Merge tag 'nfs-for-5.1-2' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
[sfrench/cifs-2.6.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *      (jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
43
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
48
49 #include <trace/events/ext4.h>
50
51 #define MPAGE_DA_EXTENT_TAIL 0x01
52
53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54                               struct ext4_inode_info *ei)
55 {
56         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57         __u32 csum;
58         __u16 dummy_csum = 0;
59         int offset = offsetof(struct ext4_inode, i_checksum_lo);
60         unsigned int csum_size = sizeof(dummy_csum);
61
62         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64         offset += csum_size;
65         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66                            EXT4_GOOD_OLD_INODE_SIZE - offset);
67
68         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69                 offset = offsetof(struct ext4_inode, i_checksum_hi);
70                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71                                    EXT4_GOOD_OLD_INODE_SIZE,
72                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
73                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
75                                            csum_size);
76                         offset += csum_size;
77                 }
78                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
80         }
81
82         return csum;
83 }
84
85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86                                   struct ext4_inode_info *ei)
87 {
88         __u32 provided, calculated;
89
90         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91             cpu_to_le32(EXT4_OS_LINUX) ||
92             !ext4_has_metadata_csum(inode->i_sb))
93                 return 1;
94
95         provided = le16_to_cpu(raw->i_checksum_lo);
96         calculated = ext4_inode_csum(inode, raw, ei);
97         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100         else
101                 calculated &= 0xFFFF;
102
103         return provided == calculated;
104 }
105
106 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107                                 struct ext4_inode_info *ei)
108 {
109         __u32 csum;
110
111         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112             cpu_to_le32(EXT4_OS_LINUX) ||
113             !ext4_has_metadata_csum(inode->i_sb))
114                 return;
115
116         csum = ext4_inode_csum(inode, raw, ei);
117         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
121 }
122
123 static inline int ext4_begin_ordered_truncate(struct inode *inode,
124                                               loff_t new_size)
125 {
126         trace_ext4_begin_ordered_truncate(inode, new_size);
127         /*
128          * If jinode is zero, then we never opened the file for
129          * writing, so there's no need to call
130          * jbd2_journal_begin_ordered_truncate() since there's no
131          * outstanding writes we need to flush.
132          */
133         if (!EXT4_I(inode)->jinode)
134                 return 0;
135         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136                                                    EXT4_I(inode)->jinode,
137                                                    new_size);
138 }
139
140 static void ext4_invalidatepage(struct page *page, unsigned int offset,
141                                 unsigned int length);
142 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
143 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
144 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
145                                   int pextents);
146
147 /*
148  * Test whether an inode is a fast symlink.
149  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
150  */
151 int ext4_inode_is_fast_symlink(struct inode *inode)
152 {
153         if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
154                 int ea_blocks = EXT4_I(inode)->i_file_acl ?
155                                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
156
157                 if (ext4_has_inline_data(inode))
158                         return 0;
159
160                 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
161         }
162         return S_ISLNK(inode->i_mode) && inode->i_size &&
163                (inode->i_size < EXT4_N_BLOCKS * 4);
164 }
165
166 /*
167  * Restart the transaction associated with *handle.  This does a commit,
168  * so before we call here everything must be consistently dirtied against
169  * this transaction.
170  */
171 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
172                                  int nblocks)
173 {
174         int ret;
175
176         /*
177          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
178          * moment, get_block can be called only for blocks inside i_size since
179          * page cache has been already dropped and writes are blocked by
180          * i_mutex. So we can safely drop the i_data_sem here.
181          */
182         BUG_ON(EXT4_JOURNAL(inode) == NULL);
183         jbd_debug(2, "restarting handle %p\n", handle);
184         up_write(&EXT4_I(inode)->i_data_sem);
185         ret = ext4_journal_restart(handle, nblocks);
186         down_write(&EXT4_I(inode)->i_data_sem);
187         ext4_discard_preallocations(inode);
188
189         return ret;
190 }
191
192 /*
193  * Called at the last iput() if i_nlink is zero.
194  */
195 void ext4_evict_inode(struct inode *inode)
196 {
197         handle_t *handle;
198         int err;
199         int extra_credits = 3;
200         struct ext4_xattr_inode_array *ea_inode_array = NULL;
201
202         trace_ext4_evict_inode(inode);
203
204         if (inode->i_nlink) {
205                 /*
206                  * When journalling data dirty buffers are tracked only in the
207                  * journal. So although mm thinks everything is clean and
208                  * ready for reaping the inode might still have some pages to
209                  * write in the running transaction or waiting to be
210                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
211                  * (via truncate_inode_pages()) to discard these buffers can
212                  * cause data loss. Also even if we did not discard these
213                  * buffers, we would have no way to find them after the inode
214                  * is reaped and thus user could see stale data if he tries to
215                  * read them before the transaction is checkpointed. So be
216                  * careful and force everything to disk here... We use
217                  * ei->i_datasync_tid to store the newest transaction
218                  * containing inode's data.
219                  *
220                  * Note that directories do not have this problem because they
221                  * don't use page cache.
222                  */
223                 if (inode->i_ino != EXT4_JOURNAL_INO &&
224                     ext4_should_journal_data(inode) &&
225                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
226                     inode->i_data.nrpages) {
227                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
228                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
229
230                         jbd2_complete_transaction(journal, commit_tid);
231                         filemap_write_and_wait(&inode->i_data);
232                 }
233                 truncate_inode_pages_final(&inode->i_data);
234
235                 goto no_delete;
236         }
237
238         if (is_bad_inode(inode))
239                 goto no_delete;
240         dquot_initialize(inode);
241
242         if (ext4_should_order_data(inode))
243                 ext4_begin_ordered_truncate(inode, 0);
244         truncate_inode_pages_final(&inode->i_data);
245
246         /*
247          * Protect us against freezing - iput() caller didn't have to have any
248          * protection against it
249          */
250         sb_start_intwrite(inode->i_sb);
251
252         if (!IS_NOQUOTA(inode))
253                 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
254
255         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
256                                  ext4_blocks_for_truncate(inode)+extra_credits);
257         if (IS_ERR(handle)) {
258                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
259                 /*
260                  * If we're going to skip the normal cleanup, we still need to
261                  * make sure that the in-core orphan linked list is properly
262                  * cleaned up.
263                  */
264                 ext4_orphan_del(NULL, inode);
265                 sb_end_intwrite(inode->i_sb);
266                 goto no_delete;
267         }
268
269         if (IS_SYNC(inode))
270                 ext4_handle_sync(handle);
271
272         /*
273          * Set inode->i_size to 0 before calling ext4_truncate(). We need
274          * special handling of symlinks here because i_size is used to
275          * determine whether ext4_inode_info->i_data contains symlink data or
276          * block mappings. Setting i_size to 0 will remove its fast symlink
277          * status. Erase i_data so that it becomes a valid empty block map.
278          */
279         if (ext4_inode_is_fast_symlink(inode))
280                 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
281         inode->i_size = 0;
282         err = ext4_mark_inode_dirty(handle, inode);
283         if (err) {
284                 ext4_warning(inode->i_sb,
285                              "couldn't mark inode dirty (err %d)", err);
286                 goto stop_handle;
287         }
288         if (inode->i_blocks) {
289                 err = ext4_truncate(inode);
290                 if (err) {
291                         ext4_error(inode->i_sb,
292                                    "couldn't truncate inode %lu (err %d)",
293                                    inode->i_ino, err);
294                         goto stop_handle;
295                 }
296         }
297
298         /* Remove xattr references. */
299         err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
300                                       extra_credits);
301         if (err) {
302                 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
303 stop_handle:
304                 ext4_journal_stop(handle);
305                 ext4_orphan_del(NULL, inode);
306                 sb_end_intwrite(inode->i_sb);
307                 ext4_xattr_inode_array_free(ea_inode_array);
308                 goto no_delete;
309         }
310
311         /*
312          * Kill off the orphan record which ext4_truncate created.
313          * AKPM: I think this can be inside the above `if'.
314          * Note that ext4_orphan_del() has to be able to cope with the
315          * deletion of a non-existent orphan - this is because we don't
316          * know if ext4_truncate() actually created an orphan record.
317          * (Well, we could do this if we need to, but heck - it works)
318          */
319         ext4_orphan_del(handle, inode);
320         EXT4_I(inode)->i_dtime  = (__u32)ktime_get_real_seconds();
321
322         /*
323          * One subtle ordering requirement: if anything has gone wrong
324          * (transaction abort, IO errors, whatever), then we can still
325          * do these next steps (the fs will already have been marked as
326          * having errors), but we can't free the inode if the mark_dirty
327          * fails.
328          */
329         if (ext4_mark_inode_dirty(handle, inode))
330                 /* If that failed, just do the required in-core inode clear. */
331                 ext4_clear_inode(inode);
332         else
333                 ext4_free_inode(handle, inode);
334         ext4_journal_stop(handle);
335         sb_end_intwrite(inode->i_sb);
336         ext4_xattr_inode_array_free(ea_inode_array);
337         return;
338 no_delete:
339         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
340 }
341
342 #ifdef CONFIG_QUOTA
343 qsize_t *ext4_get_reserved_space(struct inode *inode)
344 {
345         return &EXT4_I(inode)->i_reserved_quota;
346 }
347 #endif
348
349 /*
350  * Called with i_data_sem down, which is important since we can call
351  * ext4_discard_preallocations() from here.
352  */
353 void ext4_da_update_reserve_space(struct inode *inode,
354                                         int used, int quota_claim)
355 {
356         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
357         struct ext4_inode_info *ei = EXT4_I(inode);
358
359         spin_lock(&ei->i_block_reservation_lock);
360         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
361         if (unlikely(used > ei->i_reserved_data_blocks)) {
362                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
363                          "with only %d reserved data blocks",
364                          __func__, inode->i_ino, used,
365                          ei->i_reserved_data_blocks);
366                 WARN_ON(1);
367                 used = ei->i_reserved_data_blocks;
368         }
369
370         /* Update per-inode reservations */
371         ei->i_reserved_data_blocks -= used;
372         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
373
374         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
375
376         /* Update quota subsystem for data blocks */
377         if (quota_claim)
378                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
379         else {
380                 /*
381                  * We did fallocate with an offset that is already delayed
382                  * allocated. So on delayed allocated writeback we should
383                  * not re-claim the quota for fallocated blocks.
384                  */
385                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
386         }
387
388         /*
389          * If we have done all the pending block allocations and if
390          * there aren't any writers on the inode, we can discard the
391          * inode's preallocations.
392          */
393         if ((ei->i_reserved_data_blocks == 0) &&
394             !inode_is_open_for_write(inode))
395                 ext4_discard_preallocations(inode);
396 }
397
398 static int __check_block_validity(struct inode *inode, const char *func,
399                                 unsigned int line,
400                                 struct ext4_map_blocks *map)
401 {
402         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
403                                    map->m_len)) {
404                 ext4_error_inode(inode, func, line, map->m_pblk,
405                                  "lblock %lu mapped to illegal pblock %llu "
406                                  "(length %d)", (unsigned long) map->m_lblk,
407                                  map->m_pblk, map->m_len);
408                 return -EFSCORRUPTED;
409         }
410         return 0;
411 }
412
413 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
414                        ext4_lblk_t len)
415 {
416         int ret;
417
418         if (IS_ENCRYPTED(inode))
419                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
420
421         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
422         if (ret > 0)
423                 ret = 0;
424
425         return ret;
426 }
427
428 #define check_block_validity(inode, map)        \
429         __check_block_validity((inode), __func__, __LINE__, (map))
430
431 #ifdef ES_AGGRESSIVE_TEST
432 static void ext4_map_blocks_es_recheck(handle_t *handle,
433                                        struct inode *inode,
434                                        struct ext4_map_blocks *es_map,
435                                        struct ext4_map_blocks *map,
436                                        int flags)
437 {
438         int retval;
439
440         map->m_flags = 0;
441         /*
442          * There is a race window that the result is not the same.
443          * e.g. xfstests #223 when dioread_nolock enables.  The reason
444          * is that we lookup a block mapping in extent status tree with
445          * out taking i_data_sem.  So at the time the unwritten extent
446          * could be converted.
447          */
448         down_read(&EXT4_I(inode)->i_data_sem);
449         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
450                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
451                                              EXT4_GET_BLOCKS_KEEP_SIZE);
452         } else {
453                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
454                                              EXT4_GET_BLOCKS_KEEP_SIZE);
455         }
456         up_read((&EXT4_I(inode)->i_data_sem));
457
458         /*
459          * We don't check m_len because extent will be collpased in status
460          * tree.  So the m_len might not equal.
461          */
462         if (es_map->m_lblk != map->m_lblk ||
463             es_map->m_flags != map->m_flags ||
464             es_map->m_pblk != map->m_pblk) {
465                 printk("ES cache assertion failed for inode: %lu "
466                        "es_cached ex [%d/%d/%llu/%x] != "
467                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
468                        inode->i_ino, es_map->m_lblk, es_map->m_len,
469                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
470                        map->m_len, map->m_pblk, map->m_flags,
471                        retval, flags);
472         }
473 }
474 #endif /* ES_AGGRESSIVE_TEST */
475
476 /*
477  * The ext4_map_blocks() function tries to look up the requested blocks,
478  * and returns if the blocks are already mapped.
479  *
480  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
481  * and store the allocated blocks in the result buffer head and mark it
482  * mapped.
483  *
484  * If file type is extents based, it will call ext4_ext_map_blocks(),
485  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
486  * based files
487  *
488  * On success, it returns the number of blocks being mapped or allocated.  if
489  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
490  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
491  *
492  * It returns 0 if plain look up failed (blocks have not been allocated), in
493  * that case, @map is returned as unmapped but we still do fill map->m_len to
494  * indicate the length of a hole starting at map->m_lblk.
495  *
496  * It returns the error in case of allocation failure.
497  */
498 int ext4_map_blocks(handle_t *handle, struct inode *inode,
499                     struct ext4_map_blocks *map, int flags)
500 {
501         struct extent_status es;
502         int retval;
503         int ret = 0;
504 #ifdef ES_AGGRESSIVE_TEST
505         struct ext4_map_blocks orig_map;
506
507         memcpy(&orig_map, map, sizeof(*map));
508 #endif
509
510         map->m_flags = 0;
511         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
512                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
513                   (unsigned long) map->m_lblk);
514
515         /*
516          * ext4_map_blocks returns an int, and m_len is an unsigned int
517          */
518         if (unlikely(map->m_len > INT_MAX))
519                 map->m_len = INT_MAX;
520
521         /* We can handle the block number less than EXT_MAX_BLOCKS */
522         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
523                 return -EFSCORRUPTED;
524
525         /* Lookup extent status tree firstly */
526         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
527                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
528                         map->m_pblk = ext4_es_pblock(&es) +
529                                         map->m_lblk - es.es_lblk;
530                         map->m_flags |= ext4_es_is_written(&es) ?
531                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
532                         retval = es.es_len - (map->m_lblk - es.es_lblk);
533                         if (retval > map->m_len)
534                                 retval = map->m_len;
535                         map->m_len = retval;
536                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
537                         map->m_pblk = 0;
538                         retval = es.es_len - (map->m_lblk - es.es_lblk);
539                         if (retval > map->m_len)
540                                 retval = map->m_len;
541                         map->m_len = retval;
542                         retval = 0;
543                 } else {
544                         BUG_ON(1);
545                 }
546 #ifdef ES_AGGRESSIVE_TEST
547                 ext4_map_blocks_es_recheck(handle, inode, map,
548                                            &orig_map, flags);
549 #endif
550                 goto found;
551         }
552
553         /*
554          * Try to see if we can get the block without requesting a new
555          * file system block.
556          */
557         down_read(&EXT4_I(inode)->i_data_sem);
558         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
559                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
560                                              EXT4_GET_BLOCKS_KEEP_SIZE);
561         } else {
562                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
563                                              EXT4_GET_BLOCKS_KEEP_SIZE);
564         }
565         if (retval > 0) {
566                 unsigned int status;
567
568                 if (unlikely(retval != map->m_len)) {
569                         ext4_warning(inode->i_sb,
570                                      "ES len assertion failed for inode "
571                                      "%lu: retval %d != map->m_len %d",
572                                      inode->i_ino, retval, map->m_len);
573                         WARN_ON(1);
574                 }
575
576                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
577                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
578                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
579                     !(status & EXTENT_STATUS_WRITTEN) &&
580                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
581                                        map->m_lblk + map->m_len - 1))
582                         status |= EXTENT_STATUS_DELAYED;
583                 ret = ext4_es_insert_extent(inode, map->m_lblk,
584                                             map->m_len, map->m_pblk, status);
585                 if (ret < 0)
586                         retval = ret;
587         }
588         up_read((&EXT4_I(inode)->i_data_sem));
589
590 found:
591         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
592                 ret = check_block_validity(inode, map);
593                 if (ret != 0)
594                         return ret;
595         }
596
597         /* If it is only a block(s) look up */
598         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
599                 return retval;
600
601         /*
602          * Returns if the blocks have already allocated
603          *
604          * Note that if blocks have been preallocated
605          * ext4_ext_get_block() returns the create = 0
606          * with buffer head unmapped.
607          */
608         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
609                 /*
610                  * If we need to convert extent to unwritten
611                  * we continue and do the actual work in
612                  * ext4_ext_map_blocks()
613                  */
614                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
615                         return retval;
616
617         /*
618          * Here we clear m_flags because after allocating an new extent,
619          * it will be set again.
620          */
621         map->m_flags &= ~EXT4_MAP_FLAGS;
622
623         /*
624          * New blocks allocate and/or writing to unwritten extent
625          * will possibly result in updating i_data, so we take
626          * the write lock of i_data_sem, and call get_block()
627          * with create == 1 flag.
628          */
629         down_write(&EXT4_I(inode)->i_data_sem);
630
631         /*
632          * We need to check for EXT4 here because migrate
633          * could have changed the inode type in between
634          */
635         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
636                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
637         } else {
638                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
639
640                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
641                         /*
642                          * We allocated new blocks which will result in
643                          * i_data's format changing.  Force the migrate
644                          * to fail by clearing migrate flags
645                          */
646                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
647                 }
648
649                 /*
650                  * Update reserved blocks/metadata blocks after successful
651                  * block allocation which had been deferred till now. We don't
652                  * support fallocate for non extent files. So we can update
653                  * reserve space here.
654                  */
655                 if ((retval > 0) &&
656                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
657                         ext4_da_update_reserve_space(inode, retval, 1);
658         }
659
660         if (retval > 0) {
661                 unsigned int status;
662
663                 if (unlikely(retval != map->m_len)) {
664                         ext4_warning(inode->i_sb,
665                                      "ES len assertion failed for inode "
666                                      "%lu: retval %d != map->m_len %d",
667                                      inode->i_ino, retval, map->m_len);
668                         WARN_ON(1);
669                 }
670
671                 /*
672                  * We have to zeroout blocks before inserting them into extent
673                  * status tree. Otherwise someone could look them up there and
674                  * use them before they are really zeroed. We also have to
675                  * unmap metadata before zeroing as otherwise writeback can
676                  * overwrite zeros with stale data from block device.
677                  */
678                 if (flags & EXT4_GET_BLOCKS_ZERO &&
679                     map->m_flags & EXT4_MAP_MAPPED &&
680                     map->m_flags & EXT4_MAP_NEW) {
681                         ret = ext4_issue_zeroout(inode, map->m_lblk,
682                                                  map->m_pblk, map->m_len);
683                         if (ret) {
684                                 retval = ret;
685                                 goto out_sem;
686                         }
687                 }
688
689                 /*
690                  * If the extent has been zeroed out, we don't need to update
691                  * extent status tree.
692                  */
693                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
694                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
695                         if (ext4_es_is_written(&es))
696                                 goto out_sem;
697                 }
698                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
699                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
700                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
701                     !(status & EXTENT_STATUS_WRITTEN) &&
702                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
703                                        map->m_lblk + map->m_len - 1))
704                         status |= EXTENT_STATUS_DELAYED;
705                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
706                                             map->m_pblk, status);
707                 if (ret < 0) {
708                         retval = ret;
709                         goto out_sem;
710                 }
711         }
712
713 out_sem:
714         up_write((&EXT4_I(inode)->i_data_sem));
715         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
716                 ret = check_block_validity(inode, map);
717                 if (ret != 0)
718                         return ret;
719
720                 /*
721                  * Inodes with freshly allocated blocks where contents will be
722                  * visible after transaction commit must be on transaction's
723                  * ordered data list.
724                  */
725                 if (map->m_flags & EXT4_MAP_NEW &&
726                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
727                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
728                     !ext4_is_quota_file(inode) &&
729                     ext4_should_order_data(inode)) {
730                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
731                                 ret = ext4_jbd2_inode_add_wait(handle, inode);
732                         else
733                                 ret = ext4_jbd2_inode_add_write(handle, inode);
734                         if (ret)
735                                 return ret;
736                 }
737         }
738         return retval;
739 }
740
741 /*
742  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
743  * we have to be careful as someone else may be manipulating b_state as well.
744  */
745 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
746 {
747         unsigned long old_state;
748         unsigned long new_state;
749
750         flags &= EXT4_MAP_FLAGS;
751
752         /* Dummy buffer_head? Set non-atomically. */
753         if (!bh->b_page) {
754                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
755                 return;
756         }
757         /*
758          * Someone else may be modifying b_state. Be careful! This is ugly but
759          * once we get rid of using bh as a container for mapping information
760          * to pass to / from get_block functions, this can go away.
761          */
762         do {
763                 old_state = READ_ONCE(bh->b_state);
764                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
765         } while (unlikely(
766                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
767 }
768
769 static int _ext4_get_block(struct inode *inode, sector_t iblock,
770                            struct buffer_head *bh, int flags)
771 {
772         struct ext4_map_blocks map;
773         int ret = 0;
774
775         if (ext4_has_inline_data(inode))
776                 return -ERANGE;
777
778         map.m_lblk = iblock;
779         map.m_len = bh->b_size >> inode->i_blkbits;
780
781         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
782                               flags);
783         if (ret > 0) {
784                 map_bh(bh, inode->i_sb, map.m_pblk);
785                 ext4_update_bh_state(bh, map.m_flags);
786                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
787                 ret = 0;
788         } else if (ret == 0) {
789                 /* hole case, need to fill in bh->b_size */
790                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
791         }
792         return ret;
793 }
794
795 int ext4_get_block(struct inode *inode, sector_t iblock,
796                    struct buffer_head *bh, int create)
797 {
798         return _ext4_get_block(inode, iblock, bh,
799                                create ? EXT4_GET_BLOCKS_CREATE : 0);
800 }
801
802 /*
803  * Get block function used when preparing for buffered write if we require
804  * creating an unwritten extent if blocks haven't been allocated.  The extent
805  * will be converted to written after the IO is complete.
806  */
807 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
808                              struct buffer_head *bh_result, int create)
809 {
810         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
811                    inode->i_ino, create);
812         return _ext4_get_block(inode, iblock, bh_result,
813                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
814 }
815
816 /* Maximum number of blocks we map for direct IO at once. */
817 #define DIO_MAX_BLOCKS 4096
818
819 /*
820  * Get blocks function for the cases that need to start a transaction -
821  * generally difference cases of direct IO and DAX IO. It also handles retries
822  * in case of ENOSPC.
823  */
824 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
825                                 struct buffer_head *bh_result, int flags)
826 {
827         int dio_credits;
828         handle_t *handle;
829         int retries = 0;
830         int ret;
831
832         /* Trim mapping request to maximum we can map at once for DIO */
833         if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
834                 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
835         dio_credits = ext4_chunk_trans_blocks(inode,
836                                       bh_result->b_size >> inode->i_blkbits);
837 retry:
838         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
839         if (IS_ERR(handle))
840                 return PTR_ERR(handle);
841
842         ret = _ext4_get_block(inode, iblock, bh_result, flags);
843         ext4_journal_stop(handle);
844
845         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
846                 goto retry;
847         return ret;
848 }
849
850 /* Get block function for DIO reads and writes to inodes without extents */
851 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
852                        struct buffer_head *bh, int create)
853 {
854         /* We don't expect handle for direct IO */
855         WARN_ON_ONCE(ext4_journal_current_handle());
856
857         if (!create)
858                 return _ext4_get_block(inode, iblock, bh, 0);
859         return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
860 }
861
862 /*
863  * Get block function for AIO DIO writes when we create unwritten extent if
864  * blocks are not allocated yet. The extent will be converted to written
865  * after IO is complete.
866  */
867 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
868                 sector_t iblock, struct buffer_head *bh_result, int create)
869 {
870         int ret;
871
872         /* We don't expect handle for direct IO */
873         WARN_ON_ONCE(ext4_journal_current_handle());
874
875         ret = ext4_get_block_trans(inode, iblock, bh_result,
876                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
877
878         /*
879          * When doing DIO using unwritten extents, we need io_end to convert
880          * unwritten extents to written on IO completion. We allocate io_end
881          * once we spot unwritten extent and store it in b_private. Generic
882          * DIO code keeps b_private set and furthermore passes the value to
883          * our completion callback in 'private' argument.
884          */
885         if (!ret && buffer_unwritten(bh_result)) {
886                 if (!bh_result->b_private) {
887                         ext4_io_end_t *io_end;
888
889                         io_end = ext4_init_io_end(inode, GFP_KERNEL);
890                         if (!io_end)
891                                 return -ENOMEM;
892                         bh_result->b_private = io_end;
893                         ext4_set_io_unwritten_flag(inode, io_end);
894                 }
895                 set_buffer_defer_completion(bh_result);
896         }
897
898         return ret;
899 }
900
901 /*
902  * Get block function for non-AIO DIO writes when we create unwritten extent if
903  * blocks are not allocated yet. The extent will be converted to written
904  * after IO is complete by ext4_direct_IO_write().
905  */
906 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
907                 sector_t iblock, struct buffer_head *bh_result, int create)
908 {
909         int ret;
910
911         /* We don't expect handle for direct IO */
912         WARN_ON_ONCE(ext4_journal_current_handle());
913
914         ret = ext4_get_block_trans(inode, iblock, bh_result,
915                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
916
917         /*
918          * Mark inode as having pending DIO writes to unwritten extents.
919          * ext4_direct_IO_write() checks this flag and converts extents to
920          * written.
921          */
922         if (!ret && buffer_unwritten(bh_result))
923                 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
924
925         return ret;
926 }
927
928 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
929                    struct buffer_head *bh_result, int create)
930 {
931         int ret;
932
933         ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
934                    inode->i_ino, create);
935         /* We don't expect handle for direct IO */
936         WARN_ON_ONCE(ext4_journal_current_handle());
937
938         ret = _ext4_get_block(inode, iblock, bh_result, 0);
939         /*
940          * Blocks should have been preallocated! ext4_file_write_iter() checks
941          * that.
942          */
943         WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
944
945         return ret;
946 }
947
948
949 /*
950  * `handle' can be NULL if create is zero
951  */
952 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
953                                 ext4_lblk_t block, int map_flags)
954 {
955         struct ext4_map_blocks map;
956         struct buffer_head *bh;
957         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
958         int err;
959
960         J_ASSERT(handle != NULL || create == 0);
961
962         map.m_lblk = block;
963         map.m_len = 1;
964         err = ext4_map_blocks(handle, inode, &map, map_flags);
965
966         if (err == 0)
967                 return create ? ERR_PTR(-ENOSPC) : NULL;
968         if (err < 0)
969                 return ERR_PTR(err);
970
971         bh = sb_getblk(inode->i_sb, map.m_pblk);
972         if (unlikely(!bh))
973                 return ERR_PTR(-ENOMEM);
974         if (map.m_flags & EXT4_MAP_NEW) {
975                 J_ASSERT(create != 0);
976                 J_ASSERT(handle != NULL);
977
978                 /*
979                  * Now that we do not always journal data, we should
980                  * keep in mind whether this should always journal the
981                  * new buffer as metadata.  For now, regular file
982                  * writes use ext4_get_block instead, so it's not a
983                  * problem.
984                  */
985                 lock_buffer(bh);
986                 BUFFER_TRACE(bh, "call get_create_access");
987                 err = ext4_journal_get_create_access(handle, bh);
988                 if (unlikely(err)) {
989                         unlock_buffer(bh);
990                         goto errout;
991                 }
992                 if (!buffer_uptodate(bh)) {
993                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
994                         set_buffer_uptodate(bh);
995                 }
996                 unlock_buffer(bh);
997                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
998                 err = ext4_handle_dirty_metadata(handle, inode, bh);
999                 if (unlikely(err))
1000                         goto errout;
1001         } else
1002                 BUFFER_TRACE(bh, "not a new buffer");
1003         return bh;
1004 errout:
1005         brelse(bh);
1006         return ERR_PTR(err);
1007 }
1008
1009 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1010                                ext4_lblk_t block, int map_flags)
1011 {
1012         struct buffer_head *bh;
1013
1014         bh = ext4_getblk(handle, inode, block, map_flags);
1015         if (IS_ERR(bh))
1016                 return bh;
1017         if (!bh || buffer_uptodate(bh))
1018                 return bh;
1019         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1020         wait_on_buffer(bh);
1021         if (buffer_uptodate(bh))
1022                 return bh;
1023         put_bh(bh);
1024         return ERR_PTR(-EIO);
1025 }
1026
1027 /* Read a contiguous batch of blocks. */
1028 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1029                      bool wait, struct buffer_head **bhs)
1030 {
1031         int i, err;
1032
1033         for (i = 0; i < bh_count; i++) {
1034                 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1035                 if (IS_ERR(bhs[i])) {
1036                         err = PTR_ERR(bhs[i]);
1037                         bh_count = i;
1038                         goto out_brelse;
1039                 }
1040         }
1041
1042         for (i = 0; i < bh_count; i++)
1043                 /* Note that NULL bhs[i] is valid because of holes. */
1044                 if (bhs[i] && !buffer_uptodate(bhs[i]))
1045                         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1046                                     &bhs[i]);
1047
1048         if (!wait)
1049                 return 0;
1050
1051         for (i = 0; i < bh_count; i++)
1052                 if (bhs[i])
1053                         wait_on_buffer(bhs[i]);
1054
1055         for (i = 0; i < bh_count; i++) {
1056                 if (bhs[i] && !buffer_uptodate(bhs[i])) {
1057                         err = -EIO;
1058                         goto out_brelse;
1059                 }
1060         }
1061         return 0;
1062
1063 out_brelse:
1064         for (i = 0; i < bh_count; i++) {
1065                 brelse(bhs[i]);
1066                 bhs[i] = NULL;
1067         }
1068         return err;
1069 }
1070
1071 int ext4_walk_page_buffers(handle_t *handle,
1072                            struct buffer_head *head,
1073                            unsigned from,
1074                            unsigned to,
1075                            int *partial,
1076                            int (*fn)(handle_t *handle,
1077                                      struct buffer_head *bh))
1078 {
1079         struct buffer_head *bh;
1080         unsigned block_start, block_end;
1081         unsigned blocksize = head->b_size;
1082         int err, ret = 0;
1083         struct buffer_head *next;
1084
1085         for (bh = head, block_start = 0;
1086              ret == 0 && (bh != head || !block_start);
1087              block_start = block_end, bh = next) {
1088                 next = bh->b_this_page;
1089                 block_end = block_start + blocksize;
1090                 if (block_end <= from || block_start >= to) {
1091                         if (partial && !buffer_uptodate(bh))
1092                                 *partial = 1;
1093                         continue;
1094                 }
1095                 err = (*fn)(handle, bh);
1096                 if (!ret)
1097                         ret = err;
1098         }
1099         return ret;
1100 }
1101
1102 /*
1103  * To preserve ordering, it is essential that the hole instantiation and
1104  * the data write be encapsulated in a single transaction.  We cannot
1105  * close off a transaction and start a new one between the ext4_get_block()
1106  * and the commit_write().  So doing the jbd2_journal_start at the start of
1107  * prepare_write() is the right place.
1108  *
1109  * Also, this function can nest inside ext4_writepage().  In that case, we
1110  * *know* that ext4_writepage() has generated enough buffer credits to do the
1111  * whole page.  So we won't block on the journal in that case, which is good,
1112  * because the caller may be PF_MEMALLOC.
1113  *
1114  * By accident, ext4 can be reentered when a transaction is open via
1115  * quota file writes.  If we were to commit the transaction while thus
1116  * reentered, there can be a deadlock - we would be holding a quota
1117  * lock, and the commit would never complete if another thread had a
1118  * transaction open and was blocking on the quota lock - a ranking
1119  * violation.
1120  *
1121  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1122  * will _not_ run commit under these circumstances because handle->h_ref
1123  * is elevated.  We'll still have enough credits for the tiny quotafile
1124  * write.
1125  */
1126 int do_journal_get_write_access(handle_t *handle,
1127                                 struct buffer_head *bh)
1128 {
1129         int dirty = buffer_dirty(bh);
1130         int ret;
1131
1132         if (!buffer_mapped(bh) || buffer_freed(bh))
1133                 return 0;
1134         /*
1135          * __block_write_begin() could have dirtied some buffers. Clean
1136          * the dirty bit as jbd2_journal_get_write_access() could complain
1137          * otherwise about fs integrity issues. Setting of the dirty bit
1138          * by __block_write_begin() isn't a real problem here as we clear
1139          * the bit before releasing a page lock and thus writeback cannot
1140          * ever write the buffer.
1141          */
1142         if (dirty)
1143                 clear_buffer_dirty(bh);
1144         BUFFER_TRACE(bh, "get write access");
1145         ret = ext4_journal_get_write_access(handle, bh);
1146         if (!ret && dirty)
1147                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1148         return ret;
1149 }
1150
1151 #ifdef CONFIG_FS_ENCRYPTION
1152 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1153                                   get_block_t *get_block)
1154 {
1155         unsigned from = pos & (PAGE_SIZE - 1);
1156         unsigned to = from + len;
1157         struct inode *inode = page->mapping->host;
1158         unsigned block_start, block_end;
1159         sector_t block;
1160         int err = 0;
1161         unsigned blocksize = inode->i_sb->s_blocksize;
1162         unsigned bbits;
1163         struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1164         bool decrypt = false;
1165
1166         BUG_ON(!PageLocked(page));
1167         BUG_ON(from > PAGE_SIZE);
1168         BUG_ON(to > PAGE_SIZE);
1169         BUG_ON(from > to);
1170
1171         if (!page_has_buffers(page))
1172                 create_empty_buffers(page, blocksize, 0);
1173         head = page_buffers(page);
1174         bbits = ilog2(blocksize);
1175         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1176
1177         for (bh = head, block_start = 0; bh != head || !block_start;
1178             block++, block_start = block_end, bh = bh->b_this_page) {
1179                 block_end = block_start + blocksize;
1180                 if (block_end <= from || block_start >= to) {
1181                         if (PageUptodate(page)) {
1182                                 if (!buffer_uptodate(bh))
1183                                         set_buffer_uptodate(bh);
1184                         }
1185                         continue;
1186                 }
1187                 if (buffer_new(bh))
1188                         clear_buffer_new(bh);
1189                 if (!buffer_mapped(bh)) {
1190                         WARN_ON(bh->b_size != blocksize);
1191                         err = get_block(inode, block, bh, 1);
1192                         if (err)
1193                                 break;
1194                         if (buffer_new(bh)) {
1195                                 if (PageUptodate(page)) {
1196                                         clear_buffer_new(bh);
1197                                         set_buffer_uptodate(bh);
1198                                         mark_buffer_dirty(bh);
1199                                         continue;
1200                                 }
1201                                 if (block_end > to || block_start < from)
1202                                         zero_user_segments(page, to, block_end,
1203                                                            block_start, from);
1204                                 continue;
1205                         }
1206                 }
1207                 if (PageUptodate(page)) {
1208                         if (!buffer_uptodate(bh))
1209                                 set_buffer_uptodate(bh);
1210                         continue;
1211                 }
1212                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1213                     !buffer_unwritten(bh) &&
1214                     (block_start < from || block_end > to)) {
1215                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1216                         *wait_bh++ = bh;
1217                         decrypt = IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
1218                 }
1219         }
1220         /*
1221          * If we issued read requests, let them complete.
1222          */
1223         while (wait_bh > wait) {
1224                 wait_on_buffer(*--wait_bh);
1225                 if (!buffer_uptodate(*wait_bh))
1226                         err = -EIO;
1227         }
1228         if (unlikely(err))
1229                 page_zero_new_buffers(page, from, to);
1230         else if (decrypt)
1231                 err = fscrypt_decrypt_page(page->mapping->host, page,
1232                                 PAGE_SIZE, 0, page->index);
1233         return err;
1234 }
1235 #endif
1236
1237 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1238                             loff_t pos, unsigned len, unsigned flags,
1239                             struct page **pagep, void **fsdata)
1240 {
1241         struct inode *inode = mapping->host;
1242         int ret, needed_blocks;
1243         handle_t *handle;
1244         int retries = 0;
1245         struct page *page;
1246         pgoff_t index;
1247         unsigned from, to;
1248
1249         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1250                 return -EIO;
1251
1252         trace_ext4_write_begin(inode, pos, len, flags);
1253         /*
1254          * Reserve one block more for addition to orphan list in case
1255          * we allocate blocks but write fails for some reason
1256          */
1257         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1258         index = pos >> PAGE_SHIFT;
1259         from = pos & (PAGE_SIZE - 1);
1260         to = from + len;
1261
1262         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1263                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1264                                                     flags, pagep);
1265                 if (ret < 0)
1266                         return ret;
1267                 if (ret == 1)
1268                         return 0;
1269         }
1270
1271         /*
1272          * grab_cache_page_write_begin() can take a long time if the
1273          * system is thrashing due to memory pressure, or if the page
1274          * is being written back.  So grab it first before we start
1275          * the transaction handle.  This also allows us to allocate
1276          * the page (if needed) without using GFP_NOFS.
1277          */
1278 retry_grab:
1279         page = grab_cache_page_write_begin(mapping, index, flags);
1280         if (!page)
1281                 return -ENOMEM;
1282         unlock_page(page);
1283
1284 retry_journal:
1285         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1286         if (IS_ERR(handle)) {
1287                 put_page(page);
1288                 return PTR_ERR(handle);
1289         }
1290
1291         lock_page(page);
1292         if (page->mapping != mapping) {
1293                 /* The page got truncated from under us */
1294                 unlock_page(page);
1295                 put_page(page);
1296                 ext4_journal_stop(handle);
1297                 goto retry_grab;
1298         }
1299         /* In case writeback began while the page was unlocked */
1300         wait_for_stable_page(page);
1301
1302 #ifdef CONFIG_FS_ENCRYPTION
1303         if (ext4_should_dioread_nolock(inode))
1304                 ret = ext4_block_write_begin(page, pos, len,
1305                                              ext4_get_block_unwritten);
1306         else
1307                 ret = ext4_block_write_begin(page, pos, len,
1308                                              ext4_get_block);
1309 #else
1310         if (ext4_should_dioread_nolock(inode))
1311                 ret = __block_write_begin(page, pos, len,
1312                                           ext4_get_block_unwritten);
1313         else
1314                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1315 #endif
1316         if (!ret && ext4_should_journal_data(inode)) {
1317                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1318                                              from, to, NULL,
1319                                              do_journal_get_write_access);
1320         }
1321
1322         if (ret) {
1323                 unlock_page(page);
1324                 /*
1325                  * __block_write_begin may have instantiated a few blocks
1326                  * outside i_size.  Trim these off again. Don't need
1327                  * i_size_read because we hold i_mutex.
1328                  *
1329                  * Add inode to orphan list in case we crash before
1330                  * truncate finishes
1331                  */
1332                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1333                         ext4_orphan_add(handle, inode);
1334
1335                 ext4_journal_stop(handle);
1336                 if (pos + len > inode->i_size) {
1337                         ext4_truncate_failed_write(inode);
1338                         /*
1339                          * If truncate failed early the inode might
1340                          * still be on the orphan list; we need to
1341                          * make sure the inode is removed from the
1342                          * orphan list in that case.
1343                          */
1344                         if (inode->i_nlink)
1345                                 ext4_orphan_del(NULL, inode);
1346                 }
1347
1348                 if (ret == -ENOSPC &&
1349                     ext4_should_retry_alloc(inode->i_sb, &retries))
1350                         goto retry_journal;
1351                 put_page(page);
1352                 return ret;
1353         }
1354         *pagep = page;
1355         return ret;
1356 }
1357
1358 /* For write_end() in data=journal mode */
1359 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1360 {
1361         int ret;
1362         if (!buffer_mapped(bh) || buffer_freed(bh))
1363                 return 0;
1364         set_buffer_uptodate(bh);
1365         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1366         clear_buffer_meta(bh);
1367         clear_buffer_prio(bh);
1368         return ret;
1369 }
1370
1371 /*
1372  * We need to pick up the new inode size which generic_commit_write gave us
1373  * `file' can be NULL - eg, when called from page_symlink().
1374  *
1375  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1376  * buffers are managed internally.
1377  */
1378 static int ext4_write_end(struct file *file,
1379                           struct address_space *mapping,
1380                           loff_t pos, unsigned len, unsigned copied,
1381                           struct page *page, void *fsdata)
1382 {
1383         handle_t *handle = ext4_journal_current_handle();
1384         struct inode *inode = mapping->host;
1385         loff_t old_size = inode->i_size;
1386         int ret = 0, ret2;
1387         int i_size_changed = 0;
1388         int inline_data = ext4_has_inline_data(inode);
1389
1390         trace_ext4_write_end(inode, pos, len, copied);
1391         if (inline_data) {
1392                 ret = ext4_write_inline_data_end(inode, pos, len,
1393                                                  copied, page);
1394                 if (ret < 0) {
1395                         unlock_page(page);
1396                         put_page(page);
1397                         goto errout;
1398                 }
1399                 copied = ret;
1400         } else
1401                 copied = block_write_end(file, mapping, pos,
1402                                          len, copied, page, fsdata);
1403         /*
1404          * it's important to update i_size while still holding page lock:
1405          * page writeout could otherwise come in and zero beyond i_size.
1406          */
1407         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1408         unlock_page(page);
1409         put_page(page);
1410
1411         if (old_size < pos)
1412                 pagecache_isize_extended(inode, old_size, pos);
1413         /*
1414          * Don't mark the inode dirty under page lock. First, it unnecessarily
1415          * makes the holding time of page lock longer. Second, it forces lock
1416          * ordering of page lock and transaction start for journaling
1417          * filesystems.
1418          */
1419         if (i_size_changed || inline_data)
1420                 ext4_mark_inode_dirty(handle, inode);
1421
1422         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1423                 /* if we have allocated more blocks and copied
1424                  * less. We will have blocks allocated outside
1425                  * inode->i_size. So truncate them
1426                  */
1427                 ext4_orphan_add(handle, inode);
1428 errout:
1429         ret2 = ext4_journal_stop(handle);
1430         if (!ret)
1431                 ret = ret2;
1432
1433         if (pos + len > inode->i_size) {
1434                 ext4_truncate_failed_write(inode);
1435                 /*
1436                  * If truncate failed early the inode might still be
1437                  * on the orphan list; we need to make sure the inode
1438                  * is removed from the orphan list in that case.
1439                  */
1440                 if (inode->i_nlink)
1441                         ext4_orphan_del(NULL, inode);
1442         }
1443
1444         return ret ? ret : copied;
1445 }
1446
1447 /*
1448  * This is a private version of page_zero_new_buffers() which doesn't
1449  * set the buffer to be dirty, since in data=journalled mode we need
1450  * to call ext4_handle_dirty_metadata() instead.
1451  */
1452 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1453                                             struct page *page,
1454                                             unsigned from, unsigned to)
1455 {
1456         unsigned int block_start = 0, block_end;
1457         struct buffer_head *head, *bh;
1458
1459         bh = head = page_buffers(page);
1460         do {
1461                 block_end = block_start + bh->b_size;
1462                 if (buffer_new(bh)) {
1463                         if (block_end > from && block_start < to) {
1464                                 if (!PageUptodate(page)) {
1465                                         unsigned start, size;
1466
1467                                         start = max(from, block_start);
1468                                         size = min(to, block_end) - start;
1469
1470                                         zero_user(page, start, size);
1471                                         write_end_fn(handle, bh);
1472                                 }
1473                                 clear_buffer_new(bh);
1474                         }
1475                 }
1476                 block_start = block_end;
1477                 bh = bh->b_this_page;
1478         } while (bh != head);
1479 }
1480
1481 static int ext4_journalled_write_end(struct file *file,
1482                                      struct address_space *mapping,
1483                                      loff_t pos, unsigned len, unsigned copied,
1484                                      struct page *page, void *fsdata)
1485 {
1486         handle_t *handle = ext4_journal_current_handle();
1487         struct inode *inode = mapping->host;
1488         loff_t old_size = inode->i_size;
1489         int ret = 0, ret2;
1490         int partial = 0;
1491         unsigned from, to;
1492         int size_changed = 0;
1493         int inline_data = ext4_has_inline_data(inode);
1494
1495         trace_ext4_journalled_write_end(inode, pos, len, copied);
1496         from = pos & (PAGE_SIZE - 1);
1497         to = from + len;
1498
1499         BUG_ON(!ext4_handle_valid(handle));
1500
1501         if (inline_data) {
1502                 ret = ext4_write_inline_data_end(inode, pos, len,
1503                                                  copied, page);
1504                 if (ret < 0) {
1505                         unlock_page(page);
1506                         put_page(page);
1507                         goto errout;
1508                 }
1509                 copied = ret;
1510         } else if (unlikely(copied < len) && !PageUptodate(page)) {
1511                 copied = 0;
1512                 ext4_journalled_zero_new_buffers(handle, page, from, to);
1513         } else {
1514                 if (unlikely(copied < len))
1515                         ext4_journalled_zero_new_buffers(handle, page,
1516                                                          from + copied, to);
1517                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1518                                              from + copied, &partial,
1519                                              write_end_fn);
1520                 if (!partial)
1521                         SetPageUptodate(page);
1522         }
1523         size_changed = ext4_update_inode_size(inode, pos + copied);
1524         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1525         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1526         unlock_page(page);
1527         put_page(page);
1528
1529         if (old_size < pos)
1530                 pagecache_isize_extended(inode, old_size, pos);
1531
1532         if (size_changed || inline_data) {
1533                 ret2 = ext4_mark_inode_dirty(handle, inode);
1534                 if (!ret)
1535                         ret = ret2;
1536         }
1537
1538         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1539                 /* if we have allocated more blocks and copied
1540                  * less. We will have blocks allocated outside
1541                  * inode->i_size. So truncate them
1542                  */
1543                 ext4_orphan_add(handle, inode);
1544
1545 errout:
1546         ret2 = ext4_journal_stop(handle);
1547         if (!ret)
1548                 ret = ret2;
1549         if (pos + len > inode->i_size) {
1550                 ext4_truncate_failed_write(inode);
1551                 /*
1552                  * If truncate failed early the inode might still be
1553                  * on the orphan list; we need to make sure the inode
1554                  * is removed from the orphan list in that case.
1555                  */
1556                 if (inode->i_nlink)
1557                         ext4_orphan_del(NULL, inode);
1558         }
1559
1560         return ret ? ret : copied;
1561 }
1562
1563 /*
1564  * Reserve space for a single cluster
1565  */
1566 static int ext4_da_reserve_space(struct inode *inode)
1567 {
1568         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1569         struct ext4_inode_info *ei = EXT4_I(inode);
1570         int ret;
1571
1572         /*
1573          * We will charge metadata quota at writeout time; this saves
1574          * us from metadata over-estimation, though we may go over by
1575          * a small amount in the end.  Here we just reserve for data.
1576          */
1577         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1578         if (ret)
1579                 return ret;
1580
1581         spin_lock(&ei->i_block_reservation_lock);
1582         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1583                 spin_unlock(&ei->i_block_reservation_lock);
1584                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1585                 return -ENOSPC;
1586         }
1587         ei->i_reserved_data_blocks++;
1588         trace_ext4_da_reserve_space(inode);
1589         spin_unlock(&ei->i_block_reservation_lock);
1590
1591         return 0;       /* success */
1592 }
1593
1594 void ext4_da_release_space(struct inode *inode, int to_free)
1595 {
1596         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1597         struct ext4_inode_info *ei = EXT4_I(inode);
1598
1599         if (!to_free)
1600                 return;         /* Nothing to release, exit */
1601
1602         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1603
1604         trace_ext4_da_release_space(inode, to_free);
1605         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1606                 /*
1607                  * if there aren't enough reserved blocks, then the
1608                  * counter is messed up somewhere.  Since this
1609                  * function is called from invalidate page, it's
1610                  * harmless to return without any action.
1611                  */
1612                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1613                          "ino %lu, to_free %d with only %d reserved "
1614                          "data blocks", inode->i_ino, to_free,
1615                          ei->i_reserved_data_blocks);
1616                 WARN_ON(1);
1617                 to_free = ei->i_reserved_data_blocks;
1618         }
1619         ei->i_reserved_data_blocks -= to_free;
1620
1621         /* update fs dirty data blocks counter */
1622         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1623
1624         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1625
1626         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1627 }
1628
1629 static void ext4_da_page_release_reservation(struct page *page,
1630                                              unsigned int offset,
1631                                              unsigned int length)
1632 {
1633         int contiguous_blks = 0;
1634         struct buffer_head *head, *bh;
1635         unsigned int curr_off = 0;
1636         struct inode *inode = page->mapping->host;
1637         unsigned int stop = offset + length;
1638         ext4_fsblk_t lblk;
1639
1640         BUG_ON(stop > PAGE_SIZE || stop < length);
1641
1642         head = page_buffers(page);
1643         bh = head;
1644         do {
1645                 unsigned int next_off = curr_off + bh->b_size;
1646
1647                 if (next_off > stop)
1648                         break;
1649
1650                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1651                         contiguous_blks++;
1652                         clear_buffer_delay(bh);
1653                 } else if (contiguous_blks) {
1654                         lblk = page->index <<
1655                                (PAGE_SHIFT - inode->i_blkbits);
1656                         lblk += (curr_off >> inode->i_blkbits) -
1657                                 contiguous_blks;
1658                         ext4_es_remove_blks(inode, lblk, contiguous_blks);
1659                         contiguous_blks = 0;
1660                 }
1661                 curr_off = next_off;
1662         } while ((bh = bh->b_this_page) != head);
1663
1664         if (contiguous_blks) {
1665                 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1666                 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1667                 ext4_es_remove_blks(inode, lblk, contiguous_blks);
1668         }
1669
1670 }
1671
1672 /*
1673  * Delayed allocation stuff
1674  */
1675
1676 struct mpage_da_data {
1677         struct inode *inode;
1678         struct writeback_control *wbc;
1679
1680         pgoff_t first_page;     /* The first page to write */
1681         pgoff_t next_page;      /* Current page to examine */
1682         pgoff_t last_page;      /* Last page to examine */
1683         /*
1684          * Extent to map - this can be after first_page because that can be
1685          * fully mapped. We somewhat abuse m_flags to store whether the extent
1686          * is delalloc or unwritten.
1687          */
1688         struct ext4_map_blocks map;
1689         struct ext4_io_submit io_submit;        /* IO submission data */
1690         unsigned int do_map:1;
1691 };
1692
1693 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1694                                        bool invalidate)
1695 {
1696         int nr_pages, i;
1697         pgoff_t index, end;
1698         struct pagevec pvec;
1699         struct inode *inode = mpd->inode;
1700         struct address_space *mapping = inode->i_mapping;
1701
1702         /* This is necessary when next_page == 0. */
1703         if (mpd->first_page >= mpd->next_page)
1704                 return;
1705
1706         index = mpd->first_page;
1707         end   = mpd->next_page - 1;
1708         if (invalidate) {
1709                 ext4_lblk_t start, last;
1710                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1711                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1712                 ext4_es_remove_extent(inode, start, last - start + 1);
1713         }
1714
1715         pagevec_init(&pvec);
1716         while (index <= end) {
1717                 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1718                 if (nr_pages == 0)
1719                         break;
1720                 for (i = 0; i < nr_pages; i++) {
1721                         struct page *page = pvec.pages[i];
1722
1723                         BUG_ON(!PageLocked(page));
1724                         BUG_ON(PageWriteback(page));
1725                         if (invalidate) {
1726                                 if (page_mapped(page))
1727                                         clear_page_dirty_for_io(page);
1728                                 block_invalidatepage(page, 0, PAGE_SIZE);
1729                                 ClearPageUptodate(page);
1730                         }
1731                         unlock_page(page);
1732                 }
1733                 pagevec_release(&pvec);
1734         }
1735 }
1736
1737 static void ext4_print_free_blocks(struct inode *inode)
1738 {
1739         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1740         struct super_block *sb = inode->i_sb;
1741         struct ext4_inode_info *ei = EXT4_I(inode);
1742
1743         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1744                EXT4_C2B(EXT4_SB(inode->i_sb),
1745                         ext4_count_free_clusters(sb)));
1746         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1747         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1748                (long long) EXT4_C2B(EXT4_SB(sb),
1749                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1750         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1751                (long long) EXT4_C2B(EXT4_SB(sb),
1752                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1753         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1754         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1755                  ei->i_reserved_data_blocks);
1756         return;
1757 }
1758
1759 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1760 {
1761         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1762 }
1763
1764 /*
1765  * ext4_insert_delayed_block - adds a delayed block to the extents status
1766  *                             tree, incrementing the reserved cluster/block
1767  *                             count or making a pending reservation
1768  *                             where needed
1769  *
1770  * @inode - file containing the newly added block
1771  * @lblk - logical block to be added
1772  *
1773  * Returns 0 on success, negative error code on failure.
1774  */
1775 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1776 {
1777         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1778         int ret;
1779         bool allocated = false;
1780
1781         /*
1782          * If the cluster containing lblk is shared with a delayed,
1783          * written, or unwritten extent in a bigalloc file system, it's
1784          * already been accounted for and does not need to be reserved.
1785          * A pending reservation must be made for the cluster if it's
1786          * shared with a written or unwritten extent and doesn't already
1787          * have one.  Written and unwritten extents can be purged from the
1788          * extents status tree if the system is under memory pressure, so
1789          * it's necessary to examine the extent tree if a search of the
1790          * extents status tree doesn't get a match.
1791          */
1792         if (sbi->s_cluster_ratio == 1) {
1793                 ret = ext4_da_reserve_space(inode);
1794                 if (ret != 0)   /* ENOSPC */
1795                         goto errout;
1796         } else {   /* bigalloc */
1797                 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1798                         if (!ext4_es_scan_clu(inode,
1799                                               &ext4_es_is_mapped, lblk)) {
1800                                 ret = ext4_clu_mapped(inode,
1801                                                       EXT4_B2C(sbi, lblk));
1802                                 if (ret < 0)
1803                                         goto errout;
1804                                 if (ret == 0) {
1805                                         ret = ext4_da_reserve_space(inode);
1806                                         if (ret != 0)   /* ENOSPC */
1807                                                 goto errout;
1808                                 } else {
1809                                         allocated = true;
1810                                 }
1811                         } else {
1812                                 allocated = true;
1813                         }
1814                 }
1815         }
1816
1817         ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1818
1819 errout:
1820         return ret;
1821 }
1822
1823 /*
1824  * This function is grabs code from the very beginning of
1825  * ext4_map_blocks, but assumes that the caller is from delayed write
1826  * time. This function looks up the requested blocks and sets the
1827  * buffer delay bit under the protection of i_data_sem.
1828  */
1829 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1830                               struct ext4_map_blocks *map,
1831                               struct buffer_head *bh)
1832 {
1833         struct extent_status es;
1834         int retval;
1835         sector_t invalid_block = ~((sector_t) 0xffff);
1836 #ifdef ES_AGGRESSIVE_TEST
1837         struct ext4_map_blocks orig_map;
1838
1839         memcpy(&orig_map, map, sizeof(*map));
1840 #endif
1841
1842         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1843                 invalid_block = ~0;
1844
1845         map->m_flags = 0;
1846         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1847                   "logical block %lu\n", inode->i_ino, map->m_len,
1848                   (unsigned long) map->m_lblk);
1849
1850         /* Lookup extent status tree firstly */
1851         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1852                 if (ext4_es_is_hole(&es)) {
1853                         retval = 0;
1854                         down_read(&EXT4_I(inode)->i_data_sem);
1855                         goto add_delayed;
1856                 }
1857
1858                 /*
1859                  * Delayed extent could be allocated by fallocate.
1860                  * So we need to check it.
1861                  */
1862                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1863                         map_bh(bh, inode->i_sb, invalid_block);
1864                         set_buffer_new(bh);
1865                         set_buffer_delay(bh);
1866                         return 0;
1867                 }
1868
1869                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1870                 retval = es.es_len - (iblock - es.es_lblk);
1871                 if (retval > map->m_len)
1872                         retval = map->m_len;
1873                 map->m_len = retval;
1874                 if (ext4_es_is_written(&es))
1875                         map->m_flags |= EXT4_MAP_MAPPED;
1876                 else if (ext4_es_is_unwritten(&es))
1877                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1878                 else
1879                         BUG_ON(1);
1880
1881 #ifdef ES_AGGRESSIVE_TEST
1882                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1883 #endif
1884                 return retval;
1885         }
1886
1887         /*
1888          * Try to see if we can get the block without requesting a new
1889          * file system block.
1890          */
1891         down_read(&EXT4_I(inode)->i_data_sem);
1892         if (ext4_has_inline_data(inode))
1893                 retval = 0;
1894         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1895                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1896         else
1897                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1898
1899 add_delayed:
1900         if (retval == 0) {
1901                 int ret;
1902
1903                 /*
1904                  * XXX: __block_prepare_write() unmaps passed block,
1905                  * is it OK?
1906                  */
1907
1908                 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1909                 if (ret != 0) {
1910                         retval = ret;
1911                         goto out_unlock;
1912                 }
1913
1914                 map_bh(bh, inode->i_sb, invalid_block);
1915                 set_buffer_new(bh);
1916                 set_buffer_delay(bh);
1917         } else if (retval > 0) {
1918                 int ret;
1919                 unsigned int status;
1920
1921                 if (unlikely(retval != map->m_len)) {
1922                         ext4_warning(inode->i_sb,
1923                                      "ES len assertion failed for inode "
1924                                      "%lu: retval %d != map->m_len %d",
1925                                      inode->i_ino, retval, map->m_len);
1926                         WARN_ON(1);
1927                 }
1928
1929                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1930                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1931                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1932                                             map->m_pblk, status);
1933                 if (ret != 0)
1934                         retval = ret;
1935         }
1936
1937 out_unlock:
1938         up_read((&EXT4_I(inode)->i_data_sem));
1939
1940         return retval;
1941 }
1942
1943 /*
1944  * This is a special get_block_t callback which is used by
1945  * ext4_da_write_begin().  It will either return mapped block or
1946  * reserve space for a single block.
1947  *
1948  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1949  * We also have b_blocknr = -1 and b_bdev initialized properly
1950  *
1951  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1952  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1953  * initialized properly.
1954  */
1955 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1956                            struct buffer_head *bh, int create)
1957 {
1958         struct ext4_map_blocks map;
1959         int ret = 0;
1960
1961         BUG_ON(create == 0);
1962         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1963
1964         map.m_lblk = iblock;
1965         map.m_len = 1;
1966
1967         /*
1968          * first, we need to know whether the block is allocated already
1969          * preallocated blocks are unmapped but should treated
1970          * the same as allocated blocks.
1971          */
1972         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1973         if (ret <= 0)
1974                 return ret;
1975
1976         map_bh(bh, inode->i_sb, map.m_pblk);
1977         ext4_update_bh_state(bh, map.m_flags);
1978
1979         if (buffer_unwritten(bh)) {
1980                 /* A delayed write to unwritten bh should be marked
1981                  * new and mapped.  Mapped ensures that we don't do
1982                  * get_block multiple times when we write to the same
1983                  * offset and new ensures that we do proper zero out
1984                  * for partial write.
1985                  */
1986                 set_buffer_new(bh);
1987                 set_buffer_mapped(bh);
1988         }
1989         return 0;
1990 }
1991
1992 static int bget_one(handle_t *handle, struct buffer_head *bh)
1993 {
1994         get_bh(bh);
1995         return 0;
1996 }
1997
1998 static int bput_one(handle_t *handle, struct buffer_head *bh)
1999 {
2000         put_bh(bh);
2001         return 0;
2002 }
2003
2004 static int __ext4_journalled_writepage(struct page *page,
2005                                        unsigned int len)
2006 {
2007         struct address_space *mapping = page->mapping;
2008         struct inode *inode = mapping->host;
2009         struct buffer_head *page_bufs = NULL;
2010         handle_t *handle = NULL;
2011         int ret = 0, err = 0;
2012         int inline_data = ext4_has_inline_data(inode);
2013         struct buffer_head *inode_bh = NULL;
2014
2015         ClearPageChecked(page);
2016
2017         if (inline_data) {
2018                 BUG_ON(page->index != 0);
2019                 BUG_ON(len > ext4_get_max_inline_size(inode));
2020                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2021                 if (inode_bh == NULL)
2022                         goto out;
2023         } else {
2024                 page_bufs = page_buffers(page);
2025                 if (!page_bufs) {
2026                         BUG();
2027                         goto out;
2028                 }
2029                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2030                                        NULL, bget_one);
2031         }
2032         /*
2033          * We need to release the page lock before we start the
2034          * journal, so grab a reference so the page won't disappear
2035          * out from under us.
2036          */
2037         get_page(page);
2038         unlock_page(page);
2039
2040         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2041                                     ext4_writepage_trans_blocks(inode));
2042         if (IS_ERR(handle)) {
2043                 ret = PTR_ERR(handle);
2044                 put_page(page);
2045                 goto out_no_pagelock;
2046         }
2047         BUG_ON(!ext4_handle_valid(handle));
2048
2049         lock_page(page);
2050         put_page(page);
2051         if (page->mapping != mapping) {
2052                 /* The page got truncated from under us */
2053                 ext4_journal_stop(handle);
2054                 ret = 0;
2055                 goto out;
2056         }
2057
2058         if (inline_data) {
2059                 ret = ext4_mark_inode_dirty(handle, inode);
2060         } else {
2061                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2062                                              do_journal_get_write_access);
2063
2064                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2065                                              write_end_fn);
2066         }
2067         if (ret == 0)
2068                 ret = err;
2069         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2070         err = ext4_journal_stop(handle);
2071         if (!ret)
2072                 ret = err;
2073
2074         if (!ext4_has_inline_data(inode))
2075                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2076                                        NULL, bput_one);
2077         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2078 out:
2079         unlock_page(page);
2080 out_no_pagelock:
2081         brelse(inode_bh);
2082         return ret;
2083 }
2084
2085 /*
2086  * Note that we don't need to start a transaction unless we're journaling data
2087  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2088  * need to file the inode to the transaction's list in ordered mode because if
2089  * we are writing back data added by write(), the inode is already there and if
2090  * we are writing back data modified via mmap(), no one guarantees in which
2091  * transaction the data will hit the disk. In case we are journaling data, we
2092  * cannot start transaction directly because transaction start ranks above page
2093  * lock so we have to do some magic.
2094  *
2095  * This function can get called via...
2096  *   - ext4_writepages after taking page lock (have journal handle)
2097  *   - journal_submit_inode_data_buffers (no journal handle)
2098  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2099  *   - grab_page_cache when doing write_begin (have journal handle)
2100  *
2101  * We don't do any block allocation in this function. If we have page with
2102  * multiple blocks we need to write those buffer_heads that are mapped. This
2103  * is important for mmaped based write. So if we do with blocksize 1K
2104  * truncate(f, 1024);
2105  * a = mmap(f, 0, 4096);
2106  * a[0] = 'a';
2107  * truncate(f, 4096);
2108  * we have in the page first buffer_head mapped via page_mkwrite call back
2109  * but other buffer_heads would be unmapped but dirty (dirty done via the
2110  * do_wp_page). So writepage should write the first block. If we modify
2111  * the mmap area beyond 1024 we will again get a page_fault and the
2112  * page_mkwrite callback will do the block allocation and mark the
2113  * buffer_heads mapped.
2114  *
2115  * We redirty the page if we have any buffer_heads that is either delay or
2116  * unwritten in the page.
2117  *
2118  * We can get recursively called as show below.
2119  *
2120  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2121  *              ext4_writepage()
2122  *
2123  * But since we don't do any block allocation we should not deadlock.
2124  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2125  */
2126 static int ext4_writepage(struct page *page,
2127                           struct writeback_control *wbc)
2128 {
2129         int ret = 0;
2130         loff_t size;
2131         unsigned int len;
2132         struct buffer_head *page_bufs = NULL;
2133         struct inode *inode = page->mapping->host;
2134         struct ext4_io_submit io_submit;
2135         bool keep_towrite = false;
2136
2137         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2138                 ext4_invalidatepage(page, 0, PAGE_SIZE);
2139                 unlock_page(page);
2140                 return -EIO;
2141         }
2142
2143         trace_ext4_writepage(page);
2144         size = i_size_read(inode);
2145         if (page->index == size >> PAGE_SHIFT)
2146                 len = size & ~PAGE_MASK;
2147         else
2148                 len = PAGE_SIZE;
2149
2150         page_bufs = page_buffers(page);
2151         /*
2152          * We cannot do block allocation or other extent handling in this
2153          * function. If there are buffers needing that, we have to redirty
2154          * the page. But we may reach here when we do a journal commit via
2155          * journal_submit_inode_data_buffers() and in that case we must write
2156          * allocated buffers to achieve data=ordered mode guarantees.
2157          *
2158          * Also, if there is only one buffer per page (the fs block
2159          * size == the page size), if one buffer needs block
2160          * allocation or needs to modify the extent tree to clear the
2161          * unwritten flag, we know that the page can't be written at
2162          * all, so we might as well refuse the write immediately.
2163          * Unfortunately if the block size != page size, we can't as
2164          * easily detect this case using ext4_walk_page_buffers(), but
2165          * for the extremely common case, this is an optimization that
2166          * skips a useless round trip through ext4_bio_write_page().
2167          */
2168         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2169                                    ext4_bh_delay_or_unwritten)) {
2170                 redirty_page_for_writepage(wbc, page);
2171                 if ((current->flags & PF_MEMALLOC) ||
2172                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2173                         /*
2174                          * For memory cleaning there's no point in writing only
2175                          * some buffers. So just bail out. Warn if we came here
2176                          * from direct reclaim.
2177                          */
2178                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2179                                                         == PF_MEMALLOC);
2180                         unlock_page(page);
2181                         return 0;
2182                 }
2183                 keep_towrite = true;
2184         }
2185
2186         if (PageChecked(page) && ext4_should_journal_data(inode))
2187                 /*
2188                  * It's mmapped pagecache.  Add buffers and journal it.  There
2189                  * doesn't seem much point in redirtying the page here.
2190                  */
2191                 return __ext4_journalled_writepage(page, len);
2192
2193         ext4_io_submit_init(&io_submit, wbc);
2194         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2195         if (!io_submit.io_end) {
2196                 redirty_page_for_writepage(wbc, page);
2197                 unlock_page(page);
2198                 return -ENOMEM;
2199         }
2200         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2201         ext4_io_submit(&io_submit);
2202         /* Drop io_end reference we got from init */
2203         ext4_put_io_end_defer(io_submit.io_end);
2204         return ret;
2205 }
2206
2207 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2208 {
2209         int len;
2210         loff_t size;
2211         int err;
2212
2213         BUG_ON(page->index != mpd->first_page);
2214         clear_page_dirty_for_io(page);
2215         /*
2216          * We have to be very careful here!  Nothing protects writeback path
2217          * against i_size changes and the page can be writeably mapped into
2218          * page tables. So an application can be growing i_size and writing
2219          * data through mmap while writeback runs. clear_page_dirty_for_io()
2220          * write-protects our page in page tables and the page cannot get
2221          * written to again until we release page lock. So only after
2222          * clear_page_dirty_for_io() we are safe to sample i_size for
2223          * ext4_bio_write_page() to zero-out tail of the written page. We rely
2224          * on the barrier provided by TestClearPageDirty in
2225          * clear_page_dirty_for_io() to make sure i_size is really sampled only
2226          * after page tables are updated.
2227          */
2228         size = i_size_read(mpd->inode);
2229         if (page->index == size >> PAGE_SHIFT)
2230                 len = size & ~PAGE_MASK;
2231         else
2232                 len = PAGE_SIZE;
2233         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2234         if (!err)
2235                 mpd->wbc->nr_to_write--;
2236         mpd->first_page++;
2237
2238         return err;
2239 }
2240
2241 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2242
2243 /*
2244  * mballoc gives us at most this number of blocks...
2245  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2246  * The rest of mballoc seems to handle chunks up to full group size.
2247  */
2248 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2249
2250 /*
2251  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2252  *
2253  * @mpd - extent of blocks
2254  * @lblk - logical number of the block in the file
2255  * @bh - buffer head we want to add to the extent
2256  *
2257  * The function is used to collect contig. blocks in the same state. If the
2258  * buffer doesn't require mapping for writeback and we haven't started the
2259  * extent of buffers to map yet, the function returns 'true' immediately - the
2260  * caller can write the buffer right away. Otherwise the function returns true
2261  * if the block has been added to the extent, false if the block couldn't be
2262  * added.
2263  */
2264 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2265                                    struct buffer_head *bh)
2266 {
2267         struct ext4_map_blocks *map = &mpd->map;
2268
2269         /* Buffer that doesn't need mapping for writeback? */
2270         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2271             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2272                 /* So far no extent to map => we write the buffer right away */
2273                 if (map->m_len == 0)
2274                         return true;
2275                 return false;
2276         }
2277
2278         /* First block in the extent? */
2279         if (map->m_len == 0) {
2280                 /* We cannot map unless handle is started... */
2281                 if (!mpd->do_map)
2282                         return false;
2283                 map->m_lblk = lblk;
2284                 map->m_len = 1;
2285                 map->m_flags = bh->b_state & BH_FLAGS;
2286                 return true;
2287         }
2288
2289         /* Don't go larger than mballoc is willing to allocate */
2290         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2291                 return false;
2292
2293         /* Can we merge the block to our big extent? */
2294         if (lblk == map->m_lblk + map->m_len &&
2295             (bh->b_state & BH_FLAGS) == map->m_flags) {
2296                 map->m_len++;
2297                 return true;
2298         }
2299         return false;
2300 }
2301
2302 /*
2303  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2304  *
2305  * @mpd - extent of blocks for mapping
2306  * @head - the first buffer in the page
2307  * @bh - buffer we should start processing from
2308  * @lblk - logical number of the block in the file corresponding to @bh
2309  *
2310  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2311  * the page for IO if all buffers in this page were mapped and there's no
2312  * accumulated extent of buffers to map or add buffers in the page to the
2313  * extent of buffers to map. The function returns 1 if the caller can continue
2314  * by processing the next page, 0 if it should stop adding buffers to the
2315  * extent to map because we cannot extend it anymore. It can also return value
2316  * < 0 in case of error during IO submission.
2317  */
2318 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2319                                    struct buffer_head *head,
2320                                    struct buffer_head *bh,
2321                                    ext4_lblk_t lblk)
2322 {
2323         struct inode *inode = mpd->inode;
2324         int err;
2325         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2326                                                         >> inode->i_blkbits;
2327
2328         do {
2329                 BUG_ON(buffer_locked(bh));
2330
2331                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2332                         /* Found extent to map? */
2333                         if (mpd->map.m_len)
2334                                 return 0;
2335                         /* Buffer needs mapping and handle is not started? */
2336                         if (!mpd->do_map)
2337                                 return 0;
2338                         /* Everything mapped so far and we hit EOF */
2339                         break;
2340                 }
2341         } while (lblk++, (bh = bh->b_this_page) != head);
2342         /* So far everything mapped? Submit the page for IO. */
2343         if (mpd->map.m_len == 0) {
2344                 err = mpage_submit_page(mpd, head->b_page);
2345                 if (err < 0)
2346                         return err;
2347         }
2348         return lblk < blocks;
2349 }
2350
2351 /*
2352  * mpage_map_buffers - update buffers corresponding to changed extent and
2353  *                     submit fully mapped pages for IO
2354  *
2355  * @mpd - description of extent to map, on return next extent to map
2356  *
2357  * Scan buffers corresponding to changed extent (we expect corresponding pages
2358  * to be already locked) and update buffer state according to new extent state.
2359  * We map delalloc buffers to their physical location, clear unwritten bits,
2360  * and mark buffers as uninit when we perform writes to unwritten extents
2361  * and do extent conversion after IO is finished. If the last page is not fully
2362  * mapped, we update @map to the next extent in the last page that needs
2363  * mapping. Otherwise we submit the page for IO.
2364  */
2365 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2366 {
2367         struct pagevec pvec;
2368         int nr_pages, i;
2369         struct inode *inode = mpd->inode;
2370         struct buffer_head *head, *bh;
2371         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2372         pgoff_t start, end;
2373         ext4_lblk_t lblk;
2374         sector_t pblock;
2375         int err;
2376
2377         start = mpd->map.m_lblk >> bpp_bits;
2378         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2379         lblk = start << bpp_bits;
2380         pblock = mpd->map.m_pblk;
2381
2382         pagevec_init(&pvec);
2383         while (start <= end) {
2384                 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2385                                                 &start, end);
2386                 if (nr_pages == 0)
2387                         break;
2388                 for (i = 0; i < nr_pages; i++) {
2389                         struct page *page = pvec.pages[i];
2390
2391                         bh = head = page_buffers(page);
2392                         do {
2393                                 if (lblk < mpd->map.m_lblk)
2394                                         continue;
2395                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2396                                         /*
2397                                          * Buffer after end of mapped extent.
2398                                          * Find next buffer in the page to map.
2399                                          */
2400                                         mpd->map.m_len = 0;
2401                                         mpd->map.m_flags = 0;
2402                                         /*
2403                                          * FIXME: If dioread_nolock supports
2404                                          * blocksize < pagesize, we need to make
2405                                          * sure we add size mapped so far to
2406                                          * io_end->size as the following call
2407                                          * can submit the page for IO.
2408                                          */
2409                                         err = mpage_process_page_bufs(mpd, head,
2410                                                                       bh, lblk);
2411                                         pagevec_release(&pvec);
2412                                         if (err > 0)
2413                                                 err = 0;
2414                                         return err;
2415                                 }
2416                                 if (buffer_delay(bh)) {
2417                                         clear_buffer_delay(bh);
2418                                         bh->b_blocknr = pblock++;
2419                                 }
2420                                 clear_buffer_unwritten(bh);
2421                         } while (lblk++, (bh = bh->b_this_page) != head);
2422
2423                         /*
2424                          * FIXME: This is going to break if dioread_nolock
2425                          * supports blocksize < pagesize as we will try to
2426                          * convert potentially unmapped parts of inode.
2427                          */
2428                         mpd->io_submit.io_end->size += PAGE_SIZE;
2429                         /* Page fully mapped - let IO run! */
2430                         err = mpage_submit_page(mpd, page);
2431                         if (err < 0) {
2432                                 pagevec_release(&pvec);
2433                                 return err;
2434                         }
2435                 }
2436                 pagevec_release(&pvec);
2437         }
2438         /* Extent fully mapped and matches with page boundary. We are done. */
2439         mpd->map.m_len = 0;
2440         mpd->map.m_flags = 0;
2441         return 0;
2442 }
2443
2444 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2445 {
2446         struct inode *inode = mpd->inode;
2447         struct ext4_map_blocks *map = &mpd->map;
2448         int get_blocks_flags;
2449         int err, dioread_nolock;
2450
2451         trace_ext4_da_write_pages_extent(inode, map);
2452         /*
2453          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2454          * to convert an unwritten extent to be initialized (in the case
2455          * where we have written into one or more preallocated blocks).  It is
2456          * possible that we're going to need more metadata blocks than
2457          * previously reserved. However we must not fail because we're in
2458          * writeback and there is nothing we can do about it so it might result
2459          * in data loss.  So use reserved blocks to allocate metadata if
2460          * possible.
2461          *
2462          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2463          * the blocks in question are delalloc blocks.  This indicates
2464          * that the blocks and quotas has already been checked when
2465          * the data was copied into the page cache.
2466          */
2467         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2468                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2469                            EXT4_GET_BLOCKS_IO_SUBMIT;
2470         dioread_nolock = ext4_should_dioread_nolock(inode);
2471         if (dioread_nolock)
2472                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2473         if (map->m_flags & (1 << BH_Delay))
2474                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2475
2476         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2477         if (err < 0)
2478                 return err;
2479         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2480                 if (!mpd->io_submit.io_end->handle &&
2481                     ext4_handle_valid(handle)) {
2482                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2483                         handle->h_rsv_handle = NULL;
2484                 }
2485                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2486         }
2487
2488         BUG_ON(map->m_len == 0);
2489         return 0;
2490 }
2491
2492 /*
2493  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2494  *                               mpd->len and submit pages underlying it for IO
2495  *
2496  * @handle - handle for journal operations
2497  * @mpd - extent to map
2498  * @give_up_on_write - we set this to true iff there is a fatal error and there
2499  *                     is no hope of writing the data. The caller should discard
2500  *                     dirty pages to avoid infinite loops.
2501  *
2502  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2503  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2504  * them to initialized or split the described range from larger unwritten
2505  * extent. Note that we need not map all the described range since allocation
2506  * can return less blocks or the range is covered by more unwritten extents. We
2507  * cannot map more because we are limited by reserved transaction credits. On
2508  * the other hand we always make sure that the last touched page is fully
2509  * mapped so that it can be written out (and thus forward progress is
2510  * guaranteed). After mapping we submit all mapped pages for IO.
2511  */
2512 static int mpage_map_and_submit_extent(handle_t *handle,
2513                                        struct mpage_da_data *mpd,
2514                                        bool *give_up_on_write)
2515 {
2516         struct inode *inode = mpd->inode;
2517         struct ext4_map_blocks *map = &mpd->map;
2518         int err;
2519         loff_t disksize;
2520         int progress = 0;
2521
2522         mpd->io_submit.io_end->offset =
2523                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2524         do {
2525                 err = mpage_map_one_extent(handle, mpd);
2526                 if (err < 0) {
2527                         struct super_block *sb = inode->i_sb;
2528
2529                         if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2530                             EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2531                                 goto invalidate_dirty_pages;
2532                         /*
2533                          * Let the uper layers retry transient errors.
2534                          * In the case of ENOSPC, if ext4_count_free_blocks()
2535                          * is non-zero, a commit should free up blocks.
2536                          */
2537                         if ((err == -ENOMEM) ||
2538                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2539                                 if (progress)
2540                                         goto update_disksize;
2541                                 return err;
2542                         }
2543                         ext4_msg(sb, KERN_CRIT,
2544                                  "Delayed block allocation failed for "
2545                                  "inode %lu at logical offset %llu with"
2546                                  " max blocks %u with error %d",
2547                                  inode->i_ino,
2548                                  (unsigned long long)map->m_lblk,
2549                                  (unsigned)map->m_len, -err);
2550                         ext4_msg(sb, KERN_CRIT,
2551                                  "This should not happen!! Data will "
2552                                  "be lost\n");
2553                         if (err == -ENOSPC)
2554                                 ext4_print_free_blocks(inode);
2555                 invalidate_dirty_pages:
2556                         *give_up_on_write = true;
2557                         return err;
2558                 }
2559                 progress = 1;
2560                 /*
2561                  * Update buffer state, submit mapped pages, and get us new
2562                  * extent to map
2563                  */
2564                 err = mpage_map_and_submit_buffers(mpd);
2565                 if (err < 0)
2566                         goto update_disksize;
2567         } while (map->m_len);
2568
2569 update_disksize:
2570         /*
2571          * Update on-disk size after IO is submitted.  Races with
2572          * truncate are avoided by checking i_size under i_data_sem.
2573          */
2574         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2575         if (disksize > EXT4_I(inode)->i_disksize) {
2576                 int err2;
2577                 loff_t i_size;
2578
2579                 down_write(&EXT4_I(inode)->i_data_sem);
2580                 i_size = i_size_read(inode);
2581                 if (disksize > i_size)
2582                         disksize = i_size;
2583                 if (disksize > EXT4_I(inode)->i_disksize)
2584                         EXT4_I(inode)->i_disksize = disksize;
2585                 up_write(&EXT4_I(inode)->i_data_sem);
2586                 err2 = ext4_mark_inode_dirty(handle, inode);
2587                 if (err2)
2588                         ext4_error(inode->i_sb,
2589                                    "Failed to mark inode %lu dirty",
2590                                    inode->i_ino);
2591                 if (!err)
2592                         err = err2;
2593         }
2594         return err;
2595 }
2596
2597 /*
2598  * Calculate the total number of credits to reserve for one writepages
2599  * iteration. This is called from ext4_writepages(). We map an extent of
2600  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2601  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2602  * bpp - 1 blocks in bpp different extents.
2603  */
2604 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2605 {
2606         int bpp = ext4_journal_blocks_per_page(inode);
2607
2608         return ext4_meta_trans_blocks(inode,
2609                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2610 }
2611
2612 /*
2613  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2614  *                               and underlying extent to map
2615  *
2616  * @mpd - where to look for pages
2617  *
2618  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2619  * IO immediately. When we find a page which isn't mapped we start accumulating
2620  * extent of buffers underlying these pages that needs mapping (formed by
2621  * either delayed or unwritten buffers). We also lock the pages containing
2622  * these buffers. The extent found is returned in @mpd structure (starting at
2623  * mpd->lblk with length mpd->len blocks).
2624  *
2625  * Note that this function can attach bios to one io_end structure which are
2626  * neither logically nor physically contiguous. Although it may seem as an
2627  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2628  * case as we need to track IO to all buffers underlying a page in one io_end.
2629  */
2630 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2631 {
2632         struct address_space *mapping = mpd->inode->i_mapping;
2633         struct pagevec pvec;
2634         unsigned int nr_pages;
2635         long left = mpd->wbc->nr_to_write;
2636         pgoff_t index = mpd->first_page;
2637         pgoff_t end = mpd->last_page;
2638         xa_mark_t tag;
2639         int i, err = 0;
2640         int blkbits = mpd->inode->i_blkbits;
2641         ext4_lblk_t lblk;
2642         struct buffer_head *head;
2643
2644         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2645                 tag = PAGECACHE_TAG_TOWRITE;
2646         else
2647                 tag = PAGECACHE_TAG_DIRTY;
2648
2649         pagevec_init(&pvec);
2650         mpd->map.m_len = 0;
2651         mpd->next_page = index;
2652         while (index <= end) {
2653                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2654                                 tag);
2655                 if (nr_pages == 0)
2656                         goto out;
2657
2658                 for (i = 0; i < nr_pages; i++) {
2659                         struct page *page = pvec.pages[i];
2660
2661                         /*
2662                          * Accumulated enough dirty pages? This doesn't apply
2663                          * to WB_SYNC_ALL mode. For integrity sync we have to
2664                          * keep going because someone may be concurrently
2665                          * dirtying pages, and we might have synced a lot of
2666                          * newly appeared dirty pages, but have not synced all
2667                          * of the old dirty pages.
2668                          */
2669                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2670                                 goto out;
2671
2672                         /* If we can't merge this page, we are done. */
2673                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2674                                 goto out;
2675
2676                         lock_page(page);
2677                         /*
2678                          * If the page is no longer dirty, or its mapping no
2679                          * longer corresponds to inode we are writing (which
2680                          * means it has been truncated or invalidated), or the
2681                          * page is already under writeback and we are not doing
2682                          * a data integrity writeback, skip the page
2683                          */
2684                         if (!PageDirty(page) ||
2685                             (PageWriteback(page) &&
2686                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2687                             unlikely(page->mapping != mapping)) {
2688                                 unlock_page(page);
2689                                 continue;
2690                         }
2691
2692                         wait_on_page_writeback(page);
2693                         BUG_ON(PageWriteback(page));
2694
2695                         if (mpd->map.m_len == 0)
2696                                 mpd->first_page = page->index;
2697                         mpd->next_page = page->index + 1;
2698                         /* Add all dirty buffers to mpd */
2699                         lblk = ((ext4_lblk_t)page->index) <<
2700                                 (PAGE_SHIFT - blkbits);
2701                         head = page_buffers(page);
2702                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2703                         if (err <= 0)
2704                                 goto out;
2705                         err = 0;
2706                         left--;
2707                 }
2708                 pagevec_release(&pvec);
2709                 cond_resched();
2710         }
2711         return 0;
2712 out:
2713         pagevec_release(&pvec);
2714         return err;
2715 }
2716
2717 static int ext4_writepages(struct address_space *mapping,
2718                            struct writeback_control *wbc)
2719 {
2720         pgoff_t writeback_index = 0;
2721         long nr_to_write = wbc->nr_to_write;
2722         int range_whole = 0;
2723         int cycled = 1;
2724         handle_t *handle = NULL;
2725         struct mpage_da_data mpd;
2726         struct inode *inode = mapping->host;
2727         int needed_blocks, rsv_blocks = 0, ret = 0;
2728         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2729         bool done;
2730         struct blk_plug plug;
2731         bool give_up_on_write = false;
2732
2733         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2734                 return -EIO;
2735
2736         percpu_down_read(&sbi->s_journal_flag_rwsem);
2737         trace_ext4_writepages(inode, wbc);
2738
2739         /*
2740          * No pages to write? This is mainly a kludge to avoid starting
2741          * a transaction for special inodes like journal inode on last iput()
2742          * because that could violate lock ordering on umount
2743          */
2744         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2745                 goto out_writepages;
2746
2747         if (ext4_should_journal_data(inode)) {
2748                 ret = generic_writepages(mapping, wbc);
2749                 goto out_writepages;
2750         }
2751
2752         /*
2753          * If the filesystem has aborted, it is read-only, so return
2754          * right away instead of dumping stack traces later on that
2755          * will obscure the real source of the problem.  We test
2756          * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2757          * the latter could be true if the filesystem is mounted
2758          * read-only, and in that case, ext4_writepages should
2759          * *never* be called, so if that ever happens, we would want
2760          * the stack trace.
2761          */
2762         if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2763                      sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2764                 ret = -EROFS;
2765                 goto out_writepages;
2766         }
2767
2768         if (ext4_should_dioread_nolock(inode)) {
2769                 /*
2770                  * We may need to convert up to one extent per block in
2771                  * the page and we may dirty the inode.
2772                  */
2773                 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2774                                                 PAGE_SIZE >> inode->i_blkbits);
2775         }
2776
2777         /*
2778          * If we have inline data and arrive here, it means that
2779          * we will soon create the block for the 1st page, so
2780          * we'd better clear the inline data here.
2781          */
2782         if (ext4_has_inline_data(inode)) {
2783                 /* Just inode will be modified... */
2784                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2785                 if (IS_ERR(handle)) {
2786                         ret = PTR_ERR(handle);
2787                         goto out_writepages;
2788                 }
2789                 BUG_ON(ext4_test_inode_state(inode,
2790                                 EXT4_STATE_MAY_INLINE_DATA));
2791                 ext4_destroy_inline_data(handle, inode);
2792                 ext4_journal_stop(handle);
2793         }
2794
2795         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2796                 range_whole = 1;
2797
2798         if (wbc->range_cyclic) {
2799                 writeback_index = mapping->writeback_index;
2800                 if (writeback_index)
2801                         cycled = 0;
2802                 mpd.first_page = writeback_index;
2803                 mpd.last_page = -1;
2804         } else {
2805                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2806                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2807         }
2808
2809         mpd.inode = inode;
2810         mpd.wbc = wbc;
2811         ext4_io_submit_init(&mpd.io_submit, wbc);
2812 retry:
2813         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2814                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2815         done = false;
2816         blk_start_plug(&plug);
2817
2818         /*
2819          * First writeback pages that don't need mapping - we can avoid
2820          * starting a transaction unnecessarily and also avoid being blocked
2821          * in the block layer on device congestion while having transaction
2822          * started.
2823          */
2824         mpd.do_map = 0;
2825         mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2826         if (!mpd.io_submit.io_end) {
2827                 ret = -ENOMEM;
2828                 goto unplug;
2829         }
2830         ret = mpage_prepare_extent_to_map(&mpd);
2831         /* Unlock pages we didn't use */
2832         mpage_release_unused_pages(&mpd, false);
2833         /* Submit prepared bio */
2834         ext4_io_submit(&mpd.io_submit);
2835         ext4_put_io_end_defer(mpd.io_submit.io_end);
2836         mpd.io_submit.io_end = NULL;
2837         if (ret < 0)
2838                 goto unplug;
2839
2840         while (!done && mpd.first_page <= mpd.last_page) {
2841                 /* For each extent of pages we use new io_end */
2842                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2843                 if (!mpd.io_submit.io_end) {
2844                         ret = -ENOMEM;
2845                         break;
2846                 }
2847
2848                 /*
2849                  * We have two constraints: We find one extent to map and we
2850                  * must always write out whole page (makes a difference when
2851                  * blocksize < pagesize) so that we don't block on IO when we
2852                  * try to write out the rest of the page. Journalled mode is
2853                  * not supported by delalloc.
2854                  */
2855                 BUG_ON(ext4_should_journal_data(inode));
2856                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2857
2858                 /* start a new transaction */
2859                 handle = ext4_journal_start_with_reserve(inode,
2860                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2861                 if (IS_ERR(handle)) {
2862                         ret = PTR_ERR(handle);
2863                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2864                                "%ld pages, ino %lu; err %d", __func__,
2865                                 wbc->nr_to_write, inode->i_ino, ret);
2866                         /* Release allocated io_end */
2867                         ext4_put_io_end(mpd.io_submit.io_end);
2868                         mpd.io_submit.io_end = NULL;
2869                         break;
2870                 }
2871                 mpd.do_map = 1;
2872
2873                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2874                 ret = mpage_prepare_extent_to_map(&mpd);
2875                 if (!ret) {
2876                         if (mpd.map.m_len)
2877                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2878                                         &give_up_on_write);
2879                         else {
2880                                 /*
2881                                  * We scanned the whole range (or exhausted
2882                                  * nr_to_write), submitted what was mapped and
2883                                  * didn't find anything needing mapping. We are
2884                                  * done.
2885                                  */
2886                                 done = true;
2887                         }
2888                 }
2889                 /*
2890                  * Caution: If the handle is synchronous,
2891                  * ext4_journal_stop() can wait for transaction commit
2892                  * to finish which may depend on writeback of pages to
2893                  * complete or on page lock to be released.  In that
2894                  * case, we have to wait until after after we have
2895                  * submitted all the IO, released page locks we hold,
2896                  * and dropped io_end reference (for extent conversion
2897                  * to be able to complete) before stopping the handle.
2898                  */
2899                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2900                         ext4_journal_stop(handle);
2901                         handle = NULL;
2902                         mpd.do_map = 0;
2903                 }
2904                 /* Unlock pages we didn't use */
2905                 mpage_release_unused_pages(&mpd, give_up_on_write);
2906                 /* Submit prepared bio */
2907                 ext4_io_submit(&mpd.io_submit);
2908
2909                 /*
2910                  * Drop our io_end reference we got from init. We have
2911                  * to be careful and use deferred io_end finishing if
2912                  * we are still holding the transaction as we can
2913                  * release the last reference to io_end which may end
2914                  * up doing unwritten extent conversion.
2915                  */
2916                 if (handle) {
2917                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2918                         ext4_journal_stop(handle);
2919                 } else
2920                         ext4_put_io_end(mpd.io_submit.io_end);
2921                 mpd.io_submit.io_end = NULL;
2922
2923                 if (ret == -ENOSPC && sbi->s_journal) {
2924                         /*
2925                          * Commit the transaction which would
2926                          * free blocks released in the transaction
2927                          * and try again
2928                          */
2929                         jbd2_journal_force_commit_nested(sbi->s_journal);
2930                         ret = 0;
2931                         continue;
2932                 }
2933                 /* Fatal error - ENOMEM, EIO... */
2934                 if (ret)
2935                         break;
2936         }
2937 unplug:
2938         blk_finish_plug(&plug);
2939         if (!ret && !cycled && wbc->nr_to_write > 0) {
2940                 cycled = 1;
2941                 mpd.last_page = writeback_index - 1;
2942                 mpd.first_page = 0;
2943                 goto retry;
2944         }
2945
2946         /* Update index */
2947         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2948                 /*
2949                  * Set the writeback_index so that range_cyclic
2950                  * mode will write it back later
2951                  */
2952                 mapping->writeback_index = mpd.first_page;
2953
2954 out_writepages:
2955         trace_ext4_writepages_result(inode, wbc, ret,
2956                                      nr_to_write - wbc->nr_to_write);
2957         percpu_up_read(&sbi->s_journal_flag_rwsem);
2958         return ret;
2959 }
2960
2961 static int ext4_dax_writepages(struct address_space *mapping,
2962                                struct writeback_control *wbc)
2963 {
2964         int ret;
2965         long nr_to_write = wbc->nr_to_write;
2966         struct inode *inode = mapping->host;
2967         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2968
2969         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2970                 return -EIO;
2971
2972         percpu_down_read(&sbi->s_journal_flag_rwsem);
2973         trace_ext4_writepages(inode, wbc);
2974
2975         ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc);
2976         trace_ext4_writepages_result(inode, wbc, ret,
2977                                      nr_to_write - wbc->nr_to_write);
2978         percpu_up_read(&sbi->s_journal_flag_rwsem);
2979         return ret;
2980 }
2981
2982 static int ext4_nonda_switch(struct super_block *sb)
2983 {
2984         s64 free_clusters, dirty_clusters;
2985         struct ext4_sb_info *sbi = EXT4_SB(sb);
2986
2987         /*
2988          * switch to non delalloc mode if we are running low
2989          * on free block. The free block accounting via percpu
2990          * counters can get slightly wrong with percpu_counter_batch getting
2991          * accumulated on each CPU without updating global counters
2992          * Delalloc need an accurate free block accounting. So switch
2993          * to non delalloc when we are near to error range.
2994          */
2995         free_clusters =
2996                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2997         dirty_clusters =
2998                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2999         /*
3000          * Start pushing delalloc when 1/2 of free blocks are dirty.
3001          */
3002         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
3003                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
3004
3005         if (2 * free_clusters < 3 * dirty_clusters ||
3006             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
3007                 /*
3008                  * free block count is less than 150% of dirty blocks
3009                  * or free blocks is less than watermark
3010                  */
3011                 return 1;
3012         }
3013         return 0;
3014 }
3015
3016 /* We always reserve for an inode update; the superblock could be there too */
3017 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
3018 {
3019         if (likely(ext4_has_feature_large_file(inode->i_sb)))
3020                 return 1;
3021
3022         if (pos + len <= 0x7fffffffULL)
3023                 return 1;
3024
3025         /* We might need to update the superblock to set LARGE_FILE */
3026         return 2;
3027 }
3028
3029 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3030                                loff_t pos, unsigned len, unsigned flags,
3031                                struct page **pagep, void **fsdata)
3032 {
3033         int ret, retries = 0;
3034         struct page *page;
3035         pgoff_t index;
3036         struct inode *inode = mapping->host;
3037         handle_t *handle;
3038
3039         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3040                 return -EIO;
3041
3042         index = pos >> PAGE_SHIFT;
3043
3044         if (ext4_nonda_switch(inode->i_sb) ||
3045             S_ISLNK(inode->i_mode)) {
3046                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3047                 return ext4_write_begin(file, mapping, pos,
3048                                         len, flags, pagep, fsdata);
3049         }
3050         *fsdata = (void *)0;
3051         trace_ext4_da_write_begin(inode, pos, len, flags);
3052
3053         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3054                 ret = ext4_da_write_inline_data_begin(mapping, inode,
3055                                                       pos, len, flags,
3056                                                       pagep, fsdata);
3057                 if (ret < 0)
3058                         return ret;
3059                 if (ret == 1)
3060                         return 0;
3061         }
3062
3063         /*
3064          * grab_cache_page_write_begin() can take a long time if the
3065          * system is thrashing due to memory pressure, or if the page
3066          * is being written back.  So grab it first before we start
3067          * the transaction handle.  This also allows us to allocate
3068          * the page (if needed) without using GFP_NOFS.
3069          */
3070 retry_grab:
3071         page = grab_cache_page_write_begin(mapping, index, flags);
3072         if (!page)
3073                 return -ENOMEM;
3074         unlock_page(page);
3075
3076         /*
3077          * With delayed allocation, we don't log the i_disksize update
3078          * if there is delayed block allocation. But we still need
3079          * to journalling the i_disksize update if writes to the end
3080          * of file which has an already mapped buffer.
3081          */
3082 retry_journal:
3083         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3084                                 ext4_da_write_credits(inode, pos, len));
3085         if (IS_ERR(handle)) {
3086                 put_page(page);
3087                 return PTR_ERR(handle);
3088         }
3089
3090         lock_page(page);
3091         if (page->mapping != mapping) {
3092                 /* The page got truncated from under us */
3093                 unlock_page(page);
3094                 put_page(page);
3095                 ext4_journal_stop(handle);
3096                 goto retry_grab;
3097         }
3098         /* In case writeback began while the page was unlocked */
3099         wait_for_stable_page(page);
3100
3101 #ifdef CONFIG_FS_ENCRYPTION
3102         ret = ext4_block_write_begin(page, pos, len,
3103                                      ext4_da_get_block_prep);
3104 #else
3105         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3106 #endif
3107         if (ret < 0) {
3108                 unlock_page(page);
3109                 ext4_journal_stop(handle);
3110                 /*
3111                  * block_write_begin may have instantiated a few blocks
3112                  * outside i_size.  Trim these off again. Don't need
3113                  * i_size_read because we hold i_mutex.
3114                  */
3115                 if (pos + len > inode->i_size)
3116                         ext4_truncate_failed_write(inode);
3117
3118                 if (ret == -ENOSPC &&
3119                     ext4_should_retry_alloc(inode->i_sb, &retries))
3120                         goto retry_journal;
3121
3122                 put_page(page);
3123                 return ret;
3124         }
3125
3126         *pagep = page;
3127         return ret;
3128 }
3129
3130 /*
3131  * Check if we should update i_disksize
3132  * when write to the end of file but not require block allocation
3133  */
3134 static int ext4_da_should_update_i_disksize(struct page *page,
3135                                             unsigned long offset)
3136 {
3137         struct buffer_head *bh;
3138         struct inode *inode = page->mapping->host;
3139         unsigned int idx;
3140         int i;
3141
3142         bh = page_buffers(page);
3143         idx = offset >> inode->i_blkbits;
3144
3145         for (i = 0; i < idx; i++)
3146                 bh = bh->b_this_page;
3147
3148         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3149                 return 0;
3150         return 1;
3151 }
3152
3153 static int ext4_da_write_end(struct file *file,
3154                              struct address_space *mapping,
3155                              loff_t pos, unsigned len, unsigned copied,
3156                              struct page *page, void *fsdata)
3157 {
3158         struct inode *inode = mapping->host;
3159         int ret = 0, ret2;
3160         handle_t *handle = ext4_journal_current_handle();
3161         loff_t new_i_size;
3162         unsigned long start, end;
3163         int write_mode = (int)(unsigned long)fsdata;
3164
3165         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3166                 return ext4_write_end(file, mapping, pos,
3167                                       len, copied, page, fsdata);
3168
3169         trace_ext4_da_write_end(inode, pos, len, copied);
3170         start = pos & (PAGE_SIZE - 1);
3171         end = start + copied - 1;
3172
3173         /*
3174          * generic_write_end() will run mark_inode_dirty() if i_size
3175          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3176          * into that.
3177          */
3178         new_i_size = pos + copied;
3179         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3180                 if (ext4_has_inline_data(inode) ||
3181                     ext4_da_should_update_i_disksize(page, end)) {
3182                         ext4_update_i_disksize(inode, new_i_size);
3183                         /* We need to mark inode dirty even if
3184                          * new_i_size is less that inode->i_size
3185                          * bu greater than i_disksize.(hint delalloc)
3186                          */
3187                         ext4_mark_inode_dirty(handle, inode);
3188                 }
3189         }
3190
3191         if (write_mode != CONVERT_INLINE_DATA &&
3192             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3193             ext4_has_inline_data(inode))
3194                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3195                                                      page);
3196         else
3197                 ret2 = generic_write_end(file, mapping, pos, len, copied,
3198                                                         page, fsdata);
3199
3200         copied = ret2;
3201         if (ret2 < 0)
3202                 ret = ret2;
3203         ret2 = ext4_journal_stop(handle);
3204         if (!ret)
3205                 ret = ret2;
3206
3207         return ret ? ret : copied;
3208 }
3209
3210 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3211                                    unsigned int length)
3212 {
3213         /*
3214          * Drop reserved blocks
3215          */
3216         BUG_ON(!PageLocked(page));
3217         if (!page_has_buffers(page))
3218                 goto out;
3219
3220         ext4_da_page_release_reservation(page, offset, length);
3221
3222 out:
3223         ext4_invalidatepage(page, offset, length);
3224
3225         return;
3226 }
3227
3228 /*
3229  * Force all delayed allocation blocks to be allocated for a given inode.
3230  */
3231 int ext4_alloc_da_blocks(struct inode *inode)
3232 {
3233         trace_ext4_alloc_da_blocks(inode);
3234
3235         if (!EXT4_I(inode)->i_reserved_data_blocks)
3236                 return 0;
3237
3238         /*
3239          * We do something simple for now.  The filemap_flush() will
3240          * also start triggering a write of the data blocks, which is
3241          * not strictly speaking necessary (and for users of
3242          * laptop_mode, not even desirable).  However, to do otherwise
3243          * would require replicating code paths in:
3244          *
3245          * ext4_writepages() ->
3246          *    write_cache_pages() ---> (via passed in callback function)
3247          *        __mpage_da_writepage() -->
3248          *           mpage_add_bh_to_extent()
3249          *           mpage_da_map_blocks()
3250          *
3251          * The problem is that write_cache_pages(), located in
3252          * mm/page-writeback.c, marks pages clean in preparation for
3253          * doing I/O, which is not desirable if we're not planning on
3254          * doing I/O at all.
3255          *
3256          * We could call write_cache_pages(), and then redirty all of
3257          * the pages by calling redirty_page_for_writepage() but that
3258          * would be ugly in the extreme.  So instead we would need to
3259          * replicate parts of the code in the above functions,
3260          * simplifying them because we wouldn't actually intend to
3261          * write out the pages, but rather only collect contiguous
3262          * logical block extents, call the multi-block allocator, and
3263          * then update the buffer heads with the block allocations.
3264          *
3265          * For now, though, we'll cheat by calling filemap_flush(),
3266          * which will map the blocks, and start the I/O, but not
3267          * actually wait for the I/O to complete.
3268          */
3269         return filemap_flush(inode->i_mapping);
3270 }
3271
3272 /*
3273  * bmap() is special.  It gets used by applications such as lilo and by
3274  * the swapper to find the on-disk block of a specific piece of data.
3275  *
3276  * Naturally, this is dangerous if the block concerned is still in the
3277  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3278  * filesystem and enables swap, then they may get a nasty shock when the
3279  * data getting swapped to that swapfile suddenly gets overwritten by
3280  * the original zero's written out previously to the journal and
3281  * awaiting writeback in the kernel's buffer cache.
3282  *
3283  * So, if we see any bmap calls here on a modified, data-journaled file,
3284  * take extra steps to flush any blocks which might be in the cache.
3285  */
3286 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3287 {
3288         struct inode *inode = mapping->host;
3289         journal_t *journal;
3290         int err;
3291
3292         /*
3293          * We can get here for an inline file via the FIBMAP ioctl
3294          */
3295         if (ext4_has_inline_data(inode))
3296                 return 0;
3297
3298         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3299                         test_opt(inode->i_sb, DELALLOC)) {
3300                 /*
3301                  * With delalloc we want to sync the file
3302                  * so that we can make sure we allocate
3303                  * blocks for file
3304                  */
3305                 filemap_write_and_wait(mapping);
3306         }
3307
3308         if (EXT4_JOURNAL(inode) &&
3309             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3310                 /*
3311                  * This is a REALLY heavyweight approach, but the use of
3312                  * bmap on dirty files is expected to be extremely rare:
3313                  * only if we run lilo or swapon on a freshly made file
3314                  * do we expect this to happen.
3315                  *
3316                  * (bmap requires CAP_SYS_RAWIO so this does not
3317                  * represent an unprivileged user DOS attack --- we'd be
3318                  * in trouble if mortal users could trigger this path at
3319                  * will.)
3320                  *
3321                  * NB. EXT4_STATE_JDATA is not set on files other than
3322                  * regular files.  If somebody wants to bmap a directory
3323                  * or symlink and gets confused because the buffer
3324                  * hasn't yet been flushed to disk, they deserve
3325                  * everything they get.
3326                  */
3327
3328                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3329                 journal = EXT4_JOURNAL(inode);
3330                 jbd2_journal_lock_updates(journal);
3331                 err = jbd2_journal_flush(journal);
3332                 jbd2_journal_unlock_updates(journal);
3333
3334                 if (err)
3335                         return 0;
3336         }
3337
3338         return generic_block_bmap(mapping, block, ext4_get_block);
3339 }
3340
3341 static int ext4_readpage(struct file *file, struct page *page)
3342 {
3343         int ret = -EAGAIN;
3344         struct inode *inode = page->mapping->host;
3345
3346         trace_ext4_readpage(page);
3347
3348         if (ext4_has_inline_data(inode))
3349                 ret = ext4_readpage_inline(inode, page);
3350
3351         if (ret == -EAGAIN)
3352                 return ext4_mpage_readpages(page->mapping, NULL, page, 1,
3353                                                 false);
3354
3355         return ret;
3356 }
3357
3358 static int
3359 ext4_readpages(struct file *file, struct address_space *mapping,
3360                 struct list_head *pages, unsigned nr_pages)
3361 {
3362         struct inode *inode = mapping->host;
3363
3364         /* If the file has inline data, no need to do readpages. */
3365         if (ext4_has_inline_data(inode))
3366                 return 0;
3367
3368         return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true);
3369 }
3370
3371 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3372                                 unsigned int length)
3373 {
3374         trace_ext4_invalidatepage(page, offset, length);
3375
3376         /* No journalling happens on data buffers when this function is used */
3377         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3378
3379         block_invalidatepage(page, offset, length);
3380 }
3381
3382 static int __ext4_journalled_invalidatepage(struct page *page,
3383                                             unsigned int offset,
3384                                             unsigned int length)
3385 {
3386         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3387
3388         trace_ext4_journalled_invalidatepage(page, offset, length);
3389
3390         /*
3391          * If it's a full truncate we just forget about the pending dirtying
3392          */
3393         if (offset == 0 && length == PAGE_SIZE)
3394                 ClearPageChecked(page);
3395
3396         return jbd2_journal_invalidatepage(journal, page, offset, length);
3397 }
3398
3399 /* Wrapper for aops... */
3400 static void ext4_journalled_invalidatepage(struct page *page,
3401                                            unsigned int offset,
3402                                            unsigned int length)
3403 {
3404         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3405 }
3406
3407 static int ext4_releasepage(struct page *page, gfp_t wait)
3408 {
3409         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3410
3411         trace_ext4_releasepage(page);
3412
3413         /* Page has dirty journalled data -> cannot release */
3414         if (PageChecked(page))
3415                 return 0;
3416         if (journal)
3417                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3418         else
3419                 return try_to_free_buffers(page);
3420 }
3421
3422 static bool ext4_inode_datasync_dirty(struct inode *inode)
3423 {
3424         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3425
3426         if (journal)
3427                 return !jbd2_transaction_committed(journal,
3428                                         EXT4_I(inode)->i_datasync_tid);
3429         /* Any metadata buffers to write? */
3430         if (!list_empty(&inode->i_mapping->private_list))
3431                 return true;
3432         return inode->i_state & I_DIRTY_DATASYNC;
3433 }
3434
3435 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3436                             unsigned flags, struct iomap *iomap)
3437 {
3438         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3439         unsigned int blkbits = inode->i_blkbits;
3440         unsigned long first_block, last_block;
3441         struct ext4_map_blocks map;
3442         bool delalloc = false;
3443         int ret;
3444
3445         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3446                 return -EINVAL;
3447         first_block = offset >> blkbits;
3448         last_block = min_t(loff_t, (offset + length - 1) >> blkbits,
3449                            EXT4_MAX_LOGICAL_BLOCK);
3450
3451         if (flags & IOMAP_REPORT) {
3452                 if (ext4_has_inline_data(inode)) {
3453                         ret = ext4_inline_data_iomap(inode, iomap);
3454                         if (ret != -EAGAIN) {
3455                                 if (ret == 0 && offset >= iomap->length)
3456                                         ret = -ENOENT;
3457                                 return ret;
3458                         }
3459                 }
3460         } else {
3461                 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3462                         return -ERANGE;
3463         }
3464
3465         map.m_lblk = first_block;
3466         map.m_len = last_block - first_block + 1;
3467
3468         if (flags & IOMAP_REPORT) {
3469                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3470                 if (ret < 0)
3471                         return ret;
3472
3473                 if (ret == 0) {
3474                         ext4_lblk_t end = map.m_lblk + map.m_len - 1;
3475                         struct extent_status es;
3476
3477                         ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3478                                                   map.m_lblk, end, &es);
3479
3480                         if (!es.es_len || es.es_lblk > end) {
3481                                 /* entire range is a hole */
3482                         } else if (es.es_lblk > map.m_lblk) {
3483                                 /* range starts with a hole */
3484                                 map.m_len = es.es_lblk - map.m_lblk;
3485                         } else {
3486                                 ext4_lblk_t offs = 0;
3487
3488                                 if (es.es_lblk < map.m_lblk)
3489                                         offs = map.m_lblk - es.es_lblk;
3490                                 map.m_lblk = es.es_lblk + offs;
3491                                 map.m_len = es.es_len - offs;
3492                                 delalloc = true;
3493                         }
3494                 }
3495         } else if (flags & IOMAP_WRITE) {
3496                 int dio_credits;
3497                 handle_t *handle;
3498                 int retries = 0;
3499
3500                 /* Trim mapping request to maximum we can map at once for DIO */
3501                 if (map.m_len > DIO_MAX_BLOCKS)
3502                         map.m_len = DIO_MAX_BLOCKS;
3503                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3504 retry:
3505                 /*
3506                  * Either we allocate blocks and then we don't get unwritten
3507                  * extent so we have reserved enough credits, or the blocks
3508                  * are already allocated and unwritten and in that case
3509                  * extent conversion fits in the credits as well.
3510                  */
3511                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3512                                             dio_credits);
3513                 if (IS_ERR(handle))
3514                         return PTR_ERR(handle);
3515
3516                 ret = ext4_map_blocks(handle, inode, &map,
3517                                       EXT4_GET_BLOCKS_CREATE_ZERO);
3518                 if (ret < 0) {
3519                         ext4_journal_stop(handle);
3520                         if (ret == -ENOSPC &&
3521                             ext4_should_retry_alloc(inode->i_sb, &retries))
3522                                 goto retry;
3523                         return ret;
3524                 }
3525
3526                 /*
3527                  * If we added blocks beyond i_size, we need to make sure they
3528                  * will get truncated if we crash before updating i_size in
3529                  * ext4_iomap_end(). For faults we don't need to do that (and
3530                  * even cannot because for orphan list operations inode_lock is
3531                  * required) - if we happen to instantiate block beyond i_size,
3532                  * it is because we race with truncate which has already added
3533                  * the inode to the orphan list.
3534                  */
3535                 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3536                     (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3537                         int err;
3538
3539                         err = ext4_orphan_add(handle, inode);
3540                         if (err < 0) {
3541                                 ext4_journal_stop(handle);
3542                                 return err;
3543                         }
3544                 }
3545                 ext4_journal_stop(handle);
3546         } else {
3547                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3548                 if (ret < 0)
3549                         return ret;
3550         }
3551
3552         iomap->flags = 0;
3553         if (ext4_inode_datasync_dirty(inode))
3554                 iomap->flags |= IOMAP_F_DIRTY;
3555         iomap->bdev = inode->i_sb->s_bdev;
3556         iomap->dax_dev = sbi->s_daxdev;
3557         iomap->offset = (u64)first_block << blkbits;
3558         iomap->length = (u64)map.m_len << blkbits;
3559
3560         if (ret == 0) {
3561                 iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE;
3562                 iomap->addr = IOMAP_NULL_ADDR;
3563         } else {
3564                 if (map.m_flags & EXT4_MAP_MAPPED) {
3565                         iomap->type = IOMAP_MAPPED;
3566                 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3567                         iomap->type = IOMAP_UNWRITTEN;
3568                 } else {
3569                         WARN_ON_ONCE(1);
3570                         return -EIO;
3571                 }
3572                 iomap->addr = (u64)map.m_pblk << blkbits;
3573         }
3574
3575         if (map.m_flags & EXT4_MAP_NEW)
3576                 iomap->flags |= IOMAP_F_NEW;
3577
3578         return 0;
3579 }
3580
3581 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3582                           ssize_t written, unsigned flags, struct iomap *iomap)
3583 {
3584         int ret = 0;
3585         handle_t *handle;
3586         int blkbits = inode->i_blkbits;
3587         bool truncate = false;
3588
3589         if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3590                 return 0;
3591
3592         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3593         if (IS_ERR(handle)) {
3594                 ret = PTR_ERR(handle);
3595                 goto orphan_del;
3596         }
3597         if (ext4_update_inode_size(inode, offset + written))
3598                 ext4_mark_inode_dirty(handle, inode);
3599         /*
3600          * We may need to truncate allocated but not written blocks beyond EOF.
3601          */
3602         if (iomap->offset + iomap->length > 
3603             ALIGN(inode->i_size, 1 << blkbits)) {
3604                 ext4_lblk_t written_blk, end_blk;
3605
3606                 written_blk = (offset + written) >> blkbits;
3607                 end_blk = (offset + length) >> blkbits;
3608                 if (written_blk < end_blk && ext4_can_truncate(inode))
3609                         truncate = true;
3610         }
3611         /*
3612          * Remove inode from orphan list if we were extending a inode and
3613          * everything went fine.
3614          */
3615         if (!truncate && inode->i_nlink &&
3616             !list_empty(&EXT4_I(inode)->i_orphan))
3617                 ext4_orphan_del(handle, inode);
3618         ext4_journal_stop(handle);
3619         if (truncate) {
3620                 ext4_truncate_failed_write(inode);
3621 orphan_del:
3622                 /*
3623                  * If truncate failed early the inode might still be on the
3624                  * orphan list; we need to make sure the inode is removed from
3625                  * the orphan list in that case.
3626                  */
3627                 if (inode->i_nlink)
3628                         ext4_orphan_del(NULL, inode);
3629         }
3630         return ret;
3631 }
3632
3633 const struct iomap_ops ext4_iomap_ops = {
3634         .iomap_begin            = ext4_iomap_begin,
3635         .iomap_end              = ext4_iomap_end,
3636 };
3637
3638 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3639                             ssize_t size, void *private)
3640 {
3641         ext4_io_end_t *io_end = private;
3642
3643         /* if not async direct IO just return */
3644         if (!io_end)
3645                 return 0;
3646
3647         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3648                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3649                   io_end, io_end->inode->i_ino, iocb, offset, size);
3650
3651         /*
3652          * Error during AIO DIO. We cannot convert unwritten extents as the
3653          * data was not written. Just clear the unwritten flag and drop io_end.
3654          */
3655         if (size <= 0) {
3656                 ext4_clear_io_unwritten_flag(io_end);
3657                 size = 0;
3658         }
3659         io_end->offset = offset;
3660         io_end->size = size;
3661         ext4_put_io_end(io_end);
3662
3663         return 0;
3664 }
3665
3666 /*
3667  * Handling of direct IO writes.
3668  *
3669  * For ext4 extent files, ext4 will do direct-io write even to holes,
3670  * preallocated extents, and those write extend the file, no need to
3671  * fall back to buffered IO.
3672  *
3673  * For holes, we fallocate those blocks, mark them as unwritten
3674  * If those blocks were preallocated, we mark sure they are split, but
3675  * still keep the range to write as unwritten.
3676  *
3677  * The unwritten extents will be converted to written when DIO is completed.
3678  * For async direct IO, since the IO may still pending when return, we
3679  * set up an end_io call back function, which will do the conversion
3680  * when async direct IO completed.
3681  *
3682  * If the O_DIRECT write will extend the file then add this inode to the
3683  * orphan list.  So recovery will truncate it back to the original size
3684  * if the machine crashes during the write.
3685  *
3686  */
3687 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3688 {
3689         struct file *file = iocb->ki_filp;
3690         struct inode *inode = file->f_mapping->host;
3691         struct ext4_inode_info *ei = EXT4_I(inode);
3692         ssize_t ret;
3693         loff_t offset = iocb->ki_pos;
3694         size_t count = iov_iter_count(iter);
3695         int overwrite = 0;
3696         get_block_t *get_block_func = NULL;
3697         int dio_flags = 0;
3698         loff_t final_size = offset + count;
3699         int orphan = 0;
3700         handle_t *handle;
3701
3702         if (final_size > inode->i_size || final_size > ei->i_disksize) {
3703                 /* Credits for sb + inode write */
3704                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3705                 if (IS_ERR(handle)) {
3706                         ret = PTR_ERR(handle);
3707                         goto out;
3708                 }
3709                 ret = ext4_orphan_add(handle, inode);
3710                 if (ret) {
3711                         ext4_journal_stop(handle);
3712                         goto out;
3713                 }
3714                 orphan = 1;
3715                 ext4_update_i_disksize(inode, inode->i_size);
3716                 ext4_journal_stop(handle);
3717         }
3718
3719         BUG_ON(iocb->private == NULL);
3720
3721         /*
3722          * Make all waiters for direct IO properly wait also for extent
3723          * conversion. This also disallows race between truncate() and
3724          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3725          */
3726         inode_dio_begin(inode);
3727
3728         /* If we do a overwrite dio, i_mutex locking can be released */
3729         overwrite = *((int *)iocb->private);
3730
3731         if (overwrite)
3732                 inode_unlock(inode);
3733
3734         /*
3735          * For extent mapped files we could direct write to holes and fallocate.
3736          *
3737          * Allocated blocks to fill the hole are marked as unwritten to prevent
3738          * parallel buffered read to expose the stale data before DIO complete
3739          * the data IO.
3740          *
3741          * As to previously fallocated extents, ext4 get_block will just simply
3742          * mark the buffer mapped but still keep the extents unwritten.
3743          *
3744          * For non AIO case, we will convert those unwritten extents to written
3745          * after return back from blockdev_direct_IO. That way we save us from
3746          * allocating io_end structure and also the overhead of offloading
3747          * the extent convertion to a workqueue.
3748          *
3749          * For async DIO, the conversion needs to be deferred when the
3750          * IO is completed. The ext4 end_io callback function will be
3751          * called to take care of the conversion work.  Here for async
3752          * case, we allocate an io_end structure to hook to the iocb.
3753          */
3754         iocb->private = NULL;
3755         if (overwrite)
3756                 get_block_func = ext4_dio_get_block_overwrite;
3757         else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3758                    round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3759                 get_block_func = ext4_dio_get_block;
3760                 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3761         } else if (is_sync_kiocb(iocb)) {
3762                 get_block_func = ext4_dio_get_block_unwritten_sync;
3763                 dio_flags = DIO_LOCKING;
3764         } else {
3765                 get_block_func = ext4_dio_get_block_unwritten_async;
3766                 dio_flags = DIO_LOCKING;
3767         }
3768         ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3769                                    get_block_func, ext4_end_io_dio, NULL,
3770                                    dio_flags);
3771
3772         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3773                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3774                 int err;
3775                 /*
3776                  * for non AIO case, since the IO is already
3777                  * completed, we could do the conversion right here
3778                  */
3779                 err = ext4_convert_unwritten_extents(NULL, inode,
3780                                                      offset, ret);
3781                 if (err < 0)
3782                         ret = err;
3783                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3784         }
3785
3786         inode_dio_end(inode);
3787         /* take i_mutex locking again if we do a ovewrite dio */
3788         if (overwrite)
3789                 inode_lock(inode);
3790
3791         if (ret < 0 && final_size > inode->i_size)
3792                 ext4_truncate_failed_write(inode);
3793
3794         /* Handle extending of i_size after direct IO write */
3795         if (orphan) {
3796                 int err;
3797
3798                 /* Credits for sb + inode write */
3799                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3800                 if (IS_ERR(handle)) {
3801                         /*
3802                          * We wrote the data but cannot extend
3803                          * i_size. Bail out. In async io case, we do
3804                          * not return error here because we have
3805                          * already submmitted the corresponding
3806                          * bio. Returning error here makes the caller
3807                          * think that this IO is done and failed
3808                          * resulting in race with bio's completion
3809                          * handler.
3810                          */
3811                         if (!ret)
3812                                 ret = PTR_ERR(handle);
3813                         if (inode->i_nlink)
3814                                 ext4_orphan_del(NULL, inode);
3815
3816                         goto out;
3817                 }
3818                 if (inode->i_nlink)
3819                         ext4_orphan_del(handle, inode);
3820                 if (ret > 0) {
3821                         loff_t end = offset + ret;
3822                         if (end > inode->i_size || end > ei->i_disksize) {
3823                                 ext4_update_i_disksize(inode, end);
3824                                 if (end > inode->i_size)
3825                                         i_size_write(inode, end);
3826                                 /*
3827                                  * We're going to return a positive `ret'
3828                                  * here due to non-zero-length I/O, so there's
3829                                  * no way of reporting error returns from
3830                                  * ext4_mark_inode_dirty() to userspace.  So
3831                                  * ignore it.
3832                                  */
3833                                 ext4_mark_inode_dirty(handle, inode);
3834                         }
3835                 }
3836                 err = ext4_journal_stop(handle);
3837                 if (ret == 0)
3838                         ret = err;
3839         }
3840 out:
3841         return ret;
3842 }
3843
3844 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3845 {
3846         struct address_space *mapping = iocb->ki_filp->f_mapping;
3847         struct inode *inode = mapping->host;
3848         size_t count = iov_iter_count(iter);
3849         ssize_t ret;
3850
3851         /*
3852          * Shared inode_lock is enough for us - it protects against concurrent
3853          * writes & truncates and since we take care of writing back page cache,
3854          * we are protected against page writeback as well.
3855          */
3856         inode_lock_shared(inode);
3857         ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3858                                            iocb->ki_pos + count - 1);
3859         if (ret)
3860                 goto out_unlock;
3861         ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3862                                    iter, ext4_dio_get_block, NULL, NULL, 0);
3863 out_unlock:
3864         inode_unlock_shared(inode);
3865         return ret;
3866 }
3867
3868 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3869 {
3870         struct file *file = iocb->ki_filp;
3871         struct inode *inode = file->f_mapping->host;
3872         size_t count = iov_iter_count(iter);
3873         loff_t offset = iocb->ki_pos;
3874         ssize_t ret;
3875
3876 #ifdef CONFIG_FS_ENCRYPTION
3877         if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
3878                 return 0;
3879 #endif
3880
3881         /*
3882          * If we are doing data journalling we don't support O_DIRECT
3883          */
3884         if (ext4_should_journal_data(inode))
3885                 return 0;
3886
3887         /* Let buffer I/O handle the inline data case. */
3888         if (ext4_has_inline_data(inode))
3889                 return 0;
3890
3891         trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3892         if (iov_iter_rw(iter) == READ)
3893                 ret = ext4_direct_IO_read(iocb, iter);
3894         else
3895                 ret = ext4_direct_IO_write(iocb, iter);
3896         trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3897         return ret;
3898 }
3899
3900 /*
3901  * Pages can be marked dirty completely asynchronously from ext4's journalling
3902  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3903  * much here because ->set_page_dirty is called under VFS locks.  The page is
3904  * not necessarily locked.
3905  *
3906  * We cannot just dirty the page and leave attached buffers clean, because the
3907  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3908  * or jbddirty because all the journalling code will explode.
3909  *
3910  * So what we do is to mark the page "pending dirty" and next time writepage
3911  * is called, propagate that into the buffers appropriately.
3912  */
3913 static int ext4_journalled_set_page_dirty(struct page *page)
3914 {
3915         SetPageChecked(page);
3916         return __set_page_dirty_nobuffers(page);
3917 }
3918
3919 static int ext4_set_page_dirty(struct page *page)
3920 {
3921         WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3922         WARN_ON_ONCE(!page_has_buffers(page));
3923         return __set_page_dirty_buffers(page);
3924 }
3925
3926 static const struct address_space_operations ext4_aops = {
3927         .readpage               = ext4_readpage,
3928         .readpages              = ext4_readpages,
3929         .writepage              = ext4_writepage,
3930         .writepages             = ext4_writepages,
3931         .write_begin            = ext4_write_begin,
3932         .write_end              = ext4_write_end,
3933         .set_page_dirty         = ext4_set_page_dirty,
3934         .bmap                   = ext4_bmap,
3935         .invalidatepage         = ext4_invalidatepage,
3936         .releasepage            = ext4_releasepage,
3937         .direct_IO              = ext4_direct_IO,
3938         .migratepage            = buffer_migrate_page,
3939         .is_partially_uptodate  = block_is_partially_uptodate,
3940         .error_remove_page      = generic_error_remove_page,
3941 };
3942
3943 static const struct address_space_operations ext4_journalled_aops = {
3944         .readpage               = ext4_readpage,
3945         .readpages              = ext4_readpages,
3946         .writepage              = ext4_writepage,
3947         .writepages             = ext4_writepages,
3948         .write_begin            = ext4_write_begin,
3949         .write_end              = ext4_journalled_write_end,
3950         .set_page_dirty         = ext4_journalled_set_page_dirty,
3951         .bmap                   = ext4_bmap,
3952         .invalidatepage         = ext4_journalled_invalidatepage,
3953         .releasepage            = ext4_releasepage,
3954         .direct_IO              = ext4_direct_IO,
3955         .is_partially_uptodate  = block_is_partially_uptodate,
3956         .error_remove_page      = generic_error_remove_page,
3957 };
3958
3959 static const struct address_space_operations ext4_da_aops = {
3960         .readpage               = ext4_readpage,
3961         .readpages              = ext4_readpages,
3962         .writepage              = ext4_writepage,
3963         .writepages             = ext4_writepages,
3964         .write_begin            = ext4_da_write_begin,
3965         .write_end              = ext4_da_write_end,
3966         .set_page_dirty         = ext4_set_page_dirty,
3967         .bmap                   = ext4_bmap,
3968         .invalidatepage         = ext4_da_invalidatepage,
3969         .releasepage            = ext4_releasepage,
3970         .direct_IO              = ext4_direct_IO,
3971         .migratepage            = buffer_migrate_page,
3972         .is_partially_uptodate  = block_is_partially_uptodate,
3973         .error_remove_page      = generic_error_remove_page,
3974 };
3975
3976 static const struct address_space_operations ext4_dax_aops = {
3977         .writepages             = ext4_dax_writepages,
3978         .direct_IO              = noop_direct_IO,
3979         .set_page_dirty         = noop_set_page_dirty,
3980         .bmap                   = ext4_bmap,
3981         .invalidatepage         = noop_invalidatepage,
3982 };
3983
3984 void ext4_set_aops(struct inode *inode)
3985 {
3986         switch (ext4_inode_journal_mode(inode)) {
3987         case EXT4_INODE_ORDERED_DATA_MODE:
3988         case EXT4_INODE_WRITEBACK_DATA_MODE:
3989                 break;
3990         case EXT4_INODE_JOURNAL_DATA_MODE:
3991                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3992                 return;
3993         default:
3994                 BUG();
3995         }
3996         if (IS_DAX(inode))
3997                 inode->i_mapping->a_ops = &ext4_dax_aops;
3998         else if (test_opt(inode->i_sb, DELALLOC))
3999                 inode->i_mapping->a_ops = &ext4_da_aops;
4000         else
4001                 inode->i_mapping->a_ops = &ext4_aops;
4002 }
4003
4004 static int __ext4_block_zero_page_range(handle_t *handle,
4005                 struct address_space *mapping, loff_t from, loff_t length)
4006 {
4007         ext4_fsblk_t index = from >> PAGE_SHIFT;
4008         unsigned offset = from & (PAGE_SIZE-1);
4009         unsigned blocksize, pos;
4010         ext4_lblk_t iblock;
4011         struct inode *inode = mapping->host;
4012         struct buffer_head *bh;
4013         struct page *page;
4014         int err = 0;
4015
4016         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
4017                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
4018         if (!page)
4019                 return -ENOMEM;
4020
4021         blocksize = inode->i_sb->s_blocksize;
4022
4023         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
4024
4025         if (!page_has_buffers(page))
4026                 create_empty_buffers(page, blocksize, 0);
4027
4028         /* Find the buffer that contains "offset" */
4029         bh = page_buffers(page);
4030         pos = blocksize;
4031         while (offset >= pos) {
4032                 bh = bh->b_this_page;
4033                 iblock++;
4034                 pos += blocksize;
4035         }
4036         if (buffer_freed(bh)) {
4037                 BUFFER_TRACE(bh, "freed: skip");
4038                 goto unlock;
4039         }
4040         if (!buffer_mapped(bh)) {
4041                 BUFFER_TRACE(bh, "unmapped");
4042                 ext4_get_block(inode, iblock, bh, 0);
4043                 /* unmapped? It's a hole - nothing to do */
4044                 if (!buffer_mapped(bh)) {
4045                         BUFFER_TRACE(bh, "still unmapped");
4046                         goto unlock;
4047                 }
4048         }
4049
4050         /* Ok, it's mapped. Make sure it's up-to-date */
4051         if (PageUptodate(page))
4052                 set_buffer_uptodate(bh);
4053
4054         if (!buffer_uptodate(bh)) {
4055                 err = -EIO;
4056                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
4057                 wait_on_buffer(bh);
4058                 /* Uhhuh. Read error. Complain and punt. */
4059                 if (!buffer_uptodate(bh))
4060                         goto unlock;
4061                 if (S_ISREG(inode->i_mode) && IS_ENCRYPTED(inode)) {
4062                         /* We expect the key to be set. */
4063                         BUG_ON(!fscrypt_has_encryption_key(inode));
4064                         BUG_ON(blocksize != PAGE_SIZE);
4065                         WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
4066                                                 page, PAGE_SIZE, 0, page->index));
4067                 }
4068         }
4069         if (ext4_should_journal_data(inode)) {
4070                 BUFFER_TRACE(bh, "get write access");
4071                 err = ext4_journal_get_write_access(handle, bh);
4072                 if (err)
4073                         goto unlock;
4074         }
4075         zero_user(page, offset, length);
4076         BUFFER_TRACE(bh, "zeroed end of block");
4077
4078         if (ext4_should_journal_data(inode)) {
4079                 err = ext4_handle_dirty_metadata(handle, inode, bh);
4080         } else {
4081                 err = 0;
4082                 mark_buffer_dirty(bh);
4083                 if (ext4_should_order_data(inode))
4084                         err = ext4_jbd2_inode_add_write(handle, inode);
4085         }
4086
4087 unlock:
4088         unlock_page(page);
4089         put_page(page);
4090         return err;
4091 }
4092
4093 /*
4094  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4095  * starting from file offset 'from'.  The range to be zero'd must
4096  * be contained with in one block.  If the specified range exceeds
4097  * the end of the block it will be shortened to end of the block
4098  * that cooresponds to 'from'
4099  */
4100 static int ext4_block_zero_page_range(handle_t *handle,
4101                 struct address_space *mapping, loff_t from, loff_t length)
4102 {
4103         struct inode *inode = mapping->host;
4104         unsigned offset = from & (PAGE_SIZE-1);
4105         unsigned blocksize = inode->i_sb->s_blocksize;
4106         unsigned max = blocksize - (offset & (blocksize - 1));
4107
4108         /*
4109          * correct length if it does not fall between
4110          * 'from' and the end of the block
4111          */
4112         if (length > max || length < 0)
4113                 length = max;
4114
4115         if (IS_DAX(inode)) {
4116                 return iomap_zero_range(inode, from, length, NULL,
4117                                         &ext4_iomap_ops);
4118         }
4119         return __ext4_block_zero_page_range(handle, mapping, from, length);
4120 }
4121
4122 /*
4123  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4124  * up to the end of the block which corresponds to `from'.
4125  * This required during truncate. We need to physically zero the tail end
4126  * of that block so it doesn't yield old data if the file is later grown.
4127  */
4128 static int ext4_block_truncate_page(handle_t *handle,
4129                 struct address_space *mapping, loff_t from)
4130 {
4131         unsigned offset = from & (PAGE_SIZE-1);
4132         unsigned length;
4133         unsigned blocksize;
4134         struct inode *inode = mapping->host;
4135
4136         /* If we are processing an encrypted inode during orphan list handling */
4137         if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
4138                 return 0;
4139
4140         blocksize = inode->i_sb->s_blocksize;
4141         length = blocksize - (offset & (blocksize - 1));
4142
4143         return ext4_block_zero_page_range(handle, mapping, from, length);
4144 }
4145
4146 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4147                              loff_t lstart, loff_t length)
4148 {
4149         struct super_block *sb = inode->i_sb;
4150         struct address_space *mapping = inode->i_mapping;
4151         unsigned partial_start, partial_end;
4152         ext4_fsblk_t start, end;
4153         loff_t byte_end = (lstart + length - 1);
4154         int err = 0;
4155
4156         partial_start = lstart & (sb->s_blocksize - 1);
4157         partial_end = byte_end & (sb->s_blocksize - 1);
4158
4159         start = lstart >> sb->s_blocksize_bits;
4160         end = byte_end >> sb->s_blocksize_bits;
4161
4162         /* Handle partial zero within the single block */
4163         if (start == end &&
4164             (partial_start || (partial_end != sb->s_blocksize - 1))) {
4165                 err = ext4_block_zero_page_range(handle, mapping,
4166                                                  lstart, length);
4167                 return err;
4168         }
4169         /* Handle partial zero out on the start of the range */
4170         if (partial_start) {
4171                 err = ext4_block_zero_page_range(handle, mapping,
4172                                                  lstart, sb->s_blocksize);
4173                 if (err)
4174                         return err;
4175         }
4176         /* Handle partial zero out on the end of the range */
4177         if (partial_end != sb->s_blocksize - 1)
4178                 err = ext4_block_zero_page_range(handle, mapping,
4179                                                  byte_end - partial_end,
4180                                                  partial_end + 1);
4181         return err;
4182 }
4183
4184 int ext4_can_truncate(struct inode *inode)
4185 {
4186         if (S_ISREG(inode->i_mode))
4187                 return 1;
4188         if (S_ISDIR(inode->i_mode))
4189                 return 1;
4190         if (S_ISLNK(inode->i_mode))
4191                 return !ext4_inode_is_fast_symlink(inode);
4192         return 0;
4193 }
4194
4195 /*
4196  * We have to make sure i_disksize gets properly updated before we truncate
4197  * page cache due to hole punching or zero range. Otherwise i_disksize update
4198  * can get lost as it may have been postponed to submission of writeback but
4199  * that will never happen after we truncate page cache.
4200  */
4201 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4202                                       loff_t len)
4203 {
4204         handle_t *handle;
4205         loff_t size = i_size_read(inode);
4206
4207         WARN_ON(!inode_is_locked(inode));
4208         if (offset > size || offset + len < size)
4209                 return 0;
4210
4211         if (EXT4_I(inode)->i_disksize >= size)
4212                 return 0;
4213
4214         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4215         if (IS_ERR(handle))
4216                 return PTR_ERR(handle);
4217         ext4_update_i_disksize(inode, size);
4218         ext4_mark_inode_dirty(handle, inode);
4219         ext4_journal_stop(handle);
4220
4221         return 0;
4222 }
4223
4224 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
4225 {
4226         up_write(&ei->i_mmap_sem);
4227         schedule();
4228         down_write(&ei->i_mmap_sem);
4229 }
4230
4231 int ext4_break_layouts(struct inode *inode)
4232 {
4233         struct ext4_inode_info *ei = EXT4_I(inode);
4234         struct page *page;
4235         int error;
4236
4237         if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
4238                 return -EINVAL;
4239
4240         do {
4241                 page = dax_layout_busy_page(inode->i_mapping);
4242                 if (!page)
4243                         return 0;
4244
4245                 error = ___wait_var_event(&page->_refcount,
4246                                 atomic_read(&page->_refcount) == 1,
4247                                 TASK_INTERRUPTIBLE, 0, 0,
4248                                 ext4_wait_dax_page(ei));
4249         } while (error == 0);
4250
4251         return error;
4252 }
4253
4254 /*
4255  * ext4_punch_hole: punches a hole in a file by releasing the blocks
4256  * associated with the given offset and length
4257  *
4258  * @inode:  File inode
4259  * @offset: The offset where the hole will begin
4260  * @len:    The length of the hole
4261  *
4262  * Returns: 0 on success or negative on failure
4263  */
4264
4265 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4266 {
4267         struct super_block *sb = inode->i_sb;
4268         ext4_lblk_t first_block, stop_block;
4269         struct address_space *mapping = inode->i_mapping;
4270         loff_t first_block_offset, last_block_offset;
4271         handle_t *handle;
4272         unsigned int credits;
4273         int ret = 0;
4274
4275         if (!S_ISREG(inode->i_mode))
4276                 return -EOPNOTSUPP;
4277
4278         trace_ext4_punch_hole(inode, offset, length, 0);
4279
4280         /*
4281          * Write out all dirty pages to avoid race conditions
4282          * Then release them.
4283          */
4284         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4285                 ret = filemap_write_and_wait_range(mapping, offset,
4286                                                    offset + length - 1);
4287                 if (ret)
4288                         return ret;
4289         }
4290
4291         inode_lock(inode);
4292
4293         /* No need to punch hole beyond i_size */
4294         if (offset >= inode->i_size)
4295                 goto out_mutex;
4296
4297         /*
4298          * If the hole extends beyond i_size, set the hole
4299          * to end after the page that contains i_size
4300          */
4301         if (offset + length > inode->i_size) {
4302                 length = inode->i_size +
4303                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4304                    offset;
4305         }
4306
4307         if (offset & (sb->s_blocksize - 1) ||
4308             (offset + length) & (sb->s_blocksize - 1)) {
4309                 /*
4310                  * Attach jinode to inode for jbd2 if we do any zeroing of
4311                  * partial block
4312                  */
4313                 ret = ext4_inode_attach_jinode(inode);
4314                 if (ret < 0)
4315                         goto out_mutex;
4316
4317         }
4318
4319         /* Wait all existing dio workers, newcomers will block on i_mutex */
4320         inode_dio_wait(inode);
4321
4322         /*
4323          * Prevent page faults from reinstantiating pages we have released from
4324          * page cache.
4325          */
4326         down_write(&EXT4_I(inode)->i_mmap_sem);
4327
4328         ret = ext4_break_layouts(inode);
4329         if (ret)
4330                 goto out_dio;
4331
4332         first_block_offset = round_up(offset, sb->s_blocksize);
4333         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4334
4335         /* Now release the pages and zero block aligned part of pages*/
4336         if (last_block_offset > first_block_offset) {
4337                 ret = ext4_update_disksize_before_punch(inode, offset, length);
4338                 if (ret)
4339                         goto out_dio;
4340                 truncate_pagecache_range(inode, first_block_offset,
4341                                          last_block_offset);
4342         }
4343
4344         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4345                 credits = ext4_writepage_trans_blocks(inode);
4346         else
4347                 credits = ext4_blocks_for_truncate(inode);
4348         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4349         if (IS_ERR(handle)) {
4350                 ret = PTR_ERR(handle);
4351                 ext4_std_error(sb, ret);
4352                 goto out_dio;
4353         }
4354
4355         ret = ext4_zero_partial_blocks(handle, inode, offset,
4356                                        length);
4357         if (ret)
4358                 goto out_stop;
4359
4360         first_block = (offset + sb->s_blocksize - 1) >>
4361                 EXT4_BLOCK_SIZE_BITS(sb);
4362         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4363
4364         /* If there are blocks to remove, do it */
4365         if (stop_block > first_block) {
4366
4367                 down_write(&EXT4_I(inode)->i_data_sem);
4368                 ext4_discard_preallocations(inode);
4369
4370                 ret = ext4_es_remove_extent(inode, first_block,
4371                                             stop_block - first_block);
4372                 if (ret) {
4373                         up_write(&EXT4_I(inode)->i_data_sem);
4374                         goto out_stop;
4375                 }
4376
4377                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4378                         ret = ext4_ext_remove_space(inode, first_block,
4379                                                     stop_block - 1);
4380                 else
4381                         ret = ext4_ind_remove_space(handle, inode, first_block,
4382                                                     stop_block);
4383
4384                 up_write(&EXT4_I(inode)->i_data_sem);
4385         }
4386         if (IS_SYNC(inode))
4387                 ext4_handle_sync(handle);
4388
4389         inode->i_mtime = inode->i_ctime = current_time(inode);
4390         ext4_mark_inode_dirty(handle, inode);
4391         if (ret >= 0)
4392                 ext4_update_inode_fsync_trans(handle, inode, 1);
4393 out_stop:
4394         ext4_journal_stop(handle);
4395 out_dio:
4396         up_write(&EXT4_I(inode)->i_mmap_sem);
4397 out_mutex:
4398         inode_unlock(inode);
4399         return ret;
4400 }
4401
4402 int ext4_inode_attach_jinode(struct inode *inode)
4403 {
4404         struct ext4_inode_info *ei = EXT4_I(inode);
4405         struct jbd2_inode *jinode;
4406
4407         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4408                 return 0;
4409
4410         jinode = jbd2_alloc_inode(GFP_KERNEL);
4411         spin_lock(&inode->i_lock);
4412         if (!ei->jinode) {
4413                 if (!jinode) {
4414                         spin_unlock(&inode->i_lock);
4415                         return -ENOMEM;
4416                 }
4417                 ei->jinode = jinode;
4418                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4419                 jinode = NULL;
4420         }
4421         spin_unlock(&inode->i_lock);
4422         if (unlikely(jinode != NULL))
4423                 jbd2_free_inode(jinode);
4424         return 0;
4425 }
4426
4427 /*
4428  * ext4_truncate()
4429  *
4430  * We block out ext4_get_block() block instantiations across the entire
4431  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4432  * simultaneously on behalf of the same inode.
4433  *
4434  * As we work through the truncate and commit bits of it to the journal there
4435  * is one core, guiding principle: the file's tree must always be consistent on
4436  * disk.  We must be able to restart the truncate after a crash.
4437  *
4438  * The file's tree may be transiently inconsistent in memory (although it
4439  * probably isn't), but whenever we close off and commit a journal transaction,
4440  * the contents of (the filesystem + the journal) must be consistent and
4441  * restartable.  It's pretty simple, really: bottom up, right to left (although
4442  * left-to-right works OK too).
4443  *
4444  * Note that at recovery time, journal replay occurs *before* the restart of
4445  * truncate against the orphan inode list.
4446  *
4447  * The committed inode has the new, desired i_size (which is the same as
4448  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4449  * that this inode's truncate did not complete and it will again call
4450  * ext4_truncate() to have another go.  So there will be instantiated blocks
4451  * to the right of the truncation point in a crashed ext4 filesystem.  But
4452  * that's fine - as long as they are linked from the inode, the post-crash
4453  * ext4_truncate() run will find them and release them.
4454  */
4455 int ext4_truncate(struct inode *inode)
4456 {
4457         struct ext4_inode_info *ei = EXT4_I(inode);
4458         unsigned int credits;
4459         int err = 0;
4460         handle_t *handle;
4461         struct address_space *mapping = inode->i_mapping;
4462
4463         /*
4464          * There is a possibility that we're either freeing the inode
4465          * or it's a completely new inode. In those cases we might not
4466          * have i_mutex locked because it's not necessary.
4467          */
4468         if (!(inode->i_state & (I_NEW|I_FREEING)))
4469                 WARN_ON(!inode_is_locked(inode));
4470         trace_ext4_truncate_enter(inode);
4471
4472         if (!ext4_can_truncate(inode))
4473                 return 0;
4474
4475         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4476
4477         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4478                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4479
4480         if (ext4_has_inline_data(inode)) {
4481                 int has_inline = 1;
4482
4483                 err = ext4_inline_data_truncate(inode, &has_inline);
4484                 if (err)
4485                         return err;
4486                 if (has_inline)
4487                         return 0;
4488         }
4489
4490         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4491         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4492                 if (ext4_inode_attach_jinode(inode) < 0)
4493                         return 0;
4494         }
4495
4496         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4497                 credits = ext4_writepage_trans_blocks(inode);
4498         else
4499                 credits = ext4_blocks_for_truncate(inode);
4500
4501         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4502         if (IS_ERR(handle))
4503                 return PTR_ERR(handle);
4504
4505         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4506                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4507
4508         /*
4509          * We add the inode to the orphan list, so that if this
4510          * truncate spans multiple transactions, and we crash, we will
4511          * resume the truncate when the filesystem recovers.  It also
4512          * marks the inode dirty, to catch the new size.
4513          *
4514          * Implication: the file must always be in a sane, consistent
4515          * truncatable state while each transaction commits.
4516          */
4517         err = ext4_orphan_add(handle, inode);
4518         if (err)
4519                 goto out_stop;
4520
4521         down_write(&EXT4_I(inode)->i_data_sem);
4522
4523         ext4_discard_preallocations(inode);
4524
4525         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4526                 err = ext4_ext_truncate(handle, inode);
4527         else
4528                 ext4_ind_truncate(handle, inode);
4529
4530         up_write(&ei->i_data_sem);
4531         if (err)
4532                 goto out_stop;
4533
4534         if (IS_SYNC(inode))
4535                 ext4_handle_sync(handle);
4536
4537 out_stop:
4538         /*
4539          * If this was a simple ftruncate() and the file will remain alive,
4540          * then we need to clear up the orphan record which we created above.
4541          * However, if this was a real unlink then we were called by
4542          * ext4_evict_inode(), and we allow that function to clean up the
4543          * orphan info for us.
4544          */
4545         if (inode->i_nlink)
4546                 ext4_orphan_del(handle, inode);
4547
4548         inode->i_mtime = inode->i_ctime = current_time(inode);
4549         ext4_mark_inode_dirty(handle, inode);
4550         ext4_journal_stop(handle);
4551
4552         trace_ext4_truncate_exit(inode);
4553         return err;
4554 }
4555
4556 /*
4557  * ext4_get_inode_loc returns with an extra refcount against the inode's
4558  * underlying buffer_head on success. If 'in_mem' is true, we have all
4559  * data in memory that is needed to recreate the on-disk version of this
4560  * inode.
4561  */
4562 static int __ext4_get_inode_loc(struct inode *inode,
4563                                 struct ext4_iloc *iloc, int in_mem)
4564 {
4565         struct ext4_group_desc  *gdp;
4566         struct buffer_head      *bh;
4567         struct super_block      *sb = inode->i_sb;
4568         ext4_fsblk_t            block;
4569         int                     inodes_per_block, inode_offset;
4570
4571         iloc->bh = NULL;
4572         if (inode->i_ino < EXT4_ROOT_INO ||
4573             inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4574                 return -EFSCORRUPTED;
4575
4576         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4577         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4578         if (!gdp)
4579                 return -EIO;
4580
4581         /*
4582          * Figure out the offset within the block group inode table
4583          */
4584         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4585         inode_offset = ((inode->i_ino - 1) %
4586                         EXT4_INODES_PER_GROUP(sb));
4587         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4588         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4589
4590         bh = sb_getblk(sb, block);
4591         if (unlikely(!bh))
4592                 return -ENOMEM;
4593         if (!buffer_uptodate(bh)) {
4594                 lock_buffer(bh);
4595
4596                 /*
4597                  * If the buffer has the write error flag, we have failed
4598                  * to write out another inode in the same block.  In this
4599                  * case, we don't have to read the block because we may
4600                  * read the old inode data successfully.
4601                  */
4602                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4603                         set_buffer_uptodate(bh);
4604
4605                 if (buffer_uptodate(bh)) {
4606                         /* someone brought it uptodate while we waited */
4607                         unlock_buffer(bh);
4608                         goto has_buffer;
4609                 }
4610
4611                 /*
4612                  * If we have all information of the inode in memory and this
4613                  * is the only valid inode in the block, we need not read the
4614                  * block.
4615                  */
4616                 if (in_mem) {
4617                         struct buffer_head *bitmap_bh;
4618                         int i, start;
4619
4620                         start = inode_offset & ~(inodes_per_block - 1);
4621
4622                         /* Is the inode bitmap in cache? */
4623                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4624                         if (unlikely(!bitmap_bh))
4625                                 goto make_io;
4626
4627                         /*
4628                          * If the inode bitmap isn't in cache then the
4629                          * optimisation may end up performing two reads instead
4630                          * of one, so skip it.
4631                          */
4632                         if (!buffer_uptodate(bitmap_bh)) {
4633                                 brelse(bitmap_bh);
4634                                 goto make_io;
4635                         }
4636                         for (i = start; i < start + inodes_per_block; i++) {
4637                                 if (i == inode_offset)
4638                                         continue;
4639                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4640                                         break;
4641                         }
4642                         brelse(bitmap_bh);
4643                         if (i == start + inodes_per_block) {
4644                                 /* all other inodes are free, so skip I/O */
4645                                 memset(bh->b_data, 0, bh->b_size);
4646                                 set_buffer_uptodate(bh);
4647                                 unlock_buffer(bh);
4648                                 goto has_buffer;
4649                         }
4650                 }
4651
4652 make_io:
4653                 /*
4654                  * If we need to do any I/O, try to pre-readahead extra
4655                  * blocks from the inode table.
4656                  */
4657                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4658                         ext4_fsblk_t b, end, table;
4659                         unsigned num;
4660                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4661
4662                         table = ext4_inode_table(sb, gdp);
4663                         /* s_inode_readahead_blks is always a power of 2 */
4664                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4665                         if (table > b)
4666                                 b = table;
4667                         end = b + ra_blks;
4668                         num = EXT4_INODES_PER_GROUP(sb);
4669                         if (ext4_has_group_desc_csum(sb))
4670                                 num -= ext4_itable_unused_count(sb, gdp);
4671                         table += num / inodes_per_block;
4672                         if (end > table)
4673                                 end = table;
4674                         while (b <= end)
4675                                 sb_breadahead(sb, b++);
4676                 }
4677
4678                 /*
4679                  * There are other valid inodes in the buffer, this inode
4680                  * has in-inode xattrs, or we don't have this inode in memory.
4681                  * Read the block from disk.
4682                  */
4683                 trace_ext4_load_inode(inode);
4684                 get_bh(bh);
4685                 bh->b_end_io = end_buffer_read_sync;
4686                 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4687                 wait_on_buffer(bh);
4688                 if (!buffer_uptodate(bh)) {
4689                         EXT4_ERROR_INODE_BLOCK(inode, block,
4690                                                "unable to read itable block");
4691                         brelse(bh);
4692                         return -EIO;
4693                 }
4694         }
4695 has_buffer:
4696         iloc->bh = bh;
4697         return 0;
4698 }
4699
4700 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4701 {
4702         /* We have all inode data except xattrs in memory here. */
4703         return __ext4_get_inode_loc(inode, iloc,
4704                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4705 }
4706
4707 static bool ext4_should_use_dax(struct inode *inode)
4708 {
4709         if (!test_opt(inode->i_sb, DAX))
4710                 return false;
4711         if (!S_ISREG(inode->i_mode))
4712                 return false;
4713         if (ext4_should_journal_data(inode))
4714                 return false;
4715         if (ext4_has_inline_data(inode))
4716                 return false;
4717         if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4718                 return false;
4719         return true;
4720 }
4721
4722 void ext4_set_inode_flags(struct inode *inode)
4723 {
4724         unsigned int flags = EXT4_I(inode)->i_flags;
4725         unsigned int new_fl = 0;
4726
4727         if (flags & EXT4_SYNC_FL)
4728                 new_fl |= S_SYNC;
4729         if (flags & EXT4_APPEND_FL)
4730                 new_fl |= S_APPEND;
4731         if (flags & EXT4_IMMUTABLE_FL)
4732                 new_fl |= S_IMMUTABLE;
4733         if (flags & EXT4_NOATIME_FL)
4734                 new_fl |= S_NOATIME;
4735         if (flags & EXT4_DIRSYNC_FL)
4736                 new_fl |= S_DIRSYNC;
4737         if (ext4_should_use_dax(inode))
4738                 new_fl |= S_DAX;
4739         if (flags & EXT4_ENCRYPT_FL)
4740                 new_fl |= S_ENCRYPTED;
4741         inode_set_flags(inode, new_fl,
4742                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4743                         S_ENCRYPTED);
4744 }
4745
4746 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4747                                   struct ext4_inode_info *ei)
4748 {
4749         blkcnt_t i_blocks ;
4750         struct inode *inode = &(ei->vfs_inode);
4751         struct super_block *sb = inode->i_sb;
4752
4753         if (ext4_has_feature_huge_file(sb)) {
4754                 /* we are using combined 48 bit field */
4755                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4756                                         le32_to_cpu(raw_inode->i_blocks_lo);
4757                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4758                         /* i_blocks represent file system block size */
4759                         return i_blocks  << (inode->i_blkbits - 9);
4760                 } else {
4761                         return i_blocks;
4762                 }
4763         } else {
4764                 return le32_to_cpu(raw_inode->i_blocks_lo);
4765         }
4766 }
4767
4768 static inline int ext4_iget_extra_inode(struct inode *inode,
4769                                          struct ext4_inode *raw_inode,
4770                                          struct ext4_inode_info *ei)
4771 {
4772         __le32 *magic = (void *)raw_inode +
4773                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4774
4775         if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4776             EXT4_INODE_SIZE(inode->i_sb) &&
4777             *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4778                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4779                 return ext4_find_inline_data_nolock(inode);
4780         } else
4781                 EXT4_I(inode)->i_inline_off = 0;
4782         return 0;
4783 }
4784
4785 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4786 {
4787         if (!ext4_has_feature_project(inode->i_sb))
4788                 return -EOPNOTSUPP;
4789         *projid = EXT4_I(inode)->i_projid;
4790         return 0;
4791 }
4792
4793 /*
4794  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4795  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4796  * set.
4797  */
4798 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4799 {
4800         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4801                 inode_set_iversion_raw(inode, val);
4802         else
4803                 inode_set_iversion_queried(inode, val);
4804 }
4805 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4806 {
4807         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4808                 return inode_peek_iversion_raw(inode);
4809         else
4810                 return inode_peek_iversion(inode);
4811 }
4812
4813 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4814                           ext4_iget_flags flags, const char *function,
4815                           unsigned int line)
4816 {
4817         struct ext4_iloc iloc;
4818         struct ext4_inode *raw_inode;
4819         struct ext4_inode_info *ei;
4820         struct inode *inode;
4821         journal_t *journal = EXT4_SB(sb)->s_journal;
4822         long ret;
4823         loff_t size;
4824         int block;
4825         uid_t i_uid;
4826         gid_t i_gid;
4827         projid_t i_projid;
4828
4829         if ((!(flags & EXT4_IGET_SPECIAL) &&
4830              (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4831             (ino < EXT4_ROOT_INO) ||
4832             (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4833                 if (flags & EXT4_IGET_HANDLE)
4834                         return ERR_PTR(-ESTALE);
4835                 __ext4_error(sb, function, line,
4836                              "inode #%lu: comm %s: iget: illegal inode #",
4837                              ino, current->comm);
4838                 return ERR_PTR(-EFSCORRUPTED);
4839         }
4840
4841         inode = iget_locked(sb, ino);
4842         if (!inode)
4843                 return ERR_PTR(-ENOMEM);
4844         if (!(inode->i_state & I_NEW))
4845                 return inode;
4846
4847         ei = EXT4_I(inode);
4848         iloc.bh = NULL;
4849
4850         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4851         if (ret < 0)
4852                 goto bad_inode;
4853         raw_inode = ext4_raw_inode(&iloc);
4854
4855         if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4856                 ext4_error_inode(inode, function, line, 0,
4857                                  "iget: root inode unallocated");
4858                 ret = -EFSCORRUPTED;
4859                 goto bad_inode;
4860         }
4861
4862         if ((flags & EXT4_IGET_HANDLE) &&
4863             (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4864                 ret = -ESTALE;
4865                 goto bad_inode;
4866         }
4867
4868         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4869                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4870                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4871                         EXT4_INODE_SIZE(inode->i_sb) ||
4872                     (ei->i_extra_isize & 3)) {
4873                         ext4_error_inode(inode, function, line, 0,
4874                                          "iget: bad extra_isize %u "
4875                                          "(inode size %u)",
4876                                          ei->i_extra_isize,
4877                                          EXT4_INODE_SIZE(inode->i_sb));
4878                         ret = -EFSCORRUPTED;
4879                         goto bad_inode;
4880                 }
4881         } else
4882                 ei->i_extra_isize = 0;
4883
4884         /* Precompute checksum seed for inode metadata */
4885         if (ext4_has_metadata_csum(sb)) {
4886                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4887                 __u32 csum;
4888                 __le32 inum = cpu_to_le32(inode->i_ino);
4889                 __le32 gen = raw_inode->i_generation;
4890                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4891                                    sizeof(inum));
4892                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4893                                               sizeof(gen));
4894         }
4895
4896         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4897                 ext4_error_inode(inode, function, line, 0,
4898                                  "iget: checksum invalid");
4899                 ret = -EFSBADCRC;
4900                 goto bad_inode;
4901         }
4902
4903         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4904         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4905         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4906         if (ext4_has_feature_project(sb) &&
4907             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4908             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4909                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4910         else
4911                 i_projid = EXT4_DEF_PROJID;
4912
4913         if (!(test_opt(inode->i_sb, NO_UID32))) {
4914                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4915                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4916         }
4917         i_uid_write(inode, i_uid);
4918         i_gid_write(inode, i_gid);
4919         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4920         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4921
4922         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4923         ei->i_inline_off = 0;
4924         ei->i_dir_start_lookup = 0;
4925         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4926         /* We now have enough fields to check if the inode was active or not.
4927          * This is needed because nfsd might try to access dead inodes
4928          * the test is that same one that e2fsck uses
4929          * NeilBrown 1999oct15
4930          */
4931         if (inode->i_nlink == 0) {
4932                 if ((inode->i_mode == 0 ||
4933                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4934                     ino != EXT4_BOOT_LOADER_INO) {
4935                         /* this inode is deleted */
4936                         ret = -ESTALE;
4937                         goto bad_inode;
4938                 }
4939                 /* The only unlinked inodes we let through here have
4940                  * valid i_mode and are being read by the orphan
4941                  * recovery code: that's fine, we're about to complete
4942                  * the process of deleting those.
4943                  * OR it is the EXT4_BOOT_LOADER_INO which is
4944                  * not initialized on a new filesystem. */
4945         }
4946         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4947         ext4_set_inode_flags(inode);
4948         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4949         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4950         if (ext4_has_feature_64bit(sb))
4951                 ei->i_file_acl |=
4952                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4953         inode->i_size = ext4_isize(sb, raw_inode);
4954         if ((size = i_size_read(inode)) < 0) {
4955                 ext4_error_inode(inode, function, line, 0,
4956                                  "iget: bad i_size value: %lld", size);
4957                 ret = -EFSCORRUPTED;
4958                 goto bad_inode;
4959         }
4960         ei->i_disksize = inode->i_size;
4961 #ifdef CONFIG_QUOTA
4962         ei->i_reserved_quota = 0;
4963 #endif
4964         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4965         ei->i_block_group = iloc.block_group;
4966         ei->i_last_alloc_group = ~0;
4967         /*
4968          * NOTE! The in-memory inode i_data array is in little-endian order
4969          * even on big-endian machines: we do NOT byteswap the block numbers!
4970          */
4971         for (block = 0; block < EXT4_N_BLOCKS; block++)
4972                 ei->i_data[block] = raw_inode->i_block[block];
4973         INIT_LIST_HEAD(&ei->i_orphan);
4974
4975         /*
4976          * Set transaction id's of transactions that have to be committed
4977          * to finish f[data]sync. We set them to currently running transaction
4978          * as we cannot be sure that the inode or some of its metadata isn't
4979          * part of the transaction - the inode could have been reclaimed and
4980          * now it is reread from disk.
4981          */
4982         if (journal) {
4983                 transaction_t *transaction;
4984                 tid_t tid;
4985
4986                 read_lock(&journal->j_state_lock);
4987                 if (journal->j_running_transaction)
4988                         transaction = journal->j_running_transaction;
4989                 else
4990                         transaction = journal->j_committing_transaction;
4991                 if (transaction)
4992                         tid = transaction->t_tid;
4993                 else
4994                         tid = journal->j_commit_sequence;
4995                 read_unlock(&journal->j_state_lock);
4996                 ei->i_sync_tid = tid;
4997                 ei->i_datasync_tid = tid;
4998         }
4999
5000         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5001                 if (ei->i_extra_isize == 0) {
5002                         /* The extra space is currently unused. Use it. */
5003                         BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
5004                         ei->i_extra_isize = sizeof(struct ext4_inode) -
5005                                             EXT4_GOOD_OLD_INODE_SIZE;
5006                 } else {
5007                         ret = ext4_iget_extra_inode(inode, raw_inode, ei);
5008                         if (ret)
5009                                 goto bad_inode;
5010                 }
5011         }
5012
5013         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5014         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5015         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5016         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5017
5018         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5019                 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
5020
5021                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5022                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5023                                 ivers |=
5024                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5025                 }
5026                 ext4_inode_set_iversion_queried(inode, ivers);
5027         }
5028
5029         ret = 0;
5030         if (ei->i_file_acl &&
5031             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5032                 ext4_error_inode(inode, function, line, 0,
5033                                  "iget: bad extended attribute block %llu",
5034                                  ei->i_file_acl);
5035                 ret = -EFSCORRUPTED;
5036                 goto bad_inode;
5037         } else if (!ext4_has_inline_data(inode)) {
5038                 /* validate the block references in the inode */
5039                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5040                    (S_ISLNK(inode->i_mode) &&
5041                     !ext4_inode_is_fast_symlink(inode))) {
5042                         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5043                                 ret = ext4_ext_check_inode(inode);
5044                         else
5045                                 ret = ext4_ind_check_inode(inode);
5046                 }
5047         }
5048         if (ret)
5049                 goto bad_inode;
5050
5051         if (S_ISREG(inode->i_mode)) {
5052                 inode->i_op = &ext4_file_inode_operations;
5053                 inode->i_fop = &ext4_file_operations;
5054                 ext4_set_aops(inode);
5055         } else if (S_ISDIR(inode->i_mode)) {
5056                 inode->i_op = &ext4_dir_inode_operations;
5057                 inode->i_fop = &ext4_dir_operations;
5058         } else if (S_ISLNK(inode->i_mode)) {
5059                 /* VFS does not allow setting these so must be corruption */
5060                 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5061                         ext4_error_inode(inode, function, line, 0,
5062                                          "iget: immutable or append flags "
5063                                          "not allowed on symlinks");
5064                         ret = -EFSCORRUPTED;
5065                         goto bad_inode;
5066                 }
5067                 if (IS_ENCRYPTED(inode)) {
5068                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
5069                         ext4_set_aops(inode);
5070                 } else if (ext4_inode_is_fast_symlink(inode)) {
5071                         inode->i_link = (char *)ei->i_data;
5072                         inode->i_op = &ext4_fast_symlink_inode_operations;
5073                         nd_terminate_link(ei->i_data, inode->i_size,
5074                                 sizeof(ei->i_data) - 1);
5075                 } else {
5076                         inode->i_op = &ext4_symlink_inode_operations;
5077                         ext4_set_aops(inode);
5078                 }
5079                 inode_nohighmem(inode);
5080         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5081               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5082                 inode->i_op = &ext4_special_inode_operations;
5083                 if (raw_inode->i_block[0])
5084                         init_special_inode(inode, inode->i_mode,
5085                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5086                 else
5087                         init_special_inode(inode, inode->i_mode,
5088                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5089         } else if (ino == EXT4_BOOT_LOADER_INO) {
5090                 make_bad_inode(inode);
5091         } else {
5092                 ret = -EFSCORRUPTED;
5093                 ext4_error_inode(inode, function, line, 0,
5094                                  "iget: bogus i_mode (%o)", inode->i_mode);
5095                 goto bad_inode;
5096         }
5097         brelse(iloc.bh);
5098
5099         unlock_new_inode(inode);
5100         return inode;
5101
5102 bad_inode:
5103         brelse(iloc.bh);
5104         iget_failed(inode);
5105         return ERR_PTR(ret);
5106 }
5107
5108 static int ext4_inode_blocks_set(handle_t *handle,
5109                                 struct ext4_inode *raw_inode,
5110                                 struct ext4_inode_info *ei)
5111 {
5112         struct inode *inode = &(ei->vfs_inode);
5113         u64 i_blocks = inode->i_blocks;
5114         struct super_block *sb = inode->i_sb;
5115
5116         if (i_blocks <= ~0U) {
5117                 /*
5118                  * i_blocks can be represented in a 32 bit variable
5119                  * as multiple of 512 bytes
5120                  */
5121                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5122                 raw_inode->i_blocks_high = 0;
5123                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5124                 return 0;
5125         }
5126         if (!ext4_has_feature_huge_file(sb))
5127                 return -EFBIG;
5128
5129         if (i_blocks <= 0xffffffffffffULL) {
5130                 /*
5131                  * i_blocks can be represented in a 48 bit variable
5132                  * as multiple of 512 bytes
5133                  */
5134                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5135                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5136                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5137         } else {
5138                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5139                 /* i_block is stored in file system block size */
5140                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5141                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5142                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5143         }
5144         return 0;
5145 }
5146
5147 struct other_inode {
5148         unsigned long           orig_ino;
5149         struct ext4_inode       *raw_inode;
5150 };
5151
5152 static int other_inode_match(struct inode * inode, unsigned long ino,
5153                              void *data)
5154 {
5155         struct other_inode *oi = (struct other_inode *) data;
5156
5157         if ((inode->i_ino != ino) ||
5158             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5159                                I_DIRTY_INODE)) ||
5160             ((inode->i_state & I_DIRTY_TIME) == 0))
5161                 return 0;
5162         spin_lock(&inode->i_lock);
5163         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5164                                 I_DIRTY_INODE)) == 0) &&
5165             (inode->i_state & I_DIRTY_TIME)) {
5166                 struct ext4_inode_info  *ei = EXT4_I(inode);
5167
5168                 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
5169                 spin_unlock(&inode->i_lock);
5170
5171                 spin_lock(&ei->i_raw_lock);
5172                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
5173                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
5174                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
5175                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
5176                 spin_unlock(&ei->i_raw_lock);
5177                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
5178                 return -1;
5179         }
5180         spin_unlock(&inode->i_lock);
5181         return -1;
5182 }
5183
5184 /*
5185  * Opportunistically update the other time fields for other inodes in
5186  * the same inode table block.
5187  */
5188 static void ext4_update_other_inodes_time(struct super_block *sb,
5189                                           unsigned long orig_ino, char *buf)
5190 {
5191         struct other_inode oi;
5192         unsigned long ino;
5193         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5194         int inode_size = EXT4_INODE_SIZE(sb);
5195
5196         oi.orig_ino = orig_ino;
5197         /*
5198          * Calculate the first inode in the inode table block.  Inode
5199          * numbers are one-based.  That is, the first inode in a block
5200          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5201          */
5202         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5203         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5204                 if (ino == orig_ino)
5205                         continue;
5206                 oi.raw_inode = (struct ext4_inode *) buf;
5207                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5208         }
5209 }
5210
5211 /*
5212  * Post the struct inode info into an on-disk inode location in the
5213  * buffer-cache.  This gobbles the caller's reference to the
5214  * buffer_head in the inode location struct.
5215  *
5216  * The caller must have write access to iloc->bh.
5217  */
5218 static int ext4_do_update_inode(handle_t *handle,
5219                                 struct inode *inode,
5220                                 struct ext4_iloc *iloc)
5221 {
5222         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5223         struct ext4_inode_info *ei = EXT4_I(inode);
5224         struct buffer_head *bh = iloc->bh;
5225         struct super_block *sb = inode->i_sb;
5226         int err = 0, rc, block;
5227         int need_datasync = 0, set_large_file = 0;
5228         uid_t i_uid;
5229         gid_t i_gid;
5230         projid_t i_projid;
5231
5232         spin_lock(&ei->i_raw_lock);
5233
5234         /* For fields not tracked in the in-memory inode,
5235          * initialise them to zero for new inodes. */
5236         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5237                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5238
5239         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5240         i_uid = i_uid_read(inode);
5241         i_gid = i_gid_read(inode);
5242         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5243         if (!(test_opt(inode->i_sb, NO_UID32))) {
5244                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5245                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5246 /*
5247  * Fix up interoperability with old kernels. Otherwise, old inodes get
5248  * re-used with the upper 16 bits of the uid/gid intact
5249  */
5250                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5251                         raw_inode->i_uid_high = 0;
5252                         raw_inode->i_gid_high = 0;
5253                 } else {
5254                         raw_inode->i_uid_high =
5255                                 cpu_to_le16(high_16_bits(i_uid));
5256                         raw_inode->i_gid_high =
5257                                 cpu_to_le16(high_16_bits(i_gid));
5258                 }
5259         } else {
5260                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5261                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5262                 raw_inode->i_uid_high = 0;
5263                 raw_inode->i_gid_high = 0;
5264         }
5265         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5266
5267         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5268         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5269         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5270         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5271
5272         err = ext4_inode_blocks_set(handle, raw_inode, ei);
5273         if (err) {
5274                 spin_unlock(&ei->i_raw_lock);
5275                 goto out_brelse;
5276         }
5277         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5278         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5279         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5280                 raw_inode->i_file_acl_high =
5281                         cpu_to_le16(ei->i_file_acl >> 32);
5282         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5283         if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5284                 ext4_isize_set(raw_inode, ei->i_disksize);
5285                 need_datasync = 1;
5286         }
5287         if (ei->i_disksize > 0x7fffffffULL) {
5288                 if (!ext4_has_feature_large_file(sb) ||
5289                                 EXT4_SB(sb)->s_es->s_rev_level ==
5290                     cpu_to_le32(EXT4_GOOD_OLD_REV))
5291                         set_large_file = 1;
5292         }
5293         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5294         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5295                 if (old_valid_dev(inode->i_rdev)) {
5296                         raw_inode->i_block[0] =
5297                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5298                         raw_inode->i_block[1] = 0;
5299                 } else {
5300                         raw_inode->i_block[0] = 0;
5301                         raw_inode->i_block[1] =
5302                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5303                         raw_inode->i_block[2] = 0;
5304                 }
5305         } else if (!ext4_has_inline_data(inode)) {
5306                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5307                         raw_inode->i_block[block] = ei->i_data[block];
5308         }
5309
5310         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5311                 u64 ivers = ext4_inode_peek_iversion(inode);
5312
5313                 raw_inode->i_disk_version = cpu_to_le32(ivers);
5314                 if (ei->i_extra_isize) {
5315                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5316                                 raw_inode->i_version_hi =
5317                                         cpu_to_le32(ivers >> 32);
5318                         raw_inode->i_extra_isize =
5319                                 cpu_to_le16(ei->i_extra_isize);
5320                 }
5321         }
5322
5323         BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5324                i_projid != EXT4_DEF_PROJID);
5325
5326         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5327             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5328                 raw_inode->i_projid = cpu_to_le32(i_projid);
5329
5330         ext4_inode_csum_set(inode, raw_inode, ei);
5331         spin_unlock(&ei->i_raw_lock);
5332         if (inode->i_sb->s_flags & SB_LAZYTIME)
5333                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5334                                               bh->b_data);
5335
5336         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5337         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5338         if (!err)
5339                 err = rc;
5340         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5341         if (set_large_file) {
5342                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5343                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5344                 if (err)
5345                         goto out_brelse;
5346                 ext4_set_feature_large_file(sb);
5347                 ext4_handle_sync(handle);
5348                 err = ext4_handle_dirty_super(handle, sb);
5349         }
5350         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5351 out_brelse:
5352         brelse(bh);
5353         ext4_std_error(inode->i_sb, err);
5354         return err;
5355 }
5356
5357 /*
5358  * ext4_write_inode()
5359  *
5360  * We are called from a few places:
5361  *
5362  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5363  *   Here, there will be no transaction running. We wait for any running
5364  *   transaction to commit.
5365  *
5366  * - Within flush work (sys_sync(), kupdate and such).
5367  *   We wait on commit, if told to.
5368  *
5369  * - Within iput_final() -> write_inode_now()
5370  *   We wait on commit, if told to.
5371  *
5372  * In all cases it is actually safe for us to return without doing anything,
5373  * because the inode has been copied into a raw inode buffer in
5374  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5375  * writeback.
5376  *
5377  * Note that we are absolutely dependent upon all inode dirtiers doing the
5378  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5379  * which we are interested.
5380  *
5381  * It would be a bug for them to not do this.  The code:
5382  *
5383  *      mark_inode_dirty(inode)
5384  *      stuff();
5385  *      inode->i_size = expr;
5386  *
5387  * is in error because write_inode() could occur while `stuff()' is running,
5388  * and the new i_size will be lost.  Plus the inode will no longer be on the
5389  * superblock's dirty inode list.
5390  */
5391 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5392 {
5393         int err;
5394
5395         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5396             sb_rdonly(inode->i_sb))
5397                 return 0;
5398
5399         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5400                 return -EIO;
5401
5402         if (EXT4_SB(inode->i_sb)->s_journal) {
5403                 if (ext4_journal_current_handle()) {
5404                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5405                         dump_stack();
5406                         return -EIO;
5407                 }
5408
5409                 /*
5410                  * No need to force transaction in WB_SYNC_NONE mode. Also
5411                  * ext4_sync_fs() will force the commit after everything is
5412                  * written.
5413                  */
5414                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5415                         return 0;
5416
5417                 err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
5418                                                 EXT4_I(inode)->i_sync_tid);
5419         } else {
5420                 struct ext4_iloc iloc;
5421
5422                 err = __ext4_get_inode_loc(inode, &iloc, 0);
5423                 if (err)
5424                         return err;
5425                 /*
5426                  * sync(2) will flush the whole buffer cache. No need to do
5427                  * it here separately for each inode.
5428                  */
5429                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5430                         sync_dirty_buffer(iloc.bh);
5431                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5432                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5433                                          "IO error syncing inode");
5434                         err = -EIO;
5435                 }
5436                 brelse(iloc.bh);
5437         }
5438         return err;
5439 }
5440
5441 /*
5442  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5443  * buffers that are attached to a page stradding i_size and are undergoing
5444  * commit. In that case we have to wait for commit to finish and try again.
5445  */
5446 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5447 {
5448         struct page *page;
5449         unsigned offset;
5450         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5451         tid_t commit_tid = 0;
5452         int ret;
5453
5454         offset = inode->i_size & (PAGE_SIZE - 1);
5455         /*
5456          * All buffers in the last page remain valid? Then there's nothing to
5457          * do. We do the check mainly to optimize the common PAGE_SIZE ==
5458          * blocksize case
5459          */
5460         if (offset > PAGE_SIZE - i_blocksize(inode))
5461                 return;
5462         while (1) {
5463                 page = find_lock_page(inode->i_mapping,
5464                                       inode->i_size >> PAGE_SHIFT);
5465                 if (!page)
5466                         return;
5467                 ret = __ext4_journalled_invalidatepage(page, offset,
5468                                                 PAGE_SIZE - offset);
5469                 unlock_page(page);
5470                 put_page(page);
5471                 if (ret != -EBUSY)
5472                         return;
5473                 commit_tid = 0;
5474                 read_lock(&journal->j_state_lock);
5475                 if (journal->j_committing_transaction)
5476                         commit_tid = journal->j_committing_transaction->t_tid;
5477                 read_unlock(&journal->j_state_lock);
5478                 if (commit_tid)
5479                         jbd2_log_wait_commit(journal, commit_tid);
5480         }
5481 }
5482
5483 /*
5484  * ext4_setattr()
5485  *
5486  * Called from notify_change.
5487  *
5488  * We want to trap VFS attempts to truncate the file as soon as
5489  * possible.  In particular, we want to make sure that when the VFS
5490  * shrinks i_size, we put the inode on the orphan list and modify
5491  * i_disksize immediately, so that during the subsequent flushing of
5492  * dirty pages and freeing of disk blocks, we can guarantee that any
5493  * commit will leave the blocks being flushed in an unused state on
5494  * disk.  (On recovery, the inode will get truncated and the blocks will
5495  * be freed, so we have a strong guarantee that no future commit will
5496  * leave these blocks visible to the user.)
5497  *
5498  * Another thing we have to assure is that if we are in ordered mode
5499  * and inode is still attached to the committing transaction, we must
5500  * we start writeout of all the dirty pages which are being truncated.
5501  * This way we are sure that all the data written in the previous
5502  * transaction are already on disk (truncate waits for pages under
5503  * writeback).
5504  *
5505  * Called with inode->i_mutex down.
5506  */
5507 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5508 {
5509         struct inode *inode = d_inode(dentry);
5510         int error, rc = 0;
5511         int orphan = 0;
5512         const unsigned int ia_valid = attr->ia_valid;
5513
5514         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5515                 return -EIO;
5516
5517         error = setattr_prepare(dentry, attr);
5518         if (error)
5519                 return error;
5520
5521         error = fscrypt_prepare_setattr(dentry, attr);
5522         if (error)
5523                 return error;
5524
5525         if (is_quota_modification(inode, attr)) {
5526                 error = dquot_initialize(inode);
5527                 if (error)
5528                         return error;
5529         }
5530         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5531             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5532                 handle_t *handle;
5533
5534                 /* (user+group)*(old+new) structure, inode write (sb,
5535                  * inode block, ? - but truncate inode update has it) */
5536                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5537                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5538                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5539                 if (IS_ERR(handle)) {
5540                         error = PTR_ERR(handle);
5541                         goto err_out;
5542                 }
5543
5544                 /* dquot_transfer() calls back ext4_get_inode_usage() which
5545                  * counts xattr inode references.
5546                  */
5547                 down_read(&EXT4_I(inode)->xattr_sem);
5548                 error = dquot_transfer(inode, attr);
5549                 up_read(&EXT4_I(inode)->xattr_sem);
5550
5551                 if (error) {
5552                         ext4_journal_stop(handle);
5553                         return error;
5554                 }
5555                 /* Update corresponding info in inode so that everything is in
5556                  * one transaction */
5557                 if (attr->ia_valid & ATTR_UID)
5558                         inode->i_uid = attr->ia_uid;
5559                 if (attr->ia_valid & ATTR_GID)
5560                         inode->i_gid = attr->ia_gid;
5561                 error = ext4_mark_inode_dirty(handle, inode);
5562                 ext4_journal_stop(handle);
5563         }
5564
5565         if (attr->ia_valid & ATTR_SIZE) {
5566                 handle_t *handle;
5567                 loff_t oldsize = inode->i_size;
5568                 int shrink = (attr->ia_size <= inode->i_size);
5569
5570                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5571                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5572
5573                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
5574                                 return -EFBIG;
5575                 }
5576                 if (!S_ISREG(inode->i_mode))
5577                         return -EINVAL;
5578
5579                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5580                         inode_inc_iversion(inode);
5581
5582                 if (ext4_should_order_data(inode) &&
5583                     (attr->ia_size < inode->i_size)) {
5584                         error = ext4_begin_ordered_truncate(inode,
5585                                                             attr->ia_size);
5586                         if (error)
5587                                 goto err_out;
5588                 }
5589                 if (attr->ia_size != inode->i_size) {
5590                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5591                         if (IS_ERR(handle)) {
5592                                 error = PTR_ERR(handle);
5593                                 goto err_out;
5594                         }
5595                         if (ext4_handle_valid(handle) && shrink) {
5596                                 error = ext4_orphan_add(handle, inode);
5597                                 orphan = 1;
5598                         }
5599                         /*
5600                          * Update c/mtime on truncate up, ext4_truncate() will
5601                          * update c/mtime in shrink case below
5602                          */
5603                         if (!shrink) {
5604                                 inode->i_mtime = current_time(inode);
5605                                 inode->i_ctime = inode->i_mtime;
5606                         }
5607                         down_write(&EXT4_I(inode)->i_data_sem);
5608                         EXT4_I(inode)->i_disksize = attr->ia_size;
5609                         rc = ext4_mark_inode_dirty(handle, inode);
5610                         if (!error)
5611                                 error = rc;
5612                         /*
5613                          * We have to update i_size under i_data_sem together
5614                          * with i_disksize to avoid races with writeback code
5615                          * running ext4_wb_update_i_disksize().
5616                          */
5617                         if (!error)
5618                                 i_size_write(inode, attr->ia_size);
5619                         up_write(&EXT4_I(inode)->i_data_sem);
5620                         ext4_journal_stop(handle);
5621                         if (error) {
5622                                 if (orphan)
5623                                         ext4_orphan_del(NULL, inode);
5624                                 goto err_out;
5625                         }
5626                 }
5627                 if (!shrink)
5628                         pagecache_isize_extended(inode, oldsize, inode->i_size);
5629
5630                 /*
5631                  * Blocks are going to be removed from the inode. Wait
5632                  * for dio in flight.  Temporarily disable
5633                  * dioread_nolock to prevent livelock.
5634                  */
5635                 if (orphan) {
5636                         if (!ext4_should_journal_data(inode)) {
5637                                 inode_dio_wait(inode);
5638                         } else
5639                                 ext4_wait_for_tail_page_commit(inode);
5640                 }
5641                 down_write(&EXT4_I(inode)->i_mmap_sem);
5642
5643                 rc = ext4_break_layouts(inode);
5644                 if (rc) {
5645                         up_write(&EXT4_I(inode)->i_mmap_sem);
5646                         error = rc;
5647                         goto err_out;
5648                 }
5649
5650                 /*
5651                  * Truncate pagecache after we've waited for commit
5652                  * in data=journal mode to make pages freeable.
5653                  */
5654                 truncate_pagecache(inode, inode->i_size);
5655                 if (shrink) {
5656                         rc = ext4_truncate(inode);
5657                         if (rc)
5658                                 error = rc;
5659                 }
5660                 up_write(&EXT4_I(inode)->i_mmap_sem);
5661         }
5662
5663         if (!error) {
5664                 setattr_copy(inode, attr);
5665                 mark_inode_dirty(inode);
5666         }
5667
5668         /*
5669          * If the call to ext4_truncate failed to get a transaction handle at
5670          * all, we need to clean up the in-core orphan list manually.
5671          */
5672         if (orphan && inode->i_nlink)
5673                 ext4_orphan_del(NULL, inode);
5674
5675         if (!error && (ia_valid & ATTR_MODE))
5676                 rc = posix_acl_chmod(inode, inode->i_mode);
5677
5678 err_out:
5679         ext4_std_error(inode->i_sb, error);
5680         if (!error)
5681                 error = rc;
5682         return error;
5683 }
5684
5685 int ext4_getattr(const struct path *path, struct kstat *stat,
5686                  u32 request_mask, unsigned int query_flags)
5687 {
5688         struct inode *inode = d_inode(path->dentry);
5689         struct ext4_inode *raw_inode;
5690         struct ext4_inode_info *ei = EXT4_I(inode);
5691         unsigned int flags;
5692
5693         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5694                 stat->result_mask |= STATX_BTIME;
5695                 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5696                 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5697         }
5698
5699         flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5700         if (flags & EXT4_APPEND_FL)
5701                 stat->attributes |= STATX_ATTR_APPEND;
5702         if (flags & EXT4_COMPR_FL)
5703                 stat->attributes |= STATX_ATTR_COMPRESSED;
5704         if (flags & EXT4_ENCRYPT_FL)
5705                 stat->attributes |= STATX_ATTR_ENCRYPTED;
5706         if (flags & EXT4_IMMUTABLE_FL)
5707                 stat->attributes |= STATX_ATTR_IMMUTABLE;
5708         if (flags & EXT4_NODUMP_FL)
5709                 stat->attributes |= STATX_ATTR_NODUMP;
5710
5711         stat->attributes_mask |= (STATX_ATTR_APPEND |
5712                                   STATX_ATTR_COMPRESSED |
5713                                   STATX_ATTR_ENCRYPTED |
5714                                   STATX_ATTR_IMMUTABLE |
5715                                   STATX_ATTR_NODUMP);
5716
5717         generic_fillattr(inode, stat);
5718         return 0;
5719 }
5720
5721 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5722                       u32 request_mask, unsigned int query_flags)
5723 {
5724         struct inode *inode = d_inode(path->dentry);
5725         u64 delalloc_blocks;
5726
5727         ext4_getattr(path, stat, request_mask, query_flags);
5728
5729         /*
5730          * If there is inline data in the inode, the inode will normally not
5731          * have data blocks allocated (it may have an external xattr block).
5732          * Report at least one sector for such files, so tools like tar, rsync,
5733          * others don't incorrectly think the file is completely sparse.
5734          */
5735         if (unlikely(ext4_has_inline_data(inode)))
5736                 stat->blocks += (stat->size + 511) >> 9;
5737
5738         /*
5739          * We can't update i_blocks if the block allocation is delayed
5740          * otherwise in the case of system crash before the real block
5741          * allocation is done, we will have i_blocks inconsistent with
5742          * on-disk file blocks.
5743          * We always keep i_blocks updated together with real
5744          * allocation. But to not confuse with user, stat
5745          * will return the blocks that include the delayed allocation
5746          * blocks for this file.
5747          */
5748         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5749                                    EXT4_I(inode)->i_reserved_data_blocks);
5750         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5751         return 0;
5752 }
5753
5754 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5755                                    int pextents)
5756 {
5757         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5758                 return ext4_ind_trans_blocks(inode, lblocks);
5759         return ext4_ext_index_trans_blocks(inode, pextents);
5760 }
5761
5762 /*
5763  * Account for index blocks, block groups bitmaps and block group
5764  * descriptor blocks if modify datablocks and index blocks
5765  * worse case, the indexs blocks spread over different block groups
5766  *
5767  * If datablocks are discontiguous, they are possible to spread over
5768  * different block groups too. If they are contiguous, with flexbg,
5769  * they could still across block group boundary.
5770  *
5771  * Also account for superblock, inode, quota and xattr blocks
5772  */
5773 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5774                                   int pextents)
5775 {
5776         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5777         int gdpblocks;
5778         int idxblocks;
5779         int ret = 0;
5780
5781         /*
5782          * How many index blocks need to touch to map @lblocks logical blocks
5783          * to @pextents physical extents?
5784          */
5785         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5786
5787         ret = idxblocks;
5788
5789         /*
5790          * Now let's see how many group bitmaps and group descriptors need
5791          * to account
5792          */
5793         groups = idxblocks + pextents;
5794         gdpblocks = groups;
5795         if (groups > ngroups)
5796                 groups = ngroups;
5797         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5798                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5799
5800         /* bitmaps and block group descriptor blocks */
5801         ret += groups + gdpblocks;
5802
5803         /* Blocks for super block, inode, quota and xattr blocks */
5804         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5805
5806         return ret;
5807 }
5808
5809 /*
5810  * Calculate the total number of credits to reserve to fit
5811  * the modification of a single pages into a single transaction,
5812  * which may include multiple chunks of block allocations.
5813  *
5814  * This could be called via ext4_write_begin()
5815  *
5816  * We need to consider the worse case, when
5817  * one new block per extent.
5818  */
5819 int ext4_writepage_trans_blocks(struct inode *inode)
5820 {
5821         int bpp = ext4_journal_blocks_per_page(inode);
5822         int ret;
5823
5824         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5825
5826         /* Account for data blocks for journalled mode */
5827         if (ext4_should_journal_data(inode))
5828                 ret += bpp;
5829         return ret;
5830 }
5831
5832 /*
5833  * Calculate the journal credits for a chunk of data modification.
5834  *
5835  * This is called from DIO, fallocate or whoever calling
5836  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5837  *
5838  * journal buffers for data blocks are not included here, as DIO
5839  * and fallocate do no need to journal data buffers.
5840  */
5841 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5842 {
5843         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5844 }
5845
5846 /*
5847  * The caller must have previously called ext4_reserve_inode_write().
5848  * Give this, we know that the caller already has write access to iloc->bh.
5849  */
5850 int ext4_mark_iloc_dirty(handle_t *handle,
5851                          struct inode *inode, struct ext4_iloc *iloc)
5852 {
5853         int err = 0;
5854
5855         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5856                 put_bh(iloc->bh);
5857                 return -EIO;
5858         }
5859         if (IS_I_VERSION(inode))
5860                 inode_inc_iversion(inode);
5861
5862         /* the do_update_inode consumes one bh->b_count */
5863         get_bh(iloc->bh);
5864
5865         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5866         err = ext4_do_update_inode(handle, inode, iloc);
5867         put_bh(iloc->bh);
5868         return err;
5869 }
5870
5871 /*
5872  * On success, We end up with an outstanding reference count against
5873  * iloc->bh.  This _must_ be cleaned up later.
5874  */
5875
5876 int
5877 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5878                          struct ext4_iloc *iloc)
5879 {
5880         int err;
5881
5882         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5883                 return -EIO;
5884
5885         err = ext4_get_inode_loc(inode, iloc);
5886         if (!err) {
5887                 BUFFER_TRACE(iloc->bh, "get_write_access");
5888                 err = ext4_journal_get_write_access(handle, iloc->bh);
5889                 if (err) {
5890                         brelse(iloc->bh);
5891                         iloc->bh = NULL;
5892                 }
5893         }
5894         ext4_std_error(inode->i_sb, err);
5895         return err;
5896 }
5897
5898 static int __ext4_expand_extra_isize(struct inode *inode,
5899                                      unsigned int new_extra_isize,
5900                                      struct ext4_iloc *iloc,
5901                                      handle_t *handle, int *no_expand)
5902 {
5903         struct ext4_inode *raw_inode;
5904         struct ext4_xattr_ibody_header *header;
5905         int error;
5906
5907         raw_inode = ext4_raw_inode(iloc);
5908
5909         header = IHDR(inode, raw_inode);
5910
5911         /* No extended attributes present */
5912         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5913             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5914                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5915                        EXT4_I(inode)->i_extra_isize, 0,
5916                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
5917                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5918                 return 0;
5919         }
5920
5921         /* try to expand with EAs present */
5922         error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5923                                            raw_inode, handle);
5924         if (error) {
5925                 /*
5926                  * Inode size expansion failed; don't try again
5927                  */
5928                 *no_expand = 1;
5929         }
5930
5931         return error;
5932 }
5933
5934 /*
5935  * Expand an inode by new_extra_isize bytes.
5936  * Returns 0 on success or negative error number on failure.
5937  */
5938 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5939                                           unsigned int new_extra_isize,
5940                                           struct ext4_iloc iloc,
5941                                           handle_t *handle)
5942 {
5943         int no_expand;
5944         int error;
5945
5946         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5947                 return -EOVERFLOW;
5948
5949         /*
5950          * In nojournal mode, we can immediately attempt to expand
5951          * the inode.  When journaled, we first need to obtain extra
5952          * buffer credits since we may write into the EA block
5953          * with this same handle. If journal_extend fails, then it will
5954          * only result in a minor loss of functionality for that inode.
5955          * If this is felt to be critical, then e2fsck should be run to
5956          * force a large enough s_min_extra_isize.
5957          */
5958         if (ext4_handle_valid(handle) &&
5959             jbd2_journal_extend(handle,
5960                                 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
5961                 return -ENOSPC;
5962
5963         if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5964                 return -EBUSY;
5965
5966         error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5967                                           handle, &no_expand);
5968         ext4_write_unlock_xattr(inode, &no_expand);
5969
5970         return error;
5971 }
5972
5973 int ext4_expand_extra_isize(struct inode *inode,
5974                             unsigned int new_extra_isize,
5975                             struct ext4_iloc *iloc)
5976 {
5977         handle_t *handle;
5978         int no_expand;
5979         int error, rc;
5980
5981         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5982                 brelse(iloc->bh);
5983                 return -EOVERFLOW;
5984         }
5985
5986         handle = ext4_journal_start(inode, EXT4_HT_INODE,
5987                                     EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5988         if (IS_ERR(handle)) {
5989                 error = PTR_ERR(handle);
5990                 brelse(iloc->bh);
5991                 return error;
5992         }
5993
5994         ext4_write_lock_xattr(inode, &no_expand);
5995
5996         BUFFER_TRACE(iloc->bh, "get_write_access");
5997         error = ext4_journal_get_write_access(handle, iloc->bh);
5998         if (error) {
5999                 brelse(iloc->bh);
6000                 goto out_stop;
6001         }
6002
6003         error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
6004                                           handle, &no_expand);
6005
6006         rc = ext4_mark_iloc_dirty(handle, inode, iloc);
6007         if (!error)
6008                 error = rc;
6009
6010         ext4_write_unlock_xattr(inode, &no_expand);
6011 out_stop:
6012         ext4_journal_stop(handle);
6013         return error;
6014 }
6015
6016 /*
6017  * What we do here is to mark the in-core inode as clean with respect to inode
6018  * dirtiness (it may still be data-dirty).
6019  * This means that the in-core inode may be reaped by prune_icache
6020  * without having to perform any I/O.  This is a very good thing,
6021  * because *any* task may call prune_icache - even ones which
6022  * have a transaction open against a different journal.
6023  *
6024  * Is this cheating?  Not really.  Sure, we haven't written the
6025  * inode out, but prune_icache isn't a user-visible syncing function.
6026  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
6027  * we start and wait on commits.
6028  */
6029 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
6030 {
6031         struct ext4_iloc iloc;
6032         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6033         int err;
6034
6035         might_sleep();
6036         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6037         err = ext4_reserve_inode_write(handle, inode, &iloc);
6038         if (err)
6039                 return err;
6040
6041         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6042                 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6043                                                iloc, handle);
6044
6045         return ext4_mark_iloc_dirty(handle, inode, &iloc);
6046 }
6047
6048 /*
6049  * ext4_dirty_inode() is called from __mark_inode_dirty()
6050  *
6051  * We're really interested in the case where a file is being extended.
6052  * i_size has been changed by generic_commit_write() and we thus need
6053  * to include the updated inode in the current transaction.
6054  *
6055  * Also, dquot_alloc_block() will always dirty the inode when blocks
6056  * are allocated to the file.
6057  *
6058  * If the inode is marked synchronous, we don't honour that here - doing
6059  * so would cause a commit on atime updates, which we don't bother doing.
6060  * We handle synchronous inodes at the highest possible level.
6061  *
6062  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
6063  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
6064  * to copy into the on-disk inode structure are the timestamp files.
6065  */
6066 void ext4_dirty_inode(struct inode *inode, int flags)
6067 {
6068         handle_t *handle;
6069
6070         if (flags == I_DIRTY_TIME)
6071                 return;
6072         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6073         if (IS_ERR(handle))
6074                 goto out;
6075
6076         ext4_mark_inode_dirty(handle, inode);
6077
6078         ext4_journal_stop(handle);
6079 out:
6080         return;
6081 }
6082
6083 #if 0
6084 /*
6085  * Bind an inode's backing buffer_head into this transaction, to prevent
6086  * it from being flushed to disk early.  Unlike
6087  * ext4_reserve_inode_write, this leaves behind no bh reference and
6088  * returns no iloc structure, so the caller needs to repeat the iloc
6089  * lookup to mark the inode dirty later.
6090  */
6091 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
6092 {
6093         struct ext4_iloc iloc;
6094
6095         int err = 0;
6096         if (handle) {
6097                 err = ext4_get_inode_loc(inode, &iloc);
6098                 if (!err) {
6099                         BUFFER_TRACE(iloc.bh, "get_write_access");
6100                         err = jbd2_journal_get_write_access(handle, iloc.bh);
6101                         if (!err)
6102                                 err = ext4_handle_dirty_metadata(handle,
6103                                                                  NULL,
6104                                                                  iloc.bh);
6105                         brelse(iloc.bh);
6106                 }
6107         }
6108         ext4_std_error(inode->i_sb, err);
6109         return err;
6110 }
6111 #endif
6112
6113 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6114 {
6115         journal_t *journal;
6116         handle_t *handle;
6117         int err;
6118         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6119
6120         /*
6121          * We have to be very careful here: changing a data block's
6122          * journaling status dynamically is dangerous.  If we write a
6123          * data block to the journal, change the status and then delete
6124          * that block, we risk forgetting to revoke the old log record
6125          * from the journal and so a subsequent replay can corrupt data.
6126          * So, first we make sure that the journal is empty and that
6127          * nobody is changing anything.
6128          */
6129
6130         journal = EXT4_JOURNAL(inode);
6131         if (!journal)
6132                 return 0;
6133         if (is_journal_aborted(journal))
6134                 return -EROFS;
6135
6136         /* Wait for all existing dio workers */
6137         inode_dio_wait(inode);
6138
6139         /*
6140          * Before flushing the journal and switching inode's aops, we have
6141          * to flush all dirty data the inode has. There can be outstanding
6142          * delayed allocations, there can be unwritten extents created by
6143          * fallocate or buffered writes in dioread_nolock mode covered by
6144          * dirty data which can be converted only after flushing the dirty
6145          * data (and journalled aops don't know how to handle these cases).
6146          */
6147         if (val) {
6148                 down_write(&EXT4_I(inode)->i_mmap_sem);
6149                 err = filemap_write_and_wait(inode->i_mapping);
6150                 if (err < 0) {
6151                         up_write(&EXT4_I(inode)->i_mmap_sem);
6152                         return err;
6153                 }
6154         }
6155
6156         percpu_down_write(&sbi->s_journal_flag_rwsem);
6157         jbd2_journal_lock_updates(journal);
6158
6159         /*
6160          * OK, there are no updates running now, and all cached data is
6161          * synced to disk.  We are now in a completely consistent state
6162          * which doesn't have anything in the journal, and we know that
6163          * no filesystem updates are running, so it is safe to modify
6164          * the inode's in-core data-journaling state flag now.
6165          */
6166
6167         if (val)
6168                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6169         else {
6170                 err = jbd2_journal_flush(journal);
6171                 if (err < 0) {
6172                         jbd2_journal_unlock_updates(journal);
6173                         percpu_up_write(&sbi->s_journal_flag_rwsem);
6174                         return err;
6175                 }
6176                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6177         }
6178         ext4_set_aops(inode);
6179
6180         jbd2_journal_unlock_updates(journal);
6181         percpu_up_write(&sbi->s_journal_flag_rwsem);
6182
6183         if (val)
6184                 up_write(&EXT4_I(inode)->i_mmap_sem);
6185
6186         /* Finally we can mark the inode as dirty. */
6187
6188         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6189         if (IS_ERR(handle))
6190                 return PTR_ERR(handle);
6191
6192         err = ext4_mark_inode_dirty(handle, inode);
6193         ext4_handle_sync(handle);
6194         ext4_journal_stop(handle);
6195         ext4_std_error(inode->i_sb, err);
6196
6197         return err;
6198 }
6199
6200 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6201 {
6202         return !buffer_mapped(bh);
6203 }
6204
6205 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6206 {
6207         struct vm_area_struct *vma = vmf->vma;
6208         struct page *page = vmf->page;
6209         loff_t size;
6210         unsigned long len;
6211         int err;
6212         vm_fault_t ret;
6213         struct file *file = vma->vm_file;
6214         struct inode *inode = file_inode(file);
6215         struct address_space *mapping = inode->i_mapping;
6216         handle_t *handle;
6217         get_block_t *get_block;
6218         int retries = 0;
6219
6220         sb_start_pagefault(inode->i_sb);
6221         file_update_time(vma->vm_file);
6222
6223         down_read(&EXT4_I(inode)->i_mmap_sem);
6224
6225         err = ext4_convert_inline_data(inode);
6226         if (err)
6227                 goto out_ret;
6228
6229         /* Delalloc case is easy... */
6230         if (test_opt(inode->i_sb, DELALLOC) &&
6231             !ext4_should_journal_data(inode) &&
6232             !ext4_nonda_switch(inode->i_sb)) {
6233                 do {
6234                         err = block_page_mkwrite(vma, vmf,
6235                                                    ext4_da_get_block_prep);
6236                 } while (err == -ENOSPC &&
6237                        ext4_should_retry_alloc(inode->i_sb, &retries));
6238                 goto out_ret;
6239         }
6240
6241         lock_page(page);
6242         size = i_size_read(inode);
6243         /* Page got truncated from under us? */
6244         if (page->mapping != mapping || page_offset(page) > size) {
6245                 unlock_page(page);
6246                 ret = VM_FAULT_NOPAGE;
6247                 goto out;
6248         }
6249
6250         if (page->index == size >> PAGE_SHIFT)
6251                 len = size & ~PAGE_MASK;
6252         else
6253                 len = PAGE_SIZE;
6254         /*
6255          * Return if we have all the buffers mapped. This avoids the need to do
6256          * journal_start/journal_stop which can block and take a long time
6257          */
6258         if (page_has_buffers(page)) {
6259                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6260                                             0, len, NULL,
6261                                             ext4_bh_unmapped)) {
6262                         /* Wait so that we don't change page under IO */
6263                         wait_for_stable_page(page);
6264                         ret = VM_FAULT_LOCKED;
6265                         goto out;
6266                 }
6267         }
6268         unlock_page(page);
6269         /* OK, we need to fill the hole... */
6270         if (ext4_should_dioread_nolock(inode))
6271                 get_block = ext4_get_block_unwritten;
6272         else
6273                 get_block = ext4_get_block;
6274 retry_alloc:
6275         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6276                                     ext4_writepage_trans_blocks(inode));
6277         if (IS_ERR(handle)) {
6278                 ret = VM_FAULT_SIGBUS;
6279                 goto out;
6280         }
6281         err = block_page_mkwrite(vma, vmf, get_block);
6282         if (!err && ext4_should_journal_data(inode)) {
6283                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6284                           PAGE_SIZE, NULL, do_journal_get_write_access)) {
6285                         unlock_page(page);
6286                         ret = VM_FAULT_SIGBUS;
6287                         ext4_journal_stop(handle);
6288                         goto out;
6289                 }
6290                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6291         }
6292         ext4_journal_stop(handle);
6293         if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6294                 goto retry_alloc;
6295 out_ret:
6296         ret = block_page_mkwrite_return(err);
6297 out:
6298         up_read(&EXT4_I(inode)->i_mmap_sem);
6299         sb_end_pagefault(inode->i_sb);
6300         return ret;
6301 }
6302
6303 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6304 {
6305         struct inode *inode = file_inode(vmf->vma->vm_file);
6306         vm_fault_t ret;
6307
6308         down_read(&EXT4_I(inode)->i_mmap_sem);
6309         ret = filemap_fault(vmf);
6310         up_read(&EXT4_I(inode)->i_mmap_sem);
6311
6312         return ret;
6313 }