Merge branch 'for-4.15/wacom' into for-linus
[sfrench/cifs-2.6.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40 #include <linux/iomap.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52                               struct ext4_inode_info *ei)
53 {
54         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55         __u32 csum;
56         __u16 dummy_csum = 0;
57         int offset = offsetof(struct ext4_inode, i_checksum_lo);
58         unsigned int csum_size = sizeof(dummy_csum);
59
60         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62         offset += csum_size;
63         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64                            EXT4_GOOD_OLD_INODE_SIZE - offset);
65
66         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67                 offset = offsetof(struct ext4_inode, i_checksum_hi);
68                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69                                    EXT4_GOOD_OLD_INODE_SIZE,
70                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
71                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73                                            csum_size);
74                         offset += csum_size;
75                 }
76                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
78         }
79
80         return csum;
81 }
82
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84                                   struct ext4_inode_info *ei)
85 {
86         __u32 provided, calculated;
87
88         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89             cpu_to_le32(EXT4_OS_LINUX) ||
90             !ext4_has_metadata_csum(inode->i_sb))
91                 return 1;
92
93         provided = le16_to_cpu(raw->i_checksum_lo);
94         calculated = ext4_inode_csum(inode, raw, ei);
95         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98         else
99                 calculated &= 0xFFFF;
100
101         return provided == calculated;
102 }
103
104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105                                 struct ext4_inode_info *ei)
106 {
107         __u32 csum;
108
109         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110             cpu_to_le32(EXT4_OS_LINUX) ||
111             !ext4_has_metadata_csum(inode->i_sb))
112                 return;
113
114         csum = ext4_inode_csum(inode, raw, ei);
115         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122                                               loff_t new_size)
123 {
124         trace_ext4_begin_ordered_truncate(inode, new_size);
125         /*
126          * If jinode is zero, then we never opened the file for
127          * writing, so there's no need to call
128          * jbd2_journal_begin_ordered_truncate() since there's no
129          * outstanding writes we need to flush.
130          */
131         if (!EXT4_I(inode)->jinode)
132                 return 0;
133         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134                                                    EXT4_I(inode)->jinode,
135                                                    new_size);
136 }
137
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139                                 unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143                                   int pextents);
144
145 /*
146  * Test whether an inode is a fast symlink.
147  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
148  */
149 int ext4_inode_is_fast_symlink(struct inode *inode)
150 {
151         return S_ISLNK(inode->i_mode) && inode->i_size &&
152                (inode->i_size < EXT4_N_BLOCKS * 4);
153 }
154
155 /*
156  * Restart the transaction associated with *handle.  This does a commit,
157  * so before we call here everything must be consistently dirtied against
158  * this transaction.
159  */
160 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
161                                  int nblocks)
162 {
163         int ret;
164
165         /*
166          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
167          * moment, get_block can be called only for blocks inside i_size since
168          * page cache has been already dropped and writes are blocked by
169          * i_mutex. So we can safely drop the i_data_sem here.
170          */
171         BUG_ON(EXT4_JOURNAL(inode) == NULL);
172         jbd_debug(2, "restarting handle %p\n", handle);
173         up_write(&EXT4_I(inode)->i_data_sem);
174         ret = ext4_journal_restart(handle, nblocks);
175         down_write(&EXT4_I(inode)->i_data_sem);
176         ext4_discard_preallocations(inode);
177
178         return ret;
179 }
180
181 /*
182  * Called at the last iput() if i_nlink is zero.
183  */
184 void ext4_evict_inode(struct inode *inode)
185 {
186         handle_t *handle;
187         int err;
188         int extra_credits = 3;
189         struct ext4_xattr_inode_array *ea_inode_array = NULL;
190
191         trace_ext4_evict_inode(inode);
192
193         if (inode->i_nlink) {
194                 /*
195                  * When journalling data dirty buffers are tracked only in the
196                  * journal. So although mm thinks everything is clean and
197                  * ready for reaping the inode might still have some pages to
198                  * write in the running transaction or waiting to be
199                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
200                  * (via truncate_inode_pages()) to discard these buffers can
201                  * cause data loss. Also even if we did not discard these
202                  * buffers, we would have no way to find them after the inode
203                  * is reaped and thus user could see stale data if he tries to
204                  * read them before the transaction is checkpointed. So be
205                  * careful and force everything to disk here... We use
206                  * ei->i_datasync_tid to store the newest transaction
207                  * containing inode's data.
208                  *
209                  * Note that directories do not have this problem because they
210                  * don't use page cache.
211                  */
212                 if (inode->i_ino != EXT4_JOURNAL_INO &&
213                     ext4_should_journal_data(inode) &&
214                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
215                     inode->i_data.nrpages) {
216                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
217                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
218
219                         jbd2_complete_transaction(journal, commit_tid);
220                         filemap_write_and_wait(&inode->i_data);
221                 }
222                 truncate_inode_pages_final(&inode->i_data);
223
224                 goto no_delete;
225         }
226
227         if (is_bad_inode(inode))
228                 goto no_delete;
229         dquot_initialize(inode);
230
231         if (ext4_should_order_data(inode))
232                 ext4_begin_ordered_truncate(inode, 0);
233         truncate_inode_pages_final(&inode->i_data);
234
235         /*
236          * Protect us against freezing - iput() caller didn't have to have any
237          * protection against it
238          */
239         sb_start_intwrite(inode->i_sb);
240
241         if (!IS_NOQUOTA(inode))
242                 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
243
244         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
245                                  ext4_blocks_for_truncate(inode)+extra_credits);
246         if (IS_ERR(handle)) {
247                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
248                 /*
249                  * If we're going to skip the normal cleanup, we still need to
250                  * make sure that the in-core orphan linked list is properly
251                  * cleaned up.
252                  */
253                 ext4_orphan_del(NULL, inode);
254                 sb_end_intwrite(inode->i_sb);
255                 goto no_delete;
256         }
257
258         if (IS_SYNC(inode))
259                 ext4_handle_sync(handle);
260
261         /*
262          * Set inode->i_size to 0 before calling ext4_truncate(). We need
263          * special handling of symlinks here because i_size is used to
264          * determine whether ext4_inode_info->i_data contains symlink data or
265          * block mappings. Setting i_size to 0 will remove its fast symlink
266          * status. Erase i_data so that it becomes a valid empty block map.
267          */
268         if (ext4_inode_is_fast_symlink(inode))
269                 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
270         inode->i_size = 0;
271         err = ext4_mark_inode_dirty(handle, inode);
272         if (err) {
273                 ext4_warning(inode->i_sb,
274                              "couldn't mark inode dirty (err %d)", err);
275                 goto stop_handle;
276         }
277         if (inode->i_blocks) {
278                 err = ext4_truncate(inode);
279                 if (err) {
280                         ext4_error(inode->i_sb,
281                                    "couldn't truncate inode %lu (err %d)",
282                                    inode->i_ino, err);
283                         goto stop_handle;
284                 }
285         }
286
287         /* Remove xattr references. */
288         err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
289                                       extra_credits);
290         if (err) {
291                 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
292 stop_handle:
293                 ext4_journal_stop(handle);
294                 ext4_orphan_del(NULL, inode);
295                 sb_end_intwrite(inode->i_sb);
296                 ext4_xattr_inode_array_free(ea_inode_array);
297                 goto no_delete;
298         }
299
300         /*
301          * Kill off the orphan record which ext4_truncate created.
302          * AKPM: I think this can be inside the above `if'.
303          * Note that ext4_orphan_del() has to be able to cope with the
304          * deletion of a non-existent orphan - this is because we don't
305          * know if ext4_truncate() actually created an orphan record.
306          * (Well, we could do this if we need to, but heck - it works)
307          */
308         ext4_orphan_del(handle, inode);
309         EXT4_I(inode)->i_dtime  = get_seconds();
310
311         /*
312          * One subtle ordering requirement: if anything has gone wrong
313          * (transaction abort, IO errors, whatever), then we can still
314          * do these next steps (the fs will already have been marked as
315          * having errors), but we can't free the inode if the mark_dirty
316          * fails.
317          */
318         if (ext4_mark_inode_dirty(handle, inode))
319                 /* If that failed, just do the required in-core inode clear. */
320                 ext4_clear_inode(inode);
321         else
322                 ext4_free_inode(handle, inode);
323         ext4_journal_stop(handle);
324         sb_end_intwrite(inode->i_sb);
325         ext4_xattr_inode_array_free(ea_inode_array);
326         return;
327 no_delete:
328         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
329 }
330
331 #ifdef CONFIG_QUOTA
332 qsize_t *ext4_get_reserved_space(struct inode *inode)
333 {
334         return &EXT4_I(inode)->i_reserved_quota;
335 }
336 #endif
337
338 /*
339  * Called with i_data_sem down, which is important since we can call
340  * ext4_discard_preallocations() from here.
341  */
342 void ext4_da_update_reserve_space(struct inode *inode,
343                                         int used, int quota_claim)
344 {
345         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
346         struct ext4_inode_info *ei = EXT4_I(inode);
347
348         spin_lock(&ei->i_block_reservation_lock);
349         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
350         if (unlikely(used > ei->i_reserved_data_blocks)) {
351                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
352                          "with only %d reserved data blocks",
353                          __func__, inode->i_ino, used,
354                          ei->i_reserved_data_blocks);
355                 WARN_ON(1);
356                 used = ei->i_reserved_data_blocks;
357         }
358
359         /* Update per-inode reservations */
360         ei->i_reserved_data_blocks -= used;
361         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
362
363         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
364
365         /* Update quota subsystem for data blocks */
366         if (quota_claim)
367                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
368         else {
369                 /*
370                  * We did fallocate with an offset that is already delayed
371                  * allocated. So on delayed allocated writeback we should
372                  * not re-claim the quota for fallocated blocks.
373                  */
374                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
375         }
376
377         /*
378          * If we have done all the pending block allocations and if
379          * there aren't any writers on the inode, we can discard the
380          * inode's preallocations.
381          */
382         if ((ei->i_reserved_data_blocks == 0) &&
383             (atomic_read(&inode->i_writecount) == 0))
384                 ext4_discard_preallocations(inode);
385 }
386
387 static int __check_block_validity(struct inode *inode, const char *func,
388                                 unsigned int line,
389                                 struct ext4_map_blocks *map)
390 {
391         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
392                                    map->m_len)) {
393                 ext4_error_inode(inode, func, line, map->m_pblk,
394                                  "lblock %lu mapped to illegal pblock "
395                                  "(length %d)", (unsigned long) map->m_lblk,
396                                  map->m_len);
397                 return -EFSCORRUPTED;
398         }
399         return 0;
400 }
401
402 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
403                        ext4_lblk_t len)
404 {
405         int ret;
406
407         if (ext4_encrypted_inode(inode))
408                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
409
410         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
411         if (ret > 0)
412                 ret = 0;
413
414         return ret;
415 }
416
417 #define check_block_validity(inode, map)        \
418         __check_block_validity((inode), __func__, __LINE__, (map))
419
420 #ifdef ES_AGGRESSIVE_TEST
421 static void ext4_map_blocks_es_recheck(handle_t *handle,
422                                        struct inode *inode,
423                                        struct ext4_map_blocks *es_map,
424                                        struct ext4_map_blocks *map,
425                                        int flags)
426 {
427         int retval;
428
429         map->m_flags = 0;
430         /*
431          * There is a race window that the result is not the same.
432          * e.g. xfstests #223 when dioread_nolock enables.  The reason
433          * is that we lookup a block mapping in extent status tree with
434          * out taking i_data_sem.  So at the time the unwritten extent
435          * could be converted.
436          */
437         down_read(&EXT4_I(inode)->i_data_sem);
438         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
439                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
440                                              EXT4_GET_BLOCKS_KEEP_SIZE);
441         } else {
442                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
443                                              EXT4_GET_BLOCKS_KEEP_SIZE);
444         }
445         up_read((&EXT4_I(inode)->i_data_sem));
446
447         /*
448          * We don't check m_len because extent will be collpased in status
449          * tree.  So the m_len might not equal.
450          */
451         if (es_map->m_lblk != map->m_lblk ||
452             es_map->m_flags != map->m_flags ||
453             es_map->m_pblk != map->m_pblk) {
454                 printk("ES cache assertion failed for inode: %lu "
455                        "es_cached ex [%d/%d/%llu/%x] != "
456                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
457                        inode->i_ino, es_map->m_lblk, es_map->m_len,
458                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
459                        map->m_len, map->m_pblk, map->m_flags,
460                        retval, flags);
461         }
462 }
463 #endif /* ES_AGGRESSIVE_TEST */
464
465 /*
466  * The ext4_map_blocks() function tries to look up the requested blocks,
467  * and returns if the blocks are already mapped.
468  *
469  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
470  * and store the allocated blocks in the result buffer head and mark it
471  * mapped.
472  *
473  * If file type is extents based, it will call ext4_ext_map_blocks(),
474  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
475  * based files
476  *
477  * On success, it returns the number of blocks being mapped or allocated.  if
478  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
479  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
480  *
481  * It returns 0 if plain look up failed (blocks have not been allocated), in
482  * that case, @map is returned as unmapped but we still do fill map->m_len to
483  * indicate the length of a hole starting at map->m_lblk.
484  *
485  * It returns the error in case of allocation failure.
486  */
487 int ext4_map_blocks(handle_t *handle, struct inode *inode,
488                     struct ext4_map_blocks *map, int flags)
489 {
490         struct extent_status es;
491         int retval;
492         int ret = 0;
493 #ifdef ES_AGGRESSIVE_TEST
494         struct ext4_map_blocks orig_map;
495
496         memcpy(&orig_map, map, sizeof(*map));
497 #endif
498
499         map->m_flags = 0;
500         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
501                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
502                   (unsigned long) map->m_lblk);
503
504         /*
505          * ext4_map_blocks returns an int, and m_len is an unsigned int
506          */
507         if (unlikely(map->m_len > INT_MAX))
508                 map->m_len = INT_MAX;
509
510         /* We can handle the block number less than EXT_MAX_BLOCKS */
511         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
512                 return -EFSCORRUPTED;
513
514         /* Lookup extent status tree firstly */
515         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
516                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
517                         map->m_pblk = ext4_es_pblock(&es) +
518                                         map->m_lblk - es.es_lblk;
519                         map->m_flags |= ext4_es_is_written(&es) ?
520                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
521                         retval = es.es_len - (map->m_lblk - es.es_lblk);
522                         if (retval > map->m_len)
523                                 retval = map->m_len;
524                         map->m_len = retval;
525                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
526                         map->m_pblk = 0;
527                         retval = es.es_len - (map->m_lblk - es.es_lblk);
528                         if (retval > map->m_len)
529                                 retval = map->m_len;
530                         map->m_len = retval;
531                         retval = 0;
532                 } else {
533                         BUG_ON(1);
534                 }
535 #ifdef ES_AGGRESSIVE_TEST
536                 ext4_map_blocks_es_recheck(handle, inode, map,
537                                            &orig_map, flags);
538 #endif
539                 goto found;
540         }
541
542         /*
543          * Try to see if we can get the block without requesting a new
544          * file system block.
545          */
546         down_read(&EXT4_I(inode)->i_data_sem);
547         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
548                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
549                                              EXT4_GET_BLOCKS_KEEP_SIZE);
550         } else {
551                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
552                                              EXT4_GET_BLOCKS_KEEP_SIZE);
553         }
554         if (retval > 0) {
555                 unsigned int status;
556
557                 if (unlikely(retval != map->m_len)) {
558                         ext4_warning(inode->i_sb,
559                                      "ES len assertion failed for inode "
560                                      "%lu: retval %d != map->m_len %d",
561                                      inode->i_ino, retval, map->m_len);
562                         WARN_ON(1);
563                 }
564
565                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
566                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
567                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
568                     !(status & EXTENT_STATUS_WRITTEN) &&
569                     ext4_find_delalloc_range(inode, map->m_lblk,
570                                              map->m_lblk + map->m_len - 1))
571                         status |= EXTENT_STATUS_DELAYED;
572                 ret = ext4_es_insert_extent(inode, map->m_lblk,
573                                             map->m_len, map->m_pblk, status);
574                 if (ret < 0)
575                         retval = ret;
576         }
577         up_read((&EXT4_I(inode)->i_data_sem));
578
579 found:
580         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
581                 ret = check_block_validity(inode, map);
582                 if (ret != 0)
583                         return ret;
584         }
585
586         /* If it is only a block(s) look up */
587         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
588                 return retval;
589
590         /*
591          * Returns if the blocks have already allocated
592          *
593          * Note that if blocks have been preallocated
594          * ext4_ext_get_block() returns the create = 0
595          * with buffer head unmapped.
596          */
597         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
598                 /*
599                  * If we need to convert extent to unwritten
600                  * we continue and do the actual work in
601                  * ext4_ext_map_blocks()
602                  */
603                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
604                         return retval;
605
606         /*
607          * Here we clear m_flags because after allocating an new extent,
608          * it will be set again.
609          */
610         map->m_flags &= ~EXT4_MAP_FLAGS;
611
612         /*
613          * New blocks allocate and/or writing to unwritten extent
614          * will possibly result in updating i_data, so we take
615          * the write lock of i_data_sem, and call get_block()
616          * with create == 1 flag.
617          */
618         down_write(&EXT4_I(inode)->i_data_sem);
619
620         /*
621          * We need to check for EXT4 here because migrate
622          * could have changed the inode type in between
623          */
624         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
625                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
626         } else {
627                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
628
629                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
630                         /*
631                          * We allocated new blocks which will result in
632                          * i_data's format changing.  Force the migrate
633                          * to fail by clearing migrate flags
634                          */
635                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
636                 }
637
638                 /*
639                  * Update reserved blocks/metadata blocks after successful
640                  * block allocation which had been deferred till now. We don't
641                  * support fallocate for non extent files. So we can update
642                  * reserve space here.
643                  */
644                 if ((retval > 0) &&
645                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
646                         ext4_da_update_reserve_space(inode, retval, 1);
647         }
648
649         if (retval > 0) {
650                 unsigned int status;
651
652                 if (unlikely(retval != map->m_len)) {
653                         ext4_warning(inode->i_sb,
654                                      "ES len assertion failed for inode "
655                                      "%lu: retval %d != map->m_len %d",
656                                      inode->i_ino, retval, map->m_len);
657                         WARN_ON(1);
658                 }
659
660                 /*
661                  * We have to zeroout blocks before inserting them into extent
662                  * status tree. Otherwise someone could look them up there and
663                  * use them before they are really zeroed. We also have to
664                  * unmap metadata before zeroing as otherwise writeback can
665                  * overwrite zeros with stale data from block device.
666                  */
667                 if (flags & EXT4_GET_BLOCKS_ZERO &&
668                     map->m_flags & EXT4_MAP_MAPPED &&
669                     map->m_flags & EXT4_MAP_NEW) {
670                         clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
671                                            map->m_len);
672                         ret = ext4_issue_zeroout(inode, map->m_lblk,
673                                                  map->m_pblk, map->m_len);
674                         if (ret) {
675                                 retval = ret;
676                                 goto out_sem;
677                         }
678                 }
679
680                 /*
681                  * If the extent has been zeroed out, we don't need to update
682                  * extent status tree.
683                  */
684                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
685                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
686                         if (ext4_es_is_written(&es))
687                                 goto out_sem;
688                 }
689                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
690                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
691                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
692                     !(status & EXTENT_STATUS_WRITTEN) &&
693                     ext4_find_delalloc_range(inode, map->m_lblk,
694                                              map->m_lblk + map->m_len - 1))
695                         status |= EXTENT_STATUS_DELAYED;
696                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
697                                             map->m_pblk, status);
698                 if (ret < 0) {
699                         retval = ret;
700                         goto out_sem;
701                 }
702         }
703
704 out_sem:
705         up_write((&EXT4_I(inode)->i_data_sem));
706         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
707                 ret = check_block_validity(inode, map);
708                 if (ret != 0)
709                         return ret;
710
711                 /*
712                  * Inodes with freshly allocated blocks where contents will be
713                  * visible after transaction commit must be on transaction's
714                  * ordered data list.
715                  */
716                 if (map->m_flags & EXT4_MAP_NEW &&
717                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
718                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
719                     !ext4_is_quota_file(inode) &&
720                     ext4_should_order_data(inode)) {
721                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
722                                 ret = ext4_jbd2_inode_add_wait(handle, inode);
723                         else
724                                 ret = ext4_jbd2_inode_add_write(handle, inode);
725                         if (ret)
726                                 return ret;
727                 }
728         }
729         return retval;
730 }
731
732 /*
733  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
734  * we have to be careful as someone else may be manipulating b_state as well.
735  */
736 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
737 {
738         unsigned long old_state;
739         unsigned long new_state;
740
741         flags &= EXT4_MAP_FLAGS;
742
743         /* Dummy buffer_head? Set non-atomically. */
744         if (!bh->b_page) {
745                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
746                 return;
747         }
748         /*
749          * Someone else may be modifying b_state. Be careful! This is ugly but
750          * once we get rid of using bh as a container for mapping information
751          * to pass to / from get_block functions, this can go away.
752          */
753         do {
754                 old_state = READ_ONCE(bh->b_state);
755                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
756         } while (unlikely(
757                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
758 }
759
760 static int _ext4_get_block(struct inode *inode, sector_t iblock,
761                            struct buffer_head *bh, int flags)
762 {
763         struct ext4_map_blocks map;
764         int ret = 0;
765
766         if (ext4_has_inline_data(inode))
767                 return -ERANGE;
768
769         map.m_lblk = iblock;
770         map.m_len = bh->b_size >> inode->i_blkbits;
771
772         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
773                               flags);
774         if (ret > 0) {
775                 map_bh(bh, inode->i_sb, map.m_pblk);
776                 ext4_update_bh_state(bh, map.m_flags);
777                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
778                 ret = 0;
779         } else if (ret == 0) {
780                 /* hole case, need to fill in bh->b_size */
781                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
782         }
783         return ret;
784 }
785
786 int ext4_get_block(struct inode *inode, sector_t iblock,
787                    struct buffer_head *bh, int create)
788 {
789         return _ext4_get_block(inode, iblock, bh,
790                                create ? EXT4_GET_BLOCKS_CREATE : 0);
791 }
792
793 /*
794  * Get block function used when preparing for buffered write if we require
795  * creating an unwritten extent if blocks haven't been allocated.  The extent
796  * will be converted to written after the IO is complete.
797  */
798 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
799                              struct buffer_head *bh_result, int create)
800 {
801         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
802                    inode->i_ino, create);
803         return _ext4_get_block(inode, iblock, bh_result,
804                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
805 }
806
807 /* Maximum number of blocks we map for direct IO at once. */
808 #define DIO_MAX_BLOCKS 4096
809
810 /*
811  * Get blocks function for the cases that need to start a transaction -
812  * generally difference cases of direct IO and DAX IO. It also handles retries
813  * in case of ENOSPC.
814  */
815 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
816                                 struct buffer_head *bh_result, int flags)
817 {
818         int dio_credits;
819         handle_t *handle;
820         int retries = 0;
821         int ret;
822
823         /* Trim mapping request to maximum we can map at once for DIO */
824         if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
825                 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
826         dio_credits = ext4_chunk_trans_blocks(inode,
827                                       bh_result->b_size >> inode->i_blkbits);
828 retry:
829         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
830         if (IS_ERR(handle))
831                 return PTR_ERR(handle);
832
833         ret = _ext4_get_block(inode, iblock, bh_result, flags);
834         ext4_journal_stop(handle);
835
836         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
837                 goto retry;
838         return ret;
839 }
840
841 /* Get block function for DIO reads and writes to inodes without extents */
842 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
843                        struct buffer_head *bh, int create)
844 {
845         /* We don't expect handle for direct IO */
846         WARN_ON_ONCE(ext4_journal_current_handle());
847
848         if (!create)
849                 return _ext4_get_block(inode, iblock, bh, 0);
850         return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
851 }
852
853 /*
854  * Get block function for AIO DIO writes when we create unwritten extent if
855  * blocks are not allocated yet. The extent will be converted to written
856  * after IO is complete.
857  */
858 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
859                 sector_t iblock, struct buffer_head *bh_result, int create)
860 {
861         int ret;
862
863         /* We don't expect handle for direct IO */
864         WARN_ON_ONCE(ext4_journal_current_handle());
865
866         ret = ext4_get_block_trans(inode, iblock, bh_result,
867                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
868
869         /*
870          * When doing DIO using unwritten extents, we need io_end to convert
871          * unwritten extents to written on IO completion. We allocate io_end
872          * once we spot unwritten extent and store it in b_private. Generic
873          * DIO code keeps b_private set and furthermore passes the value to
874          * our completion callback in 'private' argument.
875          */
876         if (!ret && buffer_unwritten(bh_result)) {
877                 if (!bh_result->b_private) {
878                         ext4_io_end_t *io_end;
879
880                         io_end = ext4_init_io_end(inode, GFP_KERNEL);
881                         if (!io_end)
882                                 return -ENOMEM;
883                         bh_result->b_private = io_end;
884                         ext4_set_io_unwritten_flag(inode, io_end);
885                 }
886                 set_buffer_defer_completion(bh_result);
887         }
888
889         return ret;
890 }
891
892 /*
893  * Get block function for non-AIO DIO writes when we create unwritten extent if
894  * blocks are not allocated yet. The extent will be converted to written
895  * after IO is complete by ext4_direct_IO_write().
896  */
897 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
898                 sector_t iblock, struct buffer_head *bh_result, int create)
899 {
900         int ret;
901
902         /* We don't expect handle for direct IO */
903         WARN_ON_ONCE(ext4_journal_current_handle());
904
905         ret = ext4_get_block_trans(inode, iblock, bh_result,
906                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
907
908         /*
909          * Mark inode as having pending DIO writes to unwritten extents.
910          * ext4_direct_IO_write() checks this flag and converts extents to
911          * written.
912          */
913         if (!ret && buffer_unwritten(bh_result))
914                 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
915
916         return ret;
917 }
918
919 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
920                    struct buffer_head *bh_result, int create)
921 {
922         int ret;
923
924         ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
925                    inode->i_ino, create);
926         /* We don't expect handle for direct IO */
927         WARN_ON_ONCE(ext4_journal_current_handle());
928
929         ret = _ext4_get_block(inode, iblock, bh_result, 0);
930         /*
931          * Blocks should have been preallocated! ext4_file_write_iter() checks
932          * that.
933          */
934         WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
935
936         return ret;
937 }
938
939
940 /*
941  * `handle' can be NULL if create is zero
942  */
943 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
944                                 ext4_lblk_t block, int map_flags)
945 {
946         struct ext4_map_blocks map;
947         struct buffer_head *bh;
948         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
949         int err;
950
951         J_ASSERT(handle != NULL || create == 0);
952
953         map.m_lblk = block;
954         map.m_len = 1;
955         err = ext4_map_blocks(handle, inode, &map, map_flags);
956
957         if (err == 0)
958                 return create ? ERR_PTR(-ENOSPC) : NULL;
959         if (err < 0)
960                 return ERR_PTR(err);
961
962         bh = sb_getblk(inode->i_sb, map.m_pblk);
963         if (unlikely(!bh))
964                 return ERR_PTR(-ENOMEM);
965         if (map.m_flags & EXT4_MAP_NEW) {
966                 J_ASSERT(create != 0);
967                 J_ASSERT(handle != NULL);
968
969                 /*
970                  * Now that we do not always journal data, we should
971                  * keep in mind whether this should always journal the
972                  * new buffer as metadata.  For now, regular file
973                  * writes use ext4_get_block instead, so it's not a
974                  * problem.
975                  */
976                 lock_buffer(bh);
977                 BUFFER_TRACE(bh, "call get_create_access");
978                 err = ext4_journal_get_create_access(handle, bh);
979                 if (unlikely(err)) {
980                         unlock_buffer(bh);
981                         goto errout;
982                 }
983                 if (!buffer_uptodate(bh)) {
984                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
985                         set_buffer_uptodate(bh);
986                 }
987                 unlock_buffer(bh);
988                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
989                 err = ext4_handle_dirty_metadata(handle, inode, bh);
990                 if (unlikely(err))
991                         goto errout;
992         } else
993                 BUFFER_TRACE(bh, "not a new buffer");
994         return bh;
995 errout:
996         brelse(bh);
997         return ERR_PTR(err);
998 }
999
1000 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1001                                ext4_lblk_t block, int map_flags)
1002 {
1003         struct buffer_head *bh;
1004
1005         bh = ext4_getblk(handle, inode, block, map_flags);
1006         if (IS_ERR(bh))
1007                 return bh;
1008         if (!bh || buffer_uptodate(bh))
1009                 return bh;
1010         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1011         wait_on_buffer(bh);
1012         if (buffer_uptodate(bh))
1013                 return bh;
1014         put_bh(bh);
1015         return ERR_PTR(-EIO);
1016 }
1017
1018 /* Read a contiguous batch of blocks. */
1019 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1020                      bool wait, struct buffer_head **bhs)
1021 {
1022         int i, err;
1023
1024         for (i = 0; i < bh_count; i++) {
1025                 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1026                 if (IS_ERR(bhs[i])) {
1027                         err = PTR_ERR(bhs[i]);
1028                         bh_count = i;
1029                         goto out_brelse;
1030                 }
1031         }
1032
1033         for (i = 0; i < bh_count; i++)
1034                 /* Note that NULL bhs[i] is valid because of holes. */
1035                 if (bhs[i] && !buffer_uptodate(bhs[i]))
1036                         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1037                                     &bhs[i]);
1038
1039         if (!wait)
1040                 return 0;
1041
1042         for (i = 0; i < bh_count; i++)
1043                 if (bhs[i])
1044                         wait_on_buffer(bhs[i]);
1045
1046         for (i = 0; i < bh_count; i++) {
1047                 if (bhs[i] && !buffer_uptodate(bhs[i])) {
1048                         err = -EIO;
1049                         goto out_brelse;
1050                 }
1051         }
1052         return 0;
1053
1054 out_brelse:
1055         for (i = 0; i < bh_count; i++) {
1056                 brelse(bhs[i]);
1057                 bhs[i] = NULL;
1058         }
1059         return err;
1060 }
1061
1062 int ext4_walk_page_buffers(handle_t *handle,
1063                            struct buffer_head *head,
1064                            unsigned from,
1065                            unsigned to,
1066                            int *partial,
1067                            int (*fn)(handle_t *handle,
1068                                      struct buffer_head *bh))
1069 {
1070         struct buffer_head *bh;
1071         unsigned block_start, block_end;
1072         unsigned blocksize = head->b_size;
1073         int err, ret = 0;
1074         struct buffer_head *next;
1075
1076         for (bh = head, block_start = 0;
1077              ret == 0 && (bh != head || !block_start);
1078              block_start = block_end, bh = next) {
1079                 next = bh->b_this_page;
1080                 block_end = block_start + blocksize;
1081                 if (block_end <= from || block_start >= to) {
1082                         if (partial && !buffer_uptodate(bh))
1083                                 *partial = 1;
1084                         continue;
1085                 }
1086                 err = (*fn)(handle, bh);
1087                 if (!ret)
1088                         ret = err;
1089         }
1090         return ret;
1091 }
1092
1093 /*
1094  * To preserve ordering, it is essential that the hole instantiation and
1095  * the data write be encapsulated in a single transaction.  We cannot
1096  * close off a transaction and start a new one between the ext4_get_block()
1097  * and the commit_write().  So doing the jbd2_journal_start at the start of
1098  * prepare_write() is the right place.
1099  *
1100  * Also, this function can nest inside ext4_writepage().  In that case, we
1101  * *know* that ext4_writepage() has generated enough buffer credits to do the
1102  * whole page.  So we won't block on the journal in that case, which is good,
1103  * because the caller may be PF_MEMALLOC.
1104  *
1105  * By accident, ext4 can be reentered when a transaction is open via
1106  * quota file writes.  If we were to commit the transaction while thus
1107  * reentered, there can be a deadlock - we would be holding a quota
1108  * lock, and the commit would never complete if another thread had a
1109  * transaction open and was blocking on the quota lock - a ranking
1110  * violation.
1111  *
1112  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1113  * will _not_ run commit under these circumstances because handle->h_ref
1114  * is elevated.  We'll still have enough credits for the tiny quotafile
1115  * write.
1116  */
1117 int do_journal_get_write_access(handle_t *handle,
1118                                 struct buffer_head *bh)
1119 {
1120         int dirty = buffer_dirty(bh);
1121         int ret;
1122
1123         if (!buffer_mapped(bh) || buffer_freed(bh))
1124                 return 0;
1125         /*
1126          * __block_write_begin() could have dirtied some buffers. Clean
1127          * the dirty bit as jbd2_journal_get_write_access() could complain
1128          * otherwise about fs integrity issues. Setting of the dirty bit
1129          * by __block_write_begin() isn't a real problem here as we clear
1130          * the bit before releasing a page lock and thus writeback cannot
1131          * ever write the buffer.
1132          */
1133         if (dirty)
1134                 clear_buffer_dirty(bh);
1135         BUFFER_TRACE(bh, "get write access");
1136         ret = ext4_journal_get_write_access(handle, bh);
1137         if (!ret && dirty)
1138                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1139         return ret;
1140 }
1141
1142 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1143 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1144                                   get_block_t *get_block)
1145 {
1146         unsigned from = pos & (PAGE_SIZE - 1);
1147         unsigned to = from + len;
1148         struct inode *inode = page->mapping->host;
1149         unsigned block_start, block_end;
1150         sector_t block;
1151         int err = 0;
1152         unsigned blocksize = inode->i_sb->s_blocksize;
1153         unsigned bbits;
1154         struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1155         bool decrypt = false;
1156
1157         BUG_ON(!PageLocked(page));
1158         BUG_ON(from > PAGE_SIZE);
1159         BUG_ON(to > PAGE_SIZE);
1160         BUG_ON(from > to);
1161
1162         if (!page_has_buffers(page))
1163                 create_empty_buffers(page, blocksize, 0);
1164         head = page_buffers(page);
1165         bbits = ilog2(blocksize);
1166         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1167
1168         for (bh = head, block_start = 0; bh != head || !block_start;
1169             block++, block_start = block_end, bh = bh->b_this_page) {
1170                 block_end = block_start + blocksize;
1171                 if (block_end <= from || block_start >= to) {
1172                         if (PageUptodate(page)) {
1173                                 if (!buffer_uptodate(bh))
1174                                         set_buffer_uptodate(bh);
1175                         }
1176                         continue;
1177                 }
1178                 if (buffer_new(bh))
1179                         clear_buffer_new(bh);
1180                 if (!buffer_mapped(bh)) {
1181                         WARN_ON(bh->b_size != blocksize);
1182                         err = get_block(inode, block, bh, 1);
1183                         if (err)
1184                                 break;
1185                         if (buffer_new(bh)) {
1186                                 clean_bdev_bh_alias(bh);
1187                                 if (PageUptodate(page)) {
1188                                         clear_buffer_new(bh);
1189                                         set_buffer_uptodate(bh);
1190                                         mark_buffer_dirty(bh);
1191                                         continue;
1192                                 }
1193                                 if (block_end > to || block_start < from)
1194                                         zero_user_segments(page, to, block_end,
1195                                                            block_start, from);
1196                                 continue;
1197                         }
1198                 }
1199                 if (PageUptodate(page)) {
1200                         if (!buffer_uptodate(bh))
1201                                 set_buffer_uptodate(bh);
1202                         continue;
1203                 }
1204                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1205                     !buffer_unwritten(bh) &&
1206                     (block_start < from || block_end > to)) {
1207                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1208                         *wait_bh++ = bh;
1209                         decrypt = ext4_encrypted_inode(inode) &&
1210                                 S_ISREG(inode->i_mode);
1211                 }
1212         }
1213         /*
1214          * If we issued read requests, let them complete.
1215          */
1216         while (wait_bh > wait) {
1217                 wait_on_buffer(*--wait_bh);
1218                 if (!buffer_uptodate(*wait_bh))
1219                         err = -EIO;
1220         }
1221         if (unlikely(err))
1222                 page_zero_new_buffers(page, from, to);
1223         else if (decrypt)
1224                 err = fscrypt_decrypt_page(page->mapping->host, page,
1225                                 PAGE_SIZE, 0, page->index);
1226         return err;
1227 }
1228 #endif
1229
1230 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1231                             loff_t pos, unsigned len, unsigned flags,
1232                             struct page **pagep, void **fsdata)
1233 {
1234         struct inode *inode = mapping->host;
1235         int ret, needed_blocks;
1236         handle_t *handle;
1237         int retries = 0;
1238         struct page *page;
1239         pgoff_t index;
1240         unsigned from, to;
1241
1242         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1243                 return -EIO;
1244
1245         trace_ext4_write_begin(inode, pos, len, flags);
1246         /*
1247          * Reserve one block more for addition to orphan list in case
1248          * we allocate blocks but write fails for some reason
1249          */
1250         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1251         index = pos >> PAGE_SHIFT;
1252         from = pos & (PAGE_SIZE - 1);
1253         to = from + len;
1254
1255         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1256                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1257                                                     flags, pagep);
1258                 if (ret < 0)
1259                         return ret;
1260                 if (ret == 1)
1261                         return 0;
1262         }
1263
1264         /*
1265          * grab_cache_page_write_begin() can take a long time if the
1266          * system is thrashing due to memory pressure, or if the page
1267          * is being written back.  So grab it first before we start
1268          * the transaction handle.  This also allows us to allocate
1269          * the page (if needed) without using GFP_NOFS.
1270          */
1271 retry_grab:
1272         page = grab_cache_page_write_begin(mapping, index, flags);
1273         if (!page)
1274                 return -ENOMEM;
1275         unlock_page(page);
1276
1277 retry_journal:
1278         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1279         if (IS_ERR(handle)) {
1280                 put_page(page);
1281                 return PTR_ERR(handle);
1282         }
1283
1284         lock_page(page);
1285         if (page->mapping != mapping) {
1286                 /* The page got truncated from under us */
1287                 unlock_page(page);
1288                 put_page(page);
1289                 ext4_journal_stop(handle);
1290                 goto retry_grab;
1291         }
1292         /* In case writeback began while the page was unlocked */
1293         wait_for_stable_page(page);
1294
1295 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1296         if (ext4_should_dioread_nolock(inode))
1297                 ret = ext4_block_write_begin(page, pos, len,
1298                                              ext4_get_block_unwritten);
1299         else
1300                 ret = ext4_block_write_begin(page, pos, len,
1301                                              ext4_get_block);
1302 #else
1303         if (ext4_should_dioread_nolock(inode))
1304                 ret = __block_write_begin(page, pos, len,
1305                                           ext4_get_block_unwritten);
1306         else
1307                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1308 #endif
1309         if (!ret && ext4_should_journal_data(inode)) {
1310                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1311                                              from, to, NULL,
1312                                              do_journal_get_write_access);
1313         }
1314
1315         if (ret) {
1316                 unlock_page(page);
1317                 /*
1318                  * __block_write_begin may have instantiated a few blocks
1319                  * outside i_size.  Trim these off again. Don't need
1320                  * i_size_read because we hold i_mutex.
1321                  *
1322                  * Add inode to orphan list in case we crash before
1323                  * truncate finishes
1324                  */
1325                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1326                         ext4_orphan_add(handle, inode);
1327
1328                 ext4_journal_stop(handle);
1329                 if (pos + len > inode->i_size) {
1330                         ext4_truncate_failed_write(inode);
1331                         /*
1332                          * If truncate failed early the inode might
1333                          * still be on the orphan list; we need to
1334                          * make sure the inode is removed from the
1335                          * orphan list in that case.
1336                          */
1337                         if (inode->i_nlink)
1338                                 ext4_orphan_del(NULL, inode);
1339                 }
1340
1341                 if (ret == -ENOSPC &&
1342                     ext4_should_retry_alloc(inode->i_sb, &retries))
1343                         goto retry_journal;
1344                 put_page(page);
1345                 return ret;
1346         }
1347         *pagep = page;
1348         return ret;
1349 }
1350
1351 /* For write_end() in data=journal mode */
1352 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1353 {
1354         int ret;
1355         if (!buffer_mapped(bh) || buffer_freed(bh))
1356                 return 0;
1357         set_buffer_uptodate(bh);
1358         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1359         clear_buffer_meta(bh);
1360         clear_buffer_prio(bh);
1361         return ret;
1362 }
1363
1364 /*
1365  * We need to pick up the new inode size which generic_commit_write gave us
1366  * `file' can be NULL - eg, when called from page_symlink().
1367  *
1368  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1369  * buffers are managed internally.
1370  */
1371 static int ext4_write_end(struct file *file,
1372                           struct address_space *mapping,
1373                           loff_t pos, unsigned len, unsigned copied,
1374                           struct page *page, void *fsdata)
1375 {
1376         handle_t *handle = ext4_journal_current_handle();
1377         struct inode *inode = mapping->host;
1378         loff_t old_size = inode->i_size;
1379         int ret = 0, ret2;
1380         int i_size_changed = 0;
1381
1382         trace_ext4_write_end(inode, pos, len, copied);
1383         if (ext4_has_inline_data(inode)) {
1384                 ret = ext4_write_inline_data_end(inode, pos, len,
1385                                                  copied, page);
1386                 if (ret < 0) {
1387                         unlock_page(page);
1388                         put_page(page);
1389                         goto errout;
1390                 }
1391                 copied = ret;
1392         } else
1393                 copied = block_write_end(file, mapping, pos,
1394                                          len, copied, page, fsdata);
1395         /*
1396          * it's important to update i_size while still holding page lock:
1397          * page writeout could otherwise come in and zero beyond i_size.
1398          */
1399         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1400         unlock_page(page);
1401         put_page(page);
1402
1403         if (old_size < pos)
1404                 pagecache_isize_extended(inode, old_size, pos);
1405         /*
1406          * Don't mark the inode dirty under page lock. First, it unnecessarily
1407          * makes the holding time of page lock longer. Second, it forces lock
1408          * ordering of page lock and transaction start for journaling
1409          * filesystems.
1410          */
1411         if (i_size_changed)
1412                 ext4_mark_inode_dirty(handle, inode);
1413
1414         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1415                 /* if we have allocated more blocks and copied
1416                  * less. We will have blocks allocated outside
1417                  * inode->i_size. So truncate them
1418                  */
1419                 ext4_orphan_add(handle, inode);
1420 errout:
1421         ret2 = ext4_journal_stop(handle);
1422         if (!ret)
1423                 ret = ret2;
1424
1425         if (pos + len > inode->i_size) {
1426                 ext4_truncate_failed_write(inode);
1427                 /*
1428                  * If truncate failed early the inode might still be
1429                  * on the orphan list; we need to make sure the inode
1430                  * is removed from the orphan list in that case.
1431                  */
1432                 if (inode->i_nlink)
1433                         ext4_orphan_del(NULL, inode);
1434         }
1435
1436         return ret ? ret : copied;
1437 }
1438
1439 /*
1440  * This is a private version of page_zero_new_buffers() which doesn't
1441  * set the buffer to be dirty, since in data=journalled mode we need
1442  * to call ext4_handle_dirty_metadata() instead.
1443  */
1444 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1445                                             struct page *page,
1446                                             unsigned from, unsigned to)
1447 {
1448         unsigned int block_start = 0, block_end;
1449         struct buffer_head *head, *bh;
1450
1451         bh = head = page_buffers(page);
1452         do {
1453                 block_end = block_start + bh->b_size;
1454                 if (buffer_new(bh)) {
1455                         if (block_end > from && block_start < to) {
1456                                 if (!PageUptodate(page)) {
1457                                         unsigned start, size;
1458
1459                                         start = max(from, block_start);
1460                                         size = min(to, block_end) - start;
1461
1462                                         zero_user(page, start, size);
1463                                         write_end_fn(handle, bh);
1464                                 }
1465                                 clear_buffer_new(bh);
1466                         }
1467                 }
1468                 block_start = block_end;
1469                 bh = bh->b_this_page;
1470         } while (bh != head);
1471 }
1472
1473 static int ext4_journalled_write_end(struct file *file,
1474                                      struct address_space *mapping,
1475                                      loff_t pos, unsigned len, unsigned copied,
1476                                      struct page *page, void *fsdata)
1477 {
1478         handle_t *handle = ext4_journal_current_handle();
1479         struct inode *inode = mapping->host;
1480         loff_t old_size = inode->i_size;
1481         int ret = 0, ret2;
1482         int partial = 0;
1483         unsigned from, to;
1484         int size_changed = 0;
1485
1486         trace_ext4_journalled_write_end(inode, pos, len, copied);
1487         from = pos & (PAGE_SIZE - 1);
1488         to = from + len;
1489
1490         BUG_ON(!ext4_handle_valid(handle));
1491
1492         if (ext4_has_inline_data(inode)) {
1493                 ret = ext4_write_inline_data_end(inode, pos, len,
1494                                                  copied, page);
1495                 if (ret < 0) {
1496                         unlock_page(page);
1497                         put_page(page);
1498                         goto errout;
1499                 }
1500                 copied = ret;
1501         } else if (unlikely(copied < len) && !PageUptodate(page)) {
1502                 copied = 0;
1503                 ext4_journalled_zero_new_buffers(handle, page, from, to);
1504         } else {
1505                 if (unlikely(copied < len))
1506                         ext4_journalled_zero_new_buffers(handle, page,
1507                                                          from + copied, to);
1508                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1509                                              from + copied, &partial,
1510                                              write_end_fn);
1511                 if (!partial)
1512                         SetPageUptodate(page);
1513         }
1514         size_changed = ext4_update_inode_size(inode, pos + copied);
1515         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1516         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1517         unlock_page(page);
1518         put_page(page);
1519
1520         if (old_size < pos)
1521                 pagecache_isize_extended(inode, old_size, pos);
1522
1523         if (size_changed) {
1524                 ret2 = ext4_mark_inode_dirty(handle, inode);
1525                 if (!ret)
1526                         ret = ret2;
1527         }
1528
1529         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1530                 /* if we have allocated more blocks and copied
1531                  * less. We will have blocks allocated outside
1532                  * inode->i_size. So truncate them
1533                  */
1534                 ext4_orphan_add(handle, inode);
1535
1536 errout:
1537         ret2 = ext4_journal_stop(handle);
1538         if (!ret)
1539                 ret = ret2;
1540         if (pos + len > inode->i_size) {
1541                 ext4_truncate_failed_write(inode);
1542                 /*
1543                  * If truncate failed early the inode might still be
1544                  * on the orphan list; we need to make sure the inode
1545                  * is removed from the orphan list in that case.
1546                  */
1547                 if (inode->i_nlink)
1548                         ext4_orphan_del(NULL, inode);
1549         }
1550
1551         return ret ? ret : copied;
1552 }
1553
1554 /*
1555  * Reserve space for a single cluster
1556  */
1557 static int ext4_da_reserve_space(struct inode *inode)
1558 {
1559         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1560         struct ext4_inode_info *ei = EXT4_I(inode);
1561         int ret;
1562
1563         /*
1564          * We will charge metadata quota at writeout time; this saves
1565          * us from metadata over-estimation, though we may go over by
1566          * a small amount in the end.  Here we just reserve for data.
1567          */
1568         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1569         if (ret)
1570                 return ret;
1571
1572         spin_lock(&ei->i_block_reservation_lock);
1573         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1574                 spin_unlock(&ei->i_block_reservation_lock);
1575                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1576                 return -ENOSPC;
1577         }
1578         ei->i_reserved_data_blocks++;
1579         trace_ext4_da_reserve_space(inode);
1580         spin_unlock(&ei->i_block_reservation_lock);
1581
1582         return 0;       /* success */
1583 }
1584
1585 static void ext4_da_release_space(struct inode *inode, int to_free)
1586 {
1587         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1588         struct ext4_inode_info *ei = EXT4_I(inode);
1589
1590         if (!to_free)
1591                 return;         /* Nothing to release, exit */
1592
1593         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1594
1595         trace_ext4_da_release_space(inode, to_free);
1596         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1597                 /*
1598                  * if there aren't enough reserved blocks, then the
1599                  * counter is messed up somewhere.  Since this
1600                  * function is called from invalidate page, it's
1601                  * harmless to return without any action.
1602                  */
1603                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1604                          "ino %lu, to_free %d with only %d reserved "
1605                          "data blocks", inode->i_ino, to_free,
1606                          ei->i_reserved_data_blocks);
1607                 WARN_ON(1);
1608                 to_free = ei->i_reserved_data_blocks;
1609         }
1610         ei->i_reserved_data_blocks -= to_free;
1611
1612         /* update fs dirty data blocks counter */
1613         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1614
1615         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1616
1617         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1618 }
1619
1620 static void ext4_da_page_release_reservation(struct page *page,
1621                                              unsigned int offset,
1622                                              unsigned int length)
1623 {
1624         int to_release = 0, contiguous_blks = 0;
1625         struct buffer_head *head, *bh;
1626         unsigned int curr_off = 0;
1627         struct inode *inode = page->mapping->host;
1628         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1629         unsigned int stop = offset + length;
1630         int num_clusters;
1631         ext4_fsblk_t lblk;
1632
1633         BUG_ON(stop > PAGE_SIZE || stop < length);
1634
1635         head = page_buffers(page);
1636         bh = head;
1637         do {
1638                 unsigned int next_off = curr_off + bh->b_size;
1639
1640                 if (next_off > stop)
1641                         break;
1642
1643                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1644                         to_release++;
1645                         contiguous_blks++;
1646                         clear_buffer_delay(bh);
1647                 } else if (contiguous_blks) {
1648                         lblk = page->index <<
1649                                (PAGE_SHIFT - inode->i_blkbits);
1650                         lblk += (curr_off >> inode->i_blkbits) -
1651                                 contiguous_blks;
1652                         ext4_es_remove_extent(inode, lblk, contiguous_blks);
1653                         contiguous_blks = 0;
1654                 }
1655                 curr_off = next_off;
1656         } while ((bh = bh->b_this_page) != head);
1657
1658         if (contiguous_blks) {
1659                 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1660                 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1661                 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1662         }
1663
1664         /* If we have released all the blocks belonging to a cluster, then we
1665          * need to release the reserved space for that cluster. */
1666         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1667         while (num_clusters > 0) {
1668                 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1669                         ((num_clusters - 1) << sbi->s_cluster_bits);
1670                 if (sbi->s_cluster_ratio == 1 ||
1671                     !ext4_find_delalloc_cluster(inode, lblk))
1672                         ext4_da_release_space(inode, 1);
1673
1674                 num_clusters--;
1675         }
1676 }
1677
1678 /*
1679  * Delayed allocation stuff
1680  */
1681
1682 struct mpage_da_data {
1683         struct inode *inode;
1684         struct writeback_control *wbc;
1685
1686         pgoff_t first_page;     /* The first page to write */
1687         pgoff_t next_page;      /* Current page to examine */
1688         pgoff_t last_page;      /* Last page to examine */
1689         /*
1690          * Extent to map - this can be after first_page because that can be
1691          * fully mapped. We somewhat abuse m_flags to store whether the extent
1692          * is delalloc or unwritten.
1693          */
1694         struct ext4_map_blocks map;
1695         struct ext4_io_submit io_submit;        /* IO submission data */
1696         unsigned int do_map:1;
1697 };
1698
1699 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1700                                        bool invalidate)
1701 {
1702         int nr_pages, i;
1703         pgoff_t index, end;
1704         struct pagevec pvec;
1705         struct inode *inode = mpd->inode;
1706         struct address_space *mapping = inode->i_mapping;
1707
1708         /* This is necessary when next_page == 0. */
1709         if (mpd->first_page >= mpd->next_page)
1710                 return;
1711
1712         index = mpd->first_page;
1713         end   = mpd->next_page - 1;
1714         if (invalidate) {
1715                 ext4_lblk_t start, last;
1716                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1717                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1718                 ext4_es_remove_extent(inode, start, last - start + 1);
1719         }
1720
1721         pagevec_init(&pvec, 0);
1722         while (index <= end) {
1723                 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1724                 if (nr_pages == 0)
1725                         break;
1726                 for (i = 0; i < nr_pages; i++) {
1727                         struct page *page = pvec.pages[i];
1728
1729                         BUG_ON(!PageLocked(page));
1730                         BUG_ON(PageWriteback(page));
1731                         if (invalidate) {
1732                                 if (page_mapped(page))
1733                                         clear_page_dirty_for_io(page);
1734                                 block_invalidatepage(page, 0, PAGE_SIZE);
1735                                 ClearPageUptodate(page);
1736                         }
1737                         unlock_page(page);
1738                 }
1739                 pagevec_release(&pvec);
1740         }
1741 }
1742
1743 static void ext4_print_free_blocks(struct inode *inode)
1744 {
1745         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1746         struct super_block *sb = inode->i_sb;
1747         struct ext4_inode_info *ei = EXT4_I(inode);
1748
1749         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1750                EXT4_C2B(EXT4_SB(inode->i_sb),
1751                         ext4_count_free_clusters(sb)));
1752         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1753         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1754                (long long) EXT4_C2B(EXT4_SB(sb),
1755                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1756         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1757                (long long) EXT4_C2B(EXT4_SB(sb),
1758                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1759         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1760         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1761                  ei->i_reserved_data_blocks);
1762         return;
1763 }
1764
1765 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1766 {
1767         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1768 }
1769
1770 /*
1771  * This function is grabs code from the very beginning of
1772  * ext4_map_blocks, but assumes that the caller is from delayed write
1773  * time. This function looks up the requested blocks and sets the
1774  * buffer delay bit under the protection of i_data_sem.
1775  */
1776 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1777                               struct ext4_map_blocks *map,
1778                               struct buffer_head *bh)
1779 {
1780         struct extent_status es;
1781         int retval;
1782         sector_t invalid_block = ~((sector_t) 0xffff);
1783 #ifdef ES_AGGRESSIVE_TEST
1784         struct ext4_map_blocks orig_map;
1785
1786         memcpy(&orig_map, map, sizeof(*map));
1787 #endif
1788
1789         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1790                 invalid_block = ~0;
1791
1792         map->m_flags = 0;
1793         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1794                   "logical block %lu\n", inode->i_ino, map->m_len,
1795                   (unsigned long) map->m_lblk);
1796
1797         /* Lookup extent status tree firstly */
1798         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1799                 if (ext4_es_is_hole(&es)) {
1800                         retval = 0;
1801                         down_read(&EXT4_I(inode)->i_data_sem);
1802                         goto add_delayed;
1803                 }
1804
1805                 /*
1806                  * Delayed extent could be allocated by fallocate.
1807                  * So we need to check it.
1808                  */
1809                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1810                         map_bh(bh, inode->i_sb, invalid_block);
1811                         set_buffer_new(bh);
1812                         set_buffer_delay(bh);
1813                         return 0;
1814                 }
1815
1816                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1817                 retval = es.es_len - (iblock - es.es_lblk);
1818                 if (retval > map->m_len)
1819                         retval = map->m_len;
1820                 map->m_len = retval;
1821                 if (ext4_es_is_written(&es))
1822                         map->m_flags |= EXT4_MAP_MAPPED;
1823                 else if (ext4_es_is_unwritten(&es))
1824                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1825                 else
1826                         BUG_ON(1);
1827
1828 #ifdef ES_AGGRESSIVE_TEST
1829                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1830 #endif
1831                 return retval;
1832         }
1833
1834         /*
1835          * Try to see if we can get the block without requesting a new
1836          * file system block.
1837          */
1838         down_read(&EXT4_I(inode)->i_data_sem);
1839         if (ext4_has_inline_data(inode))
1840                 retval = 0;
1841         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1842                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1843         else
1844                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1845
1846 add_delayed:
1847         if (retval == 0) {
1848                 int ret;
1849                 /*
1850                  * XXX: __block_prepare_write() unmaps passed block,
1851                  * is it OK?
1852                  */
1853                 /*
1854                  * If the block was allocated from previously allocated cluster,
1855                  * then we don't need to reserve it again. However we still need
1856                  * to reserve metadata for every block we're going to write.
1857                  */
1858                 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1859                     !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1860                         ret = ext4_da_reserve_space(inode);
1861                         if (ret) {
1862                                 /* not enough space to reserve */
1863                                 retval = ret;
1864                                 goto out_unlock;
1865                         }
1866                 }
1867
1868                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1869                                             ~0, EXTENT_STATUS_DELAYED);
1870                 if (ret) {
1871                         retval = ret;
1872                         goto out_unlock;
1873                 }
1874
1875                 map_bh(bh, inode->i_sb, invalid_block);
1876                 set_buffer_new(bh);
1877                 set_buffer_delay(bh);
1878         } else if (retval > 0) {
1879                 int ret;
1880                 unsigned int status;
1881
1882                 if (unlikely(retval != map->m_len)) {
1883                         ext4_warning(inode->i_sb,
1884                                      "ES len assertion failed for inode "
1885                                      "%lu: retval %d != map->m_len %d",
1886                                      inode->i_ino, retval, map->m_len);
1887                         WARN_ON(1);
1888                 }
1889
1890                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1891                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1892                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1893                                             map->m_pblk, status);
1894                 if (ret != 0)
1895                         retval = ret;
1896         }
1897
1898 out_unlock:
1899         up_read((&EXT4_I(inode)->i_data_sem));
1900
1901         return retval;
1902 }
1903
1904 /*
1905  * This is a special get_block_t callback which is used by
1906  * ext4_da_write_begin().  It will either return mapped block or
1907  * reserve space for a single block.
1908  *
1909  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1910  * We also have b_blocknr = -1 and b_bdev initialized properly
1911  *
1912  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1913  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1914  * initialized properly.
1915  */
1916 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1917                            struct buffer_head *bh, int create)
1918 {
1919         struct ext4_map_blocks map;
1920         int ret = 0;
1921
1922         BUG_ON(create == 0);
1923         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1924
1925         map.m_lblk = iblock;
1926         map.m_len = 1;
1927
1928         /*
1929          * first, we need to know whether the block is allocated already
1930          * preallocated blocks are unmapped but should treated
1931          * the same as allocated blocks.
1932          */
1933         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1934         if (ret <= 0)
1935                 return ret;
1936
1937         map_bh(bh, inode->i_sb, map.m_pblk);
1938         ext4_update_bh_state(bh, map.m_flags);
1939
1940         if (buffer_unwritten(bh)) {
1941                 /* A delayed write to unwritten bh should be marked
1942                  * new and mapped.  Mapped ensures that we don't do
1943                  * get_block multiple times when we write to the same
1944                  * offset and new ensures that we do proper zero out
1945                  * for partial write.
1946                  */
1947                 set_buffer_new(bh);
1948                 set_buffer_mapped(bh);
1949         }
1950         return 0;
1951 }
1952
1953 static int bget_one(handle_t *handle, struct buffer_head *bh)
1954 {
1955         get_bh(bh);
1956         return 0;
1957 }
1958
1959 static int bput_one(handle_t *handle, struct buffer_head *bh)
1960 {
1961         put_bh(bh);
1962         return 0;
1963 }
1964
1965 static int __ext4_journalled_writepage(struct page *page,
1966                                        unsigned int len)
1967 {
1968         struct address_space *mapping = page->mapping;
1969         struct inode *inode = mapping->host;
1970         struct buffer_head *page_bufs = NULL;
1971         handle_t *handle = NULL;
1972         int ret = 0, err = 0;
1973         int inline_data = ext4_has_inline_data(inode);
1974         struct buffer_head *inode_bh = NULL;
1975
1976         ClearPageChecked(page);
1977
1978         if (inline_data) {
1979                 BUG_ON(page->index != 0);
1980                 BUG_ON(len > ext4_get_max_inline_size(inode));
1981                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1982                 if (inode_bh == NULL)
1983                         goto out;
1984         } else {
1985                 page_bufs = page_buffers(page);
1986                 if (!page_bufs) {
1987                         BUG();
1988                         goto out;
1989                 }
1990                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1991                                        NULL, bget_one);
1992         }
1993         /*
1994          * We need to release the page lock before we start the
1995          * journal, so grab a reference so the page won't disappear
1996          * out from under us.
1997          */
1998         get_page(page);
1999         unlock_page(page);
2000
2001         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2002                                     ext4_writepage_trans_blocks(inode));
2003         if (IS_ERR(handle)) {
2004                 ret = PTR_ERR(handle);
2005                 put_page(page);
2006                 goto out_no_pagelock;
2007         }
2008         BUG_ON(!ext4_handle_valid(handle));
2009
2010         lock_page(page);
2011         put_page(page);
2012         if (page->mapping != mapping) {
2013                 /* The page got truncated from under us */
2014                 ext4_journal_stop(handle);
2015                 ret = 0;
2016                 goto out;
2017         }
2018
2019         if (inline_data) {
2020                 BUFFER_TRACE(inode_bh, "get write access");
2021                 ret = ext4_journal_get_write_access(handle, inode_bh);
2022
2023                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2024
2025         } else {
2026                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2027                                              do_journal_get_write_access);
2028
2029                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2030                                              write_end_fn);
2031         }
2032         if (ret == 0)
2033                 ret = err;
2034         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2035         err = ext4_journal_stop(handle);
2036         if (!ret)
2037                 ret = err;
2038
2039         if (!ext4_has_inline_data(inode))
2040                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2041                                        NULL, bput_one);
2042         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2043 out:
2044         unlock_page(page);
2045 out_no_pagelock:
2046         brelse(inode_bh);
2047         return ret;
2048 }
2049
2050 /*
2051  * Note that we don't need to start a transaction unless we're journaling data
2052  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2053  * need to file the inode to the transaction's list in ordered mode because if
2054  * we are writing back data added by write(), the inode is already there and if
2055  * we are writing back data modified via mmap(), no one guarantees in which
2056  * transaction the data will hit the disk. In case we are journaling data, we
2057  * cannot start transaction directly because transaction start ranks above page
2058  * lock so we have to do some magic.
2059  *
2060  * This function can get called via...
2061  *   - ext4_writepages after taking page lock (have journal handle)
2062  *   - journal_submit_inode_data_buffers (no journal handle)
2063  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2064  *   - grab_page_cache when doing write_begin (have journal handle)
2065  *
2066  * We don't do any block allocation in this function. If we have page with
2067  * multiple blocks we need to write those buffer_heads that are mapped. This
2068  * is important for mmaped based write. So if we do with blocksize 1K
2069  * truncate(f, 1024);
2070  * a = mmap(f, 0, 4096);
2071  * a[0] = 'a';
2072  * truncate(f, 4096);
2073  * we have in the page first buffer_head mapped via page_mkwrite call back
2074  * but other buffer_heads would be unmapped but dirty (dirty done via the
2075  * do_wp_page). So writepage should write the first block. If we modify
2076  * the mmap area beyond 1024 we will again get a page_fault and the
2077  * page_mkwrite callback will do the block allocation and mark the
2078  * buffer_heads mapped.
2079  *
2080  * We redirty the page if we have any buffer_heads that is either delay or
2081  * unwritten in the page.
2082  *
2083  * We can get recursively called as show below.
2084  *
2085  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2086  *              ext4_writepage()
2087  *
2088  * But since we don't do any block allocation we should not deadlock.
2089  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2090  */
2091 static int ext4_writepage(struct page *page,
2092                           struct writeback_control *wbc)
2093 {
2094         int ret = 0;
2095         loff_t size;
2096         unsigned int len;
2097         struct buffer_head *page_bufs = NULL;
2098         struct inode *inode = page->mapping->host;
2099         struct ext4_io_submit io_submit;
2100         bool keep_towrite = false;
2101
2102         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2103                 ext4_invalidatepage(page, 0, PAGE_SIZE);
2104                 unlock_page(page);
2105                 return -EIO;
2106         }
2107
2108         trace_ext4_writepage(page);
2109         size = i_size_read(inode);
2110         if (page->index == size >> PAGE_SHIFT)
2111                 len = size & ~PAGE_MASK;
2112         else
2113                 len = PAGE_SIZE;
2114
2115         page_bufs = page_buffers(page);
2116         /*
2117          * We cannot do block allocation or other extent handling in this
2118          * function. If there are buffers needing that, we have to redirty
2119          * the page. But we may reach here when we do a journal commit via
2120          * journal_submit_inode_data_buffers() and in that case we must write
2121          * allocated buffers to achieve data=ordered mode guarantees.
2122          *
2123          * Also, if there is only one buffer per page (the fs block
2124          * size == the page size), if one buffer needs block
2125          * allocation or needs to modify the extent tree to clear the
2126          * unwritten flag, we know that the page can't be written at
2127          * all, so we might as well refuse the write immediately.
2128          * Unfortunately if the block size != page size, we can't as
2129          * easily detect this case using ext4_walk_page_buffers(), but
2130          * for the extremely common case, this is an optimization that
2131          * skips a useless round trip through ext4_bio_write_page().
2132          */
2133         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2134                                    ext4_bh_delay_or_unwritten)) {
2135                 redirty_page_for_writepage(wbc, page);
2136                 if ((current->flags & PF_MEMALLOC) ||
2137                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2138                         /*
2139                          * For memory cleaning there's no point in writing only
2140                          * some buffers. So just bail out. Warn if we came here
2141                          * from direct reclaim.
2142                          */
2143                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2144                                                         == PF_MEMALLOC);
2145                         unlock_page(page);
2146                         return 0;
2147                 }
2148                 keep_towrite = true;
2149         }
2150
2151         if (PageChecked(page) && ext4_should_journal_data(inode))
2152                 /*
2153                  * It's mmapped pagecache.  Add buffers and journal it.  There
2154                  * doesn't seem much point in redirtying the page here.
2155                  */
2156                 return __ext4_journalled_writepage(page, len);
2157
2158         ext4_io_submit_init(&io_submit, wbc);
2159         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2160         if (!io_submit.io_end) {
2161                 redirty_page_for_writepage(wbc, page);
2162                 unlock_page(page);
2163                 return -ENOMEM;
2164         }
2165         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2166         ext4_io_submit(&io_submit);
2167         /* Drop io_end reference we got from init */
2168         ext4_put_io_end_defer(io_submit.io_end);
2169         return ret;
2170 }
2171
2172 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2173 {
2174         int len;
2175         loff_t size;
2176         int err;
2177
2178         BUG_ON(page->index != mpd->first_page);
2179         clear_page_dirty_for_io(page);
2180         /*
2181          * We have to be very careful here!  Nothing protects writeback path
2182          * against i_size changes and the page can be writeably mapped into
2183          * page tables. So an application can be growing i_size and writing
2184          * data through mmap while writeback runs. clear_page_dirty_for_io()
2185          * write-protects our page in page tables and the page cannot get
2186          * written to again until we release page lock. So only after
2187          * clear_page_dirty_for_io() we are safe to sample i_size for
2188          * ext4_bio_write_page() to zero-out tail of the written page. We rely
2189          * on the barrier provided by TestClearPageDirty in
2190          * clear_page_dirty_for_io() to make sure i_size is really sampled only
2191          * after page tables are updated.
2192          */
2193         size = i_size_read(mpd->inode);
2194         if (page->index == size >> PAGE_SHIFT)
2195                 len = size & ~PAGE_MASK;
2196         else
2197                 len = PAGE_SIZE;
2198         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2199         if (!err)
2200                 mpd->wbc->nr_to_write--;
2201         mpd->first_page++;
2202
2203         return err;
2204 }
2205
2206 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2207
2208 /*
2209  * mballoc gives us at most this number of blocks...
2210  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2211  * The rest of mballoc seems to handle chunks up to full group size.
2212  */
2213 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2214
2215 /*
2216  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2217  *
2218  * @mpd - extent of blocks
2219  * @lblk - logical number of the block in the file
2220  * @bh - buffer head we want to add to the extent
2221  *
2222  * The function is used to collect contig. blocks in the same state. If the
2223  * buffer doesn't require mapping for writeback and we haven't started the
2224  * extent of buffers to map yet, the function returns 'true' immediately - the
2225  * caller can write the buffer right away. Otherwise the function returns true
2226  * if the block has been added to the extent, false if the block couldn't be
2227  * added.
2228  */
2229 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2230                                    struct buffer_head *bh)
2231 {
2232         struct ext4_map_blocks *map = &mpd->map;
2233
2234         /* Buffer that doesn't need mapping for writeback? */
2235         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2236             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2237                 /* So far no extent to map => we write the buffer right away */
2238                 if (map->m_len == 0)
2239                         return true;
2240                 return false;
2241         }
2242
2243         /* First block in the extent? */
2244         if (map->m_len == 0) {
2245                 /* We cannot map unless handle is started... */
2246                 if (!mpd->do_map)
2247                         return false;
2248                 map->m_lblk = lblk;
2249                 map->m_len = 1;
2250                 map->m_flags = bh->b_state & BH_FLAGS;
2251                 return true;
2252         }
2253
2254         /* Don't go larger than mballoc is willing to allocate */
2255         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2256                 return false;
2257
2258         /* Can we merge the block to our big extent? */
2259         if (lblk == map->m_lblk + map->m_len &&
2260             (bh->b_state & BH_FLAGS) == map->m_flags) {
2261                 map->m_len++;
2262                 return true;
2263         }
2264         return false;
2265 }
2266
2267 /*
2268  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2269  *
2270  * @mpd - extent of blocks for mapping
2271  * @head - the first buffer in the page
2272  * @bh - buffer we should start processing from
2273  * @lblk - logical number of the block in the file corresponding to @bh
2274  *
2275  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2276  * the page for IO if all buffers in this page were mapped and there's no
2277  * accumulated extent of buffers to map or add buffers in the page to the
2278  * extent of buffers to map. The function returns 1 if the caller can continue
2279  * by processing the next page, 0 if it should stop adding buffers to the
2280  * extent to map because we cannot extend it anymore. It can also return value
2281  * < 0 in case of error during IO submission.
2282  */
2283 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2284                                    struct buffer_head *head,
2285                                    struct buffer_head *bh,
2286                                    ext4_lblk_t lblk)
2287 {
2288         struct inode *inode = mpd->inode;
2289         int err;
2290         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2291                                                         >> inode->i_blkbits;
2292
2293         do {
2294                 BUG_ON(buffer_locked(bh));
2295
2296                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2297                         /* Found extent to map? */
2298                         if (mpd->map.m_len)
2299                                 return 0;
2300                         /* Buffer needs mapping and handle is not started? */
2301                         if (!mpd->do_map)
2302                                 return 0;
2303                         /* Everything mapped so far and we hit EOF */
2304                         break;
2305                 }
2306         } while (lblk++, (bh = bh->b_this_page) != head);
2307         /* So far everything mapped? Submit the page for IO. */
2308         if (mpd->map.m_len == 0) {
2309                 err = mpage_submit_page(mpd, head->b_page);
2310                 if (err < 0)
2311                         return err;
2312         }
2313         return lblk < blocks;
2314 }
2315
2316 /*
2317  * mpage_map_buffers - update buffers corresponding to changed extent and
2318  *                     submit fully mapped pages for IO
2319  *
2320  * @mpd - description of extent to map, on return next extent to map
2321  *
2322  * Scan buffers corresponding to changed extent (we expect corresponding pages
2323  * to be already locked) and update buffer state according to new extent state.
2324  * We map delalloc buffers to their physical location, clear unwritten bits,
2325  * and mark buffers as uninit when we perform writes to unwritten extents
2326  * and do extent conversion after IO is finished. If the last page is not fully
2327  * mapped, we update @map to the next extent in the last page that needs
2328  * mapping. Otherwise we submit the page for IO.
2329  */
2330 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2331 {
2332         struct pagevec pvec;
2333         int nr_pages, i;
2334         struct inode *inode = mpd->inode;
2335         struct buffer_head *head, *bh;
2336         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2337         pgoff_t start, end;
2338         ext4_lblk_t lblk;
2339         sector_t pblock;
2340         int err;
2341
2342         start = mpd->map.m_lblk >> bpp_bits;
2343         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2344         lblk = start << bpp_bits;
2345         pblock = mpd->map.m_pblk;
2346
2347         pagevec_init(&pvec, 0);
2348         while (start <= end) {
2349                 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2350                                                 &start, end);
2351                 if (nr_pages == 0)
2352                         break;
2353                 for (i = 0; i < nr_pages; i++) {
2354                         struct page *page = pvec.pages[i];
2355
2356                         bh = head = page_buffers(page);
2357                         do {
2358                                 if (lblk < mpd->map.m_lblk)
2359                                         continue;
2360                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2361                                         /*
2362                                          * Buffer after end of mapped extent.
2363                                          * Find next buffer in the page to map.
2364                                          */
2365                                         mpd->map.m_len = 0;
2366                                         mpd->map.m_flags = 0;
2367                                         /*
2368                                          * FIXME: If dioread_nolock supports
2369                                          * blocksize < pagesize, we need to make
2370                                          * sure we add size mapped so far to
2371                                          * io_end->size as the following call
2372                                          * can submit the page for IO.
2373                                          */
2374                                         err = mpage_process_page_bufs(mpd, head,
2375                                                                       bh, lblk);
2376                                         pagevec_release(&pvec);
2377                                         if (err > 0)
2378                                                 err = 0;
2379                                         return err;
2380                                 }
2381                                 if (buffer_delay(bh)) {
2382                                         clear_buffer_delay(bh);
2383                                         bh->b_blocknr = pblock++;
2384                                 }
2385                                 clear_buffer_unwritten(bh);
2386                         } while (lblk++, (bh = bh->b_this_page) != head);
2387
2388                         /*
2389                          * FIXME: This is going to break if dioread_nolock
2390                          * supports blocksize < pagesize as we will try to
2391                          * convert potentially unmapped parts of inode.
2392                          */
2393                         mpd->io_submit.io_end->size += PAGE_SIZE;
2394                         /* Page fully mapped - let IO run! */
2395                         err = mpage_submit_page(mpd, page);
2396                         if (err < 0) {
2397                                 pagevec_release(&pvec);
2398                                 return err;
2399                         }
2400                 }
2401                 pagevec_release(&pvec);
2402         }
2403         /* Extent fully mapped and matches with page boundary. We are done. */
2404         mpd->map.m_len = 0;
2405         mpd->map.m_flags = 0;
2406         return 0;
2407 }
2408
2409 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2410 {
2411         struct inode *inode = mpd->inode;
2412         struct ext4_map_blocks *map = &mpd->map;
2413         int get_blocks_flags;
2414         int err, dioread_nolock;
2415
2416         trace_ext4_da_write_pages_extent(inode, map);
2417         /*
2418          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2419          * to convert an unwritten extent to be initialized (in the case
2420          * where we have written into one or more preallocated blocks).  It is
2421          * possible that we're going to need more metadata blocks than
2422          * previously reserved. However we must not fail because we're in
2423          * writeback and there is nothing we can do about it so it might result
2424          * in data loss.  So use reserved blocks to allocate metadata if
2425          * possible.
2426          *
2427          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2428          * the blocks in question are delalloc blocks.  This indicates
2429          * that the blocks and quotas has already been checked when
2430          * the data was copied into the page cache.
2431          */
2432         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2433                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2434                            EXT4_GET_BLOCKS_IO_SUBMIT;
2435         dioread_nolock = ext4_should_dioread_nolock(inode);
2436         if (dioread_nolock)
2437                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2438         if (map->m_flags & (1 << BH_Delay))
2439                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2440
2441         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2442         if (err < 0)
2443                 return err;
2444         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2445                 if (!mpd->io_submit.io_end->handle &&
2446                     ext4_handle_valid(handle)) {
2447                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2448                         handle->h_rsv_handle = NULL;
2449                 }
2450                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2451         }
2452
2453         BUG_ON(map->m_len == 0);
2454         if (map->m_flags & EXT4_MAP_NEW) {
2455                 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2456                                    map->m_len);
2457         }
2458         return 0;
2459 }
2460
2461 /*
2462  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2463  *                               mpd->len and submit pages underlying it for IO
2464  *
2465  * @handle - handle for journal operations
2466  * @mpd - extent to map
2467  * @give_up_on_write - we set this to true iff there is a fatal error and there
2468  *                     is no hope of writing the data. The caller should discard
2469  *                     dirty pages to avoid infinite loops.
2470  *
2471  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2472  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2473  * them to initialized or split the described range from larger unwritten
2474  * extent. Note that we need not map all the described range since allocation
2475  * can return less blocks or the range is covered by more unwritten extents. We
2476  * cannot map more because we are limited by reserved transaction credits. On
2477  * the other hand we always make sure that the last touched page is fully
2478  * mapped so that it can be written out (and thus forward progress is
2479  * guaranteed). After mapping we submit all mapped pages for IO.
2480  */
2481 static int mpage_map_and_submit_extent(handle_t *handle,
2482                                        struct mpage_da_data *mpd,
2483                                        bool *give_up_on_write)
2484 {
2485         struct inode *inode = mpd->inode;
2486         struct ext4_map_blocks *map = &mpd->map;
2487         int err;
2488         loff_t disksize;
2489         int progress = 0;
2490
2491         mpd->io_submit.io_end->offset =
2492                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2493         do {
2494                 err = mpage_map_one_extent(handle, mpd);
2495                 if (err < 0) {
2496                         struct super_block *sb = inode->i_sb;
2497
2498                         if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2499                             EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2500                                 goto invalidate_dirty_pages;
2501                         /*
2502                          * Let the uper layers retry transient errors.
2503                          * In the case of ENOSPC, if ext4_count_free_blocks()
2504                          * is non-zero, a commit should free up blocks.
2505                          */
2506                         if ((err == -ENOMEM) ||
2507                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2508                                 if (progress)
2509                                         goto update_disksize;
2510                                 return err;
2511                         }
2512                         ext4_msg(sb, KERN_CRIT,
2513                                  "Delayed block allocation failed for "
2514                                  "inode %lu at logical offset %llu with"
2515                                  " max blocks %u with error %d",
2516                                  inode->i_ino,
2517                                  (unsigned long long)map->m_lblk,
2518                                  (unsigned)map->m_len, -err);
2519                         ext4_msg(sb, KERN_CRIT,
2520                                  "This should not happen!! Data will "
2521                                  "be lost\n");
2522                         if (err == -ENOSPC)
2523                                 ext4_print_free_blocks(inode);
2524                 invalidate_dirty_pages:
2525                         *give_up_on_write = true;
2526                         return err;
2527                 }
2528                 progress = 1;
2529                 /*
2530                  * Update buffer state, submit mapped pages, and get us new
2531                  * extent to map
2532                  */
2533                 err = mpage_map_and_submit_buffers(mpd);
2534                 if (err < 0)
2535                         goto update_disksize;
2536         } while (map->m_len);
2537
2538 update_disksize:
2539         /*
2540          * Update on-disk size after IO is submitted.  Races with
2541          * truncate are avoided by checking i_size under i_data_sem.
2542          */
2543         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2544         if (disksize > EXT4_I(inode)->i_disksize) {
2545                 int err2;
2546                 loff_t i_size;
2547
2548                 down_write(&EXT4_I(inode)->i_data_sem);
2549                 i_size = i_size_read(inode);
2550                 if (disksize > i_size)
2551                         disksize = i_size;
2552                 if (disksize > EXT4_I(inode)->i_disksize)
2553                         EXT4_I(inode)->i_disksize = disksize;
2554                 up_write(&EXT4_I(inode)->i_data_sem);
2555                 err2 = ext4_mark_inode_dirty(handle, inode);
2556                 if (err2)
2557                         ext4_error(inode->i_sb,
2558                                    "Failed to mark inode %lu dirty",
2559                                    inode->i_ino);
2560                 if (!err)
2561                         err = err2;
2562         }
2563         return err;
2564 }
2565
2566 /*
2567  * Calculate the total number of credits to reserve for one writepages
2568  * iteration. This is called from ext4_writepages(). We map an extent of
2569  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2570  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2571  * bpp - 1 blocks in bpp different extents.
2572  */
2573 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2574 {
2575         int bpp = ext4_journal_blocks_per_page(inode);
2576
2577         return ext4_meta_trans_blocks(inode,
2578                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2579 }
2580
2581 /*
2582  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2583  *                               and underlying extent to map
2584  *
2585  * @mpd - where to look for pages
2586  *
2587  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2588  * IO immediately. When we find a page which isn't mapped we start accumulating
2589  * extent of buffers underlying these pages that needs mapping (formed by
2590  * either delayed or unwritten buffers). We also lock the pages containing
2591  * these buffers. The extent found is returned in @mpd structure (starting at
2592  * mpd->lblk with length mpd->len blocks).
2593  *
2594  * Note that this function can attach bios to one io_end structure which are
2595  * neither logically nor physically contiguous. Although it may seem as an
2596  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2597  * case as we need to track IO to all buffers underlying a page in one io_end.
2598  */
2599 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2600 {
2601         struct address_space *mapping = mpd->inode->i_mapping;
2602         struct pagevec pvec;
2603         unsigned int nr_pages;
2604         long left = mpd->wbc->nr_to_write;
2605         pgoff_t index = mpd->first_page;
2606         pgoff_t end = mpd->last_page;
2607         int tag;
2608         int i, err = 0;
2609         int blkbits = mpd->inode->i_blkbits;
2610         ext4_lblk_t lblk;
2611         struct buffer_head *head;
2612
2613         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2614                 tag = PAGECACHE_TAG_TOWRITE;
2615         else
2616                 tag = PAGECACHE_TAG_DIRTY;
2617
2618         pagevec_init(&pvec, 0);
2619         mpd->map.m_len = 0;
2620         mpd->next_page = index;
2621         while (index <= end) {
2622                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2623                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2624                 if (nr_pages == 0)
2625                         goto out;
2626
2627                 for (i = 0; i < nr_pages; i++) {
2628                         struct page *page = pvec.pages[i];
2629
2630                         /*
2631                          * At this point, the page may be truncated or
2632                          * invalidated (changing page->mapping to NULL), or
2633                          * even swizzled back from swapper_space to tmpfs file
2634                          * mapping. However, page->index will not change
2635                          * because we have a reference on the page.
2636                          */
2637                         if (page->index > end)
2638                                 goto out;
2639
2640                         /*
2641                          * Accumulated enough dirty pages? This doesn't apply
2642                          * to WB_SYNC_ALL mode. For integrity sync we have to
2643                          * keep going because someone may be concurrently
2644                          * dirtying pages, and we might have synced a lot of
2645                          * newly appeared dirty pages, but have not synced all
2646                          * of the old dirty pages.
2647                          */
2648                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2649                                 goto out;
2650
2651                         /* If we can't merge this page, we are done. */
2652                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2653                                 goto out;
2654
2655                         lock_page(page);
2656                         /*
2657                          * If the page is no longer dirty, or its mapping no
2658                          * longer corresponds to inode we are writing (which
2659                          * means it has been truncated or invalidated), or the
2660                          * page is already under writeback and we are not doing
2661                          * a data integrity writeback, skip the page
2662                          */
2663                         if (!PageDirty(page) ||
2664                             (PageWriteback(page) &&
2665                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2666                             unlikely(page->mapping != mapping)) {
2667                                 unlock_page(page);
2668                                 continue;
2669                         }
2670
2671                         wait_on_page_writeback(page);
2672                         BUG_ON(PageWriteback(page));
2673
2674                         if (mpd->map.m_len == 0)
2675                                 mpd->first_page = page->index;
2676                         mpd->next_page = page->index + 1;
2677                         /* Add all dirty buffers to mpd */
2678                         lblk = ((ext4_lblk_t)page->index) <<
2679                                 (PAGE_SHIFT - blkbits);
2680                         head = page_buffers(page);
2681                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2682                         if (err <= 0)
2683                                 goto out;
2684                         err = 0;
2685                         left--;
2686                 }
2687                 pagevec_release(&pvec);
2688                 cond_resched();
2689         }
2690         return 0;
2691 out:
2692         pagevec_release(&pvec);
2693         return err;
2694 }
2695
2696 static int __writepage(struct page *page, struct writeback_control *wbc,
2697                        void *data)
2698 {
2699         struct address_space *mapping = data;
2700         int ret = ext4_writepage(page, wbc);
2701         mapping_set_error(mapping, ret);
2702         return ret;
2703 }
2704
2705 static int ext4_writepages(struct address_space *mapping,
2706                            struct writeback_control *wbc)
2707 {
2708         pgoff_t writeback_index = 0;
2709         long nr_to_write = wbc->nr_to_write;
2710         int range_whole = 0;
2711         int cycled = 1;
2712         handle_t *handle = NULL;
2713         struct mpage_da_data mpd;
2714         struct inode *inode = mapping->host;
2715         int needed_blocks, rsv_blocks = 0, ret = 0;
2716         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2717         bool done;
2718         struct blk_plug plug;
2719         bool give_up_on_write = false;
2720
2721         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2722                 return -EIO;
2723
2724         percpu_down_read(&sbi->s_journal_flag_rwsem);
2725         trace_ext4_writepages(inode, wbc);
2726
2727         if (dax_mapping(mapping)) {
2728                 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2729                                                   wbc);
2730                 goto out_writepages;
2731         }
2732
2733         /*
2734          * No pages to write? This is mainly a kludge to avoid starting
2735          * a transaction for special inodes like journal inode on last iput()
2736          * because that could violate lock ordering on umount
2737          */
2738         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2739                 goto out_writepages;
2740
2741         if (ext4_should_journal_data(inode)) {
2742                 struct blk_plug plug;
2743
2744                 blk_start_plug(&plug);
2745                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2746                 blk_finish_plug(&plug);
2747                 goto out_writepages;
2748         }
2749
2750         /*
2751          * If the filesystem has aborted, it is read-only, so return
2752          * right away instead of dumping stack traces later on that
2753          * will obscure the real source of the problem.  We test
2754          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2755          * the latter could be true if the filesystem is mounted
2756          * read-only, and in that case, ext4_writepages should
2757          * *never* be called, so if that ever happens, we would want
2758          * the stack trace.
2759          */
2760         if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2761                      sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2762                 ret = -EROFS;
2763                 goto out_writepages;
2764         }
2765
2766         if (ext4_should_dioread_nolock(inode)) {
2767                 /*
2768                  * We may need to convert up to one extent per block in
2769                  * the page and we may dirty the inode.
2770                  */
2771                 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2772         }
2773
2774         /*
2775          * If we have inline data and arrive here, it means that
2776          * we will soon create the block for the 1st page, so
2777          * we'd better clear the inline data here.
2778          */
2779         if (ext4_has_inline_data(inode)) {
2780                 /* Just inode will be modified... */
2781                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2782                 if (IS_ERR(handle)) {
2783                         ret = PTR_ERR(handle);
2784                         goto out_writepages;
2785                 }
2786                 BUG_ON(ext4_test_inode_state(inode,
2787                                 EXT4_STATE_MAY_INLINE_DATA));
2788                 ext4_destroy_inline_data(handle, inode);
2789                 ext4_journal_stop(handle);
2790         }
2791
2792         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2793                 range_whole = 1;
2794
2795         if (wbc->range_cyclic) {
2796                 writeback_index = mapping->writeback_index;
2797                 if (writeback_index)
2798                         cycled = 0;
2799                 mpd.first_page = writeback_index;
2800                 mpd.last_page = -1;
2801         } else {
2802                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2803                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2804         }
2805
2806         mpd.inode = inode;
2807         mpd.wbc = wbc;
2808         ext4_io_submit_init(&mpd.io_submit, wbc);
2809 retry:
2810         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2811                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2812         done = false;
2813         blk_start_plug(&plug);
2814
2815         /*
2816          * First writeback pages that don't need mapping - we can avoid
2817          * starting a transaction unnecessarily and also avoid being blocked
2818          * in the block layer on device congestion while having transaction
2819          * started.
2820          */
2821         mpd.do_map = 0;
2822         mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2823         if (!mpd.io_submit.io_end) {
2824                 ret = -ENOMEM;
2825                 goto unplug;
2826         }
2827         ret = mpage_prepare_extent_to_map(&mpd);
2828         /* Submit prepared bio */
2829         ext4_io_submit(&mpd.io_submit);
2830         ext4_put_io_end_defer(mpd.io_submit.io_end);
2831         mpd.io_submit.io_end = NULL;
2832         /* Unlock pages we didn't use */
2833         mpage_release_unused_pages(&mpd, false);
2834         if (ret < 0)
2835                 goto unplug;
2836
2837         while (!done && mpd.first_page <= mpd.last_page) {
2838                 /* For each extent of pages we use new io_end */
2839                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2840                 if (!mpd.io_submit.io_end) {
2841                         ret = -ENOMEM;
2842                         break;
2843                 }
2844
2845                 /*
2846                  * We have two constraints: We find one extent to map and we
2847                  * must always write out whole page (makes a difference when
2848                  * blocksize < pagesize) so that we don't block on IO when we
2849                  * try to write out the rest of the page. Journalled mode is
2850                  * not supported by delalloc.
2851                  */
2852                 BUG_ON(ext4_should_journal_data(inode));
2853                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2854
2855                 /* start a new transaction */
2856                 handle = ext4_journal_start_with_reserve(inode,
2857                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2858                 if (IS_ERR(handle)) {
2859                         ret = PTR_ERR(handle);
2860                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2861                                "%ld pages, ino %lu; err %d", __func__,
2862                                 wbc->nr_to_write, inode->i_ino, ret);
2863                         /* Release allocated io_end */
2864                         ext4_put_io_end(mpd.io_submit.io_end);
2865                         mpd.io_submit.io_end = NULL;
2866                         break;
2867                 }
2868                 mpd.do_map = 1;
2869
2870                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2871                 ret = mpage_prepare_extent_to_map(&mpd);
2872                 if (!ret) {
2873                         if (mpd.map.m_len)
2874                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2875                                         &give_up_on_write);
2876                         else {
2877                                 /*
2878                                  * We scanned the whole range (or exhausted
2879                                  * nr_to_write), submitted what was mapped and
2880                                  * didn't find anything needing mapping. We are
2881                                  * done.
2882                                  */
2883                                 done = true;
2884                         }
2885                 }
2886                 /*
2887                  * Caution: If the handle is synchronous,
2888                  * ext4_journal_stop() can wait for transaction commit
2889                  * to finish which may depend on writeback of pages to
2890                  * complete or on page lock to be released.  In that
2891                  * case, we have to wait until after after we have
2892                  * submitted all the IO, released page locks we hold,
2893                  * and dropped io_end reference (for extent conversion
2894                  * to be able to complete) before stopping the handle.
2895                  */
2896                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2897                         ext4_journal_stop(handle);
2898                         handle = NULL;
2899                         mpd.do_map = 0;
2900                 }
2901                 /* Submit prepared bio */
2902                 ext4_io_submit(&mpd.io_submit);
2903                 /* Unlock pages we didn't use */
2904                 mpage_release_unused_pages(&mpd, give_up_on_write);
2905                 /*
2906                  * Drop our io_end reference we got from init. We have
2907                  * to be careful and use deferred io_end finishing if
2908                  * we are still holding the transaction as we can
2909                  * release the last reference to io_end which may end
2910                  * up doing unwritten extent conversion.
2911                  */
2912                 if (handle) {
2913                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2914                         ext4_journal_stop(handle);
2915                 } else
2916                         ext4_put_io_end(mpd.io_submit.io_end);
2917                 mpd.io_submit.io_end = NULL;
2918
2919                 if (ret == -ENOSPC && sbi->s_journal) {
2920                         /*
2921                          * Commit the transaction which would
2922                          * free blocks released in the transaction
2923                          * and try again
2924                          */
2925                         jbd2_journal_force_commit_nested(sbi->s_journal);
2926                         ret = 0;
2927                         continue;
2928                 }
2929                 /* Fatal error - ENOMEM, EIO... */
2930                 if (ret)
2931                         break;
2932         }
2933 unplug:
2934         blk_finish_plug(&plug);
2935         if (!ret && !cycled && wbc->nr_to_write > 0) {
2936                 cycled = 1;
2937                 mpd.last_page = writeback_index - 1;
2938                 mpd.first_page = 0;
2939                 goto retry;
2940         }
2941
2942         /* Update index */
2943         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2944                 /*
2945                  * Set the writeback_index so that range_cyclic
2946                  * mode will write it back later
2947                  */
2948                 mapping->writeback_index = mpd.first_page;
2949
2950 out_writepages:
2951         trace_ext4_writepages_result(inode, wbc, ret,
2952                                      nr_to_write - wbc->nr_to_write);
2953         percpu_up_read(&sbi->s_journal_flag_rwsem);
2954         return ret;
2955 }
2956
2957 static int ext4_nonda_switch(struct super_block *sb)
2958 {
2959         s64 free_clusters, dirty_clusters;
2960         struct ext4_sb_info *sbi = EXT4_SB(sb);
2961
2962         /*
2963          * switch to non delalloc mode if we are running low
2964          * on free block. The free block accounting via percpu
2965          * counters can get slightly wrong with percpu_counter_batch getting
2966          * accumulated on each CPU without updating global counters
2967          * Delalloc need an accurate free block accounting. So switch
2968          * to non delalloc when we are near to error range.
2969          */
2970         free_clusters =
2971                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2972         dirty_clusters =
2973                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2974         /*
2975          * Start pushing delalloc when 1/2 of free blocks are dirty.
2976          */
2977         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2978                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2979
2980         if (2 * free_clusters < 3 * dirty_clusters ||
2981             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2982                 /*
2983                  * free block count is less than 150% of dirty blocks
2984                  * or free blocks is less than watermark
2985                  */
2986                 return 1;
2987         }
2988         return 0;
2989 }
2990
2991 /* We always reserve for an inode update; the superblock could be there too */
2992 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2993 {
2994         if (likely(ext4_has_feature_large_file(inode->i_sb)))
2995                 return 1;
2996
2997         if (pos + len <= 0x7fffffffULL)
2998                 return 1;
2999
3000         /* We might need to update the superblock to set LARGE_FILE */
3001         return 2;
3002 }
3003
3004 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3005                                loff_t pos, unsigned len, unsigned flags,
3006                                struct page **pagep, void **fsdata)
3007 {
3008         int ret, retries = 0;
3009         struct page *page;
3010         pgoff_t index;
3011         struct inode *inode = mapping->host;
3012         handle_t *handle;
3013
3014         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3015                 return -EIO;
3016
3017         index = pos >> PAGE_SHIFT;
3018
3019         if (ext4_nonda_switch(inode->i_sb) ||
3020             S_ISLNK(inode->i_mode)) {
3021                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3022                 return ext4_write_begin(file, mapping, pos,
3023                                         len, flags, pagep, fsdata);
3024         }
3025         *fsdata = (void *)0;
3026         trace_ext4_da_write_begin(inode, pos, len, flags);
3027
3028         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3029                 ret = ext4_da_write_inline_data_begin(mapping, inode,
3030                                                       pos, len, flags,
3031                                                       pagep, fsdata);
3032                 if (ret < 0)
3033                         return ret;
3034                 if (ret == 1)
3035                         return 0;
3036         }
3037
3038         /*
3039          * grab_cache_page_write_begin() can take a long time if the
3040          * system is thrashing due to memory pressure, or if the page
3041          * is being written back.  So grab it first before we start
3042          * the transaction handle.  This also allows us to allocate
3043          * the page (if needed) without using GFP_NOFS.
3044          */
3045 retry_grab:
3046         page = grab_cache_page_write_begin(mapping, index, flags);
3047         if (!page)
3048                 return -ENOMEM;
3049         unlock_page(page);
3050
3051         /*
3052          * With delayed allocation, we don't log the i_disksize update
3053          * if there is delayed block allocation. But we still need
3054          * to journalling the i_disksize update if writes to the end
3055          * of file which has an already mapped buffer.
3056          */
3057 retry_journal:
3058         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3059                                 ext4_da_write_credits(inode, pos, len));
3060         if (IS_ERR(handle)) {
3061                 put_page(page);
3062                 return PTR_ERR(handle);
3063         }
3064
3065         lock_page(page);
3066         if (page->mapping != mapping) {
3067                 /* The page got truncated from under us */
3068                 unlock_page(page);
3069                 put_page(page);
3070                 ext4_journal_stop(handle);
3071                 goto retry_grab;
3072         }
3073         /* In case writeback began while the page was unlocked */
3074         wait_for_stable_page(page);
3075
3076 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3077         ret = ext4_block_write_begin(page, pos, len,
3078                                      ext4_da_get_block_prep);
3079 #else
3080         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3081 #endif
3082         if (ret < 0) {
3083                 unlock_page(page);
3084                 ext4_journal_stop(handle);
3085                 /*
3086                  * block_write_begin may have instantiated a few blocks
3087                  * outside i_size.  Trim these off again. Don't need
3088                  * i_size_read because we hold i_mutex.
3089                  */
3090                 if (pos + len > inode->i_size)
3091                         ext4_truncate_failed_write(inode);
3092
3093                 if (ret == -ENOSPC &&
3094                     ext4_should_retry_alloc(inode->i_sb, &retries))
3095                         goto retry_journal;
3096
3097                 put_page(page);
3098                 return ret;
3099         }
3100
3101         *pagep = page;
3102         return ret;
3103 }
3104
3105 /*
3106  * Check if we should update i_disksize
3107  * when write to the end of file but not require block allocation
3108  */
3109 static int ext4_da_should_update_i_disksize(struct page *page,
3110                                             unsigned long offset)
3111 {
3112         struct buffer_head *bh;
3113         struct inode *inode = page->mapping->host;
3114         unsigned int idx;
3115         int i;
3116
3117         bh = page_buffers(page);
3118         idx = offset >> inode->i_blkbits;
3119
3120         for (i = 0; i < idx; i++)
3121                 bh = bh->b_this_page;
3122
3123         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3124                 return 0;
3125         return 1;
3126 }
3127
3128 static int ext4_da_write_end(struct file *file,
3129                              struct address_space *mapping,
3130                              loff_t pos, unsigned len, unsigned copied,
3131                              struct page *page, void *fsdata)
3132 {
3133         struct inode *inode = mapping->host;
3134         int ret = 0, ret2;
3135         handle_t *handle = ext4_journal_current_handle();
3136         loff_t new_i_size;
3137         unsigned long start, end;
3138         int write_mode = (int)(unsigned long)fsdata;
3139
3140         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3141                 return ext4_write_end(file, mapping, pos,
3142                                       len, copied, page, fsdata);
3143
3144         trace_ext4_da_write_end(inode, pos, len, copied);
3145         start = pos & (PAGE_SIZE - 1);
3146         end = start + copied - 1;
3147
3148         /*
3149          * generic_write_end() will run mark_inode_dirty() if i_size
3150          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3151          * into that.
3152          */
3153         new_i_size = pos + copied;
3154         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3155                 if (ext4_has_inline_data(inode) ||
3156                     ext4_da_should_update_i_disksize(page, end)) {
3157                         ext4_update_i_disksize(inode, new_i_size);
3158                         /* We need to mark inode dirty even if
3159                          * new_i_size is less that inode->i_size
3160                          * bu greater than i_disksize.(hint delalloc)
3161                          */
3162                         ext4_mark_inode_dirty(handle, inode);
3163                 }
3164         }
3165
3166         if (write_mode != CONVERT_INLINE_DATA &&
3167             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3168             ext4_has_inline_data(inode))
3169                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3170                                                      page);
3171         else
3172                 ret2 = generic_write_end(file, mapping, pos, len, copied,
3173                                                         page, fsdata);
3174
3175         copied = ret2;
3176         if (ret2 < 0)
3177                 ret = ret2;
3178         ret2 = ext4_journal_stop(handle);
3179         if (!ret)
3180                 ret = ret2;
3181
3182         return ret ? ret : copied;
3183 }
3184
3185 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3186                                    unsigned int length)
3187 {
3188         /*
3189          * Drop reserved blocks
3190          */
3191         BUG_ON(!PageLocked(page));
3192         if (!page_has_buffers(page))
3193                 goto out;
3194
3195         ext4_da_page_release_reservation(page, offset, length);
3196
3197 out:
3198         ext4_invalidatepage(page, offset, length);
3199
3200         return;
3201 }
3202
3203 /*
3204  * Force all delayed allocation blocks to be allocated for a given inode.
3205  */
3206 int ext4_alloc_da_blocks(struct inode *inode)
3207 {
3208         trace_ext4_alloc_da_blocks(inode);
3209
3210         if (!EXT4_I(inode)->i_reserved_data_blocks)
3211                 return 0;
3212
3213         /*
3214          * We do something simple for now.  The filemap_flush() will
3215          * also start triggering a write of the data blocks, which is
3216          * not strictly speaking necessary (and for users of
3217          * laptop_mode, not even desirable).  However, to do otherwise
3218          * would require replicating code paths in:
3219          *
3220          * ext4_writepages() ->
3221          *    write_cache_pages() ---> (via passed in callback function)
3222          *        __mpage_da_writepage() -->
3223          *           mpage_add_bh_to_extent()
3224          *           mpage_da_map_blocks()
3225          *
3226          * The problem is that write_cache_pages(), located in
3227          * mm/page-writeback.c, marks pages clean in preparation for
3228          * doing I/O, which is not desirable if we're not planning on
3229          * doing I/O at all.
3230          *
3231          * We could call write_cache_pages(), and then redirty all of
3232          * the pages by calling redirty_page_for_writepage() but that
3233          * would be ugly in the extreme.  So instead we would need to
3234          * replicate parts of the code in the above functions,
3235          * simplifying them because we wouldn't actually intend to
3236          * write out the pages, but rather only collect contiguous
3237          * logical block extents, call the multi-block allocator, and
3238          * then update the buffer heads with the block allocations.
3239          *
3240          * For now, though, we'll cheat by calling filemap_flush(),
3241          * which will map the blocks, and start the I/O, but not
3242          * actually wait for the I/O to complete.
3243          */
3244         return filemap_flush(inode->i_mapping);
3245 }
3246
3247 /*
3248  * bmap() is special.  It gets used by applications such as lilo and by
3249  * the swapper to find the on-disk block of a specific piece of data.
3250  *
3251  * Naturally, this is dangerous if the block concerned is still in the
3252  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3253  * filesystem and enables swap, then they may get a nasty shock when the
3254  * data getting swapped to that swapfile suddenly gets overwritten by
3255  * the original zero's written out previously to the journal and
3256  * awaiting writeback in the kernel's buffer cache.
3257  *
3258  * So, if we see any bmap calls here on a modified, data-journaled file,
3259  * take extra steps to flush any blocks which might be in the cache.
3260  */
3261 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3262 {
3263         struct inode *inode = mapping->host;
3264         journal_t *journal;
3265         int err;
3266
3267         /*
3268          * We can get here for an inline file via the FIBMAP ioctl
3269          */
3270         if (ext4_has_inline_data(inode))
3271                 return 0;
3272
3273         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3274                         test_opt(inode->i_sb, DELALLOC)) {
3275                 /*
3276                  * With delalloc we want to sync the file
3277                  * so that we can make sure we allocate
3278                  * blocks for file
3279                  */
3280                 filemap_write_and_wait(mapping);
3281         }
3282
3283         if (EXT4_JOURNAL(inode) &&
3284             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3285                 /*
3286                  * This is a REALLY heavyweight approach, but the use of
3287                  * bmap on dirty files is expected to be extremely rare:
3288                  * only if we run lilo or swapon on a freshly made file
3289                  * do we expect this to happen.
3290                  *
3291                  * (bmap requires CAP_SYS_RAWIO so this does not
3292                  * represent an unprivileged user DOS attack --- we'd be
3293                  * in trouble if mortal users could trigger this path at
3294                  * will.)
3295                  *
3296                  * NB. EXT4_STATE_JDATA is not set on files other than
3297                  * regular files.  If somebody wants to bmap a directory
3298                  * or symlink and gets confused because the buffer
3299                  * hasn't yet been flushed to disk, they deserve
3300                  * everything they get.
3301                  */
3302
3303                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3304                 journal = EXT4_JOURNAL(inode);
3305                 jbd2_journal_lock_updates(journal);
3306                 err = jbd2_journal_flush(journal);
3307                 jbd2_journal_unlock_updates(journal);
3308
3309                 if (err)
3310                         return 0;
3311         }
3312
3313         return generic_block_bmap(mapping, block, ext4_get_block);
3314 }
3315
3316 static int ext4_readpage(struct file *file, struct page *page)
3317 {
3318         int ret = -EAGAIN;
3319         struct inode *inode = page->mapping->host;
3320
3321         trace_ext4_readpage(page);
3322
3323         if (ext4_has_inline_data(inode))
3324                 ret = ext4_readpage_inline(inode, page);
3325
3326         if (ret == -EAGAIN)
3327                 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3328
3329         return ret;
3330 }
3331
3332 static int
3333 ext4_readpages(struct file *file, struct address_space *mapping,
3334                 struct list_head *pages, unsigned nr_pages)
3335 {
3336         struct inode *inode = mapping->host;
3337
3338         /* If the file has inline data, no need to do readpages. */
3339         if (ext4_has_inline_data(inode))
3340                 return 0;
3341
3342         return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3343 }
3344
3345 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3346                                 unsigned int length)
3347 {
3348         trace_ext4_invalidatepage(page, offset, length);
3349
3350         /* No journalling happens on data buffers when this function is used */
3351         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3352
3353         block_invalidatepage(page, offset, length);
3354 }
3355
3356 static int __ext4_journalled_invalidatepage(struct page *page,
3357                                             unsigned int offset,
3358                                             unsigned int length)
3359 {
3360         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3361
3362         trace_ext4_journalled_invalidatepage(page, offset, length);
3363
3364         /*
3365          * If it's a full truncate we just forget about the pending dirtying
3366          */
3367         if (offset == 0 && length == PAGE_SIZE)
3368                 ClearPageChecked(page);
3369
3370         return jbd2_journal_invalidatepage(journal, page, offset, length);
3371 }
3372
3373 /* Wrapper for aops... */
3374 static void ext4_journalled_invalidatepage(struct page *page,
3375                                            unsigned int offset,
3376                                            unsigned int length)
3377 {
3378         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3379 }
3380
3381 static int ext4_releasepage(struct page *page, gfp_t wait)
3382 {
3383         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3384
3385         trace_ext4_releasepage(page);
3386
3387         /* Page has dirty journalled data -> cannot release */
3388         if (PageChecked(page))
3389                 return 0;
3390         if (journal)
3391                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3392         else
3393                 return try_to_free_buffers(page);
3394 }
3395
3396 #ifdef CONFIG_FS_DAX
3397 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3398                             unsigned flags, struct iomap *iomap)
3399 {
3400         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3401         unsigned int blkbits = inode->i_blkbits;
3402         unsigned long first_block = offset >> blkbits;
3403         unsigned long last_block = (offset + length - 1) >> blkbits;
3404         struct ext4_map_blocks map;
3405         int ret;
3406
3407         if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3408                 return -ERANGE;
3409
3410         map.m_lblk = first_block;
3411         map.m_len = last_block - first_block + 1;
3412
3413         if (!(flags & IOMAP_WRITE)) {
3414                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3415         } else {
3416                 int dio_credits;
3417                 handle_t *handle;
3418                 int retries = 0;
3419
3420                 /* Trim mapping request to maximum we can map at once for DIO */
3421                 if (map.m_len > DIO_MAX_BLOCKS)
3422                         map.m_len = DIO_MAX_BLOCKS;
3423                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3424 retry:
3425                 /*
3426                  * Either we allocate blocks and then we don't get unwritten
3427                  * extent so we have reserved enough credits, or the blocks
3428                  * are already allocated and unwritten and in that case
3429                  * extent conversion fits in the credits as well.
3430                  */
3431                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3432                                             dio_credits);
3433                 if (IS_ERR(handle))
3434                         return PTR_ERR(handle);
3435
3436                 ret = ext4_map_blocks(handle, inode, &map,
3437                                       EXT4_GET_BLOCKS_CREATE_ZERO);
3438                 if (ret < 0) {
3439                         ext4_journal_stop(handle);
3440                         if (ret == -ENOSPC &&
3441                             ext4_should_retry_alloc(inode->i_sb, &retries))
3442                                 goto retry;
3443                         return ret;
3444                 }
3445
3446                 /*
3447                  * If we added blocks beyond i_size, we need to make sure they
3448                  * will get truncated if we crash before updating i_size in
3449                  * ext4_iomap_end(). For faults we don't need to do that (and
3450                  * even cannot because for orphan list operations inode_lock is
3451                  * required) - if we happen to instantiate block beyond i_size,
3452                  * it is because we race with truncate which has already added
3453                  * the inode to the orphan list.
3454                  */
3455                 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3456                     (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3457                         int err;
3458
3459                         err = ext4_orphan_add(handle, inode);
3460                         if (err < 0) {
3461                                 ext4_journal_stop(handle);
3462                                 return err;
3463                         }
3464                 }
3465                 ext4_journal_stop(handle);
3466         }
3467
3468         iomap->flags = 0;
3469         iomap->bdev = inode->i_sb->s_bdev;
3470         iomap->dax_dev = sbi->s_daxdev;
3471         iomap->offset = first_block << blkbits;
3472
3473         if (ret == 0) {
3474                 iomap->type = IOMAP_HOLE;
3475                 iomap->blkno = IOMAP_NULL_BLOCK;
3476                 iomap->length = (u64)map.m_len << blkbits;
3477         } else {
3478                 if (map.m_flags & EXT4_MAP_MAPPED) {
3479                         iomap->type = IOMAP_MAPPED;
3480                 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3481                         iomap->type = IOMAP_UNWRITTEN;
3482                 } else {
3483                         WARN_ON_ONCE(1);
3484                         return -EIO;
3485                 }
3486                 iomap->blkno = (sector_t)map.m_pblk << (blkbits - 9);
3487                 iomap->length = (u64)map.m_len << blkbits;
3488         }
3489
3490         if (map.m_flags & EXT4_MAP_NEW)
3491                 iomap->flags |= IOMAP_F_NEW;
3492         return 0;
3493 }
3494
3495 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3496                           ssize_t written, unsigned flags, struct iomap *iomap)
3497 {
3498         int ret = 0;
3499         handle_t *handle;
3500         int blkbits = inode->i_blkbits;
3501         bool truncate = false;
3502
3503         if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3504                 return 0;
3505
3506         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3507         if (IS_ERR(handle)) {
3508                 ret = PTR_ERR(handle);
3509                 goto orphan_del;
3510         }
3511         if (ext4_update_inode_size(inode, offset + written))
3512                 ext4_mark_inode_dirty(handle, inode);
3513         /*
3514          * We may need to truncate allocated but not written blocks beyond EOF.
3515          */
3516         if (iomap->offset + iomap->length > 
3517             ALIGN(inode->i_size, 1 << blkbits)) {
3518                 ext4_lblk_t written_blk, end_blk;
3519
3520                 written_blk = (offset + written) >> blkbits;
3521                 end_blk = (offset + length) >> blkbits;
3522                 if (written_blk < end_blk && ext4_can_truncate(inode))
3523                         truncate = true;
3524         }
3525         /*
3526          * Remove inode from orphan list if we were extending a inode and
3527          * everything went fine.
3528          */
3529         if (!truncate && inode->i_nlink &&
3530             !list_empty(&EXT4_I(inode)->i_orphan))
3531                 ext4_orphan_del(handle, inode);
3532         ext4_journal_stop(handle);
3533         if (truncate) {
3534                 ext4_truncate_failed_write(inode);
3535 orphan_del:
3536                 /*
3537                  * If truncate failed early the inode might still be on the
3538                  * orphan list; we need to make sure the inode is removed from
3539                  * the orphan list in that case.
3540                  */
3541                 if (inode->i_nlink)
3542                         ext4_orphan_del(NULL, inode);
3543         }
3544         return ret;
3545 }
3546
3547 const struct iomap_ops ext4_iomap_ops = {
3548         .iomap_begin            = ext4_iomap_begin,
3549         .iomap_end              = ext4_iomap_end,
3550 };
3551
3552 #endif
3553
3554 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3555                             ssize_t size, void *private)
3556 {
3557         ext4_io_end_t *io_end = private;
3558
3559         /* if not async direct IO just return */
3560         if (!io_end)
3561                 return 0;
3562
3563         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3564                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3565                   io_end, io_end->inode->i_ino, iocb, offset, size);
3566
3567         /*
3568          * Error during AIO DIO. We cannot convert unwritten extents as the
3569          * data was not written. Just clear the unwritten flag and drop io_end.
3570          */
3571         if (size <= 0) {
3572                 ext4_clear_io_unwritten_flag(io_end);
3573                 size = 0;
3574         }
3575         io_end->offset = offset;
3576         io_end->size = size;
3577         ext4_put_io_end(io_end);
3578
3579         return 0;
3580 }
3581
3582 /*
3583  * Handling of direct IO writes.
3584  *
3585  * For ext4 extent files, ext4 will do direct-io write even to holes,
3586  * preallocated extents, and those write extend the file, no need to
3587  * fall back to buffered IO.
3588  *
3589  * For holes, we fallocate those blocks, mark them as unwritten
3590  * If those blocks were preallocated, we mark sure they are split, but
3591  * still keep the range to write as unwritten.
3592  *
3593  * The unwritten extents will be converted to written when DIO is completed.
3594  * For async direct IO, since the IO may still pending when return, we
3595  * set up an end_io call back function, which will do the conversion
3596  * when async direct IO completed.
3597  *
3598  * If the O_DIRECT write will extend the file then add this inode to the
3599  * orphan list.  So recovery will truncate it back to the original size
3600  * if the machine crashes during the write.
3601  *
3602  */
3603 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3604 {
3605         struct file *file = iocb->ki_filp;
3606         struct inode *inode = file->f_mapping->host;
3607         struct ext4_inode_info *ei = EXT4_I(inode);
3608         ssize_t ret;
3609         loff_t offset = iocb->ki_pos;
3610         size_t count = iov_iter_count(iter);
3611         int overwrite = 0;
3612         get_block_t *get_block_func = NULL;
3613         int dio_flags = 0;
3614         loff_t final_size = offset + count;
3615         int orphan = 0;
3616         handle_t *handle;
3617
3618         if (final_size > inode->i_size) {
3619                 /* Credits for sb + inode write */
3620                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3621                 if (IS_ERR(handle)) {
3622                         ret = PTR_ERR(handle);
3623                         goto out;
3624                 }
3625                 ret = ext4_orphan_add(handle, inode);
3626                 if (ret) {
3627                         ext4_journal_stop(handle);
3628                         goto out;
3629                 }
3630                 orphan = 1;
3631                 ei->i_disksize = inode->i_size;
3632                 ext4_journal_stop(handle);
3633         }
3634
3635         BUG_ON(iocb->private == NULL);
3636
3637         /*
3638          * Make all waiters for direct IO properly wait also for extent
3639          * conversion. This also disallows race between truncate() and
3640          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3641          */
3642         inode_dio_begin(inode);
3643
3644         /* If we do a overwrite dio, i_mutex locking can be released */
3645         overwrite = *((int *)iocb->private);
3646
3647         if (overwrite)
3648                 inode_unlock(inode);
3649
3650         /*
3651          * For extent mapped files we could direct write to holes and fallocate.
3652          *
3653          * Allocated blocks to fill the hole are marked as unwritten to prevent
3654          * parallel buffered read to expose the stale data before DIO complete
3655          * the data IO.
3656          *
3657          * As to previously fallocated extents, ext4 get_block will just simply
3658          * mark the buffer mapped but still keep the extents unwritten.
3659          *
3660          * For non AIO case, we will convert those unwritten extents to written
3661          * after return back from blockdev_direct_IO. That way we save us from
3662          * allocating io_end structure and also the overhead of offloading
3663          * the extent convertion to a workqueue.
3664          *
3665          * For async DIO, the conversion needs to be deferred when the
3666          * IO is completed. The ext4 end_io callback function will be
3667          * called to take care of the conversion work.  Here for async
3668          * case, we allocate an io_end structure to hook to the iocb.
3669          */
3670         iocb->private = NULL;
3671         if (overwrite)
3672                 get_block_func = ext4_dio_get_block_overwrite;
3673         else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3674                    round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3675                 get_block_func = ext4_dio_get_block;
3676                 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3677         } else if (is_sync_kiocb(iocb)) {
3678                 get_block_func = ext4_dio_get_block_unwritten_sync;
3679                 dio_flags = DIO_LOCKING;
3680         } else {
3681                 get_block_func = ext4_dio_get_block_unwritten_async;
3682                 dio_flags = DIO_LOCKING;
3683         }
3684         ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3685                                    get_block_func, ext4_end_io_dio, NULL,
3686                                    dio_flags);
3687
3688         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3689                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3690                 int err;
3691                 /*
3692                  * for non AIO case, since the IO is already
3693                  * completed, we could do the conversion right here
3694                  */
3695                 err = ext4_convert_unwritten_extents(NULL, inode,
3696                                                      offset, ret);
3697                 if (err < 0)
3698                         ret = err;
3699                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3700         }
3701
3702         inode_dio_end(inode);
3703         /* take i_mutex locking again if we do a ovewrite dio */
3704         if (overwrite)
3705                 inode_lock(inode);
3706
3707         if (ret < 0 && final_size > inode->i_size)
3708                 ext4_truncate_failed_write(inode);
3709
3710         /* Handle extending of i_size after direct IO write */
3711         if (orphan) {
3712                 int err;
3713
3714                 /* Credits for sb + inode write */
3715                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3716                 if (IS_ERR(handle)) {
3717                         /* This is really bad luck. We've written the data
3718                          * but cannot extend i_size. Bail out and pretend
3719                          * the write failed... */
3720                         ret = PTR_ERR(handle);
3721                         if (inode->i_nlink)
3722                                 ext4_orphan_del(NULL, inode);
3723
3724                         goto out;
3725                 }
3726                 if (inode->i_nlink)
3727                         ext4_orphan_del(handle, inode);
3728                 if (ret > 0) {
3729                         loff_t end = offset + ret;
3730                         if (end > inode->i_size) {
3731                                 ei->i_disksize = end;
3732                                 i_size_write(inode, end);
3733                                 /*
3734                                  * We're going to return a positive `ret'
3735                                  * here due to non-zero-length I/O, so there's
3736                                  * no way of reporting error returns from
3737                                  * ext4_mark_inode_dirty() to userspace.  So
3738                                  * ignore it.
3739                                  */
3740                                 ext4_mark_inode_dirty(handle, inode);
3741                         }
3742                 }
3743                 err = ext4_journal_stop(handle);
3744                 if (ret == 0)
3745                         ret = err;
3746         }
3747 out:
3748         return ret;
3749 }
3750
3751 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3752 {
3753         struct address_space *mapping = iocb->ki_filp->f_mapping;
3754         struct inode *inode = mapping->host;
3755         size_t count = iov_iter_count(iter);
3756         ssize_t ret;
3757
3758         /*
3759          * Shared inode_lock is enough for us - it protects against concurrent
3760          * writes & truncates and since we take care of writing back page cache,
3761          * we are protected against page writeback as well.
3762          */
3763         inode_lock_shared(inode);
3764         ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3765                                            iocb->ki_pos + count - 1);
3766         if (ret)
3767                 goto out_unlock;
3768         ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3769                                    iter, ext4_dio_get_block, NULL, NULL, 0);
3770 out_unlock:
3771         inode_unlock_shared(inode);
3772         return ret;
3773 }
3774
3775 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3776 {
3777         struct file *file = iocb->ki_filp;
3778         struct inode *inode = file->f_mapping->host;
3779         size_t count = iov_iter_count(iter);
3780         loff_t offset = iocb->ki_pos;
3781         ssize_t ret;
3782
3783 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3784         if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3785                 return 0;
3786 #endif
3787
3788         /*
3789          * If we are doing data journalling we don't support O_DIRECT
3790          */
3791         if (ext4_should_journal_data(inode))
3792                 return 0;
3793
3794         /* Let buffer I/O handle the inline data case. */
3795         if (ext4_has_inline_data(inode))
3796                 return 0;
3797
3798         /* DAX uses iomap path now */
3799         if (WARN_ON_ONCE(IS_DAX(inode)))
3800                 return 0;
3801
3802         trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3803         if (iov_iter_rw(iter) == READ)
3804                 ret = ext4_direct_IO_read(iocb, iter);
3805         else
3806                 ret = ext4_direct_IO_write(iocb, iter);
3807         trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3808         return ret;
3809 }
3810
3811 /*
3812  * Pages can be marked dirty completely asynchronously from ext4's journalling
3813  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3814  * much here because ->set_page_dirty is called under VFS locks.  The page is
3815  * not necessarily locked.
3816  *
3817  * We cannot just dirty the page and leave attached buffers clean, because the
3818  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3819  * or jbddirty because all the journalling code will explode.
3820  *
3821  * So what we do is to mark the page "pending dirty" and next time writepage
3822  * is called, propagate that into the buffers appropriately.
3823  */
3824 static int ext4_journalled_set_page_dirty(struct page *page)
3825 {
3826         SetPageChecked(page);
3827         return __set_page_dirty_nobuffers(page);
3828 }
3829
3830 static int ext4_set_page_dirty(struct page *page)
3831 {
3832         WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3833         WARN_ON_ONCE(!page_has_buffers(page));
3834         return __set_page_dirty_buffers(page);
3835 }
3836
3837 static const struct address_space_operations ext4_aops = {
3838         .readpage               = ext4_readpage,
3839         .readpages              = ext4_readpages,
3840         .writepage              = ext4_writepage,
3841         .writepages             = ext4_writepages,
3842         .write_begin            = ext4_write_begin,
3843         .write_end              = ext4_write_end,
3844         .set_page_dirty         = ext4_set_page_dirty,
3845         .bmap                   = ext4_bmap,
3846         .invalidatepage         = ext4_invalidatepage,
3847         .releasepage            = ext4_releasepage,
3848         .direct_IO              = ext4_direct_IO,
3849         .migratepage            = buffer_migrate_page,
3850         .is_partially_uptodate  = block_is_partially_uptodate,
3851         .error_remove_page      = generic_error_remove_page,
3852 };
3853
3854 static const struct address_space_operations ext4_journalled_aops = {
3855         .readpage               = ext4_readpage,
3856         .readpages              = ext4_readpages,
3857         .writepage              = ext4_writepage,
3858         .writepages             = ext4_writepages,
3859         .write_begin            = ext4_write_begin,
3860         .write_end              = ext4_journalled_write_end,
3861         .set_page_dirty         = ext4_journalled_set_page_dirty,
3862         .bmap                   = ext4_bmap,
3863         .invalidatepage         = ext4_journalled_invalidatepage,
3864         .releasepage            = ext4_releasepage,
3865         .direct_IO              = ext4_direct_IO,
3866         .is_partially_uptodate  = block_is_partially_uptodate,
3867         .error_remove_page      = generic_error_remove_page,
3868 };
3869
3870 static const struct address_space_operations ext4_da_aops = {
3871         .readpage               = ext4_readpage,
3872         .readpages              = ext4_readpages,
3873         .writepage              = ext4_writepage,
3874         .writepages             = ext4_writepages,
3875         .write_begin            = ext4_da_write_begin,
3876         .write_end              = ext4_da_write_end,
3877         .set_page_dirty         = ext4_set_page_dirty,
3878         .bmap                   = ext4_bmap,
3879         .invalidatepage         = ext4_da_invalidatepage,
3880         .releasepage            = ext4_releasepage,
3881         .direct_IO              = ext4_direct_IO,
3882         .migratepage            = buffer_migrate_page,
3883         .is_partially_uptodate  = block_is_partially_uptodate,
3884         .error_remove_page      = generic_error_remove_page,
3885 };
3886
3887 void ext4_set_aops(struct inode *inode)
3888 {
3889         switch (ext4_inode_journal_mode(inode)) {
3890         case EXT4_INODE_ORDERED_DATA_MODE:
3891         case EXT4_INODE_WRITEBACK_DATA_MODE:
3892                 break;
3893         case EXT4_INODE_JOURNAL_DATA_MODE:
3894                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3895                 return;
3896         default:
3897                 BUG();
3898         }
3899         if (test_opt(inode->i_sb, DELALLOC))
3900                 inode->i_mapping->a_ops = &ext4_da_aops;
3901         else
3902                 inode->i_mapping->a_ops = &ext4_aops;
3903 }
3904
3905 static int __ext4_block_zero_page_range(handle_t *handle,
3906                 struct address_space *mapping, loff_t from, loff_t length)
3907 {
3908         ext4_fsblk_t index = from >> PAGE_SHIFT;
3909         unsigned offset = from & (PAGE_SIZE-1);
3910         unsigned blocksize, pos;
3911         ext4_lblk_t iblock;
3912         struct inode *inode = mapping->host;
3913         struct buffer_head *bh;
3914         struct page *page;
3915         int err = 0;
3916
3917         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3918                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3919         if (!page)
3920                 return -ENOMEM;
3921
3922         blocksize = inode->i_sb->s_blocksize;
3923
3924         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3925
3926         if (!page_has_buffers(page))
3927                 create_empty_buffers(page, blocksize, 0);
3928
3929         /* Find the buffer that contains "offset" */
3930         bh = page_buffers(page);
3931         pos = blocksize;
3932         while (offset >= pos) {
3933                 bh = bh->b_this_page;
3934                 iblock++;
3935                 pos += blocksize;
3936         }
3937         if (buffer_freed(bh)) {
3938                 BUFFER_TRACE(bh, "freed: skip");
3939                 goto unlock;
3940         }
3941         if (!buffer_mapped(bh)) {
3942                 BUFFER_TRACE(bh, "unmapped");
3943                 ext4_get_block(inode, iblock, bh, 0);
3944                 /* unmapped? It's a hole - nothing to do */
3945                 if (!buffer_mapped(bh)) {
3946                         BUFFER_TRACE(bh, "still unmapped");
3947                         goto unlock;
3948                 }
3949         }
3950
3951         /* Ok, it's mapped. Make sure it's up-to-date */
3952         if (PageUptodate(page))
3953                 set_buffer_uptodate(bh);
3954
3955         if (!buffer_uptodate(bh)) {
3956                 err = -EIO;
3957                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3958                 wait_on_buffer(bh);
3959                 /* Uhhuh. Read error. Complain and punt. */
3960                 if (!buffer_uptodate(bh))
3961                         goto unlock;
3962                 if (S_ISREG(inode->i_mode) &&
3963                     ext4_encrypted_inode(inode)) {
3964                         /* We expect the key to be set. */
3965                         BUG_ON(!fscrypt_has_encryption_key(inode));
3966                         BUG_ON(blocksize != PAGE_SIZE);
3967                         WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
3968                                                 page, PAGE_SIZE, 0, page->index));
3969                 }
3970         }
3971         if (ext4_should_journal_data(inode)) {
3972                 BUFFER_TRACE(bh, "get write access");
3973                 err = ext4_journal_get_write_access(handle, bh);
3974                 if (err)
3975                         goto unlock;
3976         }
3977         zero_user(page, offset, length);
3978         BUFFER_TRACE(bh, "zeroed end of block");
3979
3980         if (ext4_should_journal_data(inode)) {
3981                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3982         } else {
3983                 err = 0;
3984                 mark_buffer_dirty(bh);
3985                 if (ext4_should_order_data(inode))
3986                         err = ext4_jbd2_inode_add_write(handle, inode);
3987         }
3988
3989 unlock:
3990         unlock_page(page);
3991         put_page(page);
3992         return err;
3993 }
3994
3995 /*
3996  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3997  * starting from file offset 'from'.  The range to be zero'd must
3998  * be contained with in one block.  If the specified range exceeds
3999  * the end of the block it will be shortened to end of the block
4000  * that cooresponds to 'from'
4001  */
4002 static int ext4_block_zero_page_range(handle_t *handle,
4003                 struct address_space *mapping, loff_t from, loff_t length)
4004 {
4005         struct inode *inode = mapping->host;
4006         unsigned offset = from & (PAGE_SIZE-1);
4007         unsigned blocksize = inode->i_sb->s_blocksize;
4008         unsigned max = blocksize - (offset & (blocksize - 1));
4009
4010         /*
4011          * correct length if it does not fall between
4012          * 'from' and the end of the block
4013          */
4014         if (length > max || length < 0)
4015                 length = max;
4016
4017         if (IS_DAX(inode)) {
4018                 return iomap_zero_range(inode, from, length, NULL,
4019                                         &ext4_iomap_ops);
4020         }
4021         return __ext4_block_zero_page_range(handle, mapping, from, length);
4022 }
4023
4024 /*
4025  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4026  * up to the end of the block which corresponds to `from'.
4027  * This required during truncate. We need to physically zero the tail end
4028  * of that block so it doesn't yield old data if the file is later grown.
4029  */
4030 static int ext4_block_truncate_page(handle_t *handle,
4031                 struct address_space *mapping, loff_t from)
4032 {
4033         unsigned offset = from & (PAGE_SIZE-1);
4034         unsigned length;
4035         unsigned blocksize;
4036         struct inode *inode = mapping->host;
4037
4038         /* If we are processing an encrypted inode during orphan list handling */
4039         if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4040                 return 0;
4041
4042         blocksize = inode->i_sb->s_blocksize;
4043         length = blocksize - (offset & (blocksize - 1));
4044
4045         return ext4_block_zero_page_range(handle, mapping, from, length);
4046 }
4047
4048 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4049                              loff_t lstart, loff_t length)
4050 {
4051         struct super_block *sb = inode->i_sb;
4052         struct address_space *mapping = inode->i_mapping;
4053         unsigned partial_start, partial_end;
4054         ext4_fsblk_t start, end;
4055         loff_t byte_end = (lstart + length - 1);
4056         int err = 0;
4057
4058         partial_start = lstart & (sb->s_blocksize - 1);
4059         partial_end = byte_end & (sb->s_blocksize - 1);
4060
4061         start = lstart >> sb->s_blocksize_bits;
4062         end = byte_end >> sb->s_blocksize_bits;
4063
4064         /* Handle partial zero within the single block */
4065         if (start == end &&
4066             (partial_start || (partial_end != sb->s_blocksize - 1))) {
4067                 err = ext4_block_zero_page_range(handle, mapping,
4068                                                  lstart, length);
4069                 return err;
4070         }
4071         /* Handle partial zero out on the start of the range */
4072         if (partial_start) {
4073                 err = ext4_block_zero_page_range(handle, mapping,
4074                                                  lstart, sb->s_blocksize);
4075                 if (err)
4076                         return err;
4077         }
4078         /* Handle partial zero out on the end of the range */
4079         if (partial_end != sb->s_blocksize - 1)
4080                 err = ext4_block_zero_page_range(handle, mapping,
4081                                                  byte_end - partial_end,
4082                                                  partial_end + 1);
4083         return err;
4084 }
4085
4086 int ext4_can_truncate(struct inode *inode)
4087 {
4088         if (S_ISREG(inode->i_mode))
4089                 return 1;
4090         if (S_ISDIR(inode->i_mode))
4091                 return 1;
4092         if (S_ISLNK(inode->i_mode))
4093                 return !ext4_inode_is_fast_symlink(inode);
4094         return 0;
4095 }
4096
4097 /*
4098  * We have to make sure i_disksize gets properly updated before we truncate
4099  * page cache due to hole punching or zero range. Otherwise i_disksize update
4100  * can get lost as it may have been postponed to submission of writeback but
4101  * that will never happen after we truncate page cache.
4102  */
4103 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4104                                       loff_t len)
4105 {
4106         handle_t *handle;
4107         loff_t size = i_size_read(inode);
4108
4109         WARN_ON(!inode_is_locked(inode));
4110         if (offset > size || offset + len < size)
4111                 return 0;
4112
4113         if (EXT4_I(inode)->i_disksize >= size)
4114                 return 0;
4115
4116         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4117         if (IS_ERR(handle))
4118                 return PTR_ERR(handle);
4119         ext4_update_i_disksize(inode, size);
4120         ext4_mark_inode_dirty(handle, inode);
4121         ext4_journal_stop(handle);
4122
4123         return 0;
4124 }
4125
4126 /*
4127  * ext4_punch_hole: punches a hole in a file by releasing the blocks
4128  * associated with the given offset and length
4129  *
4130  * @inode:  File inode
4131  * @offset: The offset where the hole will begin
4132  * @len:    The length of the hole
4133  *
4134  * Returns: 0 on success or negative on failure
4135  */
4136
4137 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4138 {
4139         struct super_block *sb = inode->i_sb;
4140         ext4_lblk_t first_block, stop_block;
4141         struct address_space *mapping = inode->i_mapping;
4142         loff_t first_block_offset, last_block_offset;
4143         handle_t *handle;
4144         unsigned int credits;
4145         int ret = 0;
4146
4147         if (!S_ISREG(inode->i_mode))
4148                 return -EOPNOTSUPP;
4149
4150         trace_ext4_punch_hole(inode, offset, length, 0);
4151
4152         /*
4153          * Write out all dirty pages to avoid race conditions
4154          * Then release them.
4155          */
4156         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4157                 ret = filemap_write_and_wait_range(mapping, offset,
4158                                                    offset + length - 1);
4159                 if (ret)
4160                         return ret;
4161         }
4162
4163         inode_lock(inode);
4164
4165         /* No need to punch hole beyond i_size */
4166         if (offset >= inode->i_size)
4167                 goto out_mutex;
4168
4169         /*
4170          * If the hole extends beyond i_size, set the hole
4171          * to end after the page that contains i_size
4172          */
4173         if (offset + length > inode->i_size) {
4174                 length = inode->i_size +
4175                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4176                    offset;
4177         }
4178
4179         if (offset & (sb->s_blocksize - 1) ||
4180             (offset + length) & (sb->s_blocksize - 1)) {
4181                 /*
4182                  * Attach jinode to inode for jbd2 if we do any zeroing of
4183                  * partial block
4184                  */
4185                 ret = ext4_inode_attach_jinode(inode);
4186                 if (ret < 0)
4187                         goto out_mutex;
4188
4189         }
4190
4191         /* Wait all existing dio workers, newcomers will block on i_mutex */
4192         ext4_inode_block_unlocked_dio(inode);
4193         inode_dio_wait(inode);
4194
4195         /*
4196          * Prevent page faults from reinstantiating pages we have released from
4197          * page cache.
4198          */
4199         down_write(&EXT4_I(inode)->i_mmap_sem);
4200         first_block_offset = round_up(offset, sb->s_blocksize);
4201         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4202
4203         /* Now release the pages and zero block aligned part of pages*/
4204         if (last_block_offset > first_block_offset) {
4205                 ret = ext4_update_disksize_before_punch(inode, offset, length);
4206                 if (ret)
4207                         goto out_dio;
4208                 truncate_pagecache_range(inode, first_block_offset,
4209                                          last_block_offset);
4210         }
4211
4212         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4213                 credits = ext4_writepage_trans_blocks(inode);
4214         else
4215                 credits = ext4_blocks_for_truncate(inode);
4216         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4217         if (IS_ERR(handle)) {
4218                 ret = PTR_ERR(handle);
4219                 ext4_std_error(sb, ret);
4220                 goto out_dio;
4221         }
4222
4223         ret = ext4_zero_partial_blocks(handle, inode, offset,
4224                                        length);
4225         if (ret)
4226                 goto out_stop;
4227
4228         first_block = (offset + sb->s_blocksize - 1) >>
4229                 EXT4_BLOCK_SIZE_BITS(sb);
4230         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4231
4232         /* If there are no blocks to remove, return now */
4233         if (first_block >= stop_block)
4234                 goto out_stop;
4235
4236         down_write(&EXT4_I(inode)->i_data_sem);
4237         ext4_discard_preallocations(inode);
4238
4239         ret = ext4_es_remove_extent(inode, first_block,
4240                                     stop_block - first_block);
4241         if (ret) {
4242                 up_write(&EXT4_I(inode)->i_data_sem);
4243                 goto out_stop;
4244         }
4245
4246         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4247                 ret = ext4_ext_remove_space(inode, first_block,
4248                                             stop_block - 1);
4249         else
4250                 ret = ext4_ind_remove_space(handle, inode, first_block,
4251                                             stop_block);
4252
4253         up_write(&EXT4_I(inode)->i_data_sem);
4254         if (IS_SYNC(inode))
4255                 ext4_handle_sync(handle);
4256
4257         inode->i_mtime = inode->i_ctime = current_time(inode);
4258         ext4_mark_inode_dirty(handle, inode);
4259         if (ret >= 0)
4260                 ext4_update_inode_fsync_trans(handle, inode, 1);
4261 out_stop:
4262         ext4_journal_stop(handle);
4263 out_dio:
4264         up_write(&EXT4_I(inode)->i_mmap_sem);
4265         ext4_inode_resume_unlocked_dio(inode);
4266 out_mutex:
4267         inode_unlock(inode);
4268         return ret;
4269 }
4270
4271 int ext4_inode_attach_jinode(struct inode *inode)
4272 {
4273         struct ext4_inode_info *ei = EXT4_I(inode);
4274         struct jbd2_inode *jinode;
4275
4276         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4277                 return 0;
4278
4279         jinode = jbd2_alloc_inode(GFP_KERNEL);
4280         spin_lock(&inode->i_lock);
4281         if (!ei->jinode) {
4282                 if (!jinode) {
4283                         spin_unlock(&inode->i_lock);
4284                         return -ENOMEM;
4285                 }
4286                 ei->jinode = jinode;
4287                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4288                 jinode = NULL;
4289         }
4290         spin_unlock(&inode->i_lock);
4291         if (unlikely(jinode != NULL))
4292                 jbd2_free_inode(jinode);
4293         return 0;
4294 }
4295
4296 /*
4297  * ext4_truncate()
4298  *
4299  * We block out ext4_get_block() block instantiations across the entire
4300  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4301  * simultaneously on behalf of the same inode.
4302  *
4303  * As we work through the truncate and commit bits of it to the journal there
4304  * is one core, guiding principle: the file's tree must always be consistent on
4305  * disk.  We must be able to restart the truncate after a crash.
4306  *
4307  * The file's tree may be transiently inconsistent in memory (although it
4308  * probably isn't), but whenever we close off and commit a journal transaction,
4309  * the contents of (the filesystem + the journal) must be consistent and
4310  * restartable.  It's pretty simple, really: bottom up, right to left (although
4311  * left-to-right works OK too).
4312  *
4313  * Note that at recovery time, journal replay occurs *before* the restart of
4314  * truncate against the orphan inode list.
4315  *
4316  * The committed inode has the new, desired i_size (which is the same as
4317  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4318  * that this inode's truncate did not complete and it will again call
4319  * ext4_truncate() to have another go.  So there will be instantiated blocks
4320  * to the right of the truncation point in a crashed ext4 filesystem.  But
4321  * that's fine - as long as they are linked from the inode, the post-crash
4322  * ext4_truncate() run will find them and release them.
4323  */
4324 int ext4_truncate(struct inode *inode)
4325 {
4326         struct ext4_inode_info *ei = EXT4_I(inode);
4327         unsigned int credits;
4328         int err = 0;
4329         handle_t *handle;
4330         struct address_space *mapping = inode->i_mapping;
4331
4332         /*
4333          * There is a possibility that we're either freeing the inode
4334          * or it's a completely new inode. In those cases we might not
4335          * have i_mutex locked because it's not necessary.
4336          */
4337         if (!(inode->i_state & (I_NEW|I_FREEING)))
4338                 WARN_ON(!inode_is_locked(inode));
4339         trace_ext4_truncate_enter(inode);
4340
4341         if (!ext4_can_truncate(inode))
4342                 return 0;
4343
4344         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4345
4346         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4347                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4348
4349         if (ext4_has_inline_data(inode)) {
4350                 int has_inline = 1;
4351
4352                 err = ext4_inline_data_truncate(inode, &has_inline);
4353                 if (err)
4354                         return err;
4355                 if (has_inline)
4356                         return 0;
4357         }
4358
4359         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4360         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4361                 if (ext4_inode_attach_jinode(inode) < 0)
4362                         return 0;
4363         }
4364
4365         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4366                 credits = ext4_writepage_trans_blocks(inode);
4367         else
4368                 credits = ext4_blocks_for_truncate(inode);
4369
4370         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4371         if (IS_ERR(handle))
4372                 return PTR_ERR(handle);
4373
4374         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4375                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4376
4377         /*
4378          * We add the inode to the orphan list, so that if this
4379          * truncate spans multiple transactions, and we crash, we will
4380          * resume the truncate when the filesystem recovers.  It also
4381          * marks the inode dirty, to catch the new size.
4382          *
4383          * Implication: the file must always be in a sane, consistent
4384          * truncatable state while each transaction commits.
4385          */
4386         err = ext4_orphan_add(handle, inode);
4387         if (err)
4388                 goto out_stop;
4389
4390         down_write(&EXT4_I(inode)->i_data_sem);
4391
4392         ext4_discard_preallocations(inode);
4393
4394         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4395                 err = ext4_ext_truncate(handle, inode);
4396         else
4397                 ext4_ind_truncate(handle, inode);
4398
4399         up_write(&ei->i_data_sem);
4400         if (err)
4401                 goto out_stop;
4402
4403         if (IS_SYNC(inode))
4404                 ext4_handle_sync(handle);
4405
4406 out_stop:
4407         /*
4408          * If this was a simple ftruncate() and the file will remain alive,
4409          * then we need to clear up the orphan record which we created above.
4410          * However, if this was a real unlink then we were called by
4411          * ext4_evict_inode(), and we allow that function to clean up the
4412          * orphan info for us.
4413          */
4414         if (inode->i_nlink)
4415                 ext4_orphan_del(handle, inode);
4416
4417         inode->i_mtime = inode->i_ctime = current_time(inode);
4418         ext4_mark_inode_dirty(handle, inode);
4419         ext4_journal_stop(handle);
4420
4421         trace_ext4_truncate_exit(inode);
4422         return err;
4423 }
4424
4425 /*
4426  * ext4_get_inode_loc returns with an extra refcount against the inode's
4427  * underlying buffer_head on success. If 'in_mem' is true, we have all
4428  * data in memory that is needed to recreate the on-disk version of this
4429  * inode.
4430  */
4431 static int __ext4_get_inode_loc(struct inode *inode,
4432                                 struct ext4_iloc *iloc, int in_mem)
4433 {
4434         struct ext4_group_desc  *gdp;
4435         struct buffer_head      *bh;
4436         struct super_block      *sb = inode->i_sb;
4437         ext4_fsblk_t            block;
4438         int                     inodes_per_block, inode_offset;
4439
4440         iloc->bh = NULL;
4441         if (!ext4_valid_inum(sb, inode->i_ino))
4442                 return -EFSCORRUPTED;
4443
4444         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4445         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4446         if (!gdp)
4447                 return -EIO;
4448
4449         /*
4450          * Figure out the offset within the block group inode table
4451          */
4452         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4453         inode_offset = ((inode->i_ino - 1) %
4454                         EXT4_INODES_PER_GROUP(sb));
4455         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4456         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4457
4458         bh = sb_getblk(sb, block);
4459         if (unlikely(!bh))
4460                 return -ENOMEM;
4461         if (!buffer_uptodate(bh)) {
4462                 lock_buffer(bh);
4463
4464                 /*
4465                  * If the buffer has the write error flag, we have failed
4466                  * to write out another inode in the same block.  In this
4467                  * case, we don't have to read the block because we may
4468                  * read the old inode data successfully.
4469                  */
4470                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4471                         set_buffer_uptodate(bh);
4472
4473                 if (buffer_uptodate(bh)) {
4474                         /* someone brought it uptodate while we waited */
4475                         unlock_buffer(bh);
4476                         goto has_buffer;
4477                 }
4478
4479                 /*
4480                  * If we have all information of the inode in memory and this
4481                  * is the only valid inode in the block, we need not read the
4482                  * block.
4483                  */
4484                 if (in_mem) {
4485                         struct buffer_head *bitmap_bh;
4486                         int i, start;
4487
4488                         start = inode_offset & ~(inodes_per_block - 1);
4489
4490                         /* Is the inode bitmap in cache? */
4491                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4492                         if (unlikely(!bitmap_bh))
4493                                 goto make_io;
4494
4495                         /*
4496                          * If the inode bitmap isn't in cache then the
4497                          * optimisation may end up performing two reads instead
4498                          * of one, so skip it.
4499                          */
4500                         if (!buffer_uptodate(bitmap_bh)) {
4501                                 brelse(bitmap_bh);
4502                                 goto make_io;
4503                         }
4504                         for (i = start; i < start + inodes_per_block; i++) {
4505                                 if (i == inode_offset)
4506                                         continue;
4507                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4508                                         break;
4509                         }
4510                         brelse(bitmap_bh);
4511                         if (i == start + inodes_per_block) {
4512                                 /* all other inodes are free, so skip I/O */
4513                                 memset(bh->b_data, 0, bh->b_size);
4514                                 set_buffer_uptodate(bh);
4515                                 unlock_buffer(bh);
4516                                 goto has_buffer;
4517                         }
4518                 }
4519
4520 make_io:
4521                 /*
4522                  * If we need to do any I/O, try to pre-readahead extra
4523                  * blocks from the inode table.
4524                  */
4525                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4526                         ext4_fsblk_t b, end, table;
4527                         unsigned num;
4528                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4529
4530                         table = ext4_inode_table(sb, gdp);
4531                         /* s_inode_readahead_blks is always a power of 2 */
4532                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4533                         if (table > b)
4534                                 b = table;
4535                         end = b + ra_blks;
4536                         num = EXT4_INODES_PER_GROUP(sb);
4537                         if (ext4_has_group_desc_csum(sb))
4538                                 num -= ext4_itable_unused_count(sb, gdp);
4539                         table += num / inodes_per_block;
4540                         if (end > table)
4541                                 end = table;
4542                         while (b <= end)
4543                                 sb_breadahead(sb, b++);
4544                 }
4545
4546                 /*
4547                  * There are other valid inodes in the buffer, this inode
4548                  * has in-inode xattrs, or we don't have this inode in memory.
4549                  * Read the block from disk.
4550                  */
4551                 trace_ext4_load_inode(inode);
4552                 get_bh(bh);
4553                 bh->b_end_io = end_buffer_read_sync;
4554                 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4555                 wait_on_buffer(bh);
4556                 if (!buffer_uptodate(bh)) {
4557                         EXT4_ERROR_INODE_BLOCK(inode, block,
4558                                                "unable to read itable block");
4559                         brelse(bh);
4560                         return -EIO;
4561                 }
4562         }
4563 has_buffer:
4564         iloc->bh = bh;
4565         return 0;
4566 }
4567
4568 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4569 {
4570         /* We have all inode data except xattrs in memory here. */
4571         return __ext4_get_inode_loc(inode, iloc,
4572                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4573 }
4574
4575 void ext4_set_inode_flags(struct inode *inode)
4576 {
4577         unsigned int flags = EXT4_I(inode)->i_flags;
4578         unsigned int new_fl = 0;
4579
4580         if (flags & EXT4_SYNC_FL)
4581                 new_fl |= S_SYNC;
4582         if (flags & EXT4_APPEND_FL)
4583                 new_fl |= S_APPEND;
4584         if (flags & EXT4_IMMUTABLE_FL)
4585                 new_fl |= S_IMMUTABLE;
4586         if (flags & EXT4_NOATIME_FL)
4587                 new_fl |= S_NOATIME;
4588         if (flags & EXT4_DIRSYNC_FL)
4589                 new_fl |= S_DIRSYNC;
4590         if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) &&
4591             !ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) &&
4592             !ext4_encrypted_inode(inode))
4593                 new_fl |= S_DAX;
4594         inode_set_flags(inode, new_fl,
4595                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4596 }
4597
4598 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4599                                   struct ext4_inode_info *ei)
4600 {
4601         blkcnt_t i_blocks ;
4602         struct inode *inode = &(ei->vfs_inode);
4603         struct super_block *sb = inode->i_sb;
4604
4605         if (ext4_has_feature_huge_file(sb)) {
4606                 /* we are using combined 48 bit field */
4607                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4608                                         le32_to_cpu(raw_inode->i_blocks_lo);
4609                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4610                         /* i_blocks represent file system block size */
4611                         return i_blocks  << (inode->i_blkbits - 9);
4612                 } else {
4613                         return i_blocks;
4614                 }
4615         } else {
4616                 return le32_to_cpu(raw_inode->i_blocks_lo);
4617         }
4618 }
4619
4620 static inline void ext4_iget_extra_inode(struct inode *inode,
4621                                          struct ext4_inode *raw_inode,
4622                                          struct ext4_inode_info *ei)
4623 {
4624         __le32 *magic = (void *)raw_inode +
4625                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4626         if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4627             EXT4_INODE_SIZE(inode->i_sb) &&
4628             *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4629                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4630                 ext4_find_inline_data_nolock(inode);
4631         } else
4632                 EXT4_I(inode)->i_inline_off = 0;
4633 }
4634
4635 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4636 {
4637         if (!ext4_has_feature_project(inode->i_sb))
4638                 return -EOPNOTSUPP;
4639         *projid = EXT4_I(inode)->i_projid;
4640         return 0;
4641 }
4642
4643 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4644 {
4645         struct ext4_iloc iloc;
4646         struct ext4_inode *raw_inode;
4647         struct ext4_inode_info *ei;
4648         struct inode *inode;
4649         journal_t *journal = EXT4_SB(sb)->s_journal;
4650         long ret;
4651         loff_t size;
4652         int block;
4653         uid_t i_uid;
4654         gid_t i_gid;
4655         projid_t i_projid;
4656
4657         inode = iget_locked(sb, ino);
4658         if (!inode)
4659                 return ERR_PTR(-ENOMEM);
4660         if (!(inode->i_state & I_NEW))
4661                 return inode;
4662
4663         ei = EXT4_I(inode);
4664         iloc.bh = NULL;
4665
4666         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4667         if (ret < 0)
4668                 goto bad_inode;
4669         raw_inode = ext4_raw_inode(&iloc);
4670
4671         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4672                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4673                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4674                         EXT4_INODE_SIZE(inode->i_sb) ||
4675                     (ei->i_extra_isize & 3)) {
4676                         EXT4_ERROR_INODE(inode,
4677                                          "bad extra_isize %u (inode size %u)",
4678                                          ei->i_extra_isize,
4679                                          EXT4_INODE_SIZE(inode->i_sb));
4680                         ret = -EFSCORRUPTED;
4681                         goto bad_inode;
4682                 }
4683         } else
4684                 ei->i_extra_isize = 0;
4685
4686         /* Precompute checksum seed for inode metadata */
4687         if (ext4_has_metadata_csum(sb)) {
4688                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4689                 __u32 csum;
4690                 __le32 inum = cpu_to_le32(inode->i_ino);
4691                 __le32 gen = raw_inode->i_generation;
4692                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4693                                    sizeof(inum));
4694                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4695                                               sizeof(gen));
4696         }
4697
4698         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4699                 EXT4_ERROR_INODE(inode, "checksum invalid");
4700                 ret = -EFSBADCRC;
4701                 goto bad_inode;
4702         }
4703
4704         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4705         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4706         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4707         if (ext4_has_feature_project(sb) &&
4708             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4709             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4710                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4711         else
4712                 i_projid = EXT4_DEF_PROJID;
4713
4714         if (!(test_opt(inode->i_sb, NO_UID32))) {
4715                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4716                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4717         }
4718         i_uid_write(inode, i_uid);
4719         i_gid_write(inode, i_gid);
4720         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4721         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4722
4723         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4724         ei->i_inline_off = 0;
4725         ei->i_dir_start_lookup = 0;
4726         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4727         /* We now have enough fields to check if the inode was active or not.
4728          * This is needed because nfsd might try to access dead inodes
4729          * the test is that same one that e2fsck uses
4730          * NeilBrown 1999oct15
4731          */
4732         if (inode->i_nlink == 0) {
4733                 if ((inode->i_mode == 0 ||
4734                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4735                     ino != EXT4_BOOT_LOADER_INO) {
4736                         /* this inode is deleted */
4737                         ret = -ESTALE;
4738                         goto bad_inode;
4739                 }
4740                 /* The only unlinked inodes we let through here have
4741                  * valid i_mode and are being read by the orphan
4742                  * recovery code: that's fine, we're about to complete
4743                  * the process of deleting those.
4744                  * OR it is the EXT4_BOOT_LOADER_INO which is
4745                  * not initialized on a new filesystem. */
4746         }
4747         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4748         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4749         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4750         if (ext4_has_feature_64bit(sb))
4751                 ei->i_file_acl |=
4752                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4753         inode->i_size = ext4_isize(sb, raw_inode);
4754         if ((size = i_size_read(inode)) < 0) {
4755                 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4756                 ret = -EFSCORRUPTED;
4757                 goto bad_inode;
4758         }
4759         ei->i_disksize = inode->i_size;
4760 #ifdef CONFIG_QUOTA
4761         ei->i_reserved_quota = 0;
4762 #endif
4763         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4764         ei->i_block_group = iloc.block_group;
4765         ei->i_last_alloc_group = ~0;
4766         /*
4767          * NOTE! The in-memory inode i_data array is in little-endian order
4768          * even on big-endian machines: we do NOT byteswap the block numbers!
4769          */
4770         for (block = 0; block < EXT4_N_BLOCKS; block++)
4771                 ei->i_data[block] = raw_inode->i_block[block];
4772         INIT_LIST_HEAD(&ei->i_orphan);
4773
4774         /*
4775          * Set transaction id's of transactions that have to be committed
4776          * to finish f[data]sync. We set them to currently running transaction
4777          * as we cannot be sure that the inode or some of its metadata isn't
4778          * part of the transaction - the inode could have been reclaimed and
4779          * now it is reread from disk.
4780          */
4781         if (journal) {
4782                 transaction_t *transaction;
4783                 tid_t tid;
4784
4785                 read_lock(&journal->j_state_lock);
4786                 if (journal->j_running_transaction)
4787                         transaction = journal->j_running_transaction;
4788                 else
4789                         transaction = journal->j_committing_transaction;
4790                 if (transaction)
4791                         tid = transaction->t_tid;
4792                 else
4793                         tid = journal->j_commit_sequence;
4794                 read_unlock(&journal->j_state_lock);
4795                 ei->i_sync_tid = tid;
4796                 ei->i_datasync_tid = tid;
4797         }
4798
4799         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4800                 if (ei->i_extra_isize == 0) {
4801                         /* The extra space is currently unused. Use it. */
4802                         BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4803                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4804                                             EXT4_GOOD_OLD_INODE_SIZE;
4805                 } else {
4806                         ext4_iget_extra_inode(inode, raw_inode, ei);
4807                 }
4808         }
4809
4810         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4811         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4812         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4813         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4814
4815         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4816                 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4817                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4818                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4819                                 inode->i_version |=
4820                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4821                 }
4822         }
4823
4824         ret = 0;
4825         if (ei->i_file_acl &&
4826             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4827                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4828                                  ei->i_file_acl);
4829                 ret = -EFSCORRUPTED;
4830                 goto bad_inode;
4831         } else if (!ext4_has_inline_data(inode)) {
4832                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4833                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4834                             (S_ISLNK(inode->i_mode) &&
4835                              !ext4_inode_is_fast_symlink(inode))))
4836                                 /* Validate extent which is part of inode */
4837                                 ret = ext4_ext_check_inode(inode);
4838                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4839                            (S_ISLNK(inode->i_mode) &&
4840                             !ext4_inode_is_fast_symlink(inode))) {
4841                         /* Validate block references which are part of inode */
4842                         ret = ext4_ind_check_inode(inode);
4843                 }
4844         }
4845         if (ret)
4846                 goto bad_inode;
4847
4848         if (S_ISREG(inode->i_mode)) {
4849                 inode->i_op = &ext4_file_inode_operations;
4850                 inode->i_fop = &ext4_file_operations;
4851                 ext4_set_aops(inode);
4852         } else if (S_ISDIR(inode->i_mode)) {
4853                 inode->i_op = &ext4_dir_inode_operations;
4854                 inode->i_fop = &ext4_dir_operations;
4855         } else if (S_ISLNK(inode->i_mode)) {
4856                 if (ext4_encrypted_inode(inode)) {
4857                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4858                         ext4_set_aops(inode);
4859                 } else if (ext4_inode_is_fast_symlink(inode)) {
4860                         inode->i_link = (char *)ei->i_data;
4861                         inode->i_op = &ext4_fast_symlink_inode_operations;
4862                         nd_terminate_link(ei->i_data, inode->i_size,
4863                                 sizeof(ei->i_data) - 1);
4864                 } else {
4865                         inode->i_op = &ext4_symlink_inode_operations;
4866                         ext4_set_aops(inode);
4867                 }
4868                 inode_nohighmem(inode);
4869         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4870               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4871                 inode->i_op = &ext4_special_inode_operations;
4872                 if (raw_inode->i_block[0])
4873                         init_special_inode(inode, inode->i_mode,
4874                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4875                 else
4876                         init_special_inode(inode, inode->i_mode,
4877                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4878         } else if (ino == EXT4_BOOT_LOADER_INO) {
4879                 make_bad_inode(inode);
4880         } else {
4881                 ret = -EFSCORRUPTED;
4882                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4883                 goto bad_inode;
4884         }
4885         brelse(iloc.bh);
4886         ext4_set_inode_flags(inode);
4887
4888         unlock_new_inode(inode);
4889         return inode;
4890
4891 bad_inode:
4892         brelse(iloc.bh);
4893         iget_failed(inode);
4894         return ERR_PTR(ret);
4895 }
4896
4897 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4898 {
4899         if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4900                 return ERR_PTR(-EFSCORRUPTED);
4901         return ext4_iget(sb, ino);
4902 }
4903
4904 static int ext4_inode_blocks_set(handle_t *handle,
4905                                 struct ext4_inode *raw_inode,
4906                                 struct ext4_inode_info *ei)
4907 {
4908         struct inode *inode = &(ei->vfs_inode);
4909         u64 i_blocks = inode->i_blocks;
4910         struct super_block *sb = inode->i_sb;
4911
4912         if (i_blocks <= ~0U) {
4913                 /*
4914                  * i_blocks can be represented in a 32 bit variable
4915                  * as multiple of 512 bytes
4916                  */
4917                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4918                 raw_inode->i_blocks_high = 0;
4919                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4920                 return 0;
4921         }
4922         if (!ext4_has_feature_huge_file(sb))
4923                 return -EFBIG;
4924
4925         if (i_blocks <= 0xffffffffffffULL) {
4926                 /*
4927                  * i_blocks can be represented in a 48 bit variable
4928                  * as multiple of 512 bytes
4929                  */
4930                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4931                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4932                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4933         } else {
4934                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4935                 /* i_block is stored in file system block size */
4936                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4937                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4938                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4939         }
4940         return 0;
4941 }
4942
4943 struct other_inode {
4944         unsigned long           orig_ino;
4945         struct ext4_inode       *raw_inode;
4946 };
4947
4948 static int other_inode_match(struct inode * inode, unsigned long ino,
4949                              void *data)
4950 {
4951         struct other_inode *oi = (struct other_inode *) data;
4952
4953         if ((inode->i_ino != ino) ||
4954             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4955                                I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4956             ((inode->i_state & I_DIRTY_TIME) == 0))
4957                 return 0;
4958         spin_lock(&inode->i_lock);
4959         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4960                                 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4961             (inode->i_state & I_DIRTY_TIME)) {
4962                 struct ext4_inode_info  *ei = EXT4_I(inode);
4963
4964                 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4965                 spin_unlock(&inode->i_lock);
4966
4967                 spin_lock(&ei->i_raw_lock);
4968                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4969                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4970                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4971                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4972                 spin_unlock(&ei->i_raw_lock);
4973                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4974                 return -1;
4975         }
4976         spin_unlock(&inode->i_lock);
4977         return -1;
4978 }
4979
4980 /*
4981  * Opportunistically update the other time fields for other inodes in
4982  * the same inode table block.
4983  */
4984 static void ext4_update_other_inodes_time(struct super_block *sb,
4985                                           unsigned long orig_ino, char *buf)
4986 {
4987         struct other_inode oi;
4988         unsigned long ino;
4989         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4990         int inode_size = EXT4_INODE_SIZE(sb);
4991
4992         oi.orig_ino = orig_ino;
4993         /*
4994          * Calculate the first inode in the inode table block.  Inode
4995          * numbers are one-based.  That is, the first inode in a block
4996          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4997          */
4998         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4999         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5000                 if (ino == orig_ino)
5001                         continue;
5002                 oi.raw_inode = (struct ext4_inode *) buf;
5003                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5004         }
5005 }
5006
5007 /*
5008  * Post the struct inode info into an on-disk inode location in the
5009  * buffer-cache.  This gobbles the caller's reference to the
5010  * buffer_head in the inode location struct.
5011  *
5012  * The caller must have write access to iloc->bh.
5013  */
5014 static int ext4_do_update_inode(handle_t *handle,
5015                                 struct inode *inode,
5016                                 struct ext4_iloc *iloc)
5017 {
5018         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5019         struct ext4_inode_info *ei = EXT4_I(inode);
5020         struct buffer_head *bh = iloc->bh;
5021         struct super_block *sb = inode->i_sb;
5022         int err = 0, rc, block;
5023         int need_datasync = 0, set_large_file = 0;
5024         uid_t i_uid;
5025         gid_t i_gid;
5026         projid_t i_projid;
5027
5028         spin_lock(&ei->i_raw_lock);
5029
5030         /* For fields not tracked in the in-memory inode,
5031          * initialise them to zero for new inodes. */
5032         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5033                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5034
5035         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5036         i_uid = i_uid_read(inode);
5037         i_gid = i_gid_read(inode);
5038         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5039         if (!(test_opt(inode->i_sb, NO_UID32))) {
5040                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5041                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5042 /*
5043  * Fix up interoperability with old kernels. Otherwise, old inodes get
5044  * re-used with the upper 16 bits of the uid/gid intact
5045  */
5046                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5047                         raw_inode->i_uid_high = 0;
5048                         raw_inode->i_gid_high = 0;
5049                 } else {
5050                         raw_inode->i_uid_high =
5051                                 cpu_to_le16(high_16_bits(i_uid));
5052                         raw_inode->i_gid_high =
5053                                 cpu_to_le16(high_16_bits(i_gid));
5054                 }
5055         } else {
5056                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5057                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5058                 raw_inode->i_uid_high = 0;
5059                 raw_inode->i_gid_high = 0;
5060         }
5061         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5062
5063         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5064         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5065         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5066         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5067
5068         err = ext4_inode_blocks_set(handle, raw_inode, ei);
5069         if (err) {
5070                 spin_unlock(&ei->i_raw_lock);
5071                 goto out_brelse;
5072         }
5073         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5074         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5075         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5076                 raw_inode->i_file_acl_high =
5077                         cpu_to_le16(ei->i_file_acl >> 32);
5078         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5079         if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5080                 ext4_isize_set(raw_inode, ei->i_disksize);
5081                 need_datasync = 1;
5082         }
5083         if (ei->i_disksize > 0x7fffffffULL) {
5084                 if (!ext4_has_feature_large_file(sb) ||
5085                                 EXT4_SB(sb)->s_es->s_rev_level ==
5086                     cpu_to_le32(EXT4_GOOD_OLD_REV))
5087                         set_large_file = 1;
5088         }
5089         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5090         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5091                 if (old_valid_dev(inode->i_rdev)) {
5092                         raw_inode->i_block[0] =
5093                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5094                         raw_inode->i_block[1] = 0;
5095                 } else {
5096                         raw_inode->i_block[0] = 0;
5097                         raw_inode->i_block[1] =
5098                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5099                         raw_inode->i_block[2] = 0;
5100                 }
5101         } else if (!ext4_has_inline_data(inode)) {
5102                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5103                         raw_inode->i_block[block] = ei->i_data[block];
5104         }
5105
5106         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5107                 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5108                 if (ei->i_extra_isize) {
5109                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5110                                 raw_inode->i_version_hi =
5111                                         cpu_to_le32(inode->i_version >> 32);
5112                         raw_inode->i_extra_isize =
5113                                 cpu_to_le16(ei->i_extra_isize);
5114                 }
5115         }
5116
5117         BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5118                i_projid != EXT4_DEF_PROJID);
5119
5120         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5121             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5122                 raw_inode->i_projid = cpu_to_le32(i_projid);
5123
5124         ext4_inode_csum_set(inode, raw_inode, ei);
5125         spin_unlock(&ei->i_raw_lock);
5126         if (inode->i_sb->s_flags & MS_LAZYTIME)
5127                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5128                                               bh->b_data);
5129
5130         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5131         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5132         if (!err)
5133                 err = rc;
5134         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5135         if (set_large_file) {
5136                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5137                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5138                 if (err)
5139                         goto out_brelse;
5140                 ext4_update_dynamic_rev(sb);
5141                 ext4_set_feature_large_file(sb);
5142                 ext4_handle_sync(handle);
5143                 err = ext4_handle_dirty_super(handle, sb);
5144         }
5145         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5146 out_brelse:
5147         brelse(bh);
5148         ext4_std_error(inode->i_sb, err);
5149         return err;
5150 }
5151
5152 /*
5153  * ext4_write_inode()
5154  *
5155  * We are called from a few places:
5156  *
5157  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5158  *   Here, there will be no transaction running. We wait for any running
5159  *   transaction to commit.
5160  *
5161  * - Within flush work (sys_sync(), kupdate and such).
5162  *   We wait on commit, if told to.
5163  *
5164  * - Within iput_final() -> write_inode_now()
5165  *   We wait on commit, if told to.
5166  *
5167  * In all cases it is actually safe for us to return without doing anything,
5168  * because the inode has been copied into a raw inode buffer in
5169  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5170  * writeback.
5171  *
5172  * Note that we are absolutely dependent upon all inode dirtiers doing the
5173  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5174  * which we are interested.
5175  *
5176  * It would be a bug for them to not do this.  The code:
5177  *
5178  *      mark_inode_dirty(inode)
5179  *      stuff();
5180  *      inode->i_size = expr;
5181  *
5182  * is in error because write_inode() could occur while `stuff()' is running,
5183  * and the new i_size will be lost.  Plus the inode will no longer be on the
5184  * superblock's dirty inode list.
5185  */
5186 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5187 {
5188         int err;
5189
5190         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5191                 return 0;
5192
5193         if (EXT4_SB(inode->i_sb)->s_journal) {
5194                 if (ext4_journal_current_handle()) {
5195                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5196                         dump_stack();
5197                         return -EIO;
5198                 }
5199
5200                 /*
5201                  * No need to force transaction in WB_SYNC_NONE mode. Also
5202                  * ext4_sync_fs() will force the commit after everything is
5203                  * written.
5204                  */
5205                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5206                         return 0;
5207
5208                 err = ext4_force_commit(inode->i_sb);
5209         } else {
5210                 struct ext4_iloc iloc;
5211
5212                 err = __ext4_get_inode_loc(inode, &iloc, 0);
5213                 if (err)
5214                         return err;
5215                 /*
5216                  * sync(2) will flush the whole buffer cache. No need to do
5217                  * it here separately for each inode.
5218                  */
5219                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5220                         sync_dirty_buffer(iloc.bh);
5221                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5222                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5223                                          "IO error syncing inode");
5224                         err = -EIO;
5225                 }
5226                 brelse(iloc.bh);
5227         }
5228         return err;
5229 }
5230
5231 /*
5232  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5233  * buffers that are attached to a page stradding i_size and are undergoing
5234  * commit. In that case we have to wait for commit to finish and try again.
5235  */
5236 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5237 {
5238         struct page *page;
5239         unsigned offset;
5240         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5241         tid_t commit_tid = 0;
5242         int ret;
5243
5244         offset = inode->i_size & (PAGE_SIZE - 1);
5245         /*
5246          * All buffers in the last page remain valid? Then there's nothing to
5247          * do. We do the check mainly to optimize the common PAGE_SIZE ==
5248          * blocksize case
5249          */
5250         if (offset > PAGE_SIZE - i_blocksize(inode))
5251                 return;
5252         while (1) {
5253                 page = find_lock_page(inode->i_mapping,
5254                                       inode->i_size >> PAGE_SHIFT);
5255                 if (!page)
5256                         return;
5257                 ret = __ext4_journalled_invalidatepage(page, offset,
5258                                                 PAGE_SIZE - offset);
5259                 unlock_page(page);
5260                 put_page(page);
5261                 if (ret != -EBUSY)
5262                         return;
5263                 commit_tid = 0;
5264                 read_lock(&journal->j_state_lock);
5265                 if (journal->j_committing_transaction)
5266                         commit_tid = journal->j_committing_transaction->t_tid;
5267                 read_unlock(&journal->j_state_lock);
5268                 if (commit_tid)
5269                         jbd2_log_wait_commit(journal, commit_tid);
5270         }
5271 }
5272
5273 /*
5274  * ext4_setattr()
5275  *
5276  * Called from notify_change.
5277  *
5278  * We want to trap VFS attempts to truncate the file as soon as
5279  * possible.  In particular, we want to make sure that when the VFS
5280  * shrinks i_size, we put the inode on the orphan list and modify
5281  * i_disksize immediately, so that during the subsequent flushing of
5282  * dirty pages and freeing of disk blocks, we can guarantee that any
5283  * commit will leave the blocks being flushed in an unused state on
5284  * disk.  (On recovery, the inode will get truncated and the blocks will
5285  * be freed, so we have a strong guarantee that no future commit will
5286  * leave these blocks visible to the user.)
5287  *
5288  * Another thing we have to assure is that if we are in ordered mode
5289  * and inode is still attached to the committing transaction, we must
5290  * we start writeout of all the dirty pages which are being truncated.
5291  * This way we are sure that all the data written in the previous
5292  * transaction are already on disk (truncate waits for pages under
5293  * writeback).
5294  *
5295  * Called with inode->i_mutex down.
5296  */
5297 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5298 {
5299         struct inode *inode = d_inode(dentry);
5300         int error, rc = 0;
5301         int orphan = 0;
5302         const unsigned int ia_valid = attr->ia_valid;
5303
5304         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5305                 return -EIO;
5306
5307         error = setattr_prepare(dentry, attr);
5308         if (error)
5309                 return error;
5310
5311         if (is_quota_modification(inode, attr)) {
5312                 error = dquot_initialize(inode);
5313                 if (error)
5314                         return error;
5315         }
5316         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5317             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5318                 handle_t *handle;
5319
5320                 /* (user+group)*(old+new) structure, inode write (sb,
5321                  * inode block, ? - but truncate inode update has it) */
5322                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5323                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5324                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5325                 if (IS_ERR(handle)) {
5326                         error = PTR_ERR(handle);
5327                         goto err_out;
5328                 }
5329
5330                 /* dquot_transfer() calls back ext4_get_inode_usage() which
5331                  * counts xattr inode references.
5332                  */
5333                 down_read(&EXT4_I(inode)->xattr_sem);
5334                 error = dquot_transfer(inode, attr);
5335                 up_read(&EXT4_I(inode)->xattr_sem);
5336
5337                 if (error) {
5338                         ext4_journal_stop(handle);
5339                         return error;
5340                 }
5341                 /* Update corresponding info in inode so that everything is in
5342                  * one transaction */
5343                 if (attr->ia_valid & ATTR_UID)
5344                         inode->i_uid = attr->ia_uid;
5345                 if (attr->ia_valid & ATTR_GID)
5346                         inode->i_gid = attr->ia_gid;
5347                 error = ext4_mark_inode_dirty(handle, inode);
5348                 ext4_journal_stop(handle);
5349         }
5350
5351         if (attr->ia_valid & ATTR_SIZE) {
5352                 handle_t *handle;
5353                 loff_t oldsize = inode->i_size;
5354                 int shrink = (attr->ia_size <= inode->i_size);
5355
5356                 if (ext4_encrypted_inode(inode)) {
5357                         error = fscrypt_get_encryption_info(inode);
5358                         if (error)
5359                                 return error;
5360                         if (!fscrypt_has_encryption_key(inode))
5361                                 return -ENOKEY;
5362                 }
5363
5364                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5365                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5366
5367                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
5368                                 return -EFBIG;
5369                 }
5370                 if (!S_ISREG(inode->i_mode))
5371                         return -EINVAL;
5372
5373                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5374                         inode_inc_iversion(inode);
5375
5376                 if (ext4_should_order_data(inode) &&
5377                     (attr->ia_size < inode->i_size)) {
5378                         error = ext4_begin_ordered_truncate(inode,
5379                                                             attr->ia_size);
5380                         if (error)
5381                                 goto err_out;
5382                 }
5383                 if (attr->ia_size != inode->i_size) {
5384                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5385                         if (IS_ERR(handle)) {
5386                                 error = PTR_ERR(handle);
5387                                 goto err_out;
5388                         }
5389                         if (ext4_handle_valid(handle) && shrink) {
5390                                 error = ext4_orphan_add(handle, inode);
5391                                 orphan = 1;
5392                         }
5393                         /*
5394                          * Update c/mtime on truncate up, ext4_truncate() will
5395                          * update c/mtime in shrink case below
5396                          */
5397                         if (!shrink) {
5398                                 inode->i_mtime = current_time(inode);
5399                                 inode->i_ctime = inode->i_mtime;
5400                         }
5401                         down_write(&EXT4_I(inode)->i_data_sem);
5402                         EXT4_I(inode)->i_disksize = attr->ia_size;
5403                         rc = ext4_mark_inode_dirty(handle, inode);
5404                         if (!error)
5405                                 error = rc;
5406                         /*
5407                          * We have to update i_size under i_data_sem together
5408                          * with i_disksize to avoid races with writeback code
5409                          * running ext4_wb_update_i_disksize().
5410                          */
5411                         if (!error)
5412                                 i_size_write(inode, attr->ia_size);
5413                         up_write(&EXT4_I(inode)->i_data_sem);
5414                         ext4_journal_stop(handle);
5415                         if (error) {
5416                                 if (orphan)
5417                                         ext4_orphan_del(NULL, inode);
5418                                 goto err_out;
5419                         }
5420                 }
5421                 if (!shrink)
5422                         pagecache_isize_extended(inode, oldsize, inode->i_size);
5423
5424                 /*
5425                  * Blocks are going to be removed from the inode. Wait
5426                  * for dio in flight.  Temporarily disable
5427                  * dioread_nolock to prevent livelock.
5428                  */
5429                 if (orphan) {
5430                         if (!ext4_should_journal_data(inode)) {
5431                                 ext4_inode_block_unlocked_dio(inode);
5432                                 inode_dio_wait(inode);
5433                                 ext4_inode_resume_unlocked_dio(inode);
5434                         } else
5435                                 ext4_wait_for_tail_page_commit(inode);
5436                 }
5437                 down_write(&EXT4_I(inode)->i_mmap_sem);
5438                 /*
5439                  * Truncate pagecache after we've waited for commit
5440                  * in data=journal mode to make pages freeable.
5441                  */
5442                 truncate_pagecache(inode, inode->i_size);
5443                 if (shrink) {
5444                         rc = ext4_truncate(inode);
5445                         if (rc)
5446                                 error = rc;
5447                 }
5448                 up_write(&EXT4_I(inode)->i_mmap_sem);
5449         }
5450
5451         if (!error) {
5452                 setattr_copy(inode, attr);
5453                 mark_inode_dirty(inode);
5454         }
5455
5456         /*
5457          * If the call to ext4_truncate failed to get a transaction handle at
5458          * all, we need to clean up the in-core orphan list manually.
5459          */
5460         if (orphan && inode->i_nlink)
5461                 ext4_orphan_del(NULL, inode);
5462
5463         if (!error && (ia_valid & ATTR_MODE))
5464                 rc = posix_acl_chmod(inode, inode->i_mode);
5465
5466 err_out:
5467         ext4_std_error(inode->i_sb, error);
5468         if (!error)
5469                 error = rc;
5470         return error;
5471 }
5472
5473 int ext4_getattr(const struct path *path, struct kstat *stat,
5474                  u32 request_mask, unsigned int query_flags)
5475 {
5476         struct inode *inode = d_inode(path->dentry);
5477         struct ext4_inode *raw_inode;
5478         struct ext4_inode_info *ei = EXT4_I(inode);
5479         unsigned int flags;
5480
5481         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5482                 stat->result_mask |= STATX_BTIME;
5483                 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5484                 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5485         }
5486
5487         flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5488         if (flags & EXT4_APPEND_FL)
5489                 stat->attributes |= STATX_ATTR_APPEND;
5490         if (flags & EXT4_COMPR_FL)
5491                 stat->attributes |= STATX_ATTR_COMPRESSED;
5492         if (flags & EXT4_ENCRYPT_FL)
5493                 stat->attributes |= STATX_ATTR_ENCRYPTED;
5494         if (flags & EXT4_IMMUTABLE_FL)
5495                 stat->attributes |= STATX_ATTR_IMMUTABLE;
5496         if (flags & EXT4_NODUMP_FL)
5497                 stat->attributes |= STATX_ATTR_NODUMP;
5498
5499         stat->attributes_mask |= (STATX_ATTR_APPEND |
5500                                   STATX_ATTR_COMPRESSED |
5501                                   STATX_ATTR_ENCRYPTED |
5502                                   STATX_ATTR_IMMUTABLE |
5503                                   STATX_ATTR_NODUMP);
5504
5505         generic_fillattr(inode, stat);
5506         return 0;
5507 }
5508
5509 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5510                       u32 request_mask, unsigned int query_flags)
5511 {
5512         struct inode *inode = d_inode(path->dentry);
5513         u64 delalloc_blocks;
5514
5515         ext4_getattr(path, stat, request_mask, query_flags);
5516
5517         /*
5518          * If there is inline data in the inode, the inode will normally not
5519          * have data blocks allocated (it may have an external xattr block).
5520          * Report at least one sector for such files, so tools like tar, rsync,
5521          * others don't incorrectly think the file is completely sparse.
5522          */
5523         if (unlikely(ext4_has_inline_data(inode)))
5524                 stat->blocks += (stat->size + 511) >> 9;
5525
5526         /*
5527          * We can't update i_blocks if the block allocation is delayed
5528          * otherwise in the case of system crash before the real block
5529          * allocation is done, we will have i_blocks inconsistent with
5530          * on-disk file blocks.
5531          * We always keep i_blocks updated together with real
5532          * allocation. But to not confuse with user, stat
5533          * will return the blocks that include the delayed allocation
5534          * blocks for this file.
5535          */
5536         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5537                                    EXT4_I(inode)->i_reserved_data_blocks);
5538         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5539         return 0;
5540 }
5541
5542 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5543                                    int pextents)
5544 {
5545         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5546                 return ext4_ind_trans_blocks(inode, lblocks);
5547         return ext4_ext_index_trans_blocks(inode, pextents);
5548 }
5549
5550 /*
5551  * Account for index blocks, block groups bitmaps and block group
5552  * descriptor blocks if modify datablocks and index blocks
5553  * worse case, the indexs blocks spread over different block groups
5554  *
5555  * If datablocks are discontiguous, they are possible to spread over
5556  * different block groups too. If they are contiguous, with flexbg,
5557  * they could still across block group boundary.
5558  *
5559  * Also account for superblock, inode, quota and xattr blocks
5560  */
5561 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5562                                   int pextents)
5563 {
5564         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5565         int gdpblocks;
5566         int idxblocks;
5567         int ret = 0;
5568
5569         /*
5570          * How many index blocks need to touch to map @lblocks logical blocks
5571          * to @pextents physical extents?
5572          */
5573         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5574
5575         ret = idxblocks;
5576
5577         /*
5578          * Now let's see how many group bitmaps and group descriptors need
5579          * to account
5580          */
5581         groups = idxblocks + pextents;
5582         gdpblocks = groups;
5583         if (groups > ngroups)
5584                 groups = ngroups;
5585         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5586                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5587
5588         /* bitmaps and block group descriptor blocks */
5589         ret += groups + gdpblocks;
5590
5591         /* Blocks for super block, inode, quota and xattr blocks */
5592         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5593
5594         return ret;
5595 }
5596
5597 /*
5598  * Calculate the total number of credits to reserve to fit
5599  * the modification of a single pages into a single transaction,
5600  * which may include multiple chunks of block allocations.
5601  *
5602  * This could be called via ext4_write_begin()
5603  *
5604  * We need to consider the worse case, when
5605  * one new block per extent.
5606  */
5607 int ext4_writepage_trans_blocks(struct inode *inode)
5608 {
5609         int bpp = ext4_journal_blocks_per_page(inode);
5610         int ret;
5611
5612         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5613
5614         /* Account for data blocks for journalled mode */
5615         if (ext4_should_journal_data(inode))
5616                 ret += bpp;
5617         return ret;
5618 }
5619
5620 /*
5621  * Calculate the journal credits for a chunk of data modification.
5622  *
5623  * This is called from DIO, fallocate or whoever calling
5624  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5625  *
5626  * journal buffers for data blocks are not included here, as DIO
5627  * and fallocate do no need to journal data buffers.
5628  */
5629 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5630 {
5631         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5632 }
5633
5634 /*
5635  * The caller must have previously called ext4_reserve_inode_write().
5636  * Give this, we know that the caller already has write access to iloc->bh.
5637  */
5638 int ext4_mark_iloc_dirty(handle_t *handle,
5639                          struct inode *inode, struct ext4_iloc *iloc)
5640 {
5641         int err = 0;
5642
5643         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5644                 return -EIO;
5645
5646         if (IS_I_VERSION(inode))
5647                 inode_inc_iversion(inode);
5648
5649         /* the do_update_inode consumes one bh->b_count */
5650         get_bh(iloc->bh);
5651
5652         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5653         err = ext4_do_update_inode(handle, inode, iloc);
5654         put_bh(iloc->bh);
5655         return err;
5656 }
5657
5658 /*
5659  * On success, We end up with an outstanding reference count against
5660  * iloc->bh.  This _must_ be cleaned up later.
5661  */
5662
5663 int
5664 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5665                          struct ext4_iloc *iloc)
5666 {
5667         int err;
5668
5669         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5670                 return -EIO;
5671
5672         err = ext4_get_inode_loc(inode, iloc);
5673         if (!err) {
5674                 BUFFER_TRACE(iloc->bh, "get_write_access");
5675                 err = ext4_journal_get_write_access(handle, iloc->bh);
5676                 if (err) {
5677                         brelse(iloc->bh);
5678                         iloc->bh = NULL;
5679                 }
5680         }
5681         ext4_std_error(inode->i_sb, err);
5682         return err;
5683 }
5684
5685 static int __ext4_expand_extra_isize(struct inode *inode,
5686                                      unsigned int new_extra_isize,
5687                                      struct ext4_iloc *iloc,
5688                                      handle_t *handle, int *no_expand)
5689 {
5690         struct ext4_inode *raw_inode;
5691         struct ext4_xattr_ibody_header *header;
5692         int error;
5693
5694         raw_inode = ext4_raw_inode(iloc);
5695
5696         header = IHDR(inode, raw_inode);
5697
5698         /* No extended attributes present */
5699         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5700             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5701                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5702                        EXT4_I(inode)->i_extra_isize, 0,
5703                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
5704                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5705                 return 0;
5706         }
5707
5708         /* try to expand with EAs present */
5709         error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5710                                            raw_inode, handle);
5711         if (error) {
5712                 /*
5713                  * Inode size expansion failed; don't try again
5714                  */
5715                 *no_expand = 1;
5716         }
5717
5718         return error;
5719 }
5720
5721 /*
5722  * Expand an inode by new_extra_isize bytes.
5723  * Returns 0 on success or negative error number on failure.
5724  */
5725 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5726                                           unsigned int new_extra_isize,
5727                                           struct ext4_iloc iloc,
5728                                           handle_t *handle)
5729 {
5730         int no_expand;
5731         int error;
5732
5733         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5734                 return -EOVERFLOW;
5735
5736         /*
5737          * In nojournal mode, we can immediately attempt to expand
5738          * the inode.  When journaled, we first need to obtain extra
5739          * buffer credits since we may write into the EA block
5740          * with this same handle. If journal_extend fails, then it will
5741          * only result in a minor loss of functionality for that inode.
5742          * If this is felt to be critical, then e2fsck should be run to
5743          * force a large enough s_min_extra_isize.
5744          */
5745         if (ext4_handle_valid(handle) &&
5746             jbd2_journal_extend(handle,
5747                                 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
5748                 return -ENOSPC;
5749
5750         if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5751                 return -EBUSY;
5752
5753         error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5754                                           handle, &no_expand);
5755         ext4_write_unlock_xattr(inode, &no_expand);
5756
5757         return error;
5758 }
5759
5760 int ext4_expand_extra_isize(struct inode *inode,
5761                             unsigned int new_extra_isize,
5762                             struct ext4_iloc *iloc)
5763 {
5764         handle_t *handle;
5765         int no_expand;
5766         int error, rc;
5767
5768         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5769                 brelse(iloc->bh);
5770                 return -EOVERFLOW;
5771         }
5772
5773         handle = ext4_journal_start(inode, EXT4_HT_INODE,
5774                                     EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5775         if (IS_ERR(handle)) {
5776                 error = PTR_ERR(handle);
5777                 brelse(iloc->bh);
5778                 return error;
5779         }
5780
5781         ext4_write_lock_xattr(inode, &no_expand);
5782
5783         BUFFER_TRACE(iloc.bh, "get_write_access");
5784         error = ext4_journal_get_write_access(handle, iloc->bh);
5785         if (error) {
5786                 brelse(iloc->bh);
5787                 goto out_stop;
5788         }
5789
5790         error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5791                                           handle, &no_expand);
5792
5793         rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5794         if (!error)
5795                 error = rc;
5796
5797         ext4_write_unlock_xattr(inode, &no_expand);
5798 out_stop:
5799         ext4_journal_stop(handle);
5800         return error;
5801 }
5802
5803 /*
5804  * What we do here is to mark the in-core inode as clean with respect to inode
5805  * dirtiness (it may still be data-dirty).
5806  * This means that the in-core inode may be reaped by prune_icache
5807  * without having to perform any I/O.  This is a very good thing,
5808  * because *any* task may call prune_icache - even ones which
5809  * have a transaction open against a different journal.
5810  *
5811  * Is this cheating?  Not really.  Sure, we haven't written the
5812  * inode out, but prune_icache isn't a user-visible syncing function.
5813  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5814  * we start and wait on commits.
5815  */
5816 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5817 {
5818         struct ext4_iloc iloc;
5819         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5820         int err;
5821
5822         might_sleep();
5823         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5824         err = ext4_reserve_inode_write(handle, inode, &iloc);
5825         if (err)
5826                 return err;
5827
5828         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5829                 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5830                                                iloc, handle);
5831
5832         return ext4_mark_iloc_dirty(handle, inode, &iloc);
5833 }
5834
5835 /*
5836  * ext4_dirty_inode() is called from __mark_inode_dirty()
5837  *
5838  * We're really interested in the case where a file is being extended.
5839  * i_size has been changed by generic_commit_write() and we thus need
5840  * to include the updated inode in the current transaction.
5841  *
5842  * Also, dquot_alloc_block() will always dirty the inode when blocks
5843  * are allocated to the file.
5844  *
5845  * If the inode is marked synchronous, we don't honour that here - doing
5846  * so would cause a commit on atime updates, which we don't bother doing.
5847  * We handle synchronous inodes at the highest possible level.
5848  *
5849  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5850  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5851  * to copy into the on-disk inode structure are the timestamp files.
5852  */
5853 void ext4_dirty_inode(struct inode *inode, int flags)
5854 {
5855         handle_t *handle;
5856
5857         if (flags == I_DIRTY_TIME)
5858                 return;
5859         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5860         if (IS_ERR(handle))
5861                 goto out;
5862
5863         ext4_mark_inode_dirty(handle, inode);
5864
5865         ext4_journal_stop(handle);
5866 out:
5867         return;
5868 }
5869
5870 #if 0
5871 /*
5872  * Bind an inode's backing buffer_head into this transaction, to prevent
5873  * it from being flushed to disk early.  Unlike
5874  * ext4_reserve_inode_write, this leaves behind no bh reference and
5875  * returns no iloc structure, so the caller needs to repeat the iloc
5876  * lookup to mark the inode dirty later.
5877  */
5878 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5879 {
5880         struct ext4_iloc iloc;
5881
5882         int err = 0;
5883         if (handle) {
5884                 err = ext4_get_inode_loc(inode, &iloc);
5885                 if (!err) {
5886                         BUFFER_TRACE(iloc.bh, "get_write_access");
5887                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5888                         if (!err)
5889                                 err = ext4_handle_dirty_metadata(handle,
5890                                                                  NULL,
5891                                                                  iloc.bh);
5892                         brelse(iloc.bh);
5893                 }
5894         }
5895         ext4_std_error(inode->i_sb, err);
5896         return err;
5897 }
5898 #endif
5899
5900 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5901 {
5902         journal_t *journal;
5903         handle_t *handle;
5904         int err;
5905         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5906
5907         /*
5908          * We have to be very careful here: changing a data block's
5909          * journaling status dynamically is dangerous.  If we write a
5910          * data block to the journal, change the status and then delete
5911          * that block, we risk forgetting to revoke the old log record
5912          * from the journal and so a subsequent replay can corrupt data.
5913          * So, first we make sure that the journal is empty and that
5914          * nobody is changing anything.
5915          */
5916
5917         journal = EXT4_JOURNAL(inode);
5918         if (!journal)
5919                 return 0;
5920         if (is_journal_aborted(journal))
5921                 return -EROFS;
5922
5923         /* Wait for all existing dio workers */
5924         ext4_inode_block_unlocked_dio(inode);
5925         inode_dio_wait(inode);
5926
5927         /*
5928          * Before flushing the journal and switching inode's aops, we have
5929          * to flush all dirty data the inode has. There can be outstanding
5930          * delayed allocations, there can be unwritten extents created by
5931          * fallocate or buffered writes in dioread_nolock mode covered by
5932          * dirty data which can be converted only after flushing the dirty
5933          * data (and journalled aops don't know how to handle these cases).
5934          */
5935         if (val) {
5936                 down_write(&EXT4_I(inode)->i_mmap_sem);
5937                 err = filemap_write_and_wait(inode->i_mapping);
5938                 if (err < 0) {
5939                         up_write(&EXT4_I(inode)->i_mmap_sem);
5940                         ext4_inode_resume_unlocked_dio(inode);
5941                         return err;
5942                 }
5943         }
5944
5945         percpu_down_write(&sbi->s_journal_flag_rwsem);
5946         jbd2_journal_lock_updates(journal);
5947
5948         /*
5949          * OK, there are no updates running now, and all cached data is
5950          * synced to disk.  We are now in a completely consistent state
5951          * which doesn't have anything in the journal, and we know that
5952          * no filesystem updates are running, so it is safe to modify
5953          * the inode's in-core data-journaling state flag now.
5954          */
5955
5956         if (val)
5957                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5958         else {
5959                 err = jbd2_journal_flush(journal);
5960                 if (err < 0) {
5961                         jbd2_journal_unlock_updates(journal);
5962                         percpu_up_write(&sbi->s_journal_flag_rwsem);
5963                         ext4_inode_resume_unlocked_dio(inode);
5964                         return err;
5965                 }
5966                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5967         }
5968         ext4_set_aops(inode);
5969         /*
5970          * Update inode->i_flags after EXT4_INODE_JOURNAL_DATA was updated.
5971          * E.g. S_DAX may get cleared / set.
5972          */
5973         ext4_set_inode_flags(inode);
5974
5975         jbd2_journal_unlock_updates(journal);
5976         percpu_up_write(&sbi->s_journal_flag_rwsem);
5977
5978         if (val)
5979                 up_write(&EXT4_I(inode)->i_mmap_sem);
5980         ext4_inode_resume_unlocked_dio(inode);
5981
5982         /* Finally we can mark the inode as dirty. */
5983
5984         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5985         if (IS_ERR(handle))
5986                 return PTR_ERR(handle);
5987
5988         err = ext4_mark_inode_dirty(handle, inode);
5989         ext4_handle_sync(handle);
5990         ext4_journal_stop(handle);
5991         ext4_std_error(inode->i_sb, err);
5992
5993         return err;
5994 }
5995
5996 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5997 {
5998         return !buffer_mapped(bh);
5999 }
6000
6001 int ext4_page_mkwrite(struct vm_fault *vmf)
6002 {
6003         struct vm_area_struct *vma = vmf->vma;
6004         struct page *page = vmf->page;
6005         loff_t size;
6006         unsigned long len;
6007         int ret;
6008         struct file *file = vma->vm_file;
6009         struct inode *inode = file_inode(file);
6010         struct address_space *mapping = inode->i_mapping;
6011         handle_t *handle;
6012         get_block_t *get_block;
6013         int retries = 0;
6014
6015         sb_start_pagefault(inode->i_sb);
6016         file_update_time(vma->vm_file);
6017
6018         down_read(&EXT4_I(inode)->i_mmap_sem);
6019
6020         ret = ext4_convert_inline_data(inode);
6021         if (ret)
6022                 goto out_ret;
6023
6024         /* Delalloc case is easy... */
6025         if (test_opt(inode->i_sb, DELALLOC) &&
6026             !ext4_should_journal_data(inode) &&
6027             !ext4_nonda_switch(inode->i_sb)) {
6028                 do {
6029                         ret = block_page_mkwrite(vma, vmf,
6030                                                    ext4_da_get_block_prep);
6031                 } while (ret == -ENOSPC &&
6032                        ext4_should_retry_alloc(inode->i_sb, &retries));
6033                 goto out_ret;
6034         }
6035
6036         lock_page(page);
6037         size = i_size_read(inode);
6038         /* Page got truncated from under us? */
6039         if (page->mapping != mapping || page_offset(page) > size) {
6040                 unlock_page(page);
6041                 ret = VM_FAULT_NOPAGE;
6042                 goto out;
6043         }
6044
6045         if (page->index == size >> PAGE_SHIFT)
6046                 len = size & ~PAGE_MASK;
6047         else
6048                 len = PAGE_SIZE;
6049         /*
6050          * Return if we have all the buffers mapped. This avoids the need to do
6051          * journal_start/journal_stop which can block and take a long time
6052          */
6053         if (page_has_buffers(page)) {
6054                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6055                                             0, len, NULL,
6056                                             ext4_bh_unmapped)) {
6057                         /* Wait so that we don't change page under IO */
6058                         wait_for_stable_page(page);
6059                         ret = VM_FAULT_LOCKED;
6060                         goto out;
6061                 }
6062         }
6063         unlock_page(page);
6064         /* OK, we need to fill the hole... */
6065         if (ext4_should_dioread_nolock(inode))
6066                 get_block = ext4_get_block_unwritten;
6067         else
6068                 get_block = ext4_get_block;
6069 retry_alloc:
6070         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6071                                     ext4_writepage_trans_blocks(inode));
6072         if (IS_ERR(handle)) {
6073                 ret = VM_FAULT_SIGBUS;
6074                 goto out;
6075         }
6076         ret = block_page_mkwrite(vma, vmf, get_block);
6077         if (!ret && ext4_should_journal_data(inode)) {
6078                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6079                           PAGE_SIZE, NULL, do_journal_get_write_access)) {
6080                         unlock_page(page);
6081                         ret = VM_FAULT_SIGBUS;
6082                         ext4_journal_stop(handle);
6083                         goto out;
6084                 }
6085                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6086         }
6087         ext4_journal_stop(handle);
6088         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6089                 goto retry_alloc;
6090 out_ret:
6091         ret = block_page_mkwrite_return(ret);
6092 out:
6093         up_read(&EXT4_I(inode)->i_mmap_sem);
6094         sb_end_pagefault(inode->i_sb);
6095         return ret;
6096 }
6097
6098 int ext4_filemap_fault(struct vm_fault *vmf)
6099 {
6100         struct inode *inode = file_inode(vmf->vma->vm_file);
6101         int err;
6102
6103         down_read(&EXT4_I(inode)->i_mmap_sem);
6104         err = filemap_fault(vmf);
6105         up_read(&EXT4_I(inode)->i_mmap_sem);
6106
6107         return err;
6108 }
6109
6110 /*
6111  * Find the first extent at or after @lblk in an inode that is not a hole.
6112  * Search for @map_len blocks at most. The extent is returned in @result.
6113  *
6114  * The function returns 1 if we found an extent. The function returns 0 in
6115  * case there is no extent at or after @lblk and in that case also sets
6116  * @result->es_len to 0. In case of error, the error code is returned.
6117  */
6118 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
6119                          unsigned int map_len, struct extent_status *result)
6120 {
6121         struct ext4_map_blocks map;
6122         struct extent_status es = {};
6123         int ret;
6124
6125         map.m_lblk = lblk;
6126         map.m_len = map_len;
6127
6128         /*
6129          * For non-extent based files this loop may iterate several times since
6130          * we do not determine full hole size.
6131          */
6132         while (map.m_len > 0) {
6133                 ret = ext4_map_blocks(NULL, inode, &map, 0);
6134                 if (ret < 0)
6135                         return ret;
6136                 /* There's extent covering m_lblk? Just return it. */
6137                 if (ret > 0) {
6138                         int status;
6139
6140                         ext4_es_store_pblock(result, map.m_pblk);
6141                         result->es_lblk = map.m_lblk;
6142                         result->es_len = map.m_len;
6143                         if (map.m_flags & EXT4_MAP_UNWRITTEN)
6144                                 status = EXTENT_STATUS_UNWRITTEN;
6145                         else
6146                                 status = EXTENT_STATUS_WRITTEN;
6147                         ext4_es_store_status(result, status);
6148                         return 1;
6149                 }
6150                 ext4_es_find_delayed_extent_range(inode, map.m_lblk,
6151                                                   map.m_lblk + map.m_len - 1,
6152                                                   &es);
6153                 /* Is delalloc data before next block in extent tree? */
6154                 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
6155                         ext4_lblk_t offset = 0;
6156
6157                         if (es.es_lblk < lblk)
6158                                 offset = lblk - es.es_lblk;
6159                         result->es_lblk = es.es_lblk + offset;
6160                         ext4_es_store_pblock(result,
6161                                              ext4_es_pblock(&es) + offset);
6162                         result->es_len = es.es_len - offset;
6163                         ext4_es_store_status(result, ext4_es_status(&es));
6164
6165                         return 1;
6166                 }
6167                 /* There's a hole at m_lblk, advance us after it */
6168                 map.m_lblk += map.m_len;
6169                 map_len -= map.m_len;
6170                 map.m_len = map_len;
6171                 cond_resched();
6172         }
6173         result->es_len = 0;
6174         return 0;
6175 }