Merge tag 'xfs-reflink-for-linus-4.9-rc1' of git://git.kernel.org/pub/scm/linux/kerne...
[sfrench/cifs-2.6.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51                               struct ext4_inode_info *ei)
52 {
53         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54         __u32 csum;
55         __u16 dummy_csum = 0;
56         int offset = offsetof(struct ext4_inode, i_checksum_lo);
57         unsigned int csum_size = sizeof(dummy_csum);
58
59         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
60         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
61         offset += csum_size;
62         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
63                            EXT4_GOOD_OLD_INODE_SIZE - offset);
64
65         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
66                 offset = offsetof(struct ext4_inode, i_checksum_hi);
67                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
68                                    EXT4_GOOD_OLD_INODE_SIZE,
69                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
70                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
71                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
72                                            csum_size);
73                         offset += csum_size;
74                         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
75                                            EXT4_INODE_SIZE(inode->i_sb) -
76                                            offset);
77                 }
78         }
79
80         return csum;
81 }
82
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84                                   struct ext4_inode_info *ei)
85 {
86         __u32 provided, calculated;
87
88         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89             cpu_to_le32(EXT4_OS_LINUX) ||
90             !ext4_has_metadata_csum(inode->i_sb))
91                 return 1;
92
93         provided = le16_to_cpu(raw->i_checksum_lo);
94         calculated = ext4_inode_csum(inode, raw, ei);
95         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98         else
99                 calculated &= 0xFFFF;
100
101         return provided == calculated;
102 }
103
104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105                                 struct ext4_inode_info *ei)
106 {
107         __u32 csum;
108
109         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110             cpu_to_le32(EXT4_OS_LINUX) ||
111             !ext4_has_metadata_csum(inode->i_sb))
112                 return;
113
114         csum = ext4_inode_csum(inode, raw, ei);
115         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122                                               loff_t new_size)
123 {
124         trace_ext4_begin_ordered_truncate(inode, new_size);
125         /*
126          * If jinode is zero, then we never opened the file for
127          * writing, so there's no need to call
128          * jbd2_journal_begin_ordered_truncate() since there's no
129          * outstanding writes we need to flush.
130          */
131         if (!EXT4_I(inode)->jinode)
132                 return 0;
133         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134                                                    EXT4_I(inode)->jinode,
135                                                    new_size);
136 }
137
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139                                 unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143                                   int pextents);
144
145 /*
146  * Test whether an inode is a fast symlink.
147  */
148 int ext4_inode_is_fast_symlink(struct inode *inode)
149 {
150         int ea_blocks = EXT4_I(inode)->i_file_acl ?
151                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152
153         if (ext4_has_inline_data(inode))
154                 return 0;
155
156         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157 }
158
159 /*
160  * Restart the transaction associated with *handle.  This does a commit,
161  * so before we call here everything must be consistently dirtied against
162  * this transaction.
163  */
164 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
165                                  int nblocks)
166 {
167         int ret;
168
169         /*
170          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
171          * moment, get_block can be called only for blocks inside i_size since
172          * page cache has been already dropped and writes are blocked by
173          * i_mutex. So we can safely drop the i_data_sem here.
174          */
175         BUG_ON(EXT4_JOURNAL(inode) == NULL);
176         jbd_debug(2, "restarting handle %p\n", handle);
177         up_write(&EXT4_I(inode)->i_data_sem);
178         ret = ext4_journal_restart(handle, nblocks);
179         down_write(&EXT4_I(inode)->i_data_sem);
180         ext4_discard_preallocations(inode);
181
182         return ret;
183 }
184
185 /*
186  * Called at the last iput() if i_nlink is zero.
187  */
188 void ext4_evict_inode(struct inode *inode)
189 {
190         handle_t *handle;
191         int err;
192
193         trace_ext4_evict_inode(inode);
194
195         if (inode->i_nlink) {
196                 /*
197                  * When journalling data dirty buffers are tracked only in the
198                  * journal. So although mm thinks everything is clean and
199                  * ready for reaping the inode might still have some pages to
200                  * write in the running transaction or waiting to be
201                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
202                  * (via truncate_inode_pages()) to discard these buffers can
203                  * cause data loss. Also even if we did not discard these
204                  * buffers, we would have no way to find them after the inode
205                  * is reaped and thus user could see stale data if he tries to
206                  * read them before the transaction is checkpointed. So be
207                  * careful and force everything to disk here... We use
208                  * ei->i_datasync_tid to store the newest transaction
209                  * containing inode's data.
210                  *
211                  * Note that directories do not have this problem because they
212                  * don't use page cache.
213                  */
214                 if (inode->i_ino != EXT4_JOURNAL_INO &&
215                     ext4_should_journal_data(inode) &&
216                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
217                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
218                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
219
220                         jbd2_complete_transaction(journal, commit_tid);
221                         filemap_write_and_wait(&inode->i_data);
222                 }
223                 truncate_inode_pages_final(&inode->i_data);
224
225                 goto no_delete;
226         }
227
228         if (is_bad_inode(inode))
229                 goto no_delete;
230         dquot_initialize(inode);
231
232         if (ext4_should_order_data(inode))
233                 ext4_begin_ordered_truncate(inode, 0);
234         truncate_inode_pages_final(&inode->i_data);
235
236         /*
237          * Protect us against freezing - iput() caller didn't have to have any
238          * protection against it
239          */
240         sb_start_intwrite(inode->i_sb);
241         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
242                                     ext4_blocks_for_truncate(inode)+3);
243         if (IS_ERR(handle)) {
244                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
245                 /*
246                  * If we're going to skip the normal cleanup, we still need to
247                  * make sure that the in-core orphan linked list is properly
248                  * cleaned up.
249                  */
250                 ext4_orphan_del(NULL, inode);
251                 sb_end_intwrite(inode->i_sb);
252                 goto no_delete;
253         }
254
255         if (IS_SYNC(inode))
256                 ext4_handle_sync(handle);
257         inode->i_size = 0;
258         err = ext4_mark_inode_dirty(handle, inode);
259         if (err) {
260                 ext4_warning(inode->i_sb,
261                              "couldn't mark inode dirty (err %d)", err);
262                 goto stop_handle;
263         }
264         if (inode->i_blocks)
265                 ext4_truncate(inode);
266
267         /*
268          * ext4_ext_truncate() doesn't reserve any slop when it
269          * restarts journal transactions; therefore there may not be
270          * enough credits left in the handle to remove the inode from
271          * the orphan list and set the dtime field.
272          */
273         if (!ext4_handle_has_enough_credits(handle, 3)) {
274                 err = ext4_journal_extend(handle, 3);
275                 if (err > 0)
276                         err = ext4_journal_restart(handle, 3);
277                 if (err != 0) {
278                         ext4_warning(inode->i_sb,
279                                      "couldn't extend journal (err %d)", err);
280                 stop_handle:
281                         ext4_journal_stop(handle);
282                         ext4_orphan_del(NULL, inode);
283                         sb_end_intwrite(inode->i_sb);
284                         goto no_delete;
285                 }
286         }
287
288         /*
289          * Kill off the orphan record which ext4_truncate created.
290          * AKPM: I think this can be inside the above `if'.
291          * Note that ext4_orphan_del() has to be able to cope with the
292          * deletion of a non-existent orphan - this is because we don't
293          * know if ext4_truncate() actually created an orphan record.
294          * (Well, we could do this if we need to, but heck - it works)
295          */
296         ext4_orphan_del(handle, inode);
297         EXT4_I(inode)->i_dtime  = get_seconds();
298
299         /*
300          * One subtle ordering requirement: if anything has gone wrong
301          * (transaction abort, IO errors, whatever), then we can still
302          * do these next steps (the fs will already have been marked as
303          * having errors), but we can't free the inode if the mark_dirty
304          * fails.
305          */
306         if (ext4_mark_inode_dirty(handle, inode))
307                 /* If that failed, just do the required in-core inode clear. */
308                 ext4_clear_inode(inode);
309         else
310                 ext4_free_inode(handle, inode);
311         ext4_journal_stop(handle);
312         sb_end_intwrite(inode->i_sb);
313         return;
314 no_delete:
315         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
316 }
317
318 #ifdef CONFIG_QUOTA
319 qsize_t *ext4_get_reserved_space(struct inode *inode)
320 {
321         return &EXT4_I(inode)->i_reserved_quota;
322 }
323 #endif
324
325 /*
326  * Called with i_data_sem down, which is important since we can call
327  * ext4_discard_preallocations() from here.
328  */
329 void ext4_da_update_reserve_space(struct inode *inode,
330                                         int used, int quota_claim)
331 {
332         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
333         struct ext4_inode_info *ei = EXT4_I(inode);
334
335         spin_lock(&ei->i_block_reservation_lock);
336         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
337         if (unlikely(used > ei->i_reserved_data_blocks)) {
338                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
339                          "with only %d reserved data blocks",
340                          __func__, inode->i_ino, used,
341                          ei->i_reserved_data_blocks);
342                 WARN_ON(1);
343                 used = ei->i_reserved_data_blocks;
344         }
345
346         /* Update per-inode reservations */
347         ei->i_reserved_data_blocks -= used;
348         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
349
350         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
351
352         /* Update quota subsystem for data blocks */
353         if (quota_claim)
354                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
355         else {
356                 /*
357                  * We did fallocate with an offset that is already delayed
358                  * allocated. So on delayed allocated writeback we should
359                  * not re-claim the quota for fallocated blocks.
360                  */
361                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
362         }
363
364         /*
365          * If we have done all the pending block allocations and if
366          * there aren't any writers on the inode, we can discard the
367          * inode's preallocations.
368          */
369         if ((ei->i_reserved_data_blocks == 0) &&
370             (atomic_read(&inode->i_writecount) == 0))
371                 ext4_discard_preallocations(inode);
372 }
373
374 static int __check_block_validity(struct inode *inode, const char *func,
375                                 unsigned int line,
376                                 struct ext4_map_blocks *map)
377 {
378         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
379                                    map->m_len)) {
380                 ext4_error_inode(inode, func, line, map->m_pblk,
381                                  "lblock %lu mapped to illegal pblock "
382                                  "(length %d)", (unsigned long) map->m_lblk,
383                                  map->m_len);
384                 return -EFSCORRUPTED;
385         }
386         return 0;
387 }
388
389 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
390                        ext4_lblk_t len)
391 {
392         int ret;
393
394         if (ext4_encrypted_inode(inode))
395                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
396
397         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
398         if (ret > 0)
399                 ret = 0;
400
401         return ret;
402 }
403
404 #define check_block_validity(inode, map)        \
405         __check_block_validity((inode), __func__, __LINE__, (map))
406
407 #ifdef ES_AGGRESSIVE_TEST
408 static void ext4_map_blocks_es_recheck(handle_t *handle,
409                                        struct inode *inode,
410                                        struct ext4_map_blocks *es_map,
411                                        struct ext4_map_blocks *map,
412                                        int flags)
413 {
414         int retval;
415
416         map->m_flags = 0;
417         /*
418          * There is a race window that the result is not the same.
419          * e.g. xfstests #223 when dioread_nolock enables.  The reason
420          * is that we lookup a block mapping in extent status tree with
421          * out taking i_data_sem.  So at the time the unwritten extent
422          * could be converted.
423          */
424         down_read(&EXT4_I(inode)->i_data_sem);
425         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
426                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
427                                              EXT4_GET_BLOCKS_KEEP_SIZE);
428         } else {
429                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
430                                              EXT4_GET_BLOCKS_KEEP_SIZE);
431         }
432         up_read((&EXT4_I(inode)->i_data_sem));
433
434         /*
435          * We don't check m_len because extent will be collpased in status
436          * tree.  So the m_len might not equal.
437          */
438         if (es_map->m_lblk != map->m_lblk ||
439             es_map->m_flags != map->m_flags ||
440             es_map->m_pblk != map->m_pblk) {
441                 printk("ES cache assertion failed for inode: %lu "
442                        "es_cached ex [%d/%d/%llu/%x] != "
443                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
444                        inode->i_ino, es_map->m_lblk, es_map->m_len,
445                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
446                        map->m_len, map->m_pblk, map->m_flags,
447                        retval, flags);
448         }
449 }
450 #endif /* ES_AGGRESSIVE_TEST */
451
452 /*
453  * The ext4_map_blocks() function tries to look up the requested blocks,
454  * and returns if the blocks are already mapped.
455  *
456  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
457  * and store the allocated blocks in the result buffer head and mark it
458  * mapped.
459  *
460  * If file type is extents based, it will call ext4_ext_map_blocks(),
461  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
462  * based files
463  *
464  * On success, it returns the number of blocks being mapped or allocated.  if
465  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
466  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
467  *
468  * It returns 0 if plain look up failed (blocks have not been allocated), in
469  * that case, @map is returned as unmapped but we still do fill map->m_len to
470  * indicate the length of a hole starting at map->m_lblk.
471  *
472  * It returns the error in case of allocation failure.
473  */
474 int ext4_map_blocks(handle_t *handle, struct inode *inode,
475                     struct ext4_map_blocks *map, int flags)
476 {
477         struct extent_status es;
478         int retval;
479         int ret = 0;
480 #ifdef ES_AGGRESSIVE_TEST
481         struct ext4_map_blocks orig_map;
482
483         memcpy(&orig_map, map, sizeof(*map));
484 #endif
485
486         map->m_flags = 0;
487         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
488                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
489                   (unsigned long) map->m_lblk);
490
491         /*
492          * ext4_map_blocks returns an int, and m_len is an unsigned int
493          */
494         if (unlikely(map->m_len > INT_MAX))
495                 map->m_len = INT_MAX;
496
497         /* We can handle the block number less than EXT_MAX_BLOCKS */
498         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
499                 return -EFSCORRUPTED;
500
501         /* Lookup extent status tree firstly */
502         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
503                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
504                         map->m_pblk = ext4_es_pblock(&es) +
505                                         map->m_lblk - es.es_lblk;
506                         map->m_flags |= ext4_es_is_written(&es) ?
507                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
508                         retval = es.es_len - (map->m_lblk - es.es_lblk);
509                         if (retval > map->m_len)
510                                 retval = map->m_len;
511                         map->m_len = retval;
512                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
513                         map->m_pblk = 0;
514                         retval = es.es_len - (map->m_lblk - es.es_lblk);
515                         if (retval > map->m_len)
516                                 retval = map->m_len;
517                         map->m_len = retval;
518                         retval = 0;
519                 } else {
520                         BUG_ON(1);
521                 }
522 #ifdef ES_AGGRESSIVE_TEST
523                 ext4_map_blocks_es_recheck(handle, inode, map,
524                                            &orig_map, flags);
525 #endif
526                 goto found;
527         }
528
529         /*
530          * Try to see if we can get the block without requesting a new
531          * file system block.
532          */
533         down_read(&EXT4_I(inode)->i_data_sem);
534         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
535                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
536                                              EXT4_GET_BLOCKS_KEEP_SIZE);
537         } else {
538                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
539                                              EXT4_GET_BLOCKS_KEEP_SIZE);
540         }
541         if (retval > 0) {
542                 unsigned int status;
543
544                 if (unlikely(retval != map->m_len)) {
545                         ext4_warning(inode->i_sb,
546                                      "ES len assertion failed for inode "
547                                      "%lu: retval %d != map->m_len %d",
548                                      inode->i_ino, retval, map->m_len);
549                         WARN_ON(1);
550                 }
551
552                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
553                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
554                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
555                     !(status & EXTENT_STATUS_WRITTEN) &&
556                     ext4_find_delalloc_range(inode, map->m_lblk,
557                                              map->m_lblk + map->m_len - 1))
558                         status |= EXTENT_STATUS_DELAYED;
559                 ret = ext4_es_insert_extent(inode, map->m_lblk,
560                                             map->m_len, map->m_pblk, status);
561                 if (ret < 0)
562                         retval = ret;
563         }
564         up_read((&EXT4_I(inode)->i_data_sem));
565
566 found:
567         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
568                 ret = check_block_validity(inode, map);
569                 if (ret != 0)
570                         return ret;
571         }
572
573         /* If it is only a block(s) look up */
574         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
575                 return retval;
576
577         /*
578          * Returns if the blocks have already allocated
579          *
580          * Note that if blocks have been preallocated
581          * ext4_ext_get_block() returns the create = 0
582          * with buffer head unmapped.
583          */
584         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
585                 /*
586                  * If we need to convert extent to unwritten
587                  * we continue and do the actual work in
588                  * ext4_ext_map_blocks()
589                  */
590                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
591                         return retval;
592
593         /*
594          * Here we clear m_flags because after allocating an new extent,
595          * it will be set again.
596          */
597         map->m_flags &= ~EXT4_MAP_FLAGS;
598
599         /*
600          * New blocks allocate and/or writing to unwritten extent
601          * will possibly result in updating i_data, so we take
602          * the write lock of i_data_sem, and call get_block()
603          * with create == 1 flag.
604          */
605         down_write(&EXT4_I(inode)->i_data_sem);
606
607         /*
608          * We need to check for EXT4 here because migrate
609          * could have changed the inode type in between
610          */
611         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
612                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
613         } else {
614                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
615
616                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
617                         /*
618                          * We allocated new blocks which will result in
619                          * i_data's format changing.  Force the migrate
620                          * to fail by clearing migrate flags
621                          */
622                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
623                 }
624
625                 /*
626                  * Update reserved blocks/metadata blocks after successful
627                  * block allocation which had been deferred till now. We don't
628                  * support fallocate for non extent files. So we can update
629                  * reserve space here.
630                  */
631                 if ((retval > 0) &&
632                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
633                         ext4_da_update_reserve_space(inode, retval, 1);
634         }
635
636         if (retval > 0) {
637                 unsigned int status;
638
639                 if (unlikely(retval != map->m_len)) {
640                         ext4_warning(inode->i_sb,
641                                      "ES len assertion failed for inode "
642                                      "%lu: retval %d != map->m_len %d",
643                                      inode->i_ino, retval, map->m_len);
644                         WARN_ON(1);
645                 }
646
647                 /*
648                  * We have to zeroout blocks before inserting them into extent
649                  * status tree. Otherwise someone could look them up there and
650                  * use them before they are really zeroed. We also have to
651                  * unmap metadata before zeroing as otherwise writeback can
652                  * overwrite zeros with stale data from block device.
653                  */
654                 if (flags & EXT4_GET_BLOCKS_ZERO &&
655                     map->m_flags & EXT4_MAP_MAPPED &&
656                     map->m_flags & EXT4_MAP_NEW) {
657                         ext4_lblk_t i;
658
659                         for (i = 0; i < map->m_len; i++) {
660                                 unmap_underlying_metadata(inode->i_sb->s_bdev,
661                                                           map->m_pblk + i);
662                         }
663                         ret = ext4_issue_zeroout(inode, map->m_lblk,
664                                                  map->m_pblk, map->m_len);
665                         if (ret) {
666                                 retval = ret;
667                                 goto out_sem;
668                         }
669                 }
670
671                 /*
672                  * If the extent has been zeroed out, we don't need to update
673                  * extent status tree.
674                  */
675                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
676                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
677                         if (ext4_es_is_written(&es))
678                                 goto out_sem;
679                 }
680                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
681                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
682                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
683                     !(status & EXTENT_STATUS_WRITTEN) &&
684                     ext4_find_delalloc_range(inode, map->m_lblk,
685                                              map->m_lblk + map->m_len - 1))
686                         status |= EXTENT_STATUS_DELAYED;
687                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
688                                             map->m_pblk, status);
689                 if (ret < 0) {
690                         retval = ret;
691                         goto out_sem;
692                 }
693         }
694
695 out_sem:
696         up_write((&EXT4_I(inode)->i_data_sem));
697         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
698                 ret = check_block_validity(inode, map);
699                 if (ret != 0)
700                         return ret;
701
702                 /*
703                  * Inodes with freshly allocated blocks where contents will be
704                  * visible after transaction commit must be on transaction's
705                  * ordered data list.
706                  */
707                 if (map->m_flags & EXT4_MAP_NEW &&
708                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
709                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
710                     !IS_NOQUOTA(inode) &&
711                     ext4_should_order_data(inode)) {
712                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
713                                 ret = ext4_jbd2_inode_add_wait(handle, inode);
714                         else
715                                 ret = ext4_jbd2_inode_add_write(handle, inode);
716                         if (ret)
717                                 return ret;
718                 }
719         }
720         return retval;
721 }
722
723 /*
724  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
725  * we have to be careful as someone else may be manipulating b_state as well.
726  */
727 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
728 {
729         unsigned long old_state;
730         unsigned long new_state;
731
732         flags &= EXT4_MAP_FLAGS;
733
734         /* Dummy buffer_head? Set non-atomically. */
735         if (!bh->b_page) {
736                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
737                 return;
738         }
739         /*
740          * Someone else may be modifying b_state. Be careful! This is ugly but
741          * once we get rid of using bh as a container for mapping information
742          * to pass to / from get_block functions, this can go away.
743          */
744         do {
745                 old_state = READ_ONCE(bh->b_state);
746                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
747         } while (unlikely(
748                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
749 }
750
751 static int _ext4_get_block(struct inode *inode, sector_t iblock,
752                            struct buffer_head *bh, int flags)
753 {
754         struct ext4_map_blocks map;
755         int ret = 0;
756
757         if (ext4_has_inline_data(inode))
758                 return -ERANGE;
759
760         map.m_lblk = iblock;
761         map.m_len = bh->b_size >> inode->i_blkbits;
762
763         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
764                               flags);
765         if (ret > 0) {
766                 map_bh(bh, inode->i_sb, map.m_pblk);
767                 ext4_update_bh_state(bh, map.m_flags);
768                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
769                 ret = 0;
770         }
771         return ret;
772 }
773
774 int ext4_get_block(struct inode *inode, sector_t iblock,
775                    struct buffer_head *bh, int create)
776 {
777         return _ext4_get_block(inode, iblock, bh,
778                                create ? EXT4_GET_BLOCKS_CREATE : 0);
779 }
780
781 /*
782  * Get block function used when preparing for buffered write if we require
783  * creating an unwritten extent if blocks haven't been allocated.  The extent
784  * will be converted to written after the IO is complete.
785  */
786 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
787                              struct buffer_head *bh_result, int create)
788 {
789         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
790                    inode->i_ino, create);
791         return _ext4_get_block(inode, iblock, bh_result,
792                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
793 }
794
795 /* Maximum number of blocks we map for direct IO at once. */
796 #define DIO_MAX_BLOCKS 4096
797
798 /*
799  * Get blocks function for the cases that need to start a transaction -
800  * generally difference cases of direct IO and DAX IO. It also handles retries
801  * in case of ENOSPC.
802  */
803 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
804                                 struct buffer_head *bh_result, int flags)
805 {
806         int dio_credits;
807         handle_t *handle;
808         int retries = 0;
809         int ret;
810
811         /* Trim mapping request to maximum we can map at once for DIO */
812         if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
813                 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
814         dio_credits = ext4_chunk_trans_blocks(inode,
815                                       bh_result->b_size >> inode->i_blkbits);
816 retry:
817         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
818         if (IS_ERR(handle))
819                 return PTR_ERR(handle);
820
821         ret = _ext4_get_block(inode, iblock, bh_result, flags);
822         ext4_journal_stop(handle);
823
824         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
825                 goto retry;
826         return ret;
827 }
828
829 /* Get block function for DIO reads and writes to inodes without extents */
830 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
831                        struct buffer_head *bh, int create)
832 {
833         /* We don't expect handle for direct IO */
834         WARN_ON_ONCE(ext4_journal_current_handle());
835
836         if (!create)
837                 return _ext4_get_block(inode, iblock, bh, 0);
838         return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
839 }
840
841 /*
842  * Get block function for AIO DIO writes when we create unwritten extent if
843  * blocks are not allocated yet. The extent will be converted to written
844  * after IO is complete.
845  */
846 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
847                 sector_t iblock, struct buffer_head *bh_result, int create)
848 {
849         int ret;
850
851         /* We don't expect handle for direct IO */
852         WARN_ON_ONCE(ext4_journal_current_handle());
853
854         ret = ext4_get_block_trans(inode, iblock, bh_result,
855                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
856
857         /*
858          * When doing DIO using unwritten extents, we need io_end to convert
859          * unwritten extents to written on IO completion. We allocate io_end
860          * once we spot unwritten extent and store it in b_private. Generic
861          * DIO code keeps b_private set and furthermore passes the value to
862          * our completion callback in 'private' argument.
863          */
864         if (!ret && buffer_unwritten(bh_result)) {
865                 if (!bh_result->b_private) {
866                         ext4_io_end_t *io_end;
867
868                         io_end = ext4_init_io_end(inode, GFP_KERNEL);
869                         if (!io_end)
870                                 return -ENOMEM;
871                         bh_result->b_private = io_end;
872                         ext4_set_io_unwritten_flag(inode, io_end);
873                 }
874                 set_buffer_defer_completion(bh_result);
875         }
876
877         return ret;
878 }
879
880 /*
881  * Get block function for non-AIO DIO writes when we create unwritten extent if
882  * blocks are not allocated yet. The extent will be converted to written
883  * after IO is complete from ext4_ext_direct_IO() function.
884  */
885 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
886                 sector_t iblock, struct buffer_head *bh_result, int create)
887 {
888         int ret;
889
890         /* We don't expect handle for direct IO */
891         WARN_ON_ONCE(ext4_journal_current_handle());
892
893         ret = ext4_get_block_trans(inode, iblock, bh_result,
894                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
895
896         /*
897          * Mark inode as having pending DIO writes to unwritten extents.
898          * ext4_ext_direct_IO() checks this flag and converts extents to
899          * written.
900          */
901         if (!ret && buffer_unwritten(bh_result))
902                 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
903
904         return ret;
905 }
906
907 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
908                    struct buffer_head *bh_result, int create)
909 {
910         int ret;
911
912         ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
913                    inode->i_ino, create);
914         /* We don't expect handle for direct IO */
915         WARN_ON_ONCE(ext4_journal_current_handle());
916
917         ret = _ext4_get_block(inode, iblock, bh_result, 0);
918         /*
919          * Blocks should have been preallocated! ext4_file_write_iter() checks
920          * that.
921          */
922         WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
923
924         return ret;
925 }
926
927
928 /*
929  * `handle' can be NULL if create is zero
930  */
931 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
932                                 ext4_lblk_t block, int map_flags)
933 {
934         struct ext4_map_blocks map;
935         struct buffer_head *bh;
936         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
937         int err;
938
939         J_ASSERT(handle != NULL || create == 0);
940
941         map.m_lblk = block;
942         map.m_len = 1;
943         err = ext4_map_blocks(handle, inode, &map, map_flags);
944
945         if (err == 0)
946                 return create ? ERR_PTR(-ENOSPC) : NULL;
947         if (err < 0)
948                 return ERR_PTR(err);
949
950         bh = sb_getblk(inode->i_sb, map.m_pblk);
951         if (unlikely(!bh))
952                 return ERR_PTR(-ENOMEM);
953         if (map.m_flags & EXT4_MAP_NEW) {
954                 J_ASSERT(create != 0);
955                 J_ASSERT(handle != NULL);
956
957                 /*
958                  * Now that we do not always journal data, we should
959                  * keep in mind whether this should always journal the
960                  * new buffer as metadata.  For now, regular file
961                  * writes use ext4_get_block instead, so it's not a
962                  * problem.
963                  */
964                 lock_buffer(bh);
965                 BUFFER_TRACE(bh, "call get_create_access");
966                 err = ext4_journal_get_create_access(handle, bh);
967                 if (unlikely(err)) {
968                         unlock_buffer(bh);
969                         goto errout;
970                 }
971                 if (!buffer_uptodate(bh)) {
972                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
973                         set_buffer_uptodate(bh);
974                 }
975                 unlock_buffer(bh);
976                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
977                 err = ext4_handle_dirty_metadata(handle, inode, bh);
978                 if (unlikely(err))
979                         goto errout;
980         } else
981                 BUFFER_TRACE(bh, "not a new buffer");
982         return bh;
983 errout:
984         brelse(bh);
985         return ERR_PTR(err);
986 }
987
988 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
989                                ext4_lblk_t block, int map_flags)
990 {
991         struct buffer_head *bh;
992
993         bh = ext4_getblk(handle, inode, block, map_flags);
994         if (IS_ERR(bh))
995                 return bh;
996         if (!bh || buffer_uptodate(bh))
997                 return bh;
998         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
999         wait_on_buffer(bh);
1000         if (buffer_uptodate(bh))
1001                 return bh;
1002         put_bh(bh);
1003         return ERR_PTR(-EIO);
1004 }
1005
1006 int ext4_walk_page_buffers(handle_t *handle,
1007                            struct buffer_head *head,
1008                            unsigned from,
1009                            unsigned to,
1010                            int *partial,
1011                            int (*fn)(handle_t *handle,
1012                                      struct buffer_head *bh))
1013 {
1014         struct buffer_head *bh;
1015         unsigned block_start, block_end;
1016         unsigned blocksize = head->b_size;
1017         int err, ret = 0;
1018         struct buffer_head *next;
1019
1020         for (bh = head, block_start = 0;
1021              ret == 0 && (bh != head || !block_start);
1022              block_start = block_end, bh = next) {
1023                 next = bh->b_this_page;
1024                 block_end = block_start + blocksize;
1025                 if (block_end <= from || block_start >= to) {
1026                         if (partial && !buffer_uptodate(bh))
1027                                 *partial = 1;
1028                         continue;
1029                 }
1030                 err = (*fn)(handle, bh);
1031                 if (!ret)
1032                         ret = err;
1033         }
1034         return ret;
1035 }
1036
1037 /*
1038  * To preserve ordering, it is essential that the hole instantiation and
1039  * the data write be encapsulated in a single transaction.  We cannot
1040  * close off a transaction and start a new one between the ext4_get_block()
1041  * and the commit_write().  So doing the jbd2_journal_start at the start of
1042  * prepare_write() is the right place.
1043  *
1044  * Also, this function can nest inside ext4_writepage().  In that case, we
1045  * *know* that ext4_writepage() has generated enough buffer credits to do the
1046  * whole page.  So we won't block on the journal in that case, which is good,
1047  * because the caller may be PF_MEMALLOC.
1048  *
1049  * By accident, ext4 can be reentered when a transaction is open via
1050  * quota file writes.  If we were to commit the transaction while thus
1051  * reentered, there can be a deadlock - we would be holding a quota
1052  * lock, and the commit would never complete if another thread had a
1053  * transaction open and was blocking on the quota lock - a ranking
1054  * violation.
1055  *
1056  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1057  * will _not_ run commit under these circumstances because handle->h_ref
1058  * is elevated.  We'll still have enough credits for the tiny quotafile
1059  * write.
1060  */
1061 int do_journal_get_write_access(handle_t *handle,
1062                                 struct buffer_head *bh)
1063 {
1064         int dirty = buffer_dirty(bh);
1065         int ret;
1066
1067         if (!buffer_mapped(bh) || buffer_freed(bh))
1068                 return 0;
1069         /*
1070          * __block_write_begin() could have dirtied some buffers. Clean
1071          * the dirty bit as jbd2_journal_get_write_access() could complain
1072          * otherwise about fs integrity issues. Setting of the dirty bit
1073          * by __block_write_begin() isn't a real problem here as we clear
1074          * the bit before releasing a page lock and thus writeback cannot
1075          * ever write the buffer.
1076          */
1077         if (dirty)
1078                 clear_buffer_dirty(bh);
1079         BUFFER_TRACE(bh, "get write access");
1080         ret = ext4_journal_get_write_access(handle, bh);
1081         if (!ret && dirty)
1082                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1083         return ret;
1084 }
1085
1086 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1087 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1088                                   get_block_t *get_block)
1089 {
1090         unsigned from = pos & (PAGE_SIZE - 1);
1091         unsigned to = from + len;
1092         struct inode *inode = page->mapping->host;
1093         unsigned block_start, block_end;
1094         sector_t block;
1095         int err = 0;
1096         unsigned blocksize = inode->i_sb->s_blocksize;
1097         unsigned bbits;
1098         struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1099         bool decrypt = false;
1100
1101         BUG_ON(!PageLocked(page));
1102         BUG_ON(from > PAGE_SIZE);
1103         BUG_ON(to > PAGE_SIZE);
1104         BUG_ON(from > to);
1105
1106         if (!page_has_buffers(page))
1107                 create_empty_buffers(page, blocksize, 0);
1108         head = page_buffers(page);
1109         bbits = ilog2(blocksize);
1110         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1111
1112         for (bh = head, block_start = 0; bh != head || !block_start;
1113             block++, block_start = block_end, bh = bh->b_this_page) {
1114                 block_end = block_start + blocksize;
1115                 if (block_end <= from || block_start >= to) {
1116                         if (PageUptodate(page)) {
1117                                 if (!buffer_uptodate(bh))
1118                                         set_buffer_uptodate(bh);
1119                         }
1120                         continue;
1121                 }
1122                 if (buffer_new(bh))
1123                         clear_buffer_new(bh);
1124                 if (!buffer_mapped(bh)) {
1125                         WARN_ON(bh->b_size != blocksize);
1126                         err = get_block(inode, block, bh, 1);
1127                         if (err)
1128                                 break;
1129                         if (buffer_new(bh)) {
1130                                 unmap_underlying_metadata(bh->b_bdev,
1131                                                           bh->b_blocknr);
1132                                 if (PageUptodate(page)) {
1133                                         clear_buffer_new(bh);
1134                                         set_buffer_uptodate(bh);
1135                                         mark_buffer_dirty(bh);
1136                                         continue;
1137                                 }
1138                                 if (block_end > to || block_start < from)
1139                                         zero_user_segments(page, to, block_end,
1140                                                            block_start, from);
1141                                 continue;
1142                         }
1143                 }
1144                 if (PageUptodate(page)) {
1145                         if (!buffer_uptodate(bh))
1146                                 set_buffer_uptodate(bh);
1147                         continue;
1148                 }
1149                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1150                     !buffer_unwritten(bh) &&
1151                     (block_start < from || block_end > to)) {
1152                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1153                         *wait_bh++ = bh;
1154                         decrypt = ext4_encrypted_inode(inode) &&
1155                                 S_ISREG(inode->i_mode);
1156                 }
1157         }
1158         /*
1159          * If we issued read requests, let them complete.
1160          */
1161         while (wait_bh > wait) {
1162                 wait_on_buffer(*--wait_bh);
1163                 if (!buffer_uptodate(*wait_bh))
1164                         err = -EIO;
1165         }
1166         if (unlikely(err))
1167                 page_zero_new_buffers(page, from, to);
1168         else if (decrypt)
1169                 err = fscrypt_decrypt_page(page);
1170         return err;
1171 }
1172 #endif
1173
1174 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1175                             loff_t pos, unsigned len, unsigned flags,
1176                             struct page **pagep, void **fsdata)
1177 {
1178         struct inode *inode = mapping->host;
1179         int ret, needed_blocks;
1180         handle_t *handle;
1181         int retries = 0;
1182         struct page *page;
1183         pgoff_t index;
1184         unsigned from, to;
1185
1186         trace_ext4_write_begin(inode, pos, len, flags);
1187         /*
1188          * Reserve one block more for addition to orphan list in case
1189          * we allocate blocks but write fails for some reason
1190          */
1191         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1192         index = pos >> PAGE_SHIFT;
1193         from = pos & (PAGE_SIZE - 1);
1194         to = from + len;
1195
1196         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1197                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1198                                                     flags, pagep);
1199                 if (ret < 0)
1200                         return ret;
1201                 if (ret == 1)
1202                         return 0;
1203         }
1204
1205         /*
1206          * grab_cache_page_write_begin() can take a long time if the
1207          * system is thrashing due to memory pressure, or if the page
1208          * is being written back.  So grab it first before we start
1209          * the transaction handle.  This also allows us to allocate
1210          * the page (if needed) without using GFP_NOFS.
1211          */
1212 retry_grab:
1213         page = grab_cache_page_write_begin(mapping, index, flags);
1214         if (!page)
1215                 return -ENOMEM;
1216         unlock_page(page);
1217
1218 retry_journal:
1219         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1220         if (IS_ERR(handle)) {
1221                 put_page(page);
1222                 return PTR_ERR(handle);
1223         }
1224
1225         lock_page(page);
1226         if (page->mapping != mapping) {
1227                 /* The page got truncated from under us */
1228                 unlock_page(page);
1229                 put_page(page);
1230                 ext4_journal_stop(handle);
1231                 goto retry_grab;
1232         }
1233         /* In case writeback began while the page was unlocked */
1234         wait_for_stable_page(page);
1235
1236 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1237         if (ext4_should_dioread_nolock(inode))
1238                 ret = ext4_block_write_begin(page, pos, len,
1239                                              ext4_get_block_unwritten);
1240         else
1241                 ret = ext4_block_write_begin(page, pos, len,
1242                                              ext4_get_block);
1243 #else
1244         if (ext4_should_dioread_nolock(inode))
1245                 ret = __block_write_begin(page, pos, len,
1246                                           ext4_get_block_unwritten);
1247         else
1248                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1249 #endif
1250         if (!ret && ext4_should_journal_data(inode)) {
1251                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1252                                              from, to, NULL,
1253                                              do_journal_get_write_access);
1254         }
1255
1256         if (ret) {
1257                 unlock_page(page);
1258                 /*
1259                  * __block_write_begin may have instantiated a few blocks
1260                  * outside i_size.  Trim these off again. Don't need
1261                  * i_size_read because we hold i_mutex.
1262                  *
1263                  * Add inode to orphan list in case we crash before
1264                  * truncate finishes
1265                  */
1266                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1267                         ext4_orphan_add(handle, inode);
1268
1269                 ext4_journal_stop(handle);
1270                 if (pos + len > inode->i_size) {
1271                         ext4_truncate_failed_write(inode);
1272                         /*
1273                          * If truncate failed early the inode might
1274                          * still be on the orphan list; we need to
1275                          * make sure the inode is removed from the
1276                          * orphan list in that case.
1277                          */
1278                         if (inode->i_nlink)
1279                                 ext4_orphan_del(NULL, inode);
1280                 }
1281
1282                 if (ret == -ENOSPC &&
1283                     ext4_should_retry_alloc(inode->i_sb, &retries))
1284                         goto retry_journal;
1285                 put_page(page);
1286                 return ret;
1287         }
1288         *pagep = page;
1289         return ret;
1290 }
1291
1292 /* For write_end() in data=journal mode */
1293 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1294 {
1295         int ret;
1296         if (!buffer_mapped(bh) || buffer_freed(bh))
1297                 return 0;
1298         set_buffer_uptodate(bh);
1299         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1300         clear_buffer_meta(bh);
1301         clear_buffer_prio(bh);
1302         return ret;
1303 }
1304
1305 /*
1306  * We need to pick up the new inode size which generic_commit_write gave us
1307  * `file' can be NULL - eg, when called from page_symlink().
1308  *
1309  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1310  * buffers are managed internally.
1311  */
1312 static int ext4_write_end(struct file *file,
1313                           struct address_space *mapping,
1314                           loff_t pos, unsigned len, unsigned copied,
1315                           struct page *page, void *fsdata)
1316 {
1317         handle_t *handle = ext4_journal_current_handle();
1318         struct inode *inode = mapping->host;
1319         loff_t old_size = inode->i_size;
1320         int ret = 0, ret2;
1321         int i_size_changed = 0;
1322
1323         trace_ext4_write_end(inode, pos, len, copied);
1324         if (ext4_has_inline_data(inode)) {
1325                 ret = ext4_write_inline_data_end(inode, pos, len,
1326                                                  copied, page);
1327                 if (ret < 0)
1328                         goto errout;
1329                 copied = ret;
1330         } else
1331                 copied = block_write_end(file, mapping, pos,
1332                                          len, copied, page, fsdata);
1333         /*
1334          * it's important to update i_size while still holding page lock:
1335          * page writeout could otherwise come in and zero beyond i_size.
1336          */
1337         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1338         unlock_page(page);
1339         put_page(page);
1340
1341         if (old_size < pos)
1342                 pagecache_isize_extended(inode, old_size, pos);
1343         /*
1344          * Don't mark the inode dirty under page lock. First, it unnecessarily
1345          * makes the holding time of page lock longer. Second, it forces lock
1346          * ordering of page lock and transaction start for journaling
1347          * filesystems.
1348          */
1349         if (i_size_changed)
1350                 ext4_mark_inode_dirty(handle, inode);
1351
1352         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1353                 /* if we have allocated more blocks and copied
1354                  * less. We will have blocks allocated outside
1355                  * inode->i_size. So truncate them
1356                  */
1357                 ext4_orphan_add(handle, inode);
1358 errout:
1359         ret2 = ext4_journal_stop(handle);
1360         if (!ret)
1361                 ret = ret2;
1362
1363         if (pos + len > inode->i_size) {
1364                 ext4_truncate_failed_write(inode);
1365                 /*
1366                  * If truncate failed early the inode might still be
1367                  * on the orphan list; we need to make sure the inode
1368                  * is removed from the orphan list in that case.
1369                  */
1370                 if (inode->i_nlink)
1371                         ext4_orphan_del(NULL, inode);
1372         }
1373
1374         return ret ? ret : copied;
1375 }
1376
1377 /*
1378  * This is a private version of page_zero_new_buffers() which doesn't
1379  * set the buffer to be dirty, since in data=journalled mode we need
1380  * to call ext4_handle_dirty_metadata() instead.
1381  */
1382 static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
1383 {
1384         unsigned int block_start = 0, block_end;
1385         struct buffer_head *head, *bh;
1386
1387         bh = head = page_buffers(page);
1388         do {
1389                 block_end = block_start + bh->b_size;
1390                 if (buffer_new(bh)) {
1391                         if (block_end > from && block_start < to) {
1392                                 if (!PageUptodate(page)) {
1393                                         unsigned start, size;
1394
1395                                         start = max(from, block_start);
1396                                         size = min(to, block_end) - start;
1397
1398                                         zero_user(page, start, size);
1399                                         set_buffer_uptodate(bh);
1400                                 }
1401                                 clear_buffer_new(bh);
1402                         }
1403                 }
1404                 block_start = block_end;
1405                 bh = bh->b_this_page;
1406         } while (bh != head);
1407 }
1408
1409 static int ext4_journalled_write_end(struct file *file,
1410                                      struct address_space *mapping,
1411                                      loff_t pos, unsigned len, unsigned copied,
1412                                      struct page *page, void *fsdata)
1413 {
1414         handle_t *handle = ext4_journal_current_handle();
1415         struct inode *inode = mapping->host;
1416         loff_t old_size = inode->i_size;
1417         int ret = 0, ret2;
1418         int partial = 0;
1419         unsigned from, to;
1420         int size_changed = 0;
1421
1422         trace_ext4_journalled_write_end(inode, pos, len, copied);
1423         from = pos & (PAGE_SIZE - 1);
1424         to = from + len;
1425
1426         BUG_ON(!ext4_handle_valid(handle));
1427
1428         if (ext4_has_inline_data(inode))
1429                 copied = ext4_write_inline_data_end(inode, pos, len,
1430                                                     copied, page);
1431         else {
1432                 if (copied < len) {
1433                         if (!PageUptodate(page))
1434                                 copied = 0;
1435                         zero_new_buffers(page, from+copied, to);
1436                 }
1437
1438                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1439                                              to, &partial, write_end_fn);
1440                 if (!partial)
1441                         SetPageUptodate(page);
1442         }
1443         size_changed = ext4_update_inode_size(inode, pos + copied);
1444         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1445         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1446         unlock_page(page);
1447         put_page(page);
1448
1449         if (old_size < pos)
1450                 pagecache_isize_extended(inode, old_size, pos);
1451
1452         if (size_changed) {
1453                 ret2 = ext4_mark_inode_dirty(handle, inode);
1454                 if (!ret)
1455                         ret = ret2;
1456         }
1457
1458         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1459                 /* if we have allocated more blocks and copied
1460                  * less. We will have blocks allocated outside
1461                  * inode->i_size. So truncate them
1462                  */
1463                 ext4_orphan_add(handle, inode);
1464
1465         ret2 = ext4_journal_stop(handle);
1466         if (!ret)
1467                 ret = ret2;
1468         if (pos + len > inode->i_size) {
1469                 ext4_truncate_failed_write(inode);
1470                 /*
1471                  * If truncate failed early the inode might still be
1472                  * on the orphan list; we need to make sure the inode
1473                  * is removed from the orphan list in that case.
1474                  */
1475                 if (inode->i_nlink)
1476                         ext4_orphan_del(NULL, inode);
1477         }
1478
1479         return ret ? ret : copied;
1480 }
1481
1482 /*
1483  * Reserve space for a single cluster
1484  */
1485 static int ext4_da_reserve_space(struct inode *inode)
1486 {
1487         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1488         struct ext4_inode_info *ei = EXT4_I(inode);
1489         int ret;
1490
1491         /*
1492          * We will charge metadata quota at writeout time; this saves
1493          * us from metadata over-estimation, though we may go over by
1494          * a small amount in the end.  Here we just reserve for data.
1495          */
1496         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1497         if (ret)
1498                 return ret;
1499
1500         spin_lock(&ei->i_block_reservation_lock);
1501         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1502                 spin_unlock(&ei->i_block_reservation_lock);
1503                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1504                 return -ENOSPC;
1505         }
1506         ei->i_reserved_data_blocks++;
1507         trace_ext4_da_reserve_space(inode);
1508         spin_unlock(&ei->i_block_reservation_lock);
1509
1510         return 0;       /* success */
1511 }
1512
1513 static void ext4_da_release_space(struct inode *inode, int to_free)
1514 {
1515         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1516         struct ext4_inode_info *ei = EXT4_I(inode);
1517
1518         if (!to_free)
1519                 return;         /* Nothing to release, exit */
1520
1521         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1522
1523         trace_ext4_da_release_space(inode, to_free);
1524         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1525                 /*
1526                  * if there aren't enough reserved blocks, then the
1527                  * counter is messed up somewhere.  Since this
1528                  * function is called from invalidate page, it's
1529                  * harmless to return without any action.
1530                  */
1531                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1532                          "ino %lu, to_free %d with only %d reserved "
1533                          "data blocks", inode->i_ino, to_free,
1534                          ei->i_reserved_data_blocks);
1535                 WARN_ON(1);
1536                 to_free = ei->i_reserved_data_blocks;
1537         }
1538         ei->i_reserved_data_blocks -= to_free;
1539
1540         /* update fs dirty data blocks counter */
1541         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1542
1543         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1544
1545         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1546 }
1547
1548 static void ext4_da_page_release_reservation(struct page *page,
1549                                              unsigned int offset,
1550                                              unsigned int length)
1551 {
1552         int to_release = 0, contiguous_blks = 0;
1553         struct buffer_head *head, *bh;
1554         unsigned int curr_off = 0;
1555         struct inode *inode = page->mapping->host;
1556         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1557         unsigned int stop = offset + length;
1558         int num_clusters;
1559         ext4_fsblk_t lblk;
1560
1561         BUG_ON(stop > PAGE_SIZE || stop < length);
1562
1563         head = page_buffers(page);
1564         bh = head;
1565         do {
1566                 unsigned int next_off = curr_off + bh->b_size;
1567
1568                 if (next_off > stop)
1569                         break;
1570
1571                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1572                         to_release++;
1573                         contiguous_blks++;
1574                         clear_buffer_delay(bh);
1575                 } else if (contiguous_blks) {
1576                         lblk = page->index <<
1577                                (PAGE_SHIFT - inode->i_blkbits);
1578                         lblk += (curr_off >> inode->i_blkbits) -
1579                                 contiguous_blks;
1580                         ext4_es_remove_extent(inode, lblk, contiguous_blks);
1581                         contiguous_blks = 0;
1582                 }
1583                 curr_off = next_off;
1584         } while ((bh = bh->b_this_page) != head);
1585
1586         if (contiguous_blks) {
1587                 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1588                 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1589                 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1590         }
1591
1592         /* If we have released all the blocks belonging to a cluster, then we
1593          * need to release the reserved space for that cluster. */
1594         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1595         while (num_clusters > 0) {
1596                 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1597                         ((num_clusters - 1) << sbi->s_cluster_bits);
1598                 if (sbi->s_cluster_ratio == 1 ||
1599                     !ext4_find_delalloc_cluster(inode, lblk))
1600                         ext4_da_release_space(inode, 1);
1601
1602                 num_clusters--;
1603         }
1604 }
1605
1606 /*
1607  * Delayed allocation stuff
1608  */
1609
1610 struct mpage_da_data {
1611         struct inode *inode;
1612         struct writeback_control *wbc;
1613
1614         pgoff_t first_page;     /* The first page to write */
1615         pgoff_t next_page;      /* Current page to examine */
1616         pgoff_t last_page;      /* Last page to examine */
1617         /*
1618          * Extent to map - this can be after first_page because that can be
1619          * fully mapped. We somewhat abuse m_flags to store whether the extent
1620          * is delalloc or unwritten.
1621          */
1622         struct ext4_map_blocks map;
1623         struct ext4_io_submit io_submit;        /* IO submission data */
1624 };
1625
1626 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1627                                        bool invalidate)
1628 {
1629         int nr_pages, i;
1630         pgoff_t index, end;
1631         struct pagevec pvec;
1632         struct inode *inode = mpd->inode;
1633         struct address_space *mapping = inode->i_mapping;
1634
1635         /* This is necessary when next_page == 0. */
1636         if (mpd->first_page >= mpd->next_page)
1637                 return;
1638
1639         index = mpd->first_page;
1640         end   = mpd->next_page - 1;
1641         if (invalidate) {
1642                 ext4_lblk_t start, last;
1643                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1644                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1645                 ext4_es_remove_extent(inode, start, last - start + 1);
1646         }
1647
1648         pagevec_init(&pvec, 0);
1649         while (index <= end) {
1650                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1651                 if (nr_pages == 0)
1652                         break;
1653                 for (i = 0; i < nr_pages; i++) {
1654                         struct page *page = pvec.pages[i];
1655                         if (page->index > end)
1656                                 break;
1657                         BUG_ON(!PageLocked(page));
1658                         BUG_ON(PageWriteback(page));
1659                         if (invalidate) {
1660                                 if (page_mapped(page))
1661                                         clear_page_dirty_for_io(page);
1662                                 block_invalidatepage(page, 0, PAGE_SIZE);
1663                                 ClearPageUptodate(page);
1664                         }
1665                         unlock_page(page);
1666                 }
1667                 index = pvec.pages[nr_pages - 1]->index + 1;
1668                 pagevec_release(&pvec);
1669         }
1670 }
1671
1672 static void ext4_print_free_blocks(struct inode *inode)
1673 {
1674         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1675         struct super_block *sb = inode->i_sb;
1676         struct ext4_inode_info *ei = EXT4_I(inode);
1677
1678         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1679                EXT4_C2B(EXT4_SB(inode->i_sb),
1680                         ext4_count_free_clusters(sb)));
1681         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1682         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1683                (long long) EXT4_C2B(EXT4_SB(sb),
1684                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1685         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1686                (long long) EXT4_C2B(EXT4_SB(sb),
1687                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1688         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1689         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1690                  ei->i_reserved_data_blocks);
1691         return;
1692 }
1693
1694 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1695 {
1696         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1697 }
1698
1699 /*
1700  * This function is grabs code from the very beginning of
1701  * ext4_map_blocks, but assumes that the caller is from delayed write
1702  * time. This function looks up the requested blocks and sets the
1703  * buffer delay bit under the protection of i_data_sem.
1704  */
1705 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1706                               struct ext4_map_blocks *map,
1707                               struct buffer_head *bh)
1708 {
1709         struct extent_status es;
1710         int retval;
1711         sector_t invalid_block = ~((sector_t) 0xffff);
1712 #ifdef ES_AGGRESSIVE_TEST
1713         struct ext4_map_blocks orig_map;
1714
1715         memcpy(&orig_map, map, sizeof(*map));
1716 #endif
1717
1718         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1719                 invalid_block = ~0;
1720
1721         map->m_flags = 0;
1722         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1723                   "logical block %lu\n", inode->i_ino, map->m_len,
1724                   (unsigned long) map->m_lblk);
1725
1726         /* Lookup extent status tree firstly */
1727         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1728                 if (ext4_es_is_hole(&es)) {
1729                         retval = 0;
1730                         down_read(&EXT4_I(inode)->i_data_sem);
1731                         goto add_delayed;
1732                 }
1733
1734                 /*
1735                  * Delayed extent could be allocated by fallocate.
1736                  * So we need to check it.
1737                  */
1738                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1739                         map_bh(bh, inode->i_sb, invalid_block);
1740                         set_buffer_new(bh);
1741                         set_buffer_delay(bh);
1742                         return 0;
1743                 }
1744
1745                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1746                 retval = es.es_len - (iblock - es.es_lblk);
1747                 if (retval > map->m_len)
1748                         retval = map->m_len;
1749                 map->m_len = retval;
1750                 if (ext4_es_is_written(&es))
1751                         map->m_flags |= EXT4_MAP_MAPPED;
1752                 else if (ext4_es_is_unwritten(&es))
1753                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1754                 else
1755                         BUG_ON(1);
1756
1757 #ifdef ES_AGGRESSIVE_TEST
1758                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1759 #endif
1760                 return retval;
1761         }
1762
1763         /*
1764          * Try to see if we can get the block without requesting a new
1765          * file system block.
1766          */
1767         down_read(&EXT4_I(inode)->i_data_sem);
1768         if (ext4_has_inline_data(inode))
1769                 retval = 0;
1770         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1771                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1772         else
1773                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1774
1775 add_delayed:
1776         if (retval == 0) {
1777                 int ret;
1778                 /*
1779                  * XXX: __block_prepare_write() unmaps passed block,
1780                  * is it OK?
1781                  */
1782                 /*
1783                  * If the block was allocated from previously allocated cluster,
1784                  * then we don't need to reserve it again. However we still need
1785                  * to reserve metadata for every block we're going to write.
1786                  */
1787                 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1788                     !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1789                         ret = ext4_da_reserve_space(inode);
1790                         if (ret) {
1791                                 /* not enough space to reserve */
1792                                 retval = ret;
1793                                 goto out_unlock;
1794                         }
1795                 }
1796
1797                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1798                                             ~0, EXTENT_STATUS_DELAYED);
1799                 if (ret) {
1800                         retval = ret;
1801                         goto out_unlock;
1802                 }
1803
1804                 map_bh(bh, inode->i_sb, invalid_block);
1805                 set_buffer_new(bh);
1806                 set_buffer_delay(bh);
1807         } else if (retval > 0) {
1808                 int ret;
1809                 unsigned int status;
1810
1811                 if (unlikely(retval != map->m_len)) {
1812                         ext4_warning(inode->i_sb,
1813                                      "ES len assertion failed for inode "
1814                                      "%lu: retval %d != map->m_len %d",
1815                                      inode->i_ino, retval, map->m_len);
1816                         WARN_ON(1);
1817                 }
1818
1819                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1820                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1821                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1822                                             map->m_pblk, status);
1823                 if (ret != 0)
1824                         retval = ret;
1825         }
1826
1827 out_unlock:
1828         up_read((&EXT4_I(inode)->i_data_sem));
1829
1830         return retval;
1831 }
1832
1833 /*
1834  * This is a special get_block_t callback which is used by
1835  * ext4_da_write_begin().  It will either return mapped block or
1836  * reserve space for a single block.
1837  *
1838  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1839  * We also have b_blocknr = -1 and b_bdev initialized properly
1840  *
1841  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1842  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1843  * initialized properly.
1844  */
1845 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1846                            struct buffer_head *bh, int create)
1847 {
1848         struct ext4_map_blocks map;
1849         int ret = 0;
1850
1851         BUG_ON(create == 0);
1852         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1853
1854         map.m_lblk = iblock;
1855         map.m_len = 1;
1856
1857         /*
1858          * first, we need to know whether the block is allocated already
1859          * preallocated blocks are unmapped but should treated
1860          * the same as allocated blocks.
1861          */
1862         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1863         if (ret <= 0)
1864                 return ret;
1865
1866         map_bh(bh, inode->i_sb, map.m_pblk);
1867         ext4_update_bh_state(bh, map.m_flags);
1868
1869         if (buffer_unwritten(bh)) {
1870                 /* A delayed write to unwritten bh should be marked
1871                  * new and mapped.  Mapped ensures that we don't do
1872                  * get_block multiple times when we write to the same
1873                  * offset and new ensures that we do proper zero out
1874                  * for partial write.
1875                  */
1876                 set_buffer_new(bh);
1877                 set_buffer_mapped(bh);
1878         }
1879         return 0;
1880 }
1881
1882 static int bget_one(handle_t *handle, struct buffer_head *bh)
1883 {
1884         get_bh(bh);
1885         return 0;
1886 }
1887
1888 static int bput_one(handle_t *handle, struct buffer_head *bh)
1889 {
1890         put_bh(bh);
1891         return 0;
1892 }
1893
1894 static int __ext4_journalled_writepage(struct page *page,
1895                                        unsigned int len)
1896 {
1897         struct address_space *mapping = page->mapping;
1898         struct inode *inode = mapping->host;
1899         struct buffer_head *page_bufs = NULL;
1900         handle_t *handle = NULL;
1901         int ret = 0, err = 0;
1902         int inline_data = ext4_has_inline_data(inode);
1903         struct buffer_head *inode_bh = NULL;
1904
1905         ClearPageChecked(page);
1906
1907         if (inline_data) {
1908                 BUG_ON(page->index != 0);
1909                 BUG_ON(len > ext4_get_max_inline_size(inode));
1910                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1911                 if (inode_bh == NULL)
1912                         goto out;
1913         } else {
1914                 page_bufs = page_buffers(page);
1915                 if (!page_bufs) {
1916                         BUG();
1917                         goto out;
1918                 }
1919                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1920                                        NULL, bget_one);
1921         }
1922         /*
1923          * We need to release the page lock before we start the
1924          * journal, so grab a reference so the page won't disappear
1925          * out from under us.
1926          */
1927         get_page(page);
1928         unlock_page(page);
1929
1930         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1931                                     ext4_writepage_trans_blocks(inode));
1932         if (IS_ERR(handle)) {
1933                 ret = PTR_ERR(handle);
1934                 put_page(page);
1935                 goto out_no_pagelock;
1936         }
1937         BUG_ON(!ext4_handle_valid(handle));
1938
1939         lock_page(page);
1940         put_page(page);
1941         if (page->mapping != mapping) {
1942                 /* The page got truncated from under us */
1943                 ext4_journal_stop(handle);
1944                 ret = 0;
1945                 goto out;
1946         }
1947
1948         if (inline_data) {
1949                 BUFFER_TRACE(inode_bh, "get write access");
1950                 ret = ext4_journal_get_write_access(handle, inode_bh);
1951
1952                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1953
1954         } else {
1955                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1956                                              do_journal_get_write_access);
1957
1958                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1959                                              write_end_fn);
1960         }
1961         if (ret == 0)
1962                 ret = err;
1963         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1964         err = ext4_journal_stop(handle);
1965         if (!ret)
1966                 ret = err;
1967
1968         if (!ext4_has_inline_data(inode))
1969                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1970                                        NULL, bput_one);
1971         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1972 out:
1973         unlock_page(page);
1974 out_no_pagelock:
1975         brelse(inode_bh);
1976         return ret;
1977 }
1978
1979 /*
1980  * Note that we don't need to start a transaction unless we're journaling data
1981  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1982  * need to file the inode to the transaction's list in ordered mode because if
1983  * we are writing back data added by write(), the inode is already there and if
1984  * we are writing back data modified via mmap(), no one guarantees in which
1985  * transaction the data will hit the disk. In case we are journaling data, we
1986  * cannot start transaction directly because transaction start ranks above page
1987  * lock so we have to do some magic.
1988  *
1989  * This function can get called via...
1990  *   - ext4_writepages after taking page lock (have journal handle)
1991  *   - journal_submit_inode_data_buffers (no journal handle)
1992  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1993  *   - grab_page_cache when doing write_begin (have journal handle)
1994  *
1995  * We don't do any block allocation in this function. If we have page with
1996  * multiple blocks we need to write those buffer_heads that are mapped. This
1997  * is important for mmaped based write. So if we do with blocksize 1K
1998  * truncate(f, 1024);
1999  * a = mmap(f, 0, 4096);
2000  * a[0] = 'a';
2001  * truncate(f, 4096);
2002  * we have in the page first buffer_head mapped via page_mkwrite call back
2003  * but other buffer_heads would be unmapped but dirty (dirty done via the
2004  * do_wp_page). So writepage should write the first block. If we modify
2005  * the mmap area beyond 1024 we will again get a page_fault and the
2006  * page_mkwrite callback will do the block allocation and mark the
2007  * buffer_heads mapped.
2008  *
2009  * We redirty the page if we have any buffer_heads that is either delay or
2010  * unwritten in the page.
2011  *
2012  * We can get recursively called as show below.
2013  *
2014  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2015  *              ext4_writepage()
2016  *
2017  * But since we don't do any block allocation we should not deadlock.
2018  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2019  */
2020 static int ext4_writepage(struct page *page,
2021                           struct writeback_control *wbc)
2022 {
2023         int ret = 0;
2024         loff_t size;
2025         unsigned int len;
2026         struct buffer_head *page_bufs = NULL;
2027         struct inode *inode = page->mapping->host;
2028         struct ext4_io_submit io_submit;
2029         bool keep_towrite = false;
2030
2031         trace_ext4_writepage(page);
2032         size = i_size_read(inode);
2033         if (page->index == size >> PAGE_SHIFT)
2034                 len = size & ~PAGE_MASK;
2035         else
2036                 len = PAGE_SIZE;
2037
2038         page_bufs = page_buffers(page);
2039         /*
2040          * We cannot do block allocation or other extent handling in this
2041          * function. If there are buffers needing that, we have to redirty
2042          * the page. But we may reach here when we do a journal commit via
2043          * journal_submit_inode_data_buffers() and in that case we must write
2044          * allocated buffers to achieve data=ordered mode guarantees.
2045          *
2046          * Also, if there is only one buffer per page (the fs block
2047          * size == the page size), if one buffer needs block
2048          * allocation or needs to modify the extent tree to clear the
2049          * unwritten flag, we know that the page can't be written at
2050          * all, so we might as well refuse the write immediately.
2051          * Unfortunately if the block size != page size, we can't as
2052          * easily detect this case using ext4_walk_page_buffers(), but
2053          * for the extremely common case, this is an optimization that
2054          * skips a useless round trip through ext4_bio_write_page().
2055          */
2056         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2057                                    ext4_bh_delay_or_unwritten)) {
2058                 redirty_page_for_writepage(wbc, page);
2059                 if ((current->flags & PF_MEMALLOC) ||
2060                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2061                         /*
2062                          * For memory cleaning there's no point in writing only
2063                          * some buffers. So just bail out. Warn if we came here
2064                          * from direct reclaim.
2065                          */
2066                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2067                                                         == PF_MEMALLOC);
2068                         unlock_page(page);
2069                         return 0;
2070                 }
2071                 keep_towrite = true;
2072         }
2073
2074         if (PageChecked(page) && ext4_should_journal_data(inode))
2075                 /*
2076                  * It's mmapped pagecache.  Add buffers and journal it.  There
2077                  * doesn't seem much point in redirtying the page here.
2078                  */
2079                 return __ext4_journalled_writepage(page, len);
2080
2081         ext4_io_submit_init(&io_submit, wbc);
2082         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2083         if (!io_submit.io_end) {
2084                 redirty_page_for_writepage(wbc, page);
2085                 unlock_page(page);
2086                 return -ENOMEM;
2087         }
2088         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2089         ext4_io_submit(&io_submit);
2090         /* Drop io_end reference we got from init */
2091         ext4_put_io_end_defer(io_submit.io_end);
2092         return ret;
2093 }
2094
2095 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2096 {
2097         int len;
2098         loff_t size = i_size_read(mpd->inode);
2099         int err;
2100
2101         BUG_ON(page->index != mpd->first_page);
2102         if (page->index == size >> PAGE_SHIFT)
2103                 len = size & ~PAGE_MASK;
2104         else
2105                 len = PAGE_SIZE;
2106         clear_page_dirty_for_io(page);
2107         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2108         if (!err)
2109                 mpd->wbc->nr_to_write--;
2110         mpd->first_page++;
2111
2112         return err;
2113 }
2114
2115 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2116
2117 /*
2118  * mballoc gives us at most this number of blocks...
2119  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2120  * The rest of mballoc seems to handle chunks up to full group size.
2121  */
2122 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2123
2124 /*
2125  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2126  *
2127  * @mpd - extent of blocks
2128  * @lblk - logical number of the block in the file
2129  * @bh - buffer head we want to add to the extent
2130  *
2131  * The function is used to collect contig. blocks in the same state. If the
2132  * buffer doesn't require mapping for writeback and we haven't started the
2133  * extent of buffers to map yet, the function returns 'true' immediately - the
2134  * caller can write the buffer right away. Otherwise the function returns true
2135  * if the block has been added to the extent, false if the block couldn't be
2136  * added.
2137  */
2138 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2139                                    struct buffer_head *bh)
2140 {
2141         struct ext4_map_blocks *map = &mpd->map;
2142
2143         /* Buffer that doesn't need mapping for writeback? */
2144         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2145             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2146                 /* So far no extent to map => we write the buffer right away */
2147                 if (map->m_len == 0)
2148                         return true;
2149                 return false;
2150         }
2151
2152         /* First block in the extent? */
2153         if (map->m_len == 0) {
2154                 map->m_lblk = lblk;
2155                 map->m_len = 1;
2156                 map->m_flags = bh->b_state & BH_FLAGS;
2157                 return true;
2158         }
2159
2160         /* Don't go larger than mballoc is willing to allocate */
2161         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2162                 return false;
2163
2164         /* Can we merge the block to our big extent? */
2165         if (lblk == map->m_lblk + map->m_len &&
2166             (bh->b_state & BH_FLAGS) == map->m_flags) {
2167                 map->m_len++;
2168                 return true;
2169         }
2170         return false;
2171 }
2172
2173 /*
2174  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2175  *
2176  * @mpd - extent of blocks for mapping
2177  * @head - the first buffer in the page
2178  * @bh - buffer we should start processing from
2179  * @lblk - logical number of the block in the file corresponding to @bh
2180  *
2181  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2182  * the page for IO if all buffers in this page were mapped and there's no
2183  * accumulated extent of buffers to map or add buffers in the page to the
2184  * extent of buffers to map. The function returns 1 if the caller can continue
2185  * by processing the next page, 0 if it should stop adding buffers to the
2186  * extent to map because we cannot extend it anymore. It can also return value
2187  * < 0 in case of error during IO submission.
2188  */
2189 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2190                                    struct buffer_head *head,
2191                                    struct buffer_head *bh,
2192                                    ext4_lblk_t lblk)
2193 {
2194         struct inode *inode = mpd->inode;
2195         int err;
2196         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2197                                                         >> inode->i_blkbits;
2198
2199         do {
2200                 BUG_ON(buffer_locked(bh));
2201
2202                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2203                         /* Found extent to map? */
2204                         if (mpd->map.m_len)
2205                                 return 0;
2206                         /* Everything mapped so far and we hit EOF */
2207                         break;
2208                 }
2209         } while (lblk++, (bh = bh->b_this_page) != head);
2210         /* So far everything mapped? Submit the page for IO. */
2211         if (mpd->map.m_len == 0) {
2212                 err = mpage_submit_page(mpd, head->b_page);
2213                 if (err < 0)
2214                         return err;
2215         }
2216         return lblk < blocks;
2217 }
2218
2219 /*
2220  * mpage_map_buffers - update buffers corresponding to changed extent and
2221  *                     submit fully mapped pages for IO
2222  *
2223  * @mpd - description of extent to map, on return next extent to map
2224  *
2225  * Scan buffers corresponding to changed extent (we expect corresponding pages
2226  * to be already locked) and update buffer state according to new extent state.
2227  * We map delalloc buffers to their physical location, clear unwritten bits,
2228  * and mark buffers as uninit when we perform writes to unwritten extents
2229  * and do extent conversion after IO is finished. If the last page is not fully
2230  * mapped, we update @map to the next extent in the last page that needs
2231  * mapping. Otherwise we submit the page for IO.
2232  */
2233 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2234 {
2235         struct pagevec pvec;
2236         int nr_pages, i;
2237         struct inode *inode = mpd->inode;
2238         struct buffer_head *head, *bh;
2239         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2240         pgoff_t start, end;
2241         ext4_lblk_t lblk;
2242         sector_t pblock;
2243         int err;
2244
2245         start = mpd->map.m_lblk >> bpp_bits;
2246         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2247         lblk = start << bpp_bits;
2248         pblock = mpd->map.m_pblk;
2249
2250         pagevec_init(&pvec, 0);
2251         while (start <= end) {
2252                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2253                                           PAGEVEC_SIZE);
2254                 if (nr_pages == 0)
2255                         break;
2256                 for (i = 0; i < nr_pages; i++) {
2257                         struct page *page = pvec.pages[i];
2258
2259                         if (page->index > end)
2260                                 break;
2261                         /* Up to 'end' pages must be contiguous */
2262                         BUG_ON(page->index != start);
2263                         bh = head = page_buffers(page);
2264                         do {
2265                                 if (lblk < mpd->map.m_lblk)
2266                                         continue;
2267                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2268                                         /*
2269                                          * Buffer after end of mapped extent.
2270                                          * Find next buffer in the page to map.
2271                                          */
2272                                         mpd->map.m_len = 0;
2273                                         mpd->map.m_flags = 0;
2274                                         /*
2275                                          * FIXME: If dioread_nolock supports
2276                                          * blocksize < pagesize, we need to make
2277                                          * sure we add size mapped so far to
2278                                          * io_end->size as the following call
2279                                          * can submit the page for IO.
2280                                          */
2281                                         err = mpage_process_page_bufs(mpd, head,
2282                                                                       bh, lblk);
2283                                         pagevec_release(&pvec);
2284                                         if (err > 0)
2285                                                 err = 0;
2286                                         return err;
2287                                 }
2288                                 if (buffer_delay(bh)) {
2289                                         clear_buffer_delay(bh);
2290                                         bh->b_blocknr = pblock++;
2291                                 }
2292                                 clear_buffer_unwritten(bh);
2293                         } while (lblk++, (bh = bh->b_this_page) != head);
2294
2295                         /*
2296                          * FIXME: This is going to break if dioread_nolock
2297                          * supports blocksize < pagesize as we will try to
2298                          * convert potentially unmapped parts of inode.
2299                          */
2300                         mpd->io_submit.io_end->size += PAGE_SIZE;
2301                         /* Page fully mapped - let IO run! */
2302                         err = mpage_submit_page(mpd, page);
2303                         if (err < 0) {
2304                                 pagevec_release(&pvec);
2305                                 return err;
2306                         }
2307                         start++;
2308                 }
2309                 pagevec_release(&pvec);
2310         }
2311         /* Extent fully mapped and matches with page boundary. We are done. */
2312         mpd->map.m_len = 0;
2313         mpd->map.m_flags = 0;
2314         return 0;
2315 }
2316
2317 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2318 {
2319         struct inode *inode = mpd->inode;
2320         struct ext4_map_blocks *map = &mpd->map;
2321         int get_blocks_flags;
2322         int err, dioread_nolock;
2323
2324         trace_ext4_da_write_pages_extent(inode, map);
2325         /*
2326          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2327          * to convert an unwritten extent to be initialized (in the case
2328          * where we have written into one or more preallocated blocks).  It is
2329          * possible that we're going to need more metadata blocks than
2330          * previously reserved. However we must not fail because we're in
2331          * writeback and there is nothing we can do about it so it might result
2332          * in data loss.  So use reserved blocks to allocate metadata if
2333          * possible.
2334          *
2335          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2336          * the blocks in question are delalloc blocks.  This indicates
2337          * that the blocks and quotas has already been checked when
2338          * the data was copied into the page cache.
2339          */
2340         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2341                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2342                            EXT4_GET_BLOCKS_IO_SUBMIT;
2343         dioread_nolock = ext4_should_dioread_nolock(inode);
2344         if (dioread_nolock)
2345                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2346         if (map->m_flags & (1 << BH_Delay))
2347                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2348
2349         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2350         if (err < 0)
2351                 return err;
2352         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2353                 if (!mpd->io_submit.io_end->handle &&
2354                     ext4_handle_valid(handle)) {
2355                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2356                         handle->h_rsv_handle = NULL;
2357                 }
2358                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2359         }
2360
2361         BUG_ON(map->m_len == 0);
2362         if (map->m_flags & EXT4_MAP_NEW) {
2363                 struct block_device *bdev = inode->i_sb->s_bdev;
2364                 int i;
2365
2366                 for (i = 0; i < map->m_len; i++)
2367                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2368         }
2369         return 0;
2370 }
2371
2372 /*
2373  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2374  *                               mpd->len and submit pages underlying it for IO
2375  *
2376  * @handle - handle for journal operations
2377  * @mpd - extent to map
2378  * @give_up_on_write - we set this to true iff there is a fatal error and there
2379  *                     is no hope of writing the data. The caller should discard
2380  *                     dirty pages to avoid infinite loops.
2381  *
2382  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2383  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2384  * them to initialized or split the described range from larger unwritten
2385  * extent. Note that we need not map all the described range since allocation
2386  * can return less blocks or the range is covered by more unwritten extents. We
2387  * cannot map more because we are limited by reserved transaction credits. On
2388  * the other hand we always make sure that the last touched page is fully
2389  * mapped so that it can be written out (and thus forward progress is
2390  * guaranteed). After mapping we submit all mapped pages for IO.
2391  */
2392 static int mpage_map_and_submit_extent(handle_t *handle,
2393                                        struct mpage_da_data *mpd,
2394                                        bool *give_up_on_write)
2395 {
2396         struct inode *inode = mpd->inode;
2397         struct ext4_map_blocks *map = &mpd->map;
2398         int err;
2399         loff_t disksize;
2400         int progress = 0;
2401
2402         mpd->io_submit.io_end->offset =
2403                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2404         do {
2405                 err = mpage_map_one_extent(handle, mpd);
2406                 if (err < 0) {
2407                         struct super_block *sb = inode->i_sb;
2408
2409                         if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2410                                 goto invalidate_dirty_pages;
2411                         /*
2412                          * Let the uper layers retry transient errors.
2413                          * In the case of ENOSPC, if ext4_count_free_blocks()
2414                          * is non-zero, a commit should free up blocks.
2415                          */
2416                         if ((err == -ENOMEM) ||
2417                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2418                                 if (progress)
2419                                         goto update_disksize;
2420                                 return err;
2421                         }
2422                         ext4_msg(sb, KERN_CRIT,
2423                                  "Delayed block allocation failed for "
2424                                  "inode %lu at logical offset %llu with"
2425                                  " max blocks %u with error %d",
2426                                  inode->i_ino,
2427                                  (unsigned long long)map->m_lblk,
2428                                  (unsigned)map->m_len, -err);
2429                         ext4_msg(sb, KERN_CRIT,
2430                                  "This should not happen!! Data will "
2431                                  "be lost\n");
2432                         if (err == -ENOSPC)
2433                                 ext4_print_free_blocks(inode);
2434                 invalidate_dirty_pages:
2435                         *give_up_on_write = true;
2436                         return err;
2437                 }
2438                 progress = 1;
2439                 /*
2440                  * Update buffer state, submit mapped pages, and get us new
2441                  * extent to map
2442                  */
2443                 err = mpage_map_and_submit_buffers(mpd);
2444                 if (err < 0)
2445                         goto update_disksize;
2446         } while (map->m_len);
2447
2448 update_disksize:
2449         /*
2450          * Update on-disk size after IO is submitted.  Races with
2451          * truncate are avoided by checking i_size under i_data_sem.
2452          */
2453         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2454         if (disksize > EXT4_I(inode)->i_disksize) {
2455                 int err2;
2456                 loff_t i_size;
2457
2458                 down_write(&EXT4_I(inode)->i_data_sem);
2459                 i_size = i_size_read(inode);
2460                 if (disksize > i_size)
2461                         disksize = i_size;
2462                 if (disksize > EXT4_I(inode)->i_disksize)
2463                         EXT4_I(inode)->i_disksize = disksize;
2464                 err2 = ext4_mark_inode_dirty(handle, inode);
2465                 up_write(&EXT4_I(inode)->i_data_sem);
2466                 if (err2)
2467                         ext4_error(inode->i_sb,
2468                                    "Failed to mark inode %lu dirty",
2469                                    inode->i_ino);
2470                 if (!err)
2471                         err = err2;
2472         }
2473         return err;
2474 }
2475
2476 /*
2477  * Calculate the total number of credits to reserve for one writepages
2478  * iteration. This is called from ext4_writepages(). We map an extent of
2479  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2480  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2481  * bpp - 1 blocks in bpp different extents.
2482  */
2483 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2484 {
2485         int bpp = ext4_journal_blocks_per_page(inode);
2486
2487         return ext4_meta_trans_blocks(inode,
2488                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2489 }
2490
2491 /*
2492  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2493  *                               and underlying extent to map
2494  *
2495  * @mpd - where to look for pages
2496  *
2497  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2498  * IO immediately. When we find a page which isn't mapped we start accumulating
2499  * extent of buffers underlying these pages that needs mapping (formed by
2500  * either delayed or unwritten buffers). We also lock the pages containing
2501  * these buffers. The extent found is returned in @mpd structure (starting at
2502  * mpd->lblk with length mpd->len blocks).
2503  *
2504  * Note that this function can attach bios to one io_end structure which are
2505  * neither logically nor physically contiguous. Although it may seem as an
2506  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2507  * case as we need to track IO to all buffers underlying a page in one io_end.
2508  */
2509 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2510 {
2511         struct address_space *mapping = mpd->inode->i_mapping;
2512         struct pagevec pvec;
2513         unsigned int nr_pages;
2514         long left = mpd->wbc->nr_to_write;
2515         pgoff_t index = mpd->first_page;
2516         pgoff_t end = mpd->last_page;
2517         int tag;
2518         int i, err = 0;
2519         int blkbits = mpd->inode->i_blkbits;
2520         ext4_lblk_t lblk;
2521         struct buffer_head *head;
2522
2523         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2524                 tag = PAGECACHE_TAG_TOWRITE;
2525         else
2526                 tag = PAGECACHE_TAG_DIRTY;
2527
2528         pagevec_init(&pvec, 0);
2529         mpd->map.m_len = 0;
2530         mpd->next_page = index;
2531         while (index <= end) {
2532                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2533                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2534                 if (nr_pages == 0)
2535                         goto out;
2536
2537                 for (i = 0; i < nr_pages; i++) {
2538                         struct page *page = pvec.pages[i];
2539
2540                         /*
2541                          * At this point, the page may be truncated or
2542                          * invalidated (changing page->mapping to NULL), or
2543                          * even swizzled back from swapper_space to tmpfs file
2544                          * mapping. However, page->index will not change
2545                          * because we have a reference on the page.
2546                          */
2547                         if (page->index > end)
2548                                 goto out;
2549
2550                         /*
2551                          * Accumulated enough dirty pages? This doesn't apply
2552                          * to WB_SYNC_ALL mode. For integrity sync we have to
2553                          * keep going because someone may be concurrently
2554                          * dirtying pages, and we might have synced a lot of
2555                          * newly appeared dirty pages, but have not synced all
2556                          * of the old dirty pages.
2557                          */
2558                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2559                                 goto out;
2560
2561                         /* If we can't merge this page, we are done. */
2562                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2563                                 goto out;
2564
2565                         lock_page(page);
2566                         /*
2567                          * If the page is no longer dirty, or its mapping no
2568                          * longer corresponds to inode we are writing (which
2569                          * means it has been truncated or invalidated), or the
2570                          * page is already under writeback and we are not doing
2571                          * a data integrity writeback, skip the page
2572                          */
2573                         if (!PageDirty(page) ||
2574                             (PageWriteback(page) &&
2575                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2576                             unlikely(page->mapping != mapping)) {
2577                                 unlock_page(page);
2578                                 continue;
2579                         }
2580
2581                         wait_on_page_writeback(page);
2582                         BUG_ON(PageWriteback(page));
2583
2584                         if (mpd->map.m_len == 0)
2585                                 mpd->first_page = page->index;
2586                         mpd->next_page = page->index + 1;
2587                         /* Add all dirty buffers to mpd */
2588                         lblk = ((ext4_lblk_t)page->index) <<
2589                                 (PAGE_SHIFT - blkbits);
2590                         head = page_buffers(page);
2591                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2592                         if (err <= 0)
2593                                 goto out;
2594                         err = 0;
2595                         left--;
2596                 }
2597                 pagevec_release(&pvec);
2598                 cond_resched();
2599         }
2600         return 0;
2601 out:
2602         pagevec_release(&pvec);
2603         return err;
2604 }
2605
2606 static int __writepage(struct page *page, struct writeback_control *wbc,
2607                        void *data)
2608 {
2609         struct address_space *mapping = data;
2610         int ret = ext4_writepage(page, wbc);
2611         mapping_set_error(mapping, ret);
2612         return ret;
2613 }
2614
2615 static int ext4_writepages(struct address_space *mapping,
2616                            struct writeback_control *wbc)
2617 {
2618         pgoff_t writeback_index = 0;
2619         long nr_to_write = wbc->nr_to_write;
2620         int range_whole = 0;
2621         int cycled = 1;
2622         handle_t *handle = NULL;
2623         struct mpage_da_data mpd;
2624         struct inode *inode = mapping->host;
2625         int needed_blocks, rsv_blocks = 0, ret = 0;
2626         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2627         bool done;
2628         struct blk_plug plug;
2629         bool give_up_on_write = false;
2630
2631         percpu_down_read(&sbi->s_journal_flag_rwsem);
2632         trace_ext4_writepages(inode, wbc);
2633
2634         if (dax_mapping(mapping)) {
2635                 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2636                                                   wbc);
2637                 goto out_writepages;
2638         }
2639
2640         /*
2641          * No pages to write? This is mainly a kludge to avoid starting
2642          * a transaction for special inodes like journal inode on last iput()
2643          * because that could violate lock ordering on umount
2644          */
2645         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2646                 goto out_writepages;
2647
2648         if (ext4_should_journal_data(inode)) {
2649                 struct blk_plug plug;
2650
2651                 blk_start_plug(&plug);
2652                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2653                 blk_finish_plug(&plug);
2654                 goto out_writepages;
2655         }
2656
2657         /*
2658          * If the filesystem has aborted, it is read-only, so return
2659          * right away instead of dumping stack traces later on that
2660          * will obscure the real source of the problem.  We test
2661          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2662          * the latter could be true if the filesystem is mounted
2663          * read-only, and in that case, ext4_writepages should
2664          * *never* be called, so if that ever happens, we would want
2665          * the stack trace.
2666          */
2667         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2668                 ret = -EROFS;
2669                 goto out_writepages;
2670         }
2671
2672         if (ext4_should_dioread_nolock(inode)) {
2673                 /*
2674                  * We may need to convert up to one extent per block in
2675                  * the page and we may dirty the inode.
2676                  */
2677                 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2678         }
2679
2680         /*
2681          * If we have inline data and arrive here, it means that
2682          * we will soon create the block for the 1st page, so
2683          * we'd better clear the inline data here.
2684          */
2685         if (ext4_has_inline_data(inode)) {
2686                 /* Just inode will be modified... */
2687                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2688                 if (IS_ERR(handle)) {
2689                         ret = PTR_ERR(handle);
2690                         goto out_writepages;
2691                 }
2692                 BUG_ON(ext4_test_inode_state(inode,
2693                                 EXT4_STATE_MAY_INLINE_DATA));
2694                 ext4_destroy_inline_data(handle, inode);
2695                 ext4_journal_stop(handle);
2696         }
2697
2698         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2699                 range_whole = 1;
2700
2701         if (wbc->range_cyclic) {
2702                 writeback_index = mapping->writeback_index;
2703                 if (writeback_index)
2704                         cycled = 0;
2705                 mpd.first_page = writeback_index;
2706                 mpd.last_page = -1;
2707         } else {
2708                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2709                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2710         }
2711
2712         mpd.inode = inode;
2713         mpd.wbc = wbc;
2714         ext4_io_submit_init(&mpd.io_submit, wbc);
2715 retry:
2716         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2717                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2718         done = false;
2719         blk_start_plug(&plug);
2720         while (!done && mpd.first_page <= mpd.last_page) {
2721                 /* For each extent of pages we use new io_end */
2722                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2723                 if (!mpd.io_submit.io_end) {
2724                         ret = -ENOMEM;
2725                         break;
2726                 }
2727
2728                 /*
2729                  * We have two constraints: We find one extent to map and we
2730                  * must always write out whole page (makes a difference when
2731                  * blocksize < pagesize) so that we don't block on IO when we
2732                  * try to write out the rest of the page. Journalled mode is
2733                  * not supported by delalloc.
2734                  */
2735                 BUG_ON(ext4_should_journal_data(inode));
2736                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2737
2738                 /* start a new transaction */
2739                 handle = ext4_journal_start_with_reserve(inode,
2740                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2741                 if (IS_ERR(handle)) {
2742                         ret = PTR_ERR(handle);
2743                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2744                                "%ld pages, ino %lu; err %d", __func__,
2745                                 wbc->nr_to_write, inode->i_ino, ret);
2746                         /* Release allocated io_end */
2747                         ext4_put_io_end(mpd.io_submit.io_end);
2748                         break;
2749                 }
2750
2751                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2752                 ret = mpage_prepare_extent_to_map(&mpd);
2753                 if (!ret) {
2754                         if (mpd.map.m_len)
2755                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2756                                         &give_up_on_write);
2757                         else {
2758                                 /*
2759                                  * We scanned the whole range (or exhausted
2760                                  * nr_to_write), submitted what was mapped and
2761                                  * didn't find anything needing mapping. We are
2762                                  * done.
2763                                  */
2764                                 done = true;
2765                         }
2766                 }
2767                 /*
2768                  * Caution: If the handle is synchronous,
2769                  * ext4_journal_stop() can wait for transaction commit
2770                  * to finish which may depend on writeback of pages to
2771                  * complete or on page lock to be released.  In that
2772                  * case, we have to wait until after after we have
2773                  * submitted all the IO, released page locks we hold,
2774                  * and dropped io_end reference (for extent conversion
2775                  * to be able to complete) before stopping the handle.
2776                  */
2777                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2778                         ext4_journal_stop(handle);
2779                         handle = NULL;
2780                 }
2781                 /* Submit prepared bio */
2782                 ext4_io_submit(&mpd.io_submit);
2783                 /* Unlock pages we didn't use */
2784                 mpage_release_unused_pages(&mpd, give_up_on_write);
2785                 /*
2786                  * Drop our io_end reference we got from init. We have
2787                  * to be careful and use deferred io_end finishing if
2788                  * we are still holding the transaction as we can
2789                  * release the last reference to io_end which may end
2790                  * up doing unwritten extent conversion.
2791                  */
2792                 if (handle) {
2793                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2794                         ext4_journal_stop(handle);
2795                 } else
2796                         ext4_put_io_end(mpd.io_submit.io_end);
2797
2798                 if (ret == -ENOSPC && sbi->s_journal) {
2799                         /*
2800                          * Commit the transaction which would
2801                          * free blocks released in the transaction
2802                          * and try again
2803                          */
2804                         jbd2_journal_force_commit_nested(sbi->s_journal);
2805                         ret = 0;
2806                         continue;
2807                 }
2808                 /* Fatal error - ENOMEM, EIO... */
2809                 if (ret)
2810                         break;
2811         }
2812         blk_finish_plug(&plug);
2813         if (!ret && !cycled && wbc->nr_to_write > 0) {
2814                 cycled = 1;
2815                 mpd.last_page = writeback_index - 1;
2816                 mpd.first_page = 0;
2817                 goto retry;
2818         }
2819
2820         /* Update index */
2821         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2822                 /*
2823                  * Set the writeback_index so that range_cyclic
2824                  * mode will write it back later
2825                  */
2826                 mapping->writeback_index = mpd.first_page;
2827
2828 out_writepages:
2829         trace_ext4_writepages_result(inode, wbc, ret,
2830                                      nr_to_write - wbc->nr_to_write);
2831         percpu_up_read(&sbi->s_journal_flag_rwsem);
2832         return ret;
2833 }
2834
2835 static int ext4_nonda_switch(struct super_block *sb)
2836 {
2837         s64 free_clusters, dirty_clusters;
2838         struct ext4_sb_info *sbi = EXT4_SB(sb);
2839
2840         /*
2841          * switch to non delalloc mode if we are running low
2842          * on free block. The free block accounting via percpu
2843          * counters can get slightly wrong with percpu_counter_batch getting
2844          * accumulated on each CPU without updating global counters
2845          * Delalloc need an accurate free block accounting. So switch
2846          * to non delalloc when we are near to error range.
2847          */
2848         free_clusters =
2849                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2850         dirty_clusters =
2851                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2852         /*
2853          * Start pushing delalloc when 1/2 of free blocks are dirty.
2854          */
2855         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2856                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2857
2858         if (2 * free_clusters < 3 * dirty_clusters ||
2859             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2860                 /*
2861                  * free block count is less than 150% of dirty blocks
2862                  * or free blocks is less than watermark
2863                  */
2864                 return 1;
2865         }
2866         return 0;
2867 }
2868
2869 /* We always reserve for an inode update; the superblock could be there too */
2870 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2871 {
2872         if (likely(ext4_has_feature_large_file(inode->i_sb)))
2873                 return 1;
2874
2875         if (pos + len <= 0x7fffffffULL)
2876                 return 1;
2877
2878         /* We might need to update the superblock to set LARGE_FILE */
2879         return 2;
2880 }
2881
2882 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2883                                loff_t pos, unsigned len, unsigned flags,
2884                                struct page **pagep, void **fsdata)
2885 {
2886         int ret, retries = 0;
2887         struct page *page;
2888         pgoff_t index;
2889         struct inode *inode = mapping->host;
2890         handle_t *handle;
2891
2892         index = pos >> PAGE_SHIFT;
2893
2894         if (ext4_nonda_switch(inode->i_sb)) {
2895                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2896                 return ext4_write_begin(file, mapping, pos,
2897                                         len, flags, pagep, fsdata);
2898         }
2899         *fsdata = (void *)0;
2900         trace_ext4_da_write_begin(inode, pos, len, flags);
2901
2902         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2903                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2904                                                       pos, len, flags,
2905                                                       pagep, fsdata);
2906                 if (ret < 0)
2907                         return ret;
2908                 if (ret == 1)
2909                         return 0;
2910         }
2911
2912         /*
2913          * grab_cache_page_write_begin() can take a long time if the
2914          * system is thrashing due to memory pressure, or if the page
2915          * is being written back.  So grab it first before we start
2916          * the transaction handle.  This also allows us to allocate
2917          * the page (if needed) without using GFP_NOFS.
2918          */
2919 retry_grab:
2920         page = grab_cache_page_write_begin(mapping, index, flags);
2921         if (!page)
2922                 return -ENOMEM;
2923         unlock_page(page);
2924
2925         /*
2926          * With delayed allocation, we don't log the i_disksize update
2927          * if there is delayed block allocation. But we still need
2928          * to journalling the i_disksize update if writes to the end
2929          * of file which has an already mapped buffer.
2930          */
2931 retry_journal:
2932         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2933                                 ext4_da_write_credits(inode, pos, len));
2934         if (IS_ERR(handle)) {
2935                 put_page(page);
2936                 return PTR_ERR(handle);
2937         }
2938
2939         lock_page(page);
2940         if (page->mapping != mapping) {
2941                 /* The page got truncated from under us */
2942                 unlock_page(page);
2943                 put_page(page);
2944                 ext4_journal_stop(handle);
2945                 goto retry_grab;
2946         }
2947         /* In case writeback began while the page was unlocked */
2948         wait_for_stable_page(page);
2949
2950 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2951         ret = ext4_block_write_begin(page, pos, len,
2952                                      ext4_da_get_block_prep);
2953 #else
2954         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2955 #endif
2956         if (ret < 0) {
2957                 unlock_page(page);
2958                 ext4_journal_stop(handle);
2959                 /*
2960                  * block_write_begin may have instantiated a few blocks
2961                  * outside i_size.  Trim these off again. Don't need
2962                  * i_size_read because we hold i_mutex.
2963                  */
2964                 if (pos + len > inode->i_size)
2965                         ext4_truncate_failed_write(inode);
2966
2967                 if (ret == -ENOSPC &&
2968                     ext4_should_retry_alloc(inode->i_sb, &retries))
2969                         goto retry_journal;
2970
2971                 put_page(page);
2972                 return ret;
2973         }
2974
2975         *pagep = page;
2976         return ret;
2977 }
2978
2979 /*
2980  * Check if we should update i_disksize
2981  * when write to the end of file but not require block allocation
2982  */
2983 static int ext4_da_should_update_i_disksize(struct page *page,
2984                                             unsigned long offset)
2985 {
2986         struct buffer_head *bh;
2987         struct inode *inode = page->mapping->host;
2988         unsigned int idx;
2989         int i;
2990
2991         bh = page_buffers(page);
2992         idx = offset >> inode->i_blkbits;
2993
2994         for (i = 0; i < idx; i++)
2995                 bh = bh->b_this_page;
2996
2997         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2998                 return 0;
2999         return 1;
3000 }
3001
3002 static int ext4_da_write_end(struct file *file,
3003                              struct address_space *mapping,
3004                              loff_t pos, unsigned len, unsigned copied,
3005                              struct page *page, void *fsdata)
3006 {
3007         struct inode *inode = mapping->host;
3008         int ret = 0, ret2;
3009         handle_t *handle = ext4_journal_current_handle();
3010         loff_t new_i_size;
3011         unsigned long start, end;
3012         int write_mode = (int)(unsigned long)fsdata;
3013
3014         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3015                 return ext4_write_end(file, mapping, pos,
3016                                       len, copied, page, fsdata);
3017
3018         trace_ext4_da_write_end(inode, pos, len, copied);
3019         start = pos & (PAGE_SIZE - 1);
3020         end = start + copied - 1;
3021
3022         /*
3023          * generic_write_end() will run mark_inode_dirty() if i_size
3024          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3025          * into that.
3026          */
3027         new_i_size = pos + copied;
3028         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3029                 if (ext4_has_inline_data(inode) ||
3030                     ext4_da_should_update_i_disksize(page, end)) {
3031                         ext4_update_i_disksize(inode, new_i_size);
3032                         /* We need to mark inode dirty even if
3033                          * new_i_size is less that inode->i_size
3034                          * bu greater than i_disksize.(hint delalloc)
3035                          */
3036                         ext4_mark_inode_dirty(handle, inode);
3037                 }
3038         }
3039
3040         if (write_mode != CONVERT_INLINE_DATA &&
3041             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3042             ext4_has_inline_data(inode))
3043                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3044                                                      page);
3045         else
3046                 ret2 = generic_write_end(file, mapping, pos, len, copied,
3047                                                         page, fsdata);
3048
3049         copied = ret2;
3050         if (ret2 < 0)
3051                 ret = ret2;
3052         ret2 = ext4_journal_stop(handle);
3053         if (!ret)
3054                 ret = ret2;
3055
3056         return ret ? ret : copied;
3057 }
3058
3059 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3060                                    unsigned int length)
3061 {
3062         /*
3063          * Drop reserved blocks
3064          */
3065         BUG_ON(!PageLocked(page));
3066         if (!page_has_buffers(page))
3067                 goto out;
3068
3069         ext4_da_page_release_reservation(page, offset, length);
3070
3071 out:
3072         ext4_invalidatepage(page, offset, length);
3073
3074         return;
3075 }
3076
3077 /*
3078  * Force all delayed allocation blocks to be allocated for a given inode.
3079  */
3080 int ext4_alloc_da_blocks(struct inode *inode)
3081 {
3082         trace_ext4_alloc_da_blocks(inode);
3083
3084         if (!EXT4_I(inode)->i_reserved_data_blocks)
3085                 return 0;
3086
3087         /*
3088          * We do something simple for now.  The filemap_flush() will
3089          * also start triggering a write of the data blocks, which is
3090          * not strictly speaking necessary (and for users of
3091          * laptop_mode, not even desirable).  However, to do otherwise
3092          * would require replicating code paths in:
3093          *
3094          * ext4_writepages() ->
3095          *    write_cache_pages() ---> (via passed in callback function)
3096          *        __mpage_da_writepage() -->
3097          *           mpage_add_bh_to_extent()
3098          *           mpage_da_map_blocks()
3099          *
3100          * The problem is that write_cache_pages(), located in
3101          * mm/page-writeback.c, marks pages clean in preparation for
3102          * doing I/O, which is not desirable if we're not planning on
3103          * doing I/O at all.
3104          *
3105          * We could call write_cache_pages(), and then redirty all of
3106          * the pages by calling redirty_page_for_writepage() but that
3107          * would be ugly in the extreme.  So instead we would need to
3108          * replicate parts of the code in the above functions,
3109          * simplifying them because we wouldn't actually intend to
3110          * write out the pages, but rather only collect contiguous
3111          * logical block extents, call the multi-block allocator, and
3112          * then update the buffer heads with the block allocations.
3113          *
3114          * For now, though, we'll cheat by calling filemap_flush(),
3115          * which will map the blocks, and start the I/O, but not
3116          * actually wait for the I/O to complete.
3117          */
3118         return filemap_flush(inode->i_mapping);
3119 }
3120
3121 /*
3122  * bmap() is special.  It gets used by applications such as lilo and by
3123  * the swapper to find the on-disk block of a specific piece of data.
3124  *
3125  * Naturally, this is dangerous if the block concerned is still in the
3126  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3127  * filesystem and enables swap, then they may get a nasty shock when the
3128  * data getting swapped to that swapfile suddenly gets overwritten by
3129  * the original zero's written out previously to the journal and
3130  * awaiting writeback in the kernel's buffer cache.
3131  *
3132  * So, if we see any bmap calls here on a modified, data-journaled file,
3133  * take extra steps to flush any blocks which might be in the cache.
3134  */
3135 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3136 {
3137         struct inode *inode = mapping->host;
3138         journal_t *journal;
3139         int err;
3140
3141         /*
3142          * We can get here for an inline file via the FIBMAP ioctl
3143          */
3144         if (ext4_has_inline_data(inode))
3145                 return 0;
3146
3147         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3148                         test_opt(inode->i_sb, DELALLOC)) {
3149                 /*
3150                  * With delalloc we want to sync the file
3151                  * so that we can make sure we allocate
3152                  * blocks for file
3153                  */
3154                 filemap_write_and_wait(mapping);
3155         }
3156
3157         if (EXT4_JOURNAL(inode) &&
3158             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3159                 /*
3160                  * This is a REALLY heavyweight approach, but the use of
3161                  * bmap on dirty files is expected to be extremely rare:
3162                  * only if we run lilo or swapon on a freshly made file
3163                  * do we expect this to happen.
3164                  *
3165                  * (bmap requires CAP_SYS_RAWIO so this does not
3166                  * represent an unprivileged user DOS attack --- we'd be
3167                  * in trouble if mortal users could trigger this path at
3168                  * will.)
3169                  *
3170                  * NB. EXT4_STATE_JDATA is not set on files other than
3171                  * regular files.  If somebody wants to bmap a directory
3172                  * or symlink and gets confused because the buffer
3173                  * hasn't yet been flushed to disk, they deserve
3174                  * everything they get.
3175                  */
3176
3177                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3178                 journal = EXT4_JOURNAL(inode);
3179                 jbd2_journal_lock_updates(journal);
3180                 err = jbd2_journal_flush(journal);
3181                 jbd2_journal_unlock_updates(journal);
3182
3183                 if (err)
3184                         return 0;
3185         }
3186
3187         return generic_block_bmap(mapping, block, ext4_get_block);
3188 }
3189
3190 static int ext4_readpage(struct file *file, struct page *page)
3191 {
3192         int ret = -EAGAIN;
3193         struct inode *inode = page->mapping->host;
3194
3195         trace_ext4_readpage(page);
3196
3197         if (ext4_has_inline_data(inode))
3198                 ret = ext4_readpage_inline(inode, page);
3199
3200         if (ret == -EAGAIN)
3201                 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3202
3203         return ret;
3204 }
3205
3206 static int
3207 ext4_readpages(struct file *file, struct address_space *mapping,
3208                 struct list_head *pages, unsigned nr_pages)
3209 {
3210         struct inode *inode = mapping->host;
3211
3212         /* If the file has inline data, no need to do readpages. */
3213         if (ext4_has_inline_data(inode))
3214                 return 0;
3215
3216         return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3217 }
3218
3219 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3220                                 unsigned int length)
3221 {
3222         trace_ext4_invalidatepage(page, offset, length);
3223
3224         /* No journalling happens on data buffers when this function is used */
3225         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3226
3227         block_invalidatepage(page, offset, length);
3228 }
3229
3230 static int __ext4_journalled_invalidatepage(struct page *page,
3231                                             unsigned int offset,
3232                                             unsigned int length)
3233 {
3234         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3235
3236         trace_ext4_journalled_invalidatepage(page, offset, length);
3237
3238         /*
3239          * If it's a full truncate we just forget about the pending dirtying
3240          */
3241         if (offset == 0 && length == PAGE_SIZE)
3242                 ClearPageChecked(page);
3243
3244         return jbd2_journal_invalidatepage(journal, page, offset, length);
3245 }
3246
3247 /* Wrapper for aops... */
3248 static void ext4_journalled_invalidatepage(struct page *page,
3249                                            unsigned int offset,
3250                                            unsigned int length)
3251 {
3252         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3253 }
3254
3255 static int ext4_releasepage(struct page *page, gfp_t wait)
3256 {
3257         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3258
3259         trace_ext4_releasepage(page);
3260
3261         /* Page has dirty journalled data -> cannot release */
3262         if (PageChecked(page))
3263                 return 0;
3264         if (journal)
3265                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3266         else
3267                 return try_to_free_buffers(page);
3268 }
3269
3270 #ifdef CONFIG_FS_DAX
3271 /*
3272  * Get block function for DAX IO and mmap faults. It takes care of converting
3273  * unwritten extents to written ones and initializes new / converted blocks
3274  * to zeros.
3275  */
3276 int ext4_dax_get_block(struct inode *inode, sector_t iblock,
3277                        struct buffer_head *bh_result, int create)
3278 {
3279         int ret;
3280
3281         ext4_debug("inode %lu, create flag %d\n", inode->i_ino, create);
3282         if (!create)
3283                 return _ext4_get_block(inode, iblock, bh_result, 0);
3284
3285         ret = ext4_get_block_trans(inode, iblock, bh_result,
3286                                    EXT4_GET_BLOCKS_PRE_IO |
3287                                    EXT4_GET_BLOCKS_CREATE_ZERO);
3288         if (ret < 0)
3289                 return ret;
3290
3291         if (buffer_unwritten(bh_result)) {
3292                 /*
3293                  * We are protected by i_mmap_sem or i_mutex so we know block
3294                  * cannot go away from under us even though we dropped
3295                  * i_data_sem. Convert extent to written and write zeros there.
3296                  */
3297                 ret = ext4_get_block_trans(inode, iblock, bh_result,
3298                                            EXT4_GET_BLOCKS_CONVERT |
3299                                            EXT4_GET_BLOCKS_CREATE_ZERO);
3300                 if (ret < 0)
3301                         return ret;
3302         }
3303         /*
3304          * At least for now we have to clear BH_New so that DAX code
3305          * doesn't attempt to zero blocks again in a racy way.
3306          */
3307         clear_buffer_new(bh_result);
3308         return 0;
3309 }
3310 #else
3311 /* Just define empty function, it will never get called. */
3312 int ext4_dax_get_block(struct inode *inode, sector_t iblock,
3313                        struct buffer_head *bh_result, int create)
3314 {
3315         BUG();
3316         return 0;
3317 }
3318 #endif
3319
3320 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3321                             ssize_t size, void *private)
3322 {
3323         ext4_io_end_t *io_end = private;
3324
3325         /* if not async direct IO just return */
3326         if (!io_end)
3327                 return 0;
3328
3329         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3330                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3331                   io_end, io_end->inode->i_ino, iocb, offset, size);
3332
3333         /*
3334          * Error during AIO DIO. We cannot convert unwritten extents as the
3335          * data was not written. Just clear the unwritten flag and drop io_end.
3336          */
3337         if (size <= 0) {
3338                 ext4_clear_io_unwritten_flag(io_end);
3339                 size = 0;
3340         }
3341         io_end->offset = offset;
3342         io_end->size = size;
3343         ext4_put_io_end(io_end);
3344
3345         return 0;
3346 }
3347
3348 /*
3349  * Handling of direct IO writes.
3350  *
3351  * For ext4 extent files, ext4 will do direct-io write even to holes,
3352  * preallocated extents, and those write extend the file, no need to
3353  * fall back to buffered IO.
3354  *
3355  * For holes, we fallocate those blocks, mark them as unwritten
3356  * If those blocks were preallocated, we mark sure they are split, but
3357  * still keep the range to write as unwritten.
3358  *
3359  * The unwritten extents will be converted to written when DIO is completed.
3360  * For async direct IO, since the IO may still pending when return, we
3361  * set up an end_io call back function, which will do the conversion
3362  * when async direct IO completed.
3363  *
3364  * If the O_DIRECT write will extend the file then add this inode to the
3365  * orphan list.  So recovery will truncate it back to the original size
3366  * if the machine crashes during the write.
3367  *
3368  */
3369 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3370 {
3371         struct file *file = iocb->ki_filp;
3372         struct inode *inode = file->f_mapping->host;
3373         struct ext4_inode_info *ei = EXT4_I(inode);
3374         ssize_t ret;
3375         loff_t offset = iocb->ki_pos;
3376         size_t count = iov_iter_count(iter);
3377         int overwrite = 0;
3378         get_block_t *get_block_func = NULL;
3379         int dio_flags = 0;
3380         loff_t final_size = offset + count;
3381         int orphan = 0;
3382         handle_t *handle;
3383
3384         if (final_size > inode->i_size) {
3385                 /* Credits for sb + inode write */
3386                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3387                 if (IS_ERR(handle)) {
3388                         ret = PTR_ERR(handle);
3389                         goto out;
3390                 }
3391                 ret = ext4_orphan_add(handle, inode);
3392                 if (ret) {
3393                         ext4_journal_stop(handle);
3394                         goto out;
3395                 }
3396                 orphan = 1;
3397                 ei->i_disksize = inode->i_size;
3398                 ext4_journal_stop(handle);
3399         }
3400
3401         BUG_ON(iocb->private == NULL);
3402
3403         /*
3404          * Make all waiters for direct IO properly wait also for extent
3405          * conversion. This also disallows race between truncate() and
3406          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3407          */
3408         inode_dio_begin(inode);
3409
3410         /* If we do a overwrite dio, i_mutex locking can be released */
3411         overwrite = *((int *)iocb->private);
3412
3413         if (overwrite)
3414                 inode_unlock(inode);
3415
3416         /*
3417          * For extent mapped files we could direct write to holes and fallocate.
3418          *
3419          * Allocated blocks to fill the hole are marked as unwritten to prevent
3420          * parallel buffered read to expose the stale data before DIO complete
3421          * the data IO.
3422          *
3423          * As to previously fallocated extents, ext4 get_block will just simply
3424          * mark the buffer mapped but still keep the extents unwritten.
3425          *
3426          * For non AIO case, we will convert those unwritten extents to written
3427          * after return back from blockdev_direct_IO. That way we save us from
3428          * allocating io_end structure and also the overhead of offloading
3429          * the extent convertion to a workqueue.
3430          *
3431          * For async DIO, the conversion needs to be deferred when the
3432          * IO is completed. The ext4 end_io callback function will be
3433          * called to take care of the conversion work.  Here for async
3434          * case, we allocate an io_end structure to hook to the iocb.
3435          */
3436         iocb->private = NULL;
3437         if (overwrite)
3438                 get_block_func = ext4_dio_get_block_overwrite;
3439         else if (IS_DAX(inode)) {
3440                 /*
3441                  * We can avoid zeroing for aligned DAX writes beyond EOF. Other
3442                  * writes need zeroing either because they can race with page
3443                  * faults or because they use partial blocks.
3444                  */
3445                 if (round_down(offset, 1<<inode->i_blkbits) >= inode->i_size &&
3446                     ext4_aligned_io(inode, offset, count))
3447                         get_block_func = ext4_dio_get_block;
3448                 else
3449                         get_block_func = ext4_dax_get_block;
3450                 dio_flags = DIO_LOCKING;
3451         } else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3452                    round_down(offset, 1 << inode->i_blkbits) >= inode->i_size) {
3453                 get_block_func = ext4_dio_get_block;
3454                 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3455         } else if (is_sync_kiocb(iocb)) {
3456                 get_block_func = ext4_dio_get_block_unwritten_sync;
3457                 dio_flags = DIO_LOCKING;
3458         } else {
3459                 get_block_func = ext4_dio_get_block_unwritten_async;
3460                 dio_flags = DIO_LOCKING;
3461         }
3462 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3463         BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3464 #endif
3465         if (IS_DAX(inode)) {
3466                 ret = dax_do_io(iocb, inode, iter, get_block_func,
3467                                 ext4_end_io_dio, dio_flags);
3468         } else
3469                 ret = __blockdev_direct_IO(iocb, inode,
3470                                            inode->i_sb->s_bdev, iter,
3471                                            get_block_func,
3472                                            ext4_end_io_dio, NULL, dio_flags);
3473
3474         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3475                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3476                 int err;
3477                 /*
3478                  * for non AIO case, since the IO is already
3479                  * completed, we could do the conversion right here
3480                  */
3481                 err = ext4_convert_unwritten_extents(NULL, inode,
3482                                                      offset, ret);
3483                 if (err < 0)
3484                         ret = err;
3485                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3486         }
3487
3488         inode_dio_end(inode);
3489         /* take i_mutex locking again if we do a ovewrite dio */
3490         if (overwrite)
3491                 inode_lock(inode);
3492
3493         if (ret < 0 && final_size > inode->i_size)
3494                 ext4_truncate_failed_write(inode);
3495
3496         /* Handle extending of i_size after direct IO write */
3497         if (orphan) {
3498                 int err;
3499
3500                 /* Credits for sb + inode write */
3501                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3502                 if (IS_ERR(handle)) {
3503                         /* This is really bad luck. We've written the data
3504                          * but cannot extend i_size. Bail out and pretend
3505                          * the write failed... */
3506                         ret = PTR_ERR(handle);
3507                         if (inode->i_nlink)
3508                                 ext4_orphan_del(NULL, inode);
3509
3510                         goto out;
3511                 }
3512                 if (inode->i_nlink)
3513                         ext4_orphan_del(handle, inode);
3514                 if (ret > 0) {
3515                         loff_t end = offset + ret;
3516                         if (end > inode->i_size) {
3517                                 ei->i_disksize = end;
3518                                 i_size_write(inode, end);
3519                                 /*
3520                                  * We're going to return a positive `ret'
3521                                  * here due to non-zero-length I/O, so there's
3522                                  * no way of reporting error returns from
3523                                  * ext4_mark_inode_dirty() to userspace.  So
3524                                  * ignore it.
3525                                  */
3526                                 ext4_mark_inode_dirty(handle, inode);
3527                         }
3528                 }
3529                 err = ext4_journal_stop(handle);
3530                 if (ret == 0)
3531                         ret = err;
3532         }
3533 out:
3534         return ret;
3535 }
3536
3537 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3538 {
3539         struct address_space *mapping = iocb->ki_filp->f_mapping;
3540         struct inode *inode = mapping->host;
3541         ssize_t ret;
3542
3543         /*
3544          * Shared inode_lock is enough for us - it protects against concurrent
3545          * writes & truncates and since we take care of writing back page cache,
3546          * we are protected against page writeback as well.
3547          */
3548         inode_lock_shared(inode);
3549         if (IS_DAX(inode)) {
3550                 ret = dax_do_io(iocb, inode, iter, ext4_dio_get_block, NULL, 0);
3551         } else {
3552                 size_t count = iov_iter_count(iter);
3553
3554                 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3555                                                    iocb->ki_pos + count);
3556                 if (ret)
3557                         goto out_unlock;
3558                 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3559                                            iter, ext4_dio_get_block,
3560                                            NULL, NULL, 0);
3561         }
3562 out_unlock:
3563         inode_unlock_shared(inode);
3564         return ret;
3565 }
3566
3567 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3568 {
3569         struct file *file = iocb->ki_filp;
3570         struct inode *inode = file->f_mapping->host;
3571         size_t count = iov_iter_count(iter);
3572         loff_t offset = iocb->ki_pos;
3573         ssize_t ret;
3574
3575 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3576         if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3577                 return 0;
3578 #endif
3579
3580         /*
3581          * If we are doing data journalling we don't support O_DIRECT
3582          */
3583         if (ext4_should_journal_data(inode))
3584                 return 0;
3585
3586         /* Let buffer I/O handle the inline data case. */
3587         if (ext4_has_inline_data(inode))
3588                 return 0;
3589
3590         trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3591         if (iov_iter_rw(iter) == READ)
3592                 ret = ext4_direct_IO_read(iocb, iter);
3593         else
3594                 ret = ext4_direct_IO_write(iocb, iter);
3595         trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3596         return ret;
3597 }
3598
3599 /*
3600  * Pages can be marked dirty completely asynchronously from ext4's journalling
3601  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3602  * much here because ->set_page_dirty is called under VFS locks.  The page is
3603  * not necessarily locked.
3604  *
3605  * We cannot just dirty the page and leave attached buffers clean, because the
3606  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3607  * or jbddirty because all the journalling code will explode.
3608  *
3609  * So what we do is to mark the page "pending dirty" and next time writepage
3610  * is called, propagate that into the buffers appropriately.
3611  */
3612 static int ext4_journalled_set_page_dirty(struct page *page)
3613 {
3614         SetPageChecked(page);
3615         return __set_page_dirty_nobuffers(page);
3616 }
3617
3618 static const struct address_space_operations ext4_aops = {
3619         .readpage               = ext4_readpage,
3620         .readpages              = ext4_readpages,
3621         .writepage              = ext4_writepage,
3622         .writepages             = ext4_writepages,
3623         .write_begin            = ext4_write_begin,
3624         .write_end              = ext4_write_end,
3625         .bmap                   = ext4_bmap,
3626         .invalidatepage         = ext4_invalidatepage,
3627         .releasepage            = ext4_releasepage,
3628         .direct_IO              = ext4_direct_IO,
3629         .migratepage            = buffer_migrate_page,
3630         .is_partially_uptodate  = block_is_partially_uptodate,
3631         .error_remove_page      = generic_error_remove_page,
3632 };
3633
3634 static const struct address_space_operations ext4_journalled_aops = {
3635         .readpage               = ext4_readpage,
3636         .readpages              = ext4_readpages,
3637         .writepage              = ext4_writepage,
3638         .writepages             = ext4_writepages,
3639         .write_begin            = ext4_write_begin,
3640         .write_end              = ext4_journalled_write_end,
3641         .set_page_dirty         = ext4_journalled_set_page_dirty,
3642         .bmap                   = ext4_bmap,
3643         .invalidatepage         = ext4_journalled_invalidatepage,
3644         .releasepage            = ext4_releasepage,
3645         .direct_IO              = ext4_direct_IO,
3646         .is_partially_uptodate  = block_is_partially_uptodate,
3647         .error_remove_page      = generic_error_remove_page,
3648 };
3649
3650 static const struct address_space_operations ext4_da_aops = {
3651         .readpage               = ext4_readpage,
3652         .readpages              = ext4_readpages,
3653         .writepage              = ext4_writepage,
3654         .writepages             = ext4_writepages,
3655         .write_begin            = ext4_da_write_begin,
3656         .write_end              = ext4_da_write_end,
3657         .bmap                   = ext4_bmap,
3658         .invalidatepage         = ext4_da_invalidatepage,
3659         .releasepage            = ext4_releasepage,
3660         .direct_IO              = ext4_direct_IO,
3661         .migratepage            = buffer_migrate_page,
3662         .is_partially_uptodate  = block_is_partially_uptodate,
3663         .error_remove_page      = generic_error_remove_page,
3664 };
3665
3666 void ext4_set_aops(struct inode *inode)
3667 {
3668         switch (ext4_inode_journal_mode(inode)) {
3669         case EXT4_INODE_ORDERED_DATA_MODE:
3670         case EXT4_INODE_WRITEBACK_DATA_MODE:
3671                 break;
3672         case EXT4_INODE_JOURNAL_DATA_MODE:
3673                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3674                 return;
3675         default:
3676                 BUG();
3677         }
3678         if (test_opt(inode->i_sb, DELALLOC))
3679                 inode->i_mapping->a_ops = &ext4_da_aops;
3680         else
3681                 inode->i_mapping->a_ops = &ext4_aops;
3682 }
3683
3684 static int __ext4_block_zero_page_range(handle_t *handle,
3685                 struct address_space *mapping, loff_t from, loff_t length)
3686 {
3687         ext4_fsblk_t index = from >> PAGE_SHIFT;
3688         unsigned offset = from & (PAGE_SIZE-1);
3689         unsigned blocksize, pos;
3690         ext4_lblk_t iblock;
3691         struct inode *inode = mapping->host;
3692         struct buffer_head *bh;
3693         struct page *page;
3694         int err = 0;
3695
3696         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3697                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3698         if (!page)
3699                 return -ENOMEM;
3700
3701         blocksize = inode->i_sb->s_blocksize;
3702
3703         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3704
3705         if (!page_has_buffers(page))
3706                 create_empty_buffers(page, blocksize, 0);
3707
3708         /* Find the buffer that contains "offset" */
3709         bh = page_buffers(page);
3710         pos = blocksize;
3711         while (offset >= pos) {
3712                 bh = bh->b_this_page;
3713                 iblock++;
3714                 pos += blocksize;
3715         }
3716         if (buffer_freed(bh)) {
3717                 BUFFER_TRACE(bh, "freed: skip");
3718                 goto unlock;
3719         }
3720         if (!buffer_mapped(bh)) {
3721                 BUFFER_TRACE(bh, "unmapped");
3722                 ext4_get_block(inode, iblock, bh, 0);
3723                 /* unmapped? It's a hole - nothing to do */
3724                 if (!buffer_mapped(bh)) {
3725                         BUFFER_TRACE(bh, "still unmapped");
3726                         goto unlock;
3727                 }
3728         }
3729
3730         /* Ok, it's mapped. Make sure it's up-to-date */
3731         if (PageUptodate(page))
3732                 set_buffer_uptodate(bh);
3733
3734         if (!buffer_uptodate(bh)) {
3735                 err = -EIO;
3736                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3737                 wait_on_buffer(bh);
3738                 /* Uhhuh. Read error. Complain and punt. */
3739                 if (!buffer_uptodate(bh))
3740                         goto unlock;
3741                 if (S_ISREG(inode->i_mode) &&
3742                     ext4_encrypted_inode(inode)) {
3743                         /* We expect the key to be set. */
3744                         BUG_ON(!fscrypt_has_encryption_key(inode));
3745                         BUG_ON(blocksize != PAGE_SIZE);
3746                         WARN_ON_ONCE(fscrypt_decrypt_page(page));
3747                 }
3748         }
3749         if (ext4_should_journal_data(inode)) {
3750                 BUFFER_TRACE(bh, "get write access");
3751                 err = ext4_journal_get_write_access(handle, bh);
3752                 if (err)
3753                         goto unlock;
3754         }
3755         zero_user(page, offset, length);
3756         BUFFER_TRACE(bh, "zeroed end of block");
3757
3758         if (ext4_should_journal_data(inode)) {
3759                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3760         } else {
3761                 err = 0;
3762                 mark_buffer_dirty(bh);
3763                 if (ext4_should_order_data(inode))
3764                         err = ext4_jbd2_inode_add_write(handle, inode);
3765         }
3766
3767 unlock:
3768         unlock_page(page);
3769         put_page(page);
3770         return err;
3771 }
3772
3773 /*
3774  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3775  * starting from file offset 'from'.  The range to be zero'd must
3776  * be contained with in one block.  If the specified range exceeds
3777  * the end of the block it will be shortened to end of the block
3778  * that cooresponds to 'from'
3779  */
3780 static int ext4_block_zero_page_range(handle_t *handle,
3781                 struct address_space *mapping, loff_t from, loff_t length)
3782 {
3783         struct inode *inode = mapping->host;
3784         unsigned offset = from & (PAGE_SIZE-1);
3785         unsigned blocksize = inode->i_sb->s_blocksize;
3786         unsigned max = blocksize - (offset & (blocksize - 1));
3787
3788         /*
3789          * correct length if it does not fall between
3790          * 'from' and the end of the block
3791          */
3792         if (length > max || length < 0)
3793                 length = max;
3794
3795         if (IS_DAX(inode))
3796                 return dax_zero_page_range(inode, from, length, ext4_get_block);
3797         return __ext4_block_zero_page_range(handle, mapping, from, length);
3798 }
3799
3800 /*
3801  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3802  * up to the end of the block which corresponds to `from'.
3803  * This required during truncate. We need to physically zero the tail end
3804  * of that block so it doesn't yield old data if the file is later grown.
3805  */
3806 static int ext4_block_truncate_page(handle_t *handle,
3807                 struct address_space *mapping, loff_t from)
3808 {
3809         unsigned offset = from & (PAGE_SIZE-1);
3810         unsigned length;
3811         unsigned blocksize;
3812         struct inode *inode = mapping->host;
3813
3814         blocksize = inode->i_sb->s_blocksize;
3815         length = blocksize - (offset & (blocksize - 1));
3816
3817         return ext4_block_zero_page_range(handle, mapping, from, length);
3818 }
3819
3820 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3821                              loff_t lstart, loff_t length)
3822 {
3823         struct super_block *sb = inode->i_sb;
3824         struct address_space *mapping = inode->i_mapping;
3825         unsigned partial_start, partial_end;
3826         ext4_fsblk_t start, end;
3827         loff_t byte_end = (lstart + length - 1);
3828         int err = 0;
3829
3830         partial_start = lstart & (sb->s_blocksize - 1);
3831         partial_end = byte_end & (sb->s_blocksize - 1);
3832
3833         start = lstart >> sb->s_blocksize_bits;
3834         end = byte_end >> sb->s_blocksize_bits;
3835
3836         /* Handle partial zero within the single block */
3837         if (start == end &&
3838             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3839                 err = ext4_block_zero_page_range(handle, mapping,
3840                                                  lstart, length);
3841                 return err;
3842         }
3843         /* Handle partial zero out on the start of the range */
3844         if (partial_start) {
3845                 err = ext4_block_zero_page_range(handle, mapping,
3846                                                  lstart, sb->s_blocksize);
3847                 if (err)
3848                         return err;
3849         }
3850         /* Handle partial zero out on the end of the range */
3851         if (partial_end != sb->s_blocksize - 1)
3852                 err = ext4_block_zero_page_range(handle, mapping,
3853                                                  byte_end - partial_end,
3854                                                  partial_end + 1);
3855         return err;
3856 }
3857
3858 int ext4_can_truncate(struct inode *inode)
3859 {
3860         if (S_ISREG(inode->i_mode))
3861                 return 1;
3862         if (S_ISDIR(inode->i_mode))
3863                 return 1;
3864         if (S_ISLNK(inode->i_mode))
3865                 return !ext4_inode_is_fast_symlink(inode);
3866         return 0;
3867 }
3868
3869 /*
3870  * We have to make sure i_disksize gets properly updated before we truncate
3871  * page cache due to hole punching or zero range. Otherwise i_disksize update
3872  * can get lost as it may have been postponed to submission of writeback but
3873  * that will never happen after we truncate page cache.
3874  */
3875 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3876                                       loff_t len)
3877 {
3878         handle_t *handle;
3879         loff_t size = i_size_read(inode);
3880
3881         WARN_ON(!inode_is_locked(inode));
3882         if (offset > size || offset + len < size)
3883                 return 0;
3884
3885         if (EXT4_I(inode)->i_disksize >= size)
3886                 return 0;
3887
3888         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3889         if (IS_ERR(handle))
3890                 return PTR_ERR(handle);
3891         ext4_update_i_disksize(inode, size);
3892         ext4_mark_inode_dirty(handle, inode);
3893         ext4_journal_stop(handle);
3894
3895         return 0;
3896 }
3897
3898 /*
3899  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3900  * associated with the given offset and length
3901  *
3902  * @inode:  File inode
3903  * @offset: The offset where the hole will begin
3904  * @len:    The length of the hole
3905  *
3906  * Returns: 0 on success or negative on failure
3907  */
3908
3909 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3910 {
3911         struct super_block *sb = inode->i_sb;
3912         ext4_lblk_t first_block, stop_block;
3913         struct address_space *mapping = inode->i_mapping;
3914         loff_t first_block_offset, last_block_offset;
3915         handle_t *handle;
3916         unsigned int credits;
3917         int ret = 0;
3918
3919         if (!S_ISREG(inode->i_mode))
3920                 return -EOPNOTSUPP;
3921
3922         trace_ext4_punch_hole(inode, offset, length, 0);
3923
3924         /*
3925          * Write out all dirty pages to avoid race conditions
3926          * Then release them.
3927          */
3928         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3929                 ret = filemap_write_and_wait_range(mapping, offset,
3930                                                    offset + length - 1);
3931                 if (ret)
3932                         return ret;
3933         }
3934
3935         inode_lock(inode);
3936
3937         /* No need to punch hole beyond i_size */
3938         if (offset >= inode->i_size)
3939                 goto out_mutex;
3940
3941         /*
3942          * If the hole extends beyond i_size, set the hole
3943          * to end after the page that contains i_size
3944          */
3945         if (offset + length > inode->i_size) {
3946                 length = inode->i_size +
3947                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3948                    offset;
3949         }
3950
3951         if (offset & (sb->s_blocksize - 1) ||
3952             (offset + length) & (sb->s_blocksize - 1)) {
3953                 /*
3954                  * Attach jinode to inode for jbd2 if we do any zeroing of
3955                  * partial block
3956                  */
3957                 ret = ext4_inode_attach_jinode(inode);
3958                 if (ret < 0)
3959                         goto out_mutex;
3960
3961         }
3962
3963         /* Wait all existing dio workers, newcomers will block on i_mutex */
3964         ext4_inode_block_unlocked_dio(inode);
3965         inode_dio_wait(inode);
3966
3967         /*
3968          * Prevent page faults from reinstantiating pages we have released from
3969          * page cache.
3970          */
3971         down_write(&EXT4_I(inode)->i_mmap_sem);
3972         first_block_offset = round_up(offset, sb->s_blocksize);
3973         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3974
3975         /* Now release the pages and zero block aligned part of pages*/
3976         if (last_block_offset > first_block_offset) {
3977                 ret = ext4_update_disksize_before_punch(inode, offset, length);
3978                 if (ret)
3979                         goto out_dio;
3980                 truncate_pagecache_range(inode, first_block_offset,
3981                                          last_block_offset);
3982         }
3983
3984         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3985                 credits = ext4_writepage_trans_blocks(inode);
3986         else
3987                 credits = ext4_blocks_for_truncate(inode);
3988         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3989         if (IS_ERR(handle)) {
3990                 ret = PTR_ERR(handle);
3991                 ext4_std_error(sb, ret);
3992                 goto out_dio;
3993         }
3994
3995         ret = ext4_zero_partial_blocks(handle, inode, offset,
3996                                        length);
3997         if (ret)
3998                 goto out_stop;
3999
4000         first_block = (offset + sb->s_blocksize - 1) >>
4001                 EXT4_BLOCK_SIZE_BITS(sb);
4002         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4003
4004         /* If there are no blocks to remove, return now */
4005         if (first_block >= stop_block)
4006                 goto out_stop;
4007
4008         down_write(&EXT4_I(inode)->i_data_sem);
4009         ext4_discard_preallocations(inode);
4010
4011         ret = ext4_es_remove_extent(inode, first_block,
4012                                     stop_block - first_block);
4013         if (ret) {
4014                 up_write(&EXT4_I(inode)->i_data_sem);
4015                 goto out_stop;
4016         }
4017
4018         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4019                 ret = ext4_ext_remove_space(inode, first_block,
4020                                             stop_block - 1);
4021         else
4022                 ret = ext4_ind_remove_space(handle, inode, first_block,
4023                                             stop_block);
4024
4025         up_write(&EXT4_I(inode)->i_data_sem);
4026         if (IS_SYNC(inode))
4027                 ext4_handle_sync(handle);
4028
4029         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4030         ext4_mark_inode_dirty(handle, inode);
4031 out_stop:
4032         ext4_journal_stop(handle);
4033 out_dio:
4034         up_write(&EXT4_I(inode)->i_mmap_sem);
4035         ext4_inode_resume_unlocked_dio(inode);
4036 out_mutex:
4037         inode_unlock(inode);
4038         return ret;
4039 }
4040
4041 int ext4_inode_attach_jinode(struct inode *inode)
4042 {
4043         struct ext4_inode_info *ei = EXT4_I(inode);
4044         struct jbd2_inode *jinode;
4045
4046         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4047                 return 0;
4048
4049         jinode = jbd2_alloc_inode(GFP_KERNEL);
4050         spin_lock(&inode->i_lock);
4051         if (!ei->jinode) {
4052                 if (!jinode) {
4053                         spin_unlock(&inode->i_lock);
4054                         return -ENOMEM;
4055                 }
4056                 ei->jinode = jinode;
4057                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4058                 jinode = NULL;
4059         }
4060         spin_unlock(&inode->i_lock);
4061         if (unlikely(jinode != NULL))
4062                 jbd2_free_inode(jinode);
4063         return 0;
4064 }
4065
4066 /*
4067  * ext4_truncate()
4068  *
4069  * We block out ext4_get_block() block instantiations across the entire
4070  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4071  * simultaneously on behalf of the same inode.
4072  *
4073  * As we work through the truncate and commit bits of it to the journal there
4074  * is one core, guiding principle: the file's tree must always be consistent on
4075  * disk.  We must be able to restart the truncate after a crash.
4076  *
4077  * The file's tree may be transiently inconsistent in memory (although it
4078  * probably isn't), but whenever we close off and commit a journal transaction,
4079  * the contents of (the filesystem + the journal) must be consistent and
4080  * restartable.  It's pretty simple, really: bottom up, right to left (although
4081  * left-to-right works OK too).
4082  *
4083  * Note that at recovery time, journal replay occurs *before* the restart of
4084  * truncate against the orphan inode list.
4085  *
4086  * The committed inode has the new, desired i_size (which is the same as
4087  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4088  * that this inode's truncate did not complete and it will again call
4089  * ext4_truncate() to have another go.  So there will be instantiated blocks
4090  * to the right of the truncation point in a crashed ext4 filesystem.  But
4091  * that's fine - as long as they are linked from the inode, the post-crash
4092  * ext4_truncate() run will find them and release them.
4093  */
4094 void ext4_truncate(struct inode *inode)
4095 {
4096         struct ext4_inode_info *ei = EXT4_I(inode);
4097         unsigned int credits;
4098         handle_t *handle;
4099         struct address_space *mapping = inode->i_mapping;
4100
4101         /*
4102          * There is a possibility that we're either freeing the inode
4103          * or it's a completely new inode. In those cases we might not
4104          * have i_mutex locked because it's not necessary.
4105          */
4106         if (!(inode->i_state & (I_NEW|I_FREEING)))
4107                 WARN_ON(!inode_is_locked(inode));
4108         trace_ext4_truncate_enter(inode);
4109
4110         if (!ext4_can_truncate(inode))
4111                 return;
4112
4113         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4114
4115         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4116                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4117
4118         if (ext4_has_inline_data(inode)) {
4119                 int has_inline = 1;
4120
4121                 ext4_inline_data_truncate(inode, &has_inline);
4122                 if (has_inline)
4123                         return;
4124         }
4125
4126         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4127         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4128                 if (ext4_inode_attach_jinode(inode) < 0)
4129                         return;
4130         }
4131
4132         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4133                 credits = ext4_writepage_trans_blocks(inode);
4134         else
4135                 credits = ext4_blocks_for_truncate(inode);
4136
4137         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4138         if (IS_ERR(handle)) {
4139                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
4140                 return;
4141         }
4142
4143         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4144                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4145
4146         /*
4147          * We add the inode to the orphan list, so that if this
4148          * truncate spans multiple transactions, and we crash, we will
4149          * resume the truncate when the filesystem recovers.  It also
4150          * marks the inode dirty, to catch the new size.
4151          *
4152          * Implication: the file must always be in a sane, consistent
4153          * truncatable state while each transaction commits.
4154          */
4155         if (ext4_orphan_add(handle, inode))
4156                 goto out_stop;
4157
4158         down_write(&EXT4_I(inode)->i_data_sem);
4159
4160         ext4_discard_preallocations(inode);
4161
4162         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4163                 ext4_ext_truncate(handle, inode);
4164         else
4165                 ext4_ind_truncate(handle, inode);
4166
4167         up_write(&ei->i_data_sem);
4168
4169         if (IS_SYNC(inode))
4170                 ext4_handle_sync(handle);
4171
4172 out_stop:
4173         /*
4174          * If this was a simple ftruncate() and the file will remain alive,
4175          * then we need to clear up the orphan record which we created above.
4176          * However, if this was a real unlink then we were called by
4177          * ext4_evict_inode(), and we allow that function to clean up the
4178          * orphan info for us.
4179          */
4180         if (inode->i_nlink)
4181                 ext4_orphan_del(handle, inode);
4182
4183         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4184         ext4_mark_inode_dirty(handle, inode);
4185         ext4_journal_stop(handle);
4186
4187         trace_ext4_truncate_exit(inode);
4188 }
4189
4190 /*
4191  * ext4_get_inode_loc returns with an extra refcount against the inode's
4192  * underlying buffer_head on success. If 'in_mem' is true, we have all
4193  * data in memory that is needed to recreate the on-disk version of this
4194  * inode.
4195  */
4196 static int __ext4_get_inode_loc(struct inode *inode,
4197                                 struct ext4_iloc *iloc, int in_mem)
4198 {
4199         struct ext4_group_desc  *gdp;
4200         struct buffer_head      *bh;
4201         struct super_block      *sb = inode->i_sb;
4202         ext4_fsblk_t            block;
4203         int                     inodes_per_block, inode_offset;
4204
4205         iloc->bh = NULL;
4206         if (!ext4_valid_inum(sb, inode->i_ino))
4207                 return -EFSCORRUPTED;
4208
4209         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4210         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4211         if (!gdp)
4212                 return -EIO;
4213
4214         /*
4215          * Figure out the offset within the block group inode table
4216          */
4217         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4218         inode_offset = ((inode->i_ino - 1) %
4219                         EXT4_INODES_PER_GROUP(sb));
4220         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4221         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4222
4223         bh = sb_getblk(sb, block);
4224         if (unlikely(!bh))
4225                 return -ENOMEM;
4226         if (!buffer_uptodate(bh)) {
4227                 lock_buffer(bh);
4228
4229                 /*
4230                  * If the buffer has the write error flag, we have failed
4231                  * to write out another inode in the same block.  In this
4232                  * case, we don't have to read the block because we may
4233                  * read the old inode data successfully.
4234                  */
4235                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4236                         set_buffer_uptodate(bh);
4237
4238                 if (buffer_uptodate(bh)) {
4239                         /* someone brought it uptodate while we waited */
4240                         unlock_buffer(bh);
4241                         goto has_buffer;
4242                 }
4243
4244                 /*
4245                  * If we have all information of the inode in memory and this
4246                  * is the only valid inode in the block, we need not read the
4247                  * block.
4248                  */
4249                 if (in_mem) {
4250                         struct buffer_head *bitmap_bh;
4251                         int i, start;
4252
4253                         start = inode_offset & ~(inodes_per_block - 1);
4254
4255                         /* Is the inode bitmap in cache? */
4256                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4257                         if (unlikely(!bitmap_bh))
4258                                 goto make_io;
4259
4260                         /*
4261                          * If the inode bitmap isn't in cache then the
4262                          * optimisation may end up performing two reads instead
4263                          * of one, so skip it.
4264                          */
4265                         if (!buffer_uptodate(bitmap_bh)) {
4266                                 brelse(bitmap_bh);
4267                                 goto make_io;
4268                         }
4269                         for (i = start; i < start + inodes_per_block; i++) {
4270                                 if (i == inode_offset)
4271                                         continue;
4272                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4273                                         break;
4274                         }
4275                         brelse(bitmap_bh);
4276                         if (i == start + inodes_per_block) {
4277                                 /* all other inodes are free, so skip I/O */
4278                                 memset(bh->b_data, 0, bh->b_size);
4279                                 set_buffer_uptodate(bh);
4280                                 unlock_buffer(bh);
4281                                 goto has_buffer;
4282                         }
4283                 }
4284
4285 make_io:
4286                 /*
4287                  * If we need to do any I/O, try to pre-readahead extra
4288                  * blocks from the inode table.
4289                  */
4290                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4291                         ext4_fsblk_t b, end, table;
4292                         unsigned num;
4293                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4294
4295                         table = ext4_inode_table(sb, gdp);
4296                         /* s_inode_readahead_blks is always a power of 2 */
4297                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4298                         if (table > b)
4299                                 b = table;
4300                         end = b + ra_blks;
4301                         num = EXT4_INODES_PER_GROUP(sb);
4302                         if (ext4_has_group_desc_csum(sb))
4303                                 num -= ext4_itable_unused_count(sb, gdp);
4304                         table += num / inodes_per_block;
4305                         if (end > table)
4306                                 end = table;
4307                         while (b <= end)
4308                                 sb_breadahead(sb, b++);
4309                 }
4310
4311                 /*
4312                  * There are other valid inodes in the buffer, this inode
4313                  * has in-inode xattrs, or we don't have this inode in memory.
4314                  * Read the block from disk.
4315                  */
4316                 trace_ext4_load_inode(inode);
4317                 get_bh(bh);
4318                 bh->b_end_io = end_buffer_read_sync;
4319                 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4320                 wait_on_buffer(bh);
4321                 if (!buffer_uptodate(bh)) {
4322                         EXT4_ERROR_INODE_BLOCK(inode, block,
4323                                                "unable to read itable block");
4324                         brelse(bh);
4325                         return -EIO;
4326                 }
4327         }
4328 has_buffer:
4329         iloc->bh = bh;
4330         return 0;
4331 }
4332
4333 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4334 {
4335         /* We have all inode data except xattrs in memory here. */
4336         return __ext4_get_inode_loc(inode, iloc,
4337                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4338 }
4339
4340 void ext4_set_inode_flags(struct inode *inode)
4341 {
4342         unsigned int flags = EXT4_I(inode)->i_flags;
4343         unsigned int new_fl = 0;
4344
4345         if (flags & EXT4_SYNC_FL)
4346                 new_fl |= S_SYNC;
4347         if (flags & EXT4_APPEND_FL)
4348                 new_fl |= S_APPEND;
4349         if (flags & EXT4_IMMUTABLE_FL)
4350                 new_fl |= S_IMMUTABLE;
4351         if (flags & EXT4_NOATIME_FL)
4352                 new_fl |= S_NOATIME;
4353         if (flags & EXT4_DIRSYNC_FL)
4354                 new_fl |= S_DIRSYNC;
4355         if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
4356                 new_fl |= S_DAX;
4357         inode_set_flags(inode, new_fl,
4358                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4359 }
4360
4361 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4362 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4363 {
4364         unsigned int vfs_fl;
4365         unsigned long old_fl, new_fl;
4366
4367         do {
4368                 vfs_fl = ei->vfs_inode.i_flags;
4369                 old_fl = ei->i_flags;
4370                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4371                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4372                                 EXT4_DIRSYNC_FL);
4373                 if (vfs_fl & S_SYNC)
4374                         new_fl |= EXT4_SYNC_FL;
4375                 if (vfs_fl & S_APPEND)
4376                         new_fl |= EXT4_APPEND_FL;
4377                 if (vfs_fl & S_IMMUTABLE)
4378                         new_fl |= EXT4_IMMUTABLE_FL;
4379                 if (vfs_fl & S_NOATIME)
4380                         new_fl |= EXT4_NOATIME_FL;
4381                 if (vfs_fl & S_DIRSYNC)
4382                         new_fl |= EXT4_DIRSYNC_FL;
4383         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4384 }
4385
4386 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4387                                   struct ext4_inode_info *ei)
4388 {
4389         blkcnt_t i_blocks ;
4390         struct inode *inode = &(ei->vfs_inode);
4391         struct super_block *sb = inode->i_sb;
4392
4393         if (ext4_has_feature_huge_file(sb)) {
4394                 /* we are using combined 48 bit field */
4395                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4396                                         le32_to_cpu(raw_inode->i_blocks_lo);
4397                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4398                         /* i_blocks represent file system block size */
4399                         return i_blocks  << (inode->i_blkbits - 9);
4400                 } else {
4401                         return i_blocks;
4402                 }
4403         } else {
4404                 return le32_to_cpu(raw_inode->i_blocks_lo);
4405         }
4406 }
4407
4408 static inline void ext4_iget_extra_inode(struct inode *inode,
4409                                          struct ext4_inode *raw_inode,
4410                                          struct ext4_inode_info *ei)
4411 {
4412         __le32 *magic = (void *)raw_inode +
4413                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4414         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4415                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4416                 ext4_find_inline_data_nolock(inode);
4417         } else
4418                 EXT4_I(inode)->i_inline_off = 0;
4419 }
4420
4421 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4422 {
4423         if (!ext4_has_feature_project(inode->i_sb))
4424                 return -EOPNOTSUPP;
4425         *projid = EXT4_I(inode)->i_projid;
4426         return 0;
4427 }
4428
4429 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4430 {
4431         struct ext4_iloc iloc;
4432         struct ext4_inode *raw_inode;
4433         struct ext4_inode_info *ei;
4434         struct inode *inode;
4435         journal_t *journal = EXT4_SB(sb)->s_journal;
4436         long ret;
4437         int block;
4438         uid_t i_uid;
4439         gid_t i_gid;
4440         projid_t i_projid;
4441
4442         inode = iget_locked(sb, ino);
4443         if (!inode)
4444                 return ERR_PTR(-ENOMEM);
4445         if (!(inode->i_state & I_NEW))
4446                 return inode;
4447
4448         ei = EXT4_I(inode);
4449         iloc.bh = NULL;
4450
4451         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4452         if (ret < 0)
4453                 goto bad_inode;
4454         raw_inode = ext4_raw_inode(&iloc);
4455
4456         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4457                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4458                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4459                     EXT4_INODE_SIZE(inode->i_sb)) {
4460                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4461                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4462                                 EXT4_INODE_SIZE(inode->i_sb));
4463                         ret = -EFSCORRUPTED;
4464                         goto bad_inode;
4465                 }
4466         } else
4467                 ei->i_extra_isize = 0;
4468
4469         /* Precompute checksum seed for inode metadata */
4470         if (ext4_has_metadata_csum(sb)) {
4471                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4472                 __u32 csum;
4473                 __le32 inum = cpu_to_le32(inode->i_ino);
4474                 __le32 gen = raw_inode->i_generation;
4475                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4476                                    sizeof(inum));
4477                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4478                                               sizeof(gen));
4479         }
4480
4481         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4482                 EXT4_ERROR_INODE(inode, "checksum invalid");
4483                 ret = -EFSBADCRC;
4484                 goto bad_inode;
4485         }
4486
4487         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4488         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4489         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4490         if (ext4_has_feature_project(sb) &&
4491             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4492             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4493                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4494         else
4495                 i_projid = EXT4_DEF_PROJID;
4496
4497         if (!(test_opt(inode->i_sb, NO_UID32))) {
4498                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4499                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4500         }
4501         i_uid_write(inode, i_uid);
4502         i_gid_write(inode, i_gid);
4503         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4504         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4505
4506         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4507         ei->i_inline_off = 0;
4508         ei->i_dir_start_lookup = 0;
4509         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4510         /* We now have enough fields to check if the inode was active or not.
4511          * This is needed because nfsd might try to access dead inodes
4512          * the test is that same one that e2fsck uses
4513          * NeilBrown 1999oct15
4514          */
4515         if (inode->i_nlink == 0) {
4516                 if ((inode->i_mode == 0 ||
4517                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4518                     ino != EXT4_BOOT_LOADER_INO) {
4519                         /* this inode is deleted */
4520                         ret = -ESTALE;
4521                         goto bad_inode;
4522                 }
4523                 /* The only unlinked inodes we let through here have
4524                  * valid i_mode and are being read by the orphan
4525                  * recovery code: that's fine, we're about to complete
4526                  * the process of deleting those.
4527                  * OR it is the EXT4_BOOT_LOADER_INO which is
4528                  * not initialized on a new filesystem. */
4529         }
4530         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4531         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4532         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4533         if (ext4_has_feature_64bit(sb))
4534                 ei->i_file_acl |=
4535                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4536         inode->i_size = ext4_isize(raw_inode);
4537         ei->i_disksize = inode->i_size;
4538 #ifdef CONFIG_QUOTA
4539         ei->i_reserved_quota = 0;
4540 #endif
4541         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4542         ei->i_block_group = iloc.block_group;
4543         ei->i_last_alloc_group = ~0;
4544         /*
4545          * NOTE! The in-memory inode i_data array is in little-endian order
4546          * even on big-endian machines: we do NOT byteswap the block numbers!
4547          */
4548         for (block = 0; block < EXT4_N_BLOCKS; block++)
4549                 ei->i_data[block] = raw_inode->i_block[block];
4550         INIT_LIST_HEAD(&ei->i_orphan);
4551
4552         /*
4553          * Set transaction id's of transactions that have to be committed
4554          * to finish f[data]sync. We set them to currently running transaction
4555          * as we cannot be sure that the inode or some of its metadata isn't
4556          * part of the transaction - the inode could have been reclaimed and
4557          * now it is reread from disk.
4558          */
4559         if (journal) {
4560                 transaction_t *transaction;
4561                 tid_t tid;
4562
4563                 read_lock(&journal->j_state_lock);
4564                 if (journal->j_running_transaction)
4565                         transaction = journal->j_running_transaction;
4566                 else
4567                         transaction = journal->j_committing_transaction;
4568                 if (transaction)
4569                         tid = transaction->t_tid;
4570                 else
4571                         tid = journal->j_commit_sequence;
4572                 read_unlock(&journal->j_state_lock);
4573                 ei->i_sync_tid = tid;
4574                 ei->i_datasync_tid = tid;
4575         }
4576
4577         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4578                 if (ei->i_extra_isize == 0) {
4579                         /* The extra space is currently unused. Use it. */
4580                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4581                                             EXT4_GOOD_OLD_INODE_SIZE;
4582                 } else {
4583                         ext4_iget_extra_inode(inode, raw_inode, ei);
4584                 }
4585         }
4586
4587         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4588         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4589         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4590         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4591
4592         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4593                 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4594                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4595                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4596                                 inode->i_version |=
4597                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4598                 }
4599         }
4600
4601         ret = 0;
4602         if (ei->i_file_acl &&
4603             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4604                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4605                                  ei->i_file_acl);
4606                 ret = -EFSCORRUPTED;
4607                 goto bad_inode;
4608         } else if (!ext4_has_inline_data(inode)) {
4609                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4610                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4611                             (S_ISLNK(inode->i_mode) &&
4612                              !ext4_inode_is_fast_symlink(inode))))
4613                                 /* Validate extent which is part of inode */
4614                                 ret = ext4_ext_check_inode(inode);
4615                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4616                            (S_ISLNK(inode->i_mode) &&
4617                             !ext4_inode_is_fast_symlink(inode))) {
4618                         /* Validate block references which are part of inode */
4619                         ret = ext4_ind_check_inode(inode);
4620                 }
4621         }
4622         if (ret)
4623                 goto bad_inode;
4624
4625         if (S_ISREG(inode->i_mode)) {
4626                 inode->i_op = &ext4_file_inode_operations;
4627                 inode->i_fop = &ext4_file_operations;
4628                 ext4_set_aops(inode);
4629         } else if (S_ISDIR(inode->i_mode)) {
4630                 inode->i_op = &ext4_dir_inode_operations;
4631                 inode->i_fop = &ext4_dir_operations;
4632         } else if (S_ISLNK(inode->i_mode)) {
4633                 if (ext4_encrypted_inode(inode)) {
4634                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4635                         ext4_set_aops(inode);
4636                 } else if (ext4_inode_is_fast_symlink(inode)) {
4637                         inode->i_link = (char *)ei->i_data;
4638                         inode->i_op = &ext4_fast_symlink_inode_operations;
4639                         nd_terminate_link(ei->i_data, inode->i_size,
4640                                 sizeof(ei->i_data) - 1);
4641                 } else {
4642                         inode->i_op = &ext4_symlink_inode_operations;
4643                         ext4_set_aops(inode);
4644                 }
4645                 inode_nohighmem(inode);
4646         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4647               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4648                 inode->i_op = &ext4_special_inode_operations;
4649                 if (raw_inode->i_block[0])
4650                         init_special_inode(inode, inode->i_mode,
4651                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4652                 else
4653                         init_special_inode(inode, inode->i_mode,
4654                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4655         } else if (ino == EXT4_BOOT_LOADER_INO) {
4656                 make_bad_inode(inode);
4657         } else {
4658                 ret = -EFSCORRUPTED;
4659                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4660                 goto bad_inode;
4661         }
4662         brelse(iloc.bh);
4663         ext4_set_inode_flags(inode);
4664         unlock_new_inode(inode);
4665         return inode;
4666
4667 bad_inode:
4668         brelse(iloc.bh);
4669         iget_failed(inode);
4670         return ERR_PTR(ret);
4671 }
4672
4673 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4674 {
4675         if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4676                 return ERR_PTR(-EFSCORRUPTED);
4677         return ext4_iget(sb, ino);
4678 }
4679
4680 static int ext4_inode_blocks_set(handle_t *handle,
4681                                 struct ext4_inode *raw_inode,
4682                                 struct ext4_inode_info *ei)
4683 {
4684         struct inode *inode = &(ei->vfs_inode);
4685         u64 i_blocks = inode->i_blocks;
4686         struct super_block *sb = inode->i_sb;
4687
4688         if (i_blocks <= ~0U) {
4689                 /*
4690                  * i_blocks can be represented in a 32 bit variable
4691                  * as multiple of 512 bytes
4692                  */
4693                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4694                 raw_inode->i_blocks_high = 0;
4695                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4696                 return 0;
4697         }
4698         if (!ext4_has_feature_huge_file(sb))
4699                 return -EFBIG;
4700
4701         if (i_blocks <= 0xffffffffffffULL) {
4702                 /*
4703                  * i_blocks can be represented in a 48 bit variable
4704                  * as multiple of 512 bytes
4705                  */
4706                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4707                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4708                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4709         } else {
4710                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4711                 /* i_block is stored in file system block size */
4712                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4713                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4714                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4715         }
4716         return 0;
4717 }
4718
4719 struct other_inode {
4720         unsigned long           orig_ino;
4721         struct ext4_inode       *raw_inode;
4722 };
4723
4724 static int other_inode_match(struct inode * inode, unsigned long ino,
4725                              void *data)
4726 {
4727         struct other_inode *oi = (struct other_inode *) data;
4728
4729         if ((inode->i_ino != ino) ||
4730             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4731                                I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4732             ((inode->i_state & I_DIRTY_TIME) == 0))
4733                 return 0;
4734         spin_lock(&inode->i_lock);
4735         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4736                                 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4737             (inode->i_state & I_DIRTY_TIME)) {
4738                 struct ext4_inode_info  *ei = EXT4_I(inode);
4739
4740                 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4741                 spin_unlock(&inode->i_lock);
4742
4743                 spin_lock(&ei->i_raw_lock);
4744                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4745                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4746                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4747                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4748                 spin_unlock(&ei->i_raw_lock);
4749                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4750                 return -1;
4751         }
4752         spin_unlock(&inode->i_lock);
4753         return -1;
4754 }
4755
4756 /*
4757  * Opportunistically update the other time fields for other inodes in
4758  * the same inode table block.
4759  */
4760 static void ext4_update_other_inodes_time(struct super_block *sb,
4761                                           unsigned long orig_ino, char *buf)
4762 {
4763         struct other_inode oi;
4764         unsigned long ino;
4765         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4766         int inode_size = EXT4_INODE_SIZE(sb);
4767
4768         oi.orig_ino = orig_ino;
4769         /*
4770          * Calculate the first inode in the inode table block.  Inode
4771          * numbers are one-based.  That is, the first inode in a block
4772          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4773          */
4774         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4775         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4776                 if (ino == orig_ino)
4777                         continue;
4778                 oi.raw_inode = (struct ext4_inode *) buf;
4779                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4780         }
4781 }
4782
4783 /*
4784  * Post the struct inode info into an on-disk inode location in the
4785  * buffer-cache.  This gobbles the caller's reference to the
4786  * buffer_head in the inode location struct.
4787  *
4788  * The caller must have write access to iloc->bh.
4789  */
4790 static int ext4_do_update_inode(handle_t *handle,
4791                                 struct inode *inode,
4792                                 struct ext4_iloc *iloc)
4793 {
4794         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4795         struct ext4_inode_info *ei = EXT4_I(inode);
4796         struct buffer_head *bh = iloc->bh;
4797         struct super_block *sb = inode->i_sb;
4798         int err = 0, rc, block;
4799         int need_datasync = 0, set_large_file = 0;
4800         uid_t i_uid;
4801         gid_t i_gid;
4802         projid_t i_projid;
4803
4804         spin_lock(&ei->i_raw_lock);
4805
4806         /* For fields not tracked in the in-memory inode,
4807          * initialise them to zero for new inodes. */
4808         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4809                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4810
4811         ext4_get_inode_flags(ei);
4812         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4813         i_uid = i_uid_read(inode);
4814         i_gid = i_gid_read(inode);
4815         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4816         if (!(test_opt(inode->i_sb, NO_UID32))) {
4817                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4818                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4819 /*
4820  * Fix up interoperability with old kernels. Otherwise, old inodes get
4821  * re-used with the upper 16 bits of the uid/gid intact
4822  */
4823                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4824                         raw_inode->i_uid_high = 0;
4825                         raw_inode->i_gid_high = 0;
4826                 } else {
4827                         raw_inode->i_uid_high =
4828                                 cpu_to_le16(high_16_bits(i_uid));
4829                         raw_inode->i_gid_high =
4830                                 cpu_to_le16(high_16_bits(i_gid));
4831                 }
4832         } else {
4833                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4834                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4835                 raw_inode->i_uid_high = 0;
4836                 raw_inode->i_gid_high = 0;
4837         }
4838         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4839
4840         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4841         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4842         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4843         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4844
4845         err = ext4_inode_blocks_set(handle, raw_inode, ei);
4846         if (err) {
4847                 spin_unlock(&ei->i_raw_lock);
4848                 goto out_brelse;
4849         }
4850         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4851         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4852         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4853                 raw_inode->i_file_acl_high =
4854                         cpu_to_le16(ei->i_file_acl >> 32);
4855         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4856         if (ei->i_disksize != ext4_isize(raw_inode)) {
4857                 ext4_isize_set(raw_inode, ei->i_disksize);
4858                 need_datasync = 1;
4859         }
4860         if (ei->i_disksize > 0x7fffffffULL) {
4861                 if (!ext4_has_feature_large_file(sb) ||
4862                                 EXT4_SB(sb)->s_es->s_rev_level ==
4863                     cpu_to_le32(EXT4_GOOD_OLD_REV))
4864                         set_large_file = 1;
4865         }
4866         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4867         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4868                 if (old_valid_dev(inode->i_rdev)) {
4869                         raw_inode->i_block[0] =
4870                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4871                         raw_inode->i_block[1] = 0;
4872                 } else {
4873                         raw_inode->i_block[0] = 0;
4874                         raw_inode->i_block[1] =
4875                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4876                         raw_inode->i_block[2] = 0;
4877                 }
4878         } else if (!ext4_has_inline_data(inode)) {
4879                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4880                         raw_inode->i_block[block] = ei->i_data[block];
4881         }
4882
4883         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4884                 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4885                 if (ei->i_extra_isize) {
4886                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4887                                 raw_inode->i_version_hi =
4888                                         cpu_to_le32(inode->i_version >> 32);
4889                         raw_inode->i_extra_isize =
4890                                 cpu_to_le16(ei->i_extra_isize);
4891                 }
4892         }
4893
4894         BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
4895                i_projid != EXT4_DEF_PROJID);
4896
4897         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4898             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4899                 raw_inode->i_projid = cpu_to_le32(i_projid);
4900
4901         ext4_inode_csum_set(inode, raw_inode, ei);
4902         spin_unlock(&ei->i_raw_lock);
4903         if (inode->i_sb->s_flags & MS_LAZYTIME)
4904                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4905                                               bh->b_data);
4906
4907         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4908         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4909         if (!err)
4910                 err = rc;
4911         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4912         if (set_large_file) {
4913                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4914                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4915                 if (err)
4916                         goto out_brelse;
4917                 ext4_update_dynamic_rev(sb);
4918                 ext4_set_feature_large_file(sb);
4919                 ext4_handle_sync(handle);
4920                 err = ext4_handle_dirty_super(handle, sb);
4921         }
4922         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4923 out_brelse:
4924         brelse(bh);
4925         ext4_std_error(inode->i_sb, err);
4926         return err;
4927 }
4928
4929 /*
4930  * ext4_write_inode()
4931  *
4932  * We are called from a few places:
4933  *
4934  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4935  *   Here, there will be no transaction running. We wait for any running
4936  *   transaction to commit.
4937  *
4938  * - Within flush work (sys_sync(), kupdate and such).
4939  *   We wait on commit, if told to.
4940  *
4941  * - Within iput_final() -> write_inode_now()
4942  *   We wait on commit, if told to.
4943  *
4944  * In all cases it is actually safe for us to return without doing anything,
4945  * because the inode has been copied into a raw inode buffer in
4946  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4947  * writeback.
4948  *
4949  * Note that we are absolutely dependent upon all inode dirtiers doing the
4950  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4951  * which we are interested.
4952  *
4953  * It would be a bug for them to not do this.  The code:
4954  *
4955  *      mark_inode_dirty(inode)
4956  *      stuff();
4957  *      inode->i_size = expr;
4958  *
4959  * is in error because write_inode() could occur while `stuff()' is running,
4960  * and the new i_size will be lost.  Plus the inode will no longer be on the
4961  * superblock's dirty inode list.
4962  */
4963 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4964 {
4965         int err;
4966
4967         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4968                 return 0;
4969
4970         if (EXT4_SB(inode->i_sb)->s_journal) {
4971                 if (ext4_journal_current_handle()) {
4972                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4973                         dump_stack();
4974                         return -EIO;
4975                 }
4976
4977                 /*
4978                  * No need to force transaction in WB_SYNC_NONE mode. Also
4979                  * ext4_sync_fs() will force the commit after everything is
4980                  * written.
4981                  */
4982                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4983                         return 0;
4984
4985                 err = ext4_force_commit(inode->i_sb);
4986         } else {
4987                 struct ext4_iloc iloc;
4988
4989                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4990                 if (err)
4991                         return err;
4992                 /*
4993                  * sync(2) will flush the whole buffer cache. No need to do
4994                  * it here separately for each inode.
4995                  */
4996                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4997                         sync_dirty_buffer(iloc.bh);
4998                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4999                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5000                                          "IO error syncing inode");
5001                         err = -EIO;
5002                 }
5003                 brelse(iloc.bh);
5004         }
5005         return err;
5006 }
5007
5008 /*
5009  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5010  * buffers that are attached to a page stradding i_size and are undergoing
5011  * commit. In that case we have to wait for commit to finish and try again.
5012  */
5013 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5014 {
5015         struct page *page;
5016         unsigned offset;
5017         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5018         tid_t commit_tid = 0;
5019         int ret;
5020
5021         offset = inode->i_size & (PAGE_SIZE - 1);
5022         /*
5023          * All buffers in the last page remain valid? Then there's nothing to
5024          * do. We do the check mainly to optimize the common PAGE_SIZE ==
5025          * blocksize case
5026          */
5027         if (offset > PAGE_SIZE - (1 << inode->i_blkbits))
5028                 return;
5029         while (1) {
5030                 page = find_lock_page(inode->i_mapping,
5031                                       inode->i_size >> PAGE_SHIFT);
5032                 if (!page)
5033                         return;
5034                 ret = __ext4_journalled_invalidatepage(page, offset,
5035                                                 PAGE_SIZE - offset);
5036                 unlock_page(page);
5037                 put_page(page);
5038                 if (ret != -EBUSY)
5039                         return;
5040                 commit_tid = 0;
5041                 read_lock(&journal->j_state_lock);
5042                 if (journal->j_committing_transaction)
5043                         commit_tid = journal->j_committing_transaction->t_tid;
5044                 read_unlock(&journal->j_state_lock);
5045                 if (commit_tid)
5046                         jbd2_log_wait_commit(journal, commit_tid);
5047         }
5048 }
5049
5050 /*
5051  * ext4_setattr()
5052  *
5053  * Called from notify_change.
5054  *
5055  * We want to trap VFS attempts to truncate the file as soon as
5056  * possible.  In particular, we want to make sure that when the VFS
5057  * shrinks i_size, we put the inode on the orphan list and modify
5058  * i_disksize immediately, so that during the subsequent flushing of
5059  * dirty pages and freeing of disk blocks, we can guarantee that any
5060  * commit will leave the blocks being flushed in an unused state on
5061  * disk.  (On recovery, the inode will get truncated and the blocks will
5062  * be freed, so we have a strong guarantee that no future commit will
5063  * leave these blocks visible to the user.)
5064  *
5065  * Another thing we have to assure is that if we are in ordered mode
5066  * and inode is still attached to the committing transaction, we must
5067  * we start writeout of all the dirty pages which are being truncated.
5068  * This way we are sure that all the data written in the previous
5069  * transaction are already on disk (truncate waits for pages under
5070  * writeback).
5071  *
5072  * Called with inode->i_mutex down.
5073  */
5074 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5075 {
5076         struct inode *inode = d_inode(dentry);
5077         int error, rc = 0;
5078         int orphan = 0;
5079         const unsigned int ia_valid = attr->ia_valid;
5080
5081         error = setattr_prepare(dentry, attr);
5082         if (error)
5083                 return error;
5084
5085         if (is_quota_modification(inode, attr)) {
5086                 error = dquot_initialize(inode);
5087                 if (error)
5088                         return error;
5089         }
5090         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5091             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5092                 handle_t *handle;
5093
5094                 /* (user+group)*(old+new) structure, inode write (sb,
5095                  * inode block, ? - but truncate inode update has it) */
5096                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5097                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5098                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5099                 if (IS_ERR(handle)) {
5100                         error = PTR_ERR(handle);
5101                         goto err_out;
5102                 }
5103                 error = dquot_transfer(inode, attr);
5104                 if (error) {
5105                         ext4_journal_stop(handle);
5106                         return error;
5107                 }
5108                 /* Update corresponding info in inode so that everything is in
5109                  * one transaction */
5110                 if (attr->ia_valid & ATTR_UID)
5111                         inode->i_uid = attr->ia_uid;
5112                 if (attr->ia_valid & ATTR_GID)
5113                         inode->i_gid = attr->ia_gid;
5114                 error = ext4_mark_inode_dirty(handle, inode);
5115                 ext4_journal_stop(handle);
5116         }
5117
5118         if (attr->ia_valid & ATTR_SIZE) {
5119                 handle_t *handle;
5120                 loff_t oldsize = inode->i_size;
5121                 int shrink = (attr->ia_size <= inode->i_size);
5122
5123                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5124                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5125
5126                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
5127                                 return -EFBIG;
5128                 }
5129                 if (!S_ISREG(inode->i_mode))
5130                         return -EINVAL;
5131
5132                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5133                         inode_inc_iversion(inode);
5134
5135                 if (ext4_should_order_data(inode) &&
5136                     (attr->ia_size < inode->i_size)) {
5137                         error = ext4_begin_ordered_truncate(inode,
5138                                                             attr->ia_size);
5139                         if (error)
5140                                 goto err_out;
5141                 }
5142                 if (attr->ia_size != inode->i_size) {
5143                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5144                         if (IS_ERR(handle)) {
5145                                 error = PTR_ERR(handle);
5146                                 goto err_out;
5147                         }
5148                         if (ext4_handle_valid(handle) && shrink) {
5149                                 error = ext4_orphan_add(handle, inode);
5150                                 orphan = 1;
5151                         }
5152                         /*
5153                          * Update c/mtime on truncate up, ext4_truncate() will
5154                          * update c/mtime in shrink case below
5155                          */
5156                         if (!shrink) {
5157                                 inode->i_mtime = ext4_current_time(inode);
5158                                 inode->i_ctime = inode->i_mtime;
5159                         }
5160                         down_write(&EXT4_I(inode)->i_data_sem);
5161                         EXT4_I(inode)->i_disksize = attr->ia_size;
5162                         rc = ext4_mark_inode_dirty(handle, inode);
5163                         if (!error)
5164                                 error = rc;
5165                         /*
5166                          * We have to update i_size under i_data_sem together
5167                          * with i_disksize to avoid races with writeback code
5168                          * running ext4_wb_update_i_disksize().
5169                          */
5170                         if (!error)
5171                                 i_size_write(inode, attr->ia_size);
5172                         up_write(&EXT4_I(inode)->i_data_sem);
5173                         ext4_journal_stop(handle);
5174                         if (error) {
5175                                 if (orphan)
5176                                         ext4_orphan_del(NULL, inode);
5177                                 goto err_out;
5178                         }
5179                 }
5180                 if (!shrink)
5181                         pagecache_isize_extended(inode, oldsize, inode->i_size);
5182
5183                 /*
5184                  * Blocks are going to be removed from the inode. Wait
5185                  * for dio in flight.  Temporarily disable
5186                  * dioread_nolock to prevent livelock.
5187                  */
5188                 if (orphan) {
5189                         if (!ext4_should_journal_data(inode)) {
5190                                 ext4_inode_block_unlocked_dio(inode);
5191                                 inode_dio_wait(inode);
5192                                 ext4_inode_resume_unlocked_dio(inode);
5193                         } else
5194                                 ext4_wait_for_tail_page_commit(inode);
5195                 }
5196                 down_write(&EXT4_I(inode)->i_mmap_sem);
5197                 /*
5198                  * Truncate pagecache after we've waited for commit
5199                  * in data=journal mode to make pages freeable.
5200                  */
5201                 truncate_pagecache(inode, inode->i_size);
5202                 if (shrink)
5203                         ext4_truncate(inode);
5204                 up_write(&EXT4_I(inode)->i_mmap_sem);
5205         }
5206
5207         if (!rc) {
5208                 setattr_copy(inode, attr);
5209                 mark_inode_dirty(inode);
5210         }
5211
5212         /*
5213          * If the call to ext4_truncate failed to get a transaction handle at
5214          * all, we need to clean up the in-core orphan list manually.
5215          */
5216         if (orphan && inode->i_nlink)
5217                 ext4_orphan_del(NULL, inode);
5218
5219         if (!rc && (ia_valid & ATTR_MODE))
5220                 rc = posix_acl_chmod(inode, inode->i_mode);
5221
5222 err_out:
5223         ext4_std_error(inode->i_sb, error);
5224         if (!error)
5225                 error = rc;
5226         return error;
5227 }
5228
5229 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5230                  struct kstat *stat)
5231 {
5232         struct inode *inode;
5233         unsigned long long delalloc_blocks;
5234
5235         inode = d_inode(dentry);
5236         generic_fillattr(inode, stat);
5237
5238         /*
5239          * If there is inline data in the inode, the inode will normally not
5240          * have data blocks allocated (it may have an external xattr block).
5241          * Report at least one sector for such files, so tools like tar, rsync,
5242          * others doen't incorrectly think the file is completely sparse.
5243          */
5244         if (unlikely(ext4_has_inline_data(inode)))
5245                 stat->blocks += (stat->size + 511) >> 9;
5246
5247         /*
5248          * We can't update i_blocks if the block allocation is delayed
5249          * otherwise in the case of system crash before the real block
5250          * allocation is done, we will have i_blocks inconsistent with
5251          * on-disk file blocks.
5252          * We always keep i_blocks updated together with real
5253          * allocation. But to not confuse with user, stat
5254          * will return the blocks that include the delayed allocation
5255          * blocks for this file.
5256          */
5257         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5258                                    EXT4_I(inode)->i_reserved_data_blocks);
5259         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5260         return 0;
5261 }
5262
5263 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5264                                    int pextents)
5265 {
5266         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5267                 return ext4_ind_trans_blocks(inode, lblocks);
5268         return ext4_ext_index_trans_blocks(inode, pextents);
5269 }
5270
5271 /*
5272  * Account for index blocks, block groups bitmaps and block group
5273  * descriptor blocks if modify datablocks and index blocks
5274  * worse case, the indexs blocks spread over different block groups
5275  *
5276  * If datablocks are discontiguous, they are possible to spread over
5277  * different block groups too. If they are contiguous, with flexbg,
5278  * they could still across block group boundary.
5279  *
5280  * Also account for superblock, inode, quota and xattr blocks
5281  */
5282 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5283                                   int pextents)
5284 {
5285         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5286         int gdpblocks;
5287         int idxblocks;
5288         int ret = 0;
5289
5290         /*
5291          * How many index blocks need to touch to map @lblocks logical blocks
5292          * to @pextents physical extents?
5293          */
5294         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5295
5296         ret = idxblocks;
5297
5298         /*
5299          * Now let's see how many group bitmaps and group descriptors need
5300          * to account
5301          */
5302         groups = idxblocks + pextents;
5303         gdpblocks = groups;
5304         if (groups > ngroups)
5305                 groups = ngroups;
5306         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5307                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5308
5309         /* bitmaps and block group descriptor blocks */
5310         ret += groups + gdpblocks;
5311
5312         /* Blocks for super block, inode, quota and xattr blocks */
5313         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5314
5315         return ret;
5316 }
5317
5318 /*
5319  * Calculate the total number of credits to reserve to fit
5320  * the modification of a single pages into a single transaction,
5321  * which may include multiple chunks of block allocations.
5322  *
5323  * This could be called via ext4_write_begin()
5324  *
5325  * We need to consider the worse case, when
5326  * one new block per extent.
5327  */
5328 int ext4_writepage_trans_blocks(struct inode *inode)
5329 {
5330         int bpp = ext4_journal_blocks_per_page(inode);
5331         int ret;
5332
5333         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5334
5335         /* Account for data blocks for journalled mode */
5336         if (ext4_should_journal_data(inode))
5337                 ret += bpp;
5338         return ret;
5339 }
5340
5341 /*
5342  * Calculate the journal credits for a chunk of data modification.
5343  *
5344  * This is called from DIO, fallocate or whoever calling
5345  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5346  *
5347  * journal buffers for data blocks are not included here, as DIO
5348  * and fallocate do no need to journal data buffers.
5349  */
5350 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5351 {
5352         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5353 }
5354
5355 /*
5356  * The caller must have previously called ext4_reserve_inode_write().
5357  * Give this, we know that the caller already has write access to iloc->bh.
5358  */
5359 int ext4_mark_iloc_dirty(handle_t *handle,
5360                          struct inode *inode, struct ext4_iloc *iloc)
5361 {
5362         int err = 0;
5363
5364         if (IS_I_VERSION(inode))
5365                 inode_inc_iversion(inode);
5366
5367         /* the do_update_inode consumes one bh->b_count */
5368         get_bh(iloc->bh);
5369
5370         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5371         err = ext4_do_update_inode(handle, inode, iloc);
5372         put_bh(iloc->bh);
5373         return err;
5374 }
5375
5376 /*
5377  * On success, We end up with an outstanding reference count against
5378  * iloc->bh.  This _must_ be cleaned up later.
5379  */
5380
5381 int
5382 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5383                          struct ext4_iloc *iloc)
5384 {
5385         int err;
5386
5387         err = ext4_get_inode_loc(inode, iloc);
5388         if (!err) {
5389                 BUFFER_TRACE(iloc->bh, "get_write_access");
5390                 err = ext4_journal_get_write_access(handle, iloc->bh);
5391                 if (err) {
5392                         brelse(iloc->bh);
5393                         iloc->bh = NULL;
5394                 }
5395         }
5396         ext4_std_error(inode->i_sb, err);
5397         return err;
5398 }
5399
5400 /*
5401  * Expand an inode by new_extra_isize bytes.
5402  * Returns 0 on success or negative error number on failure.
5403  */
5404 static int ext4_expand_extra_isize(struct inode *inode,
5405                                    unsigned int new_extra_isize,
5406                                    struct ext4_iloc iloc,
5407                                    handle_t *handle)
5408 {
5409         struct ext4_inode *raw_inode;
5410         struct ext4_xattr_ibody_header *header;
5411
5412         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5413                 return 0;
5414
5415         raw_inode = ext4_raw_inode(&iloc);
5416
5417         header = IHDR(inode, raw_inode);
5418
5419         /* No extended attributes present */
5420         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5421             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5422                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5423                         new_extra_isize);
5424                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5425                 return 0;
5426         }
5427
5428         /* try to expand with EAs present */
5429         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5430                                           raw_inode, handle);
5431 }
5432
5433 /*
5434  * What we do here is to mark the in-core inode as clean with respect to inode
5435  * dirtiness (it may still be data-dirty).
5436  * This means that the in-core inode may be reaped by prune_icache
5437  * without having to perform any I/O.  This is a very good thing,
5438  * because *any* task may call prune_icache - even ones which
5439  * have a transaction open against a different journal.
5440  *
5441  * Is this cheating?  Not really.  Sure, we haven't written the
5442  * inode out, but prune_icache isn't a user-visible syncing function.
5443  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5444  * we start and wait on commits.
5445  */
5446 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5447 {
5448         struct ext4_iloc iloc;
5449         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5450         static unsigned int mnt_count;
5451         int err, ret;
5452
5453         might_sleep();
5454         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5455         err = ext4_reserve_inode_write(handle, inode, &iloc);
5456         if (err)
5457                 return err;
5458         if (ext4_handle_valid(handle) &&
5459             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5460             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5461                 /*
5462                  * We need extra buffer credits since we may write into EA block
5463                  * with this same handle. If journal_extend fails, then it will
5464                  * only result in a minor loss of functionality for that inode.
5465                  * If this is felt to be critical, then e2fsck should be run to
5466                  * force a large enough s_min_extra_isize.
5467                  */
5468                 if ((jbd2_journal_extend(handle,
5469                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5470                         ret = ext4_expand_extra_isize(inode,
5471                                                       sbi->s_want_extra_isize,
5472                                                       iloc, handle);
5473                         if (ret) {
5474                                 if (mnt_count !=
5475                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5476                                         ext4_warning(inode->i_sb,
5477                                         "Unable to expand inode %lu. Delete"
5478                                         " some EAs or run e2fsck.",
5479                                         inode->i_ino);
5480                                         mnt_count =
5481                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5482                                 }
5483                         }
5484                 }
5485         }
5486         return ext4_mark_iloc_dirty(handle, inode, &iloc);
5487 }
5488
5489 /*
5490  * ext4_dirty_inode() is called from __mark_inode_dirty()
5491  *
5492  * We're really interested in the case where a file is being extended.
5493  * i_size has been changed by generic_commit_write() and we thus need
5494  * to include the updated inode in the current transaction.
5495  *
5496  * Also, dquot_alloc_block() will always dirty the inode when blocks
5497  * are allocated to the file.
5498  *
5499  * If the inode is marked synchronous, we don't honour that here - doing
5500  * so would cause a commit on atime updates, which we don't bother doing.
5501  * We handle synchronous inodes at the highest possible level.
5502  *
5503  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5504  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5505  * to copy into the on-disk inode structure are the timestamp files.
5506  */
5507 void ext4_dirty_inode(struct inode *inode, int flags)
5508 {
5509         handle_t *handle;
5510
5511         if (flags == I_DIRTY_TIME)
5512                 return;
5513         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5514         if (IS_ERR(handle))
5515                 goto out;
5516
5517         ext4_mark_inode_dirty(handle, inode);
5518
5519         ext4_journal_stop(handle);
5520 out:
5521         return;
5522 }
5523
5524 #if 0
5525 /*
5526  * Bind an inode's backing buffer_head into this transaction, to prevent
5527  * it from being flushed to disk early.  Unlike
5528  * ext4_reserve_inode_write, this leaves behind no bh reference and
5529  * returns no iloc structure, so the caller needs to repeat the iloc
5530  * lookup to mark the inode dirty later.
5531  */
5532 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5533 {
5534         struct ext4_iloc iloc;
5535
5536         int err = 0;
5537         if (handle) {
5538                 err = ext4_get_inode_loc(inode, &iloc);
5539                 if (!err) {
5540                         BUFFER_TRACE(iloc.bh, "get_write_access");
5541                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5542                         if (!err)
5543                                 err = ext4_handle_dirty_metadata(handle,
5544                                                                  NULL,
5545                                                                  iloc.bh);
5546                         brelse(iloc.bh);
5547                 }
5548         }
5549         ext4_std_error(inode->i_sb, err);
5550         return err;
5551 }
5552 #endif
5553
5554 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5555 {
5556         journal_t *journal;
5557         handle_t *handle;
5558         int err;
5559         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5560
5561         /*
5562          * We have to be very careful here: changing a data block's
5563          * journaling status dynamically is dangerous.  If we write a
5564          * data block to the journal, change the status and then delete
5565          * that block, we risk forgetting to revoke the old log record
5566          * from the journal and so a subsequent replay can corrupt data.
5567          * So, first we make sure that the journal is empty and that
5568          * nobody is changing anything.
5569          */
5570
5571         journal = EXT4_JOURNAL(inode);
5572         if (!journal)
5573                 return 0;
5574         if (is_journal_aborted(journal))
5575                 return -EROFS;
5576
5577         /* Wait for all existing dio workers */
5578         ext4_inode_block_unlocked_dio(inode);
5579         inode_dio_wait(inode);
5580
5581         /*
5582          * Before flushing the journal and switching inode's aops, we have
5583          * to flush all dirty data the inode has. There can be outstanding
5584          * delayed allocations, there can be unwritten extents created by
5585          * fallocate or buffered writes in dioread_nolock mode covered by
5586          * dirty data which can be converted only after flushing the dirty
5587          * data (and journalled aops don't know how to handle these cases).
5588          */
5589         if (val) {
5590                 down_write(&EXT4_I(inode)->i_mmap_sem);
5591                 err = filemap_write_and_wait(inode->i_mapping);
5592                 if (err < 0) {
5593                         up_write(&EXT4_I(inode)->i_mmap_sem);
5594                         ext4_inode_resume_unlocked_dio(inode);
5595                         return err;
5596                 }
5597         }
5598
5599         percpu_down_write(&sbi->s_journal_flag_rwsem);
5600         jbd2_journal_lock_updates(journal);
5601
5602         /*
5603          * OK, there are no updates running now, and all cached data is
5604          * synced to disk.  We are now in a completely consistent state
5605          * which doesn't have anything in the journal, and we know that
5606          * no filesystem updates are running, so it is safe to modify
5607          * the inode's in-core data-journaling state flag now.
5608          */
5609
5610         if (val)
5611                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5612         else {
5613                 err = jbd2_journal_flush(journal);
5614                 if (err < 0) {
5615                         jbd2_journal_unlock_updates(journal);
5616                         percpu_up_write(&sbi->s_journal_flag_rwsem);
5617                         ext4_inode_resume_unlocked_dio(inode);
5618                         return err;
5619                 }
5620                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5621         }
5622         ext4_set_aops(inode);
5623
5624         jbd2_journal_unlock_updates(journal);
5625         percpu_up_write(&sbi->s_journal_flag_rwsem);
5626
5627         if (val)
5628                 up_write(&EXT4_I(inode)->i_mmap_sem);
5629         ext4_inode_resume_unlocked_dio(inode);
5630
5631         /* Finally we can mark the inode as dirty. */
5632
5633         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5634         if (IS_ERR(handle))
5635                 return PTR_ERR(handle);
5636
5637         err = ext4_mark_inode_dirty(handle, inode);
5638         ext4_handle_sync(handle);
5639         ext4_journal_stop(handle);
5640         ext4_std_error(inode->i_sb, err);
5641
5642         return err;
5643 }
5644
5645 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5646 {
5647         return !buffer_mapped(bh);
5648 }
5649
5650 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5651 {
5652         struct page *page = vmf->page;
5653         loff_t size;
5654         unsigned long len;
5655         int ret;
5656         struct file *file = vma->vm_file;
5657         struct inode *inode = file_inode(file);
5658         struct address_space *mapping = inode->i_mapping;
5659         handle_t *handle;
5660         get_block_t *get_block;
5661         int retries = 0;
5662
5663         sb_start_pagefault(inode->i_sb);
5664         file_update_time(vma->vm_file);
5665
5666         down_read(&EXT4_I(inode)->i_mmap_sem);
5667         /* Delalloc case is easy... */
5668         if (test_opt(inode->i_sb, DELALLOC) &&
5669             !ext4_should_journal_data(inode) &&
5670             !ext4_nonda_switch(inode->i_sb)) {
5671                 do {
5672                         ret = block_page_mkwrite(vma, vmf,
5673                                                    ext4_da_get_block_prep);
5674                 } while (ret == -ENOSPC &&
5675                        ext4_should_retry_alloc(inode->i_sb, &retries));
5676                 goto out_ret;
5677         }
5678
5679         lock_page(page);
5680         size = i_size_read(inode);
5681         /* Page got truncated from under us? */
5682         if (page->mapping != mapping || page_offset(page) > size) {
5683                 unlock_page(page);
5684                 ret = VM_FAULT_NOPAGE;
5685                 goto out;
5686         }
5687
5688         if (page->index == size >> PAGE_SHIFT)
5689                 len = size & ~PAGE_MASK;
5690         else
5691                 len = PAGE_SIZE;
5692         /*
5693          * Return if we have all the buffers mapped. This avoids the need to do
5694          * journal_start/journal_stop which can block and take a long time
5695          */
5696         if (page_has_buffers(page)) {
5697                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5698                                             0, len, NULL,
5699                                             ext4_bh_unmapped)) {
5700                         /* Wait so that we don't change page under IO */
5701                         wait_for_stable_page(page);
5702                         ret = VM_FAULT_LOCKED;
5703                         goto out;
5704                 }
5705         }
5706         unlock_page(page);
5707         /* OK, we need to fill the hole... */
5708         if (ext4_should_dioread_nolock(inode))
5709                 get_block = ext4_get_block_unwritten;
5710         else
5711                 get_block = ext4_get_block;
5712 retry_alloc:
5713         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5714                                     ext4_writepage_trans_blocks(inode));
5715         if (IS_ERR(handle)) {
5716                 ret = VM_FAULT_SIGBUS;
5717                 goto out;
5718         }
5719         ret = block_page_mkwrite(vma, vmf, get_block);
5720         if (!ret && ext4_should_journal_data(inode)) {
5721                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5722                           PAGE_SIZE, NULL, do_journal_get_write_access)) {
5723                         unlock_page(page);
5724                         ret = VM_FAULT_SIGBUS;
5725                         ext4_journal_stop(handle);
5726                         goto out;
5727                 }
5728                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5729         }
5730         ext4_journal_stop(handle);
5731         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5732                 goto retry_alloc;
5733 out_ret:
5734         ret = block_page_mkwrite_return(ret);
5735 out:
5736         up_read(&EXT4_I(inode)->i_mmap_sem);
5737         sb_end_pagefault(inode->i_sb);
5738         return ret;
5739 }
5740
5741 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5742 {
5743         struct inode *inode = file_inode(vma->vm_file);
5744         int err;
5745
5746         down_read(&EXT4_I(inode)->i_mmap_sem);
5747         err = filemap_fault(vma, vmf);
5748         up_read(&EXT4_I(inode)->i_mmap_sem);
5749
5750         return err;
5751 }
5752
5753 /*
5754  * Find the first extent at or after @lblk in an inode that is not a hole.
5755  * Search for @map_len blocks at most. The extent is returned in @result.
5756  *
5757  * The function returns 1 if we found an extent. The function returns 0 in
5758  * case there is no extent at or after @lblk and in that case also sets
5759  * @result->es_len to 0. In case of error, the error code is returned.
5760  */
5761 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
5762                          unsigned int map_len, struct extent_status *result)
5763 {
5764         struct ext4_map_blocks map;
5765         struct extent_status es = {};
5766         int ret;
5767
5768         map.m_lblk = lblk;
5769         map.m_len = map_len;
5770
5771         /*
5772          * For non-extent based files this loop may iterate several times since
5773          * we do not determine full hole size.
5774          */
5775         while (map.m_len > 0) {
5776                 ret = ext4_map_blocks(NULL, inode, &map, 0);
5777                 if (ret < 0)
5778                         return ret;
5779                 /* There's extent covering m_lblk? Just return it. */
5780                 if (ret > 0) {
5781                         int status;
5782
5783                         ext4_es_store_pblock(result, map.m_pblk);
5784                         result->es_lblk = map.m_lblk;
5785                         result->es_len = map.m_len;
5786                         if (map.m_flags & EXT4_MAP_UNWRITTEN)
5787                                 status = EXTENT_STATUS_UNWRITTEN;
5788                         else
5789                                 status = EXTENT_STATUS_WRITTEN;
5790                         ext4_es_store_status(result, status);
5791                         return 1;
5792                 }
5793                 ext4_es_find_delayed_extent_range(inode, map.m_lblk,
5794                                                   map.m_lblk + map.m_len - 1,
5795                                                   &es);
5796                 /* Is delalloc data before next block in extent tree? */
5797                 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
5798                         ext4_lblk_t offset = 0;
5799
5800                         if (es.es_lblk < lblk)
5801                                 offset = lblk - es.es_lblk;
5802                         result->es_lblk = es.es_lblk + offset;
5803                         ext4_es_store_pblock(result,
5804                                              ext4_es_pblock(&es) + offset);
5805                         result->es_len = es.es_len - offset;
5806                         ext4_es_store_status(result, ext4_es_status(&es));
5807
5808                         return 1;
5809                 }
5810                 /* There's a hole at m_lblk, advance us after it */
5811                 map.m_lblk += map.m_len;
5812                 map_len -= map.m_len;
5813                 map.m_len = map_len;
5814                 cond_resched();
5815         }
5816         result->es_len = 0;
5817         return 0;
5818 }