Merge branch 'for-linus' of git://ftp.arm.linux.org.uk/~rmk/linux-arm
[sfrench/cifs-2.6.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/quotaops.h>
26 #include <linux/string.h>
27 #include <linux/buffer_head.h>
28 #include <linux/writeback.h>
29 #include <linux/pagevec.h>
30 #include <linux/mpage.h>
31 #include <linux/namei.h>
32 #include <linux/uio.h>
33 #include <linux/bio.h>
34 #include <linux/workqueue.h>
35 #include <linux/kernel.h>
36 #include <linux/printk.h>
37 #include <linux/slab.h>
38 #include <linux/bitops.h>
39
40 #include "ext4_jbd2.h"
41 #include "xattr.h"
42 #include "acl.h"
43 #include "truncate.h"
44
45 #include <trace/events/ext4.h>
46
47 #define MPAGE_DA_EXTENT_TAIL 0x01
48
49 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
50                               struct ext4_inode_info *ei)
51 {
52         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
53         __u16 csum_lo;
54         __u16 csum_hi = 0;
55         __u32 csum;
56
57         csum_lo = le16_to_cpu(raw->i_checksum_lo);
58         raw->i_checksum_lo = 0;
59         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
60             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
61                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
62                 raw->i_checksum_hi = 0;
63         }
64
65         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
66                            EXT4_INODE_SIZE(inode->i_sb));
67
68         raw->i_checksum_lo = cpu_to_le16(csum_lo);
69         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
70             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
71                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
72
73         return csum;
74 }
75
76 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
77                                   struct ext4_inode_info *ei)
78 {
79         __u32 provided, calculated;
80
81         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
82             cpu_to_le32(EXT4_OS_LINUX) ||
83             !ext4_has_metadata_csum(inode->i_sb))
84                 return 1;
85
86         provided = le16_to_cpu(raw->i_checksum_lo);
87         calculated = ext4_inode_csum(inode, raw, ei);
88         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
89             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
90                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
91         else
92                 calculated &= 0xFFFF;
93
94         return provided == calculated;
95 }
96
97 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
98                                 struct ext4_inode_info *ei)
99 {
100         __u32 csum;
101
102         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
103             cpu_to_le32(EXT4_OS_LINUX) ||
104             !ext4_has_metadata_csum(inode->i_sb))
105                 return;
106
107         csum = ext4_inode_csum(inode, raw, ei);
108         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
109         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
110             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
111                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
112 }
113
114 static inline int ext4_begin_ordered_truncate(struct inode *inode,
115                                               loff_t new_size)
116 {
117         trace_ext4_begin_ordered_truncate(inode, new_size);
118         /*
119          * If jinode is zero, then we never opened the file for
120          * writing, so there's no need to call
121          * jbd2_journal_begin_ordered_truncate() since there's no
122          * outstanding writes we need to flush.
123          */
124         if (!EXT4_I(inode)->jinode)
125                 return 0;
126         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
127                                                    EXT4_I(inode)->jinode,
128                                                    new_size);
129 }
130
131 static void ext4_invalidatepage(struct page *page, unsigned int offset,
132                                 unsigned int length);
133 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
134 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
135 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
136                                   int pextents);
137
138 /*
139  * Test whether an inode is a fast symlink.
140  */
141 int ext4_inode_is_fast_symlink(struct inode *inode)
142 {
143         int ea_blocks = EXT4_I(inode)->i_file_acl ?
144                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
145
146         if (ext4_has_inline_data(inode))
147                 return 0;
148
149         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
150 }
151
152 /*
153  * Restart the transaction associated with *handle.  This does a commit,
154  * so before we call here everything must be consistently dirtied against
155  * this transaction.
156  */
157 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
158                                  int nblocks)
159 {
160         int ret;
161
162         /*
163          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
164          * moment, get_block can be called only for blocks inside i_size since
165          * page cache has been already dropped and writes are blocked by
166          * i_mutex. So we can safely drop the i_data_sem here.
167          */
168         BUG_ON(EXT4_JOURNAL(inode) == NULL);
169         jbd_debug(2, "restarting handle %p\n", handle);
170         up_write(&EXT4_I(inode)->i_data_sem);
171         ret = ext4_journal_restart(handle, nblocks);
172         down_write(&EXT4_I(inode)->i_data_sem);
173         ext4_discard_preallocations(inode);
174
175         return ret;
176 }
177
178 /*
179  * Called at the last iput() if i_nlink is zero.
180  */
181 void ext4_evict_inode(struct inode *inode)
182 {
183         handle_t *handle;
184         int err;
185
186         trace_ext4_evict_inode(inode);
187
188         if (inode->i_nlink) {
189                 /*
190                  * When journalling data dirty buffers are tracked only in the
191                  * journal. So although mm thinks everything is clean and
192                  * ready for reaping the inode might still have some pages to
193                  * write in the running transaction or waiting to be
194                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
195                  * (via truncate_inode_pages()) to discard these buffers can
196                  * cause data loss. Also even if we did not discard these
197                  * buffers, we would have no way to find them after the inode
198                  * is reaped and thus user could see stale data if he tries to
199                  * read them before the transaction is checkpointed. So be
200                  * careful and force everything to disk here... We use
201                  * ei->i_datasync_tid to store the newest transaction
202                  * containing inode's data.
203                  *
204                  * Note that directories do not have this problem because they
205                  * don't use page cache.
206                  */
207                 if (ext4_should_journal_data(inode) &&
208                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
209                     inode->i_ino != EXT4_JOURNAL_INO) {
210                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
211                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
212
213                         jbd2_complete_transaction(journal, commit_tid);
214                         filemap_write_and_wait(&inode->i_data);
215                 }
216                 truncate_inode_pages_final(&inode->i_data);
217
218                 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
219                 goto no_delete;
220         }
221
222         if (is_bad_inode(inode))
223                 goto no_delete;
224         dquot_initialize(inode);
225
226         if (ext4_should_order_data(inode))
227                 ext4_begin_ordered_truncate(inode, 0);
228         truncate_inode_pages_final(&inode->i_data);
229
230         WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
231
232         /*
233          * Protect us against freezing - iput() caller didn't have to have any
234          * protection against it
235          */
236         sb_start_intwrite(inode->i_sb);
237         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
238                                     ext4_blocks_for_truncate(inode)+3);
239         if (IS_ERR(handle)) {
240                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
241                 /*
242                  * If we're going to skip the normal cleanup, we still need to
243                  * make sure that the in-core orphan linked list is properly
244                  * cleaned up.
245                  */
246                 ext4_orphan_del(NULL, inode);
247                 sb_end_intwrite(inode->i_sb);
248                 goto no_delete;
249         }
250
251         if (IS_SYNC(inode))
252                 ext4_handle_sync(handle);
253         inode->i_size = 0;
254         err = ext4_mark_inode_dirty(handle, inode);
255         if (err) {
256                 ext4_warning(inode->i_sb,
257                              "couldn't mark inode dirty (err %d)", err);
258                 goto stop_handle;
259         }
260         if (inode->i_blocks)
261                 ext4_truncate(inode);
262
263         /*
264          * ext4_ext_truncate() doesn't reserve any slop when it
265          * restarts journal transactions; therefore there may not be
266          * enough credits left in the handle to remove the inode from
267          * the orphan list and set the dtime field.
268          */
269         if (!ext4_handle_has_enough_credits(handle, 3)) {
270                 err = ext4_journal_extend(handle, 3);
271                 if (err > 0)
272                         err = ext4_journal_restart(handle, 3);
273                 if (err != 0) {
274                         ext4_warning(inode->i_sb,
275                                      "couldn't extend journal (err %d)", err);
276                 stop_handle:
277                         ext4_journal_stop(handle);
278                         ext4_orphan_del(NULL, inode);
279                         sb_end_intwrite(inode->i_sb);
280                         goto no_delete;
281                 }
282         }
283
284         /*
285          * Kill off the orphan record which ext4_truncate created.
286          * AKPM: I think this can be inside the above `if'.
287          * Note that ext4_orphan_del() has to be able to cope with the
288          * deletion of a non-existent orphan - this is because we don't
289          * know if ext4_truncate() actually created an orphan record.
290          * (Well, we could do this if we need to, but heck - it works)
291          */
292         ext4_orphan_del(handle, inode);
293         EXT4_I(inode)->i_dtime  = get_seconds();
294
295         /*
296          * One subtle ordering requirement: if anything has gone wrong
297          * (transaction abort, IO errors, whatever), then we can still
298          * do these next steps (the fs will already have been marked as
299          * having errors), but we can't free the inode if the mark_dirty
300          * fails.
301          */
302         if (ext4_mark_inode_dirty(handle, inode))
303                 /* If that failed, just do the required in-core inode clear. */
304                 ext4_clear_inode(inode);
305         else
306                 ext4_free_inode(handle, inode);
307         ext4_journal_stop(handle);
308         sb_end_intwrite(inode->i_sb);
309         return;
310 no_delete:
311         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
312 }
313
314 #ifdef CONFIG_QUOTA
315 qsize_t *ext4_get_reserved_space(struct inode *inode)
316 {
317         return &EXT4_I(inode)->i_reserved_quota;
318 }
319 #endif
320
321 /*
322  * Called with i_data_sem down, which is important since we can call
323  * ext4_discard_preallocations() from here.
324  */
325 void ext4_da_update_reserve_space(struct inode *inode,
326                                         int used, int quota_claim)
327 {
328         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
329         struct ext4_inode_info *ei = EXT4_I(inode);
330
331         spin_lock(&ei->i_block_reservation_lock);
332         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
333         if (unlikely(used > ei->i_reserved_data_blocks)) {
334                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
335                          "with only %d reserved data blocks",
336                          __func__, inode->i_ino, used,
337                          ei->i_reserved_data_blocks);
338                 WARN_ON(1);
339                 used = ei->i_reserved_data_blocks;
340         }
341
342         /* Update per-inode reservations */
343         ei->i_reserved_data_blocks -= used;
344         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
345
346         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
347
348         /* Update quota subsystem for data blocks */
349         if (quota_claim)
350                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
351         else {
352                 /*
353                  * We did fallocate with an offset that is already delayed
354                  * allocated. So on delayed allocated writeback we should
355                  * not re-claim the quota for fallocated blocks.
356                  */
357                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
358         }
359
360         /*
361          * If we have done all the pending block allocations and if
362          * there aren't any writers on the inode, we can discard the
363          * inode's preallocations.
364          */
365         if ((ei->i_reserved_data_blocks == 0) &&
366             (atomic_read(&inode->i_writecount) == 0))
367                 ext4_discard_preallocations(inode);
368 }
369
370 static int __check_block_validity(struct inode *inode, const char *func,
371                                 unsigned int line,
372                                 struct ext4_map_blocks *map)
373 {
374         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
375                                    map->m_len)) {
376                 ext4_error_inode(inode, func, line, map->m_pblk,
377                                  "lblock %lu mapped to illegal pblock "
378                                  "(length %d)", (unsigned long) map->m_lblk,
379                                  map->m_len);
380                 return -EIO;
381         }
382         return 0;
383 }
384
385 #define check_block_validity(inode, map)        \
386         __check_block_validity((inode), __func__, __LINE__, (map))
387
388 #ifdef ES_AGGRESSIVE_TEST
389 static void ext4_map_blocks_es_recheck(handle_t *handle,
390                                        struct inode *inode,
391                                        struct ext4_map_blocks *es_map,
392                                        struct ext4_map_blocks *map,
393                                        int flags)
394 {
395         int retval;
396
397         map->m_flags = 0;
398         /*
399          * There is a race window that the result is not the same.
400          * e.g. xfstests #223 when dioread_nolock enables.  The reason
401          * is that we lookup a block mapping in extent status tree with
402          * out taking i_data_sem.  So at the time the unwritten extent
403          * could be converted.
404          */
405         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
406                 down_read(&EXT4_I(inode)->i_data_sem);
407         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
408                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
409                                              EXT4_GET_BLOCKS_KEEP_SIZE);
410         } else {
411                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
412                                              EXT4_GET_BLOCKS_KEEP_SIZE);
413         }
414         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
415                 up_read((&EXT4_I(inode)->i_data_sem));
416
417         /*
418          * We don't check m_len because extent will be collpased in status
419          * tree.  So the m_len might not equal.
420          */
421         if (es_map->m_lblk != map->m_lblk ||
422             es_map->m_flags != map->m_flags ||
423             es_map->m_pblk != map->m_pblk) {
424                 printk("ES cache assertion failed for inode: %lu "
425                        "es_cached ex [%d/%d/%llu/%x] != "
426                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
427                        inode->i_ino, es_map->m_lblk, es_map->m_len,
428                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
429                        map->m_len, map->m_pblk, map->m_flags,
430                        retval, flags);
431         }
432 }
433 #endif /* ES_AGGRESSIVE_TEST */
434
435 /*
436  * The ext4_map_blocks() function tries to look up the requested blocks,
437  * and returns if the blocks are already mapped.
438  *
439  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
440  * and store the allocated blocks in the result buffer head and mark it
441  * mapped.
442  *
443  * If file type is extents based, it will call ext4_ext_map_blocks(),
444  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
445  * based files
446  *
447  * On success, it returns the number of blocks being mapped or allocated.
448  * if create==0 and the blocks are pre-allocated and unwritten block,
449  * the result buffer head is unmapped. If the create ==1, it will make sure
450  * the buffer head is mapped.
451  *
452  * It returns 0 if plain look up failed (blocks have not been allocated), in
453  * that case, buffer head is unmapped
454  *
455  * It returns the error in case of allocation failure.
456  */
457 int ext4_map_blocks(handle_t *handle, struct inode *inode,
458                     struct ext4_map_blocks *map, int flags)
459 {
460         struct extent_status es;
461         int retval;
462         int ret = 0;
463 #ifdef ES_AGGRESSIVE_TEST
464         struct ext4_map_blocks orig_map;
465
466         memcpy(&orig_map, map, sizeof(*map));
467 #endif
468
469         map->m_flags = 0;
470         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
471                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
472                   (unsigned long) map->m_lblk);
473
474         /*
475          * ext4_map_blocks returns an int, and m_len is an unsigned int
476          */
477         if (unlikely(map->m_len > INT_MAX))
478                 map->m_len = INT_MAX;
479
480         /* We can handle the block number less than EXT_MAX_BLOCKS */
481         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
482                 return -EIO;
483
484         /* Lookup extent status tree firstly */
485         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
486                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
487                         map->m_pblk = ext4_es_pblock(&es) +
488                                         map->m_lblk - es.es_lblk;
489                         map->m_flags |= ext4_es_is_written(&es) ?
490                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
491                         retval = es.es_len - (map->m_lblk - es.es_lblk);
492                         if (retval > map->m_len)
493                                 retval = map->m_len;
494                         map->m_len = retval;
495                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
496                         retval = 0;
497                 } else {
498                         BUG_ON(1);
499                 }
500 #ifdef ES_AGGRESSIVE_TEST
501                 ext4_map_blocks_es_recheck(handle, inode, map,
502                                            &orig_map, flags);
503 #endif
504                 goto found;
505         }
506
507         /*
508          * Try to see if we can get the block without requesting a new
509          * file system block.
510          */
511         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
512                 down_read(&EXT4_I(inode)->i_data_sem);
513         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
514                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
515                                              EXT4_GET_BLOCKS_KEEP_SIZE);
516         } else {
517                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
518                                              EXT4_GET_BLOCKS_KEEP_SIZE);
519         }
520         if (retval > 0) {
521                 unsigned int status;
522
523                 if (unlikely(retval != map->m_len)) {
524                         ext4_warning(inode->i_sb,
525                                      "ES len assertion failed for inode "
526                                      "%lu: retval %d != map->m_len %d",
527                                      inode->i_ino, retval, map->m_len);
528                         WARN_ON(1);
529                 }
530
531                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
532                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
533                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
534                     !(status & EXTENT_STATUS_WRITTEN) &&
535                     ext4_find_delalloc_range(inode, map->m_lblk,
536                                              map->m_lblk + map->m_len - 1))
537                         status |= EXTENT_STATUS_DELAYED;
538                 ret = ext4_es_insert_extent(inode, map->m_lblk,
539                                             map->m_len, map->m_pblk, status);
540                 if (ret < 0)
541                         retval = ret;
542         }
543         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
544                 up_read((&EXT4_I(inode)->i_data_sem));
545
546 found:
547         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
548                 ret = check_block_validity(inode, map);
549                 if (ret != 0)
550                         return ret;
551         }
552
553         /* If it is only a block(s) look up */
554         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
555                 return retval;
556
557         /*
558          * Returns if the blocks have already allocated
559          *
560          * Note that if blocks have been preallocated
561          * ext4_ext_get_block() returns the create = 0
562          * with buffer head unmapped.
563          */
564         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
565                 /*
566                  * If we need to convert extent to unwritten
567                  * we continue and do the actual work in
568                  * ext4_ext_map_blocks()
569                  */
570                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
571                         return retval;
572
573         /*
574          * Here we clear m_flags because after allocating an new extent,
575          * it will be set again.
576          */
577         map->m_flags &= ~EXT4_MAP_FLAGS;
578
579         /*
580          * New blocks allocate and/or writing to unwritten extent
581          * will possibly result in updating i_data, so we take
582          * the write lock of i_data_sem, and call get_block()
583          * with create == 1 flag.
584          */
585         down_write(&EXT4_I(inode)->i_data_sem);
586
587         /*
588          * We need to check for EXT4 here because migrate
589          * could have changed the inode type in between
590          */
591         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
592                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
593         } else {
594                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
595
596                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
597                         /*
598                          * We allocated new blocks which will result in
599                          * i_data's format changing.  Force the migrate
600                          * to fail by clearing migrate flags
601                          */
602                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
603                 }
604
605                 /*
606                  * Update reserved blocks/metadata blocks after successful
607                  * block allocation which had been deferred till now. We don't
608                  * support fallocate for non extent files. So we can update
609                  * reserve space here.
610                  */
611                 if ((retval > 0) &&
612                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
613                         ext4_da_update_reserve_space(inode, retval, 1);
614         }
615
616         if (retval > 0) {
617                 unsigned int status;
618
619                 if (unlikely(retval != map->m_len)) {
620                         ext4_warning(inode->i_sb,
621                                      "ES len assertion failed for inode "
622                                      "%lu: retval %d != map->m_len %d",
623                                      inode->i_ino, retval, map->m_len);
624                         WARN_ON(1);
625                 }
626
627                 /*
628                  * If the extent has been zeroed out, we don't need to update
629                  * extent status tree.
630                  */
631                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
632                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
633                         if (ext4_es_is_written(&es))
634                                 goto has_zeroout;
635                 }
636                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
637                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
638                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
639                     !(status & EXTENT_STATUS_WRITTEN) &&
640                     ext4_find_delalloc_range(inode, map->m_lblk,
641                                              map->m_lblk + map->m_len - 1))
642                         status |= EXTENT_STATUS_DELAYED;
643                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
644                                             map->m_pblk, status);
645                 if (ret < 0)
646                         retval = ret;
647         }
648
649 has_zeroout:
650         up_write((&EXT4_I(inode)->i_data_sem));
651         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
652                 ret = check_block_validity(inode, map);
653                 if (ret != 0)
654                         return ret;
655         }
656         return retval;
657 }
658
659 /* Maximum number of blocks we map for direct IO at once. */
660 #define DIO_MAX_BLOCKS 4096
661
662 static int _ext4_get_block(struct inode *inode, sector_t iblock,
663                            struct buffer_head *bh, int flags)
664 {
665         handle_t *handle = ext4_journal_current_handle();
666         struct ext4_map_blocks map;
667         int ret = 0, started = 0;
668         int dio_credits;
669
670         if (ext4_has_inline_data(inode))
671                 return -ERANGE;
672
673         map.m_lblk = iblock;
674         map.m_len = bh->b_size >> inode->i_blkbits;
675
676         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
677                 /* Direct IO write... */
678                 if (map.m_len > DIO_MAX_BLOCKS)
679                         map.m_len = DIO_MAX_BLOCKS;
680                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
681                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
682                                             dio_credits);
683                 if (IS_ERR(handle)) {
684                         ret = PTR_ERR(handle);
685                         return ret;
686                 }
687                 started = 1;
688         }
689
690         ret = ext4_map_blocks(handle, inode, &map, flags);
691         if (ret > 0) {
692                 ext4_io_end_t *io_end = ext4_inode_aio(inode);
693
694                 map_bh(bh, inode->i_sb, map.m_pblk);
695                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
696                 if (IS_DAX(inode) && buffer_unwritten(bh)) {
697                         /*
698                          * dgc: I suspect unwritten conversion on ext4+DAX is
699                          * fundamentally broken here when there are concurrent
700                          * read/write in progress on this inode.
701                          */
702                         WARN_ON_ONCE(io_end);
703                         bh->b_assoc_map = inode->i_mapping;
704                         bh->b_private = (void *)(unsigned long)iblock;
705                 }
706                 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
707                         set_buffer_defer_completion(bh);
708                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
709                 ret = 0;
710         }
711         if (started)
712                 ext4_journal_stop(handle);
713         return ret;
714 }
715
716 int ext4_get_block(struct inode *inode, sector_t iblock,
717                    struct buffer_head *bh, int create)
718 {
719         return _ext4_get_block(inode, iblock, bh,
720                                create ? EXT4_GET_BLOCKS_CREATE : 0);
721 }
722
723 /*
724  * `handle' can be NULL if create is zero
725  */
726 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
727                                 ext4_lblk_t block, int map_flags)
728 {
729         struct ext4_map_blocks map;
730         struct buffer_head *bh;
731         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
732         int err;
733
734         J_ASSERT(handle != NULL || create == 0);
735
736         map.m_lblk = block;
737         map.m_len = 1;
738         err = ext4_map_blocks(handle, inode, &map, map_flags);
739
740         if (err == 0)
741                 return create ? ERR_PTR(-ENOSPC) : NULL;
742         if (err < 0)
743                 return ERR_PTR(err);
744
745         bh = sb_getblk(inode->i_sb, map.m_pblk);
746         if (unlikely(!bh))
747                 return ERR_PTR(-ENOMEM);
748         if (map.m_flags & EXT4_MAP_NEW) {
749                 J_ASSERT(create != 0);
750                 J_ASSERT(handle != NULL);
751
752                 /*
753                  * Now that we do not always journal data, we should
754                  * keep in mind whether this should always journal the
755                  * new buffer as metadata.  For now, regular file
756                  * writes use ext4_get_block instead, so it's not a
757                  * problem.
758                  */
759                 lock_buffer(bh);
760                 BUFFER_TRACE(bh, "call get_create_access");
761                 err = ext4_journal_get_create_access(handle, bh);
762                 if (unlikely(err)) {
763                         unlock_buffer(bh);
764                         goto errout;
765                 }
766                 if (!buffer_uptodate(bh)) {
767                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
768                         set_buffer_uptodate(bh);
769                 }
770                 unlock_buffer(bh);
771                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
772                 err = ext4_handle_dirty_metadata(handle, inode, bh);
773                 if (unlikely(err))
774                         goto errout;
775         } else
776                 BUFFER_TRACE(bh, "not a new buffer");
777         return bh;
778 errout:
779         brelse(bh);
780         return ERR_PTR(err);
781 }
782
783 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
784                                ext4_lblk_t block, int map_flags)
785 {
786         struct buffer_head *bh;
787
788         bh = ext4_getblk(handle, inode, block, map_flags);
789         if (IS_ERR(bh))
790                 return bh;
791         if (!bh || buffer_uptodate(bh))
792                 return bh;
793         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
794         wait_on_buffer(bh);
795         if (buffer_uptodate(bh))
796                 return bh;
797         put_bh(bh);
798         return ERR_PTR(-EIO);
799 }
800
801 int ext4_walk_page_buffers(handle_t *handle,
802                            struct buffer_head *head,
803                            unsigned from,
804                            unsigned to,
805                            int *partial,
806                            int (*fn)(handle_t *handle,
807                                      struct buffer_head *bh))
808 {
809         struct buffer_head *bh;
810         unsigned block_start, block_end;
811         unsigned blocksize = head->b_size;
812         int err, ret = 0;
813         struct buffer_head *next;
814
815         for (bh = head, block_start = 0;
816              ret == 0 && (bh != head || !block_start);
817              block_start = block_end, bh = next) {
818                 next = bh->b_this_page;
819                 block_end = block_start + blocksize;
820                 if (block_end <= from || block_start >= to) {
821                         if (partial && !buffer_uptodate(bh))
822                                 *partial = 1;
823                         continue;
824                 }
825                 err = (*fn)(handle, bh);
826                 if (!ret)
827                         ret = err;
828         }
829         return ret;
830 }
831
832 /*
833  * To preserve ordering, it is essential that the hole instantiation and
834  * the data write be encapsulated in a single transaction.  We cannot
835  * close off a transaction and start a new one between the ext4_get_block()
836  * and the commit_write().  So doing the jbd2_journal_start at the start of
837  * prepare_write() is the right place.
838  *
839  * Also, this function can nest inside ext4_writepage().  In that case, we
840  * *know* that ext4_writepage() has generated enough buffer credits to do the
841  * whole page.  So we won't block on the journal in that case, which is good,
842  * because the caller may be PF_MEMALLOC.
843  *
844  * By accident, ext4 can be reentered when a transaction is open via
845  * quota file writes.  If we were to commit the transaction while thus
846  * reentered, there can be a deadlock - we would be holding a quota
847  * lock, and the commit would never complete if another thread had a
848  * transaction open and was blocking on the quota lock - a ranking
849  * violation.
850  *
851  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
852  * will _not_ run commit under these circumstances because handle->h_ref
853  * is elevated.  We'll still have enough credits for the tiny quotafile
854  * write.
855  */
856 int do_journal_get_write_access(handle_t *handle,
857                                 struct buffer_head *bh)
858 {
859         int dirty = buffer_dirty(bh);
860         int ret;
861
862         if (!buffer_mapped(bh) || buffer_freed(bh))
863                 return 0;
864         /*
865          * __block_write_begin() could have dirtied some buffers. Clean
866          * the dirty bit as jbd2_journal_get_write_access() could complain
867          * otherwise about fs integrity issues. Setting of the dirty bit
868          * by __block_write_begin() isn't a real problem here as we clear
869          * the bit before releasing a page lock and thus writeback cannot
870          * ever write the buffer.
871          */
872         if (dirty)
873                 clear_buffer_dirty(bh);
874         BUFFER_TRACE(bh, "get write access");
875         ret = ext4_journal_get_write_access(handle, bh);
876         if (!ret && dirty)
877                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
878         return ret;
879 }
880
881 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
882                    struct buffer_head *bh_result, int create);
883
884 #ifdef CONFIG_EXT4_FS_ENCRYPTION
885 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
886                                   get_block_t *get_block)
887 {
888         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
889         unsigned to = from + len;
890         struct inode *inode = page->mapping->host;
891         unsigned block_start, block_end;
892         sector_t block;
893         int err = 0;
894         unsigned blocksize = inode->i_sb->s_blocksize;
895         unsigned bbits;
896         struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
897         bool decrypt = false;
898
899         BUG_ON(!PageLocked(page));
900         BUG_ON(from > PAGE_CACHE_SIZE);
901         BUG_ON(to > PAGE_CACHE_SIZE);
902         BUG_ON(from > to);
903
904         if (!page_has_buffers(page))
905                 create_empty_buffers(page, blocksize, 0);
906         head = page_buffers(page);
907         bbits = ilog2(blocksize);
908         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
909
910         for (bh = head, block_start = 0; bh != head || !block_start;
911             block++, block_start = block_end, bh = bh->b_this_page) {
912                 block_end = block_start + blocksize;
913                 if (block_end <= from || block_start >= to) {
914                         if (PageUptodate(page)) {
915                                 if (!buffer_uptodate(bh))
916                                         set_buffer_uptodate(bh);
917                         }
918                         continue;
919                 }
920                 if (buffer_new(bh))
921                         clear_buffer_new(bh);
922                 if (!buffer_mapped(bh)) {
923                         WARN_ON(bh->b_size != blocksize);
924                         err = get_block(inode, block, bh, 1);
925                         if (err)
926                                 break;
927                         if (buffer_new(bh)) {
928                                 unmap_underlying_metadata(bh->b_bdev,
929                                                           bh->b_blocknr);
930                                 if (PageUptodate(page)) {
931                                         clear_buffer_new(bh);
932                                         set_buffer_uptodate(bh);
933                                         mark_buffer_dirty(bh);
934                                         continue;
935                                 }
936                                 if (block_end > to || block_start < from)
937                                         zero_user_segments(page, to, block_end,
938                                                            block_start, from);
939                                 continue;
940                         }
941                 }
942                 if (PageUptodate(page)) {
943                         if (!buffer_uptodate(bh))
944                                 set_buffer_uptodate(bh);
945                         continue;
946                 }
947                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
948                     !buffer_unwritten(bh) &&
949                     (block_start < from || block_end > to)) {
950                         ll_rw_block(READ, 1, &bh);
951                         *wait_bh++ = bh;
952                         decrypt = ext4_encrypted_inode(inode) &&
953                                 S_ISREG(inode->i_mode);
954                 }
955         }
956         /*
957          * If we issued read requests, let them complete.
958          */
959         while (wait_bh > wait) {
960                 wait_on_buffer(*--wait_bh);
961                 if (!buffer_uptodate(*wait_bh))
962                         err = -EIO;
963         }
964         if (unlikely(err))
965                 page_zero_new_buffers(page, from, to);
966         else if (decrypt)
967                 err = ext4_decrypt_one(inode, page);
968         return err;
969 }
970 #endif
971
972 static int ext4_write_begin(struct file *file, struct address_space *mapping,
973                             loff_t pos, unsigned len, unsigned flags,
974                             struct page **pagep, void **fsdata)
975 {
976         struct inode *inode = mapping->host;
977         int ret, needed_blocks;
978         handle_t *handle;
979         int retries = 0;
980         struct page *page;
981         pgoff_t index;
982         unsigned from, to;
983
984         trace_ext4_write_begin(inode, pos, len, flags);
985         /*
986          * Reserve one block more for addition to orphan list in case
987          * we allocate blocks but write fails for some reason
988          */
989         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
990         index = pos >> PAGE_CACHE_SHIFT;
991         from = pos & (PAGE_CACHE_SIZE - 1);
992         to = from + len;
993
994         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
995                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
996                                                     flags, pagep);
997                 if (ret < 0)
998                         return ret;
999                 if (ret == 1)
1000                         return 0;
1001         }
1002
1003         /*
1004          * grab_cache_page_write_begin() can take a long time if the
1005          * system is thrashing due to memory pressure, or if the page
1006          * is being written back.  So grab it first before we start
1007          * the transaction handle.  This also allows us to allocate
1008          * the page (if needed) without using GFP_NOFS.
1009          */
1010 retry_grab:
1011         page = grab_cache_page_write_begin(mapping, index, flags);
1012         if (!page)
1013                 return -ENOMEM;
1014         unlock_page(page);
1015
1016 retry_journal:
1017         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1018         if (IS_ERR(handle)) {
1019                 page_cache_release(page);
1020                 return PTR_ERR(handle);
1021         }
1022
1023         lock_page(page);
1024         if (page->mapping != mapping) {
1025                 /* The page got truncated from under us */
1026                 unlock_page(page);
1027                 page_cache_release(page);
1028                 ext4_journal_stop(handle);
1029                 goto retry_grab;
1030         }
1031         /* In case writeback began while the page was unlocked */
1032         wait_for_stable_page(page);
1033
1034 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1035         if (ext4_should_dioread_nolock(inode))
1036                 ret = ext4_block_write_begin(page, pos, len,
1037                                              ext4_get_block_write);
1038         else
1039                 ret = ext4_block_write_begin(page, pos, len,
1040                                              ext4_get_block);
1041 #else
1042         if (ext4_should_dioread_nolock(inode))
1043                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1044         else
1045                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1046 #endif
1047         if (!ret && ext4_should_journal_data(inode)) {
1048                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1049                                              from, to, NULL,
1050                                              do_journal_get_write_access);
1051         }
1052
1053         if (ret) {
1054                 unlock_page(page);
1055                 /*
1056                  * __block_write_begin may have instantiated a few blocks
1057                  * outside i_size.  Trim these off again. Don't need
1058                  * i_size_read because we hold i_mutex.
1059                  *
1060                  * Add inode to orphan list in case we crash before
1061                  * truncate finishes
1062                  */
1063                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1064                         ext4_orphan_add(handle, inode);
1065
1066                 ext4_journal_stop(handle);
1067                 if (pos + len > inode->i_size) {
1068                         ext4_truncate_failed_write(inode);
1069                         /*
1070                          * If truncate failed early the inode might
1071                          * still be on the orphan list; we need to
1072                          * make sure the inode is removed from the
1073                          * orphan list in that case.
1074                          */
1075                         if (inode->i_nlink)
1076                                 ext4_orphan_del(NULL, inode);
1077                 }
1078
1079                 if (ret == -ENOSPC &&
1080                     ext4_should_retry_alloc(inode->i_sb, &retries))
1081                         goto retry_journal;
1082                 page_cache_release(page);
1083                 return ret;
1084         }
1085         *pagep = page;
1086         return ret;
1087 }
1088
1089 /* For write_end() in data=journal mode */
1090 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1091 {
1092         int ret;
1093         if (!buffer_mapped(bh) || buffer_freed(bh))
1094                 return 0;
1095         set_buffer_uptodate(bh);
1096         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1097         clear_buffer_meta(bh);
1098         clear_buffer_prio(bh);
1099         return ret;
1100 }
1101
1102 /*
1103  * We need to pick up the new inode size which generic_commit_write gave us
1104  * `file' can be NULL - eg, when called from page_symlink().
1105  *
1106  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1107  * buffers are managed internally.
1108  */
1109 static int ext4_write_end(struct file *file,
1110                           struct address_space *mapping,
1111                           loff_t pos, unsigned len, unsigned copied,
1112                           struct page *page, void *fsdata)
1113 {
1114         handle_t *handle = ext4_journal_current_handle();
1115         struct inode *inode = mapping->host;
1116         loff_t old_size = inode->i_size;
1117         int ret = 0, ret2;
1118         int i_size_changed = 0;
1119
1120         trace_ext4_write_end(inode, pos, len, copied);
1121         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1122                 ret = ext4_jbd2_file_inode(handle, inode);
1123                 if (ret) {
1124                         unlock_page(page);
1125                         page_cache_release(page);
1126                         goto errout;
1127                 }
1128         }
1129
1130         if (ext4_has_inline_data(inode)) {
1131                 ret = ext4_write_inline_data_end(inode, pos, len,
1132                                                  copied, page);
1133                 if (ret < 0)
1134                         goto errout;
1135                 copied = ret;
1136         } else
1137                 copied = block_write_end(file, mapping, pos,
1138                                          len, copied, page, fsdata);
1139         /*
1140          * it's important to update i_size while still holding page lock:
1141          * page writeout could otherwise come in and zero beyond i_size.
1142          */
1143         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1144         unlock_page(page);
1145         page_cache_release(page);
1146
1147         if (old_size < pos)
1148                 pagecache_isize_extended(inode, old_size, pos);
1149         /*
1150          * Don't mark the inode dirty under page lock. First, it unnecessarily
1151          * makes the holding time of page lock longer. Second, it forces lock
1152          * ordering of page lock and transaction start for journaling
1153          * filesystems.
1154          */
1155         if (i_size_changed)
1156                 ext4_mark_inode_dirty(handle, inode);
1157
1158         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1159                 /* if we have allocated more blocks and copied
1160                  * less. We will have blocks allocated outside
1161                  * inode->i_size. So truncate them
1162                  */
1163                 ext4_orphan_add(handle, inode);
1164 errout:
1165         ret2 = ext4_journal_stop(handle);
1166         if (!ret)
1167                 ret = ret2;
1168
1169         if (pos + len > inode->i_size) {
1170                 ext4_truncate_failed_write(inode);
1171                 /*
1172                  * If truncate failed early the inode might still be
1173                  * on the orphan list; we need to make sure the inode
1174                  * is removed from the orphan list in that case.
1175                  */
1176                 if (inode->i_nlink)
1177                         ext4_orphan_del(NULL, inode);
1178         }
1179
1180         return ret ? ret : copied;
1181 }
1182
1183 static int ext4_journalled_write_end(struct file *file,
1184                                      struct address_space *mapping,
1185                                      loff_t pos, unsigned len, unsigned copied,
1186                                      struct page *page, void *fsdata)
1187 {
1188         handle_t *handle = ext4_journal_current_handle();
1189         struct inode *inode = mapping->host;
1190         loff_t old_size = inode->i_size;
1191         int ret = 0, ret2;
1192         int partial = 0;
1193         unsigned from, to;
1194         int size_changed = 0;
1195
1196         trace_ext4_journalled_write_end(inode, pos, len, copied);
1197         from = pos & (PAGE_CACHE_SIZE - 1);
1198         to = from + len;
1199
1200         BUG_ON(!ext4_handle_valid(handle));
1201
1202         if (ext4_has_inline_data(inode))
1203                 copied = ext4_write_inline_data_end(inode, pos, len,
1204                                                     copied, page);
1205         else {
1206                 if (copied < len) {
1207                         if (!PageUptodate(page))
1208                                 copied = 0;
1209                         page_zero_new_buffers(page, from+copied, to);
1210                 }
1211
1212                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1213                                              to, &partial, write_end_fn);
1214                 if (!partial)
1215                         SetPageUptodate(page);
1216         }
1217         size_changed = ext4_update_inode_size(inode, pos + copied);
1218         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1219         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1220         unlock_page(page);
1221         page_cache_release(page);
1222
1223         if (old_size < pos)
1224                 pagecache_isize_extended(inode, old_size, pos);
1225
1226         if (size_changed) {
1227                 ret2 = ext4_mark_inode_dirty(handle, inode);
1228                 if (!ret)
1229                         ret = ret2;
1230         }
1231
1232         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1233                 /* if we have allocated more blocks and copied
1234                  * less. We will have blocks allocated outside
1235                  * inode->i_size. So truncate them
1236                  */
1237                 ext4_orphan_add(handle, inode);
1238
1239         ret2 = ext4_journal_stop(handle);
1240         if (!ret)
1241                 ret = ret2;
1242         if (pos + len > inode->i_size) {
1243                 ext4_truncate_failed_write(inode);
1244                 /*
1245                  * If truncate failed early the inode might still be
1246                  * on the orphan list; we need to make sure the inode
1247                  * is removed from the orphan list in that case.
1248                  */
1249                 if (inode->i_nlink)
1250                         ext4_orphan_del(NULL, inode);
1251         }
1252
1253         return ret ? ret : copied;
1254 }
1255
1256 /*
1257  * Reserve space for a single cluster
1258  */
1259 static int ext4_da_reserve_space(struct inode *inode)
1260 {
1261         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1262         struct ext4_inode_info *ei = EXT4_I(inode);
1263         int ret;
1264
1265         /*
1266          * We will charge metadata quota at writeout time; this saves
1267          * us from metadata over-estimation, though we may go over by
1268          * a small amount in the end.  Here we just reserve for data.
1269          */
1270         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1271         if (ret)
1272                 return ret;
1273
1274         spin_lock(&ei->i_block_reservation_lock);
1275         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1276                 spin_unlock(&ei->i_block_reservation_lock);
1277                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1278                 return -ENOSPC;
1279         }
1280         ei->i_reserved_data_blocks++;
1281         trace_ext4_da_reserve_space(inode);
1282         spin_unlock(&ei->i_block_reservation_lock);
1283
1284         return 0;       /* success */
1285 }
1286
1287 static void ext4_da_release_space(struct inode *inode, int to_free)
1288 {
1289         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1290         struct ext4_inode_info *ei = EXT4_I(inode);
1291
1292         if (!to_free)
1293                 return;         /* Nothing to release, exit */
1294
1295         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1296
1297         trace_ext4_da_release_space(inode, to_free);
1298         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1299                 /*
1300                  * if there aren't enough reserved blocks, then the
1301                  * counter is messed up somewhere.  Since this
1302                  * function is called from invalidate page, it's
1303                  * harmless to return without any action.
1304                  */
1305                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1306                          "ino %lu, to_free %d with only %d reserved "
1307                          "data blocks", inode->i_ino, to_free,
1308                          ei->i_reserved_data_blocks);
1309                 WARN_ON(1);
1310                 to_free = ei->i_reserved_data_blocks;
1311         }
1312         ei->i_reserved_data_blocks -= to_free;
1313
1314         /* update fs dirty data blocks counter */
1315         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1316
1317         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1318
1319         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1320 }
1321
1322 static void ext4_da_page_release_reservation(struct page *page,
1323                                              unsigned int offset,
1324                                              unsigned int length)
1325 {
1326         int to_release = 0, contiguous_blks = 0;
1327         struct buffer_head *head, *bh;
1328         unsigned int curr_off = 0;
1329         struct inode *inode = page->mapping->host;
1330         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1331         unsigned int stop = offset + length;
1332         int num_clusters;
1333         ext4_fsblk_t lblk;
1334
1335         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1336
1337         head = page_buffers(page);
1338         bh = head;
1339         do {
1340                 unsigned int next_off = curr_off + bh->b_size;
1341
1342                 if (next_off > stop)
1343                         break;
1344
1345                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1346                         to_release++;
1347                         contiguous_blks++;
1348                         clear_buffer_delay(bh);
1349                 } else if (contiguous_blks) {
1350                         lblk = page->index <<
1351                                (PAGE_CACHE_SHIFT - inode->i_blkbits);
1352                         lblk += (curr_off >> inode->i_blkbits) -
1353                                 contiguous_blks;
1354                         ext4_es_remove_extent(inode, lblk, contiguous_blks);
1355                         contiguous_blks = 0;
1356                 }
1357                 curr_off = next_off;
1358         } while ((bh = bh->b_this_page) != head);
1359
1360         if (contiguous_blks) {
1361                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1362                 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1363                 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1364         }
1365
1366         /* If we have released all the blocks belonging to a cluster, then we
1367          * need to release the reserved space for that cluster. */
1368         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1369         while (num_clusters > 0) {
1370                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1371                         ((num_clusters - 1) << sbi->s_cluster_bits);
1372                 if (sbi->s_cluster_ratio == 1 ||
1373                     !ext4_find_delalloc_cluster(inode, lblk))
1374                         ext4_da_release_space(inode, 1);
1375
1376                 num_clusters--;
1377         }
1378 }
1379
1380 /*
1381  * Delayed allocation stuff
1382  */
1383
1384 struct mpage_da_data {
1385         struct inode *inode;
1386         struct writeback_control *wbc;
1387
1388         pgoff_t first_page;     /* The first page to write */
1389         pgoff_t next_page;      /* Current page to examine */
1390         pgoff_t last_page;      /* Last page to examine */
1391         /*
1392          * Extent to map - this can be after first_page because that can be
1393          * fully mapped. We somewhat abuse m_flags to store whether the extent
1394          * is delalloc or unwritten.
1395          */
1396         struct ext4_map_blocks map;
1397         struct ext4_io_submit io_submit;        /* IO submission data */
1398 };
1399
1400 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1401                                        bool invalidate)
1402 {
1403         int nr_pages, i;
1404         pgoff_t index, end;
1405         struct pagevec pvec;
1406         struct inode *inode = mpd->inode;
1407         struct address_space *mapping = inode->i_mapping;
1408
1409         /* This is necessary when next_page == 0. */
1410         if (mpd->first_page >= mpd->next_page)
1411                 return;
1412
1413         index = mpd->first_page;
1414         end   = mpd->next_page - 1;
1415         if (invalidate) {
1416                 ext4_lblk_t start, last;
1417                 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1418                 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1419                 ext4_es_remove_extent(inode, start, last - start + 1);
1420         }
1421
1422         pagevec_init(&pvec, 0);
1423         while (index <= end) {
1424                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1425                 if (nr_pages == 0)
1426                         break;
1427                 for (i = 0; i < nr_pages; i++) {
1428                         struct page *page = pvec.pages[i];
1429                         if (page->index > end)
1430                                 break;
1431                         BUG_ON(!PageLocked(page));
1432                         BUG_ON(PageWriteback(page));
1433                         if (invalidate) {
1434                                 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1435                                 ClearPageUptodate(page);
1436                         }
1437                         unlock_page(page);
1438                 }
1439                 index = pvec.pages[nr_pages - 1]->index + 1;
1440                 pagevec_release(&pvec);
1441         }
1442 }
1443
1444 static void ext4_print_free_blocks(struct inode *inode)
1445 {
1446         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1447         struct super_block *sb = inode->i_sb;
1448         struct ext4_inode_info *ei = EXT4_I(inode);
1449
1450         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1451                EXT4_C2B(EXT4_SB(inode->i_sb),
1452                         ext4_count_free_clusters(sb)));
1453         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1454         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1455                (long long) EXT4_C2B(EXT4_SB(sb),
1456                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1457         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1458                (long long) EXT4_C2B(EXT4_SB(sb),
1459                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1460         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1461         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1462                  ei->i_reserved_data_blocks);
1463         return;
1464 }
1465
1466 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1467 {
1468         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1469 }
1470
1471 /*
1472  * This function is grabs code from the very beginning of
1473  * ext4_map_blocks, but assumes that the caller is from delayed write
1474  * time. This function looks up the requested blocks and sets the
1475  * buffer delay bit under the protection of i_data_sem.
1476  */
1477 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1478                               struct ext4_map_blocks *map,
1479                               struct buffer_head *bh)
1480 {
1481         struct extent_status es;
1482         int retval;
1483         sector_t invalid_block = ~((sector_t) 0xffff);
1484 #ifdef ES_AGGRESSIVE_TEST
1485         struct ext4_map_blocks orig_map;
1486
1487         memcpy(&orig_map, map, sizeof(*map));
1488 #endif
1489
1490         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1491                 invalid_block = ~0;
1492
1493         map->m_flags = 0;
1494         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1495                   "logical block %lu\n", inode->i_ino, map->m_len,
1496                   (unsigned long) map->m_lblk);
1497
1498         /* Lookup extent status tree firstly */
1499         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1500                 if (ext4_es_is_hole(&es)) {
1501                         retval = 0;
1502                         down_read(&EXT4_I(inode)->i_data_sem);
1503                         goto add_delayed;
1504                 }
1505
1506                 /*
1507                  * Delayed extent could be allocated by fallocate.
1508                  * So we need to check it.
1509                  */
1510                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1511                         map_bh(bh, inode->i_sb, invalid_block);
1512                         set_buffer_new(bh);
1513                         set_buffer_delay(bh);
1514                         return 0;
1515                 }
1516
1517                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1518                 retval = es.es_len - (iblock - es.es_lblk);
1519                 if (retval > map->m_len)
1520                         retval = map->m_len;
1521                 map->m_len = retval;
1522                 if (ext4_es_is_written(&es))
1523                         map->m_flags |= EXT4_MAP_MAPPED;
1524                 else if (ext4_es_is_unwritten(&es))
1525                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1526                 else
1527                         BUG_ON(1);
1528
1529 #ifdef ES_AGGRESSIVE_TEST
1530                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1531 #endif
1532                 return retval;
1533         }
1534
1535         /*
1536          * Try to see if we can get the block without requesting a new
1537          * file system block.
1538          */
1539         down_read(&EXT4_I(inode)->i_data_sem);
1540         if (ext4_has_inline_data(inode))
1541                 retval = 0;
1542         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1543                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1544         else
1545                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1546
1547 add_delayed:
1548         if (retval == 0) {
1549                 int ret;
1550                 /*
1551                  * XXX: __block_prepare_write() unmaps passed block,
1552                  * is it OK?
1553                  */
1554                 /*
1555                  * If the block was allocated from previously allocated cluster,
1556                  * then we don't need to reserve it again. However we still need
1557                  * to reserve metadata for every block we're going to write.
1558                  */
1559                 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1560                     !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1561                         ret = ext4_da_reserve_space(inode);
1562                         if (ret) {
1563                                 /* not enough space to reserve */
1564                                 retval = ret;
1565                                 goto out_unlock;
1566                         }
1567                 }
1568
1569                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1570                                             ~0, EXTENT_STATUS_DELAYED);
1571                 if (ret) {
1572                         retval = ret;
1573                         goto out_unlock;
1574                 }
1575
1576                 map_bh(bh, inode->i_sb, invalid_block);
1577                 set_buffer_new(bh);
1578                 set_buffer_delay(bh);
1579         } else if (retval > 0) {
1580                 int ret;
1581                 unsigned int status;
1582
1583                 if (unlikely(retval != map->m_len)) {
1584                         ext4_warning(inode->i_sb,
1585                                      "ES len assertion failed for inode "
1586                                      "%lu: retval %d != map->m_len %d",
1587                                      inode->i_ino, retval, map->m_len);
1588                         WARN_ON(1);
1589                 }
1590
1591                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1592                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1593                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1594                                             map->m_pblk, status);
1595                 if (ret != 0)
1596                         retval = ret;
1597         }
1598
1599 out_unlock:
1600         up_read((&EXT4_I(inode)->i_data_sem));
1601
1602         return retval;
1603 }
1604
1605 /*
1606  * This is a special get_block_t callback which is used by
1607  * ext4_da_write_begin().  It will either return mapped block or
1608  * reserve space for a single block.
1609  *
1610  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1611  * We also have b_blocknr = -1 and b_bdev initialized properly
1612  *
1613  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1614  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1615  * initialized properly.
1616  */
1617 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1618                            struct buffer_head *bh, int create)
1619 {
1620         struct ext4_map_blocks map;
1621         int ret = 0;
1622
1623         BUG_ON(create == 0);
1624         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1625
1626         map.m_lblk = iblock;
1627         map.m_len = 1;
1628
1629         /*
1630          * first, we need to know whether the block is allocated already
1631          * preallocated blocks are unmapped but should treated
1632          * the same as allocated blocks.
1633          */
1634         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1635         if (ret <= 0)
1636                 return ret;
1637
1638         map_bh(bh, inode->i_sb, map.m_pblk);
1639         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1640
1641         if (buffer_unwritten(bh)) {
1642                 /* A delayed write to unwritten bh should be marked
1643                  * new and mapped.  Mapped ensures that we don't do
1644                  * get_block multiple times when we write to the same
1645                  * offset and new ensures that we do proper zero out
1646                  * for partial write.
1647                  */
1648                 set_buffer_new(bh);
1649                 set_buffer_mapped(bh);
1650         }
1651         return 0;
1652 }
1653
1654 static int bget_one(handle_t *handle, struct buffer_head *bh)
1655 {
1656         get_bh(bh);
1657         return 0;
1658 }
1659
1660 static int bput_one(handle_t *handle, struct buffer_head *bh)
1661 {
1662         put_bh(bh);
1663         return 0;
1664 }
1665
1666 static int __ext4_journalled_writepage(struct page *page,
1667                                        unsigned int len)
1668 {
1669         struct address_space *mapping = page->mapping;
1670         struct inode *inode = mapping->host;
1671         struct buffer_head *page_bufs = NULL;
1672         handle_t *handle = NULL;
1673         int ret = 0, err = 0;
1674         int inline_data = ext4_has_inline_data(inode);
1675         struct buffer_head *inode_bh = NULL;
1676
1677         ClearPageChecked(page);
1678
1679         if (inline_data) {
1680                 BUG_ON(page->index != 0);
1681                 BUG_ON(len > ext4_get_max_inline_size(inode));
1682                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1683                 if (inode_bh == NULL)
1684                         goto out;
1685         } else {
1686                 page_bufs = page_buffers(page);
1687                 if (!page_bufs) {
1688                         BUG();
1689                         goto out;
1690                 }
1691                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1692                                        NULL, bget_one);
1693         }
1694         /*
1695          * We need to release the page lock before we start the
1696          * journal, so grab a reference so the page won't disappear
1697          * out from under us.
1698          */
1699         get_page(page);
1700         unlock_page(page);
1701
1702         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1703                                     ext4_writepage_trans_blocks(inode));
1704         if (IS_ERR(handle)) {
1705                 ret = PTR_ERR(handle);
1706                 put_page(page);
1707                 goto out_no_pagelock;
1708         }
1709         BUG_ON(!ext4_handle_valid(handle));
1710
1711         lock_page(page);
1712         put_page(page);
1713         if (page->mapping != mapping) {
1714                 /* The page got truncated from under us */
1715                 ext4_journal_stop(handle);
1716                 ret = 0;
1717                 goto out;
1718         }
1719
1720         if (inline_data) {
1721                 BUFFER_TRACE(inode_bh, "get write access");
1722                 ret = ext4_journal_get_write_access(handle, inode_bh);
1723
1724                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1725
1726         } else {
1727                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1728                                              do_journal_get_write_access);
1729
1730                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1731                                              write_end_fn);
1732         }
1733         if (ret == 0)
1734                 ret = err;
1735         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1736         err = ext4_journal_stop(handle);
1737         if (!ret)
1738                 ret = err;
1739
1740         if (!ext4_has_inline_data(inode))
1741                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1742                                        NULL, bput_one);
1743         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1744 out:
1745         unlock_page(page);
1746 out_no_pagelock:
1747         brelse(inode_bh);
1748         return ret;
1749 }
1750
1751 /*
1752  * Note that we don't need to start a transaction unless we're journaling data
1753  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1754  * need to file the inode to the transaction's list in ordered mode because if
1755  * we are writing back data added by write(), the inode is already there and if
1756  * we are writing back data modified via mmap(), no one guarantees in which
1757  * transaction the data will hit the disk. In case we are journaling data, we
1758  * cannot start transaction directly because transaction start ranks above page
1759  * lock so we have to do some magic.
1760  *
1761  * This function can get called via...
1762  *   - ext4_writepages after taking page lock (have journal handle)
1763  *   - journal_submit_inode_data_buffers (no journal handle)
1764  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1765  *   - grab_page_cache when doing write_begin (have journal handle)
1766  *
1767  * We don't do any block allocation in this function. If we have page with
1768  * multiple blocks we need to write those buffer_heads that are mapped. This
1769  * is important for mmaped based write. So if we do with blocksize 1K
1770  * truncate(f, 1024);
1771  * a = mmap(f, 0, 4096);
1772  * a[0] = 'a';
1773  * truncate(f, 4096);
1774  * we have in the page first buffer_head mapped via page_mkwrite call back
1775  * but other buffer_heads would be unmapped but dirty (dirty done via the
1776  * do_wp_page). So writepage should write the first block. If we modify
1777  * the mmap area beyond 1024 we will again get a page_fault and the
1778  * page_mkwrite callback will do the block allocation and mark the
1779  * buffer_heads mapped.
1780  *
1781  * We redirty the page if we have any buffer_heads that is either delay or
1782  * unwritten in the page.
1783  *
1784  * We can get recursively called as show below.
1785  *
1786  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1787  *              ext4_writepage()
1788  *
1789  * But since we don't do any block allocation we should not deadlock.
1790  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1791  */
1792 static int ext4_writepage(struct page *page,
1793                           struct writeback_control *wbc)
1794 {
1795         int ret = 0;
1796         loff_t size;
1797         unsigned int len;
1798         struct buffer_head *page_bufs = NULL;
1799         struct inode *inode = page->mapping->host;
1800         struct ext4_io_submit io_submit;
1801         bool keep_towrite = false;
1802
1803         trace_ext4_writepage(page);
1804         size = i_size_read(inode);
1805         if (page->index == size >> PAGE_CACHE_SHIFT)
1806                 len = size & ~PAGE_CACHE_MASK;
1807         else
1808                 len = PAGE_CACHE_SIZE;
1809
1810         page_bufs = page_buffers(page);
1811         /*
1812          * We cannot do block allocation or other extent handling in this
1813          * function. If there are buffers needing that, we have to redirty
1814          * the page. But we may reach here when we do a journal commit via
1815          * journal_submit_inode_data_buffers() and in that case we must write
1816          * allocated buffers to achieve data=ordered mode guarantees.
1817          */
1818         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1819                                    ext4_bh_delay_or_unwritten)) {
1820                 redirty_page_for_writepage(wbc, page);
1821                 if (current->flags & PF_MEMALLOC) {
1822                         /*
1823                          * For memory cleaning there's no point in writing only
1824                          * some buffers. So just bail out. Warn if we came here
1825                          * from direct reclaim.
1826                          */
1827                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1828                                                         == PF_MEMALLOC);
1829                         unlock_page(page);
1830                         return 0;
1831                 }
1832                 keep_towrite = true;
1833         }
1834
1835         if (PageChecked(page) && ext4_should_journal_data(inode))
1836                 /*
1837                  * It's mmapped pagecache.  Add buffers and journal it.  There
1838                  * doesn't seem much point in redirtying the page here.
1839                  */
1840                 return __ext4_journalled_writepage(page, len);
1841
1842         ext4_io_submit_init(&io_submit, wbc);
1843         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1844         if (!io_submit.io_end) {
1845                 redirty_page_for_writepage(wbc, page);
1846                 unlock_page(page);
1847                 return -ENOMEM;
1848         }
1849         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1850         ext4_io_submit(&io_submit);
1851         /* Drop io_end reference we got from init */
1852         ext4_put_io_end_defer(io_submit.io_end);
1853         return ret;
1854 }
1855
1856 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1857 {
1858         int len;
1859         loff_t size = i_size_read(mpd->inode);
1860         int err;
1861
1862         BUG_ON(page->index != mpd->first_page);
1863         if (page->index == size >> PAGE_CACHE_SHIFT)
1864                 len = size & ~PAGE_CACHE_MASK;
1865         else
1866                 len = PAGE_CACHE_SIZE;
1867         clear_page_dirty_for_io(page);
1868         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1869         if (!err)
1870                 mpd->wbc->nr_to_write--;
1871         mpd->first_page++;
1872
1873         return err;
1874 }
1875
1876 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1877
1878 /*
1879  * mballoc gives us at most this number of blocks...
1880  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1881  * The rest of mballoc seems to handle chunks up to full group size.
1882  */
1883 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1884
1885 /*
1886  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1887  *
1888  * @mpd - extent of blocks
1889  * @lblk - logical number of the block in the file
1890  * @bh - buffer head we want to add to the extent
1891  *
1892  * The function is used to collect contig. blocks in the same state. If the
1893  * buffer doesn't require mapping for writeback and we haven't started the
1894  * extent of buffers to map yet, the function returns 'true' immediately - the
1895  * caller can write the buffer right away. Otherwise the function returns true
1896  * if the block has been added to the extent, false if the block couldn't be
1897  * added.
1898  */
1899 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1900                                    struct buffer_head *bh)
1901 {
1902         struct ext4_map_blocks *map = &mpd->map;
1903
1904         /* Buffer that doesn't need mapping for writeback? */
1905         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1906             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1907                 /* So far no extent to map => we write the buffer right away */
1908                 if (map->m_len == 0)
1909                         return true;
1910                 return false;
1911         }
1912
1913         /* First block in the extent? */
1914         if (map->m_len == 0) {
1915                 map->m_lblk = lblk;
1916                 map->m_len = 1;
1917                 map->m_flags = bh->b_state & BH_FLAGS;
1918                 return true;
1919         }
1920
1921         /* Don't go larger than mballoc is willing to allocate */
1922         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1923                 return false;
1924
1925         /* Can we merge the block to our big extent? */
1926         if (lblk == map->m_lblk + map->m_len &&
1927             (bh->b_state & BH_FLAGS) == map->m_flags) {
1928                 map->m_len++;
1929                 return true;
1930         }
1931         return false;
1932 }
1933
1934 /*
1935  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1936  *
1937  * @mpd - extent of blocks for mapping
1938  * @head - the first buffer in the page
1939  * @bh - buffer we should start processing from
1940  * @lblk - logical number of the block in the file corresponding to @bh
1941  *
1942  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1943  * the page for IO if all buffers in this page were mapped and there's no
1944  * accumulated extent of buffers to map or add buffers in the page to the
1945  * extent of buffers to map. The function returns 1 if the caller can continue
1946  * by processing the next page, 0 if it should stop adding buffers to the
1947  * extent to map because we cannot extend it anymore. It can also return value
1948  * < 0 in case of error during IO submission.
1949  */
1950 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1951                                    struct buffer_head *head,
1952                                    struct buffer_head *bh,
1953                                    ext4_lblk_t lblk)
1954 {
1955         struct inode *inode = mpd->inode;
1956         int err;
1957         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1958                                                         >> inode->i_blkbits;
1959
1960         do {
1961                 BUG_ON(buffer_locked(bh));
1962
1963                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1964                         /* Found extent to map? */
1965                         if (mpd->map.m_len)
1966                                 return 0;
1967                         /* Everything mapped so far and we hit EOF */
1968                         break;
1969                 }
1970         } while (lblk++, (bh = bh->b_this_page) != head);
1971         /* So far everything mapped? Submit the page for IO. */
1972         if (mpd->map.m_len == 0) {
1973                 err = mpage_submit_page(mpd, head->b_page);
1974                 if (err < 0)
1975                         return err;
1976         }
1977         return lblk < blocks;
1978 }
1979
1980 /*
1981  * mpage_map_buffers - update buffers corresponding to changed extent and
1982  *                     submit fully mapped pages for IO
1983  *
1984  * @mpd - description of extent to map, on return next extent to map
1985  *
1986  * Scan buffers corresponding to changed extent (we expect corresponding pages
1987  * to be already locked) and update buffer state according to new extent state.
1988  * We map delalloc buffers to their physical location, clear unwritten bits,
1989  * and mark buffers as uninit when we perform writes to unwritten extents
1990  * and do extent conversion after IO is finished. If the last page is not fully
1991  * mapped, we update @map to the next extent in the last page that needs
1992  * mapping. Otherwise we submit the page for IO.
1993  */
1994 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
1995 {
1996         struct pagevec pvec;
1997         int nr_pages, i;
1998         struct inode *inode = mpd->inode;
1999         struct buffer_head *head, *bh;
2000         int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2001         pgoff_t start, end;
2002         ext4_lblk_t lblk;
2003         sector_t pblock;
2004         int err;
2005
2006         start = mpd->map.m_lblk >> bpp_bits;
2007         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2008         lblk = start << bpp_bits;
2009         pblock = mpd->map.m_pblk;
2010
2011         pagevec_init(&pvec, 0);
2012         while (start <= end) {
2013                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2014                                           PAGEVEC_SIZE);
2015                 if (nr_pages == 0)
2016                         break;
2017                 for (i = 0; i < nr_pages; i++) {
2018                         struct page *page = pvec.pages[i];
2019
2020                         if (page->index > end)
2021                                 break;
2022                         /* Up to 'end' pages must be contiguous */
2023                         BUG_ON(page->index != start);
2024                         bh = head = page_buffers(page);
2025                         do {
2026                                 if (lblk < mpd->map.m_lblk)
2027                                         continue;
2028                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2029                                         /*
2030                                          * Buffer after end of mapped extent.
2031                                          * Find next buffer in the page to map.
2032                                          */
2033                                         mpd->map.m_len = 0;
2034                                         mpd->map.m_flags = 0;
2035                                         /*
2036                                          * FIXME: If dioread_nolock supports
2037                                          * blocksize < pagesize, we need to make
2038                                          * sure we add size mapped so far to
2039                                          * io_end->size as the following call
2040                                          * can submit the page for IO.
2041                                          */
2042                                         err = mpage_process_page_bufs(mpd, head,
2043                                                                       bh, lblk);
2044                                         pagevec_release(&pvec);
2045                                         if (err > 0)
2046                                                 err = 0;
2047                                         return err;
2048                                 }
2049                                 if (buffer_delay(bh)) {
2050                                         clear_buffer_delay(bh);
2051                                         bh->b_blocknr = pblock++;
2052                                 }
2053                                 clear_buffer_unwritten(bh);
2054                         } while (lblk++, (bh = bh->b_this_page) != head);
2055
2056                         /*
2057                          * FIXME: This is going to break if dioread_nolock
2058                          * supports blocksize < pagesize as we will try to
2059                          * convert potentially unmapped parts of inode.
2060                          */
2061                         mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2062                         /* Page fully mapped - let IO run! */
2063                         err = mpage_submit_page(mpd, page);
2064                         if (err < 0) {
2065                                 pagevec_release(&pvec);
2066                                 return err;
2067                         }
2068                         start++;
2069                 }
2070                 pagevec_release(&pvec);
2071         }
2072         /* Extent fully mapped and matches with page boundary. We are done. */
2073         mpd->map.m_len = 0;
2074         mpd->map.m_flags = 0;
2075         return 0;
2076 }
2077
2078 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2079 {
2080         struct inode *inode = mpd->inode;
2081         struct ext4_map_blocks *map = &mpd->map;
2082         int get_blocks_flags;
2083         int err, dioread_nolock;
2084
2085         trace_ext4_da_write_pages_extent(inode, map);
2086         /*
2087          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2088          * to convert an unwritten extent to be initialized (in the case
2089          * where we have written into one or more preallocated blocks).  It is
2090          * possible that we're going to need more metadata blocks than
2091          * previously reserved. However we must not fail because we're in
2092          * writeback and there is nothing we can do about it so it might result
2093          * in data loss.  So use reserved blocks to allocate metadata if
2094          * possible.
2095          *
2096          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2097          * the blocks in question are delalloc blocks.  This indicates
2098          * that the blocks and quotas has already been checked when
2099          * the data was copied into the page cache.
2100          */
2101         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2102                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
2103         dioread_nolock = ext4_should_dioread_nolock(inode);
2104         if (dioread_nolock)
2105                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2106         if (map->m_flags & (1 << BH_Delay))
2107                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2108
2109         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2110         if (err < 0)
2111                 return err;
2112         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2113                 if (!mpd->io_submit.io_end->handle &&
2114                     ext4_handle_valid(handle)) {
2115                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2116                         handle->h_rsv_handle = NULL;
2117                 }
2118                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2119         }
2120
2121         BUG_ON(map->m_len == 0);
2122         if (map->m_flags & EXT4_MAP_NEW) {
2123                 struct block_device *bdev = inode->i_sb->s_bdev;
2124                 int i;
2125
2126                 for (i = 0; i < map->m_len; i++)
2127                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2128         }
2129         return 0;
2130 }
2131
2132 /*
2133  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2134  *                               mpd->len and submit pages underlying it for IO
2135  *
2136  * @handle - handle for journal operations
2137  * @mpd - extent to map
2138  * @give_up_on_write - we set this to true iff there is a fatal error and there
2139  *                     is no hope of writing the data. The caller should discard
2140  *                     dirty pages to avoid infinite loops.
2141  *
2142  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2143  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2144  * them to initialized or split the described range from larger unwritten
2145  * extent. Note that we need not map all the described range since allocation
2146  * can return less blocks or the range is covered by more unwritten extents. We
2147  * cannot map more because we are limited by reserved transaction credits. On
2148  * the other hand we always make sure that the last touched page is fully
2149  * mapped so that it can be written out (and thus forward progress is
2150  * guaranteed). After mapping we submit all mapped pages for IO.
2151  */
2152 static int mpage_map_and_submit_extent(handle_t *handle,
2153                                        struct mpage_da_data *mpd,
2154                                        bool *give_up_on_write)
2155 {
2156         struct inode *inode = mpd->inode;
2157         struct ext4_map_blocks *map = &mpd->map;
2158         int err;
2159         loff_t disksize;
2160         int progress = 0;
2161
2162         mpd->io_submit.io_end->offset =
2163                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2164         do {
2165                 err = mpage_map_one_extent(handle, mpd);
2166                 if (err < 0) {
2167                         struct super_block *sb = inode->i_sb;
2168
2169                         if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2170                                 goto invalidate_dirty_pages;
2171                         /*
2172                          * Let the uper layers retry transient errors.
2173                          * In the case of ENOSPC, if ext4_count_free_blocks()
2174                          * is non-zero, a commit should free up blocks.
2175                          */
2176                         if ((err == -ENOMEM) ||
2177                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2178                                 if (progress)
2179                                         goto update_disksize;
2180                                 return err;
2181                         }
2182                         ext4_msg(sb, KERN_CRIT,
2183                                  "Delayed block allocation failed for "
2184                                  "inode %lu at logical offset %llu with"
2185                                  " max blocks %u with error %d",
2186                                  inode->i_ino,
2187                                  (unsigned long long)map->m_lblk,
2188                                  (unsigned)map->m_len, -err);
2189                         ext4_msg(sb, KERN_CRIT,
2190                                  "This should not happen!! Data will "
2191                                  "be lost\n");
2192                         if (err == -ENOSPC)
2193                                 ext4_print_free_blocks(inode);
2194                 invalidate_dirty_pages:
2195                         *give_up_on_write = true;
2196                         return err;
2197                 }
2198                 progress = 1;
2199                 /*
2200                  * Update buffer state, submit mapped pages, and get us new
2201                  * extent to map
2202                  */
2203                 err = mpage_map_and_submit_buffers(mpd);
2204                 if (err < 0)
2205                         goto update_disksize;
2206         } while (map->m_len);
2207
2208 update_disksize:
2209         /*
2210          * Update on-disk size after IO is submitted.  Races with
2211          * truncate are avoided by checking i_size under i_data_sem.
2212          */
2213         disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2214         if (disksize > EXT4_I(inode)->i_disksize) {
2215                 int err2;
2216                 loff_t i_size;
2217
2218                 down_write(&EXT4_I(inode)->i_data_sem);
2219                 i_size = i_size_read(inode);
2220                 if (disksize > i_size)
2221                         disksize = i_size;
2222                 if (disksize > EXT4_I(inode)->i_disksize)
2223                         EXT4_I(inode)->i_disksize = disksize;
2224                 err2 = ext4_mark_inode_dirty(handle, inode);
2225                 up_write(&EXT4_I(inode)->i_data_sem);
2226                 if (err2)
2227                         ext4_error(inode->i_sb,
2228                                    "Failed to mark inode %lu dirty",
2229                                    inode->i_ino);
2230                 if (!err)
2231                         err = err2;
2232         }
2233         return err;
2234 }
2235
2236 /*
2237  * Calculate the total number of credits to reserve for one writepages
2238  * iteration. This is called from ext4_writepages(). We map an extent of
2239  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2240  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2241  * bpp - 1 blocks in bpp different extents.
2242  */
2243 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2244 {
2245         int bpp = ext4_journal_blocks_per_page(inode);
2246
2247         return ext4_meta_trans_blocks(inode,
2248                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2249 }
2250
2251 /*
2252  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2253  *                               and underlying extent to map
2254  *
2255  * @mpd - where to look for pages
2256  *
2257  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2258  * IO immediately. When we find a page which isn't mapped we start accumulating
2259  * extent of buffers underlying these pages that needs mapping (formed by
2260  * either delayed or unwritten buffers). We also lock the pages containing
2261  * these buffers. The extent found is returned in @mpd structure (starting at
2262  * mpd->lblk with length mpd->len blocks).
2263  *
2264  * Note that this function can attach bios to one io_end structure which are
2265  * neither logically nor physically contiguous. Although it may seem as an
2266  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2267  * case as we need to track IO to all buffers underlying a page in one io_end.
2268  */
2269 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2270 {
2271         struct address_space *mapping = mpd->inode->i_mapping;
2272         struct pagevec pvec;
2273         unsigned int nr_pages;
2274         long left = mpd->wbc->nr_to_write;
2275         pgoff_t index = mpd->first_page;
2276         pgoff_t end = mpd->last_page;
2277         int tag;
2278         int i, err = 0;
2279         int blkbits = mpd->inode->i_blkbits;
2280         ext4_lblk_t lblk;
2281         struct buffer_head *head;
2282
2283         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2284                 tag = PAGECACHE_TAG_TOWRITE;
2285         else
2286                 tag = PAGECACHE_TAG_DIRTY;
2287
2288         pagevec_init(&pvec, 0);
2289         mpd->map.m_len = 0;
2290         mpd->next_page = index;
2291         while (index <= end) {
2292                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2293                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2294                 if (nr_pages == 0)
2295                         goto out;
2296
2297                 for (i = 0; i < nr_pages; i++) {
2298                         struct page *page = pvec.pages[i];
2299
2300                         /*
2301                          * At this point, the page may be truncated or
2302                          * invalidated (changing page->mapping to NULL), or
2303                          * even swizzled back from swapper_space to tmpfs file
2304                          * mapping. However, page->index will not change
2305                          * because we have a reference on the page.
2306                          */
2307                         if (page->index > end)
2308                                 goto out;
2309
2310                         /*
2311                          * Accumulated enough dirty pages? This doesn't apply
2312                          * to WB_SYNC_ALL mode. For integrity sync we have to
2313                          * keep going because someone may be concurrently
2314                          * dirtying pages, and we might have synced a lot of
2315                          * newly appeared dirty pages, but have not synced all
2316                          * of the old dirty pages.
2317                          */
2318                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2319                                 goto out;
2320
2321                         /* If we can't merge this page, we are done. */
2322                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2323                                 goto out;
2324
2325                         lock_page(page);
2326                         /*
2327                          * If the page is no longer dirty, or its mapping no
2328                          * longer corresponds to inode we are writing (which
2329                          * means it has been truncated or invalidated), or the
2330                          * page is already under writeback and we are not doing
2331                          * a data integrity writeback, skip the page
2332                          */
2333                         if (!PageDirty(page) ||
2334                             (PageWriteback(page) &&
2335                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2336                             unlikely(page->mapping != mapping)) {
2337                                 unlock_page(page);
2338                                 continue;
2339                         }
2340
2341                         wait_on_page_writeback(page);
2342                         BUG_ON(PageWriteback(page));
2343
2344                         if (mpd->map.m_len == 0)
2345                                 mpd->first_page = page->index;
2346                         mpd->next_page = page->index + 1;
2347                         /* Add all dirty buffers to mpd */
2348                         lblk = ((ext4_lblk_t)page->index) <<
2349                                 (PAGE_CACHE_SHIFT - blkbits);
2350                         head = page_buffers(page);
2351                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2352                         if (err <= 0)
2353                                 goto out;
2354                         err = 0;
2355                         left--;
2356                 }
2357                 pagevec_release(&pvec);
2358                 cond_resched();
2359         }
2360         return 0;
2361 out:
2362         pagevec_release(&pvec);
2363         return err;
2364 }
2365
2366 static int __writepage(struct page *page, struct writeback_control *wbc,
2367                        void *data)
2368 {
2369         struct address_space *mapping = data;
2370         int ret = ext4_writepage(page, wbc);
2371         mapping_set_error(mapping, ret);
2372         return ret;
2373 }
2374
2375 static int ext4_writepages(struct address_space *mapping,
2376                            struct writeback_control *wbc)
2377 {
2378         pgoff_t writeback_index = 0;
2379         long nr_to_write = wbc->nr_to_write;
2380         int range_whole = 0;
2381         int cycled = 1;
2382         handle_t *handle = NULL;
2383         struct mpage_da_data mpd;
2384         struct inode *inode = mapping->host;
2385         int needed_blocks, rsv_blocks = 0, ret = 0;
2386         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2387         bool done;
2388         struct blk_plug plug;
2389         bool give_up_on_write = false;
2390
2391         trace_ext4_writepages(inode, wbc);
2392
2393         /*
2394          * No pages to write? This is mainly a kludge to avoid starting
2395          * a transaction for special inodes like journal inode on last iput()
2396          * because that could violate lock ordering on umount
2397          */
2398         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2399                 goto out_writepages;
2400
2401         if (ext4_should_journal_data(inode)) {
2402                 struct blk_plug plug;
2403
2404                 blk_start_plug(&plug);
2405                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2406                 blk_finish_plug(&plug);
2407                 goto out_writepages;
2408         }
2409
2410         /*
2411          * If the filesystem has aborted, it is read-only, so return
2412          * right away instead of dumping stack traces later on that
2413          * will obscure the real source of the problem.  We test
2414          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2415          * the latter could be true if the filesystem is mounted
2416          * read-only, and in that case, ext4_writepages should
2417          * *never* be called, so if that ever happens, we would want
2418          * the stack trace.
2419          */
2420         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2421                 ret = -EROFS;
2422                 goto out_writepages;
2423         }
2424
2425         if (ext4_should_dioread_nolock(inode)) {
2426                 /*
2427                  * We may need to convert up to one extent per block in
2428                  * the page and we may dirty the inode.
2429                  */
2430                 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2431         }
2432
2433         /*
2434          * If we have inline data and arrive here, it means that
2435          * we will soon create the block for the 1st page, so
2436          * we'd better clear the inline data here.
2437          */
2438         if (ext4_has_inline_data(inode)) {
2439                 /* Just inode will be modified... */
2440                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2441                 if (IS_ERR(handle)) {
2442                         ret = PTR_ERR(handle);
2443                         goto out_writepages;
2444                 }
2445                 BUG_ON(ext4_test_inode_state(inode,
2446                                 EXT4_STATE_MAY_INLINE_DATA));
2447                 ext4_destroy_inline_data(handle, inode);
2448                 ext4_journal_stop(handle);
2449         }
2450
2451         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2452                 range_whole = 1;
2453
2454         if (wbc->range_cyclic) {
2455                 writeback_index = mapping->writeback_index;
2456                 if (writeback_index)
2457                         cycled = 0;
2458                 mpd.first_page = writeback_index;
2459                 mpd.last_page = -1;
2460         } else {
2461                 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2462                 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2463         }
2464
2465         mpd.inode = inode;
2466         mpd.wbc = wbc;
2467         ext4_io_submit_init(&mpd.io_submit, wbc);
2468 retry:
2469         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2470                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2471         done = false;
2472         blk_start_plug(&plug);
2473         while (!done && mpd.first_page <= mpd.last_page) {
2474                 /* For each extent of pages we use new io_end */
2475                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2476                 if (!mpd.io_submit.io_end) {
2477                         ret = -ENOMEM;
2478                         break;
2479                 }
2480
2481                 /*
2482                  * We have two constraints: We find one extent to map and we
2483                  * must always write out whole page (makes a difference when
2484                  * blocksize < pagesize) so that we don't block on IO when we
2485                  * try to write out the rest of the page. Journalled mode is
2486                  * not supported by delalloc.
2487                  */
2488                 BUG_ON(ext4_should_journal_data(inode));
2489                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2490
2491                 /* start a new transaction */
2492                 handle = ext4_journal_start_with_reserve(inode,
2493                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2494                 if (IS_ERR(handle)) {
2495                         ret = PTR_ERR(handle);
2496                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2497                                "%ld pages, ino %lu; err %d", __func__,
2498                                 wbc->nr_to_write, inode->i_ino, ret);
2499                         /* Release allocated io_end */
2500                         ext4_put_io_end(mpd.io_submit.io_end);
2501                         break;
2502                 }
2503
2504                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2505                 ret = mpage_prepare_extent_to_map(&mpd);
2506                 if (!ret) {
2507                         if (mpd.map.m_len)
2508                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2509                                         &give_up_on_write);
2510                         else {
2511                                 /*
2512                                  * We scanned the whole range (or exhausted
2513                                  * nr_to_write), submitted what was mapped and
2514                                  * didn't find anything needing mapping. We are
2515                                  * done.
2516                                  */
2517                                 done = true;
2518                         }
2519                 }
2520                 ext4_journal_stop(handle);
2521                 /* Submit prepared bio */
2522                 ext4_io_submit(&mpd.io_submit);
2523                 /* Unlock pages we didn't use */
2524                 mpage_release_unused_pages(&mpd, give_up_on_write);
2525                 /* Drop our io_end reference we got from init */
2526                 ext4_put_io_end(mpd.io_submit.io_end);
2527
2528                 if (ret == -ENOSPC && sbi->s_journal) {
2529                         /*
2530                          * Commit the transaction which would
2531                          * free blocks released in the transaction
2532                          * and try again
2533                          */
2534                         jbd2_journal_force_commit_nested(sbi->s_journal);
2535                         ret = 0;
2536                         continue;
2537                 }
2538                 /* Fatal error - ENOMEM, EIO... */
2539                 if (ret)
2540                         break;
2541         }
2542         blk_finish_plug(&plug);
2543         if (!ret && !cycled && wbc->nr_to_write > 0) {
2544                 cycled = 1;
2545                 mpd.last_page = writeback_index - 1;
2546                 mpd.first_page = 0;
2547                 goto retry;
2548         }
2549
2550         /* Update index */
2551         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2552                 /*
2553                  * Set the writeback_index so that range_cyclic
2554                  * mode will write it back later
2555                  */
2556                 mapping->writeback_index = mpd.first_page;
2557
2558 out_writepages:
2559         trace_ext4_writepages_result(inode, wbc, ret,
2560                                      nr_to_write - wbc->nr_to_write);
2561         return ret;
2562 }
2563
2564 static int ext4_nonda_switch(struct super_block *sb)
2565 {
2566         s64 free_clusters, dirty_clusters;
2567         struct ext4_sb_info *sbi = EXT4_SB(sb);
2568
2569         /*
2570          * switch to non delalloc mode if we are running low
2571          * on free block. The free block accounting via percpu
2572          * counters can get slightly wrong with percpu_counter_batch getting
2573          * accumulated on each CPU without updating global counters
2574          * Delalloc need an accurate free block accounting. So switch
2575          * to non delalloc when we are near to error range.
2576          */
2577         free_clusters =
2578                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2579         dirty_clusters =
2580                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2581         /*
2582          * Start pushing delalloc when 1/2 of free blocks are dirty.
2583          */
2584         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2585                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2586
2587         if (2 * free_clusters < 3 * dirty_clusters ||
2588             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2589                 /*
2590                  * free block count is less than 150% of dirty blocks
2591                  * or free blocks is less than watermark
2592                  */
2593                 return 1;
2594         }
2595         return 0;
2596 }
2597
2598 /* We always reserve for an inode update; the superblock could be there too */
2599 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2600 {
2601         if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2602                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2603                 return 1;
2604
2605         if (pos + len <= 0x7fffffffULL)
2606                 return 1;
2607
2608         /* We might need to update the superblock to set LARGE_FILE */
2609         return 2;
2610 }
2611
2612 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2613                                loff_t pos, unsigned len, unsigned flags,
2614                                struct page **pagep, void **fsdata)
2615 {
2616         int ret, retries = 0;
2617         struct page *page;
2618         pgoff_t index;
2619         struct inode *inode = mapping->host;
2620         handle_t *handle;
2621
2622         index = pos >> PAGE_CACHE_SHIFT;
2623
2624         if (ext4_nonda_switch(inode->i_sb)) {
2625                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2626                 return ext4_write_begin(file, mapping, pos,
2627                                         len, flags, pagep, fsdata);
2628         }
2629         *fsdata = (void *)0;
2630         trace_ext4_da_write_begin(inode, pos, len, flags);
2631
2632         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2633                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2634                                                       pos, len, flags,
2635                                                       pagep, fsdata);
2636                 if (ret < 0)
2637                         return ret;
2638                 if (ret == 1)
2639                         return 0;
2640         }
2641
2642         /*
2643          * grab_cache_page_write_begin() can take a long time if the
2644          * system is thrashing due to memory pressure, or if the page
2645          * is being written back.  So grab it first before we start
2646          * the transaction handle.  This also allows us to allocate
2647          * the page (if needed) without using GFP_NOFS.
2648          */
2649 retry_grab:
2650         page = grab_cache_page_write_begin(mapping, index, flags);
2651         if (!page)
2652                 return -ENOMEM;
2653         unlock_page(page);
2654
2655         /*
2656          * With delayed allocation, we don't log the i_disksize update
2657          * if there is delayed block allocation. But we still need
2658          * to journalling the i_disksize update if writes to the end
2659          * of file which has an already mapped buffer.
2660          */
2661 retry_journal:
2662         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2663                                 ext4_da_write_credits(inode, pos, len));
2664         if (IS_ERR(handle)) {
2665                 page_cache_release(page);
2666                 return PTR_ERR(handle);
2667         }
2668
2669         lock_page(page);
2670         if (page->mapping != mapping) {
2671                 /* The page got truncated from under us */
2672                 unlock_page(page);
2673                 page_cache_release(page);
2674                 ext4_journal_stop(handle);
2675                 goto retry_grab;
2676         }
2677         /* In case writeback began while the page was unlocked */
2678         wait_for_stable_page(page);
2679
2680 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2681         ret = ext4_block_write_begin(page, pos, len,
2682                                      ext4_da_get_block_prep);
2683 #else
2684         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2685 #endif
2686         if (ret < 0) {
2687                 unlock_page(page);
2688                 ext4_journal_stop(handle);
2689                 /*
2690                  * block_write_begin may have instantiated a few blocks
2691                  * outside i_size.  Trim these off again. Don't need
2692                  * i_size_read because we hold i_mutex.
2693                  */
2694                 if (pos + len > inode->i_size)
2695                         ext4_truncate_failed_write(inode);
2696
2697                 if (ret == -ENOSPC &&
2698                     ext4_should_retry_alloc(inode->i_sb, &retries))
2699                         goto retry_journal;
2700
2701                 page_cache_release(page);
2702                 return ret;
2703         }
2704
2705         *pagep = page;
2706         return ret;
2707 }
2708
2709 /*
2710  * Check if we should update i_disksize
2711  * when write to the end of file but not require block allocation
2712  */
2713 static int ext4_da_should_update_i_disksize(struct page *page,
2714                                             unsigned long offset)
2715 {
2716         struct buffer_head *bh;
2717         struct inode *inode = page->mapping->host;
2718         unsigned int idx;
2719         int i;
2720
2721         bh = page_buffers(page);
2722         idx = offset >> inode->i_blkbits;
2723
2724         for (i = 0; i < idx; i++)
2725                 bh = bh->b_this_page;
2726
2727         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2728                 return 0;
2729         return 1;
2730 }
2731
2732 static int ext4_da_write_end(struct file *file,
2733                              struct address_space *mapping,
2734                              loff_t pos, unsigned len, unsigned copied,
2735                              struct page *page, void *fsdata)
2736 {
2737         struct inode *inode = mapping->host;
2738         int ret = 0, ret2;
2739         handle_t *handle = ext4_journal_current_handle();
2740         loff_t new_i_size;
2741         unsigned long start, end;
2742         int write_mode = (int)(unsigned long)fsdata;
2743
2744         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2745                 return ext4_write_end(file, mapping, pos,
2746                                       len, copied, page, fsdata);
2747
2748         trace_ext4_da_write_end(inode, pos, len, copied);
2749         start = pos & (PAGE_CACHE_SIZE - 1);
2750         end = start + copied - 1;
2751
2752         /*
2753          * generic_write_end() will run mark_inode_dirty() if i_size
2754          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2755          * into that.
2756          */
2757         new_i_size = pos + copied;
2758         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2759                 if (ext4_has_inline_data(inode) ||
2760                     ext4_da_should_update_i_disksize(page, end)) {
2761                         ext4_update_i_disksize(inode, new_i_size);
2762                         /* We need to mark inode dirty even if
2763                          * new_i_size is less that inode->i_size
2764                          * bu greater than i_disksize.(hint delalloc)
2765                          */
2766                         ext4_mark_inode_dirty(handle, inode);
2767                 }
2768         }
2769
2770         if (write_mode != CONVERT_INLINE_DATA &&
2771             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2772             ext4_has_inline_data(inode))
2773                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2774                                                      page);
2775         else
2776                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2777                                                         page, fsdata);
2778
2779         copied = ret2;
2780         if (ret2 < 0)
2781                 ret = ret2;
2782         ret2 = ext4_journal_stop(handle);
2783         if (!ret)
2784                 ret = ret2;
2785
2786         return ret ? ret : copied;
2787 }
2788
2789 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2790                                    unsigned int length)
2791 {
2792         /*
2793          * Drop reserved blocks
2794          */
2795         BUG_ON(!PageLocked(page));
2796         if (!page_has_buffers(page))
2797                 goto out;
2798
2799         ext4_da_page_release_reservation(page, offset, length);
2800
2801 out:
2802         ext4_invalidatepage(page, offset, length);
2803
2804         return;
2805 }
2806
2807 /*
2808  * Force all delayed allocation blocks to be allocated for a given inode.
2809  */
2810 int ext4_alloc_da_blocks(struct inode *inode)
2811 {
2812         trace_ext4_alloc_da_blocks(inode);
2813
2814         if (!EXT4_I(inode)->i_reserved_data_blocks)
2815                 return 0;
2816
2817         /*
2818          * We do something simple for now.  The filemap_flush() will
2819          * also start triggering a write of the data blocks, which is
2820          * not strictly speaking necessary (and for users of
2821          * laptop_mode, not even desirable).  However, to do otherwise
2822          * would require replicating code paths in:
2823          *
2824          * ext4_writepages() ->
2825          *    write_cache_pages() ---> (via passed in callback function)
2826          *        __mpage_da_writepage() -->
2827          *           mpage_add_bh_to_extent()
2828          *           mpage_da_map_blocks()
2829          *
2830          * The problem is that write_cache_pages(), located in
2831          * mm/page-writeback.c, marks pages clean in preparation for
2832          * doing I/O, which is not desirable if we're not planning on
2833          * doing I/O at all.
2834          *
2835          * We could call write_cache_pages(), and then redirty all of
2836          * the pages by calling redirty_page_for_writepage() but that
2837          * would be ugly in the extreme.  So instead we would need to
2838          * replicate parts of the code in the above functions,
2839          * simplifying them because we wouldn't actually intend to
2840          * write out the pages, but rather only collect contiguous
2841          * logical block extents, call the multi-block allocator, and
2842          * then update the buffer heads with the block allocations.
2843          *
2844          * For now, though, we'll cheat by calling filemap_flush(),
2845          * which will map the blocks, and start the I/O, but not
2846          * actually wait for the I/O to complete.
2847          */
2848         return filemap_flush(inode->i_mapping);
2849 }
2850
2851 /*
2852  * bmap() is special.  It gets used by applications such as lilo and by
2853  * the swapper to find the on-disk block of a specific piece of data.
2854  *
2855  * Naturally, this is dangerous if the block concerned is still in the
2856  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2857  * filesystem and enables swap, then they may get a nasty shock when the
2858  * data getting swapped to that swapfile suddenly gets overwritten by
2859  * the original zero's written out previously to the journal and
2860  * awaiting writeback in the kernel's buffer cache.
2861  *
2862  * So, if we see any bmap calls here on a modified, data-journaled file,
2863  * take extra steps to flush any blocks which might be in the cache.
2864  */
2865 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2866 {
2867         struct inode *inode = mapping->host;
2868         journal_t *journal;
2869         int err;
2870
2871         /*
2872          * We can get here for an inline file via the FIBMAP ioctl
2873          */
2874         if (ext4_has_inline_data(inode))
2875                 return 0;
2876
2877         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2878                         test_opt(inode->i_sb, DELALLOC)) {
2879                 /*
2880                  * With delalloc we want to sync the file
2881                  * so that we can make sure we allocate
2882                  * blocks for file
2883                  */
2884                 filemap_write_and_wait(mapping);
2885         }
2886
2887         if (EXT4_JOURNAL(inode) &&
2888             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2889                 /*
2890                  * This is a REALLY heavyweight approach, but the use of
2891                  * bmap on dirty files is expected to be extremely rare:
2892                  * only if we run lilo or swapon on a freshly made file
2893                  * do we expect this to happen.
2894                  *
2895                  * (bmap requires CAP_SYS_RAWIO so this does not
2896                  * represent an unprivileged user DOS attack --- we'd be
2897                  * in trouble if mortal users could trigger this path at
2898                  * will.)
2899                  *
2900                  * NB. EXT4_STATE_JDATA is not set on files other than
2901                  * regular files.  If somebody wants to bmap a directory
2902                  * or symlink and gets confused because the buffer
2903                  * hasn't yet been flushed to disk, they deserve
2904                  * everything they get.
2905                  */
2906
2907                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2908                 journal = EXT4_JOURNAL(inode);
2909                 jbd2_journal_lock_updates(journal);
2910                 err = jbd2_journal_flush(journal);
2911                 jbd2_journal_unlock_updates(journal);
2912
2913                 if (err)
2914                         return 0;
2915         }
2916
2917         return generic_block_bmap(mapping, block, ext4_get_block);
2918 }
2919
2920 static int ext4_readpage(struct file *file, struct page *page)
2921 {
2922         int ret = -EAGAIN;
2923         struct inode *inode = page->mapping->host;
2924
2925         trace_ext4_readpage(page);
2926
2927         if (ext4_has_inline_data(inode))
2928                 ret = ext4_readpage_inline(inode, page);
2929
2930         if (ret == -EAGAIN)
2931                 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
2932
2933         return ret;
2934 }
2935
2936 static int
2937 ext4_readpages(struct file *file, struct address_space *mapping,
2938                 struct list_head *pages, unsigned nr_pages)
2939 {
2940         struct inode *inode = mapping->host;
2941
2942         /* If the file has inline data, no need to do readpages. */
2943         if (ext4_has_inline_data(inode))
2944                 return 0;
2945
2946         return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
2947 }
2948
2949 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2950                                 unsigned int length)
2951 {
2952         trace_ext4_invalidatepage(page, offset, length);
2953
2954         /* No journalling happens on data buffers when this function is used */
2955         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2956
2957         block_invalidatepage(page, offset, length);
2958 }
2959
2960 static int __ext4_journalled_invalidatepage(struct page *page,
2961                                             unsigned int offset,
2962                                             unsigned int length)
2963 {
2964         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2965
2966         trace_ext4_journalled_invalidatepage(page, offset, length);
2967
2968         /*
2969          * If it's a full truncate we just forget about the pending dirtying
2970          */
2971         if (offset == 0 && length == PAGE_CACHE_SIZE)
2972                 ClearPageChecked(page);
2973
2974         return jbd2_journal_invalidatepage(journal, page, offset, length);
2975 }
2976
2977 /* Wrapper for aops... */
2978 static void ext4_journalled_invalidatepage(struct page *page,
2979                                            unsigned int offset,
2980                                            unsigned int length)
2981 {
2982         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2983 }
2984
2985 static int ext4_releasepage(struct page *page, gfp_t wait)
2986 {
2987         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2988
2989         trace_ext4_releasepage(page);
2990
2991         /* Page has dirty journalled data -> cannot release */
2992         if (PageChecked(page))
2993                 return 0;
2994         if (journal)
2995                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2996         else
2997                 return try_to_free_buffers(page);
2998 }
2999
3000 /*
3001  * ext4_get_block used when preparing for a DIO write or buffer write.
3002  * We allocate an uinitialized extent if blocks haven't been allocated.
3003  * The extent will be converted to initialized after the IO is complete.
3004  */
3005 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3006                    struct buffer_head *bh_result, int create)
3007 {
3008         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3009                    inode->i_ino, create);
3010         return _ext4_get_block(inode, iblock, bh_result,
3011                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3012 }
3013
3014 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3015                    struct buffer_head *bh_result, int create)
3016 {
3017         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3018                    inode->i_ino, create);
3019         return _ext4_get_block(inode, iblock, bh_result,
3020                                EXT4_GET_BLOCKS_NO_LOCK);
3021 }
3022
3023 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3024                             ssize_t size, void *private)
3025 {
3026         ext4_io_end_t *io_end = iocb->private;
3027
3028         /* if not async direct IO just return */
3029         if (!io_end)
3030                 return;
3031
3032         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3033                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3034                   iocb->private, io_end->inode->i_ino, iocb, offset,
3035                   size);
3036
3037         iocb->private = NULL;
3038         io_end->offset = offset;
3039         io_end->size = size;
3040         ext4_put_io_end(io_end);
3041 }
3042
3043 /*
3044  * For ext4 extent files, ext4 will do direct-io write to holes,
3045  * preallocated extents, and those write extend the file, no need to
3046  * fall back to buffered IO.
3047  *
3048  * For holes, we fallocate those blocks, mark them as unwritten
3049  * If those blocks were preallocated, we mark sure they are split, but
3050  * still keep the range to write as unwritten.
3051  *
3052  * The unwritten extents will be converted to written when DIO is completed.
3053  * For async direct IO, since the IO may still pending when return, we
3054  * set up an end_io call back function, which will do the conversion
3055  * when async direct IO completed.
3056  *
3057  * If the O_DIRECT write will extend the file then add this inode to the
3058  * orphan list.  So recovery will truncate it back to the original size
3059  * if the machine crashes during the write.
3060  *
3061  */
3062 static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3063                                   loff_t offset)
3064 {
3065         struct file *file = iocb->ki_filp;
3066         struct inode *inode = file->f_mapping->host;
3067         ssize_t ret;
3068         size_t count = iov_iter_count(iter);
3069         int overwrite = 0;
3070         get_block_t *get_block_func = NULL;
3071         int dio_flags = 0;
3072         loff_t final_size = offset + count;
3073         ext4_io_end_t *io_end = NULL;
3074
3075         /* Use the old path for reads and writes beyond i_size. */
3076         if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3077                 return ext4_ind_direct_IO(iocb, iter, offset);
3078
3079         BUG_ON(iocb->private == NULL);
3080
3081         /*
3082          * Make all waiters for direct IO properly wait also for extent
3083          * conversion. This also disallows race between truncate() and
3084          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3085          */
3086         if (iov_iter_rw(iter) == WRITE)
3087                 inode_dio_begin(inode);
3088
3089         /* If we do a overwrite dio, i_mutex locking can be released */
3090         overwrite = *((int *)iocb->private);
3091
3092         if (overwrite) {
3093                 down_read(&EXT4_I(inode)->i_data_sem);
3094                 mutex_unlock(&inode->i_mutex);
3095         }
3096
3097         /*
3098          * We could direct write to holes and fallocate.
3099          *
3100          * Allocated blocks to fill the hole are marked as
3101          * unwritten to prevent parallel buffered read to expose
3102          * the stale data before DIO complete the data IO.
3103          *
3104          * As to previously fallocated extents, ext4 get_block will
3105          * just simply mark the buffer mapped but still keep the
3106          * extents unwritten.
3107          *
3108          * For non AIO case, we will convert those unwritten extents
3109          * to written after return back from blockdev_direct_IO.
3110          *
3111          * For async DIO, the conversion needs to be deferred when the
3112          * IO is completed. The ext4 end_io callback function will be
3113          * called to take care of the conversion work.  Here for async
3114          * case, we allocate an io_end structure to hook to the iocb.
3115          */
3116         iocb->private = NULL;
3117         ext4_inode_aio_set(inode, NULL);
3118         if (!is_sync_kiocb(iocb)) {
3119                 io_end = ext4_init_io_end(inode, GFP_NOFS);
3120                 if (!io_end) {
3121                         ret = -ENOMEM;
3122                         goto retake_lock;
3123                 }
3124                 /*
3125                  * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3126                  */
3127                 iocb->private = ext4_get_io_end(io_end);
3128                 /*
3129                  * we save the io structure for current async direct
3130                  * IO, so that later ext4_map_blocks() could flag the
3131                  * io structure whether there is a unwritten extents
3132                  * needs to be converted when IO is completed.
3133                  */
3134                 ext4_inode_aio_set(inode, io_end);
3135         }
3136
3137         if (overwrite) {
3138                 get_block_func = ext4_get_block_write_nolock;
3139         } else {
3140                 get_block_func = ext4_get_block_write;
3141                 dio_flags = DIO_LOCKING;
3142         }
3143 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3144         BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3145 #endif
3146         if (IS_DAX(inode))
3147                 ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
3148                                 ext4_end_io_dio, dio_flags);
3149         else
3150                 ret = __blockdev_direct_IO(iocb, inode,
3151                                            inode->i_sb->s_bdev, iter, offset,
3152                                            get_block_func,
3153                                            ext4_end_io_dio, NULL, dio_flags);
3154
3155         /*
3156          * Put our reference to io_end. This can free the io_end structure e.g.
3157          * in sync IO case or in case of error. It can even perform extent
3158          * conversion if all bios we submitted finished before we got here.
3159          * Note that in that case iocb->private can be already set to NULL
3160          * here.
3161          */
3162         if (io_end) {
3163                 ext4_inode_aio_set(inode, NULL);
3164                 ext4_put_io_end(io_end);
3165                 /*
3166                  * When no IO was submitted ext4_end_io_dio() was not
3167                  * called so we have to put iocb's reference.
3168                  */
3169                 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3170                         WARN_ON(iocb->private != io_end);
3171                         WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3172                         ext4_put_io_end(io_end);
3173                         iocb->private = NULL;
3174                 }
3175         }
3176         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3177                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3178                 int err;
3179                 /*
3180                  * for non AIO case, since the IO is already
3181                  * completed, we could do the conversion right here
3182                  */
3183                 err = ext4_convert_unwritten_extents(NULL, inode,
3184                                                      offset, ret);
3185                 if (err < 0)
3186                         ret = err;
3187                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3188         }
3189
3190 retake_lock:
3191         if (iov_iter_rw(iter) == WRITE)
3192                 inode_dio_end(inode);
3193         /* take i_mutex locking again if we do a ovewrite dio */
3194         if (overwrite) {
3195                 up_read(&EXT4_I(inode)->i_data_sem);
3196                 mutex_lock(&inode->i_mutex);
3197         }
3198
3199         return ret;
3200 }
3201
3202 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3203                               loff_t offset)
3204 {
3205         struct file *file = iocb->ki_filp;
3206         struct inode *inode = file->f_mapping->host;
3207         size_t count = iov_iter_count(iter);
3208         ssize_t ret;
3209
3210 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3211         if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3212                 return 0;
3213 #endif
3214
3215         /*
3216          * If we are doing data journalling we don't support O_DIRECT
3217          */
3218         if (ext4_should_journal_data(inode))
3219                 return 0;
3220
3221         /* Let buffer I/O handle the inline data case. */
3222         if (ext4_has_inline_data(inode))
3223                 return 0;
3224
3225         trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3226         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3227                 ret = ext4_ext_direct_IO(iocb, iter, offset);
3228         else
3229                 ret = ext4_ind_direct_IO(iocb, iter, offset);
3230         trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3231         return ret;
3232 }
3233
3234 /*
3235  * Pages can be marked dirty completely asynchronously from ext4's journalling
3236  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3237  * much here because ->set_page_dirty is called under VFS locks.  The page is
3238  * not necessarily locked.
3239  *
3240  * We cannot just dirty the page and leave attached buffers clean, because the
3241  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3242  * or jbddirty because all the journalling code will explode.
3243  *
3244  * So what we do is to mark the page "pending dirty" and next time writepage
3245  * is called, propagate that into the buffers appropriately.
3246  */
3247 static int ext4_journalled_set_page_dirty(struct page *page)
3248 {
3249         SetPageChecked(page);
3250         return __set_page_dirty_nobuffers(page);
3251 }
3252
3253 static const struct address_space_operations ext4_aops = {
3254         .readpage               = ext4_readpage,
3255         .readpages              = ext4_readpages,
3256         .writepage              = ext4_writepage,
3257         .writepages             = ext4_writepages,
3258         .write_begin            = ext4_write_begin,
3259         .write_end              = ext4_write_end,
3260         .bmap                   = ext4_bmap,
3261         .invalidatepage         = ext4_invalidatepage,
3262         .releasepage            = ext4_releasepage,
3263         .direct_IO              = ext4_direct_IO,
3264         .migratepage            = buffer_migrate_page,
3265         .is_partially_uptodate  = block_is_partially_uptodate,
3266         .error_remove_page      = generic_error_remove_page,
3267 };
3268
3269 static const struct address_space_operations ext4_journalled_aops = {
3270         .readpage               = ext4_readpage,
3271         .readpages              = ext4_readpages,
3272         .writepage              = ext4_writepage,
3273         .writepages             = ext4_writepages,
3274         .write_begin            = ext4_write_begin,
3275         .write_end              = ext4_journalled_write_end,
3276         .set_page_dirty         = ext4_journalled_set_page_dirty,
3277         .bmap                   = ext4_bmap,
3278         .invalidatepage         = ext4_journalled_invalidatepage,
3279         .releasepage            = ext4_releasepage,
3280         .direct_IO              = ext4_direct_IO,
3281         .is_partially_uptodate  = block_is_partially_uptodate,
3282         .error_remove_page      = generic_error_remove_page,
3283 };
3284
3285 static const struct address_space_operations ext4_da_aops = {
3286         .readpage               = ext4_readpage,
3287         .readpages              = ext4_readpages,
3288         .writepage              = ext4_writepage,
3289         .writepages             = ext4_writepages,
3290         .write_begin            = ext4_da_write_begin,
3291         .write_end              = ext4_da_write_end,
3292         .bmap                   = ext4_bmap,
3293         .invalidatepage         = ext4_da_invalidatepage,
3294         .releasepage            = ext4_releasepage,
3295         .direct_IO              = ext4_direct_IO,
3296         .migratepage            = buffer_migrate_page,
3297         .is_partially_uptodate  = block_is_partially_uptodate,
3298         .error_remove_page      = generic_error_remove_page,
3299 };
3300
3301 void ext4_set_aops(struct inode *inode)
3302 {
3303         switch (ext4_inode_journal_mode(inode)) {
3304         case EXT4_INODE_ORDERED_DATA_MODE:
3305                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3306                 break;
3307         case EXT4_INODE_WRITEBACK_DATA_MODE:
3308                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3309                 break;
3310         case EXT4_INODE_JOURNAL_DATA_MODE:
3311                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3312                 return;
3313         default:
3314                 BUG();
3315         }
3316         if (test_opt(inode->i_sb, DELALLOC))
3317                 inode->i_mapping->a_ops = &ext4_da_aops;
3318         else
3319                 inode->i_mapping->a_ops = &ext4_aops;
3320 }
3321
3322 static int __ext4_block_zero_page_range(handle_t *handle,
3323                 struct address_space *mapping, loff_t from, loff_t length)
3324 {
3325         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3326         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3327         unsigned blocksize, pos;
3328         ext4_lblk_t iblock;
3329         struct inode *inode = mapping->host;
3330         struct buffer_head *bh;
3331         struct page *page;
3332         int err = 0;
3333
3334         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3335                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3336         if (!page)
3337                 return -ENOMEM;
3338
3339         blocksize = inode->i_sb->s_blocksize;
3340
3341         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3342
3343         if (!page_has_buffers(page))
3344                 create_empty_buffers(page, blocksize, 0);
3345
3346         /* Find the buffer that contains "offset" */
3347         bh = page_buffers(page);
3348         pos = blocksize;
3349         while (offset >= pos) {
3350                 bh = bh->b_this_page;
3351                 iblock++;
3352                 pos += blocksize;
3353         }
3354         if (buffer_freed(bh)) {
3355                 BUFFER_TRACE(bh, "freed: skip");
3356                 goto unlock;
3357         }
3358         if (!buffer_mapped(bh)) {
3359                 BUFFER_TRACE(bh, "unmapped");
3360                 ext4_get_block(inode, iblock, bh, 0);
3361                 /* unmapped? It's a hole - nothing to do */
3362                 if (!buffer_mapped(bh)) {
3363                         BUFFER_TRACE(bh, "still unmapped");
3364                         goto unlock;
3365                 }
3366         }
3367
3368         /* Ok, it's mapped. Make sure it's up-to-date */
3369         if (PageUptodate(page))
3370                 set_buffer_uptodate(bh);
3371
3372         if (!buffer_uptodate(bh)) {
3373                 err = -EIO;
3374                 ll_rw_block(READ, 1, &bh);
3375                 wait_on_buffer(bh);
3376                 /* Uhhuh. Read error. Complain and punt. */
3377                 if (!buffer_uptodate(bh))
3378                         goto unlock;
3379                 if (S_ISREG(inode->i_mode) &&
3380                     ext4_encrypted_inode(inode)) {
3381                         /* We expect the key to be set. */
3382                         BUG_ON(!ext4_has_encryption_key(inode));
3383                         BUG_ON(blocksize != PAGE_CACHE_SIZE);
3384                         WARN_ON_ONCE(ext4_decrypt_one(inode, page));
3385                 }
3386         }
3387         if (ext4_should_journal_data(inode)) {
3388                 BUFFER_TRACE(bh, "get write access");
3389                 err = ext4_journal_get_write_access(handle, bh);
3390                 if (err)
3391                         goto unlock;
3392         }
3393         zero_user(page, offset, length);
3394         BUFFER_TRACE(bh, "zeroed end of block");
3395
3396         if (ext4_should_journal_data(inode)) {
3397                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3398         } else {
3399                 err = 0;
3400                 mark_buffer_dirty(bh);
3401                 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3402                         err = ext4_jbd2_file_inode(handle, inode);
3403         }
3404
3405 unlock:
3406         unlock_page(page);
3407         page_cache_release(page);
3408         return err;
3409 }
3410
3411 /*
3412  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3413  * starting from file offset 'from'.  The range to be zero'd must
3414  * be contained with in one block.  If the specified range exceeds
3415  * the end of the block it will be shortened to end of the block
3416  * that cooresponds to 'from'
3417  */
3418 static int ext4_block_zero_page_range(handle_t *handle,
3419                 struct address_space *mapping, loff_t from, loff_t length)
3420 {
3421         struct inode *inode = mapping->host;
3422         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3423         unsigned blocksize = inode->i_sb->s_blocksize;
3424         unsigned max = blocksize - (offset & (blocksize - 1));
3425
3426         /*
3427          * correct length if it does not fall between
3428          * 'from' and the end of the block
3429          */
3430         if (length > max || length < 0)
3431                 length = max;
3432
3433         if (IS_DAX(inode))
3434                 return dax_zero_page_range(inode, from, length, ext4_get_block);
3435         return __ext4_block_zero_page_range(handle, mapping, from, length);
3436 }
3437
3438 /*
3439  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3440  * up to the end of the block which corresponds to `from'.
3441  * This required during truncate. We need to physically zero the tail end
3442  * of that block so it doesn't yield old data if the file is later grown.
3443  */
3444 static int ext4_block_truncate_page(handle_t *handle,
3445                 struct address_space *mapping, loff_t from)
3446 {
3447         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3448         unsigned length;
3449         unsigned blocksize;
3450         struct inode *inode = mapping->host;
3451
3452         blocksize = inode->i_sb->s_blocksize;
3453         length = blocksize - (offset & (blocksize - 1));
3454
3455         return ext4_block_zero_page_range(handle, mapping, from, length);
3456 }
3457
3458 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3459                              loff_t lstart, loff_t length)
3460 {
3461         struct super_block *sb = inode->i_sb;
3462         struct address_space *mapping = inode->i_mapping;
3463         unsigned partial_start, partial_end;
3464         ext4_fsblk_t start, end;
3465         loff_t byte_end = (lstart + length - 1);
3466         int err = 0;
3467
3468         partial_start = lstart & (sb->s_blocksize - 1);
3469         partial_end = byte_end & (sb->s_blocksize - 1);
3470
3471         start = lstart >> sb->s_blocksize_bits;
3472         end = byte_end >> sb->s_blocksize_bits;
3473
3474         /* Handle partial zero within the single block */
3475         if (start == end &&
3476             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3477                 err = ext4_block_zero_page_range(handle, mapping,
3478                                                  lstart, length);
3479                 return err;
3480         }
3481         /* Handle partial zero out on the start of the range */
3482         if (partial_start) {
3483                 err = ext4_block_zero_page_range(handle, mapping,
3484                                                  lstart, sb->s_blocksize);
3485                 if (err)
3486                         return err;
3487         }
3488         /* Handle partial zero out on the end of the range */
3489         if (partial_end != sb->s_blocksize - 1)
3490                 err = ext4_block_zero_page_range(handle, mapping,
3491                                                  byte_end - partial_end,
3492                                                  partial_end + 1);
3493         return err;
3494 }
3495
3496 int ext4_can_truncate(struct inode *inode)
3497 {
3498         if (S_ISREG(inode->i_mode))
3499                 return 1;
3500         if (S_ISDIR(inode->i_mode))
3501                 return 1;
3502         if (S_ISLNK(inode->i_mode))
3503                 return !ext4_inode_is_fast_symlink(inode);
3504         return 0;
3505 }
3506
3507 /*
3508  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3509  * associated with the given offset and length
3510  *
3511  * @inode:  File inode
3512  * @offset: The offset where the hole will begin
3513  * @len:    The length of the hole
3514  *
3515  * Returns: 0 on success or negative on failure
3516  */
3517
3518 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3519 {
3520         struct super_block *sb = inode->i_sb;
3521         ext4_lblk_t first_block, stop_block;
3522         struct address_space *mapping = inode->i_mapping;
3523         loff_t first_block_offset, last_block_offset;
3524         handle_t *handle;
3525         unsigned int credits;
3526         int ret = 0;
3527
3528         if (!S_ISREG(inode->i_mode))
3529                 return -EOPNOTSUPP;
3530
3531         trace_ext4_punch_hole(inode, offset, length, 0);
3532
3533         /*
3534          * Write out all dirty pages to avoid race conditions
3535          * Then release them.
3536          */
3537         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3538                 ret = filemap_write_and_wait_range(mapping, offset,
3539                                                    offset + length - 1);
3540                 if (ret)
3541                         return ret;
3542         }
3543
3544         mutex_lock(&inode->i_mutex);
3545
3546         /* No need to punch hole beyond i_size */
3547         if (offset >= inode->i_size)
3548                 goto out_mutex;
3549
3550         /*
3551          * If the hole extends beyond i_size, set the hole
3552          * to end after the page that contains i_size
3553          */
3554         if (offset + length > inode->i_size) {
3555                 length = inode->i_size +
3556                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3557                    offset;
3558         }
3559
3560         if (offset & (sb->s_blocksize - 1) ||
3561             (offset + length) & (sb->s_blocksize - 1)) {
3562                 /*
3563                  * Attach jinode to inode for jbd2 if we do any zeroing of
3564                  * partial block
3565                  */
3566                 ret = ext4_inode_attach_jinode(inode);
3567                 if (ret < 0)
3568                         goto out_mutex;
3569
3570         }
3571
3572         first_block_offset = round_up(offset, sb->s_blocksize);
3573         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3574
3575         /* Now release the pages and zero block aligned part of pages*/
3576         if (last_block_offset > first_block_offset)
3577                 truncate_pagecache_range(inode, first_block_offset,
3578                                          last_block_offset);
3579
3580         /* Wait all existing dio workers, newcomers will block on i_mutex */
3581         ext4_inode_block_unlocked_dio(inode);
3582         inode_dio_wait(inode);
3583
3584         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3585                 credits = ext4_writepage_trans_blocks(inode);
3586         else
3587                 credits = ext4_blocks_for_truncate(inode);
3588         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3589         if (IS_ERR(handle)) {
3590                 ret = PTR_ERR(handle);
3591                 ext4_std_error(sb, ret);
3592                 goto out_dio;
3593         }
3594
3595         ret = ext4_zero_partial_blocks(handle, inode, offset,
3596                                        length);
3597         if (ret)
3598                 goto out_stop;
3599
3600         first_block = (offset + sb->s_blocksize - 1) >>
3601                 EXT4_BLOCK_SIZE_BITS(sb);
3602         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3603
3604         /* If there are no blocks to remove, return now */
3605         if (first_block >= stop_block)
3606                 goto out_stop;
3607
3608         down_write(&EXT4_I(inode)->i_data_sem);
3609         ext4_discard_preallocations(inode);
3610
3611         ret = ext4_es_remove_extent(inode, first_block,
3612                                     stop_block - first_block);
3613         if (ret) {
3614                 up_write(&EXT4_I(inode)->i_data_sem);
3615                 goto out_stop;
3616         }
3617
3618         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3619                 ret = ext4_ext_remove_space(inode, first_block,
3620                                             stop_block - 1);
3621         else
3622                 ret = ext4_ind_remove_space(handle, inode, first_block,
3623                                             stop_block);
3624
3625         up_write(&EXT4_I(inode)->i_data_sem);
3626         if (IS_SYNC(inode))
3627                 ext4_handle_sync(handle);
3628
3629         /* Now release the pages again to reduce race window */
3630         if (last_block_offset > first_block_offset)
3631                 truncate_pagecache_range(inode, first_block_offset,
3632                                          last_block_offset);
3633
3634         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3635         ext4_mark_inode_dirty(handle, inode);
3636 out_stop:
3637         ext4_journal_stop(handle);
3638 out_dio:
3639         ext4_inode_resume_unlocked_dio(inode);
3640 out_mutex:
3641         mutex_unlock(&inode->i_mutex);
3642         return ret;
3643 }
3644
3645 int ext4_inode_attach_jinode(struct inode *inode)
3646 {
3647         struct ext4_inode_info *ei = EXT4_I(inode);
3648         struct jbd2_inode *jinode;
3649
3650         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3651                 return 0;
3652
3653         jinode = jbd2_alloc_inode(GFP_KERNEL);
3654         spin_lock(&inode->i_lock);
3655         if (!ei->jinode) {
3656                 if (!jinode) {
3657                         spin_unlock(&inode->i_lock);
3658                         return -ENOMEM;
3659                 }
3660                 ei->jinode = jinode;
3661                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3662                 jinode = NULL;
3663         }
3664         spin_unlock(&inode->i_lock);
3665         if (unlikely(jinode != NULL))
3666                 jbd2_free_inode(jinode);
3667         return 0;
3668 }
3669
3670 /*
3671  * ext4_truncate()
3672  *
3673  * We block out ext4_get_block() block instantiations across the entire
3674  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3675  * simultaneously on behalf of the same inode.
3676  *
3677  * As we work through the truncate and commit bits of it to the journal there
3678  * is one core, guiding principle: the file's tree must always be consistent on
3679  * disk.  We must be able to restart the truncate after a crash.
3680  *
3681  * The file's tree may be transiently inconsistent in memory (although it
3682  * probably isn't), but whenever we close off and commit a journal transaction,
3683  * the contents of (the filesystem + the journal) must be consistent and
3684  * restartable.  It's pretty simple, really: bottom up, right to left (although
3685  * left-to-right works OK too).
3686  *
3687  * Note that at recovery time, journal replay occurs *before* the restart of
3688  * truncate against the orphan inode list.
3689  *
3690  * The committed inode has the new, desired i_size (which is the same as
3691  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3692  * that this inode's truncate did not complete and it will again call
3693  * ext4_truncate() to have another go.  So there will be instantiated blocks
3694  * to the right of the truncation point in a crashed ext4 filesystem.  But
3695  * that's fine - as long as they are linked from the inode, the post-crash
3696  * ext4_truncate() run will find them and release them.
3697  */
3698 void ext4_truncate(struct inode *inode)
3699 {
3700         struct ext4_inode_info *ei = EXT4_I(inode);
3701         unsigned int credits;
3702         handle_t *handle;
3703         struct address_space *mapping = inode->i_mapping;
3704
3705         /*
3706          * There is a possibility that we're either freeing the inode
3707          * or it's a completely new inode. In those cases we might not
3708          * have i_mutex locked because it's not necessary.
3709          */
3710         if (!(inode->i_state & (I_NEW|I_FREEING)))
3711                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3712         trace_ext4_truncate_enter(inode);
3713
3714         if (!ext4_can_truncate(inode))
3715                 return;
3716
3717         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3718
3719         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3720                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3721
3722         if (ext4_has_inline_data(inode)) {
3723                 int has_inline = 1;
3724
3725                 ext4_inline_data_truncate(inode, &has_inline);
3726                 if (has_inline)
3727                         return;
3728         }
3729
3730         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3731         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3732                 if (ext4_inode_attach_jinode(inode) < 0)
3733                         return;
3734         }
3735
3736         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3737                 credits = ext4_writepage_trans_blocks(inode);
3738         else
3739                 credits = ext4_blocks_for_truncate(inode);
3740
3741         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3742         if (IS_ERR(handle)) {
3743                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3744                 return;
3745         }
3746
3747         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3748                 ext4_block_truncate_page(handle, mapping, inode->i_size);
3749
3750         /*
3751          * We add the inode to the orphan list, so that if this
3752          * truncate spans multiple transactions, and we crash, we will
3753          * resume the truncate when the filesystem recovers.  It also
3754          * marks the inode dirty, to catch the new size.
3755          *
3756          * Implication: the file must always be in a sane, consistent
3757          * truncatable state while each transaction commits.
3758          */
3759         if (ext4_orphan_add(handle, inode))
3760                 goto out_stop;
3761
3762         down_write(&EXT4_I(inode)->i_data_sem);
3763
3764         ext4_discard_preallocations(inode);
3765
3766         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3767                 ext4_ext_truncate(handle, inode);
3768         else
3769                 ext4_ind_truncate(handle, inode);
3770
3771         up_write(&ei->i_data_sem);
3772
3773         if (IS_SYNC(inode))
3774                 ext4_handle_sync(handle);
3775
3776 out_stop:
3777         /*
3778          * If this was a simple ftruncate() and the file will remain alive,
3779          * then we need to clear up the orphan record which we created above.
3780          * However, if this was a real unlink then we were called by
3781          * ext4_evict_inode(), and we allow that function to clean up the
3782          * orphan info for us.
3783          */
3784         if (inode->i_nlink)
3785                 ext4_orphan_del(handle, inode);
3786
3787         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3788         ext4_mark_inode_dirty(handle, inode);
3789         ext4_journal_stop(handle);
3790
3791         trace_ext4_truncate_exit(inode);
3792 }
3793
3794 /*
3795  * ext4_get_inode_loc returns with an extra refcount against the inode's
3796  * underlying buffer_head on success. If 'in_mem' is true, we have all
3797  * data in memory that is needed to recreate the on-disk version of this
3798  * inode.
3799  */
3800 static int __ext4_get_inode_loc(struct inode *inode,
3801                                 struct ext4_iloc *iloc, int in_mem)
3802 {
3803         struct ext4_group_desc  *gdp;
3804         struct buffer_head      *bh;
3805         struct super_block      *sb = inode->i_sb;
3806         ext4_fsblk_t            block;
3807         int                     inodes_per_block, inode_offset;
3808
3809         iloc->bh = NULL;
3810         if (!ext4_valid_inum(sb, inode->i_ino))
3811                 return -EIO;
3812
3813         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3814         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3815         if (!gdp)
3816                 return -EIO;
3817
3818         /*
3819          * Figure out the offset within the block group inode table
3820          */
3821         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3822         inode_offset = ((inode->i_ino - 1) %
3823                         EXT4_INODES_PER_GROUP(sb));
3824         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3825         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3826
3827         bh = sb_getblk(sb, block);
3828         if (unlikely(!bh))
3829                 return -ENOMEM;
3830         if (!buffer_uptodate(bh)) {
3831                 lock_buffer(bh);
3832
3833                 /*
3834                  * If the buffer has the write error flag, we have failed
3835                  * to write out another inode in the same block.  In this
3836                  * case, we don't have to read the block because we may
3837                  * read the old inode data successfully.
3838                  */
3839                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3840                         set_buffer_uptodate(bh);
3841
3842                 if (buffer_uptodate(bh)) {
3843                         /* someone brought it uptodate while we waited */
3844                         unlock_buffer(bh);
3845                         goto has_buffer;
3846                 }
3847
3848                 /*
3849                  * If we have all information of the inode in memory and this
3850                  * is the only valid inode in the block, we need not read the
3851                  * block.
3852                  */
3853                 if (in_mem) {
3854                         struct buffer_head *bitmap_bh;
3855                         int i, start;
3856
3857                         start = inode_offset & ~(inodes_per_block - 1);
3858
3859                         /* Is the inode bitmap in cache? */
3860                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3861                         if (unlikely(!bitmap_bh))
3862                                 goto make_io;
3863
3864                         /*
3865                          * If the inode bitmap isn't in cache then the
3866                          * optimisation may end up performing two reads instead
3867                          * of one, so skip it.
3868                          */
3869                         if (!buffer_uptodate(bitmap_bh)) {
3870                                 brelse(bitmap_bh);
3871                                 goto make_io;
3872                         }
3873                         for (i = start; i < start + inodes_per_block; i++) {
3874                                 if (i == inode_offset)
3875                                         continue;
3876                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3877                                         break;
3878                         }
3879                         brelse(bitmap_bh);
3880                         if (i == start + inodes_per_block) {
3881                                 /* all other inodes are free, so skip I/O */
3882                                 memset(bh->b_data, 0, bh->b_size);
3883                                 set_buffer_uptodate(bh);
3884                                 unlock_buffer(bh);
3885                                 goto has_buffer;
3886                         }
3887                 }
3888
3889 make_io:
3890                 /*
3891                  * If we need to do any I/O, try to pre-readahead extra
3892                  * blocks from the inode table.
3893                  */
3894                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3895                         ext4_fsblk_t b, end, table;
3896                         unsigned num;
3897                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3898
3899                         table = ext4_inode_table(sb, gdp);
3900                         /* s_inode_readahead_blks is always a power of 2 */
3901                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
3902                         if (table > b)
3903                                 b = table;
3904                         end = b + ra_blks;
3905                         num = EXT4_INODES_PER_GROUP(sb);
3906                         if (ext4_has_group_desc_csum(sb))
3907                                 num -= ext4_itable_unused_count(sb, gdp);
3908                         table += num / inodes_per_block;
3909                         if (end > table)
3910                                 end = table;
3911                         while (b <= end)
3912                                 sb_breadahead(sb, b++);
3913                 }
3914
3915                 /*
3916                  * There are other valid inodes in the buffer, this inode
3917                  * has in-inode xattrs, or we don't have this inode in memory.
3918                  * Read the block from disk.
3919                  */
3920                 trace_ext4_load_inode(inode);
3921                 get_bh(bh);
3922                 bh->b_end_io = end_buffer_read_sync;
3923                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3924                 wait_on_buffer(bh);
3925                 if (!buffer_uptodate(bh)) {
3926                         EXT4_ERROR_INODE_BLOCK(inode, block,
3927                                                "unable to read itable block");
3928                         brelse(bh);
3929                         return -EIO;
3930                 }
3931         }
3932 has_buffer:
3933         iloc->bh = bh;
3934         return 0;
3935 }
3936
3937 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3938 {
3939         /* We have all inode data except xattrs in memory here. */
3940         return __ext4_get_inode_loc(inode, iloc,
3941                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3942 }
3943
3944 void ext4_set_inode_flags(struct inode *inode)
3945 {
3946         unsigned int flags = EXT4_I(inode)->i_flags;
3947         unsigned int new_fl = 0;
3948
3949         if (flags & EXT4_SYNC_FL)
3950                 new_fl |= S_SYNC;
3951         if (flags & EXT4_APPEND_FL)
3952                 new_fl |= S_APPEND;
3953         if (flags & EXT4_IMMUTABLE_FL)
3954                 new_fl |= S_IMMUTABLE;
3955         if (flags & EXT4_NOATIME_FL)
3956                 new_fl |= S_NOATIME;
3957         if (flags & EXT4_DIRSYNC_FL)
3958                 new_fl |= S_DIRSYNC;
3959         if (test_opt(inode->i_sb, DAX))
3960                 new_fl |= S_DAX;
3961         inode_set_flags(inode, new_fl,
3962                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
3963 }
3964
3965 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3966 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3967 {
3968         unsigned int vfs_fl;
3969         unsigned long old_fl, new_fl;
3970
3971         do {
3972                 vfs_fl = ei->vfs_inode.i_flags;
3973                 old_fl = ei->i_flags;
3974                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3975                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3976                                 EXT4_DIRSYNC_FL);
3977                 if (vfs_fl & S_SYNC)
3978                         new_fl |= EXT4_SYNC_FL;
3979                 if (vfs_fl & S_APPEND)
3980                         new_fl |= EXT4_APPEND_FL;
3981                 if (vfs_fl & S_IMMUTABLE)
3982                         new_fl |= EXT4_IMMUTABLE_FL;
3983                 if (vfs_fl & S_NOATIME)
3984                         new_fl |= EXT4_NOATIME_FL;
3985                 if (vfs_fl & S_DIRSYNC)
3986                         new_fl |= EXT4_DIRSYNC_FL;
3987         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3988 }
3989
3990 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3991                                   struct ext4_inode_info *ei)
3992 {
3993         blkcnt_t i_blocks ;
3994         struct inode *inode = &(ei->vfs_inode);
3995         struct super_block *sb = inode->i_sb;
3996
3997         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3998                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3999                 /* we are using combined 48 bit field */
4000                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4001                                         le32_to_cpu(raw_inode->i_blocks_lo);
4002                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4003                         /* i_blocks represent file system block size */
4004                         return i_blocks  << (inode->i_blkbits - 9);
4005                 } else {
4006                         return i_blocks;
4007                 }
4008         } else {
4009                 return le32_to_cpu(raw_inode->i_blocks_lo);
4010         }
4011 }
4012
4013 static inline void ext4_iget_extra_inode(struct inode *inode,
4014                                          struct ext4_inode *raw_inode,
4015                                          struct ext4_inode_info *ei)
4016 {
4017         __le32 *magic = (void *)raw_inode +
4018                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4019         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4020                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4021                 ext4_find_inline_data_nolock(inode);
4022         } else
4023                 EXT4_I(inode)->i_inline_off = 0;
4024 }
4025
4026 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4027 {
4028         struct ext4_iloc iloc;
4029         struct ext4_inode *raw_inode;
4030         struct ext4_inode_info *ei;
4031         struct inode *inode;
4032         journal_t *journal = EXT4_SB(sb)->s_journal;
4033         long ret;
4034         int block;
4035         uid_t i_uid;
4036         gid_t i_gid;
4037
4038         inode = iget_locked(sb, ino);
4039         if (!inode)
4040                 return ERR_PTR(-ENOMEM);
4041         if (!(inode->i_state & I_NEW))
4042                 return inode;
4043
4044         ei = EXT4_I(inode);
4045         iloc.bh = NULL;
4046
4047         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4048         if (ret < 0)
4049                 goto bad_inode;
4050         raw_inode = ext4_raw_inode(&iloc);
4051
4052         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4053                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4054                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4055                     EXT4_INODE_SIZE(inode->i_sb)) {
4056                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4057                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4058                                 EXT4_INODE_SIZE(inode->i_sb));
4059                         ret = -EIO;
4060                         goto bad_inode;
4061                 }
4062         } else
4063                 ei->i_extra_isize = 0;
4064
4065         /* Precompute checksum seed for inode metadata */
4066         if (ext4_has_metadata_csum(sb)) {
4067                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4068                 __u32 csum;
4069                 __le32 inum = cpu_to_le32(inode->i_ino);
4070                 __le32 gen = raw_inode->i_generation;
4071                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4072                                    sizeof(inum));
4073                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4074                                               sizeof(gen));
4075         }
4076
4077         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4078                 EXT4_ERROR_INODE(inode, "checksum invalid");
4079                 ret = -EIO;
4080                 goto bad_inode;
4081         }
4082
4083         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4084         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4085         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4086         if (!(test_opt(inode->i_sb, NO_UID32))) {
4087                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4088                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4089         }
4090         i_uid_write(inode, i_uid);
4091         i_gid_write(inode, i_gid);
4092         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4093
4094         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4095         ei->i_inline_off = 0;
4096         ei->i_dir_start_lookup = 0;
4097         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4098         /* We now have enough fields to check if the inode was active or not.
4099          * This is needed because nfsd might try to access dead inodes
4100          * the test is that same one that e2fsck uses
4101          * NeilBrown 1999oct15
4102          */
4103         if (inode->i_nlink == 0) {
4104                 if ((inode->i_mode == 0 ||
4105                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4106                     ino != EXT4_BOOT_LOADER_INO) {
4107                         /* this inode is deleted */
4108                         ret = -ESTALE;
4109                         goto bad_inode;
4110                 }
4111                 /* The only unlinked inodes we let through here have
4112                  * valid i_mode and are being read by the orphan
4113                  * recovery code: that's fine, we're about to complete
4114                  * the process of deleting those.
4115                  * OR it is the EXT4_BOOT_LOADER_INO which is
4116                  * not initialized on a new filesystem. */
4117         }
4118         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4119         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4120         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4121         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4122                 ei->i_file_acl |=
4123                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4124         inode->i_size = ext4_isize(raw_inode);
4125         ei->i_disksize = inode->i_size;
4126 #ifdef CONFIG_QUOTA
4127         ei->i_reserved_quota = 0;
4128 #endif
4129         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4130         ei->i_block_group = iloc.block_group;
4131         ei->i_last_alloc_group = ~0;
4132         /*
4133          * NOTE! The in-memory inode i_data array is in little-endian order
4134          * even on big-endian machines: we do NOT byteswap the block numbers!
4135          */
4136         for (block = 0; block < EXT4_N_BLOCKS; block++)
4137                 ei->i_data[block] = raw_inode->i_block[block];
4138         INIT_LIST_HEAD(&ei->i_orphan);
4139
4140         /*
4141          * Set transaction id's of transactions that have to be committed
4142          * to finish f[data]sync. We set them to currently running transaction
4143          * as we cannot be sure that the inode or some of its metadata isn't
4144          * part of the transaction - the inode could have been reclaimed and
4145          * now it is reread from disk.
4146          */
4147         if (journal) {
4148                 transaction_t *transaction;
4149                 tid_t tid;
4150
4151                 read_lock(&journal->j_state_lock);
4152                 if (journal->j_running_transaction)
4153                         transaction = journal->j_running_transaction;
4154                 else
4155                         transaction = journal->j_committing_transaction;
4156                 if (transaction)
4157                         tid = transaction->t_tid;
4158                 else
4159                         tid = journal->j_commit_sequence;
4160                 read_unlock(&journal->j_state_lock);
4161                 ei->i_sync_tid = tid;
4162                 ei->i_datasync_tid = tid;
4163         }
4164
4165         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4166                 if (ei->i_extra_isize == 0) {
4167                         /* The extra space is currently unused. Use it. */
4168                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4169                                             EXT4_GOOD_OLD_INODE_SIZE;
4170                 } else {
4171                         ext4_iget_extra_inode(inode, raw_inode, ei);
4172                 }
4173         }
4174
4175         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4176         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4177         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4178         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4179
4180         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4181                 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4182                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4183                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4184                                 inode->i_version |=
4185                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4186                 }
4187         }
4188
4189         ret = 0;
4190         if (ei->i_file_acl &&
4191             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4192                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4193                                  ei->i_file_acl);
4194                 ret = -EIO;
4195                 goto bad_inode;
4196         } else if (!ext4_has_inline_data(inode)) {
4197                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4198                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4199                             (S_ISLNK(inode->i_mode) &&
4200                              !ext4_inode_is_fast_symlink(inode))))
4201                                 /* Validate extent which is part of inode */
4202                                 ret = ext4_ext_check_inode(inode);
4203                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4204                            (S_ISLNK(inode->i_mode) &&
4205                             !ext4_inode_is_fast_symlink(inode))) {
4206                         /* Validate block references which are part of inode */
4207                         ret = ext4_ind_check_inode(inode);
4208                 }
4209         }
4210         if (ret)
4211                 goto bad_inode;
4212
4213         if (S_ISREG(inode->i_mode)) {
4214                 inode->i_op = &ext4_file_inode_operations;
4215                 inode->i_fop = &ext4_file_operations;
4216                 ext4_set_aops(inode);
4217         } else if (S_ISDIR(inode->i_mode)) {
4218                 inode->i_op = &ext4_dir_inode_operations;
4219                 inode->i_fop = &ext4_dir_operations;
4220         } else if (S_ISLNK(inode->i_mode)) {
4221                 if (ext4_encrypted_inode(inode)) {
4222                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4223                         ext4_set_aops(inode);
4224                 } else if (ext4_inode_is_fast_symlink(inode)) {
4225                         inode->i_link = (char *)ei->i_data;
4226                         inode->i_op = &ext4_fast_symlink_inode_operations;
4227                         nd_terminate_link(ei->i_data, inode->i_size,
4228                                 sizeof(ei->i_data) - 1);
4229                 } else {
4230                         inode->i_op = &ext4_symlink_inode_operations;
4231                         ext4_set_aops(inode);
4232                 }
4233         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4234               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4235                 inode->i_op = &ext4_special_inode_operations;
4236                 if (raw_inode->i_block[0])
4237                         init_special_inode(inode, inode->i_mode,
4238                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4239                 else
4240                         init_special_inode(inode, inode->i_mode,
4241                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4242         } else if (ino == EXT4_BOOT_LOADER_INO) {
4243                 make_bad_inode(inode);
4244         } else {
4245                 ret = -EIO;
4246                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4247                 goto bad_inode;
4248         }
4249         brelse(iloc.bh);
4250         ext4_set_inode_flags(inode);
4251         unlock_new_inode(inode);
4252         return inode;
4253
4254 bad_inode:
4255         brelse(iloc.bh);
4256         iget_failed(inode);
4257         return ERR_PTR(ret);
4258 }
4259
4260 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4261 {
4262         if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4263                 return ERR_PTR(-EIO);
4264         return ext4_iget(sb, ino);
4265 }
4266
4267 static int ext4_inode_blocks_set(handle_t *handle,
4268                                 struct ext4_inode *raw_inode,
4269                                 struct ext4_inode_info *ei)
4270 {
4271         struct inode *inode = &(ei->vfs_inode);
4272         u64 i_blocks = inode->i_blocks;
4273         struct super_block *sb = inode->i_sb;
4274
4275         if (i_blocks <= ~0U) {
4276                 /*
4277                  * i_blocks can be represented in a 32 bit variable
4278                  * as multiple of 512 bytes
4279                  */
4280                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4281                 raw_inode->i_blocks_high = 0;
4282                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4283                 return 0;
4284         }
4285         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4286                 return -EFBIG;
4287
4288         if (i_blocks <= 0xffffffffffffULL) {
4289                 /*
4290                  * i_blocks can be represented in a 48 bit variable
4291                  * as multiple of 512 bytes
4292                  */
4293                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4294                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4295                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4296         } else {
4297                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4298                 /* i_block is stored in file system block size */
4299                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4300                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4301                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4302         }
4303         return 0;
4304 }
4305
4306 struct other_inode {
4307         unsigned long           orig_ino;
4308         struct ext4_inode       *raw_inode;
4309 };
4310
4311 static int other_inode_match(struct inode * inode, unsigned long ino,
4312                              void *data)
4313 {
4314         struct other_inode *oi = (struct other_inode *) data;
4315
4316         if ((inode->i_ino != ino) ||
4317             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4318                                I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4319             ((inode->i_state & I_DIRTY_TIME) == 0))
4320                 return 0;
4321         spin_lock(&inode->i_lock);
4322         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4323                                 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4324             (inode->i_state & I_DIRTY_TIME)) {
4325                 struct ext4_inode_info  *ei = EXT4_I(inode);
4326
4327                 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4328                 spin_unlock(&inode->i_lock);
4329
4330                 spin_lock(&ei->i_raw_lock);
4331                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4332                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4333                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4334                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4335                 spin_unlock(&ei->i_raw_lock);
4336                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4337                 return -1;
4338         }
4339         spin_unlock(&inode->i_lock);
4340         return -1;
4341 }
4342
4343 /*
4344  * Opportunistically update the other time fields for other inodes in
4345  * the same inode table block.
4346  */
4347 static void ext4_update_other_inodes_time(struct super_block *sb,
4348                                           unsigned long orig_ino, char *buf)
4349 {
4350         struct other_inode oi;
4351         unsigned long ino;
4352         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4353         int inode_size = EXT4_INODE_SIZE(sb);
4354
4355         oi.orig_ino = orig_ino;
4356         /*
4357          * Calculate the first inode in the inode table block.  Inode
4358          * numbers are one-based.  That is, the first inode in a block
4359          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4360          */
4361         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4362         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4363                 if (ino == orig_ino)
4364                         continue;
4365                 oi.raw_inode = (struct ext4_inode *) buf;
4366                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4367         }
4368 }
4369
4370 /*
4371  * Post the struct inode info into an on-disk inode location in the
4372  * buffer-cache.  This gobbles the caller's reference to the
4373  * buffer_head in the inode location struct.
4374  *
4375  * The caller must have write access to iloc->bh.
4376  */
4377 static int ext4_do_update_inode(handle_t *handle,
4378                                 struct inode *inode,
4379                                 struct ext4_iloc *iloc)
4380 {
4381         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4382         struct ext4_inode_info *ei = EXT4_I(inode);
4383         struct buffer_head *bh = iloc->bh;
4384         struct super_block *sb = inode->i_sb;
4385         int err = 0, rc, block;
4386         int need_datasync = 0, set_large_file = 0;
4387         uid_t i_uid;
4388         gid_t i_gid;
4389
4390         spin_lock(&ei->i_raw_lock);
4391
4392         /* For fields not tracked in the in-memory inode,
4393          * initialise them to zero for new inodes. */
4394         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4395                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4396
4397         ext4_get_inode_flags(ei);
4398         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4399         i_uid = i_uid_read(inode);
4400         i_gid = i_gid_read(inode);
4401         if (!(test_opt(inode->i_sb, NO_UID32))) {
4402                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4403                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4404 /*
4405  * Fix up interoperability with old kernels. Otherwise, old inodes get
4406  * re-used with the upper 16 bits of the uid/gid intact
4407  */
4408                 if (!ei->i_dtime) {
4409                         raw_inode->i_uid_high =
4410                                 cpu_to_le16(high_16_bits(i_uid));
4411                         raw_inode->i_gid_high =
4412                                 cpu_to_le16(high_16_bits(i_gid));
4413                 } else {
4414                         raw_inode->i_uid_high = 0;
4415                         raw_inode->i_gid_high = 0;
4416                 }
4417         } else {
4418                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4419                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4420                 raw_inode->i_uid_high = 0;
4421                 raw_inode->i_gid_high = 0;
4422         }
4423         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4424
4425         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4426         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4427         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4428         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4429
4430         err = ext4_inode_blocks_set(handle, raw_inode, ei);
4431         if (err) {
4432                 spin_unlock(&ei->i_raw_lock);
4433                 goto out_brelse;
4434         }
4435         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4436         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4437         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4438                 raw_inode->i_file_acl_high =
4439                         cpu_to_le16(ei->i_file_acl >> 32);
4440         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4441         if (ei->i_disksize != ext4_isize(raw_inode)) {
4442                 ext4_isize_set(raw_inode, ei->i_disksize);
4443                 need_datasync = 1;
4444         }
4445         if (ei->i_disksize > 0x7fffffffULL) {
4446                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4447                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4448                                 EXT4_SB(sb)->s_es->s_rev_level ==
4449                     cpu_to_le32(EXT4_GOOD_OLD_REV))
4450                         set_large_file = 1;
4451         }
4452         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4453         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4454                 if (old_valid_dev(inode->i_rdev)) {
4455                         raw_inode->i_block[0] =
4456                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4457                         raw_inode->i_block[1] = 0;
4458                 } else {
4459                         raw_inode->i_block[0] = 0;
4460                         raw_inode->i_block[1] =
4461                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4462                         raw_inode->i_block[2] = 0;
4463                 }
4464         } else if (!ext4_has_inline_data(inode)) {
4465                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4466                         raw_inode->i_block[block] = ei->i_data[block];
4467         }
4468
4469         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4470                 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4471                 if (ei->i_extra_isize) {
4472                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4473                                 raw_inode->i_version_hi =
4474                                         cpu_to_le32(inode->i_version >> 32);
4475                         raw_inode->i_extra_isize =
4476                                 cpu_to_le16(ei->i_extra_isize);
4477                 }
4478         }
4479         ext4_inode_csum_set(inode, raw_inode, ei);
4480         spin_unlock(&ei->i_raw_lock);
4481         if (inode->i_sb->s_flags & MS_LAZYTIME)
4482                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4483                                               bh->b_data);
4484
4485         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4486         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4487         if (!err)
4488                 err = rc;
4489         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4490         if (set_large_file) {
4491                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4492                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4493                 if (err)
4494                         goto out_brelse;
4495                 ext4_update_dynamic_rev(sb);
4496                 EXT4_SET_RO_COMPAT_FEATURE(sb,
4497                                            EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4498                 ext4_handle_sync(handle);
4499                 err = ext4_handle_dirty_super(handle, sb);
4500         }
4501         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4502 out_brelse:
4503         brelse(bh);
4504         ext4_std_error(inode->i_sb, err);
4505         return err;
4506 }
4507
4508 /*
4509  * ext4_write_inode()
4510  *
4511  * We are called from a few places:
4512  *
4513  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4514  *   Here, there will be no transaction running. We wait for any running
4515  *   transaction to commit.
4516  *
4517  * - Within flush work (sys_sync(), kupdate and such).
4518  *   We wait on commit, if told to.
4519  *
4520  * - Within iput_final() -> write_inode_now()
4521  *   We wait on commit, if told to.
4522  *
4523  * In all cases it is actually safe for us to return without doing anything,
4524  * because the inode has been copied into a raw inode buffer in
4525  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4526  * writeback.
4527  *
4528  * Note that we are absolutely dependent upon all inode dirtiers doing the
4529  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4530  * which we are interested.
4531  *
4532  * It would be a bug for them to not do this.  The code:
4533  *
4534  *      mark_inode_dirty(inode)
4535  *      stuff();
4536  *      inode->i_size = expr;
4537  *
4538  * is in error because write_inode() could occur while `stuff()' is running,
4539  * and the new i_size will be lost.  Plus the inode will no longer be on the
4540  * superblock's dirty inode list.
4541  */
4542 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4543 {
4544         int err;
4545
4546         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4547                 return 0;
4548
4549         if (EXT4_SB(inode->i_sb)->s_journal) {
4550                 if (ext4_journal_current_handle()) {
4551                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4552                         dump_stack();
4553                         return -EIO;
4554                 }
4555
4556                 /*
4557                  * No need to force transaction in WB_SYNC_NONE mode. Also
4558                  * ext4_sync_fs() will force the commit after everything is
4559                  * written.
4560                  */
4561                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4562                         return 0;
4563
4564                 err = ext4_force_commit(inode->i_sb);
4565         } else {
4566                 struct ext4_iloc iloc;
4567
4568                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4569                 if (err)
4570                         return err;
4571                 /*
4572                  * sync(2) will flush the whole buffer cache. No need to do
4573                  * it here separately for each inode.
4574                  */
4575                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4576                         sync_dirty_buffer(iloc.bh);
4577                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4578                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4579                                          "IO error syncing inode");
4580                         err = -EIO;
4581                 }
4582                 brelse(iloc.bh);
4583         }
4584         return err;
4585 }
4586
4587 /*
4588  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4589  * buffers that are attached to a page stradding i_size and are undergoing
4590  * commit. In that case we have to wait for commit to finish and try again.
4591  */
4592 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4593 {
4594         struct page *page;
4595         unsigned offset;
4596         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4597         tid_t commit_tid = 0;
4598         int ret;
4599
4600         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4601         /*
4602          * All buffers in the last page remain valid? Then there's nothing to
4603          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4604          * blocksize case
4605          */
4606         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4607                 return;
4608         while (1) {
4609                 page = find_lock_page(inode->i_mapping,
4610                                       inode->i_size >> PAGE_CACHE_SHIFT);
4611                 if (!page)
4612                         return;
4613                 ret = __ext4_journalled_invalidatepage(page, offset,
4614                                                 PAGE_CACHE_SIZE - offset);
4615                 unlock_page(page);
4616                 page_cache_release(page);
4617                 if (ret != -EBUSY)
4618                         return;
4619                 commit_tid = 0;
4620                 read_lock(&journal->j_state_lock);
4621                 if (journal->j_committing_transaction)
4622                         commit_tid = journal->j_committing_transaction->t_tid;
4623                 read_unlock(&journal->j_state_lock);
4624                 if (commit_tid)
4625                         jbd2_log_wait_commit(journal, commit_tid);
4626         }
4627 }
4628
4629 /*
4630  * ext4_setattr()
4631  *
4632  * Called from notify_change.
4633  *
4634  * We want to trap VFS attempts to truncate the file as soon as
4635  * possible.  In particular, we want to make sure that when the VFS
4636  * shrinks i_size, we put the inode on the orphan list and modify
4637  * i_disksize immediately, so that during the subsequent flushing of
4638  * dirty pages and freeing of disk blocks, we can guarantee that any
4639  * commit will leave the blocks being flushed in an unused state on
4640  * disk.  (On recovery, the inode will get truncated and the blocks will
4641  * be freed, so we have a strong guarantee that no future commit will
4642  * leave these blocks visible to the user.)
4643  *
4644  * Another thing we have to assure is that if we are in ordered mode
4645  * and inode is still attached to the committing transaction, we must
4646  * we start writeout of all the dirty pages which are being truncated.
4647  * This way we are sure that all the data written in the previous
4648  * transaction are already on disk (truncate waits for pages under
4649  * writeback).
4650  *
4651  * Called with inode->i_mutex down.
4652  */
4653 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4654 {
4655         struct inode *inode = d_inode(dentry);
4656         int error, rc = 0;
4657         int orphan = 0;
4658         const unsigned int ia_valid = attr->ia_valid;
4659
4660         error = inode_change_ok(inode, attr);
4661         if (error)
4662                 return error;
4663
4664         if (is_quota_modification(inode, attr))
4665                 dquot_initialize(inode);
4666         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4667             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4668                 handle_t *handle;
4669
4670                 /* (user+group)*(old+new) structure, inode write (sb,
4671                  * inode block, ? - but truncate inode update has it) */
4672                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4673                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4674                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4675                 if (IS_ERR(handle)) {
4676                         error = PTR_ERR(handle);
4677                         goto err_out;
4678                 }
4679                 error = dquot_transfer(inode, attr);
4680                 if (error) {
4681                         ext4_journal_stop(handle);
4682                         return error;
4683                 }
4684                 /* Update corresponding info in inode so that everything is in
4685                  * one transaction */
4686                 if (attr->ia_valid & ATTR_UID)
4687                         inode->i_uid = attr->ia_uid;
4688                 if (attr->ia_valid & ATTR_GID)
4689                         inode->i_gid = attr->ia_gid;
4690                 error = ext4_mark_inode_dirty(handle, inode);
4691                 ext4_journal_stop(handle);
4692         }
4693
4694         if (attr->ia_valid & ATTR_SIZE) {
4695                 handle_t *handle;
4696                 loff_t oldsize = inode->i_size;
4697                 int shrink = (attr->ia_size <= inode->i_size);
4698
4699                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4700                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4701
4702                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4703                                 return -EFBIG;
4704                 }
4705                 if (!S_ISREG(inode->i_mode))
4706                         return -EINVAL;
4707
4708                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4709                         inode_inc_iversion(inode);
4710
4711                 if (ext4_should_order_data(inode) &&
4712                     (attr->ia_size < inode->i_size)) {
4713                         error = ext4_begin_ordered_truncate(inode,
4714                                                             attr->ia_size);
4715                         if (error)
4716                                 goto err_out;
4717                 }
4718                 if (attr->ia_size != inode->i_size) {
4719                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4720                         if (IS_ERR(handle)) {
4721                                 error = PTR_ERR(handle);
4722                                 goto err_out;
4723                         }
4724                         if (ext4_handle_valid(handle) && shrink) {
4725                                 error = ext4_orphan_add(handle, inode);
4726                                 orphan = 1;
4727                         }
4728                         down_write(&EXT4_I(inode)->i_data_sem);
4729                         EXT4_I(inode)->i_disksize = attr->ia_size;
4730                         rc = ext4_mark_inode_dirty(handle, inode);
4731                         if (!error)
4732                                 error = rc;
4733                         /*
4734                          * We have to update i_size under i_data_sem together
4735                          * with i_disksize to avoid races with writeback code
4736                          * running ext4_wb_update_i_disksize().
4737                          */
4738                         if (!error)
4739                                 i_size_write(inode, attr->ia_size);
4740                         up_write(&EXT4_I(inode)->i_data_sem);
4741                         ext4_journal_stop(handle);
4742                         if (error) {
4743                                 if (orphan)
4744                                         ext4_orphan_del(NULL, inode);
4745                                 goto err_out;
4746                         }
4747                 }
4748                 if (!shrink)
4749                         pagecache_isize_extended(inode, oldsize, inode->i_size);
4750
4751                 /*
4752                  * Blocks are going to be removed from the inode. Wait
4753                  * for dio in flight.  Temporarily disable
4754                  * dioread_nolock to prevent livelock.
4755                  */
4756                 if (orphan) {
4757                         if (!ext4_should_journal_data(inode)) {
4758                                 ext4_inode_block_unlocked_dio(inode);
4759                                 inode_dio_wait(inode);
4760                                 ext4_inode_resume_unlocked_dio(inode);
4761                         } else
4762                                 ext4_wait_for_tail_page_commit(inode);
4763                 }
4764                 /*
4765                  * Truncate pagecache after we've waited for commit
4766                  * in data=journal mode to make pages freeable.
4767                  */
4768                 truncate_pagecache(inode, inode->i_size);
4769                 if (shrink)
4770                         ext4_truncate(inode);
4771         }
4772
4773         if (!rc) {
4774                 setattr_copy(inode, attr);
4775                 mark_inode_dirty(inode);
4776         }
4777
4778         /*
4779          * If the call to ext4_truncate failed to get a transaction handle at
4780          * all, we need to clean up the in-core orphan list manually.
4781          */
4782         if (orphan && inode->i_nlink)
4783                 ext4_orphan_del(NULL, inode);
4784
4785         if (!rc && (ia_valid & ATTR_MODE))
4786                 rc = posix_acl_chmod(inode, inode->i_mode);
4787
4788 err_out:
4789         ext4_std_error(inode->i_sb, error);
4790         if (!error)
4791                 error = rc;
4792         return error;
4793 }
4794
4795 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4796                  struct kstat *stat)
4797 {
4798         struct inode *inode;
4799         unsigned long long delalloc_blocks;
4800
4801         inode = d_inode(dentry);
4802         generic_fillattr(inode, stat);
4803
4804         /*
4805          * If there is inline data in the inode, the inode will normally not
4806          * have data blocks allocated (it may have an external xattr block).
4807          * Report at least one sector for such files, so tools like tar, rsync,
4808          * others doen't incorrectly think the file is completely sparse.
4809          */
4810         if (unlikely(ext4_has_inline_data(inode)))
4811                 stat->blocks += (stat->size + 511) >> 9;
4812
4813         /*
4814          * We can't update i_blocks if the block allocation is delayed
4815          * otherwise in the case of system crash before the real block
4816          * allocation is done, we will have i_blocks inconsistent with
4817          * on-disk file blocks.
4818          * We always keep i_blocks updated together with real
4819          * allocation. But to not confuse with user, stat
4820          * will return the blocks that include the delayed allocation
4821          * blocks for this file.
4822          */
4823         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4824                                    EXT4_I(inode)->i_reserved_data_blocks);
4825         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4826         return 0;
4827 }
4828
4829 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4830                                    int pextents)
4831 {
4832         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4833                 return ext4_ind_trans_blocks(inode, lblocks);
4834         return ext4_ext_index_trans_blocks(inode, pextents);
4835 }
4836
4837 /*
4838  * Account for index blocks, block groups bitmaps and block group
4839  * descriptor blocks if modify datablocks and index blocks
4840  * worse case, the indexs blocks spread over different block groups
4841  *
4842  * If datablocks are discontiguous, they are possible to spread over
4843  * different block groups too. If they are contiguous, with flexbg,
4844  * they could still across block group boundary.
4845  *
4846  * Also account for superblock, inode, quota and xattr blocks
4847  */
4848 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4849                                   int pextents)
4850 {
4851         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4852         int gdpblocks;
4853         int idxblocks;
4854         int ret = 0;
4855
4856         /*
4857          * How many index blocks need to touch to map @lblocks logical blocks
4858          * to @pextents physical extents?
4859          */
4860         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4861
4862         ret = idxblocks;
4863
4864         /*
4865          * Now let's see how many group bitmaps and group descriptors need
4866          * to account
4867          */
4868         groups = idxblocks + pextents;
4869         gdpblocks = groups;
4870         if (groups > ngroups)
4871                 groups = ngroups;
4872         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4873                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4874
4875         /* bitmaps and block group descriptor blocks */
4876         ret += groups + gdpblocks;
4877
4878         /* Blocks for super block, inode, quota and xattr blocks */
4879         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4880
4881         return ret;
4882 }
4883
4884 /*
4885  * Calculate the total number of credits to reserve to fit
4886  * the modification of a single pages into a single transaction,
4887  * which may include multiple chunks of block allocations.
4888  *
4889  * This could be called via ext4_write_begin()
4890  *
4891  * We need to consider the worse case, when
4892  * one new block per extent.
4893  */
4894 int ext4_writepage_trans_blocks(struct inode *inode)
4895 {
4896         int bpp = ext4_journal_blocks_per_page(inode);
4897         int ret;
4898
4899         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4900
4901         /* Account for data blocks for journalled mode */
4902         if (ext4_should_journal_data(inode))
4903                 ret += bpp;
4904         return ret;
4905 }
4906
4907 /*
4908  * Calculate the journal credits for a chunk of data modification.
4909  *
4910  * This is called from DIO, fallocate or whoever calling
4911  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4912  *
4913  * journal buffers for data blocks are not included here, as DIO
4914  * and fallocate do no need to journal data buffers.
4915  */
4916 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4917 {
4918         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4919 }
4920
4921 /*
4922  * The caller must have previously called ext4_reserve_inode_write().
4923  * Give this, we know that the caller already has write access to iloc->bh.
4924  */
4925 int ext4_mark_iloc_dirty(handle_t *handle,
4926                          struct inode *inode, struct ext4_iloc *iloc)
4927 {
4928         int err = 0;
4929
4930         if (IS_I_VERSION(inode))
4931                 inode_inc_iversion(inode);
4932
4933         /* the do_update_inode consumes one bh->b_count */
4934         get_bh(iloc->bh);
4935
4936         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4937         err = ext4_do_update_inode(handle, inode, iloc);
4938         put_bh(iloc->bh);
4939         return err;
4940 }
4941
4942 /*
4943  * On success, We end up with an outstanding reference count against
4944  * iloc->bh.  This _must_ be cleaned up later.
4945  */
4946
4947 int
4948 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4949                          struct ext4_iloc *iloc)
4950 {
4951         int err;
4952
4953         err = ext4_get_inode_loc(inode, iloc);
4954         if (!err) {
4955                 BUFFER_TRACE(iloc->bh, "get_write_access");
4956                 err = ext4_journal_get_write_access(handle, iloc->bh);
4957                 if (err) {
4958                         brelse(iloc->bh);
4959                         iloc->bh = NULL;
4960                 }
4961         }
4962         ext4_std_error(inode->i_sb, err);
4963         return err;
4964 }
4965
4966 /*
4967  * Expand an inode by new_extra_isize bytes.
4968  * Returns 0 on success or negative error number on failure.
4969  */
4970 static int ext4_expand_extra_isize(struct inode *inode,
4971                                    unsigned int new_extra_isize,
4972                                    struct ext4_iloc iloc,
4973                                    handle_t *handle)
4974 {
4975         struct ext4_inode *raw_inode;
4976         struct ext4_xattr_ibody_header *header;
4977
4978         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4979                 return 0;
4980
4981         raw_inode = ext4_raw_inode(&iloc);
4982
4983         header = IHDR(inode, raw_inode);
4984
4985         /* No extended attributes present */
4986         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4987             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4988                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4989                         new_extra_isize);
4990                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4991                 return 0;
4992         }
4993
4994         /* try to expand with EAs present */
4995         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4996                                           raw_inode, handle);
4997 }
4998
4999 /*
5000  * What we do here is to mark the in-core inode as clean with respect to inode
5001  * dirtiness (it may still be data-dirty).
5002  * This means that the in-core inode may be reaped by prune_icache
5003  * without having to perform any I/O.  This is a very good thing,
5004  * because *any* task may call prune_icache - even ones which
5005  * have a transaction open against a different journal.
5006  *
5007  * Is this cheating?  Not really.  Sure, we haven't written the
5008  * inode out, but prune_icache isn't a user-visible syncing function.
5009  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5010  * we start and wait on commits.
5011  */
5012 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5013 {
5014         struct ext4_iloc iloc;
5015         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5016         static unsigned int mnt_count;
5017         int err, ret;
5018
5019         might_sleep();
5020         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5021         err = ext4_reserve_inode_write(handle, inode, &iloc);
5022         if (ext4_handle_valid(handle) &&
5023             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5024             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5025                 /*
5026                  * We need extra buffer credits since we may write into EA block
5027                  * with this same handle. If journal_extend fails, then it will
5028                  * only result in a minor loss of functionality for that inode.
5029                  * If this is felt to be critical, then e2fsck should be run to
5030                  * force a large enough s_min_extra_isize.
5031                  */
5032                 if ((jbd2_journal_extend(handle,
5033                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5034                         ret = ext4_expand_extra_isize(inode,
5035                                                       sbi->s_want_extra_isize,
5036                                                       iloc, handle);
5037                         if (ret) {
5038                                 ext4_set_inode_state(inode,
5039                                                      EXT4_STATE_NO_EXPAND);
5040                                 if (mnt_count !=
5041                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5042                                         ext4_warning(inode->i_sb,
5043                                         "Unable to expand inode %lu. Delete"
5044                                         " some EAs or run e2fsck.",
5045                                         inode->i_ino);
5046                                         mnt_count =
5047                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5048                                 }
5049                         }
5050                 }
5051         }
5052         if (!err)
5053                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5054         return err;
5055 }
5056
5057 /*
5058  * ext4_dirty_inode() is called from __mark_inode_dirty()
5059  *
5060  * We're really interested in the case where a file is being extended.
5061  * i_size has been changed by generic_commit_write() and we thus need
5062  * to include the updated inode in the current transaction.
5063  *
5064  * Also, dquot_alloc_block() will always dirty the inode when blocks
5065  * are allocated to the file.
5066  *
5067  * If the inode is marked synchronous, we don't honour that here - doing
5068  * so would cause a commit on atime updates, which we don't bother doing.
5069  * We handle synchronous inodes at the highest possible level.
5070  *
5071  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5072  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5073  * to copy into the on-disk inode structure are the timestamp files.
5074  */
5075 void ext4_dirty_inode(struct inode *inode, int flags)
5076 {
5077         handle_t *handle;
5078
5079         if (flags == I_DIRTY_TIME)
5080                 return;
5081         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5082         if (IS_ERR(handle))
5083                 goto out;
5084
5085         ext4_mark_inode_dirty(handle, inode);
5086
5087         ext4_journal_stop(handle);
5088 out:
5089         return;
5090 }
5091
5092 #if 0
5093 /*
5094  * Bind an inode's backing buffer_head into this transaction, to prevent
5095  * it from being flushed to disk early.  Unlike
5096  * ext4_reserve_inode_write, this leaves behind no bh reference and
5097  * returns no iloc structure, so the caller needs to repeat the iloc
5098  * lookup to mark the inode dirty later.
5099  */
5100 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5101 {
5102         struct ext4_iloc iloc;
5103
5104         int err = 0;
5105         if (handle) {
5106                 err = ext4_get_inode_loc(inode, &iloc);
5107                 if (!err) {
5108                         BUFFER_TRACE(iloc.bh, "get_write_access");
5109                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5110                         if (!err)
5111                                 err = ext4_handle_dirty_metadata(handle,
5112                                                                  NULL,
5113                                                                  iloc.bh);
5114                         brelse(iloc.bh);
5115                 }
5116         }
5117         ext4_std_error(inode->i_sb, err);
5118         return err;
5119 }
5120 #endif
5121
5122 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5123 {
5124         journal_t *journal;
5125         handle_t *handle;
5126         int err;
5127
5128         /*
5129          * We have to be very careful here: changing a data block's
5130          * journaling status dynamically is dangerous.  If we write a
5131          * data block to the journal, change the status and then delete
5132          * that block, we risk forgetting to revoke the old log record
5133          * from the journal and so a subsequent replay can corrupt data.
5134          * So, first we make sure that the journal is empty and that
5135          * nobody is changing anything.
5136          */
5137
5138         journal = EXT4_JOURNAL(inode);
5139         if (!journal)
5140                 return 0;
5141         if (is_journal_aborted(journal))
5142                 return -EROFS;
5143         /* We have to allocate physical blocks for delalloc blocks
5144          * before flushing journal. otherwise delalloc blocks can not
5145          * be allocated any more. even more truncate on delalloc blocks
5146          * could trigger BUG by flushing delalloc blocks in journal.
5147          * There is no delalloc block in non-journal data mode.
5148          */
5149         if (val && test_opt(inode->i_sb, DELALLOC)) {
5150                 err = ext4_alloc_da_blocks(inode);
5151                 if (err < 0)
5152                         return err;
5153         }
5154
5155         /* Wait for all existing dio workers */
5156         ext4_inode_block_unlocked_dio(inode);
5157         inode_dio_wait(inode);
5158
5159         jbd2_journal_lock_updates(journal);
5160
5161         /*
5162          * OK, there are no updates running now, and all cached data is
5163          * synced to disk.  We are now in a completely consistent state
5164          * which doesn't have anything in the journal, and we know that
5165          * no filesystem updates are running, so it is safe to modify
5166          * the inode's in-core data-journaling state flag now.
5167          */
5168
5169         if (val)
5170                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5171         else {
5172                 err = jbd2_journal_flush(journal);
5173                 if (err < 0) {
5174                         jbd2_journal_unlock_updates(journal);
5175                         ext4_inode_resume_unlocked_dio(inode);
5176                         return err;
5177                 }
5178                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5179         }
5180         ext4_set_aops(inode);
5181
5182         jbd2_journal_unlock_updates(journal);
5183         ext4_inode_resume_unlocked_dio(inode);
5184
5185         /* Finally we can mark the inode as dirty. */
5186
5187         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5188         if (IS_ERR(handle))
5189                 return PTR_ERR(handle);
5190
5191         err = ext4_mark_inode_dirty(handle, inode);
5192         ext4_handle_sync(handle);
5193         ext4_journal_stop(handle);
5194         ext4_std_error(inode->i_sb, err);
5195
5196         return err;
5197 }
5198
5199 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5200 {
5201         return !buffer_mapped(bh);
5202 }
5203
5204 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5205 {
5206         struct page *page = vmf->page;
5207         loff_t size;
5208         unsigned long len;
5209         int ret;
5210         struct file *file = vma->vm_file;
5211         struct inode *inode = file_inode(file);
5212         struct address_space *mapping = inode->i_mapping;
5213         handle_t *handle;
5214         get_block_t *get_block;
5215         int retries = 0;
5216
5217         sb_start_pagefault(inode->i_sb);
5218         file_update_time(vma->vm_file);
5219         /* Delalloc case is easy... */
5220         if (test_opt(inode->i_sb, DELALLOC) &&
5221             !ext4_should_journal_data(inode) &&
5222             !ext4_nonda_switch(inode->i_sb)) {
5223                 do {
5224                         ret = __block_page_mkwrite(vma, vmf,
5225                                                    ext4_da_get_block_prep);
5226                 } while (ret == -ENOSPC &&
5227                        ext4_should_retry_alloc(inode->i_sb, &retries));
5228                 goto out_ret;
5229         }
5230
5231         lock_page(page);
5232         size = i_size_read(inode);
5233         /* Page got truncated from under us? */
5234         if (page->mapping != mapping || page_offset(page) > size) {
5235                 unlock_page(page);
5236                 ret = VM_FAULT_NOPAGE;
5237                 goto out;
5238         }
5239
5240         if (page->index == size >> PAGE_CACHE_SHIFT)
5241                 len = size & ~PAGE_CACHE_MASK;
5242         else
5243                 len = PAGE_CACHE_SIZE;
5244         /*
5245          * Return if we have all the buffers mapped. This avoids the need to do
5246          * journal_start/journal_stop which can block and take a long time
5247          */
5248         if (page_has_buffers(page)) {
5249                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5250                                             0, len, NULL,
5251                                             ext4_bh_unmapped)) {
5252                         /* Wait so that we don't change page under IO */
5253                         wait_for_stable_page(page);
5254                         ret = VM_FAULT_LOCKED;
5255                         goto out;
5256                 }
5257         }
5258         unlock_page(page);
5259         /* OK, we need to fill the hole... */
5260         if (ext4_should_dioread_nolock(inode))
5261                 get_block = ext4_get_block_write;
5262         else
5263                 get_block = ext4_get_block;
5264 retry_alloc:
5265         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5266                                     ext4_writepage_trans_blocks(inode));
5267         if (IS_ERR(handle)) {
5268                 ret = VM_FAULT_SIGBUS;
5269                 goto out;
5270         }
5271         ret = __block_page_mkwrite(vma, vmf, get_block);
5272         if (!ret && ext4_should_journal_data(inode)) {
5273                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5274                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5275                         unlock_page(page);
5276                         ret = VM_FAULT_SIGBUS;
5277                         ext4_journal_stop(handle);
5278                         goto out;
5279                 }
5280                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5281         }
5282         ext4_journal_stop(handle);
5283         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5284                 goto retry_alloc;
5285 out_ret:
5286         ret = block_page_mkwrite_return(ret);
5287 out:
5288         sb_end_pagefault(inode->i_sb);
5289         return ret;
5290 }