_len = map.m_len;
5647                         if (map.m_flags & EXT4_MAP_UNWRITTEN)
5648                                 status = EXTENT_STATUS_UNWRITTEN;
5649                         else
5650                                 status = EXTENT_STATUS_WRITTEN;
5651                         ext4_es_store_status(result, status);
5652                         return 1;
5653                 }
5654                 ext4_es_find_delayed_extent_range(inode, map.m_lblk,
5655                                                   map.m_lblk + map.m_len - 1,
5656                                                   &es);
5657                 /* Is delalloc data before next block in extent tree? */
5658                 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
5659                         ext4_lblk_t offset = 0;
5660
5661                         if (es.es_lblk < lblk)
5662                                 offset = lblk - es.es_lblk;
5663                         result->es_lblk = es.es_lblk + offset;
5664                         ext4_es_store_pblock(result,
5665                                              ext4_es_pblock(&es) + offset);
5666                         result->es_len = es.es_len - offset;
5667                         ext4_es_store_status(result, ext4_es_status(&es));
5668
5669                         return 1;
5670                 }
5671                 /* There's a hole at m_lblk, advance us after it */
5672                 map.m_lblk += map.m_len;
5673                 map_len -= map.m_len;
5674                 map.m_len = map_len;
5675                 cond_resched();
5676         }
5677         result->es_len = 0;
5678         return 0;
5679 }