Merge tag 'xfs-4.15-merge-1' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
[sfrench/cifs-2.6.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *      (jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "truncate.h"
47
48 #include <trace/events/ext4.h>
49
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53                               struct ext4_inode_info *ei)
54 {
55         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56         __u32 csum;
57         __u16 dummy_csum = 0;
58         int offset = offsetof(struct ext4_inode, i_checksum_lo);
59         unsigned int csum_size = sizeof(dummy_csum);
60
61         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63         offset += csum_size;
64         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65                            EXT4_GOOD_OLD_INODE_SIZE - offset);
66
67         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68                 offset = offsetof(struct ext4_inode, i_checksum_hi);
69                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70                                    EXT4_GOOD_OLD_INODE_SIZE,
71                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
72                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74                                            csum_size);
75                         offset += csum_size;
76                 }
77                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
79         }
80
81         return csum;
82 }
83
84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85                                   struct ext4_inode_info *ei)
86 {
87         __u32 provided, calculated;
88
89         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90             cpu_to_le32(EXT4_OS_LINUX) ||
91             !ext4_has_metadata_csum(inode->i_sb))
92                 return 1;
93
94         provided = le16_to_cpu(raw->i_checksum_lo);
95         calculated = ext4_inode_csum(inode, raw, ei);
96         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99         else
100                 calculated &= 0xFFFF;
101
102         return provided == calculated;
103 }
104
105 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106                                 struct ext4_inode_info *ei)
107 {
108         __u32 csum;
109
110         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111             cpu_to_le32(EXT4_OS_LINUX) ||
112             !ext4_has_metadata_csum(inode->i_sb))
113                 return;
114
115         csum = ext4_inode_csum(inode, raw, ei);
116         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120 }
121
122 static inline int ext4_begin_ordered_truncate(struct inode *inode,
123                                               loff_t new_size)
124 {
125         trace_ext4_begin_ordered_truncate(inode, new_size);
126         /*
127          * If jinode is zero, then we never opened the file for
128          * writing, so there's no need to call
129          * jbd2_journal_begin_ordered_truncate() since there's no
130          * outstanding writes we need to flush.
131          */
132         if (!EXT4_I(inode)->jinode)
133                 return 0;
134         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135                                                    EXT4_I(inode)->jinode,
136                                                    new_size);
137 }
138
139 static void ext4_invalidatepage(struct page *page, unsigned int offset,
140                                 unsigned int length);
141 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
142 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
143 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
144                                   int pextents);
145
146 /*
147  * Test whether an inode is a fast symlink.
148  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
149  */
150 int ext4_inode_is_fast_symlink(struct inode *inode)
151 {
152         return S_ISLNK(inode->i_mode) && inode->i_size &&
153                (inode->i_size < EXT4_N_BLOCKS * 4);
154 }
155
156 /*
157  * Restart the transaction associated with *handle.  This does a commit,
158  * so before we call here everything must be consistently dirtied against
159  * this transaction.
160  */
161 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
162                                  int nblocks)
163 {
164         int ret;
165
166         /*
167          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
168          * moment, get_block can be called only for blocks inside i_size since
169          * page cache has been already dropped and writes are blocked by
170          * i_mutex. So we can safely drop the i_data_sem here.
171          */
172         BUG_ON(EXT4_JOURNAL(inode) == NULL);
173         jbd_debug(2, "restarting handle %p\n", handle);
174         up_write(&EXT4_I(inode)->i_data_sem);
175         ret = ext4_journal_restart(handle, nblocks);
176         down_write(&EXT4_I(inode)->i_data_sem);
177         ext4_discard_preallocations(inode);
178
179         return ret;
180 }
181
182 /*
183  * Called at the last iput() if i_nlink is zero.
184  */
185 void ext4_evict_inode(struct inode *inode)
186 {
187         handle_t *handle;
188         int err;
189         int extra_credits = 3;
190         struct ext4_xattr_inode_array *ea_inode_array = NULL;
191
192         trace_ext4_evict_inode(inode);
193
194         if (inode->i_nlink) {
195                 /*
196                  * When journalling data dirty buffers are tracked only in the
197                  * journal. So although mm thinks everything is clean and
198                  * ready for reaping the inode might still have some pages to
199                  * write in the running transaction or waiting to be
200                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
201                  * (via truncate_inode_pages()) to discard these buffers can
202                  * cause data loss. Also even if we did not discard these
203                  * buffers, we would have no way to find them after the inode
204                  * is reaped and thus user could see stale data if he tries to
205                  * read them before the transaction is checkpointed. So be
206                  * careful and force everything to disk here... We use
207                  * ei->i_datasync_tid to store the newest transaction
208                  * containing inode's data.
209                  *
210                  * Note that directories do not have this problem because they
211                  * don't use page cache.
212                  */
213                 if (inode->i_ino != EXT4_JOURNAL_INO &&
214                     ext4_should_journal_data(inode) &&
215                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
216                     inode->i_data.nrpages) {
217                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
218                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
219
220                         jbd2_complete_transaction(journal, commit_tid);
221                         filemap_write_and_wait(&inode->i_data);
222                 }
223                 truncate_inode_pages_final(&inode->i_data);
224
225                 goto no_delete;
226         }
227
228         if (is_bad_inode(inode))
229                 goto no_delete;
230         dquot_initialize(inode);
231
232         if (ext4_should_order_data(inode))
233                 ext4_begin_ordered_truncate(inode, 0);
234         truncate_inode_pages_final(&inode->i_data);
235
236         /*
237          * Protect us against freezing - iput() caller didn't have to have any
238          * protection against it
239          */
240         sb_start_intwrite(inode->i_sb);
241
242         if (!IS_NOQUOTA(inode))
243                 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
244
245         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
246                                  ext4_blocks_for_truncate(inode)+extra_credits);
247         if (IS_ERR(handle)) {
248                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
249                 /*
250                  * If we're going to skip the normal cleanup, we still need to
251                  * make sure that the in-core orphan linked list is properly
252                  * cleaned up.
253                  */
254                 ext4_orphan_del(NULL, inode);
255                 sb_end_intwrite(inode->i_sb);
256                 goto no_delete;
257         }
258
259         if (IS_SYNC(inode))
260                 ext4_handle_sync(handle);
261
262         /*
263          * Set inode->i_size to 0 before calling ext4_truncate(). We need
264          * special handling of symlinks here because i_size is used to
265          * determine whether ext4_inode_info->i_data contains symlink data or
266          * block mappings. Setting i_size to 0 will remove its fast symlink
267          * status. Erase i_data so that it becomes a valid empty block map.
268          */
269         if (ext4_inode_is_fast_symlink(inode))
270                 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
271         inode->i_size = 0;
272         err = ext4_mark_inode_dirty(handle, inode);
273         if (err) {
274                 ext4_warning(inode->i_sb,
275                              "couldn't mark inode dirty (err %d)", err);
276                 goto stop_handle;
277         }
278         if (inode->i_blocks) {
279                 err = ext4_truncate(inode);
280                 if (err) {
281                         ext4_error(inode->i_sb,
282                                    "couldn't truncate inode %lu (err %d)",
283                                    inode->i_ino, err);
284                         goto stop_handle;
285                 }
286         }
287
288         /* Remove xattr references. */
289         err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
290                                       extra_credits);
291         if (err) {
292                 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
293 stop_handle:
294                 ext4_journal_stop(handle);
295                 ext4_orphan_del(NULL, inode);
296                 sb_end_intwrite(inode->i_sb);
297                 ext4_xattr_inode_array_free(ea_inode_array);
298                 goto no_delete;
299         }
300
301         /*
302          * Kill off the orphan record which ext4_truncate created.
303          * AKPM: I think this can be inside the above `if'.
304          * Note that ext4_orphan_del() has to be able to cope with the
305          * deletion of a non-existent orphan - this is because we don't
306          * know if ext4_truncate() actually created an orphan record.
307          * (Well, we could do this if we need to, but heck - it works)
308          */
309         ext4_orphan_del(handle, inode);
310         EXT4_I(inode)->i_dtime  = get_seconds();
311
312         /*
313          * One subtle ordering requirement: if anything has gone wrong
314          * (transaction abort, IO errors, whatever), then we can still
315          * do these next steps (the fs will already have been marked as
316          * having errors), but we can't free the inode if the mark_dirty
317          * fails.
318          */
319         if (ext4_mark_inode_dirty(handle, inode))
320                 /* If that failed, just do the required in-core inode clear. */
321                 ext4_clear_inode(inode);
322         else
323                 ext4_free_inode(handle, inode);
324         ext4_journal_stop(handle);
325         sb_end_intwrite(inode->i_sb);
326         ext4_xattr_inode_array_free(ea_inode_array);
327         return;
328 no_delete:
329         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
330 }
331
332 #ifdef CONFIG_QUOTA
333 qsize_t *ext4_get_reserved_space(struct inode *inode)
334 {
335         return &EXT4_I(inode)->i_reserved_quota;
336 }
337 #endif
338
339 /*
340  * Called with i_data_sem down, which is important since we can call
341  * ext4_discard_preallocations() from here.
342  */
343 void ext4_da_update_reserve_space(struct inode *inode,
344                                         int used, int quota_claim)
345 {
346         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
347         struct ext4_inode_info *ei = EXT4_I(inode);
348
349         spin_lock(&ei->i_block_reservation_lock);
350         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
351         if (unlikely(used > ei->i_reserved_data_blocks)) {
352                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
353                          "with only %d reserved data blocks",
354                          __func__, inode->i_ino, used,
355                          ei->i_reserved_data_blocks);
356                 WARN_ON(1);
357                 used = ei->i_reserved_data_blocks;
358         }
359
360         /* Update per-inode reservations */
361         ei->i_reserved_data_blocks -= used;
362         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
363
364         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
365
366         /* Update quota subsystem for data blocks */
367         if (quota_claim)
368                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
369         else {
370                 /*
371                  * We did fallocate with an offset that is already delayed
372                  * allocated. So on delayed allocated writeback we should
373                  * not re-claim the quota for fallocated blocks.
374                  */
375                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
376         }
377
378         /*
379          * If we have done all the pending block allocations and if
380          * there aren't any writers on the inode, we can discard the
381          * inode's preallocations.
382          */
383         if ((ei->i_reserved_data_blocks == 0) &&
384             (atomic_read(&inode->i_writecount) == 0))
385                 ext4_discard_preallocations(inode);
386 }
387
388 static int __check_block_validity(struct inode *inode, const char *func,
389                                 unsigned int line,
390                                 struct ext4_map_blocks *map)
391 {
392         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
393                                    map->m_len)) {
394                 ext4_error_inode(inode, func, line, map->m_pblk,
395                                  "lblock %lu mapped to illegal pblock "
396                                  "(length %d)", (unsigned long) map->m_lblk,
397                                  map->m_len);
398                 return -EFSCORRUPTED;
399         }
400         return 0;
401 }
402
403 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
404                        ext4_lblk_t len)
405 {
406         int ret;
407
408         if (ext4_encrypted_inode(inode))
409                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
410
411         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
412         if (ret > 0)
413                 ret = 0;
414
415         return ret;
416 }
417
418 #define check_block_validity(inode, map)        \
419         __check_block_validity((inode), __func__, __LINE__, (map))
420
421 #ifdef ES_AGGRESSIVE_TEST
422 static void ext4_map_blocks_es_recheck(handle_t *handle,
423                                        struct inode *inode,
424                                        struct ext4_map_blocks *es_map,
425                                        struct ext4_map_blocks *map,
426                                        int flags)
427 {
428         int retval;
429
430         map->m_flags = 0;
431         /*
432          * There is a race window that the result is not the same.
433          * e.g. xfstests #223 when dioread_nolock enables.  The reason
434          * is that we lookup a block mapping in extent status tree with
435          * out taking i_data_sem.  So at the time the unwritten extent
436          * could be converted.
437          */
438         down_read(&EXT4_I(inode)->i_data_sem);
439         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
440                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
441                                              EXT4_GET_BLOCKS_KEEP_SIZE);
442         } else {
443                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
444                                              EXT4_GET_BLOCKS_KEEP_SIZE);
445         }
446         up_read((&EXT4_I(inode)->i_data_sem));
447
448         /*
449          * We don't check m_len because extent will be collpased in status
450          * tree.  So the m_len might not equal.
451          */
452         if (es_map->m_lblk != map->m_lblk ||
453             es_map->m_flags != map->m_flags ||
454             es_map->m_pblk != map->m_pblk) {
455                 printk("ES cache assertion failed for inode: %lu "
456                        "es_cached ex [%d/%d/%llu/%x] != "
457                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
458                        inode->i_ino, es_map->m_lblk, es_map->m_len,
459                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
460                        map->m_len, map->m_pblk, map->m_flags,
461                        retval, flags);
462         }
463 }
464 #endif /* ES_AGGRESSIVE_TEST */
465
466 /*
467  * The ext4_map_blocks() function tries to look up the requested blocks,
468  * and returns if the blocks are already mapped.
469  *
470  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
471  * and store the allocated blocks in the result buffer head and mark it
472  * mapped.
473  *
474  * If file type is extents based, it will call ext4_ext_map_blocks(),
475  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
476  * based files
477  *
478  * On success, it returns the number of blocks being mapped or allocated.  if
479  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
480  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
481  *
482  * It returns 0 if plain look up failed (blocks have not been allocated), in
483  * that case, @map is returned as unmapped but we still do fill map->m_len to
484  * indicate the length of a hole starting at map->m_lblk.
485  *
486  * It returns the error in case of allocation failure.
487  */
488 int ext4_map_blocks(handle_t *handle, struct inode *inode,
489                     struct ext4_map_blocks *map, int flags)
490 {
491         struct extent_status es;
492         int retval;
493         int ret = 0;
494 #ifdef ES_AGGRESSIVE_TEST
495         struct ext4_map_blocks orig_map;
496
497         memcpy(&orig_map, map, sizeof(*map));
498 #endif
499
500         map->m_flags = 0;
501         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
502                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
503                   (unsigned long) map->m_lblk);
504
505         /*
506          * ext4_map_blocks returns an int, and m_len is an unsigned int
507          */
508         if (unlikely(map->m_len > INT_MAX))
509                 map->m_len = INT_MAX;
510
511         /* We can handle the block number less than EXT_MAX_BLOCKS */
512         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
513                 return -EFSCORRUPTED;
514
515         /* Lookup extent status tree firstly */
516         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
517                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
518                         map->m_pblk = ext4_es_pblock(&es) +
519                                         map->m_lblk - es.es_lblk;
520                         map->m_flags |= ext4_es_is_written(&es) ?
521                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
522                         retval = es.es_len - (map->m_lblk - es.es_lblk);
523                         if (retval > map->m_len)
524                                 retval = map->m_len;
525                         map->m_len = retval;
526                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
527                         map->m_pblk = 0;
528                         retval = es.es_len - (map->m_lblk - es.es_lblk);
529                         if (retval > map->m_len)
530                                 retval = map->m_len;
531                         map->m_len = retval;
532                         retval = 0;
533                 } else {
534                         BUG_ON(1);
535                 }
536 #ifdef ES_AGGRESSIVE_TEST
537                 ext4_map_blocks_es_recheck(handle, inode, map,
538                                            &orig_map, flags);
539 #endif
540                 goto found;
541         }
542
543         /*
544          * Try to see if we can get the block without requesting a new
545          * file system block.
546          */
547         down_read(&EXT4_I(inode)->i_data_sem);
548         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
549                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
550                                              EXT4_GET_BLOCKS_KEEP_SIZE);
551         } else {
552                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
553                                              EXT4_GET_BLOCKS_KEEP_SIZE);
554         }
555         if (retval > 0) {
556                 unsigned int status;
557
558                 if (unlikely(retval != map->m_len)) {
559                         ext4_warning(inode->i_sb,
560                                      "ES len assertion failed for inode "
561                                      "%lu: retval %d != map->m_len %d",
562                                      inode->i_ino, retval, map->m_len);
563                         WARN_ON(1);
564                 }
565
566                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
567                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
568                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
569                     !(status & EXTENT_STATUS_WRITTEN) &&
570                     ext4_find_delalloc_range(inode, map->m_lblk,
571                                              map->m_lblk + map->m_len - 1))
572                         status |= EXTENT_STATUS_DELAYED;
573                 ret = ext4_es_insert_extent(inode, map->m_lblk,
574                                             map->m_len, map->m_pblk, status);
575                 if (ret < 0)
576                         retval = ret;
577         }
578         up_read((&EXT4_I(inode)->i_data_sem));
579
580 found:
581         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
582                 ret = check_block_validity(inode, map);
583                 if (ret != 0)
584                         return ret;
585         }
586
587         /* If it is only a block(s) look up */
588         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
589                 return retval;
590
591         /*
592          * Returns if the blocks have already allocated
593          *
594          * Note that if blocks have been preallocated
595          * ext4_ext_get_block() returns the create = 0
596          * with buffer head unmapped.
597          */
598         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
599                 /*
600                  * If we need to convert extent to unwritten
601                  * we continue and do the actual work in
602                  * ext4_ext_map_blocks()
603                  */
604                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
605                         return retval;
606
607         /*
608          * Here we clear m_flags because after allocating an new extent,
609          * it will be set again.
610          */
611         map->m_flags &= ~EXT4_MAP_FLAGS;
612
613         /*
614          * New blocks allocate and/or writing to unwritten extent
615          * will possibly result in updating i_data, so we take
616          * the write lock of i_data_sem, and call get_block()
617          * with create == 1 flag.
618          */
619         down_write(&EXT4_I(inode)->i_data_sem);
620
621         /*
622          * We need to check for EXT4 here because migrate
623          * could have changed the inode type in between
624          */
625         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
626                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
627         } else {
628                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
629
630                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
631                         /*
632                          * We allocated new blocks which will result in
633                          * i_data's format changing.  Force the migrate
634                          * to fail by clearing migrate flags
635                          */
636                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
637                 }
638
639                 /*
640                  * Update reserved blocks/metadata blocks after successful
641                  * block allocation which had been deferred till now. We don't
642                  * support fallocate for non extent files. So we can update
643                  * reserve space here.
644                  */
645                 if ((retval > 0) &&
646                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
647                         ext4_da_update_reserve_space(inode, retval, 1);
648         }
649
650         if (retval > 0) {
651                 unsigned int status;
652
653                 if (unlikely(retval != map->m_len)) {
654                         ext4_warning(inode->i_sb,
655                                      "ES len assertion failed for inode "
656                                      "%lu: retval %d != map->m_len %d",
657                                      inode->i_ino, retval, map->m_len);
658                         WARN_ON(1);
659                 }
660
661                 /*
662                  * We have to zeroout blocks before inserting them into extent
663                  * status tree. Otherwise someone could look them up there and
664                  * use them before they are really zeroed. We also have to
665                  * unmap metadata before zeroing as otherwise writeback can
666                  * overwrite zeros with stale data from block device.
667                  */
668                 if (flags & EXT4_GET_BLOCKS_ZERO &&
669                     map->m_flags & EXT4_MAP_MAPPED &&
670                     map->m_flags & EXT4_MAP_NEW) {
671                         clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
672                                            map->m_len);
673                         ret = ext4_issue_zeroout(inode, map->m_lblk,
674                                                  map->m_pblk, map->m_len);
675                         if (ret) {
676                                 retval = ret;
677                                 goto out_sem;
678                         }
679                 }
680
681                 /*
682                  * If the extent has been zeroed out, we don't need to update
683                  * extent status tree.
684                  */
685                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
686                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
687                         if (ext4_es_is_written(&es))
688                                 goto out_sem;
689                 }
690                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
691                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
692                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
693                     !(status & EXTENT_STATUS_WRITTEN) &&
694                     ext4_find_delalloc_range(inode, map->m_lblk,
695                                              map->m_lblk + map->m_len - 1))
696                         status |= EXTENT_STATUS_DELAYED;
697                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
698                                             map->m_pblk, status);
699                 if (ret < 0) {
700                         retval = ret;
701                         goto out_sem;
702                 }
703         }
704
705 out_sem:
706         up_write((&EXT4_I(inode)->i_data_sem));
707         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
708                 ret = check_block_validity(inode, map);
709                 if (ret != 0)
710                         return ret;
711
712                 /*
713                  * Inodes with freshly allocated blocks where contents will be
714                  * visible after transaction commit must be on transaction's
715                  * ordered data list.
716                  */
717                 if (map->m_flags & EXT4_MAP_NEW &&
718                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
719                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
720                     !ext4_is_quota_file(inode) &&
721                     ext4_should_order_data(inode)) {
722                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
723                                 ret = ext4_jbd2_inode_add_wait(handle, inode);
724                         else
725                                 ret = ext4_jbd2_inode_add_write(handle, inode);
726                         if (ret)
727                                 return ret;
728                 }
729         }
730         return retval;
731 }
732
733 /*
734  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
735  * we have to be careful as someone else may be manipulating b_state as well.
736  */
737 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
738 {
739         unsigned long old_state;
740         unsigned long new_state;
741
742         flags &= EXT4_MAP_FLAGS;
743
744         /* Dummy buffer_head? Set non-atomically. */
745         if (!bh->b_page) {
746                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
747                 return;
748         }
749         /*
750          * Someone else may be modifying b_state. Be careful! This is ugly but
751          * once we get rid of using bh as a container for mapping information
752          * to pass to / from get_block functions, this can go away.
753          */
754         do {
755                 old_state = READ_ONCE(bh->b_state);
756                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
757         } while (unlikely(
758                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
759 }
760
761 static int _ext4_get_block(struct inode *inode, sector_t iblock,
762                            struct buffer_head *bh, int flags)
763 {
764         struct ext4_map_blocks map;
765         int ret = 0;
766
767         if (ext4_has_inline_data(inode))
768                 return -ERANGE;
769
770         map.m_lblk = iblock;
771         map.m_len = bh->b_size >> inode->i_blkbits;
772
773         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
774                               flags);
775         if (ret > 0) {
776                 map_bh(bh, inode->i_sb, map.m_pblk);
777                 ext4_update_bh_state(bh, map.m_flags);
778                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
779                 ret = 0;
780         } else if (ret == 0) {
781                 /* hole case, need to fill in bh->b_size */
782                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
783         }
784         return ret;
785 }
786
787 int ext4_get_block(struct inode *inode, sector_t iblock,
788                    struct buffer_head *bh, int create)
789 {
790         return _ext4_get_block(inode, iblock, bh,
791                                create ? EXT4_GET_BLOCKS_CREATE : 0);
792 }
793
794 /*
795  * Get block function used when preparing for buffered write if we require
796  * creating an unwritten extent if blocks haven't been allocated.  The extent
797  * will be converted to written after the IO is complete.
798  */
799 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
800                              struct buffer_head *bh_result, int create)
801 {
802         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
803                    inode->i_ino, create);
804         return _ext4_get_block(inode, iblock, bh_result,
805                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
806 }
807
808 /* Maximum number of blocks we map for direct IO at once. */
809 #define DIO_MAX_BLOCKS 4096
810
811 /*
812  * Get blocks function for the cases that need to start a transaction -
813  * generally difference cases of direct IO and DAX IO. It also handles retries
814  * in case of ENOSPC.
815  */
816 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
817                                 struct buffer_head *bh_result, int flags)
818 {
819         int dio_credits;
820         handle_t *handle;
821         int retries = 0;
822         int ret;
823
824         /* Trim mapping request to maximum we can map at once for DIO */
825         if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
826                 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
827         dio_credits = ext4_chunk_trans_blocks(inode,
828                                       bh_result->b_size >> inode->i_blkbits);
829 retry:
830         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
831         if (IS_ERR(handle))
832                 return PTR_ERR(handle);
833
834         ret = _ext4_get_block(inode, iblock, bh_result, flags);
835         ext4_journal_stop(handle);
836
837         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
838                 goto retry;
839         return ret;
840 }
841
842 /* Get block function for DIO reads and writes to inodes without extents */
843 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
844                        struct buffer_head *bh, int create)
845 {
846         /* We don't expect handle for direct IO */
847         WARN_ON_ONCE(ext4_journal_current_handle());
848
849         if (!create)
850                 return _ext4_get_block(inode, iblock, bh, 0);
851         return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
852 }
853
854 /*
855  * Get block function for AIO DIO writes when we create unwritten extent if
856  * blocks are not allocated yet. The extent will be converted to written
857  * after IO is complete.
858  */
859 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
860                 sector_t iblock, struct buffer_head *bh_result, int create)
861 {
862         int ret;
863
864         /* We don't expect handle for direct IO */
865         WARN_ON_ONCE(ext4_journal_current_handle());
866
867         ret = ext4_get_block_trans(inode, iblock, bh_result,
868                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
869
870         /*
871          * When doing DIO using unwritten extents, we need io_end to convert
872          * unwritten extents to written on IO completion. We allocate io_end
873          * once we spot unwritten extent and store it in b_private. Generic
874          * DIO code keeps b_private set and furthermore passes the value to
875          * our completion callback in 'private' argument.
876          */
877         if (!ret && buffer_unwritten(bh_result)) {
878                 if (!bh_result->b_private) {
879                         ext4_io_end_t *io_end;
880
881                         io_end = ext4_init_io_end(inode, GFP_KERNEL);
882                         if (!io_end)
883                                 return -ENOMEM;
884                         bh_result->b_private = io_end;
885                         ext4_set_io_unwritten_flag(inode, io_end);
886                 }
887                 set_buffer_defer_completion(bh_result);
888         }
889
890         return ret;
891 }
892
893 /*
894  * Get block function for non-AIO DIO writes when we create unwritten extent if
895  * blocks are not allocated yet. The extent will be converted to written
896  * after IO is complete by ext4_direct_IO_write().
897  */
898 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
899                 sector_t iblock, struct buffer_head *bh_result, int create)
900 {
901         int ret;
902
903         /* We don't expect handle for direct IO */
904         WARN_ON_ONCE(ext4_journal_current_handle());
905
906         ret = ext4_get_block_trans(inode, iblock, bh_result,
907                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
908
909         /*
910          * Mark inode as having pending DIO writes to unwritten extents.
911          * ext4_direct_IO_write() checks this flag and converts extents to
912          * written.
913          */
914         if (!ret && buffer_unwritten(bh_result))
915                 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
916
917         return ret;
918 }
919
920 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
921                    struct buffer_head *bh_result, int create)
922 {
923         int ret;
924
925         ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
926                    inode->i_ino, create);
927         /* We don't expect handle for direct IO */
928         WARN_ON_ONCE(ext4_journal_current_handle());
929
930         ret = _ext4_get_block(inode, iblock, bh_result, 0);
931         /*
932          * Blocks should have been preallocated! ext4_file_write_iter() checks
933          * that.
934          */
935         WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
936
937         return ret;
938 }
939
940
941 /*
942  * `handle' can be NULL if create is zero
943  */
944 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
945                                 ext4_lblk_t block, int map_flags)
946 {
947         struct ext4_map_blocks map;
948         struct buffer_head *bh;
949         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
950         int err;
951
952         J_ASSERT(handle != NULL || create == 0);
953
954         map.m_lblk = block;
955         map.m_len = 1;
956         err = ext4_map_blocks(handle, inode, &map, map_flags);
957
958         if (err == 0)
959                 return create ? ERR_PTR(-ENOSPC) : NULL;
960         if (err < 0)
961                 return ERR_PTR(err);
962
963         bh = sb_getblk(inode->i_sb, map.m_pblk);
964         if (unlikely(!bh))
965                 return ERR_PTR(-ENOMEM);
966         if (map.m_flags & EXT4_MAP_NEW) {
967                 J_ASSERT(create != 0);
968                 J_ASSERT(handle != NULL);
969
970                 /*
971                  * Now that we do not always journal data, we should
972                  * keep in mind whether this should always journal the
973                  * new buffer as metadata.  For now, regular file
974                  * writes use ext4_get_block instead, so it's not a
975                  * problem.
976                  */
977                 lock_buffer(bh);
978                 BUFFER_TRACE(bh, "call get_create_access");
979                 err = ext4_journal_get_create_access(handle, bh);
980                 if (unlikely(err)) {
981                         unlock_buffer(bh);
982                         goto errout;
983                 }
984                 if (!buffer_uptodate(bh)) {
985                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
986                         set_buffer_uptodate(bh);
987                 }
988                 unlock_buffer(bh);
989                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
990                 err = ext4_handle_dirty_metadata(handle, inode, bh);
991                 if (unlikely(err))
992                         goto errout;
993         } else
994                 BUFFER_TRACE(bh, "not a new buffer");
995         return bh;
996 errout:
997         brelse(bh);
998         return ERR_PTR(err);
999 }
1000
1001 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1002                                ext4_lblk_t block, int map_flags)
1003 {
1004         struct buffer_head *bh;
1005
1006         bh = ext4_getblk(handle, inode, block, map_flags);
1007         if (IS_ERR(bh))
1008                 return bh;
1009         if (!bh || buffer_uptodate(bh))
1010                 return bh;
1011         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1012         wait_on_buffer(bh);
1013         if (buffer_uptodate(bh))
1014                 return bh;
1015         put_bh(bh);
1016         return ERR_PTR(-EIO);
1017 }
1018
1019 /* Read a contiguous batch of blocks. */
1020 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1021                      bool wait, struct buffer_head **bhs)
1022 {
1023         int i, err;
1024
1025         for (i = 0; i < bh_count; i++) {
1026                 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1027                 if (IS_ERR(bhs[i])) {
1028                         err = PTR_ERR(bhs[i]);
1029                         bh_count = i;
1030                         goto out_brelse;
1031                 }
1032         }
1033
1034         for (i = 0; i < bh_count; i++)
1035                 /* Note that NULL bhs[i] is valid because of holes. */
1036                 if (bhs[i] && !buffer_uptodate(bhs[i]))
1037                         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1038                                     &bhs[i]);
1039
1040         if (!wait)
1041                 return 0;
1042
1043         for (i = 0; i < bh_count; i++)
1044                 if (bhs[i])
1045                         wait_on_buffer(bhs[i]);
1046
1047         for (i = 0; i < bh_count; i++) {
1048                 if (bhs[i] && !buffer_uptodate(bhs[i])) {
1049                         err = -EIO;
1050                         goto out_brelse;
1051                 }
1052         }
1053         return 0;
1054
1055 out_brelse:
1056         for (i = 0; i < bh_count; i++) {
1057                 brelse(bhs[i]);
1058                 bhs[i] = NULL;
1059         }
1060         return err;
1061 }
1062
1063 int ext4_walk_page_buffers(handle_t *handle,
1064                            struct buffer_head *head,
1065                            unsigned from,
1066                            unsigned to,
1067                            int *partial,
1068                            int (*fn)(handle_t *handle,
1069                                      struct buffer_head *bh))
1070 {
1071         struct buffer_head *bh;
1072         unsigned block_start, block_end;
1073         unsigned blocksize = head->b_size;
1074         int err, ret = 0;
1075         struct buffer_head *next;
1076
1077         for (bh = head, block_start = 0;
1078              ret == 0 && (bh != head || !block_start);
1079              block_start = block_end, bh = next) {
1080                 next = bh->b_this_page;
1081                 block_end = block_start + blocksize;
1082                 if (block_end <= from || block_start >= to) {
1083                         if (partial && !buffer_uptodate(bh))
1084                                 *partial = 1;
1085                         continue;
1086                 }
1087                 err = (*fn)(handle, bh);
1088                 if (!ret)
1089                         ret = err;
1090         }
1091         return ret;
1092 }
1093
1094 /*
1095  * To preserve ordering, it is essential that the hole instantiation and
1096  * the data write be encapsulated in a single transaction.  We cannot
1097  * close off a transaction and start a new one between the ext4_get_block()
1098  * and the commit_write().  So doing the jbd2_journal_start at the start of
1099  * prepare_write() is the right place.
1100  *
1101  * Also, this function can nest inside ext4_writepage().  In that case, we
1102  * *know* that ext4_writepage() has generated enough buffer credits to do the
1103  * whole page.  So we won't block on the journal in that case, which is good,
1104  * because the caller may be PF_MEMALLOC.
1105  *
1106  * By accident, ext4 can be reentered when a transaction is open via
1107  * quota file writes.  If we were to commit the transaction while thus
1108  * reentered, there can be a deadlock - we would be holding a quota
1109  * lock, and the commit would never complete if another thread had a
1110  * transaction open and was blocking on the quota lock - a ranking
1111  * violation.
1112  *
1113  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1114  * will _not_ run commit under these circumstances because handle->h_ref
1115  * is elevated.  We'll still have enough credits for the tiny quotafile
1116  * write.
1117  */
1118 int do_journal_get_write_access(handle_t *handle,
1119                                 struct buffer_head *bh)
1120 {
1121         int dirty = buffer_dirty(bh);
1122         int ret;
1123
1124         if (!buffer_mapped(bh) || buffer_freed(bh))
1125                 return 0;
1126         /*
1127          * __block_write_begin() could have dirtied some buffers. Clean
1128          * the dirty bit as jbd2_journal_get_write_access() could complain
1129          * otherwise about fs integrity issues. Setting of the dirty bit
1130          * by __block_write_begin() isn't a real problem here as we clear
1131          * the bit before releasing a page lock and thus writeback cannot
1132          * ever write the buffer.
1133          */
1134         if (dirty)
1135                 clear_buffer_dirty(bh);
1136         BUFFER_TRACE(bh, "get write access");
1137         ret = ext4_journal_get_write_access(handle, bh);
1138         if (!ret && dirty)
1139                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1140         return ret;
1141 }
1142
1143 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1144 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1145                                   get_block_t *get_block)
1146 {
1147         unsigned from = pos & (PAGE_SIZE - 1);
1148         unsigned to = from + len;
1149         struct inode *inode = page->mapping->host;
1150         unsigned block_start, block_end;
1151         sector_t block;
1152         int err = 0;
1153         unsigned blocksize = inode->i_sb->s_blocksize;
1154         unsigned bbits;
1155         struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1156         bool decrypt = false;
1157
1158         BUG_ON(!PageLocked(page));
1159         BUG_ON(from > PAGE_SIZE);
1160         BUG_ON(to > PAGE_SIZE);
1161         BUG_ON(from > to);
1162
1163         if (!page_has_buffers(page))
1164                 create_empty_buffers(page, blocksize, 0);
1165         head = page_buffers(page);
1166         bbits = ilog2(blocksize);
1167         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1168
1169         for (bh = head, block_start = 0; bh != head || !block_start;
1170             block++, block_start = block_end, bh = bh->b_this_page) {
1171                 block_end = block_start + blocksize;
1172                 if (block_end <= from || block_start >= to) {
1173                         if (PageUptodate(page)) {
1174                                 if (!buffer_uptodate(bh))
1175                                         set_buffer_uptodate(bh);
1176                         }
1177                         continue;
1178                 }
1179                 if (buffer_new(bh))
1180                         clear_buffer_new(bh);
1181                 if (!buffer_mapped(bh)) {
1182                         WARN_ON(bh->b_size != blocksize);
1183                         err = get_block(inode, block, bh, 1);
1184                         if (err)
1185                                 break;
1186                         if (buffer_new(bh)) {
1187                                 clean_bdev_bh_alias(bh);
1188                                 if (PageUptodate(page)) {
1189                                         clear_buffer_new(bh);
1190                                         set_buffer_uptodate(bh);
1191                                         mark_buffer_dirty(bh);
1192                                         continue;
1193                                 }
1194                                 if (block_end > to || block_start < from)
1195                                         zero_user_segments(page, to, block_end,
1196                                                            block_start, from);
1197                                 continue;
1198                         }
1199                 }
1200                 if (PageUptodate(page)) {
1201                         if (!buffer_uptodate(bh))
1202                                 set_buffer_uptodate(bh);
1203                         continue;
1204                 }
1205                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1206                     !buffer_unwritten(bh) &&
1207                     (block_start < from || block_end > to)) {
1208                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1209                         *wait_bh++ = bh;
1210                         decrypt = ext4_encrypted_inode(inode) &&
1211                                 S_ISREG(inode->i_mode);
1212                 }
1213         }
1214         /*
1215          * If we issued read requests, let them complete.
1216          */
1217         while (wait_bh > wait) {
1218                 wait_on_buffer(*--wait_bh);
1219                 if (!buffer_uptodate(*wait_bh))
1220                         err = -EIO;
1221         }
1222         if (unlikely(err))
1223                 page_zero_new_buffers(page, from, to);
1224         else if (decrypt)
1225                 err = fscrypt_decrypt_page(page->mapping->host, page,
1226                                 PAGE_SIZE, 0, page->index);
1227         return err;
1228 }
1229 #endif
1230
1231 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1232                             loff_t pos, unsigned len, unsigned flags,
1233                             struct page **pagep, void **fsdata)
1234 {
1235         struct inode *inode = mapping->host;
1236         int ret, needed_blocks;
1237         handle_t *handle;
1238         int retries = 0;
1239         struct page *page;
1240         pgoff_t index;
1241         unsigned from, to;
1242
1243         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1244                 return -EIO;
1245
1246         trace_ext4_write_begin(inode, pos, len, flags);
1247         /*
1248          * Reserve one block more for addition to orphan list in case
1249          * we allocate blocks but write fails for some reason
1250          */
1251         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1252         index = pos >> PAGE_SHIFT;
1253         from = pos & (PAGE_SIZE - 1);
1254         to = from + len;
1255
1256         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1257                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1258                                                     flags, pagep);
1259                 if (ret < 0)
1260                         return ret;
1261                 if (ret == 1)
1262                         return 0;
1263         }
1264
1265         /*
1266          * grab_cache_page_write_begin() can take a long time if the
1267          * system is thrashing due to memory pressure, or if the page
1268          * is being written back.  So grab it first before we start
1269          * the transaction handle.  This also allows us to allocate
1270          * the page (if needed) without using GFP_NOFS.
1271          */
1272 retry_grab:
1273         page = grab_cache_page_write_begin(mapping, index, flags);
1274         if (!page)
1275                 return -ENOMEM;
1276         unlock_page(page);
1277
1278 retry_journal:
1279         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1280         if (IS_ERR(handle)) {
1281                 put_page(page);
1282                 return PTR_ERR(handle);
1283         }
1284
1285         lock_page(page);
1286         if (page->mapping != mapping) {
1287                 /* The page got truncated from under us */
1288                 unlock_page(page);
1289                 put_page(page);
1290                 ext4_journal_stop(handle);
1291                 goto retry_grab;
1292         }
1293         /* In case writeback began while the page was unlocked */
1294         wait_for_stable_page(page);
1295
1296 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1297         if (ext4_should_dioread_nolock(inode))
1298                 ret = ext4_block_write_begin(page, pos, len,
1299                                              ext4_get_block_unwritten);
1300         else
1301                 ret = ext4_block_write_begin(page, pos, len,
1302                                              ext4_get_block);
1303 #else
1304         if (ext4_should_dioread_nolock(inode))
1305                 ret = __block_write_begin(page, pos, len,
1306                                           ext4_get_block_unwritten);
1307         else
1308                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1309 #endif
1310         if (!ret && ext4_should_journal_data(inode)) {
1311                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1312                                              from, to, NULL,
1313                                              do_journal_get_write_access);
1314         }
1315
1316         if (ret) {
1317                 unlock_page(page);
1318                 /*
1319                  * __block_write_begin may have instantiated a few blocks
1320                  * outside i_size.  Trim these off again. Don't need
1321                  * i_size_read because we hold i_mutex.
1322                  *
1323                  * Add inode to orphan list in case we crash before
1324                  * truncate finishes
1325                  */
1326                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1327                         ext4_orphan_add(handle, inode);
1328
1329                 ext4_journal_stop(handle);
1330                 if (pos + len > inode->i_size) {
1331                         ext4_truncate_failed_write(inode);
1332                         /*
1333                          * If truncate failed early the inode might
1334                          * still be on the orphan list; we need to
1335                          * make sure the inode is removed from the
1336                          * orphan list in that case.
1337                          */
1338                         if (inode->i_nlink)
1339                                 ext4_orphan_del(NULL, inode);
1340                 }
1341
1342                 if (ret == -ENOSPC &&
1343                     ext4_should_retry_alloc(inode->i_sb, &retries))
1344                         goto retry_journal;
1345                 put_page(page);
1346                 return ret;
1347         }
1348         *pagep = page;
1349         return ret;
1350 }
1351
1352 /* For write_end() in data=journal mode */
1353 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1354 {
1355         int ret;
1356         if (!buffer_mapped(bh) || buffer_freed(bh))
1357                 return 0;
1358         set_buffer_uptodate(bh);
1359         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1360         clear_buffer_meta(bh);
1361         clear_buffer_prio(bh);
1362         return ret;
1363 }
1364
1365 /*
1366  * We need to pick up the new inode size which generic_commit_write gave us
1367  * `file' can be NULL - eg, when called from page_symlink().
1368  *
1369  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1370  * buffers are managed internally.
1371  */
1372 static int ext4_write_end(struct file *file,
1373                           struct address_space *mapping,
1374                           loff_t pos, unsigned len, unsigned copied,
1375                           struct page *page, void *fsdata)
1376 {
1377         handle_t *handle = ext4_journal_current_handle();
1378         struct inode *inode = mapping->host;
1379         loff_t old_size = inode->i_size;
1380         int ret = 0, ret2;
1381         int i_size_changed = 0;
1382
1383         trace_ext4_write_end(inode, pos, len, copied);
1384         if (ext4_has_inline_data(inode)) {
1385                 ret = ext4_write_inline_data_end(inode, pos, len,
1386                                                  copied, page);
1387                 if (ret < 0) {
1388                         unlock_page(page);
1389                         put_page(page);
1390                         goto errout;
1391                 }
1392                 copied = ret;
1393         } else
1394                 copied = block_write_end(file, mapping, pos,
1395                                          len, copied, page, fsdata);
1396         /*
1397          * it's important to update i_size while still holding page lock:
1398          * page writeout could otherwise come in and zero beyond i_size.
1399          */
1400         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1401         unlock_page(page);
1402         put_page(page);
1403
1404         if (old_size < pos)
1405                 pagecache_isize_extended(inode, old_size, pos);
1406         /*
1407          * Don't mark the inode dirty under page lock. First, it unnecessarily
1408          * makes the holding time of page lock longer. Second, it forces lock
1409          * ordering of page lock and transaction start for journaling
1410          * filesystems.
1411          */
1412         if (i_size_changed)
1413                 ext4_mark_inode_dirty(handle, inode);
1414
1415         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1416                 /* if we have allocated more blocks and copied
1417                  * less. We will have blocks allocated outside
1418                  * inode->i_size. So truncate them
1419                  */
1420                 ext4_orphan_add(handle, inode);
1421 errout:
1422         ret2 = ext4_journal_stop(handle);
1423         if (!ret)
1424                 ret = ret2;
1425
1426         if (pos + len > inode->i_size) {
1427                 ext4_truncate_failed_write(inode);
1428                 /*
1429                  * If truncate failed early the inode might still be
1430                  * on the orphan list; we need to make sure the inode
1431                  * is removed from the orphan list in that case.
1432                  */
1433                 if (inode->i_nlink)
1434                         ext4_orphan_del(NULL, inode);
1435         }
1436
1437         return ret ? ret : copied;
1438 }
1439
1440 /*
1441  * This is a private version of page_zero_new_buffers() which doesn't
1442  * set the buffer to be dirty, since in data=journalled mode we need
1443  * to call ext4_handle_dirty_metadata() instead.
1444  */
1445 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1446                                             struct page *page,
1447                                             unsigned from, unsigned to)
1448 {
1449         unsigned int block_start = 0, block_end;
1450         struct buffer_head *head, *bh;
1451
1452         bh = head = page_buffers(page);
1453         do {
1454                 block_end = block_start + bh->b_size;
1455                 if (buffer_new(bh)) {
1456                         if (block_end > from && block_start < to) {
1457                                 if (!PageUptodate(page)) {
1458                                         unsigned start, size;
1459
1460                                         start = max(from, block_start);
1461                                         size = min(to, block_end) - start;
1462
1463                                         zero_user(page, start, size);
1464                                         write_end_fn(handle, bh);
1465                                 }
1466                                 clear_buffer_new(bh);
1467                         }
1468                 }
1469                 block_start = block_end;
1470                 bh = bh->b_this_page;
1471         } while (bh != head);
1472 }
1473
1474 static int ext4_journalled_write_end(struct file *file,
1475                                      struct address_space *mapping,
1476                                      loff_t pos, unsigned len, unsigned copied,
1477                                      struct page *page, void *fsdata)
1478 {
1479         handle_t *handle = ext4_journal_current_handle();
1480         struct inode *inode = mapping->host;
1481         loff_t old_size = inode->i_size;
1482         int ret = 0, ret2;
1483         int partial = 0;
1484         unsigned from, to;
1485         int size_changed = 0;
1486
1487         trace_ext4_journalled_write_end(inode, pos, len, copied);
1488         from = pos & (PAGE_SIZE - 1);
1489         to = from + len;
1490
1491         BUG_ON(!ext4_handle_valid(handle));
1492
1493         if (ext4_has_inline_data(inode)) {
1494                 ret = ext4_write_inline_data_end(inode, pos, len,
1495                                                  copied, page);
1496                 if (ret < 0) {
1497                         unlock_page(page);
1498                         put_page(page);
1499                         goto errout;
1500                 }
1501                 copied = ret;
1502         } else if (unlikely(copied < len) && !PageUptodate(page)) {
1503                 copied = 0;
1504                 ext4_journalled_zero_new_buffers(handle, page, from, to);
1505         } else {
1506                 if (unlikely(copied < len))
1507                         ext4_journalled_zero_new_buffers(handle, page,
1508                                                          from + copied, to);
1509                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1510                                              from + copied, &partial,
1511                                              write_end_fn);
1512                 if (!partial)
1513                         SetPageUptodate(page);
1514         }
1515         size_changed = ext4_update_inode_size(inode, pos + copied);
1516         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1517         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1518         unlock_page(page);
1519         put_page(page);
1520
1521         if (old_size < pos)
1522                 pagecache_isize_extended(inode, old_size, pos);
1523
1524         if (size_changed) {
1525                 ret2 = ext4_mark_inode_dirty(handle, inode);
1526                 if (!ret)
1527                         ret = ret2;
1528         }
1529
1530         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1531                 /* if we have allocated more blocks and copied
1532                  * less. We will have blocks allocated outside
1533                  * inode->i_size. So truncate them
1534                  */
1535                 ext4_orphan_add(handle, inode);
1536
1537 errout:
1538         ret2 = ext4_journal_stop(handle);
1539         if (!ret)
1540                 ret = ret2;
1541         if (pos + len > inode->i_size) {
1542                 ext4_truncate_failed_write(inode);
1543                 /*
1544                  * If truncate failed early the inode might still be
1545                  * on the orphan list; we need to make sure the inode
1546                  * is removed from the orphan list in that case.
1547                  */
1548                 if (inode->i_nlink)
1549                         ext4_orphan_del(NULL, inode);
1550         }
1551
1552         return ret ? ret : copied;
1553 }
1554
1555 /*
1556  * Reserve space for a single cluster
1557  */
1558 static int ext4_da_reserve_space(struct inode *inode)
1559 {
1560         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1561         struct ext4_inode_info *ei = EXT4_I(inode);
1562         int ret;
1563
1564         /*
1565          * We will charge metadata quota at writeout time; this saves
1566          * us from metadata over-estimation, though we may go over by
1567          * a small amount in the end.  Here we just reserve for data.
1568          */
1569         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1570         if (ret)
1571                 return ret;
1572
1573         spin_lock(&ei->i_block_reservation_lock);
1574         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1575                 spin_unlock(&ei->i_block_reservation_lock);
1576                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1577                 return -ENOSPC;
1578         }
1579         ei->i_reserved_data_blocks++;
1580         trace_ext4_da_reserve_space(inode);
1581         spin_unlock(&ei->i_block_reservation_lock);
1582
1583         return 0;       /* success */
1584 }
1585
1586 static void ext4_da_release_space(struct inode *inode, int to_free)
1587 {
1588         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1589         struct ext4_inode_info *ei = EXT4_I(inode);
1590
1591         if (!to_free)
1592                 return;         /* Nothing to release, exit */
1593
1594         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1595
1596         trace_ext4_da_release_space(inode, to_free);
1597         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1598                 /*
1599                  * if there aren't enough reserved blocks, then the
1600                  * counter is messed up somewhere.  Since this
1601                  * function is called from invalidate page, it's
1602                  * harmless to return without any action.
1603                  */
1604                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1605                          "ino %lu, to_free %d with only %d reserved "
1606                          "data blocks", inode->i_ino, to_free,
1607                          ei->i_reserved_data_blocks);
1608                 WARN_ON(1);
1609                 to_free = ei->i_reserved_data_blocks;
1610         }
1611         ei->i_reserved_data_blocks -= to_free;
1612
1613         /* update fs dirty data blocks counter */
1614         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1615
1616         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1617
1618         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1619 }
1620
1621 static void ext4_da_page_release_reservation(struct page *page,
1622                                              unsigned int offset,
1623                                              unsigned int length)
1624 {
1625         int to_release = 0, contiguous_blks = 0;
1626         struct buffer_head *head, *bh;
1627         unsigned int curr_off = 0;
1628         struct inode *inode = page->mapping->host;
1629         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1630         unsigned int stop = offset + length;
1631         int num_clusters;
1632         ext4_fsblk_t lblk;
1633
1634         BUG_ON(stop > PAGE_SIZE || stop < length);
1635
1636         head = page_buffers(page);
1637         bh = head;
1638         do {
1639                 unsigned int next_off = curr_off + bh->b_size;
1640
1641                 if (next_off > stop)
1642                         break;
1643
1644                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1645                         to_release++;
1646                         contiguous_blks++;
1647                         clear_buffer_delay(bh);
1648                 } else if (contiguous_blks) {
1649                         lblk = page->index <<
1650                                (PAGE_SHIFT - inode->i_blkbits);
1651                         lblk += (curr_off >> inode->i_blkbits) -
1652                                 contiguous_blks;
1653                         ext4_es_remove_extent(inode, lblk, contiguous_blks);
1654                         contiguous_blks = 0;
1655                 }
1656                 curr_off = next_off;
1657         } while ((bh = bh->b_this_page) != head);
1658
1659         if (contiguous_blks) {
1660                 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1661                 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1662                 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1663         }
1664
1665         /* If we have released all the blocks belonging to a cluster, then we
1666          * need to release the reserved space for that cluster. */
1667         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1668         while (num_clusters > 0) {
1669                 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1670                         ((num_clusters - 1) << sbi->s_cluster_bits);
1671                 if (sbi->s_cluster_ratio == 1 ||
1672                     !ext4_find_delalloc_cluster(inode, lblk))
1673                         ext4_da_release_space(inode, 1);
1674
1675                 num_clusters--;
1676         }
1677 }
1678
1679 /*
1680  * Delayed allocation stuff
1681  */
1682
1683 struct mpage_da_data {
1684         struct inode *inode;
1685         struct writeback_control *wbc;
1686
1687         pgoff_t first_page;     /* The first page to write */
1688         pgoff_t next_page;      /* Current page to examine */
1689         pgoff_t last_page;      /* Last page to examine */
1690         /*
1691          * Extent to map - this can be after first_page because that can be
1692          * fully mapped. We somewhat abuse m_flags to store whether the extent
1693          * is delalloc or unwritten.
1694          */
1695         struct ext4_map_blocks map;
1696         struct ext4_io_submit io_submit;        /* IO submission data */
1697         unsigned int do_map:1;
1698 };
1699
1700 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1701                                        bool invalidate)
1702 {
1703         int nr_pages, i;
1704         pgoff_t index, end;
1705         struct pagevec pvec;
1706         struct inode *inode = mpd->inode;
1707         struct address_space *mapping = inode->i_mapping;
1708
1709         /* This is necessary when next_page == 0. */
1710         if (mpd->first_page >= mpd->next_page)
1711                 return;
1712
1713         index = mpd->first_page;
1714         end   = mpd->next_page - 1;
1715         if (invalidate) {
1716                 ext4_lblk_t start, last;
1717                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1718                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1719                 ext4_es_remove_extent(inode, start, last - start + 1);
1720         }
1721
1722         pagevec_init(&pvec, 0);
1723         while (index <= end) {
1724                 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1725                 if (nr_pages == 0)
1726                         break;
1727                 for (i = 0; i < nr_pages; i++) {
1728                         struct page *page = pvec.pages[i];
1729
1730                         BUG_ON(!PageLocked(page));
1731                         BUG_ON(PageWriteback(page));
1732                         if (invalidate) {
1733                                 if (page_mapped(page))
1734                                         clear_page_dirty_for_io(page);
1735                                 block_invalidatepage(page, 0, PAGE_SIZE);
1736                                 ClearPageUptodate(page);
1737                         }
1738                         unlock_page(page);
1739                 }
1740                 pagevec_release(&pvec);
1741         }
1742 }
1743
1744 static void ext4_print_free_blocks(struct inode *inode)
1745 {
1746         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1747         struct super_block *sb = inode->i_sb;
1748         struct ext4_inode_info *ei = EXT4_I(inode);
1749
1750         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1751                EXT4_C2B(EXT4_SB(inode->i_sb),
1752                         ext4_count_free_clusters(sb)));
1753         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1754         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1755                (long long) EXT4_C2B(EXT4_SB(sb),
1756                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1757         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1758                (long long) EXT4_C2B(EXT4_SB(sb),
1759                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1760         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1761         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1762                  ei->i_reserved_data_blocks);
1763         return;
1764 }
1765
1766 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1767 {
1768         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1769 }
1770
1771 /*
1772  * This function is grabs code from the very beginning of
1773  * ext4_map_blocks, but assumes that the caller is from delayed write
1774  * time. This function looks up the requested blocks and sets the
1775  * buffer delay bit under the protection of i_data_sem.
1776  */
1777 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1778                               struct ext4_map_blocks *map,
1779                               struct buffer_head *bh)
1780 {
1781         struct extent_status es;
1782         int retval;
1783         sector_t invalid_block = ~((sector_t) 0xffff);
1784 #ifdef ES_AGGRESSIVE_TEST
1785         struct ext4_map_blocks orig_map;
1786
1787         memcpy(&orig_map, map, sizeof(*map));
1788 #endif
1789
1790         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1791                 invalid_block = ~0;
1792
1793         map->m_flags = 0;
1794         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1795                   "logical block %lu\n", inode->i_ino, map->m_len,
1796                   (unsigned long) map->m_lblk);
1797
1798         /* Lookup extent status tree firstly */
1799         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1800                 if (ext4_es_is_hole(&es)) {
1801                         retval = 0;
1802                         down_read(&EXT4_I(inode)->i_data_sem);
1803                         goto add_delayed;
1804                 }
1805
1806                 /*
1807                  * Delayed extent could be allocated by fallocate.
1808                  * So we need to check it.
1809                  */
1810                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1811                         map_bh(bh, inode->i_sb, invalid_block);
1812                         set_buffer_new(bh);
1813                         set_buffer_delay(bh);
1814                         return 0;
1815                 }
1816
1817                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1818                 retval = es.es_len - (iblock - es.es_lblk);
1819                 if (retval > map->m_len)
1820                         retval = map->m_len;
1821                 map->m_len = retval;
1822                 if (ext4_es_is_written(&es))
1823                         map->m_flags |= EXT4_MAP_MAPPED;
1824                 else if (ext4_es_is_unwritten(&es))
1825                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1826                 else
1827                         BUG_ON(1);
1828
1829 #ifdef ES_AGGRESSIVE_TEST
1830                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1831 #endif
1832                 return retval;
1833         }
1834
1835         /*
1836          * Try to see if we can get the block without requesting a new
1837          * file system block.
1838          */
1839         down_read(&EXT4_I(inode)->i_data_sem);
1840         if (ext4_has_inline_data(inode))
1841                 retval = 0;
1842         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1843                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1844         else
1845                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1846
1847 add_delayed:
1848         if (retval == 0) {
1849                 int ret;
1850                 /*
1851                  * XXX: __block_prepare_write() unmaps passed block,
1852                  * is it OK?
1853                  */
1854                 /*
1855                  * If the block was allocated from previously allocated cluster,
1856                  * then we don't need to reserve it again. However we still need
1857                  * to reserve metadata for every block we're going to write.
1858                  */
1859                 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1860                     !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1861                         ret = ext4_da_reserve_space(inode);
1862                         if (ret) {
1863                                 /* not enough space to reserve */
1864                                 retval = ret;
1865                                 goto out_unlock;
1866                         }
1867                 }
1868
1869                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1870                                             ~0, EXTENT_STATUS_DELAYED);
1871                 if (ret) {
1872                         retval = ret;
1873                         goto out_unlock;
1874                 }
1875
1876                 map_bh(bh, inode->i_sb, invalid_block);
1877                 set_buffer_new(bh);
1878                 set_buffer_delay(bh);
1879         } else if (retval > 0) {
1880                 int ret;
1881                 unsigned int status;
1882
1883                 if (unlikely(retval != map->m_len)) {
1884                         ext4_warning(inode->i_sb,
1885                                      "ES len assertion failed for inode "
1886                                      "%lu: retval %d != map->m_len %d",
1887                                      inode->i_ino, retval, map->m_len);
1888                         WARN_ON(1);
1889                 }
1890
1891                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1892                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1893                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1894                                             map->m_pblk, status);
1895                 if (ret != 0)
1896                         retval = ret;
1897         }
1898
1899 out_unlock:
1900         up_read((&EXT4_I(inode)->i_data_sem));
1901
1902         return retval;
1903 }
1904
1905 /*
1906  * This is a special get_block_t callback which is used by
1907  * ext4_da_write_begin().  It will either return mapped block or
1908  * reserve space for a single block.
1909  *
1910  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1911  * We also have b_blocknr = -1 and b_bdev initialized properly
1912  *
1913  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1914  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1915  * initialized properly.
1916  */
1917 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1918                            struct buffer_head *bh, int create)
1919 {
1920         struct ext4_map_blocks map;
1921         int ret = 0;
1922
1923         BUG_ON(create == 0);
1924         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1925
1926         map.m_lblk = iblock;
1927         map.m_len = 1;
1928
1929         /*
1930          * first, we need to know whether the block is allocated already
1931          * preallocated blocks are unmapped but should treated
1932          * the same as allocated blocks.
1933          */
1934         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1935         if (ret <= 0)
1936                 return ret;
1937
1938         map_bh(bh, inode->i_sb, map.m_pblk);
1939         ext4_update_bh_state(bh, map.m_flags);
1940
1941         if (buffer_unwritten(bh)) {
1942                 /* A delayed write to unwritten bh should be marked
1943                  * new and mapped.  Mapped ensures that we don't do
1944                  * get_block multiple times when we write to the same
1945                  * offset and new ensures that we do proper zero out
1946                  * for partial write.
1947                  */
1948                 set_buffer_new(bh);
1949                 set_buffer_mapped(bh);
1950         }
1951         return 0;
1952 }
1953
1954 static int bget_one(handle_t *handle, struct buffer_head *bh)
1955 {
1956         get_bh(bh);
1957         return 0;
1958 }
1959
1960 static int bput_one(handle_t *handle, struct buffer_head *bh)
1961 {
1962         put_bh(bh);
1963         return 0;
1964 }
1965
1966 static int __ext4_journalled_writepage(struct page *page,
1967                                        unsigned int len)
1968 {
1969         struct address_space *mapping = page->mapping;
1970         struct inode *inode = mapping->host;
1971         struct buffer_head *page_bufs = NULL;
1972         handle_t *handle = NULL;
1973         int ret = 0, err = 0;
1974         int inline_data = ext4_has_inline_data(inode);
1975         struct buffer_head *inode_bh = NULL;
1976
1977         ClearPageChecked(page);
1978
1979         if (inline_data) {
1980                 BUG_ON(page->index != 0);
1981                 BUG_ON(len > ext4_get_max_inline_size(inode));
1982                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1983                 if (inode_bh == NULL)
1984                         goto out;
1985         } else {
1986                 page_bufs = page_buffers(page);
1987                 if (!page_bufs) {
1988                         BUG();
1989                         goto out;
1990                 }
1991                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1992                                        NULL, bget_one);
1993         }
1994         /*
1995          * We need to release the page lock before we start the
1996          * journal, so grab a reference so the page won't disappear
1997          * out from under us.
1998          */
1999         get_page(page);
2000         unlock_page(page);
2001
2002         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2003                                     ext4_writepage_trans_blocks(inode));
2004         if (IS_ERR(handle)) {
2005                 ret = PTR_ERR(handle);
2006                 put_page(page);
2007                 goto out_no_pagelock;
2008         }
2009         BUG_ON(!ext4_handle_valid(handle));
2010
2011         lock_page(page);
2012         put_page(page);
2013         if (page->mapping != mapping) {
2014                 /* The page got truncated from under us */
2015                 ext4_journal_stop(handle);
2016                 ret = 0;
2017                 goto out;
2018         }
2019
2020         if (inline_data) {
2021                 BUFFER_TRACE(inode_bh, "get write access");
2022                 ret = ext4_journal_get_write_access(handle, inode_bh);
2023
2024                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2025
2026         } else {
2027                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2028                                              do_journal_get_write_access);
2029
2030                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2031                                              write_end_fn);
2032         }
2033         if (ret == 0)
2034                 ret = err;
2035         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2036         err = ext4_journal_stop(handle);
2037         if (!ret)
2038                 ret = err;
2039
2040         if (!ext4_has_inline_data(inode))
2041                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2042                                        NULL, bput_one);
2043         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2044 out:
2045         unlock_page(page);
2046 out_no_pagelock:
2047         brelse(inode_bh);
2048         return ret;
2049 }
2050
2051 /*
2052  * Note that we don't need to start a transaction unless we're journaling data
2053  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2054  * need to file the inode to the transaction's list in ordered mode because if
2055  * we are writing back data added by write(), the inode is already there and if
2056  * we are writing back data modified via mmap(), no one guarantees in which
2057  * transaction the data will hit the disk. In case we are journaling data, we
2058  * cannot start transaction directly because transaction start ranks above page
2059  * lock so we have to do some magic.
2060  *
2061  * This function can get called via...
2062  *   - ext4_writepages after taking page lock (have journal handle)
2063  *   - journal_submit_inode_data_buffers (no journal handle)
2064  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2065  *   - grab_page_cache when doing write_begin (have journal handle)
2066  *
2067  * We don't do any block allocation in this function. If we have page with
2068  * multiple blocks we need to write those buffer_heads that are mapped. This
2069  * is important for mmaped based write. So if we do with blocksize 1K
2070  * truncate(f, 1024);
2071  * a = mmap(f, 0, 4096);
2072  * a[0] = 'a';
2073  * truncate(f, 4096);
2074  * we have in the page first buffer_head mapped via page_mkwrite call back
2075  * but other buffer_heads would be unmapped but dirty (dirty done via the
2076  * do_wp_page). So writepage should write the first block. If we modify
2077  * the mmap area beyond 1024 we will again get a page_fault and the
2078  * page_mkwrite callback will do the block allocation and mark the
2079  * buffer_heads mapped.
2080  *
2081  * We redirty the page if we have any buffer_heads that is either delay or
2082  * unwritten in the page.
2083  *
2084  * We can get recursively called as show below.
2085  *
2086  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2087  *              ext4_writepage()
2088  *
2089  * But since we don't do any block allocation we should not deadlock.
2090  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2091  */
2092 static int ext4_writepage(struct page *page,
2093                           struct writeback_control *wbc)
2094 {
2095         int ret = 0;
2096         loff_t size;
2097         unsigned int len;
2098         struct buffer_head *page_bufs = NULL;
2099         struct inode *inode = page->mapping->host;
2100         struct ext4_io_submit io_submit;
2101         bool keep_towrite = false;
2102
2103         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2104                 ext4_invalidatepage(page, 0, PAGE_SIZE);
2105                 unlock_page(page);
2106                 return -EIO;
2107         }
2108
2109         trace_ext4_writepage(page);
2110         size = i_size_read(inode);
2111         if (page->index == size >> PAGE_SHIFT)
2112                 len = size & ~PAGE_MASK;
2113         else
2114                 len = PAGE_SIZE;
2115
2116         page_bufs = page_buffers(page);
2117         /*
2118          * We cannot do block allocation or other extent handling in this
2119          * function. If there are buffers needing that, we have to redirty
2120          * the page. But we may reach here when we do a journal commit via
2121          * journal_submit_inode_data_buffers() and in that case we must write
2122          * allocated buffers to achieve data=ordered mode guarantees.
2123          *
2124          * Also, if there is only one buffer per page (the fs block
2125          * size == the page size), if one buffer needs block
2126          * allocation or needs to modify the extent tree to clear the
2127          * unwritten flag, we know that the page can't be written at
2128          * all, so we might as well refuse the write immediately.
2129          * Unfortunately if the block size != page size, we can't as
2130          * easily detect this case using ext4_walk_page_buffers(), but
2131          * for the extremely common case, this is an optimization that
2132          * skips a useless round trip through ext4_bio_write_page().
2133          */
2134         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2135                                    ext4_bh_delay_or_unwritten)) {
2136                 redirty_page_for_writepage(wbc, page);
2137                 if ((current->flags & PF_MEMALLOC) ||
2138                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2139                         /*
2140                          * For memory cleaning there's no point in writing only
2141                          * some buffers. So just bail out. Warn if we came here
2142                          * from direct reclaim.
2143                          */
2144                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2145                                                         == PF_MEMALLOC);
2146                         unlock_page(page);
2147                         return 0;
2148                 }
2149                 keep_towrite = true;
2150         }
2151
2152         if (PageChecked(page) && ext4_should_journal_data(inode))
2153                 /*
2154                  * It's mmapped pagecache.  Add buffers and journal it.  There
2155                  * doesn't seem much point in redirtying the page here.
2156                  */
2157                 return __ext4_journalled_writepage(page, len);
2158
2159         ext4_io_submit_init(&io_submit, wbc);
2160         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2161         if (!io_submit.io_end) {
2162                 redirty_page_for_writepage(wbc, page);
2163                 unlock_page(page);
2164                 return -ENOMEM;
2165         }
2166         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2167         ext4_io_submit(&io_submit);
2168         /* Drop io_end reference we got from init */
2169         ext4_put_io_end_defer(io_submit.io_end);
2170         return ret;
2171 }
2172
2173 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2174 {
2175         int len;
2176         loff_t size;
2177         int err;
2178
2179         BUG_ON(page->index != mpd->first_page);
2180         clear_page_dirty_for_io(page);
2181         /*
2182          * We have to be very careful here!  Nothing protects writeback path
2183          * against i_size changes and the page can be writeably mapped into
2184          * page tables. So an application can be growing i_size and writing
2185          * data through mmap while writeback runs. clear_page_dirty_for_io()
2186          * write-protects our page in page tables and the page cannot get
2187          * written to again until we release page lock. So only after
2188          * clear_page_dirty_for_io() we are safe to sample i_size for
2189          * ext4_bio_write_page() to zero-out tail of the written page. We rely
2190          * on the barrier provided by TestClearPageDirty in
2191          * clear_page_dirty_for_io() to make sure i_size is really sampled only
2192          * after page tables are updated.
2193          */
2194         size = i_size_read(mpd->inode);
2195         if (page->index == size >> PAGE_SHIFT)
2196                 len = size & ~PAGE_MASK;
2197         else
2198                 len = PAGE_SIZE;
2199         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2200         if (!err)
2201                 mpd->wbc->nr_to_write--;
2202         mpd->first_page++;
2203
2204         return err;
2205 }
2206
2207 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2208
2209 /*
2210  * mballoc gives us at most this number of blocks...
2211  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2212  * The rest of mballoc seems to handle chunks up to full group size.
2213  */
2214 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2215
2216 /*
2217  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2218  *
2219  * @mpd - extent of blocks
2220  * @lblk - logical number of the block in the file
2221  * @bh - buffer head we want to add to the extent
2222  *
2223  * The function is used to collect contig. blocks in the same state. If the
2224  * buffer doesn't require mapping for writeback and we haven't started the
2225  * extent of buffers to map yet, the function returns 'true' immediately - the
2226  * caller can write the buffer right away. Otherwise the function returns true
2227  * if the block has been added to the extent, false if the block couldn't be
2228  * added.
2229  */
2230 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2231                                    struct buffer_head *bh)
2232 {
2233         struct ext4_map_blocks *map = &mpd->map;
2234
2235         /* Buffer that doesn't need mapping for writeback? */
2236         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2237             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2238                 /* So far no extent to map => we write the buffer right away */
2239                 if (map->m_len == 0)
2240                         return true;
2241                 return false;
2242         }
2243
2244         /* First block in the extent? */
2245         if (map->m_len == 0) {
2246                 /* We cannot map unless handle is started... */
2247                 if (!mpd->do_map)
2248                         return false;
2249                 map->m_lblk = lblk;
2250                 map->m_len = 1;
2251                 map->m_flags = bh->b_state & BH_FLAGS;
2252                 return true;
2253         }
2254
2255         /* Don't go larger than mballoc is willing to allocate */
2256         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2257                 return false;
2258
2259         /* Can we merge the block to our big extent? */
2260         if (lblk == map->m_lblk + map->m_len &&
2261             (bh->b_state & BH_FLAGS) == map->m_flags) {
2262                 map->m_len++;
2263                 return true;
2264         }
2265         return false;
2266 }
2267
2268 /*
2269  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2270  *
2271  * @mpd - extent of blocks for mapping
2272  * @head - the first buffer in the page
2273  * @bh - buffer we should start processing from
2274  * @lblk - logical number of the block in the file corresponding to @bh
2275  *
2276  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2277  * the page for IO if all buffers in this page were mapped and there's no
2278  * accumulated extent of buffers to map or add buffers in the page to the
2279  * extent of buffers to map. The function returns 1 if the caller can continue
2280  * by processing the next page, 0 if it should stop adding buffers to the
2281  * extent to map because we cannot extend it anymore. It can also return value
2282  * < 0 in case of error during IO submission.
2283  */
2284 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2285                                    struct buffer_head *head,
2286                                    struct buffer_head *bh,
2287                                    ext4_lblk_t lblk)
2288 {
2289         struct inode *inode = mpd->inode;
2290         int err;
2291         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2292                                                         >> inode->i_blkbits;
2293
2294         do {
2295                 BUG_ON(buffer_locked(bh));
2296
2297                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2298                         /* Found extent to map? */
2299                         if (mpd->map.m_len)
2300                                 return 0;
2301                         /* Buffer needs mapping and handle is not started? */
2302                         if (!mpd->do_map)
2303                                 return 0;
2304                         /* Everything mapped so far and we hit EOF */
2305                         break;
2306                 }
2307         } while (lblk++, (bh = bh->b_this_page) != head);
2308         /* So far everything mapped? Submit the page for IO. */
2309         if (mpd->map.m_len == 0) {
2310                 err = mpage_submit_page(mpd, head->b_page);
2311                 if (err < 0)
2312                         return err;
2313         }
2314         return lblk < blocks;
2315 }
2316
2317 /*
2318  * mpage_map_buffers - update buffers corresponding to changed extent and
2319  *                     submit fully mapped pages for IO
2320  *
2321  * @mpd - description of extent to map, on return next extent to map
2322  *
2323  * Scan buffers corresponding to changed extent (we expect corresponding pages
2324  * to be already locked) and update buffer state according to new extent state.
2325  * We map delalloc buffers to their physical location, clear unwritten bits,
2326  * and mark buffers as uninit when we perform writes to unwritten extents
2327  * and do extent conversion after IO is finished. If the last page is not fully
2328  * mapped, we update @map to the next extent in the last page that needs
2329  * mapping. Otherwise we submit the page for IO.
2330  */
2331 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2332 {
2333         struct pagevec pvec;
2334         int nr_pages, i;
2335         struct inode *inode = mpd->inode;
2336         struct buffer_head *head, *bh;
2337         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2338         pgoff_t start, end;
2339         ext4_lblk_t lblk;
2340         sector_t pblock;
2341         int err;
2342
2343         start = mpd->map.m_lblk >> bpp_bits;
2344         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2345         lblk = start << bpp_bits;
2346         pblock = mpd->map.m_pblk;
2347
2348         pagevec_init(&pvec, 0);
2349         while (start <= end) {
2350                 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2351                                                 &start, end);
2352                 if (nr_pages == 0)
2353                         break;
2354                 for (i = 0; i < nr_pages; i++) {
2355                         struct page *page = pvec.pages[i];
2356
2357                         bh = head = page_buffers(page);
2358                         do {
2359                                 if (lblk < mpd->map.m_lblk)
2360                                         continue;
2361                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2362                                         /*
2363                                          * Buffer after end of mapped extent.
2364                                          * Find next buffer in the page to map.
2365                                          */
2366                                         mpd->map.m_len = 0;
2367                                         mpd->map.m_flags = 0;
2368                                         /*
2369                                          * FIXME: If dioread_nolock supports
2370                                          * blocksize < pagesize, we need to make
2371                                          * sure we add size mapped so far to
2372                                          * io_end->size as the following call
2373                                          * can submit the page for IO.
2374                                          */
2375                                         err = mpage_process_page_bufs(mpd, head,
2376                                                                       bh, lblk);
2377                                         pagevec_release(&pvec);
2378                                         if (err > 0)
2379                                                 err = 0;
2380                                         return err;
2381                                 }
2382                                 if (buffer_delay(bh)) {
2383                                         clear_buffer_delay(bh);
2384                                         bh->b_blocknr = pblock++;
2385                                 }
2386                                 clear_buffer_unwritten(bh);
2387                         } while (lblk++, (bh = bh->b_this_page) != head);
2388
2389                         /*
2390                          * FIXME: This is going to break if dioread_nolock
2391                          * supports blocksize < pagesize as we will try to
2392                          * convert potentially unmapped parts of inode.
2393                          */
2394                         mpd->io_submit.io_end->size += PAGE_SIZE;
2395                         /* Page fully mapped - let IO run! */
2396                         err = mpage_submit_page(mpd, page);
2397                         if (err < 0) {
2398                                 pagevec_release(&pvec);
2399                                 return err;
2400                         }
2401                 }
2402                 pagevec_release(&pvec);
2403         }
2404         /* Extent fully mapped and matches with page boundary. We are done. */
2405         mpd->map.m_len = 0;
2406         mpd->map.m_flags = 0;
2407         return 0;
2408 }
2409
2410 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2411 {
2412         struct inode *inode = mpd->inode;
2413         struct ext4_map_blocks *map = &mpd->map;
2414         int get_blocks_flags;
2415         int err, dioread_nolock;
2416
2417         trace_ext4_da_write_pages_extent(inode, map);
2418         /*
2419          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2420          * to convert an unwritten extent to be initialized (in the case
2421          * where we have written into one or more preallocated blocks).  It is
2422          * possible that we're going to need more metadata blocks than
2423          * previously reserved. However we must not fail because we're in
2424          * writeback and there is nothing we can do about it so it might result
2425          * in data loss.  So use reserved blocks to allocate metadata if
2426          * possible.
2427          *
2428          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2429          * the blocks in question are delalloc blocks.  This indicates
2430          * that the blocks and quotas has already been checked when
2431          * the data was copied into the page cache.
2432          */
2433         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2434                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2435                            EXT4_GET_BLOCKS_IO_SUBMIT;
2436         dioread_nolock = ext4_should_dioread_nolock(inode);
2437         if (dioread_nolock)
2438                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2439         if (map->m_flags & (1 << BH_Delay))
2440                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2441
2442         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2443         if (err < 0)
2444                 return err;
2445         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2446                 if (!mpd->io_submit.io_end->handle &&
2447                     ext4_handle_valid(handle)) {
2448                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2449                         handle->h_rsv_handle = NULL;
2450                 }
2451                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2452         }
2453
2454         BUG_ON(map->m_len == 0);
2455         if (map->m_flags & EXT4_MAP_NEW) {
2456                 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2457                                    map->m_len);
2458         }
2459         return 0;
2460 }
2461
2462 /*
2463  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2464  *                               mpd->len and submit pages underlying it for IO
2465  *
2466  * @handle - handle for journal operations
2467  * @mpd - extent to map
2468  * @give_up_on_write - we set this to true iff there is a fatal error and there
2469  *                     is no hope of writing the data. The caller should discard
2470  *                     dirty pages to avoid infinite loops.
2471  *
2472  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2473  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2474  * them to initialized or split the described range from larger unwritten
2475  * extent. Note that we need not map all the described range since allocation
2476  * can return less blocks or the range is covered by more unwritten extents. We
2477  * cannot map more because we are limited by reserved transaction credits. On
2478  * the other hand we always make sure that the last touched page is fully
2479  * mapped so that it can be written out (and thus forward progress is
2480  * guaranteed). After mapping we submit all mapped pages for IO.
2481  */
2482 static int mpage_map_and_submit_extent(handle_t *handle,
2483                                        struct mpage_da_data *mpd,
2484                                        bool *give_up_on_write)
2485 {
2486         struct inode *inode = mpd->inode;
2487         struct ext4_map_blocks *map = &mpd->map;
2488         int err;
2489         loff_t disksize;
2490         int progress = 0;
2491
2492         mpd->io_submit.io_end->offset =
2493                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2494         do {
2495                 err = mpage_map_one_extent(handle, mpd);
2496                 if (err < 0) {
2497                         struct super_block *sb = inode->i_sb;
2498
2499                         if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2500                             EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2501                                 goto invalidate_dirty_pages;
2502                         /*
2503                          * Let the uper layers retry transient errors.
2504                          * In the case of ENOSPC, if ext4_count_free_blocks()
2505                          * is non-zero, a commit should free up blocks.
2506                          */
2507                         if ((err == -ENOMEM) ||
2508                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2509                                 if (progress)
2510                                         goto update_disksize;
2511                                 return err;
2512                         }
2513                         ext4_msg(sb, KERN_CRIT,
2514                                  "Delayed block allocation failed for "
2515                                  "inode %lu at logical offset %llu with"
2516                                  " max blocks %u with error %d",
2517                                  inode->i_ino,
2518                                  (unsigned long long)map->m_lblk,
2519                                  (unsigned)map->m_len, -err);
2520                         ext4_msg(sb, KERN_CRIT,
2521                                  "This should not happen!! Data will "
2522                                  "be lost\n");
2523                         if (err == -ENOSPC)
2524                                 ext4_print_free_blocks(inode);
2525                 invalidate_dirty_pages:
2526                         *give_up_on_write = true;
2527                         return err;
2528                 }
2529                 progress = 1;
2530                 /*
2531                  * Update buffer state, submit mapped pages, and get us new
2532                  * extent to map
2533                  */
2534                 err = mpage_map_and_submit_buffers(mpd);
2535                 if (err < 0)
2536                         goto update_disksize;
2537         } while (map->m_len);
2538
2539 update_disksize:
2540         /*
2541          * Update on-disk size after IO is submitted.  Races with
2542          * truncate are avoided by checking i_size under i_data_sem.
2543          */
2544         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2545         if (disksize > EXT4_I(inode)->i_disksize) {
2546                 int err2;
2547                 loff_t i_size;
2548
2549                 down_write(&EXT4_I(inode)->i_data_sem);
2550                 i_size = i_size_read(inode);
2551                 if (disksize > i_size)
2552                         disksize = i_size;
2553                 if (disksize > EXT4_I(inode)->i_disksize)
2554                         EXT4_I(inode)->i_disksize = disksize;
2555                 up_write(&EXT4_I(inode)->i_data_sem);
2556                 err2 = ext4_mark_inode_dirty(handle, inode);
2557                 if (err2)
2558                         ext4_error(inode->i_sb,
2559                                    "Failed to mark inode %lu dirty",
2560                                    inode->i_ino);
2561                 if (!err)
2562                         err = err2;
2563         }
2564         return err;
2565 }
2566
2567 /*
2568  * Calculate the total number of credits to reserve for one writepages
2569  * iteration. This is called from ext4_writepages(). We map an extent of
2570  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2571  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2572  * bpp - 1 blocks in bpp different extents.
2573  */
2574 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2575 {
2576         int bpp = ext4_journal_blocks_per_page(inode);
2577
2578         return ext4_meta_trans_blocks(inode,
2579                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2580 }
2581
2582 /*
2583  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2584  *                               and underlying extent to map
2585  *
2586  * @mpd - where to look for pages
2587  *
2588  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2589  * IO immediately. When we find a page which isn't mapped we start accumulating
2590  * extent of buffers underlying these pages that needs mapping (formed by
2591  * either delayed or unwritten buffers). We also lock the pages containing
2592  * these buffers. The extent found is returned in @mpd structure (starting at
2593  * mpd->lblk with length mpd->len blocks).
2594  *
2595  * Note that this function can attach bios to one io_end structure which are
2596  * neither logically nor physically contiguous. Although it may seem as an
2597  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2598  * case as we need to track IO to all buffers underlying a page in one io_end.
2599  */
2600 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2601 {
2602         struct address_space *mapping = mpd->inode->i_mapping;
2603         struct pagevec pvec;
2604         unsigned int nr_pages;
2605         long left = mpd->wbc->nr_to_write;
2606         pgoff_t index = mpd->first_page;
2607         pgoff_t end = mpd->last_page;
2608         int tag;
2609         int i, err = 0;
2610         int blkbits = mpd->inode->i_blkbits;
2611         ext4_lblk_t lblk;
2612         struct buffer_head *head;
2613
2614         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2615                 tag = PAGECACHE_TAG_TOWRITE;
2616         else
2617                 tag = PAGECACHE_TAG_DIRTY;
2618
2619         pagevec_init(&pvec, 0);
2620         mpd->map.m_len = 0;
2621         mpd->next_page = index;
2622         while (index <= end) {
2623                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2624                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2625                 if (nr_pages == 0)
2626                         goto out;
2627
2628                 for (i = 0; i < nr_pages; i++) {
2629                         struct page *page = pvec.pages[i];
2630
2631                         /*
2632                          * At this point, the page may be truncated or
2633                          * invalidated (changing page->mapping to NULL), or
2634                          * even swizzled back from swapper_space to tmpfs file
2635                          * mapping. However, page->index will not change
2636                          * because we have a reference on the page.
2637                          */
2638                         if (page->index > end)
2639                                 goto out;
2640
2641                         /*
2642                          * Accumulated enough dirty pages? This doesn't apply
2643                          * to WB_SYNC_ALL mode. For integrity sync we have to
2644                          * keep going because someone may be concurrently
2645                          * dirtying pages, and we might have synced a lot of
2646                          * newly appeared dirty pages, but have not synced all
2647                          * of the old dirty pages.
2648                          */
2649                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2650                                 goto out;
2651
2652                         /* If we can't merge this page, we are done. */
2653                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2654                                 goto out;
2655
2656                         lock_page(page);
2657                         /*
2658                          * If the page is no longer dirty, or its mapping no
2659                          * longer corresponds to inode we are writing (which
2660                          * means it has been truncated or invalidated), or the
2661                          * page is already under writeback and we are not doing
2662                          * a data integrity writeback, skip the page
2663                          */
2664                         if (!PageDirty(page) ||
2665                             (PageWriteback(page) &&
2666                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2667                             unlikely(page->mapping != mapping)) {
2668                                 unlock_page(page);
2669                                 continue;
2670                         }
2671
2672                         wait_on_page_writeback(page);
2673                         BUG_ON(PageWriteback(page));
2674
2675                         if (mpd->map.m_len == 0)
2676                                 mpd->first_page = page->index;
2677                         mpd->next_page = page->index + 1;
2678                         /* Add all dirty buffers to mpd */
2679                         lblk = ((ext4_lblk_t)page->index) <<
2680                                 (PAGE_SHIFT - blkbits);
2681                         head = page_buffers(page);
2682                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2683                         if (err <= 0)
2684                                 goto out;
2685                         err = 0;
2686                         left--;
2687                 }
2688                 pagevec_release(&pvec);
2689                 cond_resched();
2690         }
2691         return 0;
2692 out:
2693         pagevec_release(&pvec);
2694         return err;
2695 }
2696
2697 static int __writepage(struct page *page, struct writeback_control *wbc,
2698                        void *data)
2699 {
2700         struct address_space *mapping = data;
2701         int ret = ext4_writepage(page, wbc);
2702         mapping_set_error(mapping, ret);
2703         return ret;
2704 }
2705
2706 static int ext4_writepages(struct address_space *mapping,
2707                            struct writeback_control *wbc)
2708 {
2709         pgoff_t writeback_index = 0;
2710         long nr_to_write = wbc->nr_to_write;
2711         int range_whole = 0;
2712         int cycled = 1;
2713         handle_t *handle = NULL;
2714         struct mpage_da_data mpd;
2715         struct inode *inode = mapping->host;
2716         int needed_blocks, rsv_blocks = 0, ret = 0;
2717         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2718         bool done;
2719         struct blk_plug plug;
2720         bool give_up_on_write = false;
2721
2722         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2723                 return -EIO;
2724
2725         percpu_down_read(&sbi->s_journal_flag_rwsem);
2726         trace_ext4_writepages(inode, wbc);
2727
2728         if (dax_mapping(mapping)) {
2729                 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2730                                                   wbc);
2731                 goto out_writepages;
2732         }
2733
2734         /*
2735          * No pages to write? This is mainly a kludge to avoid starting
2736          * a transaction for special inodes like journal inode on last iput()
2737          * because that could violate lock ordering on umount
2738          */
2739         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2740                 goto out_writepages;
2741
2742         if (ext4_should_journal_data(inode)) {
2743                 struct blk_plug plug;
2744
2745                 blk_start_plug(&plug);
2746                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2747                 blk_finish_plug(&plug);
2748                 goto out_writepages;
2749         }
2750
2751         /*
2752          * If the filesystem has aborted, it is read-only, so return
2753          * right away instead of dumping stack traces later on that
2754          * will obscure the real source of the problem.  We test
2755          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2756          * the latter could be true if the filesystem is mounted
2757          * read-only, and in that case, ext4_writepages should
2758          * *never* be called, so if that ever happens, we would want
2759          * the stack trace.
2760          */
2761         if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2762                      sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2763                 ret = -EROFS;
2764                 goto out_writepages;
2765         }
2766
2767         if (ext4_should_dioread_nolock(inode)) {
2768                 /*
2769                  * We may need to convert up to one extent per block in
2770                  * the page and we may dirty the inode.
2771                  */
2772                 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2773         }
2774
2775         /*
2776          * If we have inline data and arrive here, it means that
2777          * we will soon create the block for the 1st page, so
2778          * we'd better clear the inline data here.
2779          */
2780         if (ext4_has_inline_data(inode)) {
2781                 /* Just inode will be modified... */
2782                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2783                 if (IS_ERR(handle)) {
2784                         ret = PTR_ERR(handle);
2785                         goto out_writepages;
2786                 }
2787                 BUG_ON(ext4_test_inode_state(inode,
2788                                 EXT4_STATE_MAY_INLINE_DATA));
2789                 ext4_destroy_inline_data(handle, inode);
2790                 ext4_journal_stop(handle);
2791         }
2792
2793         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2794                 range_whole = 1;
2795
2796         if (wbc->range_cyclic) {
2797                 writeback_index = mapping->writeback_index;
2798                 if (writeback_index)
2799                         cycled = 0;
2800                 mpd.first_page = writeback_index;
2801                 mpd.last_page = -1;
2802         } else {
2803                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2804                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2805         }
2806
2807         mpd.inode = inode;
2808         mpd.wbc = wbc;
2809         ext4_io_submit_init(&mpd.io_submit, wbc);
2810 retry:
2811         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2812                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2813         done = false;
2814         blk_start_plug(&plug);
2815
2816         /*
2817          * First writeback pages that don't need mapping - we can avoid
2818          * starting a transaction unnecessarily and also avoid being blocked
2819          * in the block layer on device congestion while having transaction
2820          * started.
2821          */
2822         mpd.do_map = 0;
2823         mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2824         if (!mpd.io_submit.io_end) {
2825                 ret = -ENOMEM;
2826                 goto unplug;
2827         }
2828         ret = mpage_prepare_extent_to_map(&mpd);
2829         /* Submit prepared bio */
2830         ext4_io_submit(&mpd.io_submit);
2831         ext4_put_io_end_defer(mpd.io_submit.io_end);
2832         mpd.io_submit.io_end = NULL;
2833         /* Unlock pages we didn't use */
2834         mpage_release_unused_pages(&mpd, false);
2835         if (ret < 0)
2836                 goto unplug;
2837
2838         while (!done && mpd.first_page <= mpd.last_page) {
2839                 /* For each extent of pages we use new io_end */
2840                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2841                 if (!mpd.io_submit.io_end) {
2842                         ret = -ENOMEM;
2843                         break;
2844                 }
2845
2846                 /*
2847                  * We have two constraints: We find one extent to map and we
2848                  * must always write out whole page (makes a difference when
2849                  * blocksize < pagesize) so that we don't block on IO when we
2850                  * try to write out the rest of the page. Journalled mode is
2851                  * not supported by delalloc.
2852                  */
2853                 BUG_ON(ext4_should_journal_data(inode));
2854                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2855
2856                 /* start a new transaction */
2857                 handle = ext4_journal_start_with_reserve(inode,
2858                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2859                 if (IS_ERR(handle)) {
2860                         ret = PTR_ERR(handle);
2861                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2862                                "%ld pages, ino %lu; err %d", __func__,
2863                                 wbc->nr_to_write, inode->i_ino, ret);
2864                         /* Release allocated io_end */
2865                         ext4_put_io_end(mpd.io_submit.io_end);
2866                         mpd.io_submit.io_end = NULL;
2867                         break;
2868                 }
2869                 mpd.do_map = 1;
2870
2871                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2872                 ret = mpage_prepare_extent_to_map(&mpd);
2873                 if (!ret) {
2874                         if (mpd.map.m_len)
2875                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2876                                         &give_up_on_write);
2877                         else {
2878                                 /*
2879                                  * We scanned the whole range (or exhausted
2880                                  * nr_to_write), submitted what was mapped and
2881                                  * didn't find anything needing mapping. We are
2882                                  * done.
2883                                  */
2884                                 done = true;
2885                         }
2886                 }
2887                 /*
2888                  * Caution: If the handle is synchronous,
2889                  * ext4_journal_stop() can wait for transaction commit
2890                  * to finish which may depend on writeback of pages to
2891                  * complete or on page lock to be released.  In that
2892                  * case, we have to wait until after after we have
2893                  * submitted all the IO, released page locks we hold,
2894                  * and dropped io_end reference (for extent conversion
2895                  * to be able to complete) before stopping the handle.
2896                  */
2897                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2898                         ext4_journal_stop(handle);
2899                         handle = NULL;
2900                         mpd.do_map = 0;
2901                 }
2902                 /* Submit prepared bio */
2903                 ext4_io_submit(&mpd.io_submit);
2904                 /* Unlock pages we didn't use */
2905                 mpage_release_unused_pages(&mpd, give_up_on_write);
2906                 /*
2907                  * Drop our io_end reference we got from init. We have
2908                  * to be careful and use deferred io_end finishing if
2909                  * we are still holding the transaction as we can
2910                  * release the last reference to io_end which may end
2911                  * up doing unwritten extent conversion.
2912                  */
2913                 if (handle) {
2914                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2915                         ext4_journal_stop(handle);
2916                 } else
2917                         ext4_put_io_end(mpd.io_submit.io_end);
2918                 mpd.io_submit.io_end = NULL;
2919
2920                 if (ret == -ENOSPC && sbi->s_journal) {
2921                         /*
2922                          * Commit the transaction which would
2923                          * free blocks released in the transaction
2924                          * and try again
2925                          */
2926                         jbd2_journal_force_commit_nested(sbi->s_journal);
2927                         ret = 0;
2928                         continue;
2929                 }
2930                 /* Fatal error - ENOMEM, EIO... */
2931                 if (ret)
2932                         break;
2933         }
2934 unplug:
2935         blk_finish_plug(&plug);
2936         if (!ret && !cycled && wbc->nr_to_write > 0) {
2937                 cycled = 1;
2938                 mpd.last_page = writeback_index - 1;
2939                 mpd.first_page = 0;
2940                 goto retry;
2941         }
2942
2943         /* Update index */
2944         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2945                 /*
2946                  * Set the writeback_index so that range_cyclic
2947                  * mode will write it back later
2948                  */
2949                 mapping->writeback_index = mpd.first_page;
2950
2951 out_writepages:
2952         trace_ext4_writepages_result(inode, wbc, ret,
2953                                      nr_to_write - wbc->nr_to_write);
2954         percpu_up_read(&sbi->s_journal_flag_rwsem);
2955         return ret;
2956 }
2957
2958 static int ext4_nonda_switch(struct super_block *sb)
2959 {
2960         s64 free_clusters, dirty_clusters;
2961         struct ext4_sb_info *sbi = EXT4_SB(sb);
2962
2963         /*
2964          * switch to non delalloc mode if we are running low
2965          * on free block. The free block accounting via percpu
2966          * counters can get slightly wrong with percpu_counter_batch getting
2967          * accumulated on each CPU without updating global counters
2968          * Delalloc need an accurate free block accounting. So switch
2969          * to non delalloc when we are near to error range.
2970          */
2971         free_clusters =
2972                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2973         dirty_clusters =
2974                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2975         /*
2976          * Start pushing delalloc when 1/2 of free blocks are dirty.
2977          */
2978         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2979                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2980
2981         if (2 * free_clusters < 3 * dirty_clusters ||
2982             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2983                 /*
2984                  * free block count is less than 150% of dirty blocks
2985                  * or free blocks is less than watermark
2986                  */
2987                 return 1;
2988         }
2989         return 0;
2990 }
2991
2992 /* We always reserve for an inode update; the superblock could be there too */
2993 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2994 {
2995         if (likely(ext4_has_feature_large_file(inode->i_sb)))
2996                 return 1;
2997
2998         if (pos + len <= 0x7fffffffULL)
2999                 return 1;
3000
3001         /* We might need to update the superblock to set LARGE_FILE */
3002         return 2;
3003 }
3004
3005 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3006                                loff_t pos, unsigned len, unsigned flags,
3007                                struct page **pagep, void **fsdata)
3008 {
3009         int ret, retries = 0;
3010         struct page *page;
3011         pgoff_t index;
3012         struct inode *inode = mapping->host;
3013         handle_t *handle;
3014
3015         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3016                 return -EIO;
3017
3018         index = pos >> PAGE_SHIFT;
3019
3020         if (ext4_nonda_switch(inode->i_sb) ||
3021             S_ISLNK(inode->i_mode)) {
3022                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3023                 return ext4_write_begin(file, mapping, pos,
3024                                         len, flags, pagep, fsdata);
3025         }
3026         *fsdata = (void *)0;
3027         trace_ext4_da_write_begin(inode, pos, len, flags);
3028
3029         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3030                 ret = ext4_da_write_inline_data_begin(mapping, inode,
3031                                                       pos, len, flags,
3032                                                       pagep, fsdata);
3033                 if (ret < 0)
3034                         return ret;
3035                 if (ret == 1)
3036                         return 0;
3037         }
3038
3039         /*
3040          * grab_cache_page_write_begin() can take a long time if the
3041          * system is thrashing due to memory pressure, or if the page
3042          * is being written back.  So grab it first before we start
3043          * the transaction handle.  This also allows us to allocate
3044          * the page (if needed) without using GFP_NOFS.
3045          */
3046 retry_grab:
3047         page = grab_cache_page_write_begin(mapping, index, flags);
3048         if (!page)
3049                 return -ENOMEM;
3050         unlock_page(page);
3051
3052         /*
3053          * With delayed allocation, we don't log the i_disksize update
3054          * if there is delayed block allocation. But we still need
3055          * to journalling the i_disksize update if writes to the end
3056          * of file which has an already mapped buffer.
3057          */
3058 retry_journal:
3059         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3060                                 ext4_da_write_credits(inode, pos, len));
3061         if (IS_ERR(handle)) {
3062                 put_page(page);
3063                 return PTR_ERR(handle);
3064         }
3065
3066         lock_page(page);
3067         if (page->mapping != mapping) {
3068                 /* The page got truncated from under us */
3069                 unlock_page(page);
3070                 put_page(page);
3071                 ext4_journal_stop(handle);
3072                 goto retry_grab;
3073         }
3074         /* In case writeback began while the page was unlocked */
3075         wait_for_stable_page(page);
3076
3077 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3078         ret = ext4_block_write_begin(page, pos, len,
3079                                      ext4_da_get_block_prep);
3080 #else
3081         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3082 #endif
3083         if (ret < 0) {
3084                 unlock_page(page);
3085                 ext4_journal_stop(handle);
3086                 /*
3087                  * block_write_begin may have instantiated a few blocks
3088                  * outside i_size.  Trim these off again. Don't need
3089                  * i_size_read because we hold i_mutex.
3090                  */
3091                 if (pos + len > inode->i_size)
3092                         ext4_truncate_failed_write(inode);
3093
3094                 if (ret == -ENOSPC &&
3095                     ext4_should_retry_alloc(inode->i_sb, &retries))
3096                         goto retry_journal;
3097
3098                 put_page(page);
3099                 return ret;
3100         }
3101
3102         *pagep = page;
3103         return ret;
3104 }
3105
3106 /*
3107  * Check if we should update i_disksize
3108  * when write to the end of file but not require block allocation
3109  */
3110 static int ext4_da_should_update_i_disksize(struct page *page,
3111                                             unsigned long offset)
3112 {
3113         struct buffer_head *bh;
3114         struct inode *inode = page->mapping->host;
3115         unsigned int idx;
3116         int i;
3117
3118         bh = page_buffers(page);
3119         idx = offset >> inode->i_blkbits;
3120
3121         for (i = 0; i < idx; i++)
3122                 bh = bh->b_this_page;
3123
3124         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3125                 return 0;
3126         return 1;
3127 }
3128
3129 static int ext4_da_write_end(struct file *file,
3130                              struct address_space *mapping,
3131                              loff_t pos, unsigned len, unsigned copied,
3132                              struct page *page, void *fsdata)
3133 {
3134         struct inode *inode = mapping->host;
3135         int ret = 0, ret2;
3136         handle_t *handle = ext4_journal_current_handle();
3137         loff_t new_i_size;
3138         unsigned long start, end;
3139         int write_mode = (int)(unsigned long)fsdata;
3140
3141         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3142                 return ext4_write_end(file, mapping, pos,
3143                                       len, copied, page, fsdata);
3144
3145         trace_ext4_da_write_end(inode, pos, len, copied);
3146         start = pos & (PAGE_SIZE - 1);
3147         end = start + copied - 1;
3148
3149         /*
3150          * generic_write_end() will run mark_inode_dirty() if i_size
3151          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3152          * into that.
3153          */
3154         new_i_size = pos + copied;
3155         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3156                 if (ext4_has_inline_data(inode) ||
3157                     ext4_da_should_update_i_disksize(page, end)) {
3158                         ext4_update_i_disksize(inode, new_i_size);
3159                         /* We need to mark inode dirty even if
3160                          * new_i_size is less that inode->i_size
3161                          * bu greater than i_disksize.(hint delalloc)
3162                          */
3163                         ext4_mark_inode_dirty(handle, inode);
3164                 }
3165         }
3166
3167         if (write_mode != CONVERT_INLINE_DATA &&
3168             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3169             ext4_has_inline_data(inode))
3170                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3171                                                      page);
3172         else
3173                 ret2 = generic_write_end(file, mapping, pos, len, copied,
3174                                                         page, fsdata);
3175
3176         copied = ret2;
3177         if (ret2 < 0)
3178                 ret = ret2;
3179         ret2 = ext4_journal_stop(handle);
3180         if (!ret)
3181                 ret = ret2;
3182
3183         return ret ? ret : copied;
3184 }
3185
3186 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3187                                    unsigned int length)
3188 {
3189         /*
3190          * Drop reserved blocks
3191          */
3192         BUG_ON(!PageLocked(page));
3193         if (!page_has_buffers(page))
3194                 goto out;
3195
3196         ext4_da_page_release_reservation(page, offset, length);
3197
3198 out:
3199         ext4_invalidatepage(page, offset, length);
3200
3201         return;
3202 }
3203
3204 /*
3205  * Force all delayed allocation blocks to be allocated for a given inode.
3206  */
3207 int ext4_alloc_da_blocks(struct inode *inode)
3208 {
3209         trace_ext4_alloc_da_blocks(inode);
3210
3211         if (!EXT4_I(inode)->i_reserved_data_blocks)
3212                 return 0;
3213
3214         /*
3215          * We do something simple for now.  The filemap_flush() will
3216          * also start triggering a write of the data blocks, which is
3217          * not strictly speaking necessary (and for users of
3218          * laptop_mode, not even desirable).  However, to do otherwise
3219          * would require replicating code paths in:
3220          *
3221          * ext4_writepages() ->
3222          *    write_cache_pages() ---> (via passed in callback function)
3223          *        __mpage_da_writepage() -->
3224          *           mpage_add_bh_to_extent()
3225          *           mpage_da_map_blocks()
3226          *
3227          * The problem is that write_cache_pages(), located in
3228          * mm/page-writeback.c, marks pages clean in preparation for
3229          * doing I/O, which is not desirable if we're not planning on
3230          * doing I/O at all.
3231          *
3232          * We could call write_cache_pages(), and then redirty all of
3233          * the pages by calling redirty_page_for_writepage() but that
3234          * would be ugly in the extreme.  So instead we would need to
3235          * replicate parts of the code in the above functions,
3236          * simplifying them because we wouldn't actually intend to
3237          * write out the pages, but rather only collect contiguous
3238          * logical block extents, call the multi-block allocator, and
3239          * then update the buffer heads with the block allocations.
3240          *
3241          * For now, though, we'll cheat by calling filemap_flush(),
3242          * which will map the blocks, and start the I/O, but not
3243          * actually wait for the I/O to complete.
3244          */
3245         return filemap_flush(inode->i_mapping);
3246 }
3247
3248 /*
3249  * bmap() is special.  It gets used by applications such as lilo and by
3250  * the swapper to find the on-disk block of a specific piece of data.
3251  *
3252  * Naturally, this is dangerous if the block concerned is still in the
3253  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3254  * filesystem and enables swap, then they may get a nasty shock when the
3255  * data getting swapped to that swapfile suddenly gets overwritten by
3256  * the original zero's written out previously to the journal and
3257  * awaiting writeback in the kernel's buffer cache.
3258  *
3259  * So, if we see any bmap calls here on a modified, data-journaled file,
3260  * take extra steps to flush any blocks which might be in the cache.
3261  */
3262 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3263 {
3264         struct inode *inode = mapping->host;
3265         journal_t *journal;
3266         int err;
3267
3268         /*
3269          * We can get here for an inline file via the FIBMAP ioctl
3270          */
3271         if (ext4_has_inline_data(inode))
3272                 return 0;
3273
3274         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3275                         test_opt(inode->i_sb, DELALLOC)) {
3276                 /*
3277                  * With delalloc we want to sync the file
3278                  * so that we can make sure we allocate
3279                  * blocks for file
3280                  */
3281                 filemap_write_and_wait(mapping);
3282         }
3283
3284         if (EXT4_JOURNAL(inode) &&
3285             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3286                 /*
3287                  * This is a REALLY heavyweight approach, but the use of
3288                  * bmap on dirty files is expected to be extremely rare:
3289                  * only if we run lilo or swapon on a freshly made file
3290                  * do we expect this to happen.
3291                  *
3292                  * (bmap requires CAP_SYS_RAWIO so this does not
3293                  * represent an unprivileged user DOS attack --- we'd be
3294                  * in trouble if mortal users could trigger this path at
3295                  * will.)
3296                  *
3297                  * NB. EXT4_STATE_JDATA is not set on files other than
3298                  * regular files.  If somebody wants to bmap a directory
3299                  * or symlink and gets confused because the buffer
3300                  * hasn't yet been flushed to disk, they deserve
3301                  * everything they get.
3302                  */
3303
3304                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3305                 journal = EXT4_JOURNAL(inode);
3306                 jbd2_journal_lock_updates(journal);
3307                 err = jbd2_journal_flush(journal);
3308                 jbd2_journal_unlock_updates(journal);
3309
3310                 if (err)
3311                         return 0;
3312         }
3313
3314         return generic_block_bmap(mapping, block, ext4_get_block);
3315 }
3316
3317 static int ext4_readpage(struct file *file, struct page *page)
3318 {
3319         int ret = -EAGAIN;
3320         struct inode *inode = page->mapping->host;
3321
3322         trace_ext4_readpage(page);
3323
3324         if (ext4_has_inline_data(inode))
3325                 ret = ext4_readpage_inline(inode, page);
3326
3327         if (ret == -EAGAIN)
3328                 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3329
3330         return ret;
3331 }
3332
3333 static int
3334 ext4_readpages(struct file *file, struct address_space *mapping,
3335                 struct list_head *pages, unsigned nr_pages)
3336 {
3337         struct inode *inode = mapping->host;
3338
3339         /* If the file has inline data, no need to do readpages. */
3340         if (ext4_has_inline_data(inode))
3341                 return 0;
3342
3343         return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3344 }
3345
3346 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3347                                 unsigned int length)
3348 {
3349         trace_ext4_invalidatepage(page, offset, length);
3350
3351         /* No journalling happens on data buffers when this function is used */
3352         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3353
3354         block_invalidatepage(page, offset, length);
3355 }
3356
3357 static int __ext4_journalled_invalidatepage(struct page *page,
3358                                             unsigned int offset,
3359                                             unsigned int length)
3360 {
3361         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3362
3363         trace_ext4_journalled_invalidatepage(page, offset, length);
3364
3365         /*
3366          * If it's a full truncate we just forget about the pending dirtying
3367          */
3368         if (offset == 0 && length == PAGE_SIZE)
3369                 ClearPageChecked(page);
3370
3371         return jbd2_journal_invalidatepage(journal, page, offset, length);
3372 }
3373
3374 /* Wrapper for aops... */
3375 static void ext4_journalled_invalidatepage(struct page *page,
3376                                            unsigned int offset,
3377                                            unsigned int length)
3378 {
3379         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3380 }
3381
3382 static int ext4_releasepage(struct page *page, gfp_t wait)
3383 {
3384         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3385
3386         trace_ext4_releasepage(page);
3387
3388         /* Page has dirty journalled data -> cannot release */
3389         if (PageChecked(page))
3390                 return 0;
3391         if (journal)
3392                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3393         else
3394                 return try_to_free_buffers(page);
3395 }
3396
3397 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3398                             unsigned flags, struct iomap *iomap)
3399 {
3400         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3401         unsigned int blkbits = inode->i_blkbits;
3402         unsigned long first_block = offset >> blkbits;
3403         unsigned long last_block = (offset + length - 1) >> blkbits;
3404         struct ext4_map_blocks map;
3405         bool delalloc = false;
3406         int ret;
3407
3408
3409         if (flags & IOMAP_REPORT) {
3410                 if (ext4_has_inline_data(inode)) {
3411                         ret = ext4_inline_data_iomap(inode, iomap);
3412                         if (ret != -EAGAIN) {
3413                                 if (ret == 0 && offset >= iomap->length)
3414                                         ret = -ENOENT;
3415                                 return ret;
3416                         }
3417                 }
3418         } else {
3419                 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3420                         return -ERANGE;
3421         }
3422
3423         map.m_lblk = first_block;
3424         map.m_len = last_block - first_block + 1;
3425
3426         if (flags & IOMAP_REPORT) {
3427                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3428                 if (ret < 0)
3429                         return ret;
3430
3431                 if (ret == 0) {
3432                         ext4_lblk_t end = map.m_lblk + map.m_len - 1;
3433                         struct extent_status es;
3434
3435                         ext4_es_find_delayed_extent_range(inode, map.m_lblk, end, &es);
3436
3437                         if (!es.es_len || es.es_lblk > end) {
3438                                 /* entire range is a hole */
3439                         } else if (es.es_lblk > map.m_lblk) {
3440                                 /* range starts with a hole */
3441                                 map.m_len = es.es_lblk - map.m_lblk;
3442                         } else {
3443                                 ext4_lblk_t offs = 0;
3444
3445                                 if (es.es_lblk < map.m_lblk)
3446                                         offs = map.m_lblk - es.es_lblk;
3447                                 map.m_lblk = es.es_lblk + offs;
3448                                 map.m_len = es.es_len - offs;
3449                                 delalloc = true;
3450                         }
3451                 }
3452         } else if (flags & IOMAP_WRITE) {
3453                 int dio_credits;
3454                 handle_t *handle;
3455                 int retries = 0;
3456
3457                 /* Trim mapping request to maximum we can map at once for DIO */
3458                 if (map.m_len > DIO_MAX_BLOCKS)
3459                         map.m_len = DIO_MAX_BLOCKS;
3460                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3461 retry:
3462                 /*
3463                  * Either we allocate blocks and then we don't get unwritten
3464                  * extent so we have reserved enough credits, or the blocks
3465                  * are already allocated and unwritten and in that case
3466                  * extent conversion fits in the credits as well.
3467                  */
3468                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3469                                             dio_credits);
3470                 if (IS_ERR(handle))
3471                         return PTR_ERR(handle);
3472
3473                 ret = ext4_map_blocks(handle, inode, &map,
3474                                       EXT4_GET_BLOCKS_CREATE_ZERO);
3475                 if (ret < 0) {
3476                         ext4_journal_stop(handle);
3477                         if (ret == -ENOSPC &&
3478                             ext4_should_retry_alloc(inode->i_sb, &retries))
3479                                 goto retry;
3480                         return ret;
3481                 }
3482
3483                 /*
3484                  * If we added blocks beyond i_size, we need to make sure they
3485                  * will get truncated if we crash before updating i_size in
3486                  * ext4_iomap_end(). For faults we don't need to do that (and
3487                  * even cannot because for orphan list operations inode_lock is
3488                  * required) - if we happen to instantiate block beyond i_size,
3489                  * it is because we race with truncate which has already added
3490                  * the inode to the orphan list.
3491                  */
3492                 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3493                     (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3494                         int err;
3495
3496                         err = ext4_orphan_add(handle, inode);
3497                         if (err < 0) {
3498                                 ext4_journal_stop(handle);
3499                                 return err;
3500                         }
3501                 }
3502                 ext4_journal_stop(handle);
3503         } else {
3504                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3505                 if (ret < 0)
3506                         return ret;
3507         }
3508
3509         iomap->flags = 0;
3510         iomap->bdev = inode->i_sb->s_bdev;
3511         iomap->dax_dev = sbi->s_daxdev;
3512         iomap->offset = first_block << blkbits;
3513         iomap->length = (u64)map.m_len << blkbits;
3514
3515         if (ret == 0) {
3516                 iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE;
3517                 iomap->addr = IOMAP_NULL_ADDR;
3518         } else {
3519                 if (map.m_flags & EXT4_MAP_MAPPED) {
3520                         iomap->type = IOMAP_MAPPED;
3521                 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3522                         iomap->type = IOMAP_UNWRITTEN;
3523                 } else {
3524                         WARN_ON_ONCE(1);
3525                         return -EIO;
3526                 }
3527                 iomap->addr = (u64)map.m_pblk << blkbits;
3528         }
3529
3530         if (map.m_flags & EXT4_MAP_NEW)
3531                 iomap->flags |= IOMAP_F_NEW;
3532
3533         return 0;
3534 }
3535
3536 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3537                           ssize_t written, unsigned flags, struct iomap *iomap)
3538 {
3539         int ret = 0;
3540         handle_t *handle;
3541         int blkbits = inode->i_blkbits;
3542         bool truncate = false;
3543
3544         if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3545                 return 0;
3546
3547         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3548         if (IS_ERR(handle)) {
3549                 ret = PTR_ERR(handle);
3550                 goto orphan_del;
3551         }
3552         if (ext4_update_inode_size(inode, offset + written))
3553                 ext4_mark_inode_dirty(handle, inode);
3554         /*
3555          * We may need to truncate allocated but not written blocks beyond EOF.
3556          */
3557         if (iomap->offset + iomap->length > 
3558             ALIGN(inode->i_size, 1 << blkbits)) {
3559                 ext4_lblk_t written_blk, end_blk;
3560
3561                 written_blk = (offset + written) >> blkbits;
3562                 end_blk = (offset + length) >> blkbits;
3563                 if (written_blk < end_blk && ext4_can_truncate(inode))
3564                         truncate = true;
3565         }
3566         /*
3567          * Remove inode from orphan list if we were extending a inode and
3568          * everything went fine.
3569          */
3570         if (!truncate && inode->i_nlink &&
3571             !list_empty(&EXT4_I(inode)->i_orphan))
3572                 ext4_orphan_del(handle, inode);
3573         ext4_journal_stop(handle);
3574         if (truncate) {
3575                 ext4_truncate_failed_write(inode);
3576 orphan_del:
3577                 /*
3578                  * If truncate failed early the inode might still be on the
3579                  * orphan list; we need to make sure the inode is removed from
3580                  * the orphan list in that case.
3581                  */
3582                 if (inode->i_nlink)
3583                         ext4_orphan_del(NULL, inode);
3584         }
3585         return ret;
3586 }
3587
3588 const struct iomap_ops ext4_iomap_ops = {
3589         .iomap_begin            = ext4_iomap_begin,
3590         .iomap_end              = ext4_iomap_end,
3591 };
3592
3593 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3594                             ssize_t size, void *private)
3595 {
3596         ext4_io_end_t *io_end = private;
3597
3598         /* if not async direct IO just return */
3599         if (!io_end)
3600                 return 0;
3601
3602         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3603                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3604                   io_end, io_end->inode->i_ino, iocb, offset, size);
3605
3606         /*
3607          * Error during AIO DIO. We cannot convert unwritten extents as the
3608          * data was not written. Just clear the unwritten flag and drop io_end.
3609          */
3610         if (size <= 0) {
3611                 ext4_clear_io_unwritten_flag(io_end);
3612                 size = 0;
3613         }
3614         io_end->offset = offset;
3615         io_end->size = size;
3616         ext4_put_io_end(io_end);
3617
3618         return 0;
3619 }
3620
3621 /*
3622  * Handling of direct IO writes.
3623  *
3624  * For ext4 extent files, ext4 will do direct-io write even to holes,
3625  * preallocated extents, and those write extend the file, no need to
3626  * fall back to buffered IO.
3627  *
3628  * For holes, we fallocate those blocks, mark them as unwritten
3629  * If those blocks were preallocated, we mark sure they are split, but
3630  * still keep the range to write as unwritten.
3631  *
3632  * The unwritten extents will be converted to written when DIO is completed.
3633  * For async direct IO, since the IO may still pending when return, we
3634  * set up an end_io call back function, which will do the conversion
3635  * when async direct IO completed.
3636  *
3637  * If the O_DIRECT write will extend the file then add this inode to the
3638  * orphan list.  So recovery will truncate it back to the original size
3639  * if the machine crashes during the write.
3640  *
3641  */
3642 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3643 {
3644         struct file *file = iocb->ki_filp;
3645         struct inode *inode = file->f_mapping->host;
3646         struct ext4_inode_info *ei = EXT4_I(inode);
3647         ssize_t ret;
3648         loff_t offset = iocb->ki_pos;
3649         size_t count = iov_iter_count(iter);
3650         int overwrite = 0;
3651         get_block_t *get_block_func = NULL;
3652         int dio_flags = 0;
3653         loff_t final_size = offset + count;
3654         int orphan = 0;
3655         handle_t *handle;
3656
3657         if (final_size > inode->i_size) {
3658                 /* Credits for sb + inode write */
3659                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3660                 if (IS_ERR(handle)) {
3661                         ret = PTR_ERR(handle);
3662                         goto out;
3663                 }
3664                 ret = ext4_orphan_add(handle, inode);
3665                 if (ret) {
3666                         ext4_journal_stop(handle);
3667                         goto out;
3668                 }
3669                 orphan = 1;
3670                 ei->i_disksize = inode->i_size;
3671                 ext4_journal_stop(handle);
3672         }
3673
3674         BUG_ON(iocb->private == NULL);
3675
3676         /*
3677          * Make all waiters for direct IO properly wait also for extent
3678          * conversion. This also disallows race between truncate() and
3679          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3680          */
3681         inode_dio_begin(inode);
3682
3683         /* If we do a overwrite dio, i_mutex locking can be released */
3684         overwrite = *((int *)iocb->private);
3685
3686         if (overwrite)
3687                 inode_unlock(inode);
3688
3689         /*
3690          * For extent mapped files we could direct write to holes and fallocate.
3691          *
3692          * Allocated blocks to fill the hole are marked as unwritten to prevent
3693          * parallel buffered read to expose the stale data before DIO complete
3694          * the data IO.
3695          *
3696          * As to previously fallocated extents, ext4 get_block will just simply
3697          * mark the buffer mapped but still keep the extents unwritten.
3698          *
3699          * For non AIO case, we will convert those unwritten extents to written
3700          * after return back from blockdev_direct_IO. That way we save us from
3701          * allocating io_end structure and also the overhead of offloading
3702          * the extent convertion to a workqueue.
3703          *
3704          * For async DIO, the conversion needs to be deferred when the
3705          * IO is completed. The ext4 end_io callback function will be
3706          * called to take care of the conversion work.  Here for async
3707          * case, we allocate an io_end structure to hook to the iocb.
3708          */
3709         iocb->private = NULL;
3710         if (overwrite)
3711                 get_block_func = ext4_dio_get_block_overwrite;
3712         else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3713                    round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3714                 get_block_func = ext4_dio_get_block;
3715                 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3716         } else if (is_sync_kiocb(iocb)) {
3717                 get_block_func = ext4_dio_get_block_unwritten_sync;
3718                 dio_flags = DIO_LOCKING;
3719         } else {
3720                 get_block_func = ext4_dio_get_block_unwritten_async;
3721                 dio_flags = DIO_LOCKING;
3722         }
3723         ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3724                                    get_block_func, ext4_end_io_dio, NULL,
3725                                    dio_flags);
3726
3727         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3728                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3729                 int err;
3730                 /*
3731                  * for non AIO case, since the IO is already
3732                  * completed, we could do the conversion right here
3733                  */
3734                 err = ext4_convert_unwritten_extents(NULL, inode,
3735                                                      offset, ret);
3736                 if (err < 0)
3737                         ret = err;
3738                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3739         }
3740
3741         inode_dio_end(inode);
3742         /* take i_mutex locking again if we do a ovewrite dio */
3743         if (overwrite)
3744                 inode_lock(inode);
3745
3746         if (ret < 0 && final_size > inode->i_size)
3747                 ext4_truncate_failed_write(inode);
3748
3749         /* Handle extending of i_size after direct IO write */
3750         if (orphan) {
3751                 int err;
3752
3753                 /* Credits for sb + inode write */
3754                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3755                 if (IS_ERR(handle)) {
3756                         /* This is really bad luck. We've written the data
3757                          * but cannot extend i_size. Bail out and pretend
3758                          * the write failed... */
3759                         ret = PTR_ERR(handle);
3760                         if (inode->i_nlink)
3761                                 ext4_orphan_del(NULL, inode);
3762
3763                         goto out;
3764                 }
3765                 if (inode->i_nlink)
3766                         ext4_orphan_del(handle, inode);
3767                 if (ret > 0) {
3768                         loff_t end = offset + ret;
3769                         if (end > inode->i_size) {
3770                                 ei->i_disksize = end;
3771                                 i_size_write(inode, end);
3772                                 /*
3773                                  * We're going to return a positive `ret'
3774                                  * here due to non-zero-length I/O, so there's
3775                                  * no way of reporting error returns from
3776                                  * ext4_mark_inode_dirty() to userspace.  So
3777                                  * ignore it.
3778                                  */
3779                                 ext4_mark_inode_dirty(handle, inode);
3780                         }
3781                 }
3782                 err = ext4_journal_stop(handle);
3783                 if (ret == 0)
3784                         ret = err;
3785         }
3786 out:
3787         return ret;
3788 }
3789
3790 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3791 {
3792         struct address_space *mapping = iocb->ki_filp->f_mapping;
3793         struct inode *inode = mapping->host;
3794         size_t count = iov_iter_count(iter);
3795         ssize_t ret;
3796
3797         /*
3798          * Shared inode_lock is enough for us - it protects against concurrent
3799          * writes & truncates and since we take care of writing back page cache,
3800          * we are protected against page writeback as well.
3801          */
3802         inode_lock_shared(inode);
3803         ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3804                                            iocb->ki_pos + count - 1);
3805         if (ret)
3806                 goto out_unlock;
3807         ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3808                                    iter, ext4_dio_get_block, NULL, NULL, 0);
3809 out_unlock:
3810         inode_unlock_shared(inode);
3811         return ret;
3812 }
3813
3814 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3815 {
3816         struct file *file = iocb->ki_filp;
3817         struct inode *inode = file->f_mapping->host;
3818         size_t count = iov_iter_count(iter);
3819         loff_t offset = iocb->ki_pos;
3820         ssize_t ret;
3821
3822 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3823         if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3824                 return 0;
3825 #endif
3826
3827         /*
3828          * If we are doing data journalling we don't support O_DIRECT
3829          */
3830         if (ext4_should_journal_data(inode))
3831                 return 0;
3832
3833         /* Let buffer I/O handle the inline data case. */
3834         if (ext4_has_inline_data(inode))
3835                 return 0;
3836
3837         /* DAX uses iomap path now */
3838         if (WARN_ON_ONCE(IS_DAX(inode)))
3839                 return 0;
3840
3841         trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3842         if (iov_iter_rw(iter) == READ)
3843                 ret = ext4_direct_IO_read(iocb, iter);
3844         else
3845                 ret = ext4_direct_IO_write(iocb, iter);
3846         trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3847         return ret;
3848 }
3849
3850 /*
3851  * Pages can be marked dirty completely asynchronously from ext4's journalling
3852  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3853  * much here because ->set_page_dirty is called under VFS locks.  The page is
3854  * not necessarily locked.
3855  *
3856  * We cannot just dirty the page and leave attached buffers clean, because the
3857  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3858  * or jbddirty because all the journalling code will explode.
3859  *
3860  * So what we do is to mark the page "pending dirty" and next time writepage
3861  * is called, propagate that into the buffers appropriately.
3862  */
3863 static int ext4_journalled_set_page_dirty(struct page *page)
3864 {
3865         SetPageChecked(page);
3866         return __set_page_dirty_nobuffers(page);
3867 }
3868
3869 static int ext4_set_page_dirty(struct page *page)
3870 {
3871         WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3872         WARN_ON_ONCE(!page_has_buffers(page));
3873         return __set_page_dirty_buffers(page);
3874 }
3875
3876 static const struct address_space_operations ext4_aops = {
3877         .readpage               = ext4_readpage,
3878         .readpages              = ext4_readpages,
3879         .writepage              = ext4_writepage,
3880         .writepages             = ext4_writepages,
3881         .write_begin            = ext4_write_begin,
3882         .write_end              = ext4_write_end,
3883         .set_page_dirty         = ext4_set_page_dirty,
3884         .bmap                   = ext4_bmap,
3885         .invalidatepage         = ext4_invalidatepage,
3886         .releasepage            = ext4_releasepage,
3887         .direct_IO              = ext4_direct_IO,
3888         .migratepage            = buffer_migrate_page,
3889         .is_partially_uptodate  = block_is_partially_uptodate,
3890         .error_remove_page      = generic_error_remove_page,
3891 };
3892
3893 static const struct address_space_operations ext4_journalled_aops = {
3894         .readpage               = ext4_readpage,
3895         .readpages              = ext4_readpages,
3896         .writepage              = ext4_writepage,
3897         .writepages             = ext4_writepages,
3898         .write_begin            = ext4_write_begin,
3899         .write_end              = ext4_journalled_write_end,
3900         .set_page_dirty         = ext4_journalled_set_page_dirty,
3901         .bmap                   = ext4_bmap,
3902         .invalidatepage         = ext4_journalled_invalidatepage,
3903         .releasepage            = ext4_releasepage,
3904         .direct_IO              = ext4_direct_IO,
3905         .is_partially_uptodate  = block_is_partially_uptodate,
3906         .error_remove_page      = generic_error_remove_page,
3907 };
3908
3909 static const struct address_space_operations ext4_da_aops = {
3910         .readpage               = ext4_readpage,
3911         .readpages              = ext4_readpages,
3912         .writepage              = ext4_writepage,
3913         .writepages             = ext4_writepages,
3914         .write_begin            = ext4_da_write_begin,
3915         .write_end              = ext4_da_write_end,
3916         .set_page_dirty         = ext4_set_page_dirty,
3917         .bmap                   = ext4_bmap,
3918         .invalidatepage         = ext4_da_invalidatepage,
3919         .releasepage            = ext4_releasepage,
3920         .direct_IO              = ext4_direct_IO,
3921         .migratepage            = buffer_migrate_page,
3922         .is_partially_uptodate  = block_is_partially_uptodate,
3923         .error_remove_page      = generic_error_remove_page,
3924 };
3925
3926 void ext4_set_aops(struct inode *inode)
3927 {
3928         switch (ext4_inode_journal_mode(inode)) {
3929         case EXT4_INODE_ORDERED_DATA_MODE:
3930         case EXT4_INODE_WRITEBACK_DATA_MODE:
3931                 break;
3932         case EXT4_INODE_JOURNAL_DATA_MODE:
3933                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3934                 return;
3935         default:
3936                 BUG();
3937         }
3938         if (test_opt(inode->i_sb, DELALLOC))
3939                 inode->i_mapping->a_ops = &ext4_da_aops;
3940         else
3941                 inode->i_mapping->a_ops = &ext4_aops;
3942 }
3943
3944 static int __ext4_block_zero_page_range(handle_t *handle,
3945                 struct address_space *mapping, loff_t from, loff_t length)
3946 {
3947         ext4_fsblk_t index = from >> PAGE_SHIFT;
3948         unsigned offset = from & (PAGE_SIZE-1);
3949         unsigned blocksize, pos;
3950         ext4_lblk_t iblock;
3951         struct inode *inode = mapping->host;
3952         struct buffer_head *bh;
3953         struct page *page;
3954         int err = 0;
3955
3956         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3957                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3958         if (!page)
3959                 return -ENOMEM;
3960
3961         blocksize = inode->i_sb->s_blocksize;
3962
3963         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3964
3965         if (!page_has_buffers(page))
3966                 create_empty_buffers(page, blocksize, 0);
3967
3968         /* Find the buffer that contains "offset" */
3969         bh = page_buffers(page);
3970         pos = blocksize;
3971         while (offset >= pos) {
3972                 bh = bh->b_this_page;
3973                 iblock++;
3974                 pos += blocksize;
3975         }
3976         if (buffer_freed(bh)) {
3977                 BUFFER_TRACE(bh, "freed: skip");
3978                 goto unlock;
3979         }
3980         if (!buffer_mapped(bh)) {
3981                 BUFFER_TRACE(bh, "unmapped");
3982                 ext4_get_block(inode, iblock, bh, 0);
3983                 /* unmapped? It's a hole - nothing to do */
3984                 if (!buffer_mapped(bh)) {
3985                         BUFFER_TRACE(bh, "still unmapped");
3986                         goto unlock;
3987                 }
3988         }
3989
3990         /* Ok, it's mapped. Make sure it's up-to-date */
3991         if (PageUptodate(page))
3992                 set_buffer_uptodate(bh);
3993
3994         if (!buffer_uptodate(bh)) {
3995                 err = -EIO;
3996                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3997                 wait_on_buffer(bh);
3998                 /* Uhhuh. Read error. Complain and punt. */
3999                 if (!buffer_uptodate(bh))
4000                         goto unlock;
4001                 if (S_ISREG(inode->i_mode) &&
4002                     ext4_encrypted_inode(inode)) {
4003                         /* We expect the key to be set. */
4004                         BUG_ON(!fscrypt_has_encryption_key(inode));
4005                         BUG_ON(blocksize != PAGE_SIZE);
4006                         WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
4007                                                 page, PAGE_SIZE, 0, page->index));
4008                 }
4009         }
4010         if (ext4_should_journal_data(inode)) {
4011                 BUFFER_TRACE(bh, "get write access");
4012                 err = ext4_journal_get_write_access(handle, bh);
4013                 if (err)
4014                         goto unlock;
4015         }
4016         zero_user(page, offset, length);
4017         BUFFER_TRACE(bh, "zeroed end of block");
4018
4019         if (ext4_should_journal_data(inode)) {
4020                 err = ext4_handle_dirty_metadata(handle, inode, bh);
4021         } else {
4022                 err = 0;
4023                 mark_buffer_dirty(bh);
4024                 if (ext4_should_order_data(inode))
4025                         err = ext4_jbd2_inode_add_write(handle, inode);
4026         }
4027
4028 unlock:
4029         unlock_page(page);
4030         put_page(page);
4031         return err;
4032 }
4033
4034 /*
4035  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4036  * starting from file offset 'from'.  The range to be zero'd must
4037  * be contained with in one block.  If the specified range exceeds
4038  * the end of the block it will be shortened to end of the block
4039  * that cooresponds to 'from'
4040  */
4041 static int ext4_block_zero_page_range(handle_t *handle,
4042                 struct address_space *mapping, loff_t from, loff_t length)
4043 {
4044         struct inode *inode = mapping->host;
4045         unsigned offset = from & (PAGE_SIZE-1);
4046         unsigned blocksize = inode->i_sb->s_blocksize;
4047         unsigned max = blocksize - (offset & (blocksize - 1));
4048
4049         /*
4050          * correct length if it does not fall between
4051          * 'from' and the end of the block
4052          */
4053         if (length > max || length < 0)
4054                 length = max;
4055
4056         if (IS_DAX(inode)) {
4057                 return iomap_zero_range(inode, from, length, NULL,
4058                                         &ext4_iomap_ops);
4059         }
4060         return __ext4_block_zero_page_range(handle, mapping, from, length);
4061 }
4062
4063 /*
4064  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4065  * up to the end of the block which corresponds to `from'.
4066  * This required during truncate. We need to physically zero the tail end
4067  * of that block so it doesn't yield old data if the file is later grown.
4068  */
4069 static int ext4_block_truncate_page(handle_t *handle,
4070                 struct address_space *mapping, loff_t from)
4071 {
4072         unsigned offset = from & (PAGE_SIZE-1);
4073         unsigned length;
4074         unsigned blocksize;
4075         struct inode *inode = mapping->host;
4076
4077         /* If we are processing an encrypted inode during orphan list handling */
4078         if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4079                 return 0;
4080
4081         blocksize = inode->i_sb->s_blocksize;
4082         length = blocksize - (offset & (blocksize - 1));
4083
4084         return ext4_block_zero_page_range(handle, mapping, from, length);
4085 }
4086
4087 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4088                              loff_t lstart, loff_t length)
4089 {
4090         struct super_block *sb = inode->i_sb;
4091         struct address_space *mapping = inode->i_mapping;
4092         unsigned partial_start, partial_end;
4093         ext4_fsblk_t start, end;
4094         loff_t byte_end = (lstart + length - 1);
4095         int err = 0;
4096
4097         partial_start = lstart & (sb->s_blocksize - 1);
4098         partial_end = byte_end & (sb->s_blocksize - 1);
4099
4100         start = lstart >> sb->s_blocksize_bits;
4101         end = byte_end >> sb->s_blocksize_bits;
4102
4103         /* Handle partial zero within the single block */
4104         if (start == end &&
4105             (partial_start || (partial_end != sb->s_blocksize - 1))) {
4106                 err = ext4_block_zero_page_range(handle, mapping,
4107                                                  lstart, length);
4108                 return err;
4109         }
4110         /* Handle partial zero out on the start of the range */
4111         if (partial_start) {
4112                 err = ext4_block_zero_page_range(handle, mapping,
4113                                                  lstart, sb->s_blocksize);
4114                 if (err)
4115                         return err;
4116         }
4117         /* Handle partial zero out on the end of the range */
4118         if (partial_end != sb->s_blocksize - 1)
4119                 err = ext4_block_zero_page_range(handle, mapping,
4120                                                  byte_end - partial_end,
4121                                                  partial_end + 1);
4122         return err;
4123 }
4124
4125 int ext4_can_truncate(struct inode *inode)
4126 {
4127         if (S_ISREG(inode->i_mode))
4128                 return 1;
4129         if (S_ISDIR(inode->i_mode))
4130                 return 1;
4131         if (S_ISLNK(inode->i_mode))
4132                 return !ext4_inode_is_fast_symlink(inode);
4133         return 0;
4134 }
4135
4136 /*
4137  * We have to make sure i_disksize gets properly updated before we truncate
4138  * page cache due to hole punching or zero range. Otherwise i_disksize update
4139  * can get lost as it may have been postponed to submission of writeback but
4140  * that will never happen after we truncate page cache.
4141  */
4142 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4143                                       loff_t len)
4144 {
4145         handle_t *handle;
4146         loff_t size = i_size_read(inode);
4147
4148         WARN_ON(!inode_is_locked(inode));
4149         if (offset > size || offset + len < size)
4150                 return 0;
4151
4152         if (EXT4_I(inode)->i_disksize >= size)
4153                 return 0;
4154
4155         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4156         if (IS_ERR(handle))
4157                 return PTR_ERR(handle);
4158         ext4_update_i_disksize(inode, size);
4159         ext4_mark_inode_dirty(handle, inode);
4160         ext4_journal_stop(handle);
4161
4162         return 0;
4163 }
4164
4165 /*
4166  * ext4_punch_hole: punches a hole in a file by releasing the blocks
4167  * associated with the given offset and length
4168  *
4169  * @inode:  File inode
4170  * @offset: The offset where the hole will begin
4171  * @len:    The length of the hole
4172  *
4173  * Returns: 0 on success or negative on failure
4174  */
4175
4176 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4177 {
4178         struct super_block *sb = inode->i_sb;
4179         ext4_lblk_t first_block, stop_block;
4180         struct address_space *mapping = inode->i_mapping;
4181         loff_t first_block_offset, last_block_offset;
4182         handle_t *handle;
4183         unsigned int credits;
4184         int ret = 0;
4185
4186         if (!S_ISREG(inode->i_mode))
4187                 return -EOPNOTSUPP;
4188
4189         trace_ext4_punch_hole(inode, offset, length, 0);
4190
4191         /*
4192          * Write out all dirty pages to avoid race conditions
4193          * Then release them.
4194          */
4195         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4196                 ret = filemap_write_and_wait_range(mapping, offset,
4197                                                    offset + length - 1);
4198                 if (ret)
4199                         return ret;
4200         }
4201
4202         inode_lock(inode);
4203
4204         /* No need to punch hole beyond i_size */
4205         if (offset >= inode->i_size)
4206                 goto out_mutex;
4207
4208         /*
4209          * If the hole extends beyond i_size, set the hole
4210          * to end after the page that contains i_size
4211          */
4212         if (offset + length > inode->i_size) {
4213                 length = inode->i_size +
4214                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4215                    offset;
4216         }
4217
4218         if (offset & (sb->s_blocksize - 1) ||
4219             (offset + length) & (sb->s_blocksize - 1)) {
4220                 /*
4221                  * Attach jinode to inode for jbd2 if we do any zeroing of
4222                  * partial block
4223                  */
4224                 ret = ext4_inode_attach_jinode(inode);
4225                 if (ret < 0)
4226                         goto out_mutex;
4227
4228         }
4229
4230         /* Wait all existing dio workers, newcomers will block on i_mutex */
4231         ext4_inode_block_unlocked_dio(inode);
4232         inode_dio_wait(inode);
4233
4234         /*
4235          * Prevent page faults from reinstantiating pages we have released from
4236          * page cache.
4237          */
4238         down_write(&EXT4_I(inode)->i_mmap_sem);
4239         first_block_offset = round_up(offset, sb->s_blocksize);
4240         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4241
4242         /* Now release the pages and zero block aligned part of pages*/
4243         if (last_block_offset > first_block_offset) {
4244                 ret = ext4_update_disksize_before_punch(inode, offset, length);
4245                 if (ret)
4246                         goto out_dio;
4247                 truncate_pagecache_range(inode, first_block_offset,
4248                                          last_block_offset);
4249         }
4250
4251         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4252                 credits = ext4_writepage_trans_blocks(inode);
4253         else
4254                 credits = ext4_blocks_for_truncate(inode);
4255         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4256         if (IS_ERR(handle)) {
4257                 ret = PTR_ERR(handle);
4258                 ext4_std_error(sb, ret);
4259                 goto out_dio;
4260         }
4261
4262         ret = ext4_zero_partial_blocks(handle, inode, offset,
4263                                        length);
4264         if (ret)
4265                 goto out_stop;
4266
4267         first_block = (offset + sb->s_blocksize - 1) >>
4268                 EXT4_BLOCK_SIZE_BITS(sb);
4269         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4270
4271         /* If there are no blocks to remove, return now */
4272         if (first_block >= stop_block)
4273                 goto out_stop;
4274
4275         down_write(&EXT4_I(inode)->i_data_sem);
4276         ext4_discard_preallocations(inode);
4277
4278         ret = ext4_es_remove_extent(inode, first_block,
4279                                     stop_block - first_block);
4280         if (ret) {
4281                 up_write(&EXT4_I(inode)->i_data_sem);
4282                 goto out_stop;
4283         }
4284
4285         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4286                 ret = ext4_ext_remove_space(inode, first_block,
4287                                             stop_block - 1);
4288         else
4289                 ret = ext4_ind_remove_space(handle, inode, first_block,
4290                                             stop_block);
4291
4292         up_write(&EXT4_I(inode)->i_data_sem);
4293         if (IS_SYNC(inode))
4294                 ext4_handle_sync(handle);
4295
4296         inode->i_mtime = inode->i_ctime = current_time(inode);
4297         ext4_mark_inode_dirty(handle, inode);
4298         if (ret >= 0)
4299                 ext4_update_inode_fsync_trans(handle, inode, 1);
4300 out_stop:
4301         ext4_journal_stop(handle);
4302 out_dio:
4303         up_write(&EXT4_I(inode)->i_mmap_sem);
4304         ext4_inode_resume_unlocked_dio(inode);
4305 out_mutex:
4306         inode_unlock(inode);
4307         return ret;
4308 }
4309
4310 int ext4_inode_attach_jinode(struct inode *inode)
4311 {
4312         struct ext4_inode_info *ei = EXT4_I(inode);
4313         struct jbd2_inode *jinode;
4314
4315         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4316                 return 0;
4317
4318         jinode = jbd2_alloc_inode(GFP_KERNEL);
4319         spin_lock(&inode->i_lock);
4320         if (!ei->jinode) {
4321                 if (!jinode) {
4322                         spin_unlock(&inode->i_lock);
4323                         return -ENOMEM;
4324                 }
4325                 ei->jinode = jinode;
4326                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4327                 jinode = NULL;
4328         }
4329         spin_unlock(&inode->i_lock);
4330         if (unlikely(jinode != NULL))
4331                 jbd2_free_inode(jinode);
4332         return 0;
4333 }
4334
4335 /*
4336  * ext4_truncate()
4337  *
4338  * We block out ext4_get_block() block instantiations across the entire
4339  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4340  * simultaneously on behalf of the same inode.
4341  *
4342  * As we work through the truncate and commit bits of it to the journal there
4343  * is one core, guiding principle: the file's tree must always be consistent on
4344  * disk.  We must be able to restart the truncate after a crash.
4345  *
4346  * The file's tree may be transiently inconsistent in memory (although it
4347  * probably isn't), but whenever we close off and commit a journal transaction,
4348  * the contents of (the filesystem + the journal) must be consistent and
4349  * restartable.  It's pretty simple, really: bottom up, right to left (although
4350  * left-to-right works OK too).
4351  *
4352  * Note that at recovery time, journal replay occurs *before* the restart of
4353  * truncate against the orphan inode list.
4354  *
4355  * The committed inode has the new, desired i_size (which is the same as
4356  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4357  * that this inode's truncate did not complete and it will again call
4358  * ext4_truncate() to have another go.  So there will be instantiated blocks
4359  * to the right of the truncation point in a crashed ext4 filesystem.  But
4360  * that's fine - as long as they are linked from the inode, the post-crash
4361  * ext4_truncate() run will find them and release them.
4362  */
4363 int ext4_truncate(struct inode *inode)
4364 {
4365         struct ext4_inode_info *ei = EXT4_I(inode);
4366         unsigned int credits;
4367         int err = 0;
4368         handle_t *handle;
4369         struct address_space *mapping = inode->i_mapping;
4370
4371         /*
4372          * There is a possibility that we're either freeing the inode
4373          * or it's a completely new inode. In those cases we might not
4374          * have i_mutex locked because it's not necessary.
4375          */
4376         if (!(inode->i_state & (I_NEW|I_FREEING)))
4377                 WARN_ON(!inode_is_locked(inode));
4378         trace_ext4_truncate_enter(inode);
4379
4380         if (!ext4_can_truncate(inode))
4381                 return 0;
4382
4383         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4384
4385         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4386                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4387
4388         if (ext4_has_inline_data(inode)) {
4389                 int has_inline = 1;
4390
4391                 err = ext4_inline_data_truncate(inode, &has_inline);
4392                 if (err)
4393                         return err;
4394                 if (has_inline)
4395                         return 0;
4396         }
4397
4398         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4399         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4400                 if (ext4_inode_attach_jinode(inode) < 0)
4401                         return 0;
4402         }
4403
4404         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4405                 credits = ext4_writepage_trans_blocks(inode);
4406         else
4407                 credits = ext4_blocks_for_truncate(inode);
4408
4409         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4410         if (IS_ERR(handle))
4411                 return PTR_ERR(handle);
4412
4413         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4414                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4415
4416         /*
4417          * We add the inode to the orphan list, so that if this
4418          * truncate spans multiple transactions, and we crash, we will
4419          * resume the truncate when the filesystem recovers.  It also
4420          * marks the inode dirty, to catch the new size.
4421          *
4422          * Implication: the file must always be in a sane, consistent
4423          * truncatable state while each transaction commits.
4424          */
4425         err = ext4_orphan_add(handle, inode);
4426         if (err)
4427                 goto out_stop;
4428
4429         down_write(&EXT4_I(inode)->i_data_sem);
4430
4431         ext4_discard_preallocations(inode);
4432
4433         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4434                 err = ext4_ext_truncate(handle, inode);
4435         else
4436                 ext4_ind_truncate(handle, inode);
4437
4438         up_write(&ei->i_data_sem);
4439         if (err)
4440                 goto out_stop;
4441
4442         if (IS_SYNC(inode))
4443                 ext4_handle_sync(handle);
4444
4445 out_stop:
4446         /*
4447          * If this was a simple ftruncate() and the file will remain alive,
4448          * then we need to clear up the orphan record which we created above.
4449          * However, if this was a real unlink then we were called by
4450          * ext4_evict_inode(), and we allow that function to clean up the
4451          * orphan info for us.
4452          */
4453         if (inode->i_nlink)
4454                 ext4_orphan_del(handle, inode);
4455
4456         inode->i_mtime = inode->i_ctime = current_time(inode);
4457         ext4_mark_inode_dirty(handle, inode);
4458         ext4_journal_stop(handle);
4459
4460         trace_ext4_truncate_exit(inode);
4461         return err;
4462 }
4463
4464 /*
4465  * ext4_get_inode_loc returns with an extra refcount against the inode's
4466  * underlying buffer_head on success. If 'in_mem' is true, we have all
4467  * data in memory that is needed to recreate the on-disk version of this
4468  * inode.
4469  */
4470 static int __ext4_get_inode_loc(struct inode *inode,
4471                                 struct ext4_iloc *iloc, int in_mem)
4472 {
4473         struct ext4_group_desc  *gdp;
4474         struct buffer_head      *bh;
4475         struct super_block      *sb = inode->i_sb;
4476         ext4_fsblk_t            block;
4477         int                     inodes_per_block, inode_offset;
4478
4479         iloc->bh = NULL;
4480         if (!ext4_valid_inum(sb, inode->i_ino))
4481                 return -EFSCORRUPTED;
4482
4483         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4484         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4485         if (!gdp)
4486                 return -EIO;
4487
4488         /*
4489          * Figure out the offset within the block group inode table
4490          */
4491         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4492         inode_offset = ((inode->i_ino - 1) %
4493                         EXT4_INODES_PER_GROUP(sb));
4494         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4495         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4496
4497         bh = sb_getblk(sb, block);
4498         if (unlikely(!bh))
4499                 return -ENOMEM;
4500         if (!buffer_uptodate(bh)) {
4501                 lock_buffer(bh);
4502
4503                 /*
4504                  * If the buffer has the write error flag, we have failed
4505                  * to write out another inode in the same block.  In this
4506                  * case, we don't have to read the block because we may
4507                  * read the old inode data successfully.
4508                  */
4509                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4510                         set_buffer_uptodate(bh);
4511
4512                 if (buffer_uptodate(bh)) {
4513                         /* someone brought it uptodate while we waited */
4514                         unlock_buffer(bh);
4515                         goto has_buffer;
4516                 }
4517
4518                 /*
4519                  * If we have all information of the inode in memory and this
4520                  * is the only valid inode in the block, we need not read the
4521                  * block.
4522                  */
4523                 if (in_mem) {
4524                         struct buffer_head *bitmap_bh;
4525                         int i, start;
4526
4527                         start = inode_offset & ~(inodes_per_block - 1);
4528
4529                         /* Is the inode bitmap in cache? */
4530                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4531                         if (unlikely(!bitmap_bh))
4532                                 goto make_io;
4533
4534                         /*
4535                          * If the inode bitmap isn't in cache then the
4536                          * optimisation may end up performing two reads instead
4537                          * of one, so skip it.
4538                          */
4539                         if (!buffer_uptodate(bitmap_bh)) {
4540                                 brelse(bitmap_bh);
4541                                 goto make_io;
4542                         }
4543                         for (i = start; i < start + inodes_per_block; i++) {
4544                                 if (i == inode_offset)
4545                                         continue;
4546                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4547                                         break;
4548                         }
4549                         brelse(bitmap_bh);
4550                         if (i == start + inodes_per_block) {
4551                                 /* all other inodes are free, so skip I/O */
4552                                 memset(bh->b_data, 0, bh->b_size);
4553                                 set_buffer_uptodate(bh);
4554                                 unlock_buffer(bh);
4555                                 goto has_buffer;
4556                         }
4557                 }
4558
4559 make_io:
4560                 /*
4561                  * If we need to do any I/O, try to pre-readahead extra
4562                  * blocks from the inode table.
4563                  */
4564                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4565                         ext4_fsblk_t b, end, table;
4566                         unsigned num;
4567                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4568
4569                         table = ext4_inode_table(sb, gdp);
4570                         /* s_inode_readahead_blks is always a power of 2 */
4571                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4572                         if (table > b)
4573                                 b = table;
4574                         end = b + ra_blks;
4575                         num = EXT4_INODES_PER_GROUP(sb);
4576                         if (ext4_has_group_desc_csum(sb))
4577                                 num -= ext4_itable_unused_count(sb, gdp);
4578                         table += num / inodes_per_block;
4579                         if (end > table)
4580                                 end = table;
4581                         while (b <= end)
4582                                 sb_breadahead(sb, b++);
4583                 }
4584
4585                 /*
4586                  * There are other valid inodes in the buffer, this inode
4587                  * has in-inode xattrs, or we don't have this inode in memory.
4588                  * Read the block from disk.
4589                  */
4590                 trace_ext4_load_inode(inode);
4591                 get_bh(bh);
4592                 bh->b_end_io = end_buffer_read_sync;
4593                 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4594                 wait_on_buffer(bh);
4595                 if (!buffer_uptodate(bh)) {
4596                         EXT4_ERROR_INODE_BLOCK(inode, block,
4597                                                "unable to read itable block");
4598                         brelse(bh);
4599                         return -EIO;
4600                 }
4601         }
4602 has_buffer:
4603         iloc->bh = bh;
4604         return 0;
4605 }
4606
4607 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4608 {
4609         /* We have all inode data except xattrs in memory here. */
4610         return __ext4_get_inode_loc(inode, iloc,
4611                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4612 }
4613
4614 static bool ext4_should_use_dax(struct inode *inode)
4615 {
4616         if (!test_opt(inode->i_sb, DAX))
4617                 return false;
4618         if (!S_ISREG(inode->i_mode))
4619                 return false;
4620         if (ext4_should_journal_data(inode))
4621                 return false;
4622         if (ext4_has_inline_data(inode))
4623                 return false;
4624         if (ext4_encrypted_inode(inode))
4625                 return false;
4626         return true;
4627 }
4628
4629 void ext4_set_inode_flags(struct inode *inode)
4630 {
4631         unsigned int flags = EXT4_I(inode)->i_flags;
4632         unsigned int new_fl = 0;
4633
4634         if (flags & EXT4_SYNC_FL)
4635                 new_fl |= S_SYNC;
4636         if (flags & EXT4_APPEND_FL)
4637                 new_fl |= S_APPEND;
4638         if (flags & EXT4_IMMUTABLE_FL)
4639                 new_fl |= S_IMMUTABLE;
4640         if (flags & EXT4_NOATIME_FL)
4641                 new_fl |= S_NOATIME;
4642         if (flags & EXT4_DIRSYNC_FL)
4643                 new_fl |= S_DIRSYNC;
4644         if (ext4_should_use_dax(inode))
4645                 new_fl |= S_DAX;
4646         if (flags & EXT4_ENCRYPT_FL)
4647                 new_fl |= S_ENCRYPTED;
4648         inode_set_flags(inode, new_fl,
4649                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4650                         S_ENCRYPTED);
4651 }
4652
4653 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4654                                   struct ext4_inode_info *ei)
4655 {
4656         blkcnt_t i_blocks ;
4657         struct inode *inode = &(ei->vfs_inode);
4658         struct super_block *sb = inode->i_sb;
4659
4660         if (ext4_has_feature_huge_file(sb)) {
4661                 /* we are using combined 48 bit field */
4662                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4663                                         le32_to_cpu(raw_inode->i_blocks_lo);
4664                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4665                         /* i_blocks represent file system block size */
4666                         return i_blocks  << (inode->i_blkbits - 9);
4667                 } else {
4668                         return i_blocks;
4669                 }
4670         } else {
4671                 return le32_to_cpu(raw_inode->i_blocks_lo);
4672         }
4673 }
4674
4675 static inline void ext4_iget_extra_inode(struct inode *inode,
4676                                          struct ext4_inode *raw_inode,
4677                                          struct ext4_inode_info *ei)
4678 {
4679         __le32 *magic = (void *)raw_inode +
4680                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4681         if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4682             EXT4_INODE_SIZE(inode->i_sb) &&
4683             *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4684                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4685                 ext4_find_inline_data_nolock(inode);
4686         } else
4687                 EXT4_I(inode)->i_inline_off = 0;
4688 }
4689
4690 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4691 {
4692         if (!ext4_has_feature_project(inode->i_sb))
4693                 return -EOPNOTSUPP;
4694         *projid = EXT4_I(inode)->i_projid;
4695         return 0;
4696 }
4697
4698 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4699 {
4700         struct ext4_iloc iloc;
4701         struct ext4_inode *raw_inode;
4702         struct ext4_inode_info *ei;
4703         struct inode *inode;
4704         journal_t *journal = EXT4_SB(sb)->s_journal;
4705         long ret;
4706         loff_t size;
4707         int block;
4708         uid_t i_uid;
4709         gid_t i_gid;
4710         projid_t i_projid;
4711
4712         inode = iget_locked(sb, ino);
4713         if (!inode)
4714                 return ERR_PTR(-ENOMEM);
4715         if (!(inode->i_state & I_NEW))
4716                 return inode;
4717
4718         ei = EXT4_I(inode);
4719         iloc.bh = NULL;
4720
4721         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4722         if (ret < 0)
4723                 goto bad_inode;
4724         raw_inode = ext4_raw_inode(&iloc);
4725
4726         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4727                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4728                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4729                         EXT4_INODE_SIZE(inode->i_sb) ||
4730                     (ei->i_extra_isize & 3)) {
4731                         EXT4_ERROR_INODE(inode,
4732                                          "bad extra_isize %u (inode size %u)",
4733                                          ei->i_extra_isize,
4734                                          EXT4_INODE_SIZE(inode->i_sb));
4735                         ret = -EFSCORRUPTED;
4736                         goto bad_inode;
4737                 }
4738         } else
4739                 ei->i_extra_isize = 0;
4740
4741         /* Precompute checksum seed for inode metadata */
4742         if (ext4_has_metadata_csum(sb)) {
4743                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4744                 __u32 csum;
4745                 __le32 inum = cpu_to_le32(inode->i_ino);
4746                 __le32 gen = raw_inode->i_generation;
4747                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4748                                    sizeof(inum));
4749                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4750                                               sizeof(gen));
4751         }
4752
4753         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4754                 EXT4_ERROR_INODE(inode, "checksum invalid");
4755                 ret = -EFSBADCRC;
4756                 goto bad_inode;
4757         }
4758
4759         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4760         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4761         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4762         if (ext4_has_feature_project(sb) &&
4763             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4764             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4765                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4766         else
4767                 i_projid = EXT4_DEF_PROJID;
4768
4769         if (!(test_opt(inode->i_sb, NO_UID32))) {
4770                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4771                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4772         }
4773         i_uid_write(inode, i_uid);
4774         i_gid_write(inode, i_gid);
4775         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4776         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4777
4778         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4779         ei->i_inline_off = 0;
4780         ei->i_dir_start_lookup = 0;
4781         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4782         /* We now have enough fields to check if the inode was active or not.
4783          * This is needed because nfsd might try to access dead inodes
4784          * the test is that same one that e2fsck uses
4785          * NeilBrown 1999oct15
4786          */
4787         if (inode->i_nlink == 0) {
4788                 if ((inode->i_mode == 0 ||
4789                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4790                     ino != EXT4_BOOT_LOADER_INO) {
4791                         /* this inode is deleted */
4792                         ret = -ESTALE;
4793                         goto bad_inode;
4794                 }
4795                 /* The only unlinked inodes we let through here have
4796                  * valid i_mode and are being read by the orphan
4797                  * recovery code: that's fine, we're about to complete
4798                  * the process of deleting those.
4799                  * OR it is the EXT4_BOOT_LOADER_INO which is
4800                  * not initialized on a new filesystem. */
4801         }
4802         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4803         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4804         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4805         if (ext4_has_feature_64bit(sb))
4806                 ei->i_file_acl |=
4807                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4808         inode->i_size = ext4_isize(sb, raw_inode);
4809         if ((size = i_size_read(inode)) < 0) {
4810                 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4811                 ret = -EFSCORRUPTED;
4812                 goto bad_inode;
4813         }
4814         ei->i_disksize = inode->i_size;
4815 #ifdef CONFIG_QUOTA
4816         ei->i_reserved_quota = 0;
4817 #endif
4818         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4819         ei->i_block_group = iloc.block_group;
4820         ei->i_last_alloc_group = ~0;
4821         /*
4822          * NOTE! The in-memory inode i_data array is in little-endian order
4823          * even on big-endian machines: we do NOT byteswap the block numbers!
4824          */
4825         for (block = 0; block < EXT4_N_BLOCKS; block++)
4826                 ei->i_data[block] = raw_inode->i_block[block];
4827         INIT_LIST_HEAD(&ei->i_orphan);
4828
4829         /*
4830          * Set transaction id's of transactions that have to be committed
4831          * to finish f[data]sync. We set them to currently running transaction
4832          * as we cannot be sure that the inode or some of its metadata isn't
4833          * part of the transaction - the inode could have been reclaimed and
4834          * now it is reread from disk.
4835          */
4836         if (journal) {
4837                 transaction_t *transaction;
4838                 tid_t tid;
4839
4840                 read_lock(&journal->j_state_lock);
4841                 if (journal->j_running_transaction)
4842                         transaction = journal->j_running_transaction;
4843                 else
4844                         transaction = journal->j_committing_transaction;
4845                 if (transaction)
4846                         tid = transaction->t_tid;
4847                 else
4848                         tid = journal->j_commit_sequence;
4849                 read_unlock(&journal->j_state_lock);
4850                 ei->i_sync_tid = tid;
4851                 ei->i_datasync_tid = tid;
4852         }
4853
4854         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4855                 if (ei->i_extra_isize == 0) {
4856                         /* The extra space is currently unused. Use it. */
4857                         BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4858                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4859                                             EXT4_GOOD_OLD_INODE_SIZE;
4860                 } else {
4861                         ext4_iget_extra_inode(inode, raw_inode, ei);
4862                 }
4863         }
4864
4865         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4866         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4867         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4868         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4869
4870         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4871                 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4872                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4873                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4874                                 inode->i_version |=
4875                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4876                 }
4877         }
4878
4879         ret = 0;
4880         if (ei->i_file_acl &&
4881             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4882                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4883                                  ei->i_file_acl);
4884                 ret = -EFSCORRUPTED;
4885                 goto bad_inode;
4886         } else if (!ext4_has_inline_data(inode)) {
4887                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4888                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4889                             (S_ISLNK(inode->i_mode) &&
4890                              !ext4_inode_is_fast_symlink(inode))))
4891                                 /* Validate extent which is part of inode */
4892                                 ret = ext4_ext_check_inode(inode);
4893                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4894                            (S_ISLNK(inode->i_mode) &&
4895                             !ext4_inode_is_fast_symlink(inode))) {
4896                         /* Validate block references which are part of inode */
4897                         ret = ext4_ind_check_inode(inode);
4898                 }
4899         }
4900         if (ret)
4901                 goto bad_inode;
4902
4903         if (S_ISREG(inode->i_mode)) {
4904                 inode->i_op = &ext4_file_inode_operations;
4905                 inode->i_fop = &ext4_file_operations;
4906                 ext4_set_aops(inode);
4907         } else if (S_ISDIR(inode->i_mode)) {
4908                 inode->i_op = &ext4_dir_inode_operations;
4909                 inode->i_fop = &ext4_dir_operations;
4910         } else if (S_ISLNK(inode->i_mode)) {
4911                 if (ext4_encrypted_inode(inode)) {
4912                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4913                         ext4_set_aops(inode);
4914                 } else if (ext4_inode_is_fast_symlink(inode)) {
4915                         inode->i_link = (char *)ei->i_data;
4916                         inode->i_op = &ext4_fast_symlink_inode_operations;
4917                         nd_terminate_link(ei->i_data, inode->i_size,
4918                                 sizeof(ei->i_data) - 1);
4919                 } else {
4920                         inode->i_op = &ext4_symlink_inode_operations;
4921                         ext4_set_aops(inode);
4922                 }
4923                 inode_nohighmem(inode);
4924         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4925               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4926                 inode->i_op = &ext4_special_inode_operations;
4927                 if (raw_inode->i_block[0])
4928                         init_special_inode(inode, inode->i_mode,
4929                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4930                 else
4931                         init_special_inode(inode, inode->i_mode,
4932                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4933         } else if (ino == EXT4_BOOT_LOADER_INO) {
4934                 make_bad_inode(inode);
4935         } else {
4936                 ret = -EFSCORRUPTED;
4937                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4938                 goto bad_inode;
4939         }
4940         brelse(iloc.bh);
4941         ext4_set_inode_flags(inode);
4942
4943         unlock_new_inode(inode);
4944         return inode;
4945
4946 bad_inode:
4947         brelse(iloc.bh);
4948         iget_failed(inode);
4949         return ERR_PTR(ret);
4950 }
4951
4952 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4953 {
4954         if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4955                 return ERR_PTR(-EFSCORRUPTED);
4956         return ext4_iget(sb, ino);
4957 }
4958
4959 static int ext4_inode_blocks_set(handle_t *handle,
4960                                 struct ext4_inode *raw_inode,
4961                                 struct ext4_inode_info *ei)
4962 {
4963         struct inode *inode = &(ei->vfs_inode);
4964         u64 i_blocks = inode->i_blocks;
4965         struct super_block *sb = inode->i_sb;
4966
4967         if (i_blocks <= ~0U) {
4968                 /*
4969                  * i_blocks can be represented in a 32 bit variable
4970                  * as multiple of 512 bytes
4971                  */
4972                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4973                 raw_inode->i_blocks_high = 0;
4974                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4975                 return 0;
4976         }
4977         if (!ext4_has_feature_huge_file(sb))
4978                 return -EFBIG;
4979
4980         if (i_blocks <= 0xffffffffffffULL) {
4981                 /*
4982                  * i_blocks can be represented in a 48 bit variable
4983                  * as multiple of 512 bytes
4984                  */
4985                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4986                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4987                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4988         } else {
4989                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4990                 /* i_block is stored in file system block size */
4991                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4992                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4993                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4994         }
4995         return 0;
4996 }
4997
4998 struct other_inode {
4999         unsigned long           orig_ino;
5000         struct ext4_inode       *raw_inode;
5001 };
5002
5003 static int other_inode_match(struct inode * inode, unsigned long ino,
5004                              void *data)
5005 {
5006         struct other_inode *oi = (struct other_inode *) data;
5007
5008         if ((inode->i_ino != ino) ||
5009             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5010                                I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
5011             ((inode->i_state & I_DIRTY_TIME) == 0))
5012                 return 0;
5013         spin_lock(&inode->i_lock);
5014         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5015                                 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
5016             (inode->i_state & I_DIRTY_TIME)) {
5017                 struct ext4_inode_info  *ei = EXT4_I(inode);
5018
5019                 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
5020                 spin_unlock(&inode->i_lock);
5021
5022                 spin_lock(&ei->i_raw_lock);
5023                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
5024                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
5025                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
5026                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
5027                 spin_unlock(&ei->i_raw_lock);
5028                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
5029                 return -1;
5030         }
5031         spin_unlock(&inode->i_lock);
5032         return -1;
5033 }
5034
5035 /*
5036  * Opportunistically update the other time fields for other inodes in
5037  * the same inode table block.
5038  */
5039 static void ext4_update_other_inodes_time(struct super_block *sb,
5040                                           unsigned long orig_ino, char *buf)
5041 {
5042         struct other_inode oi;
5043         unsigned long ino;
5044         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5045         int inode_size = EXT4_INODE_SIZE(sb);
5046
5047         oi.orig_ino = orig_ino;
5048         /*
5049          * Calculate the first inode in the inode table block.  Inode
5050          * numbers are one-based.  That is, the first inode in a block
5051          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5052          */
5053         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5054         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5055                 if (ino == orig_ino)
5056                         continue;
5057                 oi.raw_inode = (struct ext4_inode *) buf;
5058                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5059         }
5060 }
5061
5062 /*
5063  * Post the struct inode info into an on-disk inode location in the
5064  * buffer-cache.  This gobbles the caller's reference to the
5065  * buffer_head in the inode location struct.
5066  *
5067  * The caller must have write access to iloc->bh.
5068  */
5069 static int ext4_do_update_inode(handle_t *handle,
5070                                 struct inode *inode,
5071                                 struct ext4_iloc *iloc)
5072 {
5073         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5074         struct ext4_inode_info *ei = EXT4_I(inode);
5075         struct buffer_head *bh = iloc->bh;
5076         struct super_block *sb = inode->i_sb;
5077         int err = 0, rc, block;
5078         int need_datasync = 0, set_large_file = 0;
5079         uid_t i_uid;
5080         gid_t i_gid;
5081         projid_t i_projid;
5082
5083         spin_lock(&ei->i_raw_lock);
5084
5085         /* For fields not tracked in the in-memory inode,
5086          * initialise them to zero for new inodes. */
5087         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5088                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5089
5090         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5091         i_uid = i_uid_read(inode);
5092         i_gid = i_gid_read(inode);
5093         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5094         if (!(test_opt(inode->i_sb, NO_UID32))) {
5095                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5096                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5097 /*
5098  * Fix up interoperability with old kernels. Otherwise, old inodes get
5099  * re-used with the upper 16 bits of the uid/gid intact
5100  */
5101                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5102                         raw_inode->i_uid_high = 0;
5103                         raw_inode->i_gid_high = 0;
5104                 } else {
5105                         raw_inode->i_uid_high =
5106                                 cpu_to_le16(high_16_bits(i_uid));
5107                         raw_inode->i_gid_high =
5108                                 cpu_to_le16(high_16_bits(i_gid));
5109                 }
5110         } else {
5111                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5112                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5113                 raw_inode->i_uid_high = 0;
5114                 raw_inode->i_gid_high = 0;
5115         }
5116         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5117
5118         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5119         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5120         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5121         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5122
5123         err = ext4_inode_blocks_set(handle, raw_inode, ei);
5124         if (err) {
5125                 spin_unlock(&ei->i_raw_lock);
5126                 goto out_brelse;
5127         }
5128         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5129         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5130         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5131                 raw_inode->i_file_acl_high =
5132                         cpu_to_le16(ei->i_file_acl >> 32);
5133         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5134         if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5135                 ext4_isize_set(raw_inode, ei->i_disksize);
5136                 need_datasync = 1;
5137         }
5138         if (ei->i_disksize > 0x7fffffffULL) {
5139                 if (!ext4_has_feature_large_file(sb) ||
5140                                 EXT4_SB(sb)->s_es->s_rev_level ==
5141                     cpu_to_le32(EXT4_GOOD_OLD_REV))
5142                         set_large_file = 1;
5143         }
5144         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5145         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5146                 if (old_valid_dev(inode->i_rdev)) {
5147                         raw_inode->i_block[0] =
5148                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5149                         raw_inode->i_block[1] = 0;
5150                 } else {
5151                         raw_inode->i_block[0] = 0;
5152                         raw_inode->i_block[1] =
5153                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5154                         raw_inode->i_block[2] = 0;
5155                 }
5156         } else if (!ext4_has_inline_data(inode)) {
5157                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5158                         raw_inode->i_block[block] = ei->i_data[block];
5159         }
5160
5161         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5162                 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5163                 if (ei->i_extra_isize) {
5164                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5165                                 raw_inode->i_version_hi =
5166                                         cpu_to_le32(inode->i_version >> 32);
5167                         raw_inode->i_extra_isize =
5168                                 cpu_to_le16(ei->i_extra_isize);
5169                 }
5170         }
5171
5172         BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5173                i_projid != EXT4_DEF_PROJID);
5174
5175         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5176             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5177                 raw_inode->i_projid = cpu_to_le32(i_projid);
5178
5179         ext4_inode_csum_set(inode, raw_inode, ei);
5180         spin_unlock(&ei->i_raw_lock);
5181         if (inode->i_sb->s_flags & MS_LAZYTIME)
5182                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5183                                               bh->b_data);
5184
5185         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5186         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5187         if (!err)
5188                 err = rc;
5189         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5190         if (set_large_file) {
5191                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5192                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5193                 if (err)
5194                         goto out_brelse;
5195                 ext4_update_dynamic_rev(sb);
5196                 ext4_set_feature_large_file(sb);
5197                 ext4_handle_sync(handle);
5198                 err = ext4_handle_dirty_super(handle, sb);
5199         }
5200         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5201 out_brelse:
5202         brelse(bh);
5203         ext4_std_error(inode->i_sb, err);
5204         return err;
5205 }
5206
5207 /*
5208  * ext4_write_inode()
5209  *
5210  * We are called from a few places:
5211  *
5212  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5213  *   Here, there will be no transaction running. We wait for any running
5214  *   transaction to commit.
5215  *
5216  * - Within flush work (sys_sync(), kupdate and such).
5217  *   We wait on commit, if told to.
5218  *
5219  * - Within iput_final() -> write_inode_now()
5220  *   We wait on commit, if told to.
5221  *
5222  * In all cases it is actually safe for us to return without doing anything,
5223  * because the inode has been copied into a raw inode buffer in
5224  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5225  * writeback.
5226  *
5227  * Note that we are absolutely dependent upon all inode dirtiers doing the
5228  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5229  * which we are interested.
5230  *
5231  * It would be a bug for them to not do this.  The code:
5232  *
5233  *      mark_inode_dirty(inode)
5234  *      stuff();
5235  *      inode->i_size = expr;
5236  *
5237  * is in error because write_inode() could occur while `stuff()' is running,
5238  * and the new i_size will be lost.  Plus the inode will no longer be on the
5239  * superblock's dirty inode list.
5240  */
5241 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5242 {
5243         int err;
5244
5245         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5246                 return 0;
5247
5248         if (EXT4_SB(inode->i_sb)->s_journal) {
5249                 if (ext4_journal_current_handle()) {
5250                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5251                         dump_stack();
5252                         return -EIO;
5253                 }
5254
5255                 /*
5256                  * No need to force transaction in WB_SYNC_NONE mode. Also
5257                  * ext4_sync_fs() will force the commit after everything is
5258                  * written.
5259                  */
5260                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5261                         return 0;
5262
5263                 err = ext4_force_commit(inode->i_sb);
5264         } else {
5265                 struct ext4_iloc iloc;
5266
5267                 err = __ext4_get_inode_loc(inode, &iloc, 0);
5268                 if (err)
5269                         return err;
5270                 /*
5271                  * sync(2) will flush the whole buffer cache. No need to do
5272                  * it here separately for each inode.
5273                  */
5274                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5275                         sync_dirty_buffer(iloc.bh);
5276                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5277                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5278                                          "IO error syncing inode");
5279                         err = -EIO;
5280                 }
5281                 brelse(iloc.bh);
5282         }
5283         return err;
5284 }
5285
5286 /*
5287  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5288  * buffers that are attached to a page stradding i_size and are undergoing
5289  * commit. In that case we have to wait for commit to finish and try again.
5290  */
5291 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5292 {
5293         struct page *page;
5294         unsigned offset;
5295         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5296         tid_t commit_tid = 0;
5297         int ret;
5298
5299         offset = inode->i_size & (PAGE_SIZE - 1);
5300         /*
5301          * All buffers in the last page remain valid? Then there's nothing to
5302          * do. We do the check mainly to optimize the common PAGE_SIZE ==
5303          * blocksize case
5304          */
5305         if (offset > PAGE_SIZE - i_blocksize(inode))
5306                 return;
5307         while (1) {
5308                 page = find_lock_page(inode->i_mapping,
5309                                       inode->i_size >> PAGE_SHIFT);
5310                 if (!page)
5311                         return;
5312                 ret = __ext4_journalled_invalidatepage(page, offset,
5313                                                 PAGE_SIZE - offset);
5314                 unlock_page(page);
5315                 put_page(page);
5316                 if (ret != -EBUSY)
5317                         return;
5318                 commit_tid = 0;
5319                 read_lock(&journal->j_state_lock);
5320                 if (journal->j_committing_transaction)
5321                         commit_tid = journal->j_committing_transaction->t_tid;
5322                 read_unlock(&journal->j_state_lock);
5323                 if (commit_tid)
5324                         jbd2_log_wait_commit(journal, commit_tid);
5325         }
5326 }
5327
5328 /*
5329  * ext4_setattr()
5330  *
5331  * Called from notify_change.
5332  *
5333  * We want to trap VFS attempts to truncate the file as soon as
5334  * possible.  In particular, we want to make sure that when the VFS
5335  * shrinks i_size, we put the inode on the orphan list and modify
5336  * i_disksize immediately, so that during the subsequent flushing of
5337  * dirty pages and freeing of disk blocks, we can guarantee that any
5338  * commit will leave the blocks being flushed in an unused state on
5339  * disk.  (On recovery, the inode will get truncated and the blocks will
5340  * be freed, so we have a strong guarantee that no future commit will
5341  * leave these blocks visible to the user.)
5342  *
5343  * Another thing we have to assure is that if we are in ordered mode
5344  * and inode is still attached to the committing transaction, we must
5345  * we start writeout of all the dirty pages which are being truncated.
5346  * This way we are sure that all the data written in the previous
5347  * transaction are already on disk (truncate waits for pages under
5348  * writeback).
5349  *
5350  * Called with inode->i_mutex down.
5351  */
5352 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5353 {
5354         struct inode *inode = d_inode(dentry);
5355         int error, rc = 0;
5356         int orphan = 0;
5357         const unsigned int ia_valid = attr->ia_valid;
5358
5359         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5360                 return -EIO;
5361
5362         error = setattr_prepare(dentry, attr);
5363         if (error)
5364                 return error;
5365
5366         error = fscrypt_prepare_setattr(dentry, attr);
5367         if (error)
5368                 return error;
5369
5370         if (is_quota_modification(inode, attr)) {
5371                 error = dquot_initialize(inode);
5372                 if (error)
5373                         return error;
5374         }
5375         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5376             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5377                 handle_t *handle;
5378
5379                 /* (user+group)*(old+new) structure, inode write (sb,
5380                  * inode block, ? - but truncate inode update has it) */
5381                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5382                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5383                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5384                 if (IS_ERR(handle)) {
5385                         error = PTR_ERR(handle);
5386                         goto err_out;
5387                 }
5388
5389                 /* dquot_transfer() calls back ext4_get_inode_usage() which
5390                  * counts xattr inode references.
5391                  */
5392                 down_read(&EXT4_I(inode)->xattr_sem);
5393                 error = dquot_transfer(inode, attr);
5394                 up_read(&EXT4_I(inode)->xattr_sem);
5395
5396                 if (error) {
5397                         ext4_journal_stop(handle);
5398                         return error;
5399                 }
5400                 /* Update corresponding info in inode so that everything is in
5401                  * one transaction */
5402                 if (attr->ia_valid & ATTR_UID)
5403                         inode->i_uid = attr->ia_uid;
5404                 if (attr->ia_valid & ATTR_GID)
5405                         inode->i_gid = attr->ia_gid;
5406                 error = ext4_mark_inode_dirty(handle, inode);
5407                 ext4_journal_stop(handle);
5408         }
5409
5410         if (attr->ia_valid & ATTR_SIZE) {
5411                 handle_t *handle;
5412                 loff_t oldsize = inode->i_size;
5413                 int shrink = (attr->ia_size <= inode->i_size);
5414
5415                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5416                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5417
5418                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
5419                                 return -EFBIG;
5420                 }
5421                 if (!S_ISREG(inode->i_mode))
5422                         return -EINVAL;
5423
5424                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5425                         inode_inc_iversion(inode);
5426
5427                 if (ext4_should_order_data(inode) &&
5428                     (attr->ia_size < inode->i_size)) {
5429                         error = ext4_begin_ordered_truncate(inode,
5430                                                             attr->ia_size);
5431                         if (error)
5432                                 goto err_out;
5433                 }
5434                 if (attr->ia_size != inode->i_size) {
5435                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5436                         if (IS_ERR(handle)) {
5437                                 error = PTR_ERR(handle);
5438                                 goto err_out;
5439                         }
5440                         if (ext4_handle_valid(handle) && shrink) {
5441                                 error = ext4_orphan_add(handle, inode);
5442                                 orphan = 1;
5443                         }
5444                         /*
5445                          * Update c/mtime on truncate up, ext4_truncate() will
5446                          * update c/mtime in shrink case below
5447                          */
5448                         if (!shrink) {
5449                                 inode->i_mtime = current_time(inode);
5450                                 inode->i_ctime = inode->i_mtime;
5451                         }
5452                         down_write(&EXT4_I(inode)->i_data_sem);
5453                         EXT4_I(inode)->i_disksize = attr->ia_size;
5454                         rc = ext4_mark_inode_dirty(handle, inode);
5455                         if (!error)
5456                                 error = rc;
5457                         /*
5458                          * We have to update i_size under i_data_sem together
5459                          * with i_disksize to avoid races with writeback code
5460                          * running ext4_wb_update_i_disksize().
5461                          */
5462                         if (!error)
5463                                 i_size_write(inode, attr->ia_size);
5464                         up_write(&EXT4_I(inode)->i_data_sem);
5465                         ext4_journal_stop(handle);
5466                         if (error) {
5467                                 if (orphan)
5468                                         ext4_orphan_del(NULL, inode);
5469                                 goto err_out;
5470                         }
5471                 }
5472                 if (!shrink)
5473                         pagecache_isize_extended(inode, oldsize, inode->i_size);
5474
5475                 /*
5476                  * Blocks are going to be removed from the inode. Wait
5477                  * for dio in flight.  Temporarily disable
5478                  * dioread_nolock to prevent livelock.
5479                  */
5480                 if (orphan) {
5481                         if (!ext4_should_journal_data(inode)) {
5482                                 ext4_inode_block_unlocked_dio(inode);
5483                                 inode_dio_wait(inode);
5484                                 ext4_inode_resume_unlocked_dio(inode);
5485                         } else
5486                                 ext4_wait_for_tail_page_commit(inode);
5487                 }
5488                 down_write(&EXT4_I(inode)->i_mmap_sem);
5489                 /*
5490                  * Truncate pagecache after we've waited for commit
5491                  * in data=journal mode to make pages freeable.
5492                  */
5493                 truncate_pagecache(inode, inode->i_size);
5494                 if (shrink) {
5495                         rc = ext4_truncate(inode);
5496                         if (rc)
5497                                 error = rc;
5498                 }
5499                 up_write(&EXT4_I(inode)->i_mmap_sem);
5500         }
5501
5502         if (!error) {
5503                 setattr_copy(inode, attr);
5504                 mark_inode_dirty(inode);
5505         }
5506
5507         /*
5508          * If the call to ext4_truncate failed to get a transaction handle at
5509          * all, we need to clean up the in-core orphan list manually.
5510          */
5511         if (orphan && inode->i_nlink)
5512                 ext4_orphan_del(NULL, inode);
5513
5514         if (!error && (ia_valid & ATTR_MODE))
5515                 rc = posix_acl_chmod(inode, inode->i_mode);
5516
5517 err_out:
5518         ext4_std_error(inode->i_sb, error);
5519         if (!error)
5520                 error = rc;
5521         return error;
5522 }
5523
5524 int ext4_getattr(const struct path *path, struct kstat *stat,
5525                  u32 request_mask, unsigned int query_flags)
5526 {
5527         struct inode *inode = d_inode(path->dentry);
5528         struct ext4_inode *raw_inode;
5529         struct ext4_inode_info *ei = EXT4_I(inode);
5530         unsigned int flags;
5531
5532         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5533                 stat->result_mask |= STATX_BTIME;
5534                 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5535                 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5536         }
5537
5538         flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5539         if (flags & EXT4_APPEND_FL)
5540                 stat->attributes |= STATX_ATTR_APPEND;
5541         if (flags & EXT4_COMPR_FL)
5542                 stat->attributes |= STATX_ATTR_COMPRESSED;
5543         if (flags & EXT4_ENCRYPT_FL)
5544                 stat->attributes |= STATX_ATTR_ENCRYPTED;
5545         if (flags & EXT4_IMMUTABLE_FL)
5546                 stat->attributes |= STATX_ATTR_IMMUTABLE;
5547         if (flags & EXT4_NODUMP_FL)
5548                 stat->attributes |= STATX_ATTR_NODUMP;
5549
5550         stat->attributes_mask |= (STATX_ATTR_APPEND |
5551                                   STATX_ATTR_COMPRESSED |
5552                                   STATX_ATTR_ENCRYPTED |
5553                                   STATX_ATTR_IMMUTABLE |
5554                                   STATX_ATTR_NODUMP);
5555
5556         generic_fillattr(inode, stat);
5557         return 0;
5558 }
5559
5560 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5561                       u32 request_mask, unsigned int query_flags)
5562 {
5563         struct inode *inode = d_inode(path->dentry);
5564         u64 delalloc_blocks;
5565
5566         ext4_getattr(path, stat, request_mask, query_flags);
5567
5568         /*
5569          * If there is inline data in the inode, the inode will normally not
5570          * have data blocks allocated (it may have an external xattr block).
5571          * Report at least one sector for such files, so tools like tar, rsync,
5572          * others don't incorrectly think the file is completely sparse.
5573          */
5574         if (unlikely(ext4_has_inline_data(inode)))
5575                 stat->blocks += (stat->size + 511) >> 9;
5576
5577         /*
5578          * We can't update i_blocks if the block allocation is delayed
5579          * otherwise in the case of system crash before the real block
5580          * allocation is done, we will have i_blocks inconsistent with
5581          * on-disk file blocks.
5582          * We always keep i_blocks updated together with real
5583          * allocation. But to not confuse with user, stat
5584          * will return the blocks that include the delayed allocation
5585          * blocks for this file.
5586          */
5587         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5588                                    EXT4_I(inode)->i_reserved_data_blocks);
5589         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5590         return 0;
5591 }
5592
5593 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5594                                    int pextents)
5595 {
5596         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5597                 return ext4_ind_trans_blocks(inode, lblocks);
5598         return ext4_ext_index_trans_blocks(inode, pextents);
5599 }
5600
5601 /*
5602  * Account for index blocks, block groups bitmaps and block group
5603  * descriptor blocks if modify datablocks and index blocks
5604  * worse case, the indexs blocks spread over different block groups
5605  *
5606  * If datablocks are discontiguous, they are possible to spread over
5607  * different block groups too. If they are contiguous, with flexbg,
5608  * they could still across block group boundary.
5609  *
5610  * Also account for superblock, inode, quota and xattr blocks
5611  */
5612 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5613                                   int pextents)
5614 {
5615         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5616         int gdpblocks;
5617         int idxblocks;
5618         int ret = 0;
5619
5620         /*
5621          * How many index blocks need to touch to map @lblocks logical blocks
5622          * to @pextents physical extents?
5623          */
5624         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5625
5626         ret = idxblocks;
5627
5628         /*
5629          * Now let's see how many group bitmaps and group descriptors need
5630          * to account
5631          */
5632         groups = idxblocks + pextents;
5633         gdpblocks = groups;
5634         if (groups > ngroups)
5635                 groups = ngroups;
5636         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5637                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5638
5639         /* bitmaps and block group descriptor blocks */
5640         ret += groups + gdpblocks;
5641
5642         /* Blocks for super block, inode, quota and xattr blocks */
5643         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5644
5645         return ret;
5646 }
5647
5648 /*
5649  * Calculate the total number of credits to reserve to fit
5650  * the modification of a single pages into a single transaction,
5651  * which may include multiple chunks of block allocations.
5652  *
5653  * This could be called via ext4_write_begin()
5654  *
5655  * We need to consider the worse case, when
5656  * one new block per extent.
5657  */
5658 int ext4_writepage_trans_blocks(struct inode *inode)
5659 {
5660         int bpp = ext4_journal_blocks_per_page(inode);
5661         int ret;
5662
5663         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5664
5665         /* Account for data blocks for journalled mode */
5666         if (ext4_should_journal_data(inode))
5667                 ret += bpp;
5668         return ret;
5669 }
5670
5671 /*
5672  * Calculate the journal credits for a chunk of data modification.
5673  *
5674  * This is called from DIO, fallocate or whoever calling
5675  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5676  *
5677  * journal buffers for data blocks are not included here, as DIO
5678  * and fallocate do no need to journal data buffers.
5679  */
5680 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5681 {
5682         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5683 }
5684
5685 /*
5686  * The caller must have previously called ext4_reserve_inode_write().
5687  * Give this, we know that the caller already has write access to iloc->bh.
5688  */
5689 int ext4_mark_iloc_dirty(handle_t *handle,
5690                          struct inode *inode, struct ext4_iloc *iloc)
5691 {
5692         int err = 0;
5693
5694         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5695                 return -EIO;
5696
5697         if (IS_I_VERSION(inode))
5698                 inode_inc_iversion(inode);
5699
5700         /* the do_update_inode consumes one bh->b_count */
5701         get_bh(iloc->bh);
5702
5703         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5704         err = ext4_do_update_inode(handle, inode, iloc);
5705         put_bh(iloc->bh);
5706         return err;
5707 }
5708
5709 /*
5710  * On success, We end up with an outstanding reference count against
5711  * iloc->bh.  This _must_ be cleaned up later.
5712  */
5713
5714 int
5715 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5716                          struct ext4_iloc *iloc)
5717 {
5718         int err;
5719
5720         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5721                 return -EIO;
5722
5723         err = ext4_get_inode_loc(inode, iloc);
5724         if (!err) {
5725                 BUFFER_TRACE(iloc->bh, "get_write_access");
5726                 err = ext4_journal_get_write_access(handle, iloc->bh);
5727                 if (err) {
5728                         brelse(iloc->bh);
5729                         iloc->bh = NULL;
5730                 }
5731         }
5732         ext4_std_error(inode->i_sb, err);
5733         return err;
5734 }
5735
5736 static int __ext4_expand_extra_isize(struct inode *inode,
5737                                      unsigned int new_extra_isize,
5738                                      struct ext4_iloc *iloc,
5739                                      handle_t *handle, int *no_expand)
5740 {
5741         struct ext4_inode *raw_inode;
5742         struct ext4_xattr_ibody_header *header;
5743         int error;
5744
5745         raw_inode = ext4_raw_inode(iloc);
5746
5747         header = IHDR(inode, raw_inode);
5748
5749         /* No extended attributes present */
5750         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5751             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5752                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5753                        EXT4_I(inode)->i_extra_isize, 0,
5754                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
5755                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5756                 return 0;
5757         }
5758
5759         /* try to expand with EAs present */
5760         error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5761                                            raw_inode, handle);
5762         if (error) {
5763                 /*
5764                  * Inode size expansion failed; don't try again
5765                  */
5766                 *no_expand = 1;
5767         }
5768
5769         return error;
5770 }
5771
5772 /*
5773  * Expand an inode by new_extra_isize bytes.
5774  * Returns 0 on success or negative error number on failure.
5775  */
5776 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5777                                           unsigned int new_extra_isize,
5778                                           struct ext4_iloc iloc,
5779                                           handle_t *handle)
5780 {
5781         int no_expand;
5782         int error;
5783
5784         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5785                 return -EOVERFLOW;
5786
5787         /*
5788          * In nojournal mode, we can immediately attempt to expand
5789          * the inode.  When journaled, we first need to obtain extra
5790          * buffer credits since we may write into the EA block
5791          * with this same handle. If journal_extend fails, then it will
5792          * only result in a minor loss of functionality for that inode.
5793          * If this is felt to be critical, then e2fsck should be run to
5794          * force a large enough s_min_extra_isize.
5795          */
5796         if (ext4_handle_valid(handle) &&
5797             jbd2_journal_extend(handle,
5798                                 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
5799                 return -ENOSPC;
5800
5801         if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5802                 return -EBUSY;
5803
5804         error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5805                                           handle, &no_expand);
5806         ext4_write_unlock_xattr(inode, &no_expand);
5807
5808         return error;
5809 }
5810
5811 int ext4_expand_extra_isize(struct inode *inode,
5812                             unsigned int new_extra_isize,
5813                             struct ext4_iloc *iloc)
5814 {
5815         handle_t *handle;
5816         int no_expand;
5817         int error, rc;
5818
5819         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5820                 brelse(iloc->bh);
5821                 return -EOVERFLOW;
5822         }
5823
5824         handle = ext4_journal_start(inode, EXT4_HT_INODE,
5825                                     EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5826         if (IS_ERR(handle)) {
5827                 error = PTR_ERR(handle);
5828                 brelse(iloc->bh);
5829                 return error;
5830         }
5831
5832         ext4_write_lock_xattr(inode, &no_expand);
5833
5834         BUFFER_TRACE(iloc.bh, "get_write_access");
5835         error = ext4_journal_get_write_access(handle, iloc->bh);
5836         if (error) {
5837                 brelse(iloc->bh);
5838                 goto out_stop;
5839         }
5840
5841         error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5842                                           handle, &no_expand);
5843
5844         rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5845         if (!error)
5846                 error = rc;
5847
5848         ext4_write_unlock_xattr(inode, &no_expand);
5849 out_stop:
5850         ext4_journal_stop(handle);
5851         return error;
5852 }
5853
5854 /*
5855  * What we do here is to mark the in-core inode as clean with respect to inode
5856  * dirtiness (it may still be data-dirty).
5857  * This means that the in-core inode may be reaped by prune_icache
5858  * without having to perform any I/O.  This is a very good thing,
5859  * because *any* task may call prune_icache - even ones which
5860  * have a transaction open against a different journal.
5861  *
5862  * Is this cheating?  Not really.  Sure, we haven't written the
5863  * inode out, but prune_icache isn't a user-visible syncing function.
5864  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5865  * we start and wait on commits.
5866  */
5867 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5868 {
5869         struct ext4_iloc iloc;
5870         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5871         int err;
5872
5873         might_sleep();
5874         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5875         err = ext4_reserve_inode_write(handle, inode, &iloc);
5876         if (err)
5877                 return err;
5878
5879         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5880                 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5881                                                iloc, handle);
5882
5883         return ext4_mark_iloc_dirty(handle, inode, &iloc);
5884 }
5885
5886 /*
5887  * ext4_dirty_inode() is called from __mark_inode_dirty()
5888  *
5889  * We're really interested in the case where a file is being extended.
5890  * i_size has been changed by generic_commit_write() and we thus need
5891  * to include the updated inode in the current transaction.
5892  *
5893  * Also, dquot_alloc_block() will always dirty the inode when blocks
5894  * are allocated to the file.
5895  *
5896  * If the inode is marked synchronous, we don't honour that here - doing
5897  * so would cause a commit on atime updates, which we don't bother doing.
5898  * We handle synchronous inodes at the highest possible level.
5899  *
5900  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5901  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5902  * to copy into the on-disk inode structure are the timestamp files.
5903  */
5904 void ext4_dirty_inode(struct inode *inode, int flags)
5905 {
5906         handle_t *handle;
5907
5908         if (flags == I_DIRTY_TIME)
5909                 return;
5910         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5911         if (IS_ERR(handle))
5912                 goto out;
5913
5914         ext4_mark_inode_dirty(handle, inode);
5915
5916         ext4_journal_stop(handle);
5917 out:
5918         return;
5919 }
5920
5921 #if 0
5922 /*
5923  * Bind an inode's backing buffer_head into this transaction, to prevent
5924  * it from being flushed to disk early.  Unlike
5925  * ext4_reserve_inode_write, this leaves behind no bh reference and
5926  * returns no iloc structure, so the caller needs to repeat the iloc
5927  * lookup to mark the inode dirty later.
5928  */
5929 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5930 {
5931         struct ext4_iloc iloc;
5932
5933         int err = 0;
5934         if (handle) {
5935                 err = ext4_get_inode_loc(inode, &iloc);
5936                 if (!err) {
5937                         BUFFER_TRACE(iloc.bh, "get_write_access");
5938                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5939                         if (!err)
5940                                 err = ext4_handle_dirty_metadata(handle,
5941                                                                  NULL,
5942                                                                  iloc.bh);
5943                         brelse(iloc.bh);
5944                 }
5945         }
5946         ext4_std_error(inode->i_sb, err);
5947         return err;
5948 }
5949 #endif
5950
5951 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5952 {
5953         journal_t *journal;
5954         handle_t *handle;
5955         int err;
5956         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5957
5958         /*
5959          * We have to be very careful here: changing a data block's
5960          * journaling status dynamically is dangerous.  If we write a
5961          * data block to the journal, change the status and then delete
5962          * that block, we risk forgetting to revoke the old log record
5963          * from the journal and so a subsequent replay can corrupt data.
5964          * So, first we make sure that the journal is empty and that
5965          * nobody is changing anything.
5966          */
5967
5968         journal = EXT4_JOURNAL(inode);
5969         if (!journal)
5970                 return 0;
5971         if (is_journal_aborted(journal))
5972                 return -EROFS;
5973
5974         /* Wait for all existing dio workers */
5975         ext4_inode_block_unlocked_dio(inode);
5976         inode_dio_wait(inode);
5977
5978         /*
5979          * Before flushing the journal and switching inode's aops, we have
5980          * to flush all dirty data the inode has. There can be outstanding
5981          * delayed allocations, there can be unwritten extents created by
5982          * fallocate or buffered writes in dioread_nolock mode covered by
5983          * dirty data which can be converted only after flushing the dirty
5984          * data (and journalled aops don't know how to handle these cases).
5985          */
5986         if (val) {
5987                 down_write(&EXT4_I(inode)->i_mmap_sem);
5988                 err = filemap_write_and_wait(inode->i_mapping);
5989                 if (err < 0) {
5990                         up_write(&EXT4_I(inode)->i_mmap_sem);
5991                         ext4_inode_resume_unlocked_dio(inode);
5992                         return err;
5993                 }
5994         }
5995
5996         percpu_down_write(&sbi->s_journal_flag_rwsem);
5997         jbd2_journal_lock_updates(journal);
5998
5999         /*
6000          * OK, there are no updates running now, and all cached data is
6001          * synced to disk.  We are now in a completely consistent state
6002          * which doesn't have anything in the journal, and we know that
6003          * no filesystem updates are running, so it is safe to modify
6004          * the inode's in-core data-journaling state flag now.
6005          */
6006
6007         if (val)
6008                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6009         else {
6010                 err = jbd2_journal_flush(journal);
6011                 if (err < 0) {
6012                         jbd2_journal_unlock_updates(journal);
6013                         percpu_up_write(&sbi->s_journal_flag_rwsem);
6014                         ext4_inode_resume_unlocked_dio(inode);
6015                         return err;
6016                 }
6017                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6018         }
6019         ext4_set_aops(inode);
6020
6021         jbd2_journal_unlock_updates(journal);
6022         percpu_up_write(&sbi->s_journal_flag_rwsem);
6023
6024         if (val)
6025                 up_write(&EXT4_I(inode)->i_mmap_sem);
6026         ext4_inode_resume_unlocked_dio(inode);
6027
6028         /* Finally we can mark the inode as dirty. */
6029
6030         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6031         if (IS_ERR(handle))
6032                 return PTR_ERR(handle);
6033
6034         err = ext4_mark_inode_dirty(handle, inode);
6035         ext4_handle_sync(handle);
6036         ext4_journal_stop(handle);
6037         ext4_std_error(inode->i_sb, err);
6038
6039         return err;
6040 }
6041
6042 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6043 {
6044         return !buffer_mapped(bh);
6045 }
6046
6047 int ext4_page_mkwrite(struct vm_fault *vmf)
6048 {
6049         struct vm_area_struct *vma = vmf->vma;
6050         struct page *page = vmf->page;
6051         loff_t size;
6052         unsigned long len;
6053         int ret;
6054         struct file *file = vma->vm_file;
6055         struct inode *inode = file_inode(file);
6056         struct address_space *mapping = inode->i_mapping;
6057         handle_t *handle;
6058         get_block_t *get_block;
6059         int retries = 0;
6060
6061         sb_start_pagefault(inode->i_sb);
6062         file_update_time(vma->vm_file);
6063
6064         down_read(&EXT4_I(inode)->i_mmap_sem);
6065
6066         ret = ext4_convert_inline_data(inode);
6067         if (ret)
6068                 goto out_ret;
6069
6070         /* Delalloc case is easy... */
6071         if (test_opt(inode->i_sb, DELALLOC) &&
6072             !ext4_should_journal_data(inode) &&
6073             !ext4_nonda_switch(inode->i_sb)) {
6074                 do {
6075                         ret = block_page_mkwrite(vma, vmf,
6076                                                    ext4_da_get_block_prep);
6077                 } while (ret == -ENOSPC &&
6078                        ext4_should_retry_alloc(inode->i_sb, &retries));
6079                 goto out_ret;
6080         }
6081
6082         lock_page(page);
6083         size = i_size_read(inode);
6084         /* Page got truncated from under us? */
6085         if (page->mapping != mapping || page_offset(page) > size) {
6086                 unlock_page(page);
6087                 ret = VM_FAULT_NOPAGE;
6088                 goto out;
6089         }
6090
6091         if (page->index == size >> PAGE_SHIFT)
6092                 len = size & ~PAGE_MASK;
6093         else
6094                 len = PAGE_SIZE;
6095         /*
6096          * Return if we have all the buffers mapped. This avoids the need to do
6097          * journal_start/journal_stop which can block and take a long time
6098          */
6099         if (page_has_buffers(page)) {
6100                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6101                                             0, len, NULL,
6102                                             ext4_bh_unmapped)) {
6103                         /* Wait so that we don't change page under IO */
6104                         wait_for_stable_page(page);
6105                         ret = VM_FAULT_LOCKED;
6106                         goto out;
6107                 }
6108         }
6109         unlock_page(page);
6110         /* OK, we need to fill the hole... */
6111         if (ext4_should_dioread_nolock(inode))
6112                 get_block = ext4_get_block_unwritten;
6113         else
6114                 get_block = ext4_get_block;
6115 retry_alloc:
6116         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6117                                     ext4_writepage_trans_blocks(inode));
6118         if (IS_ERR(handle)) {
6119                 ret = VM_FAULT_SIGBUS;
6120                 goto out;
6121         }
6122         ret = block_page_mkwrite(vma, vmf, get_block);
6123         if (!ret && ext4_should_journal_data(inode)) {
6124                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6125                           PAGE_SIZE, NULL, do_journal_get_write_access)) {
6126                         unlock_page(page);
6127                         ret = VM_FAULT_SIGBUS;
6128                         ext4_journal_stop(handle);
6129                         goto out;
6130                 }
6131                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6132         }
6133         ext4_journal_stop(handle);
6134         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6135                 goto retry_alloc;
6136 out_ret:
6137         ret = block_page_mkwrite_return(ret);
6138 out:
6139         up_read(&EXT4_I(inode)->i_mmap_sem);
6140         sb_end_pagefault(inode->i_sb);
6141         return ret;
6142 }
6143
6144 int ext4_filemap_fault(struct vm_fault *vmf)
6145 {
6146         struct inode *inode = file_inode(vmf->vma->vm_file);
6147         int err;
6148
6149         down_read(&EXT4_I(inode)->i_mmap_sem);
6150         err = filemap_fault(vmf);
6151         up_read(&EXT4_I(inode)->i_mmap_sem);
6152
6153         return err;
6154 }