Merge branch 'i2c/for-4.9' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa/linux
[sfrench/cifs-2.6.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51                               struct ext4_inode_info *ei)
52 {
53         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54         __u32 csum;
55         __u16 dummy_csum = 0;
56         int offset = offsetof(struct ext4_inode, i_checksum_lo);
57         unsigned int csum_size = sizeof(dummy_csum);
58
59         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
60         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
61         offset += csum_size;
62         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
63                            EXT4_GOOD_OLD_INODE_SIZE - offset);
64
65         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
66                 offset = offsetof(struct ext4_inode, i_checksum_hi);
67                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
68                                    EXT4_GOOD_OLD_INODE_SIZE,
69                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
70                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
71                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
72                                            csum_size);
73                         offset += csum_size;
74                         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
75                                            EXT4_INODE_SIZE(inode->i_sb) -
76                                            offset);
77                 }
78         }
79
80         return csum;
81 }
82
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84                                   struct ext4_inode_info *ei)
85 {
86         __u32 provided, calculated;
87
88         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89             cpu_to_le32(EXT4_OS_LINUX) ||
90             !ext4_has_metadata_csum(inode->i_sb))
91                 return 1;
92
93         provided = le16_to_cpu(raw->i_checksum_lo);
94         calculated = ext4_inode_csum(inode, raw, ei);
95         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98         else
99                 calculated &= 0xFFFF;
100
101         return provided == calculated;
102 }
103
104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105                                 struct ext4_inode_info *ei)
106 {
107         __u32 csum;
108
109         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110             cpu_to_le32(EXT4_OS_LINUX) ||
111             !ext4_has_metadata_csum(inode->i_sb))
112                 return;
113
114         csum = ext4_inode_csum(inode, raw, ei);
115         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122                                               loff_t new_size)
123 {
124         trace_ext4_begin_ordered_truncate(inode, new_size);
125         /*
126          * If jinode is zero, then we never opened the file for
127          * writing, so there's no need to call
128          * jbd2_journal_begin_ordered_truncate() since there's no
129          * outstanding writes we need to flush.
130          */
131         if (!EXT4_I(inode)->jinode)
132                 return 0;
133         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134                                                    EXT4_I(inode)->jinode,
135                                                    new_size);
136 }
137
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139                                 unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143                                   int pextents);
144
145 /*
146  * Test whether an inode is a fast symlink.
147  */
148 int ext4_inode_is_fast_symlink(struct inode *inode)
149 {
150         int ea_blocks = EXT4_I(inode)->i_file_acl ?
151                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152
153         if (ext4_has_inline_data(inode))
154                 return 0;
155
156         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157 }
158
159 /*
160  * Restart the transaction associated with *handle.  This does a commit,
161  * so before we call here everything must be consistently dirtied against
162  * this transaction.
163  */
164 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
165                                  int nblocks)
166 {
167         int ret;
168
169         /*
170          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
171          * moment, get_block can be called only for blocks inside i_size since
172          * page cache has been already dropped and writes are blocked by
173          * i_mutex. So we can safely drop the i_data_sem here.
174          */
175         BUG_ON(EXT4_JOURNAL(inode) == NULL);
176         jbd_debug(2, "restarting handle %p\n", handle);
177         up_write(&EXT4_I(inode)->i_data_sem);
178         ret = ext4_journal_restart(handle, nblocks);
179         down_write(&EXT4_I(inode)->i_data_sem);
180         ext4_discard_preallocations(inode);
181
182         return ret;
183 }
184
185 /*
186  * Called at the last iput() if i_nlink is zero.
187  */
188 void ext4_evict_inode(struct inode *inode)
189 {
190         handle_t *handle;
191         int err;
192
193         trace_ext4_evict_inode(inode);
194
195         if (inode->i_nlink) {
196                 /*
197                  * When journalling data dirty buffers are tracked only in the
198                  * journal. So although mm thinks everything is clean and
199                  * ready for reaping the inode might still have some pages to
200                  * write in the running transaction or waiting to be
201                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
202                  * (via truncate_inode_pages()) to discard these buffers can
203                  * cause data loss. Also even if we did not discard these
204                  * buffers, we would have no way to find them after the inode
205                  * is reaped and thus user could see stale data if he tries to
206                  * read them before the transaction is checkpointed. So be
207                  * careful and force everything to disk here... We use
208                  * ei->i_datasync_tid to store the newest transaction
209                  * containing inode's data.
210                  *
211                  * Note that directories do not have this problem because they
212                  * don't use page cache.
213                  */
214                 if (inode->i_ino != EXT4_JOURNAL_INO &&
215                     ext4_should_journal_data(inode) &&
216                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
217                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
218                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
219
220                         jbd2_complete_transaction(journal, commit_tid);
221                         filemap_write_and_wait(&inode->i_data);
222                 }
223                 truncate_inode_pages_final(&inode->i_data);
224
225                 goto no_delete;
226         }
227
228         if (is_bad_inode(inode))
229                 goto no_delete;
230         dquot_initialize(inode);
231
232         if (ext4_should_order_data(inode))
233                 ext4_begin_ordered_truncate(inode, 0);
234         truncate_inode_pages_final(&inode->i_data);
235
236         /*
237          * Protect us against freezing - iput() caller didn't have to have any
238          * protection against it
239          */
240         sb_start_intwrite(inode->i_sb);
241         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
242                                     ext4_blocks_for_truncate(inode)+3);
243         if (IS_ERR(handle)) {
244                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
245                 /*
246                  * If we're going to skip the normal cleanup, we still need to
247                  * make sure that the in-core orphan linked list is properly
248                  * cleaned up.
249                  */
250                 ext4_orphan_del(NULL, inode);
251                 sb_end_intwrite(inode->i_sb);
252                 goto no_delete;
253         }
254
255         if (IS_SYNC(inode))
256                 ext4_handle_sync(handle);
257         inode->i_size = 0;
258         err = ext4_mark_inode_dirty(handle, inode);
259         if (err) {
260                 ext4_warning(inode->i_sb,
261                              "couldn't mark inode dirty (err %d)", err);
262                 goto stop_handle;
263         }
264         if (inode->i_blocks)
265                 ext4_truncate(inode);
266
267         /*
268          * ext4_ext_truncate() doesn't reserve any slop when it
269          * restarts journal transactions; therefore there may not be
270          * enough credits left in the handle to remove the inode from
271          * the orphan list and set the dtime field.
272          */
273         if (!ext4_handle_has_enough_credits(handle, 3)) {
274                 err = ext4_journal_extend(handle, 3);
275                 if (err > 0)
276                         err = ext4_journal_restart(handle, 3);
277                 if (err != 0) {
278                         ext4_warning(inode->i_sb,
279                                      "couldn't extend journal (err %d)", err);
280                 stop_handle:
281                         ext4_journal_stop(handle);
282                         ext4_orphan_del(NULL, inode);
283                         sb_end_intwrite(inode->i_sb);
284                         goto no_delete;
285                 }
286         }
287
288         /*
289          * Kill off the orphan record which ext4_truncate created.
290          * AKPM: I think this can be inside the above `if'.
291          * Note that ext4_orphan_del() has to be able to cope with the
292          * deletion of a non-existent orphan - this is because we don't
293          * know if ext4_truncate() actually created an orphan record.
294          * (Well, we could do this if we need to, but heck - it works)
295          */
296         ext4_orphan_del(handle, inode);
297         EXT4_I(inode)->i_dtime  = get_seconds();
298
299         /*
300          * One subtle ordering requirement: if anything has gone wrong
301          * (transaction abort, IO errors, whatever), then we can still
302          * do these next steps (the fs will already have been marked as
303          * having errors), but we can't free the inode if the mark_dirty
304          * fails.
305          */
306         if (ext4_mark_inode_dirty(handle, inode))
307                 /* If that failed, just do the required in-core inode clear. */
308                 ext4_clear_inode(inode);
309         else
310                 ext4_free_inode(handle, inode);
311         ext4_journal_stop(handle);
312         sb_end_intwrite(inode->i_sb);
313         return;
314 no_delete:
315         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
316 }
317
318 #ifdef CONFIG_QUOTA
319 qsize_t *ext4_get_reserved_space(struct inode *inode)
320 {
321         return &EXT4_I(inode)->i_reserved_quota;
322 }
323 #endif
324
325 /*
326  * Called with i_data_sem down, which is important since we can call
327  * ext4_discard_preallocations() from here.
328  */
329 void ext4_da_update_reserve_space(struct inode *inode,
330                                         int used, int quota_claim)
331 {
332         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
333         struct ext4_inode_info *ei = EXT4_I(inode);
334
335         spin_lock(&ei->i_block_reservation_lock);
336         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
337         if (unlikely(used > ei->i_reserved_data_blocks)) {
338                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
339                          "with only %d reserved data blocks",
340                          __func__, inode->i_ino, used,
341                          ei->i_reserved_data_blocks);
342                 WARN_ON(1);
343                 used = ei->i_reserved_data_blocks;
344         }
345
346         /* Update per-inode reservations */
347         ei->i_reserved_data_blocks -= used;
348         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
349
350         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
351
352         /* Update quota subsystem for data blocks */
353         if (quota_claim)
354                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
355         else {
356                 /*
357                  * We did fallocate with an offset that is already delayed
358                  * allocated. So on delayed allocated writeback we should
359                  * not re-claim the quota for fallocated blocks.
360                  */
361                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
362         }
363
364         /*
365          * If we have done all the pending block allocations and if
366          * there aren't any writers on the inode, we can discard the
367          * inode's preallocations.
368          */
369         if ((ei->i_reserved_data_blocks == 0) &&
370             (atomic_read(&inode->i_writecount) == 0))
371                 ext4_discard_preallocations(inode);
372 }
373
374 static int __check_block_validity(struct inode *inode, const char *func,
375                                 unsigned int line,
376                                 struct ext4_map_blocks *map)
377 {
378         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
379                                    map->m_len)) {
380                 ext4_error_inode(inode, func, line, map->m_pblk,
381                                  "lblock %lu mapped to illegal pblock "
382                                  "(length %d)", (unsigned long) map->m_lblk,
383                                  map->m_len);
384                 return -EFSCORRUPTED;
385         }
386         return 0;
387 }
388
389 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
390                        ext4_lblk_t len)
391 {
392         int ret;
393
394         if (ext4_encrypted_inode(inode))
395                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
396
397         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
398         if (ret > 0)
399                 ret = 0;
400
401         return ret;
402 }
403
404 #define check_block_validity(inode, map)        \
405         __check_block_validity((inode), __func__, __LINE__, (map))
406
407 #ifdef ES_AGGRESSIVE_TEST
408 static void ext4_map_blocks_es_recheck(handle_t *handle,
409                                        struct inode *inode,
410                                        struct ext4_map_blocks *es_map,
411                                        struct ext4_map_blocks *map,
412                                        int flags)
413 {
414         int retval;
415
416         map->m_flags = 0;
417         /*
418          * There is a race window that the result is not the same.
419          * e.g. xfstests #223 when dioread_nolock enables.  The reason
420          * is that we lookup a block mapping in extent status tree with
421          * out taking i_data_sem.  So at the time the unwritten extent
422          * could be converted.
423          */
424         down_read(&EXT4_I(inode)->i_data_sem);
425         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
426                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
427                                              EXT4_GET_BLOCKS_KEEP_SIZE);
428         } else {
429                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
430                                              EXT4_GET_BLOCKS_KEEP_SIZE);
431         }
432         up_read((&EXT4_I(inode)->i_data_sem));
433
434         /*
435          * We don't check m_len because extent will be collpased in status
436          * tree.  So the m_len might not equal.
437          */
438         if (es_map->m_lblk != map->m_lblk ||
439             es_map->m_flags != map->m_flags ||
440             es_map->m_pblk != map->m_pblk) {
441                 printk("ES cache assertion failed for inode: %lu "
442                        "es_cached ex [%d/%d/%llu/%x] != "
443                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
444                        inode->i_ino, es_map->m_lblk, es_map->m_len,
445                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
446                        map->m_len, map->m_pblk, map->m_flags,
447                        retval, flags);
448         }
449 }
450 #endif /* ES_AGGRESSIVE_TEST */
451
452 /*
453  * The ext4_map_blocks() function tries to look up the requested blocks,
454  * and returns if the blocks are already mapped.
455  *
456  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
457  * and store the allocated blocks in the result buffer head and mark it
458  * mapped.
459  *
460  * If file type is extents based, it will call ext4_ext_map_blocks(),
461  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
462  * based files
463  *
464  * On success, it returns the number of blocks being mapped or allocated.  if
465  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
466  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
467  *
468  * It returns 0 if plain look up failed (blocks have not been allocated), in
469  * that case, @map is returned as unmapped but we still do fill map->m_len to
470  * indicate the length of a hole starting at map->m_lblk.
471  *
472  * It returns the error in case of allocation failure.
473  */
474 int ext4_map_blocks(handle_t *handle, struct inode *inode,
475                     struct ext4_map_blocks *map, int flags)
476 {
477         struct extent_status es;
478         int retval;
479         int ret = 0;
480 #ifdef ES_AGGRESSIVE_TEST
481         struct ext4_map_blocks orig_map;
482
483         memcpy(&orig_map, map, sizeof(*map));
484 #endif
485
486         map->m_flags = 0;
487         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
488                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
489                   (unsigned long) map->m_lblk);
490
491         /*
492          * ext4_map_blocks returns an int, and m_len is an unsigned int
493          */
494         if (unlikely(map->m_len > INT_MAX))
495                 map->m_len = INT_MAX;
496
497         /* We can handle the block number less than EXT_MAX_BLOCKS */
498         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
499                 return -EFSCORRUPTED;
500
501         /* Lookup extent status tree firstly */
502         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
503                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
504                         map->m_pblk = ext4_es_pblock(&es) +
505                                         map->m_lblk - es.es_lblk;
506                         map->m_flags |= ext4_es_is_written(&es) ?
507                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
508                         retval = es.es_len - (map->m_lblk - es.es_lblk);
509                         if (retval > map->m_len)
510                                 retval = map->m_len;
511                         map->m_len = retval;
512                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
513                         map->m_pblk = 0;
514                         retval = es.es_len - (map->m_lblk - es.es_lblk);
515                         if (retval > map->m_len)
516                                 retval = map->m_len;
517                         map->m_len = retval;
518                         retval = 0;
519                 } else {
520                         BUG_ON(1);
521                 }
522 #ifdef ES_AGGRESSIVE_TEST
523                 ext4_map_blocks_es_recheck(handle, inode, map,
524                                            &orig_map, flags);
525 #endif
526                 goto found;
527         }
528
529         /*
530          * Try to see if we can get the block without requesting a new
531          * file system block.
532          */
533         down_read(&EXT4_I(inode)->i_data_sem);
534         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
535                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
536                                              EXT4_GET_BLOCKS_KEEP_SIZE);
537         } else {
538                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
539                                              EXT4_GET_BLOCKS_KEEP_SIZE);
540         }
541         if (retval > 0) {
542                 unsigned int status;
543
544                 if (unlikely(retval != map->m_len)) {
545                         ext4_warning(inode->i_sb,
546                                      "ES len assertion failed for inode "
547                                      "%lu: retval %d != map->m_len %d",
548                                      inode->i_ino, retval, map->m_len);
549                         WARN_ON(1);
550                 }
551
552                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
553                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
554                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
555                     !(status & EXTENT_STATUS_WRITTEN) &&
556                     ext4_find_delalloc_range(inode, map->m_lblk,
557                                              map->m_lblk + map->m_len - 1))
558                         status |= EXTENT_STATUS_DELAYED;
559                 ret = ext4_es_insert_extent(inode, map->m_lblk,
560                                             map->m_len, map->m_pblk, status);
561                 if (ret < 0)
562                         retval = ret;
563         }
564         up_read((&EXT4_I(inode)->i_data_sem));
565
566 found:
567         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
568                 ret = check_block_validity(inode, map);
569                 if (ret != 0)
570                         return ret;
571         }
572
573         /* If it is only a block(s) look up */
574         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
575                 return retval;
576
577         /*
578          * Returns if the blocks have already allocated
579          *
580          * Note that if blocks have been preallocated
581          * ext4_ext_get_block() returns the create = 0
582          * with buffer head unmapped.
583          */
584         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
585                 /*
586                  * If we need to convert extent to unwritten
587                  * we continue and do the actual work in
588                  * ext4_ext_map_blocks()
589                  */
590                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
591                         return retval;
592
593         /*
594          * Here we clear m_flags because after allocating an new extent,
595          * it will be set again.
596          */
597         map->m_flags &= ~EXT4_MAP_FLAGS;
598
599         /*
600          * New blocks allocate and/or writing to unwritten extent
601          * will possibly result in updating i_data, so we take
602          * the write lock of i_data_sem, and call get_block()
603          * with create == 1 flag.
604          */
605         down_write(&EXT4_I(inode)->i_data_sem);
606
607         /*
608          * We need to check for EXT4 here because migrate
609          * could have changed the inode type in between
610          */
611         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
612                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
613         } else {
614                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
615
616                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
617                         /*
618                          * We allocated new blocks which will result in
619                          * i_data's format changing.  Force the migrate
620                          * to fail by clearing migrate flags
621                          */
622                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
623                 }
624
625                 /*
626                  * Update reserved blocks/metadata blocks after successful
627                  * block allocation which had been deferred till now. We don't
628                  * support fallocate for non extent files. So we can update
629                  * reserve space here.
630                  */
631                 if ((retval > 0) &&
632                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
633                         ext4_da_update_reserve_space(inode, retval, 1);
634         }
635
636         if (retval > 0) {
637                 unsigned int status;
638
639                 if (unlikely(retval != map->m_len)) {
640                         ext4_warning(inode->i_sb,
641                                      "ES len assertion failed for inode "
642                                      "%lu: retval %d != map->m_len %d",
643                                      inode->i_ino, retval, map->m_len);
644                         WARN_ON(1);
645                 }
646
647                 /*
648                  * We have to zeroout blocks before inserting them into extent
649                  * status tree. Otherwise someone could look them up there and
650                  * use them before they are really zeroed.
651                  */
652                 if (flags & EXT4_GET_BLOCKS_ZERO &&
653                     map->m_flags & EXT4_MAP_MAPPED &&
654                     map->m_flags & EXT4_MAP_NEW) {
655                         ret = ext4_issue_zeroout(inode, map->m_lblk,
656                                                  map->m_pblk, map->m_len);
657                         if (ret) {
658                                 retval = ret;
659                                 goto out_sem;
660                         }
661                 }
662
663                 /*
664                  * If the extent has been zeroed out, we don't need to update
665                  * extent status tree.
666                  */
667                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
668                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
669                         if (ext4_es_is_written(&es))
670                                 goto out_sem;
671                 }
672                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
673                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
674                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
675                     !(status & EXTENT_STATUS_WRITTEN) &&
676                     ext4_find_delalloc_range(inode, map->m_lblk,
677                                              map->m_lblk + map->m_len - 1))
678                         status |= EXTENT_STATUS_DELAYED;
679                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
680                                             map->m_pblk, status);
681                 if (ret < 0) {
682                         retval = ret;
683                         goto out_sem;
684                 }
685         }
686
687 out_sem:
688         up_write((&EXT4_I(inode)->i_data_sem));
689         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
690                 ret = check_block_validity(inode, map);
691                 if (ret != 0)
692                         return ret;
693
694                 /*
695                  * Inodes with freshly allocated blocks where contents will be
696                  * visible after transaction commit must be on transaction's
697                  * ordered data list.
698                  */
699                 if (map->m_flags & EXT4_MAP_NEW &&
700                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
701                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
702                     !IS_NOQUOTA(inode) &&
703                     ext4_should_order_data(inode)) {
704                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
705                                 ret = ext4_jbd2_inode_add_wait(handle, inode);
706                         else
707                                 ret = ext4_jbd2_inode_add_write(handle, inode);
708                         if (ret)
709                                 return ret;
710                 }
711         }
712         return retval;
713 }
714
715 /*
716  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
717  * we have to be careful as someone else may be manipulating b_state as well.
718  */
719 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
720 {
721         unsigned long old_state;
722         unsigned long new_state;
723
724         flags &= EXT4_MAP_FLAGS;
725
726         /* Dummy buffer_head? Set non-atomically. */
727         if (!bh->b_page) {
728                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
729                 return;
730         }
731         /*
732          * Someone else may be modifying b_state. Be careful! This is ugly but
733          * once we get rid of using bh as a container for mapping information
734          * to pass to / from get_block functions, this can go away.
735          */
736         do {
737                 old_state = READ_ONCE(bh->b_state);
738                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
739         } while (unlikely(
740                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
741 }
742
743 static int _ext4_get_block(struct inode *inode, sector_t iblock,
744                            struct buffer_head *bh, int flags)
745 {
746         struct ext4_map_blocks map;
747         int ret = 0;
748
749         if (ext4_has_inline_data(inode))
750                 return -ERANGE;
751
752         map.m_lblk = iblock;
753         map.m_len = bh->b_size >> inode->i_blkbits;
754
755         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
756                               flags);
757         if (ret > 0) {
758                 map_bh(bh, inode->i_sb, map.m_pblk);
759                 ext4_update_bh_state(bh, map.m_flags);
760                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
761                 ret = 0;
762         }
763         return ret;
764 }
765
766 int ext4_get_block(struct inode *inode, sector_t iblock,
767                    struct buffer_head *bh, int create)
768 {
769         return _ext4_get_block(inode, iblock, bh,
770                                create ? EXT4_GET_BLOCKS_CREATE : 0);
771 }
772
773 /*
774  * Get block function used when preparing for buffered write if we require
775  * creating an unwritten extent if blocks haven't been allocated.  The extent
776  * will be converted to written after the IO is complete.
777  */
778 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
779                              struct buffer_head *bh_result, int create)
780 {
781         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
782                    inode->i_ino, create);
783         return _ext4_get_block(inode, iblock, bh_result,
784                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
785 }
786
787 /* Maximum number of blocks we map for direct IO at once. */
788 #define DIO_MAX_BLOCKS 4096
789
790 /*
791  * Get blocks function for the cases that need to start a transaction -
792  * generally difference cases of direct IO and DAX IO. It also handles retries
793  * in case of ENOSPC.
794  */
795 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
796                                 struct buffer_head *bh_result, int flags)
797 {
798         int dio_credits;
799         handle_t *handle;
800         int retries = 0;
801         int ret;
802
803         /* Trim mapping request to maximum we can map at once for DIO */
804         if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
805                 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
806         dio_credits = ext4_chunk_trans_blocks(inode,
807                                       bh_result->b_size >> inode->i_blkbits);
808 retry:
809         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
810         if (IS_ERR(handle))
811                 return PTR_ERR(handle);
812
813         ret = _ext4_get_block(inode, iblock, bh_result, flags);
814         ext4_journal_stop(handle);
815
816         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
817                 goto retry;
818         return ret;
819 }
820
821 /* Get block function for DIO reads and writes to inodes without extents */
822 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
823                        struct buffer_head *bh, int create)
824 {
825         /* We don't expect handle for direct IO */
826         WARN_ON_ONCE(ext4_journal_current_handle());
827
828         if (!create)
829                 return _ext4_get_block(inode, iblock, bh, 0);
830         return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
831 }
832
833 /*
834  * Get block function for AIO DIO writes when we create unwritten extent if
835  * blocks are not allocated yet. The extent will be converted to written
836  * after IO is complete.
837  */
838 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
839                 sector_t iblock, struct buffer_head *bh_result, int create)
840 {
841         int ret;
842
843         /* We don't expect handle for direct IO */
844         WARN_ON_ONCE(ext4_journal_current_handle());
845
846         ret = ext4_get_block_trans(inode, iblock, bh_result,
847                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
848
849         /*
850          * When doing DIO using unwritten extents, we need io_end to convert
851          * unwritten extents to written on IO completion. We allocate io_end
852          * once we spot unwritten extent and store it in b_private. Generic
853          * DIO code keeps b_private set and furthermore passes the value to
854          * our completion callback in 'private' argument.
855          */
856         if (!ret && buffer_unwritten(bh_result)) {
857                 if (!bh_result->b_private) {
858                         ext4_io_end_t *io_end;
859
860                         io_end = ext4_init_io_end(inode, GFP_KERNEL);
861                         if (!io_end)
862                                 return -ENOMEM;
863                         bh_result->b_private = io_end;
864                         ext4_set_io_unwritten_flag(inode, io_end);
865                 }
866                 set_buffer_defer_completion(bh_result);
867         }
868
869         return ret;
870 }
871
872 /*
873  * Get block function for non-AIO DIO writes when we create unwritten extent if
874  * blocks are not allocated yet. The extent will be converted to written
875  * after IO is complete from ext4_ext_direct_IO() function.
876  */
877 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
878                 sector_t iblock, struct buffer_head *bh_result, int create)
879 {
880         int ret;
881
882         /* We don't expect handle for direct IO */
883         WARN_ON_ONCE(ext4_journal_current_handle());
884
885         ret = ext4_get_block_trans(inode, iblock, bh_result,
886                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
887
888         /*
889          * Mark inode as having pending DIO writes to unwritten extents.
890          * ext4_ext_direct_IO() checks this flag and converts extents to
891          * written.
892          */
893         if (!ret && buffer_unwritten(bh_result))
894                 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
895
896         return ret;
897 }
898
899 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
900                    struct buffer_head *bh_result, int create)
901 {
902         int ret;
903
904         ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
905                    inode->i_ino, create);
906         /* We don't expect handle for direct IO */
907         WARN_ON_ONCE(ext4_journal_current_handle());
908
909         ret = _ext4_get_block(inode, iblock, bh_result, 0);
910         /*
911          * Blocks should have been preallocated! ext4_file_write_iter() checks
912          * that.
913          */
914         WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
915
916         return ret;
917 }
918
919
920 /*
921  * `handle' can be NULL if create is zero
922  */
923 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
924                                 ext4_lblk_t block, int map_flags)
925 {
926         struct ext4_map_blocks map;
927         struct buffer_head *bh;
928         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
929         int err;
930
931         J_ASSERT(handle != NULL || create == 0);
932
933         map.m_lblk = block;
934         map.m_len = 1;
935         err = ext4_map_blocks(handle, inode, &map, map_flags);
936
937         if (err == 0)
938                 return create ? ERR_PTR(-ENOSPC) : NULL;
939         if (err < 0)
940                 return ERR_PTR(err);
941
942         bh = sb_getblk(inode->i_sb, map.m_pblk);
943         if (unlikely(!bh))
944                 return ERR_PTR(-ENOMEM);
945         if (map.m_flags & EXT4_MAP_NEW) {
946                 J_ASSERT(create != 0);
947                 J_ASSERT(handle != NULL);
948
949                 /*
950                  * Now that we do not always journal data, we should
951                  * keep in mind whether this should always journal the
952                  * new buffer as metadata.  For now, regular file
953                  * writes use ext4_get_block instead, so it's not a
954                  * problem.
955                  */
956                 lock_buffer(bh);
957                 BUFFER_TRACE(bh, "call get_create_access");
958                 err = ext4_journal_get_create_access(handle, bh);
959                 if (unlikely(err)) {
960                         unlock_buffer(bh);
961                         goto errout;
962                 }
963                 if (!buffer_uptodate(bh)) {
964                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
965                         set_buffer_uptodate(bh);
966                 }
967                 unlock_buffer(bh);
968                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
969                 err = ext4_handle_dirty_metadata(handle, inode, bh);
970                 if (unlikely(err))
971                         goto errout;
972         } else
973                 BUFFER_TRACE(bh, "not a new buffer");
974         return bh;
975 errout:
976         brelse(bh);
977         return ERR_PTR(err);
978 }
979
980 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
981                                ext4_lblk_t block, int map_flags)
982 {
983         struct buffer_head *bh;
984
985         bh = ext4_getblk(handle, inode, block, map_flags);
986         if (IS_ERR(bh))
987                 return bh;
988         if (!bh || buffer_uptodate(bh))
989                 return bh;
990         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
991         wait_on_buffer(bh);
992         if (buffer_uptodate(bh))
993                 return bh;
994         put_bh(bh);
995         return ERR_PTR(-EIO);
996 }
997
998 int ext4_walk_page_buffers(handle_t *handle,
999                            struct buffer_head *head,
1000                            unsigned from,
1001                            unsigned to,
1002                            int *partial,
1003                            int (*fn)(handle_t *handle,
1004                                      struct buffer_head *bh))
1005 {
1006         struct buffer_head *bh;
1007         unsigned block_start, block_end;
1008         unsigned blocksize = head->b_size;
1009         int err, ret = 0;
1010         struct buffer_head *next;
1011
1012         for (bh = head, block_start = 0;
1013              ret == 0 && (bh != head || !block_start);
1014              block_start = block_end, bh = next) {
1015                 next = bh->b_this_page;
1016                 block_end = block_start + blocksize;
1017                 if (block_end <= from || block_start >= to) {
1018                         if (partial && !buffer_uptodate(bh))
1019                                 *partial = 1;
1020                         continue;
1021                 }
1022                 err = (*fn)(handle, bh);
1023                 if (!ret)
1024                         ret = err;
1025         }
1026         return ret;
1027 }
1028
1029 /*
1030  * To preserve ordering, it is essential that the hole instantiation and
1031  * the data write be encapsulated in a single transaction.  We cannot
1032  * close off a transaction and start a new one between the ext4_get_block()
1033  * and the commit_write().  So doing the jbd2_journal_start at the start of
1034  * prepare_write() is the right place.
1035  *
1036  * Also, this function can nest inside ext4_writepage().  In that case, we
1037  * *know* that ext4_writepage() has generated enough buffer credits to do the
1038  * whole page.  So we won't block on the journal in that case, which is good,
1039  * because the caller may be PF_MEMALLOC.
1040  *
1041  * By accident, ext4 can be reentered when a transaction is open via
1042  * quota file writes.  If we were to commit the transaction while thus
1043  * reentered, there can be a deadlock - we would be holding a quota
1044  * lock, and the commit would never complete if another thread had a
1045  * transaction open and was blocking on the quota lock - a ranking
1046  * violation.
1047  *
1048  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1049  * will _not_ run commit under these circumstances because handle->h_ref
1050  * is elevated.  We'll still have enough credits for the tiny quotafile
1051  * write.
1052  */
1053 int do_journal_get_write_access(handle_t *handle,
1054                                 struct buffer_head *bh)
1055 {
1056         int dirty = buffer_dirty(bh);
1057         int ret;
1058
1059         if (!buffer_mapped(bh) || buffer_freed(bh))
1060                 return 0;
1061         /*
1062          * __block_write_begin() could have dirtied some buffers. Clean
1063          * the dirty bit as jbd2_journal_get_write_access() could complain
1064          * otherwise about fs integrity issues. Setting of the dirty bit
1065          * by __block_write_begin() isn't a real problem here as we clear
1066          * the bit before releasing a page lock and thus writeback cannot
1067          * ever write the buffer.
1068          */
1069         if (dirty)
1070                 clear_buffer_dirty(bh);
1071         BUFFER_TRACE(bh, "get write access");
1072         ret = ext4_journal_get_write_access(handle, bh);
1073         if (!ret && dirty)
1074                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1075         return ret;
1076 }
1077
1078 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1079 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1080                                   get_block_t *get_block)
1081 {
1082         unsigned from = pos & (PAGE_SIZE - 1);
1083         unsigned to = from + len;
1084         struct inode *inode = page->mapping->host;
1085         unsigned block_start, block_end;
1086         sector_t block;
1087         int err = 0;
1088         unsigned blocksize = inode->i_sb->s_blocksize;
1089         unsigned bbits;
1090         struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1091         bool decrypt = false;
1092
1093         BUG_ON(!PageLocked(page));
1094         BUG_ON(from > PAGE_SIZE);
1095         BUG_ON(to > PAGE_SIZE);
1096         BUG_ON(from > to);
1097
1098         if (!page_has_buffers(page))
1099                 create_empty_buffers(page, blocksize, 0);
1100         head = page_buffers(page);
1101         bbits = ilog2(blocksize);
1102         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1103
1104         for (bh = head, block_start = 0; bh != head || !block_start;
1105             block++, block_start = block_end, bh = bh->b_this_page) {
1106                 block_end = block_start + blocksize;
1107                 if (block_end <= from || block_start >= to) {
1108                         if (PageUptodate(page)) {
1109                                 if (!buffer_uptodate(bh))
1110                                         set_buffer_uptodate(bh);
1111                         }
1112                         continue;
1113                 }
1114                 if (buffer_new(bh))
1115                         clear_buffer_new(bh);
1116                 if (!buffer_mapped(bh)) {
1117                         WARN_ON(bh->b_size != blocksize);
1118                         err = get_block(inode, block, bh, 1);
1119                         if (err)
1120                                 break;
1121                         if (buffer_new(bh)) {
1122                                 unmap_underlying_metadata(bh->b_bdev,
1123                                                           bh->b_blocknr);
1124                                 if (PageUptodate(page)) {
1125                                         clear_buffer_new(bh);
1126                                         set_buffer_uptodate(bh);
1127                                         mark_buffer_dirty(bh);
1128                                         continue;
1129                                 }
1130                                 if (block_end > to || block_start < from)
1131                                         zero_user_segments(page, to, block_end,
1132                                                            block_start, from);
1133                                 continue;
1134                         }
1135                 }
1136                 if (PageUptodate(page)) {
1137                         if (!buffer_uptodate(bh))
1138                                 set_buffer_uptodate(bh);
1139                         continue;
1140                 }
1141                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1142                     !buffer_unwritten(bh) &&
1143                     (block_start < from || block_end > to)) {
1144                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1145                         *wait_bh++ = bh;
1146                         decrypt = ext4_encrypted_inode(inode) &&
1147                                 S_ISREG(inode->i_mode);
1148                 }
1149         }
1150         /*
1151          * If we issued read requests, let them complete.
1152          */
1153         while (wait_bh > wait) {
1154                 wait_on_buffer(*--wait_bh);
1155                 if (!buffer_uptodate(*wait_bh))
1156                         err = -EIO;
1157         }
1158         if (unlikely(err))
1159                 page_zero_new_buffers(page, from, to);
1160         else if (decrypt)
1161                 err = fscrypt_decrypt_page(page);
1162         return err;
1163 }
1164 #endif
1165
1166 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1167                             loff_t pos, unsigned len, unsigned flags,
1168                             struct page **pagep, void **fsdata)
1169 {
1170         struct inode *inode = mapping->host;
1171         int ret, needed_blocks;
1172         handle_t *handle;
1173         int retries = 0;
1174         struct page *page;
1175         pgoff_t index;
1176         unsigned from, to;
1177
1178         trace_ext4_write_begin(inode, pos, len, flags);
1179         /*
1180          * Reserve one block more for addition to orphan list in case
1181          * we allocate blocks but write fails for some reason
1182          */
1183         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1184         index = pos >> PAGE_SHIFT;
1185         from = pos & (PAGE_SIZE - 1);
1186         to = from + len;
1187
1188         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1189                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1190                                                     flags, pagep);
1191                 if (ret < 0)
1192                         return ret;
1193                 if (ret == 1)
1194                         return 0;
1195         }
1196
1197         /*
1198          * grab_cache_page_write_begin() can take a long time if the
1199          * system is thrashing due to memory pressure, or if the page
1200          * is being written back.  So grab it first before we start
1201          * the transaction handle.  This also allows us to allocate
1202          * the page (if needed) without using GFP_NOFS.
1203          */
1204 retry_grab:
1205         page = grab_cache_page_write_begin(mapping, index, flags);
1206         if (!page)
1207                 return -ENOMEM;
1208         unlock_page(page);
1209
1210 retry_journal:
1211         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1212         if (IS_ERR(handle)) {
1213                 put_page(page);
1214                 return PTR_ERR(handle);
1215         }
1216
1217         lock_page(page);
1218         if (page->mapping != mapping) {
1219                 /* The page got truncated from under us */
1220                 unlock_page(page);
1221                 put_page(page);
1222                 ext4_journal_stop(handle);
1223                 goto retry_grab;
1224         }
1225         /* In case writeback began while the page was unlocked */
1226         wait_for_stable_page(page);
1227
1228 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1229         if (ext4_should_dioread_nolock(inode))
1230                 ret = ext4_block_write_begin(page, pos, len,
1231                                              ext4_get_block_unwritten);
1232         else
1233                 ret = ext4_block_write_begin(page, pos, len,
1234                                              ext4_get_block);
1235 #else
1236         if (ext4_should_dioread_nolock(inode))
1237                 ret = __block_write_begin(page, pos, len,
1238                                           ext4_get_block_unwritten);
1239         else
1240                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1241 #endif
1242         if (!ret && ext4_should_journal_data(inode)) {
1243                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1244                                              from, to, NULL,
1245                                              do_journal_get_write_access);
1246         }
1247
1248         if (ret) {
1249                 unlock_page(page);
1250                 /*
1251                  * __block_write_begin may have instantiated a few blocks
1252                  * outside i_size.  Trim these off again. Don't need
1253                  * i_size_read because we hold i_mutex.
1254                  *
1255                  * Add inode to orphan list in case we crash before
1256                  * truncate finishes
1257                  */
1258                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1259                         ext4_orphan_add(handle, inode);
1260
1261                 ext4_journal_stop(handle);
1262                 if (pos + len > inode->i_size) {
1263                         ext4_truncate_failed_write(inode);
1264                         /*
1265                          * If truncate failed early the inode might
1266                          * still be on the orphan list; we need to
1267                          * make sure the inode is removed from the
1268                          * orphan list in that case.
1269                          */
1270                         if (inode->i_nlink)
1271                                 ext4_orphan_del(NULL, inode);
1272                 }
1273
1274                 if (ret == -ENOSPC &&
1275                     ext4_should_retry_alloc(inode->i_sb, &retries))
1276                         goto retry_journal;
1277                 put_page(page);
1278                 return ret;
1279         }
1280         *pagep = page;
1281         return ret;
1282 }
1283
1284 /* For write_end() in data=journal mode */
1285 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1286 {
1287         int ret;
1288         if (!buffer_mapped(bh) || buffer_freed(bh))
1289                 return 0;
1290         set_buffer_uptodate(bh);
1291         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1292         clear_buffer_meta(bh);
1293         clear_buffer_prio(bh);
1294         return ret;
1295 }
1296
1297 /*
1298  * We need to pick up the new inode size which generic_commit_write gave us
1299  * `file' can be NULL - eg, when called from page_symlink().
1300  *
1301  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1302  * buffers are managed internally.
1303  */
1304 static int ext4_write_end(struct file *file,
1305                           struct address_space *mapping,
1306                           loff_t pos, unsigned len, unsigned copied,
1307                           struct page *page, void *fsdata)
1308 {
1309         handle_t *handle = ext4_journal_current_handle();
1310         struct inode *inode = mapping->host;
1311         loff_t old_size = inode->i_size;
1312         int ret = 0, ret2;
1313         int i_size_changed = 0;
1314
1315         trace_ext4_write_end(inode, pos, len, copied);
1316         if (ext4_has_inline_data(inode)) {
1317                 ret = ext4_write_inline_data_end(inode, pos, len,
1318                                                  copied, page);
1319                 if (ret < 0)
1320                         goto errout;
1321                 copied = ret;
1322         } else
1323                 copied = block_write_end(file, mapping, pos,
1324                                          len, copied, page, fsdata);
1325         /*
1326          * it's important to update i_size while still holding page lock:
1327          * page writeout could otherwise come in and zero beyond i_size.
1328          */
1329         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1330         unlock_page(page);
1331         put_page(page);
1332
1333         if (old_size < pos)
1334                 pagecache_isize_extended(inode, old_size, pos);
1335         /*
1336          * Don't mark the inode dirty under page lock. First, it unnecessarily
1337          * makes the holding time of page lock longer. Second, it forces lock
1338          * ordering of page lock and transaction start for journaling
1339          * filesystems.
1340          */
1341         if (i_size_changed)
1342                 ext4_mark_inode_dirty(handle, inode);
1343
1344         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1345                 /* if we have allocated more blocks and copied
1346                  * less. We will have blocks allocated outside
1347                  * inode->i_size. So truncate them
1348                  */
1349                 ext4_orphan_add(handle, inode);
1350 errout:
1351         ret2 = ext4_journal_stop(handle);
1352         if (!ret)
1353                 ret = ret2;
1354
1355         if (pos + len > inode->i_size) {
1356                 ext4_truncate_failed_write(inode);
1357                 /*
1358                  * If truncate failed early the inode might still be
1359                  * on the orphan list; we need to make sure the inode
1360                  * is removed from the orphan list in that case.
1361                  */
1362                 if (inode->i_nlink)
1363                         ext4_orphan_del(NULL, inode);
1364         }
1365
1366         return ret ? ret : copied;
1367 }
1368
1369 /*
1370  * This is a private version of page_zero_new_buffers() which doesn't
1371  * set the buffer to be dirty, since in data=journalled mode we need
1372  * to call ext4_handle_dirty_metadata() instead.
1373  */
1374 static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
1375 {
1376         unsigned int block_start = 0, block_end;
1377         struct buffer_head *head, *bh;
1378
1379         bh = head = page_buffers(page);
1380         do {
1381                 block_end = block_start + bh->b_size;
1382                 if (buffer_new(bh)) {
1383                         if (block_end > from && block_start < to) {
1384                                 if (!PageUptodate(page)) {
1385                                         unsigned start, size;
1386
1387                                         start = max(from, block_start);
1388                                         size = min(to, block_end) - start;
1389
1390                                         zero_user(page, start, size);
1391                                         set_buffer_uptodate(bh);
1392                                 }
1393                                 clear_buffer_new(bh);
1394                         }
1395                 }
1396                 block_start = block_end;
1397                 bh = bh->b_this_page;
1398         } while (bh != head);
1399 }
1400
1401 static int ext4_journalled_write_end(struct file *file,
1402                                      struct address_space *mapping,
1403                                      loff_t pos, unsigned len, unsigned copied,
1404                                      struct page *page, void *fsdata)
1405 {
1406         handle_t *handle = ext4_journal_current_handle();
1407         struct inode *inode = mapping->host;
1408         loff_t old_size = inode->i_size;
1409         int ret = 0, ret2;
1410         int partial = 0;
1411         unsigned from, to;
1412         int size_changed = 0;
1413
1414         trace_ext4_journalled_write_end(inode, pos, len, copied);
1415         from = pos & (PAGE_SIZE - 1);
1416         to = from + len;
1417
1418         BUG_ON(!ext4_handle_valid(handle));
1419
1420         if (ext4_has_inline_data(inode))
1421                 copied = ext4_write_inline_data_end(inode, pos, len,
1422                                                     copied, page);
1423         else {
1424                 if (copied < len) {
1425                         if (!PageUptodate(page))
1426                                 copied = 0;
1427                         zero_new_buffers(page, from+copied, to);
1428                 }
1429
1430                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1431                                              to, &partial, write_end_fn);
1432                 if (!partial)
1433                         SetPageUptodate(page);
1434         }
1435         size_changed = ext4_update_inode_size(inode, pos + copied);
1436         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1437         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1438         unlock_page(page);
1439         put_page(page);
1440
1441         if (old_size < pos)
1442                 pagecache_isize_extended(inode, old_size, pos);
1443
1444         if (size_changed) {
1445                 ret2 = ext4_mark_inode_dirty(handle, inode);
1446                 if (!ret)
1447                         ret = ret2;
1448         }
1449
1450         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1451                 /* if we have allocated more blocks and copied
1452                  * less. We will have blocks allocated outside
1453                  * inode->i_size. So truncate them
1454                  */
1455                 ext4_orphan_add(handle, inode);
1456
1457         ret2 = ext4_journal_stop(handle);
1458         if (!ret)
1459                 ret = ret2;
1460         if (pos + len > inode->i_size) {
1461                 ext4_truncate_failed_write(inode);
1462                 /*
1463                  * If truncate failed early the inode might still be
1464                  * on the orphan list; we need to make sure the inode
1465                  * is removed from the orphan list in that case.
1466                  */
1467                 if (inode->i_nlink)
1468                         ext4_orphan_del(NULL, inode);
1469         }
1470
1471         return ret ? ret : copied;
1472 }
1473
1474 /*
1475  * Reserve space for a single cluster
1476  */
1477 static int ext4_da_reserve_space(struct inode *inode)
1478 {
1479         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1480         struct ext4_inode_info *ei = EXT4_I(inode);
1481         int ret;
1482
1483         /*
1484          * We will charge metadata quota at writeout time; this saves
1485          * us from metadata over-estimation, though we may go over by
1486          * a small amount in the end.  Here we just reserve for data.
1487          */
1488         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1489         if (ret)
1490                 return ret;
1491
1492         spin_lock(&ei->i_block_reservation_lock);
1493         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1494                 spin_unlock(&ei->i_block_reservation_lock);
1495                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1496                 return -ENOSPC;
1497         }
1498         ei->i_reserved_data_blocks++;
1499         trace_ext4_da_reserve_space(inode);
1500         spin_unlock(&ei->i_block_reservation_lock);
1501
1502         return 0;       /* success */
1503 }
1504
1505 static void ext4_da_release_space(struct inode *inode, int to_free)
1506 {
1507         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1508         struct ext4_inode_info *ei = EXT4_I(inode);
1509
1510         if (!to_free)
1511                 return;         /* Nothing to release, exit */
1512
1513         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1514
1515         trace_ext4_da_release_space(inode, to_free);
1516         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1517                 /*
1518                  * if there aren't enough reserved blocks, then the
1519                  * counter is messed up somewhere.  Since this
1520                  * function is called from invalidate page, it's
1521                  * harmless to return without any action.
1522                  */
1523                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1524                          "ino %lu, to_free %d with only %d reserved "
1525                          "data blocks", inode->i_ino, to_free,
1526                          ei->i_reserved_data_blocks);
1527                 WARN_ON(1);
1528                 to_free = ei->i_reserved_data_blocks;
1529         }
1530         ei->i_reserved_data_blocks -= to_free;
1531
1532         /* update fs dirty data blocks counter */
1533         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1534
1535         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1536
1537         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1538 }
1539
1540 static void ext4_da_page_release_reservation(struct page *page,
1541                                              unsigned int offset,
1542                                              unsigned int length)
1543 {
1544         int to_release = 0, contiguous_blks = 0;
1545         struct buffer_head *head, *bh;
1546         unsigned int curr_off = 0;
1547         struct inode *inode = page->mapping->host;
1548         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1549         unsigned int stop = offset + length;
1550         int num_clusters;
1551         ext4_fsblk_t lblk;
1552
1553         BUG_ON(stop > PAGE_SIZE || stop < length);
1554
1555         head = page_buffers(page);
1556         bh = head;
1557         do {
1558                 unsigned int next_off = curr_off + bh->b_size;
1559
1560                 if (next_off > stop)
1561                         break;
1562
1563                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1564                         to_release++;
1565                         contiguous_blks++;
1566                         clear_buffer_delay(bh);
1567                 } else if (contiguous_blks) {
1568                         lblk = page->index <<
1569                                (PAGE_SHIFT - inode->i_blkbits);
1570                         lblk += (curr_off >> inode->i_blkbits) -
1571                                 contiguous_blks;
1572                         ext4_es_remove_extent(inode, lblk, contiguous_blks);
1573                         contiguous_blks = 0;
1574                 }
1575                 curr_off = next_off;
1576         } while ((bh = bh->b_this_page) != head);
1577
1578         if (contiguous_blks) {
1579                 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1580                 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1581                 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1582         }
1583
1584         /* If we have released all the blocks belonging to a cluster, then we
1585          * need to release the reserved space for that cluster. */
1586         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1587         while (num_clusters > 0) {
1588                 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1589                         ((num_clusters - 1) << sbi->s_cluster_bits);
1590                 if (sbi->s_cluster_ratio == 1 ||
1591                     !ext4_find_delalloc_cluster(inode, lblk))
1592                         ext4_da_release_space(inode, 1);
1593
1594                 num_clusters--;
1595         }
1596 }
1597
1598 /*
1599  * Delayed allocation stuff
1600  */
1601
1602 struct mpage_da_data {
1603         struct inode *inode;
1604         struct writeback_control *wbc;
1605
1606         pgoff_t first_page;     /* The first page to write */
1607         pgoff_t next_page;      /* Current page to examine */
1608         pgoff_t last_page;      /* Last page to examine */
1609         /*
1610          * Extent to map - this can be after first_page because that can be
1611          * fully mapped. We somewhat abuse m_flags to store whether the extent
1612          * is delalloc or unwritten.
1613          */
1614         struct ext4_map_blocks map;
1615         struct ext4_io_submit io_submit;        /* IO submission data */
1616 };
1617
1618 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1619                                        bool invalidate)
1620 {
1621         int nr_pages, i;
1622         pgoff_t index, end;
1623         struct pagevec pvec;
1624         struct inode *inode = mpd->inode;
1625         struct address_space *mapping = inode->i_mapping;
1626
1627         /* This is necessary when next_page == 0. */
1628         if (mpd->first_page >= mpd->next_page)
1629                 return;
1630
1631         index = mpd->first_page;
1632         end   = mpd->next_page - 1;
1633         if (invalidate) {
1634                 ext4_lblk_t start, last;
1635                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1636                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1637                 ext4_es_remove_extent(inode, start, last - start + 1);
1638         }
1639
1640         pagevec_init(&pvec, 0);
1641         while (index <= end) {
1642                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1643                 if (nr_pages == 0)
1644                         break;
1645                 for (i = 0; i < nr_pages; i++) {
1646                         struct page *page = pvec.pages[i];
1647                         if (page->index > end)
1648                                 break;
1649                         BUG_ON(!PageLocked(page));
1650                         BUG_ON(PageWriteback(page));
1651                         if (invalidate) {
1652                                 block_invalidatepage(page, 0, PAGE_SIZE);
1653                                 ClearPageUptodate(page);
1654                         }
1655                         unlock_page(page);
1656                 }
1657                 index = pvec.pages[nr_pages - 1]->index + 1;
1658                 pagevec_release(&pvec);
1659         }
1660 }
1661
1662 static void ext4_print_free_blocks(struct inode *inode)
1663 {
1664         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1665         struct super_block *sb = inode->i_sb;
1666         struct ext4_inode_info *ei = EXT4_I(inode);
1667
1668         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1669                EXT4_C2B(EXT4_SB(inode->i_sb),
1670                         ext4_count_free_clusters(sb)));
1671         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1672         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1673                (long long) EXT4_C2B(EXT4_SB(sb),
1674                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1675         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1676                (long long) EXT4_C2B(EXT4_SB(sb),
1677                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1678         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1679         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1680                  ei->i_reserved_data_blocks);
1681         return;
1682 }
1683
1684 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1685 {
1686         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1687 }
1688
1689 /*
1690  * This function is grabs code from the very beginning of
1691  * ext4_map_blocks, but assumes that the caller is from delayed write
1692  * time. This function looks up the requested blocks and sets the
1693  * buffer delay bit under the protection of i_data_sem.
1694  */
1695 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1696                               struct ext4_map_blocks *map,
1697                               struct buffer_head *bh)
1698 {
1699         struct extent_status es;
1700         int retval;
1701         sector_t invalid_block = ~((sector_t) 0xffff);
1702 #ifdef ES_AGGRESSIVE_TEST
1703         struct ext4_map_blocks orig_map;
1704
1705         memcpy(&orig_map, map, sizeof(*map));
1706 #endif
1707
1708         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1709                 invalid_block = ~0;
1710
1711         map->m_flags = 0;
1712         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1713                   "logical block %lu\n", inode->i_ino, map->m_len,
1714                   (unsigned long) map->m_lblk);
1715
1716         /* Lookup extent status tree firstly */
1717         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1718                 if (ext4_es_is_hole(&es)) {
1719                         retval = 0;
1720                         down_read(&EXT4_I(inode)->i_data_sem);
1721                         goto add_delayed;
1722                 }
1723
1724                 /*
1725                  * Delayed extent could be allocated by fallocate.
1726                  * So we need to check it.
1727                  */
1728                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1729                         map_bh(bh, inode->i_sb, invalid_block);
1730                         set_buffer_new(bh);
1731                         set_buffer_delay(bh);
1732                         return 0;
1733                 }
1734
1735                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1736                 retval = es.es_len - (iblock - es.es_lblk);
1737                 if (retval > map->m_len)
1738                         retval = map->m_len;
1739                 map->m_len = retval;
1740                 if (ext4_es_is_written(&es))
1741                         map->m_flags |= EXT4_MAP_MAPPED;
1742                 else if (ext4_es_is_unwritten(&es))
1743                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1744                 else
1745                         BUG_ON(1);
1746
1747 #ifdef ES_AGGRESSIVE_TEST
1748                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1749 #endif
1750                 return retval;
1751         }
1752
1753         /*
1754          * Try to see if we can get the block without requesting a new
1755          * file system block.
1756          */
1757         down_read(&EXT4_I(inode)->i_data_sem);
1758         if (ext4_has_inline_data(inode))
1759                 retval = 0;
1760         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1761                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1762         else
1763                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1764
1765 add_delayed:
1766         if (retval == 0) {
1767                 int ret;
1768                 /*
1769                  * XXX: __block_prepare_write() unmaps passed block,
1770                  * is it OK?
1771                  */
1772                 /*
1773                  * If the block was allocated from previously allocated cluster,
1774                  * then we don't need to reserve it again. However we still need
1775                  * to reserve metadata for every block we're going to write.
1776                  */
1777                 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1778                     !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1779                         ret = ext4_da_reserve_space(inode);
1780                         if (ret) {
1781                                 /* not enough space to reserve */
1782                                 retval = ret;
1783                                 goto out_unlock;
1784                         }
1785                 }
1786
1787                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1788                                             ~0, EXTENT_STATUS_DELAYED);
1789                 if (ret) {
1790                         retval = ret;
1791                         goto out_unlock;
1792                 }
1793
1794                 map_bh(bh, inode->i_sb, invalid_block);
1795                 set_buffer_new(bh);
1796                 set_buffer_delay(bh);
1797         } else if (retval > 0) {
1798                 int ret;
1799                 unsigned int status;
1800
1801                 if (unlikely(retval != map->m_len)) {
1802                         ext4_warning(inode->i_sb,
1803                                      "ES len assertion failed for inode "
1804                                      "%lu: retval %d != map->m_len %d",
1805                                      inode->i_ino, retval, map->m_len);
1806                         WARN_ON(1);
1807                 }
1808
1809                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1810                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1811                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1812                                             map->m_pblk, status);
1813                 if (ret != 0)
1814                         retval = ret;
1815         }
1816
1817 out_unlock:
1818         up_read((&EXT4_I(inode)->i_data_sem));
1819
1820         return retval;
1821 }
1822
1823 /*
1824  * This is a special get_block_t callback which is used by
1825  * ext4_da_write_begin().  It will either return mapped block or
1826  * reserve space for a single block.
1827  *
1828  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1829  * We also have b_blocknr = -1 and b_bdev initialized properly
1830  *
1831  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1832  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1833  * initialized properly.
1834  */
1835 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1836                            struct buffer_head *bh, int create)
1837 {
1838         struct ext4_map_blocks map;
1839         int ret = 0;
1840
1841         BUG_ON(create == 0);
1842         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1843
1844         map.m_lblk = iblock;
1845         map.m_len = 1;
1846
1847         /*
1848          * first, we need to know whether the block is allocated already
1849          * preallocated blocks are unmapped but should treated
1850          * the same as allocated blocks.
1851          */
1852         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1853         if (ret <= 0)
1854                 return ret;
1855
1856         map_bh(bh, inode->i_sb, map.m_pblk);
1857         ext4_update_bh_state(bh, map.m_flags);
1858
1859         if (buffer_unwritten(bh)) {
1860                 /* A delayed write to unwritten bh should be marked
1861                  * new and mapped.  Mapped ensures that we don't do
1862                  * get_block multiple times when we write to the same
1863                  * offset and new ensures that we do proper zero out
1864                  * for partial write.
1865                  */
1866                 set_buffer_new(bh);
1867                 set_buffer_mapped(bh);
1868         }
1869         return 0;
1870 }
1871
1872 static int bget_one(handle_t *handle, struct buffer_head *bh)
1873 {
1874         get_bh(bh);
1875         return 0;
1876 }
1877
1878 static int bput_one(handle_t *handle, struct buffer_head *bh)
1879 {
1880         put_bh(bh);
1881         return 0;
1882 }
1883
1884 static int __ext4_journalled_writepage(struct page *page,
1885                                        unsigned int len)
1886 {
1887         struct address_space *mapping = page->mapping;
1888         struct inode *inode = mapping->host;
1889         struct buffer_head *page_bufs = NULL;
1890         handle_t *handle = NULL;
1891         int ret = 0, err = 0;
1892         int inline_data = ext4_has_inline_data(inode);
1893         struct buffer_head *inode_bh = NULL;
1894
1895         ClearPageChecked(page);
1896
1897         if (inline_data) {
1898                 BUG_ON(page->index != 0);
1899                 BUG_ON(len > ext4_get_max_inline_size(inode));
1900                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1901                 if (inode_bh == NULL)
1902                         goto out;
1903         } else {
1904                 page_bufs = page_buffers(page);
1905                 if (!page_bufs) {
1906                         BUG();
1907                         goto out;
1908                 }
1909                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1910                                        NULL, bget_one);
1911         }
1912         /*
1913          * We need to release the page lock before we start the
1914          * journal, so grab a reference so the page won't disappear
1915          * out from under us.
1916          */
1917         get_page(page);
1918         unlock_page(page);
1919
1920         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1921                                     ext4_writepage_trans_blocks(inode));
1922         if (IS_ERR(handle)) {
1923                 ret = PTR_ERR(handle);
1924                 put_page(page);
1925                 goto out_no_pagelock;
1926         }
1927         BUG_ON(!ext4_handle_valid(handle));
1928
1929         lock_page(page);
1930         put_page(page);
1931         if (page->mapping != mapping) {
1932                 /* The page got truncated from under us */
1933                 ext4_journal_stop(handle);
1934                 ret = 0;
1935                 goto out;
1936         }
1937
1938         if (inline_data) {
1939                 BUFFER_TRACE(inode_bh, "get write access");
1940                 ret = ext4_journal_get_write_access(handle, inode_bh);
1941
1942                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1943
1944         } else {
1945                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1946                                              do_journal_get_write_access);
1947
1948                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1949                                              write_end_fn);
1950         }
1951         if (ret == 0)
1952                 ret = err;
1953         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1954         err = ext4_journal_stop(handle);
1955         if (!ret)
1956                 ret = err;
1957
1958         if (!ext4_has_inline_data(inode))
1959                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1960                                        NULL, bput_one);
1961         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1962 out:
1963         unlock_page(page);
1964 out_no_pagelock:
1965         brelse(inode_bh);
1966         return ret;
1967 }
1968
1969 /*
1970  * Note that we don't need to start a transaction unless we're journaling data
1971  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1972  * need to file the inode to the transaction's list in ordered mode because if
1973  * we are writing back data added by write(), the inode is already there and if
1974  * we are writing back data modified via mmap(), no one guarantees in which
1975  * transaction the data will hit the disk. In case we are journaling data, we
1976  * cannot start transaction directly because transaction start ranks above page
1977  * lock so we have to do some magic.
1978  *
1979  * This function can get called via...
1980  *   - ext4_writepages after taking page lock (have journal handle)
1981  *   - journal_submit_inode_data_buffers (no journal handle)
1982  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1983  *   - grab_page_cache when doing write_begin (have journal handle)
1984  *
1985  * We don't do any block allocation in this function. If we have page with
1986  * multiple blocks we need to write those buffer_heads that are mapped. This
1987  * is important for mmaped based write. So if we do with blocksize 1K
1988  * truncate(f, 1024);
1989  * a = mmap(f, 0, 4096);
1990  * a[0] = 'a';
1991  * truncate(f, 4096);
1992  * we have in the page first buffer_head mapped via page_mkwrite call back
1993  * but other buffer_heads would be unmapped but dirty (dirty done via the
1994  * do_wp_page). So writepage should write the first block. If we modify
1995  * the mmap area beyond 1024 we will again get a page_fault and the
1996  * page_mkwrite callback will do the block allocation and mark the
1997  * buffer_heads mapped.
1998  *
1999  * We redirty the page if we have any buffer_heads that is either delay or
2000  * unwritten in the page.
2001  *
2002  * We can get recursively called as show below.
2003  *
2004  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2005  *              ext4_writepage()
2006  *
2007  * But since we don't do any block allocation we should not deadlock.
2008  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2009  */
2010 static int ext4_writepage(struct page *page,
2011                           struct writeback_control *wbc)
2012 {
2013         int ret = 0;
2014         loff_t size;
2015         unsigned int len;
2016         struct buffer_head *page_bufs = NULL;
2017         struct inode *inode = page->mapping->host;
2018         struct ext4_io_submit io_submit;
2019         bool keep_towrite = false;
2020
2021         trace_ext4_writepage(page);
2022         size = i_size_read(inode);
2023         if (page->index == size >> PAGE_SHIFT)
2024                 len = size & ~PAGE_MASK;
2025         else
2026                 len = PAGE_SIZE;
2027
2028         page_bufs = page_buffers(page);
2029         /*
2030          * We cannot do block allocation or other extent handling in this
2031          * function. If there are buffers needing that, we have to redirty
2032          * the page. But we may reach here when we do a journal commit via
2033          * journal_submit_inode_data_buffers() and in that case we must write
2034          * allocated buffers to achieve data=ordered mode guarantees.
2035          *
2036          * Also, if there is only one buffer per page (the fs block
2037          * size == the page size), if one buffer needs block
2038          * allocation or needs to modify the extent tree to clear the
2039          * unwritten flag, we know that the page can't be written at
2040          * all, so we might as well refuse the write immediately.
2041          * Unfortunately if the block size != page size, we can't as
2042          * easily detect this case using ext4_walk_page_buffers(), but
2043          * for the extremely common case, this is an optimization that
2044          * skips a useless round trip through ext4_bio_write_page().
2045          */
2046         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2047                                    ext4_bh_delay_or_unwritten)) {
2048                 redirty_page_for_writepage(wbc, page);
2049                 if ((current->flags & PF_MEMALLOC) ||
2050                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2051                         /*
2052                          * For memory cleaning there's no point in writing only
2053                          * some buffers. So just bail out. Warn if we came here
2054                          * from direct reclaim.
2055                          */
2056                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2057                                                         == PF_MEMALLOC);
2058                         unlock_page(page);
2059                         return 0;
2060                 }
2061                 keep_towrite = true;
2062         }
2063
2064         if (PageChecked(page) && ext4_should_journal_data(inode))
2065                 /*
2066                  * It's mmapped pagecache.  Add buffers and journal it.  There
2067                  * doesn't seem much point in redirtying the page here.
2068                  */
2069                 return __ext4_journalled_writepage(page, len);
2070
2071         ext4_io_submit_init(&io_submit, wbc);
2072         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2073         if (!io_submit.io_end) {
2074                 redirty_page_for_writepage(wbc, page);
2075                 unlock_page(page);
2076                 return -ENOMEM;
2077         }
2078         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2079         ext4_io_submit(&io_submit);
2080         /* Drop io_end reference we got from init */
2081         ext4_put_io_end_defer(io_submit.io_end);
2082         return ret;
2083 }
2084
2085 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2086 {
2087         int len;
2088         loff_t size = i_size_read(mpd->inode);
2089         int err;
2090
2091         BUG_ON(page->index != mpd->first_page);
2092         if (page->index == size >> PAGE_SHIFT)
2093                 len = size & ~PAGE_MASK;
2094         else
2095                 len = PAGE_SIZE;
2096         clear_page_dirty_for_io(page);
2097         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2098         if (!err)
2099                 mpd->wbc->nr_to_write--;
2100         mpd->first_page++;
2101
2102         return err;
2103 }
2104
2105 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2106
2107 /*
2108  * mballoc gives us at most this number of blocks...
2109  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2110  * The rest of mballoc seems to handle chunks up to full group size.
2111  */
2112 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2113
2114 /*
2115  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2116  *
2117  * @mpd - extent of blocks
2118  * @lblk - logical number of the block in the file
2119  * @bh - buffer head we want to add to the extent
2120  *
2121  * The function is used to collect contig. blocks in the same state. If the
2122  * buffer doesn't require mapping for writeback and we haven't started the
2123  * extent of buffers to map yet, the function returns 'true' immediately - the
2124  * caller can write the buffer right away. Otherwise the function returns true
2125  * if the block has been added to the extent, false if the block couldn't be
2126  * added.
2127  */
2128 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2129                                    struct buffer_head *bh)
2130 {
2131         struct ext4_map_blocks *map = &mpd->map;
2132
2133         /* Buffer that doesn't need mapping for writeback? */
2134         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2135             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2136                 /* So far no extent to map => we write the buffer right away */
2137                 if (map->m_len == 0)
2138                         return true;
2139                 return false;
2140         }
2141
2142         /* First block in the extent? */
2143         if (map->m_len == 0) {
2144                 map->m_lblk = lblk;
2145                 map->m_len = 1;
2146                 map->m_flags = bh->b_state & BH_FLAGS;
2147                 return true;
2148         }
2149
2150         /* Don't go larger than mballoc is willing to allocate */
2151         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2152                 return false;
2153
2154         /* Can we merge the block to our big extent? */
2155         if (lblk == map->m_lblk + map->m_len &&
2156             (bh->b_state & BH_FLAGS) == map->m_flags) {
2157                 map->m_len++;
2158                 return true;
2159         }
2160         return false;
2161 }
2162
2163 /*
2164  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2165  *
2166  * @mpd - extent of blocks for mapping
2167  * @head - the first buffer in the page
2168  * @bh - buffer we should start processing from
2169  * @lblk - logical number of the block in the file corresponding to @bh
2170  *
2171  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2172  * the page for IO if all buffers in this page were mapped and there's no
2173  * accumulated extent of buffers to map or add buffers in the page to the
2174  * extent of buffers to map. The function returns 1 if the caller can continue
2175  * by processing the next page, 0 if it should stop adding buffers to the
2176  * extent to map because we cannot extend it anymore. It can also return value
2177  * < 0 in case of error during IO submission.
2178  */
2179 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2180                                    struct buffer_head *head,
2181                                    struct buffer_head *bh,
2182                                    ext4_lblk_t lblk)
2183 {
2184         struct inode *inode = mpd->inode;
2185         int err;
2186         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2187                                                         >> inode->i_blkbits;
2188
2189         do {
2190                 BUG_ON(buffer_locked(bh));
2191
2192                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2193                         /* Found extent to map? */
2194                         if (mpd->map.m_len)
2195                                 return 0;
2196                         /* Everything mapped so far and we hit EOF */
2197                         break;
2198                 }
2199         } while (lblk++, (bh = bh->b_this_page) != head);
2200         /* So far everything mapped? Submit the page for IO. */
2201         if (mpd->map.m_len == 0) {
2202                 err = mpage_submit_page(mpd, head->b_page);
2203                 if (err < 0)
2204                         return err;
2205         }
2206         return lblk < blocks;
2207 }
2208
2209 /*
2210  * mpage_map_buffers - update buffers corresponding to changed extent and
2211  *                     submit fully mapped pages for IO
2212  *
2213  * @mpd - description of extent to map, on return next extent to map
2214  *
2215  * Scan buffers corresponding to changed extent (we expect corresponding pages
2216  * to be already locked) and update buffer state according to new extent state.
2217  * We map delalloc buffers to their physical location, clear unwritten bits,
2218  * and mark buffers as uninit when we perform writes to unwritten extents
2219  * and do extent conversion after IO is finished. If the last page is not fully
2220  * mapped, we update @map to the next extent in the last page that needs
2221  * mapping. Otherwise we submit the page for IO.
2222  */
2223 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2224 {
2225         struct pagevec pvec;
2226         int nr_pages, i;
2227         struct inode *inode = mpd->inode;
2228         struct buffer_head *head, *bh;
2229         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2230         pgoff_t start, end;
2231         ext4_lblk_t lblk;
2232         sector_t pblock;
2233         int err;
2234
2235         start = mpd->map.m_lblk >> bpp_bits;
2236         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2237         lblk = start << bpp_bits;
2238         pblock = mpd->map.m_pblk;
2239
2240         pagevec_init(&pvec, 0);
2241         while (start <= end) {
2242                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2243                                           PAGEVEC_SIZE);
2244                 if (nr_pages == 0)
2245                         break;
2246                 for (i = 0; i < nr_pages; i++) {
2247                         struct page *page = pvec.pages[i];
2248
2249                         if (page->index > end)
2250                                 break;
2251                         /* Up to 'end' pages must be contiguous */
2252                         BUG_ON(page->index != start);
2253                         bh = head = page_buffers(page);
2254                         do {
2255                                 if (lblk < mpd->map.m_lblk)
2256                                         continue;
2257                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2258                                         /*
2259                                          * Buffer after end of mapped extent.
2260                                          * Find next buffer in the page to map.
2261                                          */
2262                                         mpd->map.m_len = 0;
2263                                         mpd->map.m_flags = 0;
2264                                         /*
2265                                          * FIXME: If dioread_nolock supports
2266                                          * blocksize < pagesize, we need to make
2267                                          * sure we add size mapped so far to
2268                                          * io_end->size as the following call
2269                                          * can submit the page for IO.
2270                                          */
2271                                         err = mpage_process_page_bufs(mpd, head,
2272                                                                       bh, lblk);
2273                                         pagevec_release(&pvec);
2274                                         if (err > 0)
2275                                                 err = 0;
2276                                         return err;
2277                                 }
2278                                 if (buffer_delay(bh)) {
2279                                         clear_buffer_delay(bh);
2280                                         bh->b_blocknr = pblock++;
2281                                 }
2282                                 clear_buffer_unwritten(bh);
2283                         } while (lblk++, (bh = bh->b_this_page) != head);
2284
2285                         /*
2286                          * FIXME: This is going to break if dioread_nolock
2287                          * supports blocksize < pagesize as we will try to
2288                          * convert potentially unmapped parts of inode.
2289                          */
2290                         mpd->io_submit.io_end->size += PAGE_SIZE;
2291                         /* Page fully mapped - let IO run! */
2292                         err = mpage_submit_page(mpd, page);
2293                         if (err < 0) {
2294                                 pagevec_release(&pvec);
2295                                 return err;
2296                         }
2297                         start++;
2298                 }
2299                 pagevec_release(&pvec);
2300         }
2301         /* Extent fully mapped and matches with page boundary. We are done. */
2302         mpd->map.m_len = 0;
2303         mpd->map.m_flags = 0;
2304         return 0;
2305 }
2306
2307 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2308 {
2309         struct inode *inode = mpd->inode;
2310         struct ext4_map_blocks *map = &mpd->map;
2311         int get_blocks_flags;
2312         int err, dioread_nolock;
2313
2314         trace_ext4_da_write_pages_extent(inode, map);
2315         /*
2316          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2317          * to convert an unwritten extent to be initialized (in the case
2318          * where we have written into one or more preallocated blocks).  It is
2319          * possible that we're going to need more metadata blocks than
2320          * previously reserved. However we must not fail because we're in
2321          * writeback and there is nothing we can do about it so it might result
2322          * in data loss.  So use reserved blocks to allocate metadata if
2323          * possible.
2324          *
2325          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2326          * the blocks in question are delalloc blocks.  This indicates
2327          * that the blocks and quotas has already been checked when
2328          * the data was copied into the page cache.
2329          */
2330         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2331                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2332                            EXT4_GET_BLOCKS_IO_SUBMIT;
2333         dioread_nolock = ext4_should_dioread_nolock(inode);
2334         if (dioread_nolock)
2335                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2336         if (map->m_flags & (1 << BH_Delay))
2337                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2338
2339         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2340         if (err < 0)
2341                 return err;
2342         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2343                 if (!mpd->io_submit.io_end->handle &&
2344                     ext4_handle_valid(handle)) {
2345                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2346                         handle->h_rsv_handle = NULL;
2347                 }
2348                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2349         }
2350
2351         BUG_ON(map->m_len == 0);
2352         if (map->m_flags & EXT4_MAP_NEW) {
2353                 struct block_device *bdev = inode->i_sb->s_bdev;
2354                 int i;
2355
2356                 for (i = 0; i < map->m_len; i++)
2357                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2358         }
2359         return 0;
2360 }
2361
2362 /*
2363  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2364  *                               mpd->len and submit pages underlying it for IO
2365  *
2366  * @handle - handle for journal operations
2367  * @mpd - extent to map
2368  * @give_up_on_write - we set this to true iff there is a fatal error and there
2369  *                     is no hope of writing the data. The caller should discard
2370  *                     dirty pages to avoid infinite loops.
2371  *
2372  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2373  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2374  * them to initialized or split the described range from larger unwritten
2375  * extent. Note that we need not map all the described range since allocation
2376  * can return less blocks or the range is covered by more unwritten extents. We
2377  * cannot map more because we are limited by reserved transaction credits. On
2378  * the other hand we always make sure that the last touched page is fully
2379  * mapped so that it can be written out (and thus forward progress is
2380  * guaranteed). After mapping we submit all mapped pages for IO.
2381  */
2382 static int mpage_map_and_submit_extent(handle_t *handle,
2383                                        struct mpage_da_data *mpd,
2384                                        bool *give_up_on_write)
2385 {
2386         struct inode *inode = mpd->inode;
2387         struct ext4_map_blocks *map = &mpd->map;
2388         int err;
2389         loff_t disksize;
2390         int progress = 0;
2391
2392         mpd->io_submit.io_end->offset =
2393                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2394         do {
2395                 err = mpage_map_one_extent(handle, mpd);
2396                 if (err < 0) {
2397                         struct super_block *sb = inode->i_sb;
2398
2399                         if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2400                                 goto invalidate_dirty_pages;
2401                         /*
2402                          * Let the uper layers retry transient errors.
2403                          * In the case of ENOSPC, if ext4_count_free_blocks()
2404                          * is non-zero, a commit should free up blocks.
2405                          */
2406                         if ((err == -ENOMEM) ||
2407                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2408                                 if (progress)
2409                                         goto update_disksize;
2410                                 return err;
2411                         }
2412                         ext4_msg(sb, KERN_CRIT,
2413                                  "Delayed block allocation failed for "
2414                                  "inode %lu at logical offset %llu with"
2415                                  " max blocks %u with error %d",
2416                                  inode->i_ino,
2417                                  (unsigned long long)map->m_lblk,
2418                                  (unsigned)map->m_len, -err);
2419                         ext4_msg(sb, KERN_CRIT,
2420                                  "This should not happen!! Data will "
2421                                  "be lost\n");
2422                         if (err == -ENOSPC)
2423                                 ext4_print_free_blocks(inode);
2424                 invalidate_dirty_pages:
2425                         *give_up_on_write = true;
2426                         return err;
2427                 }
2428                 progress = 1;
2429                 /*
2430                  * Update buffer state, submit mapped pages, and get us new
2431                  * extent to map
2432                  */
2433                 err = mpage_map_and_submit_buffers(mpd);
2434                 if (err < 0)
2435                         goto update_disksize;
2436         } while (map->m_len);
2437
2438 update_disksize:
2439         /*
2440          * Update on-disk size after IO is submitted.  Races with
2441          * truncate are avoided by checking i_size under i_data_sem.
2442          */
2443         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2444         if (disksize > EXT4_I(inode)->i_disksize) {
2445                 int err2;
2446                 loff_t i_size;
2447
2448                 down_write(&EXT4_I(inode)->i_data_sem);
2449                 i_size = i_size_read(inode);
2450                 if (disksize > i_size)
2451                         disksize = i_size;
2452                 if (disksize > EXT4_I(inode)->i_disksize)
2453                         EXT4_I(inode)->i_disksize = disksize;
2454                 err2 = ext4_mark_inode_dirty(handle, inode);
2455                 up_write(&EXT4_I(inode)->i_data_sem);
2456                 if (err2)
2457                         ext4_error(inode->i_sb,
2458                                    "Failed to mark inode %lu dirty",
2459                                    inode->i_ino);
2460                 if (!err)
2461                         err = err2;
2462         }
2463         return err;
2464 }
2465
2466 /*
2467  * Calculate the total number of credits to reserve for one writepages
2468  * iteration. This is called from ext4_writepages(). We map an extent of
2469  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2470  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2471  * bpp - 1 blocks in bpp different extents.
2472  */
2473 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2474 {
2475         int bpp = ext4_journal_blocks_per_page(inode);
2476
2477         return ext4_meta_trans_blocks(inode,
2478                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2479 }
2480
2481 /*
2482  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2483  *                               and underlying extent to map
2484  *
2485  * @mpd - where to look for pages
2486  *
2487  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2488  * IO immediately. When we find a page which isn't mapped we start accumulating
2489  * extent of buffers underlying these pages that needs mapping (formed by
2490  * either delayed or unwritten buffers). We also lock the pages containing
2491  * these buffers. The extent found is returned in @mpd structure (starting at
2492  * mpd->lblk with length mpd->len blocks).
2493  *
2494  * Note that this function can attach bios to one io_end structure which are
2495  * neither logically nor physically contiguous. Although it may seem as an
2496  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2497  * case as we need to track IO to all buffers underlying a page in one io_end.
2498  */
2499 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2500 {
2501         struct address_space *mapping = mpd->inode->i_mapping;
2502         struct pagevec pvec;
2503         unsigned int nr_pages;
2504         long left = mpd->wbc->nr_to_write;
2505         pgoff_t index = mpd->first_page;
2506         pgoff_t end = mpd->last_page;
2507         int tag;
2508         int i, err = 0;
2509         int blkbits = mpd->inode->i_blkbits;
2510         ext4_lblk_t lblk;
2511         struct buffer_head *head;
2512
2513         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2514                 tag = PAGECACHE_TAG_TOWRITE;
2515         else
2516                 tag = PAGECACHE_TAG_DIRTY;
2517
2518         pagevec_init(&pvec, 0);
2519         mpd->map.m_len = 0;
2520         mpd->next_page = index;
2521         while (index <= end) {
2522                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2523                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2524                 if (nr_pages == 0)
2525                         goto out;
2526
2527                 for (i = 0; i < nr_pages; i++) {
2528                         struct page *page = pvec.pages[i];
2529
2530                         /*
2531                          * At this point, the page may be truncated or
2532                          * invalidated (changing page->mapping to NULL), or
2533                          * even swizzled back from swapper_space to tmpfs file
2534                          * mapping. However, page->index will not change
2535                          * because we have a reference on the page.
2536                          */
2537                         if (page->index > end)
2538                                 goto out;
2539
2540                         /*
2541                          * Accumulated enough dirty pages? This doesn't apply
2542                          * to WB_SYNC_ALL mode. For integrity sync we have to
2543                          * keep going because someone may be concurrently
2544                          * dirtying pages, and we might have synced a lot of
2545                          * newly appeared dirty pages, but have not synced all
2546                          * of the old dirty pages.
2547                          */
2548                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2549                                 goto out;
2550
2551                         /* If we can't merge this page, we are done. */
2552                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2553                                 goto out;
2554
2555                         lock_page(page);
2556                         /*
2557                          * If the page is no longer dirty, or its mapping no
2558                          * longer corresponds to inode we are writing (which
2559                          * means it has been truncated or invalidated), or the
2560                          * page is already under writeback and we are not doing
2561                          * a data integrity writeback, skip the page
2562                          */
2563                         if (!PageDirty(page) ||
2564                             (PageWriteback(page) &&
2565                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2566                             unlikely(page->mapping != mapping)) {
2567                                 unlock_page(page);
2568                                 continue;
2569                         }
2570
2571                         wait_on_page_writeback(page);
2572                         BUG_ON(PageWriteback(page));
2573
2574                         if (mpd->map.m_len == 0)
2575                                 mpd->first_page = page->index;
2576                         mpd->next_page = page->index + 1;
2577                         /* Add all dirty buffers to mpd */
2578                         lblk = ((ext4_lblk_t)page->index) <<
2579                                 (PAGE_SHIFT - blkbits);
2580                         head = page_buffers(page);
2581                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2582                         if (err <= 0)
2583                                 goto out;
2584                         err = 0;
2585                         left--;
2586                 }
2587                 pagevec_release(&pvec);
2588                 cond_resched();
2589         }
2590         return 0;
2591 out:
2592         pagevec_release(&pvec);
2593         return err;
2594 }
2595
2596 static int __writepage(struct page *page, struct writeback_control *wbc,
2597                        void *data)
2598 {
2599         struct address_space *mapping = data;
2600         int ret = ext4_writepage(page, wbc);
2601         mapping_set_error(mapping, ret);
2602         return ret;
2603 }
2604
2605 static int ext4_writepages(struct address_space *mapping,
2606                            struct writeback_control *wbc)
2607 {
2608         pgoff_t writeback_index = 0;
2609         long nr_to_write = wbc->nr_to_write;
2610         int range_whole = 0;
2611         int cycled = 1;
2612         handle_t *handle = NULL;
2613         struct mpage_da_data mpd;
2614         struct inode *inode = mapping->host;
2615         int needed_blocks, rsv_blocks = 0, ret = 0;
2616         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2617         bool done;
2618         struct blk_plug plug;
2619         bool give_up_on_write = false;
2620
2621         percpu_down_read(&sbi->s_journal_flag_rwsem);
2622         trace_ext4_writepages(inode, wbc);
2623
2624         if (dax_mapping(mapping)) {
2625                 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2626                                                   wbc);
2627                 goto out_writepages;
2628         }
2629
2630         /*
2631          * No pages to write? This is mainly a kludge to avoid starting
2632          * a transaction for special inodes like journal inode on last iput()
2633          * because that could violate lock ordering on umount
2634          */
2635         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2636                 goto out_writepages;
2637
2638         if (ext4_should_journal_data(inode)) {
2639                 struct blk_plug plug;
2640
2641                 blk_start_plug(&plug);
2642                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2643                 blk_finish_plug(&plug);
2644                 goto out_writepages;
2645         }
2646
2647         /*
2648          * If the filesystem has aborted, it is read-only, so return
2649          * right away instead of dumping stack traces later on that
2650          * will obscure the real source of the problem.  We test
2651          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2652          * the latter could be true if the filesystem is mounted
2653          * read-only, and in that case, ext4_writepages should
2654          * *never* be called, so if that ever happens, we would want
2655          * the stack trace.
2656          */
2657         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2658                 ret = -EROFS;
2659                 goto out_writepages;
2660         }
2661
2662         if (ext4_should_dioread_nolock(inode)) {
2663                 /*
2664                  * We may need to convert up to one extent per block in
2665                  * the page and we may dirty the inode.
2666                  */
2667                 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2668         }
2669
2670         /*
2671          * If we have inline data and arrive here, it means that
2672          * we will soon create the block for the 1st page, so
2673          * we'd better clear the inline data here.
2674          */
2675         if (ext4_has_inline_data(inode)) {
2676                 /* Just inode will be modified... */
2677                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2678                 if (IS_ERR(handle)) {
2679                         ret = PTR_ERR(handle);
2680                         goto out_writepages;
2681                 }
2682                 BUG_ON(ext4_test_inode_state(inode,
2683                                 EXT4_STATE_MAY_INLINE_DATA));
2684                 ext4_destroy_inline_data(handle, inode);
2685                 ext4_journal_stop(handle);
2686         }
2687
2688         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2689                 range_whole = 1;
2690
2691         if (wbc->range_cyclic) {
2692                 writeback_index = mapping->writeback_index;
2693                 if (writeback_index)
2694                         cycled = 0;
2695                 mpd.first_page = writeback_index;
2696                 mpd.last_page = -1;
2697         } else {
2698                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2699                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2700         }
2701
2702         mpd.inode = inode;
2703         mpd.wbc = wbc;
2704         ext4_io_submit_init(&mpd.io_submit, wbc);
2705 retry:
2706         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2707                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2708         done = false;
2709         blk_start_plug(&plug);
2710         while (!done && mpd.first_page <= mpd.last_page) {
2711                 /* For each extent of pages we use new io_end */
2712                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2713                 if (!mpd.io_submit.io_end) {
2714                         ret = -ENOMEM;
2715                         break;
2716                 }
2717
2718                 /*
2719                  * We have two constraints: We find one extent to map and we
2720                  * must always write out whole page (makes a difference when
2721                  * blocksize < pagesize) so that we don't block on IO when we
2722                  * try to write out the rest of the page. Journalled mode is
2723                  * not supported by delalloc.
2724                  */
2725                 BUG_ON(ext4_should_journal_data(inode));
2726                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2727
2728                 /* start a new transaction */
2729                 handle = ext4_journal_start_with_reserve(inode,
2730                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2731                 if (IS_ERR(handle)) {
2732                         ret = PTR_ERR(handle);
2733                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2734                                "%ld pages, ino %lu; err %d", __func__,
2735                                 wbc->nr_to_write, inode->i_ino, ret);
2736                         /* Release allocated io_end */
2737                         ext4_put_io_end(mpd.io_submit.io_end);
2738                         break;
2739                 }
2740
2741                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2742                 ret = mpage_prepare_extent_to_map(&mpd);
2743                 if (!ret) {
2744                         if (mpd.map.m_len)
2745                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2746                                         &give_up_on_write);
2747                         else {
2748                                 /*
2749                                  * We scanned the whole range (or exhausted
2750                                  * nr_to_write), submitted what was mapped and
2751                                  * didn't find anything needing mapping. We are
2752                                  * done.
2753                                  */
2754                                 done = true;
2755                         }
2756                 }
2757                 /*
2758                  * Caution: If the handle is synchronous,
2759                  * ext4_journal_stop() can wait for transaction commit
2760                  * to finish which may depend on writeback of pages to
2761                  * complete or on page lock to be released.  In that
2762                  * case, we have to wait until after after we have
2763                  * submitted all the IO, released page locks we hold,
2764                  * and dropped io_end reference (for extent conversion
2765                  * to be able to complete) before stopping the handle.
2766                  */
2767                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2768                         ext4_journal_stop(handle);
2769                         handle = NULL;
2770                 }
2771                 /* Submit prepared bio */
2772                 ext4_io_submit(&mpd.io_submit);
2773                 /* Unlock pages we didn't use */
2774                 mpage_release_unused_pages(&mpd, give_up_on_write);
2775                 /*
2776                  * Drop our io_end reference we got from init. We have
2777                  * to be careful and use deferred io_end finishing if
2778                  * we are still holding the transaction as we can
2779                  * release the last reference to io_end which may end
2780                  * up doing unwritten extent conversion.
2781                  */
2782                 if (handle) {
2783                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2784                         ext4_journal_stop(handle);
2785                 } else
2786                         ext4_put_io_end(mpd.io_submit.io_end);
2787
2788                 if (ret == -ENOSPC && sbi->s_journal) {
2789                         /*
2790                          * Commit the transaction which would
2791                          * free blocks released in the transaction
2792                          * and try again
2793                          */
2794                         jbd2_journal_force_commit_nested(sbi->s_journal);
2795                         ret = 0;
2796                         continue;
2797                 }
2798                 /* Fatal error - ENOMEM, EIO... */
2799                 if (ret)
2800                         break;
2801         }
2802         blk_finish_plug(&plug);
2803         if (!ret && !cycled && wbc->nr_to_write > 0) {
2804                 cycled = 1;
2805                 mpd.last_page = writeback_index - 1;
2806                 mpd.first_page = 0;
2807                 goto retry;
2808         }
2809
2810         /* Update index */
2811         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2812                 /*
2813                  * Set the writeback_index so that range_cyclic
2814                  * mode will write it back later
2815                  */
2816                 mapping->writeback_index = mpd.first_page;
2817
2818 out_writepages:
2819         trace_ext4_writepages_result(inode, wbc, ret,
2820                                      nr_to_write - wbc->nr_to_write);
2821         percpu_up_read(&sbi->s_journal_flag_rwsem);
2822         return ret;
2823 }
2824
2825 static int ext4_nonda_switch(struct super_block *sb)
2826 {
2827         s64 free_clusters, dirty_clusters;
2828         struct ext4_sb_info *sbi = EXT4_SB(sb);
2829
2830         /*
2831          * switch to non delalloc mode if we are running low
2832          * on free block. The free block accounting via percpu
2833          * counters can get slightly wrong with percpu_counter_batch getting
2834          * accumulated on each CPU without updating global counters
2835          * Delalloc need an accurate free block accounting. So switch
2836          * to non delalloc when we are near to error range.
2837          */
2838         free_clusters =
2839                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2840         dirty_clusters =
2841                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2842         /*
2843          * Start pushing delalloc when 1/2 of free blocks are dirty.
2844          */
2845         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2846                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2847
2848         if (2 * free_clusters < 3 * dirty_clusters ||
2849             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2850                 /*
2851                  * free block count is less than 150% of dirty blocks
2852                  * or free blocks is less than watermark
2853                  */
2854                 return 1;
2855         }
2856         return 0;
2857 }
2858
2859 /* We always reserve for an inode update; the superblock could be there too */
2860 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2861 {
2862         if (likely(ext4_has_feature_large_file(inode->i_sb)))
2863                 return 1;
2864
2865         if (pos + len <= 0x7fffffffULL)
2866                 return 1;
2867
2868         /* We might need to update the superblock to set LARGE_FILE */
2869         return 2;
2870 }
2871
2872 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2873                                loff_t pos, unsigned len, unsigned flags,
2874                                struct page **pagep, void **fsdata)
2875 {
2876         int ret, retries = 0;
2877         struct page *page;
2878         pgoff_t index;
2879         struct inode *inode = mapping->host;
2880         handle_t *handle;
2881
2882         index = pos >> PAGE_SHIFT;
2883
2884         if (ext4_nonda_switch(inode->i_sb)) {
2885                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2886                 return ext4_write_begin(file, mapping, pos,
2887                                         len, flags, pagep, fsdata);
2888         }
2889         *fsdata = (void *)0;
2890         trace_ext4_da_write_begin(inode, pos, len, flags);
2891
2892         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2893                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2894                                                       pos, len, flags,
2895                                                       pagep, fsdata);
2896                 if (ret < 0)
2897                         return ret;
2898                 if (ret == 1)
2899                         return 0;
2900         }
2901
2902         /*
2903          * grab_cache_page_write_begin() can take a long time if the
2904          * system is thrashing due to memory pressure, or if the page
2905          * is being written back.  So grab it first before we start
2906          * the transaction handle.  This also allows us to allocate
2907          * the page (if needed) without using GFP_NOFS.
2908          */
2909 retry_grab:
2910         page = grab_cache_page_write_begin(mapping, index, flags);
2911         if (!page)
2912                 return -ENOMEM;
2913         unlock_page(page);
2914
2915         /*
2916          * With delayed allocation, we don't log the i_disksize update
2917          * if there is delayed block allocation. But we still need
2918          * to journalling the i_disksize update if writes to the end
2919          * of file which has an already mapped buffer.
2920          */
2921 retry_journal:
2922         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2923                                 ext4_da_write_credits(inode, pos, len));
2924         if (IS_ERR(handle)) {
2925                 put_page(page);
2926                 return PTR_ERR(handle);
2927         }
2928
2929         lock_page(page);
2930         if (page->mapping != mapping) {
2931                 /* The page got truncated from under us */
2932                 unlock_page(page);
2933                 put_page(page);
2934                 ext4_journal_stop(handle);
2935                 goto retry_grab;
2936         }
2937         /* In case writeback began while the page was unlocked */
2938         wait_for_stable_page(page);
2939
2940 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2941         ret = ext4_block_write_begin(page, pos, len,
2942                                      ext4_da_get_block_prep);
2943 #else
2944         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2945 #endif
2946         if (ret < 0) {
2947                 unlock_page(page);
2948                 ext4_journal_stop(handle);
2949                 /*
2950                  * block_write_begin may have instantiated a few blocks
2951                  * outside i_size.  Trim these off again. Don't need
2952                  * i_size_read because we hold i_mutex.
2953                  */
2954                 if (pos + len > inode->i_size)
2955                         ext4_truncate_failed_write(inode);
2956
2957                 if (ret == -ENOSPC &&
2958                     ext4_should_retry_alloc(inode->i_sb, &retries))
2959                         goto retry_journal;
2960
2961                 put_page(page);
2962                 return ret;
2963         }
2964
2965         *pagep = page;
2966         return ret;
2967 }
2968
2969 /*
2970  * Check if we should update i_disksize
2971  * when write to the end of file but not require block allocation
2972  */
2973 static int ext4_da_should_update_i_disksize(struct page *page,
2974                                             unsigned long offset)
2975 {
2976         struct buffer_head *bh;
2977         struct inode *inode = page->mapping->host;
2978         unsigned int idx;
2979         int i;
2980
2981         bh = page_buffers(page);
2982         idx = offset >> inode->i_blkbits;
2983
2984         for (i = 0; i < idx; i++)
2985                 bh = bh->b_this_page;
2986
2987         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2988                 return 0;
2989         return 1;
2990 }
2991
2992 static int ext4_da_write_end(struct file *file,
2993                              struct address_space *mapping,
2994                              loff_t pos, unsigned len, unsigned copied,
2995                              struct page *page, void *fsdata)
2996 {
2997         struct inode *inode = mapping->host;
2998         int ret = 0, ret2;
2999         handle_t *handle = ext4_journal_current_handle();
3000         loff_t new_i_size;
3001         unsigned long start, end;
3002         int write_mode = (int)(unsigned long)fsdata;
3003
3004         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3005                 return ext4_write_end(file, mapping, pos,
3006                                       len, copied, page, fsdata);
3007
3008         trace_ext4_da_write_end(inode, pos, len, copied);
3009         start = pos & (PAGE_SIZE - 1);
3010         end = start + copied - 1;
3011
3012         /*
3013          * generic_write_end() will run mark_inode_dirty() if i_size
3014          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3015          * into that.
3016          */
3017         new_i_size = pos + copied;
3018         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3019                 if (ext4_has_inline_data(inode) ||
3020                     ext4_da_should_update_i_disksize(page, end)) {
3021                         ext4_update_i_disksize(inode, new_i_size);
3022                         /* We need to mark inode dirty even if
3023                          * new_i_size is less that inode->i_size
3024                          * bu greater than i_disksize.(hint delalloc)
3025                          */
3026                         ext4_mark_inode_dirty(handle, inode);
3027                 }
3028         }
3029
3030         if (write_mode != CONVERT_INLINE_DATA &&
3031             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3032             ext4_has_inline_data(inode))
3033                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3034                                                      page);
3035         else
3036                 ret2 = generic_write_end(file, mapping, pos, len, copied,
3037                                                         page, fsdata);
3038
3039         copied = ret2;
3040         if (ret2 < 0)
3041                 ret = ret2;
3042         ret2 = ext4_journal_stop(handle);
3043         if (!ret)
3044                 ret = ret2;
3045
3046         return ret ? ret : copied;
3047 }
3048
3049 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3050                                    unsigned int length)
3051 {
3052         /*
3053          * Drop reserved blocks
3054          */
3055         BUG_ON(!PageLocked(page));
3056         if (!page_has_buffers(page))
3057                 goto out;
3058
3059         ext4_da_page_release_reservation(page, offset, length);
3060
3061 out:
3062         ext4_invalidatepage(page, offset, length);
3063
3064         return;
3065 }
3066
3067 /*
3068  * Force all delayed allocation blocks to be allocated for a given inode.
3069  */
3070 int ext4_alloc_da_blocks(struct inode *inode)
3071 {
3072         trace_ext4_alloc_da_blocks(inode);
3073
3074         if (!EXT4_I(inode)->i_reserved_data_blocks)
3075                 return 0;
3076
3077         /*
3078          * We do something simple for now.  The filemap_flush() will
3079          * also start triggering a write of the data blocks, which is
3080          * not strictly speaking necessary (and for users of
3081          * laptop_mode, not even desirable).  However, to do otherwise
3082          * would require replicating code paths in:
3083          *
3084          * ext4_writepages() ->
3085          *    write_cache_pages() ---> (via passed in callback function)
3086          *        __mpage_da_writepage() -->
3087          *           mpage_add_bh_to_extent()
3088          *           mpage_da_map_blocks()
3089          *
3090          * The problem is that write_cache_pages(), located in
3091          * mm/page-writeback.c, marks pages clean in preparation for
3092          * doing I/O, which is not desirable if we're not planning on
3093          * doing I/O at all.
3094          *
3095          * We could call write_cache_pages(), and then redirty all of
3096          * the pages by calling redirty_page_for_writepage() but that
3097          * would be ugly in the extreme.  So instead we would need to
3098          * replicate parts of the code in the above functions,
3099          * simplifying them because we wouldn't actually intend to
3100          * write out the pages, but rather only collect contiguous
3101          * logical block extents, call the multi-block allocator, and
3102          * then update the buffer heads with the block allocations.
3103          *
3104          * For now, though, we'll cheat by calling filemap_flush(),
3105          * which will map the blocks, and start the I/O, but not
3106          * actually wait for the I/O to complete.
3107          */
3108         return filemap_flush(inode->i_mapping);
3109 }
3110
3111 /*
3112  * bmap() is special.  It gets used by applications such as lilo and by
3113  * the swapper to find the on-disk block of a specific piece of data.
3114  *
3115  * Naturally, this is dangerous if the block concerned is still in the
3116  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3117  * filesystem and enables swap, then they may get a nasty shock when the
3118  * data getting swapped to that swapfile suddenly gets overwritten by
3119  * the original zero's written out previously to the journal and
3120  * awaiting writeback in the kernel's buffer cache.
3121  *
3122  * So, if we see any bmap calls here on a modified, data-journaled file,
3123  * take extra steps to flush any blocks which might be in the cache.
3124  */
3125 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3126 {
3127         struct inode *inode = mapping->host;
3128         journal_t *journal;
3129         int err;
3130
3131         /*
3132          * We can get here for an inline file via the FIBMAP ioctl
3133          */
3134         if (ext4_has_inline_data(inode))
3135                 return 0;
3136
3137         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3138                         test_opt(inode->i_sb, DELALLOC)) {
3139                 /*
3140                  * With delalloc we want to sync the file
3141                  * so that we can make sure we allocate
3142                  * blocks for file
3143                  */
3144                 filemap_write_and_wait(mapping);
3145         }
3146
3147         if (EXT4_JOURNAL(inode) &&
3148             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3149                 /*
3150                  * This is a REALLY heavyweight approach, but the use of
3151                  * bmap on dirty files is expected to be extremely rare:
3152                  * only if we run lilo or swapon on a freshly made file
3153                  * do we expect this to happen.
3154                  *
3155                  * (bmap requires CAP_SYS_RAWIO so this does not
3156                  * represent an unprivileged user DOS attack --- we'd be
3157                  * in trouble if mortal users could trigger this path at
3158                  * will.)
3159                  *
3160                  * NB. EXT4_STATE_JDATA is not set on files other than
3161                  * regular files.  If somebody wants to bmap a directory
3162                  * or symlink and gets confused because the buffer
3163                  * hasn't yet been flushed to disk, they deserve
3164                  * everything they get.
3165                  */
3166
3167                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3168                 journal = EXT4_JOURNAL(inode);
3169                 jbd2_journal_lock_updates(journal);
3170                 err = jbd2_journal_flush(journal);
3171                 jbd2_journal_unlock_updates(journal);
3172
3173                 if (err)
3174                         return 0;
3175         }
3176
3177         return generic_block_bmap(mapping, block, ext4_get_block);
3178 }
3179
3180 static int ext4_readpage(struct file *file, struct page *page)
3181 {
3182         int ret = -EAGAIN;
3183         struct inode *inode = page->mapping->host;
3184
3185         trace_ext4_readpage(page);
3186
3187         if (ext4_has_inline_data(inode))
3188                 ret = ext4_readpage_inline(inode, page);
3189
3190         if (ret == -EAGAIN)
3191                 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3192
3193         return ret;
3194 }
3195
3196 static int
3197 ext4_readpages(struct file *file, struct address_space *mapping,
3198                 struct list_head *pages, unsigned nr_pages)
3199 {
3200         struct inode *inode = mapping->host;
3201
3202         /* If the file has inline data, no need to do readpages. */
3203         if (ext4_has_inline_data(inode))
3204                 return 0;
3205
3206         return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3207 }
3208
3209 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3210                                 unsigned int length)
3211 {
3212         trace_ext4_invalidatepage(page, offset, length);
3213
3214         /* No journalling happens on data buffers when this function is used */
3215         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3216
3217         block_invalidatepage(page, offset, length);
3218 }
3219
3220 static int __ext4_journalled_invalidatepage(struct page *page,
3221                                             unsigned int offset,
3222                                             unsigned int length)
3223 {
3224         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3225
3226         trace_ext4_journalled_invalidatepage(page, offset, length);
3227
3228         /*
3229          * If it's a full truncate we just forget about the pending dirtying
3230          */
3231         if (offset == 0 && length == PAGE_SIZE)
3232                 ClearPageChecked(page);
3233
3234         return jbd2_journal_invalidatepage(journal, page, offset, length);
3235 }
3236
3237 /* Wrapper for aops... */
3238 static void ext4_journalled_invalidatepage(struct page *page,
3239                                            unsigned int offset,
3240                                            unsigned int length)
3241 {
3242         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3243 }
3244
3245 static int ext4_releasepage(struct page *page, gfp_t wait)
3246 {
3247         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3248
3249         trace_ext4_releasepage(page);
3250
3251         /* Page has dirty journalled data -> cannot release */
3252         if (PageChecked(page))
3253                 return 0;
3254         if (journal)
3255                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3256         else
3257                 return try_to_free_buffers(page);
3258 }
3259
3260 #ifdef CONFIG_FS_DAX
3261 /*
3262  * Get block function for DAX IO and mmap faults. It takes care of converting
3263  * unwritten extents to written ones and initializes new / converted blocks
3264  * to zeros.
3265  */
3266 int ext4_dax_get_block(struct inode *inode, sector_t iblock,
3267                        struct buffer_head *bh_result, int create)
3268 {
3269         int ret;
3270
3271         ext4_debug("inode %lu, create flag %d\n", inode->i_ino, create);
3272         if (!create)
3273                 return _ext4_get_block(inode, iblock, bh_result, 0);
3274
3275         ret = ext4_get_block_trans(inode, iblock, bh_result,
3276                                    EXT4_GET_BLOCKS_PRE_IO |
3277                                    EXT4_GET_BLOCKS_CREATE_ZERO);
3278         if (ret < 0)
3279                 return ret;
3280
3281         if (buffer_unwritten(bh_result)) {
3282                 /*
3283                  * We are protected by i_mmap_sem or i_mutex so we know block
3284                  * cannot go away from under us even though we dropped
3285                  * i_data_sem. Convert extent to written and write zeros there.
3286                  */
3287                 ret = ext4_get_block_trans(inode, iblock, bh_result,
3288                                            EXT4_GET_BLOCKS_CONVERT |
3289                                            EXT4_GET_BLOCKS_CREATE_ZERO);
3290                 if (ret < 0)
3291                         return ret;
3292         }
3293         /*
3294          * At least for now we have to clear BH_New so that DAX code
3295          * doesn't attempt to zero blocks again in a racy way.
3296          */
3297         clear_buffer_new(bh_result);
3298         return 0;
3299 }
3300 #else
3301 /* Just define empty function, it will never get called. */
3302 int ext4_dax_get_block(struct inode *inode, sector_t iblock,
3303                        struct buffer_head *bh_result, int create)
3304 {
3305         BUG();
3306         return 0;
3307 }
3308 #endif
3309
3310 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3311                             ssize_t size, void *private)
3312 {
3313         ext4_io_end_t *io_end = private;
3314
3315         /* if not async direct IO just return */
3316         if (!io_end)
3317                 return 0;
3318
3319         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3320                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3321                   io_end, io_end->inode->i_ino, iocb, offset, size);
3322
3323         /*
3324          * Error during AIO DIO. We cannot convert unwritten extents as the
3325          * data was not written. Just clear the unwritten flag and drop io_end.
3326          */
3327         if (size <= 0) {
3328                 ext4_clear_io_unwritten_flag(io_end);
3329                 size = 0;
3330         }
3331         io_end->offset = offset;
3332         io_end->size = size;
3333         ext4_put_io_end(io_end);
3334
3335         return 0;
3336 }
3337
3338 /*
3339  * Handling of direct IO writes.
3340  *
3341  * For ext4 extent files, ext4 will do direct-io write even to holes,
3342  * preallocated extents, and those write extend the file, no need to
3343  * fall back to buffered IO.
3344  *
3345  * For holes, we fallocate those blocks, mark them as unwritten
3346  * If those blocks were preallocated, we mark sure they are split, but
3347  * still keep the range to write as unwritten.
3348  *
3349  * The unwritten extents will be converted to written when DIO is completed.
3350  * For async direct IO, since the IO may still pending when return, we
3351  * set up an end_io call back function, which will do the conversion
3352  * when async direct IO completed.
3353  *
3354  * If the O_DIRECT write will extend the file then add this inode to the
3355  * orphan list.  So recovery will truncate it back to the original size
3356  * if the machine crashes during the write.
3357  *
3358  */
3359 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3360 {
3361         struct file *file = iocb->ki_filp;
3362         struct inode *inode = file->f_mapping->host;
3363         struct ext4_inode_info *ei = EXT4_I(inode);
3364         ssize_t ret;
3365         loff_t offset = iocb->ki_pos;
3366         size_t count = iov_iter_count(iter);
3367         int overwrite = 0;
3368         get_block_t *get_block_func = NULL;
3369         int dio_flags = 0;
3370         loff_t final_size = offset + count;
3371         int orphan = 0;
3372         handle_t *handle;
3373
3374         if (final_size > inode->i_size) {
3375                 /* Credits for sb + inode write */
3376                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3377                 if (IS_ERR(handle)) {
3378                         ret = PTR_ERR(handle);
3379                         goto out;
3380                 }
3381                 ret = ext4_orphan_add(handle, inode);
3382                 if (ret) {
3383                         ext4_journal_stop(handle);
3384                         goto out;
3385                 }
3386                 orphan = 1;
3387                 ei->i_disksize = inode->i_size;
3388                 ext4_journal_stop(handle);
3389         }
3390
3391         BUG_ON(iocb->private == NULL);
3392
3393         /*
3394          * Make all waiters for direct IO properly wait also for extent
3395          * conversion. This also disallows race between truncate() and
3396          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3397          */
3398         inode_dio_begin(inode);
3399
3400         /* If we do a overwrite dio, i_mutex locking can be released */
3401         overwrite = *((int *)iocb->private);
3402
3403         if (overwrite)
3404                 inode_unlock(inode);
3405
3406         /*
3407          * For extent mapped files we could direct write to holes and fallocate.
3408          *
3409          * Allocated blocks to fill the hole are marked as unwritten to prevent
3410          * parallel buffered read to expose the stale data before DIO complete
3411          * the data IO.
3412          *
3413          * As to previously fallocated extents, ext4 get_block will just simply
3414          * mark the buffer mapped but still keep the extents unwritten.
3415          *
3416          * For non AIO case, we will convert those unwritten extents to written
3417          * after return back from blockdev_direct_IO. That way we save us from
3418          * allocating io_end structure and also the overhead of offloading
3419          * the extent convertion to a workqueue.
3420          *
3421          * For async DIO, the conversion needs to be deferred when the
3422          * IO is completed. The ext4 end_io callback function will be
3423          * called to take care of the conversion work.  Here for async
3424          * case, we allocate an io_end structure to hook to the iocb.
3425          */
3426         iocb->private = NULL;
3427         if (overwrite)
3428                 get_block_func = ext4_dio_get_block_overwrite;
3429         else if (IS_DAX(inode)) {
3430                 /*
3431                  * We can avoid zeroing for aligned DAX writes beyond EOF. Other
3432                  * writes need zeroing either because they can race with page
3433                  * faults or because they use partial blocks.
3434                  */
3435                 if (round_down(offset, 1<<inode->i_blkbits) >= inode->i_size &&
3436                     ext4_aligned_io(inode, offset, count))
3437                         get_block_func = ext4_dio_get_block;
3438                 else
3439                         get_block_func = ext4_dax_get_block;
3440                 dio_flags = DIO_LOCKING;
3441         } else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3442                    round_down(offset, 1 << inode->i_blkbits) >= inode->i_size) {
3443                 get_block_func = ext4_dio_get_block;
3444                 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3445         } else if (is_sync_kiocb(iocb)) {
3446                 get_block_func = ext4_dio_get_block_unwritten_sync;
3447                 dio_flags = DIO_LOCKING;
3448         } else {
3449                 get_block_func = ext4_dio_get_block_unwritten_async;
3450                 dio_flags = DIO_LOCKING;
3451         }
3452 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3453         BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3454 #endif
3455         if (IS_DAX(inode)) {
3456                 ret = dax_do_io(iocb, inode, iter, get_block_func,
3457                                 ext4_end_io_dio, dio_flags);
3458         } else
3459                 ret = __blockdev_direct_IO(iocb, inode,
3460                                            inode->i_sb->s_bdev, iter,
3461                                            get_block_func,
3462                                            ext4_end_io_dio, NULL, dio_flags);
3463
3464         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3465                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3466                 int err;
3467                 /*
3468                  * for non AIO case, since the IO is already
3469                  * completed, we could do the conversion right here
3470                  */
3471                 err = ext4_convert_unwritten_extents(NULL, inode,
3472                                                      offset, ret);
3473                 if (err < 0)
3474                         ret = err;
3475                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3476         }
3477
3478         inode_dio_end(inode);
3479         /* take i_mutex locking again if we do a ovewrite dio */
3480         if (overwrite)
3481                 inode_lock(inode);
3482
3483         if (ret < 0 && final_size > inode->i_size)
3484                 ext4_truncate_failed_write(inode);
3485
3486         /* Handle extending of i_size after direct IO write */
3487         if (orphan) {
3488                 int err;
3489
3490                 /* Credits for sb + inode write */
3491                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3492                 if (IS_ERR(handle)) {
3493                         /* This is really bad luck. We've written the data
3494                          * but cannot extend i_size. Bail out and pretend
3495                          * the write failed... */
3496                         ret = PTR_ERR(handle);
3497                         if (inode->i_nlink)
3498                                 ext4_orphan_del(NULL, inode);
3499
3500                         goto out;
3501                 }
3502                 if (inode->i_nlink)
3503                         ext4_orphan_del(handle, inode);
3504                 if (ret > 0) {
3505                         loff_t end = offset + ret;
3506                         if (end > inode->i_size) {
3507                                 ei->i_disksize = end;
3508                                 i_size_write(inode, end);
3509                                 /*
3510                                  * We're going to return a positive `ret'
3511                                  * here due to non-zero-length I/O, so there's
3512                                  * no way of reporting error returns from
3513                                  * ext4_mark_inode_dirty() to userspace.  So
3514                                  * ignore it.
3515                                  */
3516                                 ext4_mark_inode_dirty(handle, inode);
3517                         }
3518                 }
3519                 err = ext4_journal_stop(handle);
3520                 if (ret == 0)
3521                         ret = err;
3522         }
3523 out:
3524         return ret;
3525 }
3526
3527 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3528 {
3529         int unlocked = 0;
3530         struct inode *inode = iocb->ki_filp->f_mapping->host;
3531         ssize_t ret;
3532
3533         if (ext4_should_dioread_nolock(inode)) {
3534                 /*
3535                  * Nolock dioread optimization may be dynamically disabled
3536                  * via ext4_inode_block_unlocked_dio(). Check inode's state
3537                  * while holding extra i_dio_count ref.
3538                  */
3539                 inode_dio_begin(inode);
3540                 smp_mb();
3541                 if (unlikely(ext4_test_inode_state(inode,
3542                                                     EXT4_STATE_DIOREAD_LOCK)))
3543                         inode_dio_end(inode);
3544                 else
3545                         unlocked = 1;
3546         }
3547         if (IS_DAX(inode)) {
3548                 ret = dax_do_io(iocb, inode, iter, ext4_dio_get_block,
3549                                 NULL, unlocked ? 0 : DIO_LOCKING);
3550         } else {
3551                 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3552                                            iter, ext4_dio_get_block,
3553                                            NULL, NULL,
3554                                            unlocked ? 0 : DIO_LOCKING);
3555         }
3556         if (unlocked)
3557                 inode_dio_end(inode);
3558         return ret;
3559 }
3560
3561 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3562 {
3563         struct file *file = iocb->ki_filp;
3564         struct inode *inode = file->f_mapping->host;
3565         size_t count = iov_iter_count(iter);
3566         loff_t offset = iocb->ki_pos;
3567         ssize_t ret;
3568
3569 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3570         if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3571                 return 0;
3572 #endif
3573
3574         /*
3575          * If we are doing data journalling we don't support O_DIRECT
3576          */
3577         if (ext4_should_journal_data(inode))
3578                 return 0;
3579
3580         /* Let buffer I/O handle the inline data case. */
3581         if (ext4_has_inline_data(inode))
3582                 return 0;
3583
3584         trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3585         if (iov_iter_rw(iter) == READ)
3586                 ret = ext4_direct_IO_read(iocb, iter);
3587         else
3588                 ret = ext4_direct_IO_write(iocb, iter);
3589         trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3590         return ret;
3591 }
3592
3593 /*
3594  * Pages can be marked dirty completely asynchronously from ext4's journalling
3595  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3596  * much here because ->set_page_dirty is called under VFS locks.  The page is
3597  * not necessarily locked.
3598  *
3599  * We cannot just dirty the page and leave attached buffers clean, because the
3600  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3601  * or jbddirty because all the journalling code will explode.
3602  *
3603  * So what we do is to mark the page "pending dirty" and next time writepage
3604  * is called, propagate that into the buffers appropriately.
3605  */
3606 static int ext4_journalled_set_page_dirty(struct page *page)
3607 {
3608         SetPageChecked(page);
3609         return __set_page_dirty_nobuffers(page);
3610 }
3611
3612 static const struct address_space_operations ext4_aops = {
3613         .readpage               = ext4_readpage,
3614         .readpages              = ext4_readpages,
3615         .writepage              = ext4_writepage,
3616         .writepages             = ext4_writepages,
3617         .write_begin            = ext4_write_begin,
3618         .write_end              = ext4_write_end,
3619         .bmap                   = ext4_bmap,
3620         .invalidatepage         = ext4_invalidatepage,
3621         .releasepage            = ext4_releasepage,
3622         .direct_IO              = ext4_direct_IO,
3623         .migratepage            = buffer_migrate_page,
3624         .is_partially_uptodate  = block_is_partially_uptodate,
3625         .error_remove_page      = generic_error_remove_page,
3626 };
3627
3628 static const struct address_space_operations ext4_journalled_aops = {
3629         .readpage               = ext4_readpage,
3630         .readpages              = ext4_readpages,
3631         .writepage              = ext4_writepage,
3632         .writepages             = ext4_writepages,
3633         .write_begin            = ext4_write_begin,
3634         .write_end              = ext4_journalled_write_end,
3635         .set_page_dirty         = ext4_journalled_set_page_dirty,
3636         .bmap                   = ext4_bmap,
3637         .invalidatepage         = ext4_journalled_invalidatepage,
3638         .releasepage            = ext4_releasepage,
3639         .direct_IO              = ext4_direct_IO,
3640         .is_partially_uptodate  = block_is_partially_uptodate,
3641         .error_remove_page      = generic_error_remove_page,
3642 };
3643
3644 static const struct address_space_operations ext4_da_aops = {
3645         .readpage               = ext4_readpage,
3646         .readpages              = ext4_readpages,
3647         .writepage              = ext4_writepage,
3648         .writepages             = ext4_writepages,
3649         .write_begin            = ext4_da_write_begin,
3650         .write_end              = ext4_da_write_end,
3651         .bmap                   = ext4_bmap,
3652         .invalidatepage         = ext4_da_invalidatepage,
3653         .releasepage            = ext4_releasepage,
3654         .direct_IO              = ext4_direct_IO,
3655         .migratepage            = buffer_migrate_page,
3656         .is_partially_uptodate  = block_is_partially_uptodate,
3657         .error_remove_page      = generic_error_remove_page,
3658 };
3659
3660 void ext4_set_aops(struct inode *inode)
3661 {
3662         switch (ext4_inode_journal_mode(inode)) {
3663         case EXT4_INODE_ORDERED_DATA_MODE:
3664         case EXT4_INODE_WRITEBACK_DATA_MODE:
3665                 break;
3666         case EXT4_INODE_JOURNAL_DATA_MODE:
3667                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3668                 return;
3669         default:
3670                 BUG();
3671         }
3672         if (test_opt(inode->i_sb, DELALLOC))
3673                 inode->i_mapping->a_ops = &ext4_da_aops;
3674         else
3675                 inode->i_mapping->a_ops = &ext4_aops;
3676 }
3677
3678 static int __ext4_block_zero_page_range(handle_t *handle,
3679                 struct address_space *mapping, loff_t from, loff_t length)
3680 {
3681         ext4_fsblk_t index = from >> PAGE_SHIFT;
3682         unsigned offset = from & (PAGE_SIZE-1);
3683         unsigned blocksize, pos;
3684         ext4_lblk_t iblock;
3685         struct inode *inode = mapping->host;
3686         struct buffer_head *bh;
3687         struct page *page;
3688         int err = 0;
3689
3690         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3691                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3692         if (!page)
3693                 return -ENOMEM;
3694
3695         blocksize = inode->i_sb->s_blocksize;
3696
3697         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3698
3699         if (!page_has_buffers(page))
3700                 create_empty_buffers(page, blocksize, 0);
3701
3702         /* Find the buffer that contains "offset" */
3703         bh = page_buffers(page);
3704         pos = blocksize;
3705         while (offset >= pos) {
3706                 bh = bh->b_this_page;
3707                 iblock++;
3708                 pos += blocksize;
3709         }
3710         if (buffer_freed(bh)) {
3711                 BUFFER_TRACE(bh, "freed: skip");
3712                 goto unlock;
3713         }
3714         if (!buffer_mapped(bh)) {
3715                 BUFFER_TRACE(bh, "unmapped");
3716                 ext4_get_block(inode, iblock, bh, 0);
3717                 /* unmapped? It's a hole - nothing to do */
3718                 if (!buffer_mapped(bh)) {
3719                         BUFFER_TRACE(bh, "still unmapped");
3720                         goto unlock;
3721                 }
3722         }
3723
3724         /* Ok, it's mapped. Make sure it's up-to-date */
3725         if (PageUptodate(page))
3726                 set_buffer_uptodate(bh);
3727
3728         if (!buffer_uptodate(bh)) {
3729                 err = -EIO;
3730                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3731                 wait_on_buffer(bh);
3732                 /* Uhhuh. Read error. Complain and punt. */
3733                 if (!buffer_uptodate(bh))
3734                         goto unlock;
3735                 if (S_ISREG(inode->i_mode) &&
3736                     ext4_encrypted_inode(inode)) {
3737                         /* We expect the key to be set. */
3738                         BUG_ON(!fscrypt_has_encryption_key(inode));
3739                         BUG_ON(blocksize != PAGE_SIZE);
3740                         WARN_ON_ONCE(fscrypt_decrypt_page(page));
3741                 }
3742         }
3743         if (ext4_should_journal_data(inode)) {
3744                 BUFFER_TRACE(bh, "get write access");
3745                 err = ext4_journal_get_write_access(handle, bh);
3746                 if (err)
3747                         goto unlock;
3748         }
3749         zero_user(page, offset, length);
3750         BUFFER_TRACE(bh, "zeroed end of block");
3751
3752         if (ext4_should_journal_data(inode)) {
3753                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3754         } else {
3755                 err = 0;
3756                 mark_buffer_dirty(bh);
3757                 if (ext4_should_order_data(inode))
3758                         err = ext4_jbd2_inode_add_write(handle, inode);
3759         }
3760
3761 unlock:
3762         unlock_page(page);
3763         put_page(page);
3764         return err;
3765 }
3766
3767 /*
3768  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3769  * starting from file offset 'from'.  The range to be zero'd must
3770  * be contained with in one block.  If the specified range exceeds
3771  * the end of the block it will be shortened to end of the block
3772  * that cooresponds to 'from'
3773  */
3774 static int ext4_block_zero_page_range(handle_t *handle,
3775                 struct address_space *mapping, loff_t from, loff_t length)
3776 {
3777         struct inode *inode = mapping->host;
3778         unsigned offset = from & (PAGE_SIZE-1);
3779         unsigned blocksize = inode->i_sb->s_blocksize;
3780         unsigned max = blocksize - (offset & (blocksize - 1));
3781
3782         /*
3783          * correct length if it does not fall between
3784          * 'from' and the end of the block
3785          */
3786         if (length > max || length < 0)
3787                 length = max;
3788
3789         if (IS_DAX(inode))
3790                 return dax_zero_page_range(inode, from, length, ext4_get_block);
3791         return __ext4_block_zero_page_range(handle, mapping, from, length);
3792 }
3793
3794 /*
3795  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3796  * up to the end of the block which corresponds to `from'.
3797  * This required during truncate. We need to physically zero the tail end
3798  * of that block so it doesn't yield old data if the file is later grown.
3799  */
3800 static int ext4_block_truncate_page(handle_t *handle,
3801                 struct address_space *mapping, loff_t from)
3802 {
3803         unsigned offset = from & (PAGE_SIZE-1);
3804         unsigned length;
3805         unsigned blocksize;
3806         struct inode *inode = mapping->host;
3807
3808         blocksize = inode->i_sb->s_blocksize;
3809         length = blocksize - (offset & (blocksize - 1));
3810
3811         return ext4_block_zero_page_range(handle, mapping, from, length);
3812 }
3813
3814 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3815                              loff_t lstart, loff_t length)
3816 {
3817         struct super_block *sb = inode->i_sb;
3818         struct address_space *mapping = inode->i_mapping;
3819         unsigned partial_start, partial_end;
3820         ext4_fsblk_t start, end;
3821         loff_t byte_end = (lstart + length - 1);
3822         int err = 0;
3823
3824         partial_start = lstart & (sb->s_blocksize - 1);
3825         partial_end = byte_end & (sb->s_blocksize - 1);
3826
3827         start = lstart >> sb->s_blocksize_bits;
3828         end = byte_end >> sb->s_blocksize_bits;
3829
3830         /* Handle partial zero within the single block */
3831         if (start == end &&
3832             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3833                 err = ext4_block_zero_page_range(handle, mapping,
3834                                                  lstart, length);
3835                 return err;
3836         }
3837         /* Handle partial zero out on the start of the range */
3838         if (partial_start) {
3839                 err = ext4_block_zero_page_range(handle, mapping,
3840                                                  lstart, sb->s_blocksize);
3841                 if (err)
3842                         return err;
3843         }
3844         /* Handle partial zero out on the end of the range */
3845         if (partial_end != sb->s_blocksize - 1)
3846                 err = ext4_block_zero_page_range(handle, mapping,
3847                                                  byte_end - partial_end,
3848                                                  partial_end + 1);
3849         return err;
3850 }
3851
3852 int ext4_can_truncate(struct inode *inode)
3853 {
3854         if (S_ISREG(inode->i_mode))
3855                 return 1;
3856         if (S_ISDIR(inode->i_mode))
3857                 return 1;
3858         if (S_ISLNK(inode->i_mode))
3859                 return !ext4_inode_is_fast_symlink(inode);
3860         return 0;
3861 }
3862
3863 /*
3864  * We have to make sure i_disksize gets properly updated before we truncate
3865  * page cache due to hole punching or zero range. Otherwise i_disksize update
3866  * can get lost as it may have been postponed to submission of writeback but
3867  * that will never happen after we truncate page cache.
3868  */
3869 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3870                                       loff_t len)
3871 {
3872         handle_t *handle;
3873         loff_t size = i_size_read(inode);
3874
3875         WARN_ON(!inode_is_locked(inode));
3876         if (offset > size || offset + len < size)
3877                 return 0;
3878
3879         if (EXT4_I(inode)->i_disksize >= size)
3880                 return 0;
3881
3882         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3883         if (IS_ERR(handle))
3884                 return PTR_ERR(handle);
3885         ext4_update_i_disksize(inode, size);
3886         ext4_mark_inode_dirty(handle, inode);
3887         ext4_journal_stop(handle);
3888
3889         return 0;
3890 }
3891
3892 /*
3893  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3894  * associated with the given offset and length
3895  *
3896  * @inode:  File inode
3897  * @offset: The offset where the hole will begin
3898  * @len:    The length of the hole
3899  *
3900  * Returns: 0 on success or negative on failure
3901  */
3902
3903 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3904 {
3905         struct super_block *sb = inode->i_sb;
3906         ext4_lblk_t first_block, stop_block;
3907         struct address_space *mapping = inode->i_mapping;
3908         loff_t first_block_offset, last_block_offset;
3909         handle_t *handle;
3910         unsigned int credits;
3911         int ret = 0;
3912
3913         if (!S_ISREG(inode->i_mode))
3914                 return -EOPNOTSUPP;
3915
3916         trace_ext4_punch_hole(inode, offset, length, 0);
3917
3918         /*
3919          * Write out all dirty pages to avoid race conditions
3920          * Then release them.
3921          */
3922         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3923                 ret = filemap_write_and_wait_range(mapping, offset,
3924                                                    offset + length - 1);
3925                 if (ret)
3926                         return ret;
3927         }
3928
3929         inode_lock(inode);
3930
3931         /* No need to punch hole beyond i_size */
3932         if (offset >= inode->i_size)
3933                 goto out_mutex;
3934
3935         /*
3936          * If the hole extends beyond i_size, set the hole
3937          * to end after the page that contains i_size
3938          */
3939         if (offset + length > inode->i_size) {
3940                 length = inode->i_size +
3941                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3942                    offset;
3943         }
3944
3945         if (offset & (sb->s_blocksize - 1) ||
3946             (offset + length) & (sb->s_blocksize - 1)) {
3947                 /*
3948                  * Attach jinode to inode for jbd2 if we do any zeroing of
3949                  * partial block
3950                  */
3951                 ret = ext4_inode_attach_jinode(inode);
3952                 if (ret < 0)
3953                         goto out_mutex;
3954
3955         }
3956
3957         /* Wait all existing dio workers, newcomers will block on i_mutex */
3958         ext4_inode_block_unlocked_dio(inode);
3959         inode_dio_wait(inode);
3960
3961         /*
3962          * Prevent page faults from reinstantiating pages we have released from
3963          * page cache.
3964          */
3965         down_write(&EXT4_I(inode)->i_mmap_sem);
3966         first_block_offset = round_up(offset, sb->s_blocksize);
3967         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3968
3969         /* Now release the pages and zero block aligned part of pages*/
3970         if (last_block_offset > first_block_offset) {
3971                 ret = ext4_update_disksize_before_punch(inode, offset, length);
3972                 if (ret)
3973                         goto out_dio;
3974                 truncate_pagecache_range(inode, first_block_offset,
3975                                          last_block_offset);
3976         }
3977
3978         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3979                 credits = ext4_writepage_trans_blocks(inode);
3980         else
3981                 credits = ext4_blocks_for_truncate(inode);
3982         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3983         if (IS_ERR(handle)) {
3984                 ret = PTR_ERR(handle);
3985                 ext4_std_error(sb, ret);
3986                 goto out_dio;
3987         }
3988
3989         ret = ext4_zero_partial_blocks(handle, inode, offset,
3990                                        length);
3991         if (ret)
3992                 goto out_stop;
3993
3994         first_block = (offset + sb->s_blocksize - 1) >>
3995                 EXT4_BLOCK_SIZE_BITS(sb);
3996         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3997
3998         /* If there are no blocks to remove, return now */
3999         if (first_block >= stop_block)
4000                 goto out_stop;
4001
4002         down_write(&EXT4_I(inode)->i_data_sem);
4003         ext4_discard_preallocations(inode);
4004
4005         ret = ext4_es_remove_extent(inode, first_block,
4006                                     stop_block - first_block);
4007         if (ret) {
4008                 up_write(&EXT4_I(inode)->i_data_sem);
4009                 goto out_stop;
4010         }
4011
4012         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4013                 ret = ext4_ext_remove_space(inode, first_block,
4014                                             stop_block - 1);
4015         else
4016                 ret = ext4_ind_remove_space(handle, inode, first_block,
4017                                             stop_block);
4018
4019         up_write(&EXT4_I(inode)->i_data_sem);
4020         if (IS_SYNC(inode))
4021                 ext4_handle_sync(handle);
4022
4023         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4024         ext4_mark_inode_dirty(handle, inode);
4025 out_stop:
4026         ext4_journal_stop(handle);
4027 out_dio:
4028         up_write(&EXT4_I(inode)->i_mmap_sem);
4029         ext4_inode_resume_unlocked_dio(inode);
4030 out_mutex:
4031         inode_unlock(inode);
4032         return ret;
4033 }
4034
4035 int ext4_inode_attach_jinode(struct inode *inode)
4036 {
4037         struct ext4_inode_info *ei = EXT4_I(inode);
4038         struct jbd2_inode *jinode;
4039
4040         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4041                 return 0;
4042
4043         jinode = jbd2_alloc_inode(GFP_KERNEL);
4044         spin_lock(&inode->i_lock);
4045         if (!ei->jinode) {
4046                 if (!jinode) {
4047                         spin_unlock(&inode->i_lock);
4048                         return -ENOMEM;
4049                 }
4050                 ei->jinode = jinode;
4051                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4052                 jinode = NULL;
4053         }
4054         spin_unlock(&inode->i_lock);
4055         if (unlikely(jinode != NULL))
4056                 jbd2_free_inode(jinode);
4057         return 0;
4058 }
4059
4060 /*
4061  * ext4_truncate()
4062  *
4063  * We block out ext4_get_block() block instantiations across the entire
4064  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4065  * simultaneously on behalf of the same inode.
4066  *
4067  * As we work through the truncate and commit bits of it to the journal there
4068  * is one core, guiding principle: the file's tree must always be consistent on
4069  * disk.  We must be able to restart the truncate after a crash.
4070  *
4071  * The file's tree may be transiently inconsistent in memory (although it
4072  * probably isn't), but whenever we close off and commit a journal transaction,
4073  * the contents of (the filesystem + the journal) must be consistent and
4074  * restartable.  It's pretty simple, really: bottom up, right to left (although
4075  * left-to-right works OK too).
4076  *
4077  * Note that at recovery time, journal replay occurs *before* the restart of
4078  * truncate against the orphan inode list.
4079  *
4080  * The committed inode has the new, desired i_size (which is the same as
4081  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4082  * that this inode's truncate did not complete and it will again call
4083  * ext4_truncate() to have another go.  So there will be instantiated blocks
4084  * to the right of the truncation point in a crashed ext4 filesystem.  But
4085  * that's fine - as long as they are linked from the inode, the post-crash
4086  * ext4_truncate() run will find them and release them.
4087  */
4088 void ext4_truncate(struct inode *inode)
4089 {
4090         struct ext4_inode_info *ei = EXT4_I(inode);
4091         unsigned int credits;
4092         handle_t *handle;
4093         struct address_space *mapping = inode->i_mapping;
4094
4095         /*
4096          * There is a possibility that we're either freeing the inode
4097          * or it's a completely new inode. In those cases we might not
4098          * have i_mutex locked because it's not necessary.
4099          */
4100         if (!(inode->i_state & (I_NEW|I_FREEING)))
4101                 WARN_ON(!inode_is_locked(inode));
4102         trace_ext4_truncate_enter(inode);
4103
4104         if (!ext4_can_truncate(inode))
4105                 return;
4106
4107         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4108
4109         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4110                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4111
4112         if (ext4_has_inline_data(inode)) {
4113                 int has_inline = 1;
4114
4115                 ext4_inline_data_truncate(inode, &has_inline);
4116                 if (has_inline)
4117                         return;
4118         }
4119
4120         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4121         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4122                 if (ext4_inode_attach_jinode(inode) < 0)
4123                         return;
4124         }
4125
4126         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4127                 credits = ext4_writepage_trans_blocks(inode);
4128         else
4129                 credits = ext4_blocks_for_truncate(inode);
4130
4131         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4132         if (IS_ERR(handle)) {
4133                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
4134                 return;
4135         }
4136
4137         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4138                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4139
4140         /*
4141          * We add the inode to the orphan list, so that if this
4142          * truncate spans multiple transactions, and we crash, we will
4143          * resume the truncate when the filesystem recovers.  It also
4144          * marks the inode dirty, to catch the new size.
4145          *
4146          * Implication: the file must always be in a sane, consistent
4147          * truncatable state while each transaction commits.
4148          */
4149         if (ext4_orphan_add(handle, inode))
4150                 goto out_stop;
4151
4152         down_write(&EXT4_I(inode)->i_data_sem);
4153
4154         ext4_discard_preallocations(inode);
4155
4156         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4157                 ext4_ext_truncate(handle, inode);
4158         else
4159                 ext4_ind_truncate(handle, inode);
4160
4161         up_write(&ei->i_data_sem);
4162
4163         if (IS_SYNC(inode))
4164                 ext4_handle_sync(handle);
4165
4166 out_stop:
4167         /*
4168          * If this was a simple ftruncate() and the file will remain alive,
4169          * then we need to clear up the orphan record which we created above.
4170          * However, if this was a real unlink then we were called by
4171          * ext4_evict_inode(), and we allow that function to clean up the
4172          * orphan info for us.
4173          */
4174         if (inode->i_nlink)
4175                 ext4_orphan_del(handle, inode);
4176
4177         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4178         ext4_mark_inode_dirty(handle, inode);
4179         ext4_journal_stop(handle);
4180
4181         trace_ext4_truncate_exit(inode);
4182 }
4183
4184 /*
4185  * ext4_get_inode_loc returns with an extra refcount against the inode's
4186  * underlying buffer_head on success. If 'in_mem' is true, we have all
4187  * data in memory that is needed to recreate the on-disk version of this
4188  * inode.
4189  */
4190 static int __ext4_get_inode_loc(struct inode *inode,
4191                                 struct ext4_iloc *iloc, int in_mem)
4192 {
4193         struct ext4_group_desc  *gdp;
4194         struct buffer_head      *bh;
4195         struct super_block      *sb = inode->i_sb;
4196         ext4_fsblk_t            block;
4197         int                     inodes_per_block, inode_offset;
4198
4199         iloc->bh = NULL;
4200         if (!ext4_valid_inum(sb, inode->i_ino))
4201                 return -EFSCORRUPTED;
4202
4203         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4204         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4205         if (!gdp)
4206                 return -EIO;
4207
4208         /*
4209          * Figure out the offset within the block group inode table
4210          */
4211         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4212         inode_offset = ((inode->i_ino - 1) %
4213                         EXT4_INODES_PER_GROUP(sb));
4214         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4215         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4216
4217         bh = sb_getblk(sb, block);
4218         if (unlikely(!bh))
4219                 return -ENOMEM;
4220         if (!buffer_uptodate(bh)) {
4221                 lock_buffer(bh);
4222
4223                 /*
4224                  * If the buffer has the write error flag, we have failed
4225                  * to write out another inode in the same block.  In this
4226                  * case, we don't have to read the block because we may
4227                  * read the old inode data successfully.
4228                  */
4229                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4230                         set_buffer_uptodate(bh);
4231
4232                 if (buffer_uptodate(bh)) {
4233                         /* someone brought it uptodate while we waited */
4234                         unlock_buffer(bh);
4235                         goto has_buffer;
4236                 }
4237
4238                 /*
4239                  * If we have all information of the inode in memory and this
4240                  * is the only valid inode in the block, we need not read the
4241                  * block.
4242                  */
4243                 if (in_mem) {
4244                         struct buffer_head *bitmap_bh;
4245                         int i, start;
4246
4247                         start = inode_offset & ~(inodes_per_block - 1);
4248
4249                         /* Is the inode bitmap in cache? */
4250                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4251                         if (unlikely(!bitmap_bh))
4252                                 goto make_io;
4253
4254                         /*
4255                          * If the inode bitmap isn't in cache then the
4256                          * optimisation may end up performing two reads instead
4257                          * of one, so skip it.
4258                          */
4259                         if (!buffer_uptodate(bitmap_bh)) {
4260                                 brelse(bitmap_bh);
4261                                 goto make_io;
4262                         }
4263                         for (i = start; i < start + inodes_per_block; i++) {
4264                                 if (i == inode_offset)
4265                                         continue;
4266                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4267                                         break;
4268                         }
4269                         brelse(bitmap_bh);
4270                         if (i == start + inodes_per_block) {
4271                                 /* all other inodes are free, so skip I/O */
4272                                 memset(bh->b_data, 0, bh->b_size);
4273                                 set_buffer_uptodate(bh);
4274                                 unlock_buffer(bh);
4275                                 goto has_buffer;
4276                         }
4277                 }
4278
4279 make_io:
4280                 /*
4281                  * If we need to do any I/O, try to pre-readahead extra
4282                  * blocks from the inode table.
4283                  */
4284                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4285                         ext4_fsblk_t b, end, table;
4286                         unsigned num;
4287                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4288
4289                         table = ext4_inode_table(sb, gdp);
4290                         /* s_inode_readahead_blks is always a power of 2 */
4291                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4292                         if (table > b)
4293                                 b = table;
4294                         end = b + ra_blks;
4295                         num = EXT4_INODES_PER_GROUP(sb);
4296                         if (ext4_has_group_desc_csum(sb))
4297                                 num -= ext4_itable_unused_count(sb, gdp);
4298                         table += num / inodes_per_block;
4299                         if (end > table)
4300                                 end = table;
4301                         while (b <= end)
4302                                 sb_breadahead(sb, b++);
4303                 }
4304
4305                 /*
4306                  * There are other valid inodes in the buffer, this inode
4307                  * has in-inode xattrs, or we don't have this inode in memory.
4308                  * Read the block from disk.
4309                  */
4310                 trace_ext4_load_inode(inode);
4311                 get_bh(bh);
4312                 bh->b_end_io = end_buffer_read_sync;
4313                 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4314                 wait_on_buffer(bh);
4315                 if (!buffer_uptodate(bh)) {
4316                         EXT4_ERROR_INODE_BLOCK(inode, block,
4317                                                "unable to read itable block");
4318                         brelse(bh);
4319                         return -EIO;
4320                 }
4321         }
4322 has_buffer:
4323         iloc->bh = bh;
4324         return 0;
4325 }
4326
4327 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4328 {
4329         /* We have all inode data except xattrs in memory here. */
4330         return __ext4_get_inode_loc(inode, iloc,
4331                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4332 }
4333
4334 void ext4_set_inode_flags(struct inode *inode)
4335 {
4336         unsigned int flags = EXT4_I(inode)->i_flags;
4337         unsigned int new_fl = 0;
4338
4339         if (flags & EXT4_SYNC_FL)
4340                 new_fl |= S_SYNC;
4341         if (flags & EXT4_APPEND_FL)
4342                 new_fl |= S_APPEND;
4343         if (flags & EXT4_IMMUTABLE_FL)
4344                 new_fl |= S_IMMUTABLE;
4345         if (flags & EXT4_NOATIME_FL)
4346                 new_fl |= S_NOATIME;
4347         if (flags & EXT4_DIRSYNC_FL)
4348                 new_fl |= S_DIRSYNC;
4349         if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
4350                 new_fl |= S_DAX;
4351         inode_set_flags(inode, new_fl,
4352                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4353 }
4354
4355 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4356 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4357 {
4358         unsigned int vfs_fl;
4359         unsigned long old_fl, new_fl;
4360
4361         do {
4362                 vfs_fl = ei->vfs_inode.i_flags;
4363                 old_fl = ei->i_flags;
4364                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4365                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4366                                 EXT4_DIRSYNC_FL);
4367                 if (vfs_fl & S_SYNC)
4368                         new_fl |= EXT4_SYNC_FL;
4369                 if (vfs_fl & S_APPEND)
4370                         new_fl |= EXT4_APPEND_FL;
4371                 if (vfs_fl & S_IMMUTABLE)
4372                         new_fl |= EXT4_IMMUTABLE_FL;
4373                 if (vfs_fl & S_NOATIME)
4374                         new_fl |= EXT4_NOATIME_FL;
4375                 if (vfs_fl & S_DIRSYNC)
4376                         new_fl |= EXT4_DIRSYNC_FL;
4377         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4378 }
4379
4380 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4381                                   struct ext4_inode_info *ei)
4382 {
4383         blkcnt_t i_blocks ;
4384         struct inode *inode = &(ei->vfs_inode);
4385         struct super_block *sb = inode->i_sb;
4386
4387         if (ext4_has_feature_huge_file(sb)) {
4388                 /* we are using combined 48 bit field */
4389                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4390                                         le32_to_cpu(raw_inode->i_blocks_lo);
4391                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4392                         /* i_blocks represent file system block size */
4393                         return i_blocks  << (inode->i_blkbits - 9);
4394                 } else {
4395                         return i_blocks;
4396                 }
4397         } else {
4398                 return le32_to_cpu(raw_inode->i_blocks_lo);
4399         }
4400 }
4401
4402 static inline void ext4_iget_extra_inode(struct inode *inode,
4403                                          struct ext4_inode *raw_inode,
4404                                          struct ext4_inode_info *ei)
4405 {
4406         __le32 *magic = (void *)raw_inode +
4407                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4408         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4409                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4410                 ext4_find_inline_data_nolock(inode);
4411         } else
4412                 EXT4_I(inode)->i_inline_off = 0;
4413 }
4414
4415 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4416 {
4417         if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, EXT4_FEATURE_RO_COMPAT_PROJECT))
4418                 return -EOPNOTSUPP;
4419         *projid = EXT4_I(inode)->i_projid;
4420         return 0;
4421 }
4422
4423 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4424 {
4425         struct ext4_iloc iloc;
4426         struct ext4_inode *raw_inode;
4427         struct ext4_inode_info *ei;
4428         struct inode *inode;
4429         journal_t *journal = EXT4_SB(sb)->s_journal;
4430         long ret;
4431         int block;
4432         uid_t i_uid;
4433         gid_t i_gid;
4434         projid_t i_projid;
4435
4436         inode = iget_locked(sb, ino);
4437         if (!inode)
4438                 return ERR_PTR(-ENOMEM);
4439         if (!(inode->i_state & I_NEW))
4440                 return inode;
4441
4442         ei = EXT4_I(inode);
4443         iloc.bh = NULL;
4444
4445         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4446         if (ret < 0)
4447                 goto bad_inode;
4448         raw_inode = ext4_raw_inode(&iloc);
4449
4450         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4451                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4452                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4453                     EXT4_INODE_SIZE(inode->i_sb)) {
4454                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4455                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4456                                 EXT4_INODE_SIZE(inode->i_sb));
4457                         ret = -EFSCORRUPTED;
4458                         goto bad_inode;
4459                 }
4460         } else
4461                 ei->i_extra_isize = 0;
4462
4463         /* Precompute checksum seed for inode metadata */
4464         if (ext4_has_metadata_csum(sb)) {
4465                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4466                 __u32 csum;
4467                 __le32 inum = cpu_to_le32(inode->i_ino);
4468                 __le32 gen = raw_inode->i_generation;
4469                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4470                                    sizeof(inum));
4471                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4472                                               sizeof(gen));
4473         }
4474
4475         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4476                 EXT4_ERROR_INODE(inode, "checksum invalid");
4477                 ret = -EFSBADCRC;
4478                 goto bad_inode;
4479         }
4480
4481         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4482         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4483         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4484         if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4485             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4486             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4487                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4488         else
4489                 i_projid = EXT4_DEF_PROJID;
4490
4491         if (!(test_opt(inode->i_sb, NO_UID32))) {
4492                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4493                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4494         }
4495         i_uid_write(inode, i_uid);
4496         i_gid_write(inode, i_gid);
4497         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4498         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4499
4500         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4501         ei->i_inline_off = 0;
4502         ei->i_dir_start_lookup = 0;
4503         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4504         /* We now have enough fields to check if the inode was active or not.
4505          * This is needed because nfsd might try to access dead inodes
4506          * the test is that same one that e2fsck uses
4507          * NeilBrown 1999oct15
4508          */
4509         if (inode->i_nlink == 0) {
4510                 if ((inode->i_mode == 0 ||
4511                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4512                     ino != EXT4_BOOT_LOADER_INO) {
4513                         /* this inode is deleted */
4514                         ret = -ESTALE;
4515                         goto bad_inode;
4516                 }
4517                 /* The only unlinked inodes we let through here have
4518                  * valid i_mode and are being read by the orphan
4519                  * recovery code: that's fine, we're about to complete
4520                  * the process of deleting those.
4521                  * OR it is the EXT4_BOOT_LOADER_INO which is
4522                  * not initialized on a new filesystem. */
4523         }
4524         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4525         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4526         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4527         if (ext4_has_feature_64bit(sb))
4528                 ei->i_file_acl |=
4529                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4530         inode->i_size = ext4_isize(raw_inode);
4531         ei->i_disksize = inode->i_size;
4532 #ifdef CONFIG_QUOTA
4533         ei->i_reserved_quota = 0;
4534 #endif
4535         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4536         ei->i_block_group = iloc.block_group;
4537         ei->i_last_alloc_group = ~0;
4538         /*
4539          * NOTE! The in-memory inode i_data array is in little-endian order
4540          * even on big-endian machines: we do NOT byteswap the block numbers!
4541          */
4542         for (block = 0; block < EXT4_N_BLOCKS; block++)
4543                 ei->i_data[block] = raw_inode->i_block[block];
4544         INIT_LIST_HEAD(&ei->i_orphan);
4545
4546         /*
4547          * Set transaction id's of transactions that have to be committed
4548          * to finish f[data]sync. We set them to currently running transaction
4549          * as we cannot be sure that the inode or some of its metadata isn't
4550          * part of the transaction - the inode could have been reclaimed and
4551          * now it is reread from disk.
4552          */
4553         if (journal) {
4554                 transaction_t *transaction;
4555                 tid_t tid;
4556
4557                 read_lock(&journal->j_state_lock);
4558                 if (journal->j_running_transaction)
4559                         transaction = journal->j_running_transaction;
4560                 else
4561                         transaction = journal->j_committing_transaction;
4562                 if (transaction)
4563                         tid = transaction->t_tid;
4564                 else
4565                         tid = journal->j_commit_sequence;
4566                 read_unlock(&journal->j_state_lock);
4567                 ei->i_sync_tid = tid;
4568                 ei->i_datasync_tid = tid;
4569         }
4570
4571         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4572                 if (ei->i_extra_isize == 0) {
4573                         /* The extra space is currently unused. Use it. */
4574                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4575                                             EXT4_GOOD_OLD_INODE_SIZE;
4576                 } else {
4577                         ext4_iget_extra_inode(inode, raw_inode, ei);
4578                 }
4579         }
4580
4581         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4582         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4583         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4584         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4585
4586         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4587                 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4588                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4589                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4590                                 inode->i_version |=
4591                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4592                 }
4593         }
4594
4595         ret = 0;
4596         if (ei->i_file_acl &&
4597             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4598                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4599                                  ei->i_file_acl);
4600                 ret = -EFSCORRUPTED;
4601                 goto bad_inode;
4602         } else if (!ext4_has_inline_data(inode)) {
4603                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4604                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4605                             (S_ISLNK(inode->i_mode) &&
4606                              !ext4_inode_is_fast_symlink(inode))))
4607                                 /* Validate extent which is part of inode */
4608                                 ret = ext4_ext_check_inode(inode);
4609                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4610                            (S_ISLNK(inode->i_mode) &&
4611                             !ext4_inode_is_fast_symlink(inode))) {
4612                         /* Validate block references which are part of inode */
4613                         ret = ext4_ind_check_inode(inode);
4614                 }
4615         }
4616         if (ret)
4617                 goto bad_inode;
4618
4619         if (S_ISREG(inode->i_mode)) {
4620                 inode->i_op = &ext4_file_inode_operations;
4621                 inode->i_fop = &ext4_file_operations;
4622                 ext4_set_aops(inode);
4623         } else if (S_ISDIR(inode->i_mode)) {
4624                 inode->i_op = &ext4_dir_inode_operations;
4625                 inode->i_fop = &ext4_dir_operations;
4626         } else if (S_ISLNK(inode->i_mode)) {
4627                 if (ext4_encrypted_inode(inode)) {
4628                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4629                         ext4_set_aops(inode);
4630                 } else if (ext4_inode_is_fast_symlink(inode)) {
4631                         inode->i_link = (char *)ei->i_data;
4632                         inode->i_op = &ext4_fast_symlink_inode_operations;
4633                         nd_terminate_link(ei->i_data, inode->i_size,
4634                                 sizeof(ei->i_data) - 1);
4635                 } else {
4636                         inode->i_op = &ext4_symlink_inode_operations;
4637                         ext4_set_aops(inode);
4638                 }
4639                 inode_nohighmem(inode);
4640         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4641               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4642                 inode->i_op = &ext4_special_inode_operations;
4643                 if (raw_inode->i_block[0])
4644                         init_special_inode(inode, inode->i_mode,
4645                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4646                 else
4647                         init_special_inode(inode, inode->i_mode,
4648                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4649         } else if (ino == EXT4_BOOT_LOADER_INO) {
4650                 make_bad_inode(inode);
4651         } else {
4652                 ret = -EFSCORRUPTED;
4653                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4654                 goto bad_inode;
4655         }
4656         brelse(iloc.bh);
4657         ext4_set_inode_flags(inode);
4658         unlock_new_inode(inode);
4659         return inode;
4660
4661 bad_inode:
4662         brelse(iloc.bh);
4663         iget_failed(inode);
4664         return ERR_PTR(ret);
4665 }
4666
4667 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4668 {
4669         if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4670                 return ERR_PTR(-EFSCORRUPTED);
4671         return ext4_iget(sb, ino);
4672 }
4673
4674 static int ext4_inode_blocks_set(handle_t *handle,
4675                                 struct ext4_inode *raw_inode,
4676                                 struct ext4_inode_info *ei)
4677 {
4678         struct inode *inode = &(ei->vfs_inode);
4679         u64 i_blocks = inode->i_blocks;
4680         struct super_block *sb = inode->i_sb;
4681
4682         if (i_blocks <= ~0U) {
4683                 /*
4684                  * i_blocks can be represented in a 32 bit variable
4685                  * as multiple of 512 bytes
4686                  */
4687                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4688                 raw_inode->i_blocks_high = 0;
4689                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4690                 return 0;
4691         }
4692         if (!ext4_has_feature_huge_file(sb))
4693                 return -EFBIG;
4694
4695         if (i_blocks <= 0xffffffffffffULL) {
4696                 /*
4697                  * i_blocks can be represented in a 48 bit variable
4698                  * as multiple of 512 bytes
4699                  */
4700                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4701                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4702                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4703         } else {
4704                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4705                 /* i_block is stored in file system block size */
4706                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4707                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4708                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4709         }
4710         return 0;
4711 }
4712
4713 struct other_inode {
4714         unsigned long           orig_ino;
4715         struct ext4_inode       *raw_inode;
4716 };
4717
4718 static int other_inode_match(struct inode * inode, unsigned long ino,
4719                              void *data)
4720 {
4721         struct other_inode *oi = (struct other_inode *) data;
4722
4723         if ((inode->i_ino != ino) ||
4724             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4725                                I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4726             ((inode->i_state & I_DIRTY_TIME) == 0))
4727                 return 0;
4728         spin_lock(&inode->i_lock);
4729         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4730                                 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4731             (inode->i_state & I_DIRTY_TIME)) {
4732                 struct ext4_inode_info  *ei = EXT4_I(inode);
4733
4734                 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4735                 spin_unlock(&inode->i_lock);
4736
4737                 spin_lock(&ei->i_raw_lock);
4738                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4739                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4740                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4741                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4742                 spin_unlock(&ei->i_raw_lock);
4743                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4744                 return -1;
4745         }
4746         spin_unlock(&inode->i_lock);
4747         return -1;
4748 }
4749
4750 /*
4751  * Opportunistically update the other time fields for other inodes in
4752  * the same inode table block.
4753  */
4754 static void ext4_update_other_inodes_time(struct super_block *sb,
4755                                           unsigned long orig_ino, char *buf)
4756 {
4757         struct other_inode oi;
4758         unsigned long ino;
4759         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4760         int inode_size = EXT4_INODE_SIZE(sb);
4761
4762         oi.orig_ino = orig_ino;
4763         /*
4764          * Calculate the first inode in the inode table block.  Inode
4765          * numbers are one-based.  That is, the first inode in a block
4766          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4767          */
4768         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4769         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4770                 if (ino == orig_ino)
4771                         continue;
4772                 oi.raw_inode = (struct ext4_inode *) buf;
4773                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4774         }
4775 }
4776
4777 /*
4778  * Post the struct inode info into an on-disk inode location in the
4779  * buffer-cache.  This gobbles the caller's reference to the
4780  * buffer_head in the inode location struct.
4781  *
4782  * The caller must have write access to iloc->bh.
4783  */
4784 static int ext4_do_update_inode(handle_t *handle,
4785                                 struct inode *inode,
4786                                 struct ext4_iloc *iloc)
4787 {
4788         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4789         struct ext4_inode_info *ei = EXT4_I(inode);
4790         struct buffer_head *bh = iloc->bh;
4791         struct super_block *sb = inode->i_sb;
4792         int err = 0, rc, block;
4793         int need_datasync = 0, set_large_file = 0;
4794         uid_t i_uid;
4795         gid_t i_gid;
4796         projid_t i_projid;
4797
4798         spin_lock(&ei->i_raw_lock);
4799
4800         /* For fields not tracked in the in-memory inode,
4801          * initialise them to zero for new inodes. */
4802         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4803                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4804
4805         ext4_get_inode_flags(ei);
4806         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4807         i_uid = i_uid_read(inode);
4808         i_gid = i_gid_read(inode);
4809         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4810         if (!(test_opt(inode->i_sb, NO_UID32))) {
4811                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4812                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4813 /*
4814  * Fix up interoperability with old kernels. Otherwise, old inodes get
4815  * re-used with the upper 16 bits of the uid/gid intact
4816  */
4817                 if (!ei->i_dtime) {
4818                         raw_inode->i_uid_high =
4819                                 cpu_to_le16(high_16_bits(i_uid));
4820                         raw_inode->i_gid_high =
4821                                 cpu_to_le16(high_16_bits(i_gid));
4822                 } else {
4823                         raw_inode->i_uid_high = 0;
4824                         raw_inode->i_gid_high = 0;
4825                 }
4826         } else {
4827                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4828                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4829                 raw_inode->i_uid_high = 0;
4830                 raw_inode->i_gid_high = 0;
4831         }
4832         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4833
4834         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4835         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4836         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4837         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4838
4839         err = ext4_inode_blocks_set(handle, raw_inode, ei);
4840         if (err) {
4841                 spin_unlock(&ei->i_raw_lock);
4842                 goto out_brelse;
4843         }
4844         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4845         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4846         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4847                 raw_inode->i_file_acl_high =
4848                         cpu_to_le16(ei->i_file_acl >> 32);
4849         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4850         if (ei->i_disksize != ext4_isize(raw_inode)) {
4851                 ext4_isize_set(raw_inode, ei->i_disksize);
4852                 need_datasync = 1;
4853         }
4854         if (ei->i_disksize > 0x7fffffffULL) {
4855                 if (!ext4_has_feature_large_file(sb) ||
4856                                 EXT4_SB(sb)->s_es->s_rev_level ==
4857                     cpu_to_le32(EXT4_GOOD_OLD_REV))
4858                         set_large_file = 1;
4859         }
4860         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4861         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4862                 if (old_valid_dev(inode->i_rdev)) {
4863                         raw_inode->i_block[0] =
4864                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4865                         raw_inode->i_block[1] = 0;
4866                 } else {
4867                         raw_inode->i_block[0] = 0;
4868                         raw_inode->i_block[1] =
4869                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4870                         raw_inode->i_block[2] = 0;
4871                 }
4872         } else if (!ext4_has_inline_data(inode)) {
4873                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4874                         raw_inode->i_block[block] = ei->i_data[block];
4875         }
4876
4877         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4878                 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4879                 if (ei->i_extra_isize) {
4880                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4881                                 raw_inode->i_version_hi =
4882                                         cpu_to_le32(inode->i_version >> 32);
4883                         raw_inode->i_extra_isize =
4884                                 cpu_to_le16(ei->i_extra_isize);
4885                 }
4886         }
4887
4888         BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
4889                         EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4890                i_projid != EXT4_DEF_PROJID);
4891
4892         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4893             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4894                 raw_inode->i_projid = cpu_to_le32(i_projid);
4895
4896         ext4_inode_csum_set(inode, raw_inode, ei);
4897         spin_unlock(&ei->i_raw_lock);
4898         if (inode->i_sb->s_flags & MS_LAZYTIME)
4899                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4900                                               bh->b_data);
4901
4902         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4903         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4904         if (!err)
4905                 err = rc;
4906         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4907         if (set_large_file) {
4908                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4909                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4910                 if (err)
4911                         goto out_brelse;
4912                 ext4_update_dynamic_rev(sb);
4913                 ext4_set_feature_large_file(sb);
4914                 ext4_handle_sync(handle);
4915                 err = ext4_handle_dirty_super(handle, sb);
4916         }
4917         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4918 out_brelse:
4919         brelse(bh);
4920         ext4_std_error(inode->i_sb, err);
4921         return err;
4922 }
4923
4924 /*
4925  * ext4_write_inode()
4926  *
4927  * We are called from a few places:
4928  *
4929  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4930  *   Here, there will be no transaction running. We wait for any running
4931  *   transaction to commit.
4932  *
4933  * - Within flush work (sys_sync(), kupdate and such).
4934  *   We wait on commit, if told to.
4935  *
4936  * - Within iput_final() -> write_inode_now()
4937  *   We wait on commit, if told to.
4938  *
4939  * In all cases it is actually safe for us to return without doing anything,
4940  * because the inode has been copied into a raw inode buffer in
4941  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4942  * writeback.
4943  *
4944  * Note that we are absolutely dependent upon all inode dirtiers doing the
4945  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4946  * which we are interested.
4947  *
4948  * It would be a bug for them to not do this.  The code:
4949  *
4950  *      mark_inode_dirty(inode)
4951  *      stuff();
4952  *      inode->i_size = expr;
4953  *
4954  * is in error because write_inode() could occur while `stuff()' is running,
4955  * and the new i_size will be lost.  Plus the inode will no longer be on the
4956  * superblock's dirty inode list.
4957  */
4958 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4959 {
4960         int err;
4961
4962         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4963                 return 0;
4964
4965         if (EXT4_SB(inode->i_sb)->s_journal) {
4966                 if (ext4_journal_current_handle()) {
4967                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4968                         dump_stack();
4969                         return -EIO;
4970                 }
4971
4972                 /*
4973                  * No need to force transaction in WB_SYNC_NONE mode. Also
4974                  * ext4_sync_fs() will force the commit after everything is
4975                  * written.
4976                  */
4977                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4978                         return 0;
4979
4980                 err = ext4_force_commit(inode->i_sb);
4981         } else {
4982                 struct ext4_iloc iloc;
4983
4984                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4985                 if (err)
4986                         return err;
4987                 /*
4988                  * sync(2) will flush the whole buffer cache. No need to do
4989                  * it here separately for each inode.
4990                  */
4991                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4992                         sync_dirty_buffer(iloc.bh);
4993                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4994                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4995                                          "IO error syncing inode");
4996                         err = -EIO;
4997                 }
4998                 brelse(iloc.bh);
4999         }
5000         return err;
5001 }
5002
5003 /*
5004  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5005  * buffers that are attached to a page stradding i_size and are undergoing
5006  * commit. In that case we have to wait for commit to finish and try again.
5007  */
5008 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5009 {
5010         struct page *page;
5011         unsigned offset;
5012         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5013         tid_t commit_tid = 0;
5014         int ret;
5015
5016         offset = inode->i_size & (PAGE_SIZE - 1);
5017         /*
5018          * All buffers in the last page remain valid? Then there's nothing to
5019          * do. We do the check mainly to optimize the common PAGE_SIZE ==
5020          * blocksize case
5021          */
5022         if (offset > PAGE_SIZE - (1 << inode->i_blkbits))
5023                 return;
5024         while (1) {
5025                 page = find_lock_page(inode->i_mapping,
5026                                       inode->i_size >> PAGE_SHIFT);
5027                 if (!page)
5028                         return;
5029                 ret = __ext4_journalled_invalidatepage(page, offset,
5030                                                 PAGE_SIZE - offset);
5031                 unlock_page(page);
5032                 put_page(page);
5033                 if (ret != -EBUSY)
5034                         return;
5035                 commit_tid = 0;
5036                 read_lock(&journal->j_state_lock);
5037                 if (journal->j_committing_transaction)
5038                         commit_tid = journal->j_committing_transaction->t_tid;
5039                 read_unlock(&journal->j_state_lock);
5040                 if (commit_tid)
5041                         jbd2_log_wait_commit(journal, commit_tid);
5042         }
5043 }
5044
5045 /*
5046  * ext4_setattr()
5047  *
5048  * Called from notify_change.
5049  *
5050  * We want to trap VFS attempts to truncate the file as soon as
5051  * possible.  In particular, we want to make sure that when the VFS
5052  * shrinks i_size, we put the inode on the orphan list and modify
5053  * i_disksize immediately, so that during the subsequent flushing of
5054  * dirty pages and freeing of disk blocks, we can guarantee that any
5055  * commit will leave the blocks being flushed in an unused state on
5056  * disk.  (On recovery, the inode will get truncated and the blocks will
5057  * be freed, so we have a strong guarantee that no future commit will
5058  * leave these blocks visible to the user.)
5059  *
5060  * Another thing we have to assure is that if we are in ordered mode
5061  * and inode is still attached to the committing transaction, we must
5062  * we start writeout of all the dirty pages which are being truncated.
5063  * This way we are sure that all the data written in the previous
5064  * transaction are already on disk (truncate waits for pages under
5065  * writeback).
5066  *
5067  * Called with inode->i_mutex down.
5068  */
5069 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5070 {
5071         struct inode *inode = d_inode(dentry);
5072         int error, rc = 0;
5073         int orphan = 0;
5074         const unsigned int ia_valid = attr->ia_valid;
5075
5076         error = inode_change_ok(inode, attr);
5077         if (error)
5078                 return error;
5079
5080         if (is_quota_modification(inode, attr)) {
5081                 error = dquot_initialize(inode);
5082                 if (error)
5083                         return error;
5084         }
5085         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5086             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5087                 handle_t *handle;
5088
5089                 /* (user+group)*(old+new) structure, inode write (sb,
5090                  * inode block, ? - but truncate inode update has it) */
5091                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5092                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5093                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5094                 if (IS_ERR(handle)) {
5095                         error = PTR_ERR(handle);
5096                         goto err_out;
5097                 }
5098                 error = dquot_transfer(inode, attr);
5099                 if (error) {
5100                         ext4_journal_stop(handle);
5101                         return error;
5102                 }
5103                 /* Update corresponding info in inode so that everything is in
5104                  * one transaction */
5105                 if (attr->ia_valid & ATTR_UID)
5106                         inode->i_uid = attr->ia_uid;
5107                 if (attr->ia_valid & ATTR_GID)
5108                         inode->i_gid = attr->ia_gid;
5109                 error = ext4_mark_inode_dirty(handle, inode);
5110                 ext4_journal_stop(handle);
5111         }
5112
5113         if (attr->ia_valid & ATTR_SIZE) {
5114                 handle_t *handle;
5115                 loff_t oldsize = inode->i_size;
5116                 int shrink = (attr->ia_size <= inode->i_size);
5117
5118                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5119                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5120
5121                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
5122                                 return -EFBIG;
5123                 }
5124                 if (!S_ISREG(inode->i_mode))
5125                         return -EINVAL;
5126
5127                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5128                         inode_inc_iversion(inode);
5129
5130                 if (ext4_should_order_data(inode) &&
5131                     (attr->ia_size < inode->i_size)) {
5132                         error = ext4_begin_ordered_truncate(inode,
5133                                                             attr->ia_size);
5134                         if (error)
5135                                 goto err_out;
5136                 }
5137                 if (attr->ia_size != inode->i_size) {
5138                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5139                         if (IS_ERR(handle)) {
5140                                 error = PTR_ERR(handle);
5141                                 goto err_out;
5142                         }
5143                         if (ext4_handle_valid(handle) && shrink) {
5144                                 error = ext4_orphan_add(handle, inode);
5145                                 orphan = 1;
5146                         }
5147                         /*
5148                          * Update c/mtime on truncate up, ext4_truncate() will
5149                          * update c/mtime in shrink case below
5150                          */
5151                         if (!shrink) {
5152                                 inode->i_mtime = ext4_current_time(inode);
5153                                 inode->i_ctime = inode->i_mtime;
5154                         }
5155                         down_write(&EXT4_I(inode)->i_data_sem);
5156                         EXT4_I(inode)->i_disksize = attr->ia_size;
5157                         rc = ext4_mark_inode_dirty(handle, inode);
5158                         if (!error)
5159                                 error = rc;
5160                         /*
5161                          * We have to update i_size under i_data_sem together
5162                          * with i_disksize to avoid races with writeback code
5163                          * running ext4_wb_update_i_disksize().
5164                          */
5165                         if (!error)
5166                                 i_size_write(inode, attr->ia_size);
5167                         up_write(&EXT4_I(inode)->i_data_sem);
5168                         ext4_journal_stop(handle);
5169                         if (error) {
5170                                 if (orphan)
5171                                         ext4_orphan_del(NULL, inode);
5172                                 goto err_out;
5173                         }
5174                 }
5175                 if (!shrink)
5176                         pagecache_isize_extended(inode, oldsize, inode->i_size);
5177
5178                 /*
5179                  * Blocks are going to be removed from the inode. Wait
5180                  * for dio in flight.  Temporarily disable
5181                  * dioread_nolock to prevent livelock.
5182                  */
5183                 if (orphan) {
5184                         if (!ext4_should_journal_data(inode)) {
5185                                 ext4_inode_block_unlocked_dio(inode);
5186                                 inode_dio_wait(inode);
5187                                 ext4_inode_resume_unlocked_dio(inode);
5188                         } else
5189                                 ext4_wait_for_tail_page_commit(inode);
5190                 }
5191                 down_write(&EXT4_I(inode)->i_mmap_sem);
5192                 /*
5193                  * Truncate pagecache after we've waited for commit
5194                  * in data=journal mode to make pages freeable.
5195                  */
5196                 truncate_pagecache(inode, inode->i_size);
5197                 if (shrink)
5198                         ext4_truncate(inode);
5199                 up_write(&EXT4_I(inode)->i_mmap_sem);
5200         }
5201
5202         if (!rc) {
5203                 setattr_copy(inode, attr);
5204                 mark_inode_dirty(inode);
5205         }
5206
5207         /*
5208          * If the call to ext4_truncate failed to get a transaction handle at
5209          * all, we need to clean up the in-core orphan list manually.
5210          */
5211         if (orphan && inode->i_nlink)
5212                 ext4_orphan_del(NULL, inode);
5213
5214         if (!rc && (ia_valid & ATTR_MODE))
5215                 rc = posix_acl_chmod(inode, inode->i_mode);
5216
5217 err_out:
5218         ext4_std_error(inode->i_sb, error);
5219         if (!error)
5220                 error = rc;
5221         return error;
5222 }
5223
5224 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5225                  struct kstat *stat)
5226 {
5227         struct inode *inode;
5228         unsigned long long delalloc_blocks;
5229
5230         inode = d_inode(dentry);
5231         generic_fillattr(inode, stat);
5232
5233         /*
5234          * If there is inline data in the inode, the inode will normally not
5235          * have data blocks allocated (it may have an external xattr block).
5236          * Report at least one sector for such files, so tools like tar, rsync,
5237          * others doen't incorrectly think the file is completely sparse.
5238          */
5239         if (unlikely(ext4_has_inline_data(inode)))
5240                 stat->blocks += (stat->size + 511) >> 9;
5241
5242         /*
5243          * We can't update i_blocks if the block allocation is delayed
5244          * otherwise in the case of system crash before the real block
5245          * allocation is done, we will have i_blocks inconsistent with
5246          * on-disk file blocks.
5247          * We always keep i_blocks updated together with real
5248          * allocation. But to not confuse with user, stat
5249          * will return the blocks that include the delayed allocation
5250          * blocks for this file.
5251          */
5252         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5253                                    EXT4_I(inode)->i_reserved_data_blocks);
5254         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5255         return 0;
5256 }
5257
5258 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5259                                    int pextents)
5260 {
5261         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5262                 return ext4_ind_trans_blocks(inode, lblocks);
5263         return ext4_ext_index_trans_blocks(inode, pextents);
5264 }
5265
5266 /*
5267  * Account for index blocks, block groups bitmaps and block group
5268  * descriptor blocks if modify datablocks and index blocks
5269  * worse case, the indexs blocks spread over different block groups
5270  *
5271  * If datablocks are discontiguous, they are possible to spread over
5272  * different block groups too. If they are contiguous, with flexbg,
5273  * they could still across block group boundary.
5274  *
5275  * Also account for superblock, inode, quota and xattr blocks
5276  */
5277 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5278                                   int pextents)
5279 {
5280         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5281         int gdpblocks;
5282         int idxblocks;
5283         int ret = 0;
5284
5285         /*
5286          * How many index blocks need to touch to map @lblocks logical blocks
5287          * to @pextents physical extents?
5288          */
5289         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5290
5291         ret = idxblocks;
5292
5293         /*
5294          * Now let's see how many group bitmaps and group descriptors need
5295          * to account
5296          */
5297         groups = idxblocks + pextents;
5298         gdpblocks = groups;
5299         if (groups > ngroups)
5300                 groups = ngroups;
5301         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5302                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5303
5304         /* bitmaps and block group descriptor blocks */
5305         ret += groups + gdpblocks;
5306
5307         /* Blocks for super block, inode, quota and xattr blocks */
5308         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5309
5310         return ret;
5311 }
5312
5313 /*
5314  * Calculate the total number of credits to reserve to fit
5315  * the modification of a single pages into a single transaction,
5316  * which may include multiple chunks of block allocations.
5317  *
5318  * This could be called via ext4_write_begin()
5319  *
5320  * We need to consider the worse case, when
5321  * one new block per extent.
5322  */
5323 int ext4_writepage_trans_blocks(struct inode *inode)
5324 {
5325         int bpp = ext4_journal_blocks_per_page(inode);
5326         int ret;
5327
5328         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5329
5330         /* Account for data blocks for journalled mode */
5331         if (ext4_should_journal_data(inode))
5332                 ret += bpp;
5333         return ret;
5334 }
5335
5336 /*
5337  * Calculate the journal credits for a chunk of data modification.
5338  *
5339  * This is called from DIO, fallocate or whoever calling
5340  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5341  *
5342  * journal buffers for data blocks are not included here, as DIO
5343  * and fallocate do no need to journal data buffers.
5344  */
5345 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5346 {
5347         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5348 }
5349
5350 /*
5351  * The caller must have previously called ext4_reserve_inode_write().
5352  * Give this, we know that the caller already has write access to iloc->bh.
5353  */
5354 int ext4_mark_iloc_dirty(handle_t *handle,
5355                          struct inode *inode, struct ext4_iloc *iloc)
5356 {
5357         int err = 0;
5358
5359         if (IS_I_VERSION(inode))
5360                 inode_inc_iversion(inode);
5361
5362         /* the do_update_inode consumes one bh->b_count */
5363         get_bh(iloc->bh);
5364
5365         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5366         err = ext4_do_update_inode(handle, inode, iloc);
5367         put_bh(iloc->bh);
5368         return err;
5369 }
5370
5371 /*
5372  * On success, We end up with an outstanding reference count against
5373  * iloc->bh.  This _must_ be cleaned up later.
5374  */
5375
5376 int
5377 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5378                          struct ext4_iloc *iloc)
5379 {
5380         int err;
5381
5382         err = ext4_get_inode_loc(inode, iloc);
5383         if (!err) {
5384                 BUFFER_TRACE(iloc->bh, "get_write_access");
5385                 err = ext4_journal_get_write_access(handle, iloc->bh);
5386                 if (err) {
5387                         brelse(iloc->bh);
5388                         iloc->bh = NULL;
5389                 }
5390         }
5391         ext4_std_error(inode->i_sb, err);
5392         return err;
5393 }
5394
5395 /*
5396  * Expand an inode by new_extra_isize bytes.
5397  * Returns 0 on success or negative error number on failure.
5398  */
5399 static int ext4_expand_extra_isize(struct inode *inode,
5400                                    unsigned int new_extra_isize,
5401                                    struct ext4_iloc iloc,
5402                                    handle_t *handle)
5403 {
5404         struct ext4_inode *raw_inode;
5405         struct ext4_xattr_ibody_header *header;
5406
5407         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5408                 return 0;
5409
5410         raw_inode = ext4_raw_inode(&iloc);
5411
5412         header = IHDR(inode, raw_inode);
5413
5414         /* No extended attributes present */
5415         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5416             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5417                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5418                         new_extra_isize);
5419                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5420                 return 0;
5421         }
5422
5423         /* try to expand with EAs present */
5424         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5425                                           raw_inode, handle);
5426 }
5427
5428 /*
5429  * What we do here is to mark the in-core inode as clean with respect to inode
5430  * dirtiness (it may still be data-dirty).
5431  * This means that the in-core inode may be reaped by prune_icache
5432  * without having to perform any I/O.  This is a very good thing,
5433  * because *any* task may call prune_icache - even ones which
5434  * have a transaction open against a different journal.
5435  *
5436  * Is this cheating?  Not really.  Sure, we haven't written the
5437  * inode out, but prune_icache isn't a user-visible syncing function.
5438  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5439  * we start and wait on commits.
5440  */
5441 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5442 {
5443         struct ext4_iloc iloc;
5444         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5445         static unsigned int mnt_count;
5446         int err, ret;
5447
5448         might_sleep();
5449         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5450         err = ext4_reserve_inode_write(handle, inode, &iloc);
5451         if (err)
5452                 return err;
5453         if (ext4_handle_valid(handle) &&
5454             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5455             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5456                 /*
5457                  * We need extra buffer credits since we may write into EA block
5458                  * with this same handle. If journal_extend fails, then it will
5459                  * only result in a minor loss of functionality for that inode.
5460                  * If this is felt to be critical, then e2fsck should be run to
5461                  * force a large enough s_min_extra_isize.
5462                  */
5463                 if ((jbd2_journal_extend(handle,
5464                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5465                         ret = ext4_expand_extra_isize(inode,
5466                                                       sbi->s_want_extra_isize,
5467                                                       iloc, handle);
5468                         if (ret) {
5469                                 if (mnt_count !=
5470                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5471                                         ext4_warning(inode->i_sb,
5472                                         "Unable to expand inode %lu. Delete"
5473                                         " some EAs or run e2fsck.",
5474                                         inode->i_ino);
5475                                         mnt_count =
5476                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5477                                 }
5478                         }
5479                 }
5480         }
5481         return ext4_mark_iloc_dirty(handle, inode, &iloc);
5482 }
5483
5484 /*
5485  * ext4_dirty_inode() is called from __mark_inode_dirty()
5486  *
5487  * We're really interested in the case where a file is being extended.
5488  * i_size has been changed by generic_commit_write() and we thus need
5489  * to include the updated inode in the current transaction.
5490  *
5491  * Also, dquot_alloc_block() will always dirty the inode when blocks
5492  * are allocated to the file.
5493  *
5494  * If the inode is marked synchronous, we don't honour that here - doing
5495  * so would cause a commit on atime updates, which we don't bother doing.
5496  * We handle synchronous inodes at the highest possible level.
5497  *
5498  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5499  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5500  * to copy into the on-disk inode structure are the timestamp files.
5501  */
5502 void ext4_dirty_inode(struct inode *inode, int flags)
5503 {
5504         handle_t *handle;
5505
5506         if (flags == I_DIRTY_TIME)
5507                 return;
5508         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5509         if (IS_ERR(handle))
5510                 goto out;
5511
5512         ext4_mark_inode_dirty(handle, inode);
5513
5514         ext4_journal_stop(handle);
5515 out:
5516         return;
5517 }
5518
5519 #if 0
5520 /*
5521  * Bind an inode's backing buffer_head into this transaction, to prevent
5522  * it from being flushed to disk early.  Unlike
5523  * ext4_reserve_inode_write, this leaves behind no bh reference and
5524  * returns no iloc structure, so the caller needs to repeat the iloc
5525  * lookup to mark the inode dirty later.
5526  */
5527 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5528 {
5529         struct ext4_iloc iloc;
5530
5531         int err = 0;
5532         if (handle) {
5533                 err = ext4_get_inode_loc(inode, &iloc);
5534                 if (!err) {
5535                         BUFFER_TRACE(iloc.bh, "get_write_access");
5536                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5537                         if (!err)
5538                                 err = ext4_handle_dirty_metadata(handle,
5539                                                                  NULL,
5540                                                                  iloc.bh);
5541                         brelse(iloc.bh);
5542                 }
5543         }
5544         ext4_std_error(inode->i_sb, err);
5545         return err;
5546 }
5547 #endif
5548
5549 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5550 {
5551         journal_t *journal;
5552         handle_t *handle;
5553         int err;
5554         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5555
5556         /*
5557          * We have to be very careful here: changing a data block's
5558          * journaling status dynamically is dangerous.  If we write a
5559          * data block to the journal, change the status and then delete
5560          * that block, we risk forgetting to revoke the old log record
5561          * from the journal and so a subsequent replay can corrupt data.
5562          * So, first we make sure that the journal is empty and that
5563          * nobody is changing anything.
5564          */
5565
5566         journal = EXT4_JOURNAL(inode);
5567         if (!journal)
5568                 return 0;
5569         if (is_journal_aborted(journal))
5570                 return -EROFS;
5571
5572         /* Wait for all existing dio workers */
5573         ext4_inode_block_unlocked_dio(inode);
5574         inode_dio_wait(inode);
5575
5576         /*
5577          * Before flushing the journal and switching inode's aops, we have
5578          * to flush all dirty data the inode has. There can be outstanding
5579          * delayed allocations, there can be unwritten extents created by
5580          * fallocate or buffered writes in dioread_nolock mode covered by
5581          * dirty data which can be converted only after flushing the dirty
5582          * data (and journalled aops don't know how to handle these cases).
5583          */
5584         if (val) {
5585                 down_write(&EXT4_I(inode)->i_mmap_sem);
5586                 err = filemap_write_and_wait(inode->i_mapping);
5587                 if (err < 0) {
5588                         up_write(&EXT4_I(inode)->i_mmap_sem);
5589                         ext4_inode_resume_unlocked_dio(inode);
5590                         return err;
5591                 }
5592         }
5593
5594         percpu_down_write(&sbi->s_journal_flag_rwsem);
5595         jbd2_journal_lock_updates(journal);
5596
5597         /*
5598          * OK, there are no updates running now, and all cached data is
5599          * synced to disk.  We are now in a completely consistent state
5600          * which doesn't have anything in the journal, and we know that
5601          * no filesystem updates are running, so it is safe to modify
5602          * the inode's in-core data-journaling state flag now.
5603          */
5604
5605         if (val)
5606                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5607         else {
5608                 err = jbd2_journal_flush(journal);
5609                 if (err < 0) {
5610                         jbd2_journal_unlock_updates(journal);
5611                         percpu_up_write(&sbi->s_journal_flag_rwsem);
5612                         ext4_inode_resume_unlocked_dio(inode);
5613                         return err;
5614                 }
5615                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5616         }
5617         ext4_set_aops(inode);
5618
5619         jbd2_journal_unlock_updates(journal);
5620         percpu_up_write(&sbi->s_journal_flag_rwsem);
5621
5622         if (val)
5623                 up_write(&EXT4_I(inode)->i_mmap_sem);
5624         ext4_inode_resume_unlocked_dio(inode);
5625
5626         /* Finally we can mark the inode as dirty. */
5627
5628         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5629         if (IS_ERR(handle))
5630                 return PTR_ERR(handle);
5631
5632         err = ext4_mark_inode_dirty(handle, inode);
5633         ext4_handle_sync(handle);
5634         ext4_journal_stop(handle);
5635         ext4_std_error(inode->i_sb, err);
5636
5637         return err;
5638 }
5639
5640 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5641 {
5642         return !buffer_mapped(bh);
5643 }
5644
5645 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5646 {
5647         struct page *page = vmf->page;
5648         loff_t size;
5649         unsigned long len;
5650         int ret;
5651         struct file *file = vma->vm_file;
5652         struct inode *inode = file_inode(file);
5653         struct address_space *mapping = inode->i_mapping;
5654         handle_t *handle;
5655         get_block_t *get_block;
5656         int retries = 0;
5657
5658         sb_start_pagefault(inode->i_sb);
5659         file_update_time(vma->vm_file);
5660
5661         down_read(&EXT4_I(inode)->i_mmap_sem);
5662         /* Delalloc case is easy... */
5663         if (test_opt(inode->i_sb, DELALLOC) &&
5664             !ext4_should_journal_data(inode) &&
5665             !ext4_nonda_switch(inode->i_sb)) {
5666                 do {
5667                         ret = block_page_mkwrite(vma, vmf,
5668                                                    ext4_da_get_block_prep);
5669                 } while (ret == -ENOSPC &&
5670                        ext4_should_retry_alloc(inode->i_sb, &retries));
5671                 goto out_ret;
5672         }
5673
5674         lock_page(page);
5675         size = i_size_read(inode);
5676         /* Page got truncated from under us? */
5677         if (page->mapping != mapping || page_offset(page) > size) {
5678                 unlock_page(page);
5679                 ret = VM_FAULT_NOPAGE;
5680                 goto out;
5681         }
5682
5683         if (page->index == size >> PAGE_SHIFT)
5684                 len = size & ~PAGE_MASK;
5685         else
5686                 len = PAGE_SIZE;
5687         /*
5688          * Return if we have all the buffers mapped. This avoids the need to do
5689          * journal_start/journal_stop which can block and take a long time
5690          */
5691         if (page_has_buffers(page)) {
5692                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5693                                             0, len, NULL,
5694                                             ext4_bh_unmapped)) {
5695                         /* Wait so that we don't change page under IO */
5696                         wait_for_stable_page(page);
5697                         ret = VM_FAULT_LOCKED;
5698                         goto out;
5699                 }
5700         }
5701         unlock_page(page);
5702         /* OK, we need to fill the hole... */
5703         if (ext4_should_dioread_nolock(inode))
5704                 get_block = ext4_get_block_unwritten;
5705         else
5706                 get_block = ext4_get_block;
5707 retry_alloc:
5708         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5709                                     ext4_writepage_trans_blocks(inode));
5710         if (IS_ERR(handle)) {
5711                 ret = VM_FAULT_SIGBUS;
5712                 goto out;
5713         }
5714         ret = block_page_mkwrite(vma, vmf, get_block);
5715         if (!ret && ext4_should_journal_data(inode)) {
5716                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5717                           PAGE_SIZE, NULL, do_journal_get_write_access)) {
5718                         unlock_page(page);
5719                         ret = VM_FAULT_SIGBUS;
5720                         ext4_journal_stop(handle);
5721                         goto out;
5722                 }
5723                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5724         }
5725         ext4_journal_stop(handle);
5726         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5727                 goto retry_alloc;
5728 out_ret:
5729         ret = block_page_mkwrite_return(ret);
5730 out:
5731         up_read(&EXT4_I(inode)->i_mmap_sem);
5732         sb_end_pagefault(inode->i_sb);
5733         return ret;
5734 }
5735
5736 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5737 {
5738         struct inode *inode = file_inode(vma->vm_file);
5739         int err;
5740
5741         down_read(&EXT4_I(inode)->i_mmap_sem);
5742         err = filemap_fault(vma, vmf);
5743         up_read(&EXT4_I(inode)->i_mmap_sem);
5744
5745         return err;
5746 }
5747
5748 /*
5749  * Find the first extent at or after @lblk in an inode that is not a hole.
5750  * Search for @map_len blocks at most. The extent is returned in @result.
5751  *
5752  * The function returns 1 if we found an extent. The function returns 0 in
5753  * case there is no extent at or after @lblk and in that case also sets
5754  * @result->es_len to 0. In case of error, the error code is returned.
5755  */
5756 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
5757                          unsigned int map_len, struct extent_status *result)
5758 {
5759         struct ext4_map_blocks map;
5760         struct extent_status es = {};
5761         int ret;
5762
5763         map.m_lblk = lblk;
5764         map.m_len = map_len;
5765
5766         /*
5767          * For non-extent based files this loop may iterate several times since
5768          * we do not determine full hole size.
5769          */
5770         while (map.m_len > 0) {
5771                 ret = ext4_map_blocks(NULL, inode, &map, 0);
5772                 if (ret < 0)
5773                         return ret;
5774                 /* There's extent covering m_lblk? Just return it. */
5775                 if (ret > 0) {
5776                         int status;
5777
5778                         ext4_es_store_pblock(result, map.m_pblk);
5779                         result->es_lblk = map.m_lblk;
5780                         result->es_len = map.m_len;
5781                         if (map.m_flags & EXT4_MAP_UNWRITTEN)
5782                                 status = EXTENT_STATUS_UNWRITTEN;
5783                         else
5784                                 status = EXTENT_STATUS_WRITTEN;
5785                         ext4_es_store_status(result, status);
5786                         return 1;
5787                 }
5788                 ext4_es_find_delayed_extent_range(inode, map.m_lblk,
5789                                                   map.m_lblk + map.m_len - 1,
5790                                                   &es);
5791                 /* Is delalloc data before next block in extent tree? */
5792                 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
5793                         ext4_lblk_t offset = 0;
5794
5795                         if (es.es_lblk < lblk)
5796                                 offset = lblk - es.es_lblk;
5797                         result->es_lblk = es.es_lblk + offset;
5798                         ext4_es_store_pblock(result,
5799                                              ext4_es_pblock(&es) + offset);
5800                         result->es_len = es.es_len - offset;
5801                         ext4_es_store_status(result, ext4_es_status(&es));
5802
5803                         return 1;
5804                 }
5805                 /* There's a hole at m_lblk, advance us after it */
5806                 map.m_lblk += map.m_len;
5807                 map_len -= map.m_len;
5808                 map.m_len = map_len;
5809                 cond_resched();
5810         }
5811         result->es_len = 0;
5812         return 0;
5813 }