657a98fa80b672664954ab243de231dc71264bbb
[sfrench/cifs-2.6.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40 #include <linux/iomap.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52                               struct ext4_inode_info *ei)
53 {
54         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55         __u32 csum;
56         __u16 dummy_csum = 0;
57         int offset = offsetof(struct ext4_inode, i_checksum_lo);
58         unsigned int csum_size = sizeof(dummy_csum);
59
60         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62         offset += csum_size;
63         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64                            EXT4_GOOD_OLD_INODE_SIZE - offset);
65
66         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67                 offset = offsetof(struct ext4_inode, i_checksum_hi);
68                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69                                    EXT4_GOOD_OLD_INODE_SIZE,
70                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
71                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73                                            csum_size);
74                         offset += csum_size;
75                 }
76                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
78         }
79
80         return csum;
81 }
82
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84                                   struct ext4_inode_info *ei)
85 {
86         __u32 provided, calculated;
87
88         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89             cpu_to_le32(EXT4_OS_LINUX) ||
90             !ext4_has_metadata_csum(inode->i_sb))
91                 return 1;
92
93         provided = le16_to_cpu(raw->i_checksum_lo);
94         calculated = ext4_inode_csum(inode, raw, ei);
95         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98         else
99                 calculated &= 0xFFFF;
100
101         return provided == calculated;
102 }
103
104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105                                 struct ext4_inode_info *ei)
106 {
107         __u32 csum;
108
109         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110             cpu_to_le32(EXT4_OS_LINUX) ||
111             !ext4_has_metadata_csum(inode->i_sb))
112                 return;
113
114         csum = ext4_inode_csum(inode, raw, ei);
115         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122                                               loff_t new_size)
123 {
124         trace_ext4_begin_ordered_truncate(inode, new_size);
125         /*
126          * If jinode is zero, then we never opened the file for
127          * writing, so there's no need to call
128          * jbd2_journal_begin_ordered_truncate() since there's no
129          * outstanding writes we need to flush.
130          */
131         if (!EXT4_I(inode)->jinode)
132                 return 0;
133         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134                                                    EXT4_I(inode)->jinode,
135                                                    new_size);
136 }
137
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139                                 unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143                                   int pextents);
144
145 /*
146  * Test whether an inode is a fast symlink.
147  */
148 int ext4_inode_is_fast_symlink(struct inode *inode)
149 {
150         int ea_blocks = EXT4_I(inode)->i_file_acl ?
151                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152
153         if (ext4_has_inline_data(inode))
154                 return 0;
155
156         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157 }
158
159 /*
160  * Restart the transaction associated with *handle.  This does a commit,
161  * so before we call here everything must be consistently dirtied against
162  * this transaction.
163  */
164 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
165                                  int nblocks)
166 {
167         int ret;
168
169         /*
170          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
171          * moment, get_block can be called only for blocks inside i_size since
172          * page cache has been already dropped and writes are blocked by
173          * i_mutex. So we can safely drop the i_data_sem here.
174          */
175         BUG_ON(EXT4_JOURNAL(inode) == NULL);
176         jbd_debug(2, "restarting handle %p\n", handle);
177         up_write(&EXT4_I(inode)->i_data_sem);
178         ret = ext4_journal_restart(handle, nblocks);
179         down_write(&EXT4_I(inode)->i_data_sem);
180         ext4_discard_preallocations(inode);
181
182         return ret;
183 }
184
185 /*
186  * Called at the last iput() if i_nlink is zero.
187  */
188 void ext4_evict_inode(struct inode *inode)
189 {
190         handle_t *handle;
191         int err;
192
193         trace_ext4_evict_inode(inode);
194
195         if (inode->i_nlink) {
196                 /*
197                  * When journalling data dirty buffers are tracked only in the
198                  * journal. So although mm thinks everything is clean and
199                  * ready for reaping the inode might still have some pages to
200                  * write in the running transaction or waiting to be
201                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
202                  * (via truncate_inode_pages()) to discard these buffers can
203                  * cause data loss. Also even if we did not discard these
204                  * buffers, we would have no way to find them after the inode
205                  * is reaped and thus user could see stale data if he tries to
206                  * read them before the transaction is checkpointed. So be
207                  * careful and force everything to disk here... We use
208                  * ei->i_datasync_tid to store the newest transaction
209                  * containing inode's data.
210                  *
211                  * Note that directories do not have this problem because they
212                  * don't use page cache.
213                  */
214                 if (inode->i_ino != EXT4_JOURNAL_INO &&
215                     ext4_should_journal_data(inode) &&
216                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
217                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
218                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
219
220                         jbd2_complete_transaction(journal, commit_tid);
221                         filemap_write_and_wait(&inode->i_data);
222                 }
223                 truncate_inode_pages_final(&inode->i_data);
224
225                 goto no_delete;
226         }
227
228         if (is_bad_inode(inode))
229                 goto no_delete;
230         dquot_initialize(inode);
231
232         if (ext4_should_order_data(inode))
233                 ext4_begin_ordered_truncate(inode, 0);
234         truncate_inode_pages_final(&inode->i_data);
235
236         /*
237          * Protect us against freezing - iput() caller didn't have to have any
238          * protection against it
239          */
240         sb_start_intwrite(inode->i_sb);
241         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
242                                     ext4_blocks_for_truncate(inode)+3);
243         if (IS_ERR(handle)) {
244                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
245                 /*
246                  * If we're going to skip the normal cleanup, we still need to
247                  * make sure that the in-core orphan linked list is properly
248                  * cleaned up.
249                  */
250                 ext4_orphan_del(NULL, inode);
251                 sb_end_intwrite(inode->i_sb);
252                 goto no_delete;
253         }
254
255         if (IS_SYNC(inode))
256                 ext4_handle_sync(handle);
257         inode->i_size = 0;
258         err = ext4_mark_inode_dirty(handle, inode);
259         if (err) {
260                 ext4_warning(inode->i_sb,
261                              "couldn't mark inode dirty (err %d)", err);
262                 goto stop_handle;
263         }
264         if (inode->i_blocks) {
265                 err = ext4_truncate(inode);
266                 if (err) {
267                         ext4_error(inode->i_sb,
268                                    "couldn't truncate inode %lu (err %d)",
269                                    inode->i_ino, err);
270                         goto stop_handle;
271                 }
272         }
273
274         /*
275          * ext4_ext_truncate() doesn't reserve any slop when it
276          * restarts journal transactions; therefore there may not be
277          * enough credits left in the handle to remove the inode from
278          * the orphan list and set the dtime field.
279          */
280         if (!ext4_handle_has_enough_credits(handle, 3)) {
281                 err = ext4_journal_extend(handle, 3);
282                 if (err > 0)
283                         err = ext4_journal_restart(handle, 3);
284                 if (err != 0) {
285                         ext4_warning(inode->i_sb,
286                                      "couldn't extend journal (err %d)", err);
287                 stop_handle:
288                         ext4_journal_stop(handle);
289                         ext4_orphan_del(NULL, inode);
290                         sb_end_intwrite(inode->i_sb);
291                         goto no_delete;
292                 }
293         }
294
295         /*
296          * Kill off the orphan record which ext4_truncate created.
297          * AKPM: I think this can be inside the above `if'.
298          * Note that ext4_orphan_del() has to be able to cope with the
299          * deletion of a non-existent orphan - this is because we don't
300          * know if ext4_truncate() actually created an orphan record.
301          * (Well, we could do this if we need to, but heck - it works)
302          */
303         ext4_orphan_del(handle, inode);
304         EXT4_I(inode)->i_dtime  = get_seconds();
305
306         /*
307          * One subtle ordering requirement: if anything has gone wrong
308          * (transaction abort, IO errors, whatever), then we can still
309          * do these next steps (the fs will already have been marked as
310          * having errors), but we can't free the inode if the mark_dirty
311          * fails.
312          */
313         if (ext4_mark_inode_dirty(handle, inode))
314                 /* If that failed, just do the required in-core inode clear. */
315                 ext4_clear_inode(inode);
316         else
317                 ext4_free_inode(handle, inode);
318         ext4_journal_stop(handle);
319         sb_end_intwrite(inode->i_sb);
320         return;
321 no_delete:
322         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
323 }
324
325 #ifdef CONFIG_QUOTA
326 qsize_t *ext4_get_reserved_space(struct inode *inode)
327 {
328         return &EXT4_I(inode)->i_reserved_quota;
329 }
330 #endif
331
332 /*
333  * Called with i_data_sem down, which is important since we can call
334  * ext4_discard_preallocations() from here.
335  */
336 void ext4_da_update_reserve_space(struct inode *inode,
337                                         int used, int quota_claim)
338 {
339         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
340         struct ext4_inode_info *ei = EXT4_I(inode);
341
342         spin_lock(&ei->i_block_reservation_lock);
343         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
344         if (unlikely(used > ei->i_reserved_data_blocks)) {
345                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
346                          "with only %d reserved data blocks",
347                          __func__, inode->i_ino, used,
348                          ei->i_reserved_data_blocks);
349                 WARN_ON(1);
350                 used = ei->i_reserved_data_blocks;
351         }
352
353         /* Update per-inode reservations */
354         ei->i_reserved_data_blocks -= used;
355         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
356
357         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
358
359         /* Update quota subsystem for data blocks */
360         if (quota_claim)
361                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
362         else {
363                 /*
364                  * We did fallocate with an offset that is already delayed
365                  * allocated. So on delayed allocated writeback we should
366                  * not re-claim the quota for fallocated blocks.
367                  */
368                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
369         }
370
371         /*
372          * If we have done all the pending block allocations and if
373          * there aren't any writers on the inode, we can discard the
374          * inode's preallocations.
375          */
376         if ((ei->i_reserved_data_blocks == 0) &&
377             (atomic_read(&inode->i_writecount) == 0))
378                 ext4_discard_preallocations(inode);
379 }
380
381 static int __check_block_validity(struct inode *inode, const char *func,
382                                 unsigned int line,
383                                 struct ext4_map_blocks *map)
384 {
385         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
386                                    map->m_len)) {
387                 ext4_error_inode(inode, func, line, map->m_pblk,
388                                  "lblock %lu mapped to illegal pblock "
389                                  "(length %d)", (unsigned long) map->m_lblk,
390                                  map->m_len);
391                 return -EFSCORRUPTED;
392         }
393         return 0;
394 }
395
396 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
397                        ext4_lblk_t len)
398 {
399         int ret;
400
401         if (ext4_encrypted_inode(inode))
402                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
403
404         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
405         if (ret > 0)
406                 ret = 0;
407
408         return ret;
409 }
410
411 #define check_block_validity(inode, map)        \
412         __check_block_validity((inode), __func__, __LINE__, (map))
413
414 #ifdef ES_AGGRESSIVE_TEST
415 static void ext4_map_blocks_es_recheck(handle_t *handle,
416                                        struct inode *inode,
417                                        struct ext4_map_blocks *es_map,
418                                        struct ext4_map_blocks *map,
419                                        int flags)
420 {
421         int retval;
422
423         map->m_flags = 0;
424         /*
425          * There is a race window that the result is not the same.
426          * e.g. xfstests #223 when dioread_nolock enables.  The reason
427          * is that we lookup a block mapping in extent status tree with
428          * out taking i_data_sem.  So at the time the unwritten extent
429          * could be converted.
430          */
431         down_read(&EXT4_I(inode)->i_data_sem);
432         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
433                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
434                                              EXT4_GET_BLOCKS_KEEP_SIZE);
435         } else {
436                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
437                                              EXT4_GET_BLOCKS_KEEP_SIZE);
438         }
439         up_read((&EXT4_I(inode)->i_data_sem));
440
441         /*
442          * We don't check m_len because extent will be collpased in status
443          * tree.  So the m_len might not equal.
444          */
445         if (es_map->m_lblk != map->m_lblk ||
446             es_map->m_flags != map->m_flags ||
447             es_map->m_pblk != map->m_pblk) {
448                 printk("ES cache assertion failed for inode: %lu "
449                        "es_cached ex [%d/%d/%llu/%x] != "
450                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
451                        inode->i_ino, es_map->m_lblk, es_map->m_len,
452                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
453                        map->m_len, map->m_pblk, map->m_flags,
454                        retval, flags);
455         }
456 }
457 #endif /* ES_AGGRESSIVE_TEST */
458
459 /*
460  * The ext4_map_blocks() function tries to look up the requested blocks,
461  * and returns if the blocks are already mapped.
462  *
463  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
464  * and store the allocated blocks in the result buffer head and mark it
465  * mapped.
466  *
467  * If file type is extents based, it will call ext4_ext_map_blocks(),
468  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
469  * based files
470  *
471  * On success, it returns the number of blocks being mapped or allocated.  if
472  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
473  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
474  *
475  * It returns 0 if plain look up failed (blocks have not been allocated), in
476  * that case, @map is returned as unmapped but we still do fill map->m_len to
477  * indicate the length of a hole starting at map->m_lblk.
478  *
479  * It returns the error in case of allocation failure.
480  */
481 int ext4_map_blocks(handle_t *handle, struct inode *inode,
482                     struct ext4_map_blocks *map, int flags)
483 {
484         struct extent_status es;
485         int retval;
486         int ret = 0;
487 #ifdef ES_AGGRESSIVE_TEST
488         struct ext4_map_blocks orig_map;
489
490         memcpy(&orig_map, map, sizeof(*map));
491 #endif
492
493         map->m_flags = 0;
494         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
495                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
496                   (unsigned long) map->m_lblk);
497
498         /*
499          * ext4_map_blocks returns an int, and m_len is an unsigned int
500          */
501         if (unlikely(map->m_len > INT_MAX))
502                 map->m_len = INT_MAX;
503
504         /* We can handle the block number less than EXT_MAX_BLOCKS */
505         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
506                 return -EFSCORRUPTED;
507
508         /* Lookup extent status tree firstly */
509         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
510                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
511                         map->m_pblk = ext4_es_pblock(&es) +
512                                         map->m_lblk - es.es_lblk;
513                         map->m_flags |= ext4_es_is_written(&es) ?
514                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
515                         retval = es.es_len - (map->m_lblk - es.es_lblk);
516                         if (retval > map->m_len)
517                                 retval = map->m_len;
518                         map->m_len = retval;
519                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
520                         map->m_pblk = 0;
521                         retval = es.es_len - (map->m_lblk - es.es_lblk);
522                         if (retval > map->m_len)
523                                 retval = map->m_len;
524                         map->m_len = retval;
525                         retval = 0;
526                 } else {
527                         BUG_ON(1);
528                 }
529 #ifdef ES_AGGRESSIVE_TEST
530                 ext4_map_blocks_es_recheck(handle, inode, map,
531                                            &orig_map, flags);
532 #endif
533                 goto found;
534         }
535
536         /*
537          * Try to see if we can get the block without requesting a new
538          * file system block.
539          */
540         down_read(&EXT4_I(inode)->i_data_sem);
541         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
542                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
543                                              EXT4_GET_BLOCKS_KEEP_SIZE);
544         } else {
545                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
546                                              EXT4_GET_BLOCKS_KEEP_SIZE);
547         }
548         if (retval > 0) {
549                 unsigned int status;
550
551                 if (unlikely(retval != map->m_len)) {
552                         ext4_warning(inode->i_sb,
553                                      "ES len assertion failed for inode "
554                                      "%lu: retval %d != map->m_len %d",
555                                      inode->i_ino, retval, map->m_len);
556                         WARN_ON(1);
557                 }
558
559                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
560                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
561                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
562                     !(status & EXTENT_STATUS_WRITTEN) &&
563                     ext4_find_delalloc_range(inode, map->m_lblk,
564                                              map->m_lblk + map->m_len - 1))
565                         status |= EXTENT_STATUS_DELAYED;
566                 ret = ext4_es_insert_extent(inode, map->m_lblk,
567                                             map->m_len, map->m_pblk, status);
568                 if (ret < 0)
569                         retval = ret;
570         }
571         up_read((&EXT4_I(inode)->i_data_sem));
572
573 found:
574         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
575                 ret = check_block_validity(inode, map);
576                 if (ret != 0)
577                         return ret;
578         }
579
580         /* If it is only a block(s) look up */
581         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
582                 return retval;
583
584         /*
585          * Returns if the blocks have already allocated
586          *
587          * Note that if blocks have been preallocated
588          * ext4_ext_get_block() returns the create = 0
589          * with buffer head unmapped.
590          */
591         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
592                 /*
593                  * If we need to convert extent to unwritten
594                  * we continue and do the actual work in
595                  * ext4_ext_map_blocks()
596                  */
597                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
598                         return retval;
599
600         /*
601          * Here we clear m_flags because after allocating an new extent,
602          * it will be set again.
603          */
604         map->m_flags &= ~EXT4_MAP_FLAGS;
605
606         /*
607          * New blocks allocate and/or writing to unwritten extent
608          * will possibly result in updating i_data, so we take
609          * the write lock of i_data_sem, and call get_block()
610          * with create == 1 flag.
611          */
612         down_write(&EXT4_I(inode)->i_data_sem);
613
614         /*
615          * We need to check for EXT4 here because migrate
616          * could have changed the inode type in between
617          */
618         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
619                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
620         } else {
621                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
622
623                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
624                         /*
625                          * We allocated new blocks which will result in
626                          * i_data's format changing.  Force the migrate
627                          * to fail by clearing migrate flags
628                          */
629                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
630                 }
631
632                 /*
633                  * Update reserved blocks/metadata blocks after successful
634                  * block allocation which had been deferred till now. We don't
635                  * support fallocate for non extent files. So we can update
636                  * reserve space here.
637                  */
638                 if ((retval > 0) &&
639                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
640                         ext4_da_update_reserve_space(inode, retval, 1);
641         }
642
643         if (retval > 0) {
644                 unsigned int status;
645
646                 if (unlikely(retval != map->m_len)) {
647                         ext4_warning(inode->i_sb,
648                                      "ES len assertion failed for inode "
649                                      "%lu: retval %d != map->m_len %d",
650                                      inode->i_ino, retval, map->m_len);
651                         WARN_ON(1);
652                 }
653
654                 /*
655                  * We have to zeroout blocks before inserting them into extent
656                  * status tree. Otherwise someone could look them up there and
657                  * use them before they are really zeroed. We also have to
658                  * unmap metadata before zeroing as otherwise writeback can
659                  * overwrite zeros with stale data from block device.
660                  */
661                 if (flags & EXT4_GET_BLOCKS_ZERO &&
662                     map->m_flags & EXT4_MAP_MAPPED &&
663                     map->m_flags & EXT4_MAP_NEW) {
664                         clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
665                                            map->m_len);
666                         ret = ext4_issue_zeroout(inode, map->m_lblk,
667                                                  map->m_pblk, map->m_len);
668                         if (ret) {
669                                 retval = ret;
670                                 goto out_sem;
671                         }
672                 }
673
674                 /*
675                  * If the extent has been zeroed out, we don't need to update
676                  * extent status tree.
677                  */
678                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
679                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
680                         if (ext4_es_is_written(&es))
681                                 goto out_sem;
682                 }
683                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
684                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
685                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
686                     !(status & EXTENT_STATUS_WRITTEN) &&
687                     ext4_find_delalloc_range(inode, map->m_lblk,
688                                              map->m_lblk + map->m_len - 1))
689                         status |= EXTENT_STATUS_DELAYED;
690                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
691                                             map->m_pblk, status);
692                 if (ret < 0) {
693                         retval = ret;
694                         goto out_sem;
695                 }
696         }
697
698 out_sem:
699         up_write((&EXT4_I(inode)->i_data_sem));
700         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
701                 ret = check_block_validity(inode, map);
702                 if (ret != 0)
703                         return ret;
704
705                 /*
706                  * Inodes with freshly allocated blocks where contents will be
707                  * visible after transaction commit must be on transaction's
708                  * ordered data list.
709                  */
710                 if (map->m_flags & EXT4_MAP_NEW &&
711                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
712                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
713                     !IS_NOQUOTA(inode) &&
714                     ext4_should_order_data(inode)) {
715                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
716                                 ret = ext4_jbd2_inode_add_wait(handle, inode);
717                         else
718                                 ret = ext4_jbd2_inode_add_write(handle, inode);
719                         if (ret)
720                                 return ret;
721                 }
722         }
723         return retval;
724 }
725
726 /*
727  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
728  * we have to be careful as someone else may be manipulating b_state as well.
729  */
730 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
731 {
732         unsigned long old_state;
733         unsigned long new_state;
734
735         flags &= EXT4_MAP_FLAGS;
736
737         /* Dummy buffer_head? Set non-atomically. */
738         if (!bh->b_page) {
739                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
740                 return;
741         }
742         /*
743          * Someone else may be modifying b_state. Be careful! This is ugly but
744          * once we get rid of using bh as a container for mapping information
745          * to pass to / from get_block functions, this can go away.
746          */
747         do {
748                 old_state = READ_ONCE(bh->b_state);
749                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
750         } while (unlikely(
751                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
752 }
753
754 static int _ext4_get_block(struct inode *inode, sector_t iblock,
755                            struct buffer_head *bh, int flags)
756 {
757         struct ext4_map_blocks map;
758         int ret = 0;
759
760         if (ext4_has_inline_data(inode))
761                 return -ERANGE;
762
763         map.m_lblk = iblock;
764         map.m_len = bh->b_size >> inode->i_blkbits;
765
766         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
767                               flags);
768         if (ret > 0) {
769                 map_bh(bh, inode->i_sb, map.m_pblk);
770                 ext4_update_bh_state(bh, map.m_flags);
771                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
772                 ret = 0;
773         } else if (ret == 0) {
774                 /* hole case, need to fill in bh->b_size */
775                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
776         }
777         return ret;
778 }
779
780 int ext4_get_block(struct inode *inode, sector_t iblock,
781                    struct buffer_head *bh, int create)
782 {
783         return _ext4_get_block(inode, iblock, bh,
784                                create ? EXT4_GET_BLOCKS_CREATE : 0);
785 }
786
787 /*
788  * Get block function used when preparing for buffered write if we require
789  * creating an unwritten extent if blocks haven't been allocated.  The extent
790  * will be converted to written after the IO is complete.
791  */
792 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
793                              struct buffer_head *bh_result, int create)
794 {
795         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
796                    inode->i_ino, create);
797         return _ext4_get_block(inode, iblock, bh_result,
798                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
799 }
800
801 /* Maximum number of blocks we map for direct IO at once. */
802 #define DIO_MAX_BLOCKS 4096
803
804 /*
805  * Get blocks function for the cases that need to start a transaction -
806  * generally difference cases of direct IO and DAX IO. It also handles retries
807  * in case of ENOSPC.
808  */
809 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
810                                 struct buffer_head *bh_result, int flags)
811 {
812         int dio_credits;
813         handle_t *handle;
814         int retries = 0;
815         int ret;
816
817         /* Trim mapping request to maximum we can map at once for DIO */
818         if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
819                 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
820         dio_credits = ext4_chunk_trans_blocks(inode,
821                                       bh_result->b_size >> inode->i_blkbits);
822 retry:
823         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
824         if (IS_ERR(handle))
825                 return PTR_ERR(handle);
826
827         ret = _ext4_get_block(inode, iblock, bh_result, flags);
828         ext4_journal_stop(handle);
829
830         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
831                 goto retry;
832         return ret;
833 }
834
835 /* Get block function for DIO reads and writes to inodes without extents */
836 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
837                        struct buffer_head *bh, int create)
838 {
839         /* We don't expect handle for direct IO */
840         WARN_ON_ONCE(ext4_journal_current_handle());
841
842         if (!create)
843                 return _ext4_get_block(inode, iblock, bh, 0);
844         return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
845 }
846
847 /*
848  * Get block function for AIO DIO writes when we create unwritten extent if
849  * blocks are not allocated yet. The extent will be converted to written
850  * after IO is complete.
851  */
852 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
853                 sector_t iblock, struct buffer_head *bh_result, int create)
854 {
855         int ret;
856
857         /* We don't expect handle for direct IO */
858         WARN_ON_ONCE(ext4_journal_current_handle());
859
860         ret = ext4_get_block_trans(inode, iblock, bh_result,
861                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
862
863         /*
864          * When doing DIO using unwritten extents, we need io_end to convert
865          * unwritten extents to written on IO completion. We allocate io_end
866          * once we spot unwritten extent and store it in b_private. Generic
867          * DIO code keeps b_private set and furthermore passes the value to
868          * our completion callback in 'private' argument.
869          */
870         if (!ret && buffer_unwritten(bh_result)) {
871                 if (!bh_result->b_private) {
872                         ext4_io_end_t *io_end;
873
874                         io_end = ext4_init_io_end(inode, GFP_KERNEL);
875                         if (!io_end)
876                                 return -ENOMEM;
877                         bh_result->b_private = io_end;
878                         ext4_set_io_unwritten_flag(inode, io_end);
879                 }
880                 set_buffer_defer_completion(bh_result);
881         }
882
883         return ret;
884 }
885
886 /*
887  * Get block function for non-AIO DIO writes when we create unwritten extent if
888  * blocks are not allocated yet. The extent will be converted to written
889  * after IO is complete from ext4_ext_direct_IO() function.
890  */
891 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
892                 sector_t iblock, struct buffer_head *bh_result, int create)
893 {
894         int ret;
895
896         /* We don't expect handle for direct IO */
897         WARN_ON_ONCE(ext4_journal_current_handle());
898
899         ret = ext4_get_block_trans(inode, iblock, bh_result,
900                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
901
902         /*
903          * Mark inode as having pending DIO writes to unwritten extents.
904          * ext4_ext_direct_IO() checks this flag and converts extents to
905          * written.
906          */
907         if (!ret && buffer_unwritten(bh_result))
908                 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
909
910         return ret;
911 }
912
913 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
914                    struct buffer_head *bh_result, int create)
915 {
916         int ret;
917
918         ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
919                    inode->i_ino, create);
920         /* We don't expect handle for direct IO */
921         WARN_ON_ONCE(ext4_journal_current_handle());
922
923         ret = _ext4_get_block(inode, iblock, bh_result, 0);
924         /*
925          * Blocks should have been preallocated! ext4_file_write_iter() checks
926          * that.
927          */
928         WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
929
930         return ret;
931 }
932
933
934 /*
935  * `handle' can be NULL if create is zero
936  */
937 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
938                                 ext4_lblk_t block, int map_flags)
939 {
940         struct ext4_map_blocks map;
941         struct buffer_head *bh;
942         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
943         int err;
944
945         J_ASSERT(handle != NULL || create == 0);
946
947         map.m_lblk = block;
948         map.m_len = 1;
949         err = ext4_map_blocks(handle, inode, &map, map_flags);
950
951         if (err == 0)
952                 return create ? ERR_PTR(-ENOSPC) : NULL;
953         if (err < 0)
954                 return ERR_PTR(err);
955
956         bh = sb_getblk(inode->i_sb, map.m_pblk);
957         if (unlikely(!bh))
958                 return ERR_PTR(-ENOMEM);
959         if (map.m_flags & EXT4_MAP_NEW) {
960                 J_ASSERT(create != 0);
961                 J_ASSERT(handle != NULL);
962
963                 /*
964                  * Now that we do not always journal data, we should
965                  * keep in mind whether this should always journal the
966                  * new buffer as metadata.  For now, regular file
967                  * writes use ext4_get_block instead, so it's not a
968                  * problem.
969                  */
970                 lock_buffer(bh);
971                 BUFFER_TRACE(bh, "call get_create_access");
972                 err = ext4_journal_get_create_access(handle, bh);
973                 if (unlikely(err)) {
974                         unlock_buffer(bh);
975                         goto errout;
976                 }
977                 if (!buffer_uptodate(bh)) {
978                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
979                         set_buffer_uptodate(bh);
980                 }
981                 unlock_buffer(bh);
982                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
983                 err = ext4_handle_dirty_metadata(handle, inode, bh);
984                 if (unlikely(err))
985                         goto errout;
986         } else
987                 BUFFER_TRACE(bh, "not a new buffer");
988         return bh;
989 errout:
990         brelse(bh);
991         return ERR_PTR(err);
992 }
993
994 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
995                                ext4_lblk_t block, int map_flags)
996 {
997         struct buffer_head *bh;
998
999         bh = ext4_getblk(handle, inode, block, map_flags);
1000         if (IS_ERR(bh))
1001                 return bh;
1002         if (!bh || buffer_uptodate(bh))
1003                 return bh;
1004         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1005         wait_on_buffer(bh);
1006         if (buffer_uptodate(bh))
1007                 return bh;
1008         put_bh(bh);
1009         return ERR_PTR(-EIO);
1010 }
1011
1012 int ext4_walk_page_buffers(handle_t *handle,
1013                            struct buffer_head *head,
1014                            unsigned from,
1015                            unsigned to,
1016                            int *partial,
1017                            int (*fn)(handle_t *handle,
1018                                      struct buffer_head *bh))
1019 {
1020         struct buffer_head *bh;
1021         unsigned block_start, block_end;
1022         unsigned blocksize = head->b_size;
1023         int err, ret = 0;
1024         struct buffer_head *next;
1025
1026         for (bh = head, block_start = 0;
1027              ret == 0 && (bh != head || !block_start);
1028              block_start = block_end, bh = next) {
1029                 next = bh->b_this_page;
1030                 block_end = block_start + blocksize;
1031                 if (block_end <= from || block_start >= to) {
1032                         if (partial && !buffer_uptodate(bh))
1033                                 *partial = 1;
1034                         continue;
1035                 }
1036                 err = (*fn)(handle, bh);
1037                 if (!ret)
1038                         ret = err;
1039         }
1040         return ret;
1041 }
1042
1043 /*
1044  * To preserve ordering, it is essential that the hole instantiation and
1045  * the data write be encapsulated in a single transaction.  We cannot
1046  * close off a transaction and start a new one between the ext4_get_block()
1047  * and the commit_write().  So doing the jbd2_journal_start at the start of
1048  * prepare_write() is the right place.
1049  *
1050  * Also, this function can nest inside ext4_writepage().  In that case, we
1051  * *know* that ext4_writepage() has generated enough buffer credits to do the
1052  * whole page.  So we won't block on the journal in that case, which is good,
1053  * because the caller may be PF_MEMALLOC.
1054  *
1055  * By accident, ext4 can be reentered when a transaction is open via
1056  * quota file writes.  If we were to commit the transaction while thus
1057  * reentered, there can be a deadlock - we would be holding a quota
1058  * lock, and the commit would never complete if another thread had a
1059  * transaction open and was blocking on the quota lock - a ranking
1060  * violation.
1061  *
1062  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1063  * will _not_ run commit under these circumstances because handle->h_ref
1064  * is elevated.  We'll still have enough credits for the tiny quotafile
1065  * write.
1066  */
1067 int do_journal_get_write_access(handle_t *handle,
1068                                 struct buffer_head *bh)
1069 {
1070         int dirty = buffer_dirty(bh);
1071         int ret;
1072
1073         if (!buffer_mapped(bh) || buffer_freed(bh))
1074                 return 0;
1075         /*
1076          * __block_write_begin() could have dirtied some buffers. Clean
1077          * the dirty bit as jbd2_journal_get_write_access() could complain
1078          * otherwise about fs integrity issues. Setting of the dirty bit
1079          * by __block_write_begin() isn't a real problem here as we clear
1080          * the bit before releasing a page lock and thus writeback cannot
1081          * ever write the buffer.
1082          */
1083         if (dirty)
1084                 clear_buffer_dirty(bh);
1085         BUFFER_TRACE(bh, "get write access");
1086         ret = ext4_journal_get_write_access(handle, bh);
1087         if (!ret && dirty)
1088                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1089         return ret;
1090 }
1091
1092 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1093 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1094                                   get_block_t *get_block)
1095 {
1096         unsigned from = pos & (PAGE_SIZE - 1);
1097         unsigned to = from + len;
1098         struct inode *inode = page->mapping->host;
1099         unsigned block_start, block_end;
1100         sector_t block;
1101         int err = 0;
1102         unsigned blocksize = inode->i_sb->s_blocksize;
1103         unsigned bbits;
1104         struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1105         bool decrypt = false;
1106
1107         BUG_ON(!PageLocked(page));
1108         BUG_ON(from > PAGE_SIZE);
1109         BUG_ON(to > PAGE_SIZE);
1110         BUG_ON(from > to);
1111
1112         if (!page_has_buffers(page))
1113                 create_empty_buffers(page, blocksize, 0);
1114         head = page_buffers(page);
1115         bbits = ilog2(blocksize);
1116         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1117
1118         for (bh = head, block_start = 0; bh != head || !block_start;
1119             block++, block_start = block_end, bh = bh->b_this_page) {
1120                 block_end = block_start + blocksize;
1121                 if (block_end <= from || block_start >= to) {
1122                         if (PageUptodate(page)) {
1123                                 if (!buffer_uptodate(bh))
1124                                         set_buffer_uptodate(bh);
1125                         }
1126                         continue;
1127                 }
1128                 if (buffer_new(bh))
1129                         clear_buffer_new(bh);
1130                 if (!buffer_mapped(bh)) {
1131                         WARN_ON(bh->b_size != blocksize);
1132                         err = get_block(inode, block, bh, 1);
1133                         if (err)
1134                                 break;
1135                         if (buffer_new(bh)) {
1136                                 clean_bdev_bh_alias(bh);
1137                                 if (PageUptodate(page)) {
1138                                         clear_buffer_new(bh);
1139                                         set_buffer_uptodate(bh);
1140                                         mark_buffer_dirty(bh);
1141                                         continue;
1142                                 }
1143                                 if (block_end > to || block_start < from)
1144                                         zero_user_segments(page, to, block_end,
1145                                                            block_start, from);
1146                                 continue;
1147                         }
1148                 }
1149                 if (PageUptodate(page)) {
1150                         if (!buffer_uptodate(bh))
1151                                 set_buffer_uptodate(bh);
1152                         continue;
1153                 }
1154                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1155                     !buffer_unwritten(bh) &&
1156                     (block_start < from || block_end > to)) {
1157                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1158                         *wait_bh++ = bh;
1159                         decrypt = ext4_encrypted_inode(inode) &&
1160                                 S_ISREG(inode->i_mode);
1161                 }
1162         }
1163         /*
1164          * If we issued read requests, let them complete.
1165          */
1166         while (wait_bh > wait) {
1167                 wait_on_buffer(*--wait_bh);
1168                 if (!buffer_uptodate(*wait_bh))
1169                         err = -EIO;
1170         }
1171         if (unlikely(err))
1172                 page_zero_new_buffers(page, from, to);
1173         else if (decrypt)
1174                 err = fscrypt_decrypt_page(page->mapping->host, page,
1175                                 PAGE_SIZE, 0, page->index);
1176         return err;
1177 }
1178 #endif
1179
1180 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1181                             loff_t pos, unsigned len, unsigned flags,
1182                             struct page **pagep, void **fsdata)
1183 {
1184         struct inode *inode = mapping->host;
1185         int ret, needed_blocks;
1186         handle_t *handle;
1187         int retries = 0;
1188         struct page *page;
1189         pgoff_t index;
1190         unsigned from, to;
1191
1192         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1193                 return -EIO;
1194
1195         trace_ext4_write_begin(inode, pos, len, flags);
1196         /*
1197          * Reserve one block more for addition to orphan list in case
1198          * we allocate blocks but write fails for some reason
1199          */
1200         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1201         index = pos >> PAGE_SHIFT;
1202         from = pos & (PAGE_SIZE - 1);
1203         to = from + len;
1204
1205         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1206                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1207                                                     flags, pagep);
1208                 if (ret < 0)
1209                         return ret;
1210                 if (ret == 1)
1211                         return 0;
1212         }
1213
1214         /*
1215          * grab_cache_page_write_begin() can take a long time if the
1216          * system is thrashing due to memory pressure, or if the page
1217          * is being written back.  So grab it first before we start
1218          * the transaction handle.  This also allows us to allocate
1219          * the page (if needed) without using GFP_NOFS.
1220          */
1221 retry_grab:
1222         page = grab_cache_page_write_begin(mapping, index, flags);
1223         if (!page)
1224                 return -ENOMEM;
1225         unlock_page(page);
1226
1227 retry_journal:
1228         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1229         if (IS_ERR(handle)) {
1230                 put_page(page);
1231                 return PTR_ERR(handle);
1232         }
1233
1234         lock_page(page);
1235         if (page->mapping != mapping) {
1236                 /* The page got truncated from under us */
1237                 unlock_page(page);
1238                 put_page(page);
1239                 ext4_journal_stop(handle);
1240                 goto retry_grab;
1241         }
1242         /* In case writeback began while the page was unlocked */
1243         wait_for_stable_page(page);
1244
1245 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1246         if (ext4_should_dioread_nolock(inode))
1247                 ret = ext4_block_write_begin(page, pos, len,
1248                                              ext4_get_block_unwritten);
1249         else
1250                 ret = ext4_block_write_begin(page, pos, len,
1251                                              ext4_get_block);
1252 #else
1253         if (ext4_should_dioread_nolock(inode))
1254                 ret = __block_write_begin(page, pos, len,
1255                                           ext4_get_block_unwritten);
1256         else
1257                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1258 #endif
1259         if (!ret && ext4_should_journal_data(inode)) {
1260                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1261                                              from, to, NULL,
1262                                              do_journal_get_write_access);
1263         }
1264
1265         if (ret) {
1266                 unlock_page(page);
1267                 /*
1268                  * __block_write_begin may have instantiated a few blocks
1269                  * outside i_size.  Trim these off again. Don't need
1270                  * i_size_read because we hold i_mutex.
1271                  *
1272                  * Add inode to orphan list in case we crash before
1273                  * truncate finishes
1274                  */
1275                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1276                         ext4_orphan_add(handle, inode);
1277
1278                 ext4_journal_stop(handle);
1279                 if (pos + len > inode->i_size) {
1280                         ext4_truncate_failed_write(inode);
1281                         /*
1282                          * If truncate failed early the inode might
1283                          * still be on the orphan list; we need to
1284                          * make sure the inode is removed from the
1285                          * orphan list in that case.
1286                          */
1287                         if (inode->i_nlink)
1288                                 ext4_orphan_del(NULL, inode);
1289                 }
1290
1291                 if (ret == -ENOSPC &&
1292                     ext4_should_retry_alloc(inode->i_sb, &retries))
1293                         goto retry_journal;
1294                 put_page(page);
1295                 return ret;
1296         }
1297         *pagep = page;
1298         return ret;
1299 }
1300
1301 /* For write_end() in data=journal mode */
1302 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1303 {
1304         int ret;
1305         if (!buffer_mapped(bh) || buffer_freed(bh))
1306                 return 0;
1307         set_buffer_uptodate(bh);
1308         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1309         clear_buffer_meta(bh);
1310         clear_buffer_prio(bh);
1311         return ret;
1312 }
1313
1314 /*
1315  * We need to pick up the new inode size which generic_commit_write gave us
1316  * `file' can be NULL - eg, when called from page_symlink().
1317  *
1318  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1319  * buffers are managed internally.
1320  */
1321 static int ext4_write_end(struct file *file,
1322                           struct address_space *mapping,
1323                           loff_t pos, unsigned len, unsigned copied,
1324                           struct page *page, void *fsdata)
1325 {
1326         handle_t *handle = ext4_journal_current_handle();
1327         struct inode *inode = mapping->host;
1328         loff_t old_size = inode->i_size;
1329         int ret = 0, ret2;
1330         int i_size_changed = 0;
1331
1332         trace_ext4_write_end(inode, pos, len, copied);
1333         if (ext4_has_inline_data(inode)) {
1334                 ret = ext4_write_inline_data_end(inode, pos, len,
1335                                                  copied, page);
1336                 if (ret < 0) {
1337                         unlock_page(page);
1338                         put_page(page);
1339                         goto errout;
1340                 }
1341                 copied = ret;
1342         } else
1343                 copied = block_write_end(file, mapping, pos,
1344                                          len, copied, page, fsdata);
1345         /*
1346          * it's important to update i_size while still holding page lock:
1347          * page writeout could otherwise come in and zero beyond i_size.
1348          */
1349         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1350         unlock_page(page);
1351         put_page(page);
1352
1353         if (old_size < pos)
1354                 pagecache_isize_extended(inode, old_size, pos);
1355         /*
1356          * Don't mark the inode dirty under page lock. First, it unnecessarily
1357          * makes the holding time of page lock longer. Second, it forces lock
1358          * ordering of page lock and transaction start for journaling
1359          * filesystems.
1360          */
1361         if (i_size_changed)
1362                 ext4_mark_inode_dirty(handle, inode);
1363
1364         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1365                 /* if we have allocated more blocks and copied
1366                  * less. We will have blocks allocated outside
1367                  * inode->i_size. So truncate them
1368                  */
1369                 ext4_orphan_add(handle, inode);
1370 errout:
1371         ret2 = ext4_journal_stop(handle);
1372         if (!ret)
1373                 ret = ret2;
1374
1375         if (pos + len > inode->i_size) {
1376                 ext4_truncate_failed_write(inode);
1377                 /*
1378                  * If truncate failed early the inode might still be
1379                  * on the orphan list; we need to make sure the inode
1380                  * is removed from the orphan list in that case.
1381                  */
1382                 if (inode->i_nlink)
1383                         ext4_orphan_del(NULL, inode);
1384         }
1385
1386         return ret ? ret : copied;
1387 }
1388
1389 /*
1390  * This is a private version of page_zero_new_buffers() which doesn't
1391  * set the buffer to be dirty, since in data=journalled mode we need
1392  * to call ext4_handle_dirty_metadata() instead.
1393  */
1394 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1395                                             struct page *page,
1396                                             unsigned from, unsigned to)
1397 {
1398         unsigned int block_start = 0, block_end;
1399         struct buffer_head *head, *bh;
1400
1401         bh = head = page_buffers(page);
1402         do {
1403                 block_end = block_start + bh->b_size;
1404                 if (buffer_new(bh)) {
1405                         if (block_end > from && block_start < to) {
1406                                 if (!PageUptodate(page)) {
1407                                         unsigned start, size;
1408
1409                                         start = max(from, block_start);
1410                                         size = min(to, block_end) - start;
1411
1412                                         zero_user(page, start, size);
1413                                         write_end_fn(handle, bh);
1414                                 }
1415                                 clear_buffer_new(bh);
1416                         }
1417                 }
1418                 block_start = block_end;
1419                 bh = bh->b_this_page;
1420         } while (bh != head);
1421 }
1422
1423 static int ext4_journalled_write_end(struct file *file,
1424                                      struct address_space *mapping,
1425                                      loff_t pos, unsigned len, unsigned copied,
1426                                      struct page *page, void *fsdata)
1427 {
1428         handle_t *handle = ext4_journal_current_handle();
1429         struct inode *inode = mapping->host;
1430         loff_t old_size = inode->i_size;
1431         int ret = 0, ret2;
1432         int partial = 0;
1433         unsigned from, to;
1434         int size_changed = 0;
1435
1436         trace_ext4_journalled_write_end(inode, pos, len, copied);
1437         from = pos & (PAGE_SIZE - 1);
1438         to = from + len;
1439
1440         BUG_ON(!ext4_handle_valid(handle));
1441
1442         if (ext4_has_inline_data(inode)) {
1443                 ret = ext4_write_inline_data_end(inode, pos, len,
1444                                                  copied, page);
1445                 if (ret < 0) {
1446                         unlock_page(page);
1447                         put_page(page);
1448                         goto errout;
1449                 }
1450                 copied = ret;
1451         } else if (unlikely(copied < len) && !PageUptodate(page)) {
1452                 copied = 0;
1453                 ext4_journalled_zero_new_buffers(handle, page, from, to);
1454         } else {
1455                 if (unlikely(copied < len))
1456                         ext4_journalled_zero_new_buffers(handle, page,
1457                                                          from + copied, to);
1458                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1459                                              from + copied, &partial,
1460                                              write_end_fn);
1461                 if (!partial)
1462                         SetPageUptodate(page);
1463         }
1464         size_changed = ext4_update_inode_size(inode, pos + copied);
1465         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1466         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1467         unlock_page(page);
1468         put_page(page);
1469
1470         if (old_size < pos)
1471                 pagecache_isize_extended(inode, old_size, pos);
1472
1473         if (size_changed) {
1474                 ret2 = ext4_mark_inode_dirty(handle, inode);
1475                 if (!ret)
1476                         ret = ret2;
1477         }
1478
1479         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1480                 /* if we have allocated more blocks and copied
1481                  * less. We will have blocks allocated outside
1482                  * inode->i_size. So truncate them
1483                  */
1484                 ext4_orphan_add(handle, inode);
1485
1486 errout:
1487         ret2 = ext4_journal_stop(handle);
1488         if (!ret)
1489                 ret = ret2;
1490         if (pos + len > inode->i_size) {
1491                 ext4_truncate_failed_write(inode);
1492                 /*
1493                  * If truncate failed early the inode might still be
1494                  * on the orphan list; we need to make sure the inode
1495                  * is removed from the orphan list in that case.
1496                  */
1497                 if (inode->i_nlink)
1498                         ext4_orphan_del(NULL, inode);
1499         }
1500
1501         return ret ? ret : copied;
1502 }
1503
1504 /*
1505  * Reserve space for a single cluster
1506  */
1507 static int ext4_da_reserve_space(struct inode *inode)
1508 {
1509         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1510         struct ext4_inode_info *ei = EXT4_I(inode);
1511         int ret;
1512
1513         /*
1514          * We will charge metadata quota at writeout time; this saves
1515          * us from metadata over-estimation, though we may go over by
1516          * a small amount in the end.  Here we just reserve for data.
1517          */
1518         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1519         if (ret)
1520                 return ret;
1521
1522         spin_lock(&ei->i_block_reservation_lock);
1523         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1524                 spin_unlock(&ei->i_block_reservation_lock);
1525                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1526                 return -ENOSPC;
1527         }
1528         ei->i_reserved_data_blocks++;
1529         trace_ext4_da_reserve_space(inode);
1530         spin_unlock(&ei->i_block_reservation_lock);
1531
1532         return 0;       /* success */
1533 }
1534
1535 static void ext4_da_release_space(struct inode *inode, int to_free)
1536 {
1537         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1538         struct ext4_inode_info *ei = EXT4_I(inode);
1539
1540         if (!to_free)
1541                 return;         /* Nothing to release, exit */
1542
1543         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1544
1545         trace_ext4_da_release_space(inode, to_free);
1546         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1547                 /*
1548                  * if there aren't enough reserved blocks, then the
1549                  * counter is messed up somewhere.  Since this
1550                  * function is called from invalidate page, it's
1551                  * harmless to return without any action.
1552                  */
1553                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1554                          "ino %lu, to_free %d with only %d reserved "
1555                          "data blocks", inode->i_ino, to_free,
1556                          ei->i_reserved_data_blocks);
1557                 WARN_ON(1);
1558                 to_free = ei->i_reserved_data_blocks;
1559         }
1560         ei->i_reserved_data_blocks -= to_free;
1561
1562         /* update fs dirty data blocks counter */
1563         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1564
1565         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1566
1567         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1568 }
1569
1570 static void ext4_da_page_release_reservation(struct page *page,
1571                                              unsigned int offset,
1572                                              unsigned int length)
1573 {
1574         int to_release = 0, contiguous_blks = 0;
1575         struct buffer_head *head, *bh;
1576         unsigned int curr_off = 0;
1577         struct inode *inode = page->mapping->host;
1578         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1579         unsigned int stop = offset + length;
1580         int num_clusters;
1581         ext4_fsblk_t lblk;
1582
1583         BUG_ON(stop > PAGE_SIZE || stop < length);
1584
1585         head = page_buffers(page);
1586         bh = head;
1587         do {
1588                 unsigned int next_off = curr_off + bh->b_size;
1589
1590                 if (next_off > stop)
1591                         break;
1592
1593                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1594                         to_release++;
1595                         contiguous_blks++;
1596                         clear_buffer_delay(bh);
1597                 } else if (contiguous_blks) {
1598                         lblk = page->index <<
1599                                (PAGE_SHIFT - inode->i_blkbits);
1600                         lblk += (curr_off >> inode->i_blkbits) -
1601                                 contiguous_blks;
1602                         ext4_es_remove_extent(inode, lblk, contiguous_blks);
1603                         contiguous_blks = 0;
1604                 }
1605                 curr_off = next_off;
1606         } while ((bh = bh->b_this_page) != head);
1607
1608         if (contiguous_blks) {
1609                 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1610                 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1611                 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1612         }
1613
1614         /* If we have released all the blocks belonging to a cluster, then we
1615          * need to release the reserved space for that cluster. */
1616         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1617         while (num_clusters > 0) {
1618                 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1619                         ((num_clusters - 1) << sbi->s_cluster_bits);
1620                 if (sbi->s_cluster_ratio == 1 ||
1621                     !ext4_find_delalloc_cluster(inode, lblk))
1622                         ext4_da_release_space(inode, 1);
1623
1624                 num_clusters--;
1625         }
1626 }
1627
1628 /*
1629  * Delayed allocation stuff
1630  */
1631
1632 struct mpage_da_data {
1633         struct inode *inode;
1634         struct writeback_control *wbc;
1635
1636         pgoff_t first_page;     /* The first page to write */
1637         pgoff_t next_page;      /* Current page to examine */
1638         pgoff_t last_page;      /* Last page to examine */
1639         /*
1640          * Extent to map - this can be after first_page because that can be
1641          * fully mapped. We somewhat abuse m_flags to store whether the extent
1642          * is delalloc or unwritten.
1643          */
1644         struct ext4_map_blocks map;
1645         struct ext4_io_submit io_submit;        /* IO submission data */
1646         unsigned int do_map:1;
1647 };
1648
1649 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1650                                        bool invalidate)
1651 {
1652         int nr_pages, i;
1653         pgoff_t index, end;
1654         struct pagevec pvec;
1655         struct inode *inode = mpd->inode;
1656         struct address_space *mapping = inode->i_mapping;
1657
1658         /* This is necessary when next_page == 0. */
1659         if (mpd->first_page >= mpd->next_page)
1660                 return;
1661
1662         index = mpd->first_page;
1663         end   = mpd->next_page - 1;
1664         if (invalidate) {
1665                 ext4_lblk_t start, last;
1666                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1667                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1668                 ext4_es_remove_extent(inode, start, last - start + 1);
1669         }
1670
1671         pagevec_init(&pvec, 0);
1672         while (index <= end) {
1673                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1674                 if (nr_pages == 0)
1675                         break;
1676                 for (i = 0; i < nr_pages; i++) {
1677                         struct page *page = pvec.pages[i];
1678                         if (page->index > end)
1679                                 break;
1680                         BUG_ON(!PageLocked(page));
1681                         BUG_ON(PageWriteback(page));
1682                         if (invalidate) {
1683                                 if (page_mapped(page))
1684                                         clear_page_dirty_for_io(page);
1685                                 block_invalidatepage(page, 0, PAGE_SIZE);
1686                                 ClearPageUptodate(page);
1687                         }
1688                         unlock_page(page);
1689                 }
1690                 index = pvec.pages[nr_pages - 1]->index + 1;
1691                 pagevec_release(&pvec);
1692         }
1693 }
1694
1695 static void ext4_print_free_blocks(struct inode *inode)
1696 {
1697         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1698         struct super_block *sb = inode->i_sb;
1699         struct ext4_inode_info *ei = EXT4_I(inode);
1700
1701         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1702                EXT4_C2B(EXT4_SB(inode->i_sb),
1703                         ext4_count_free_clusters(sb)));
1704         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1705         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1706                (long long) EXT4_C2B(EXT4_SB(sb),
1707                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1708         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1709                (long long) EXT4_C2B(EXT4_SB(sb),
1710                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1711         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1712         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1713                  ei->i_reserved_data_blocks);
1714         return;
1715 }
1716
1717 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1718 {
1719         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1720 }
1721
1722 /*
1723  * This function is grabs code from the very beginning of
1724  * ext4_map_blocks, but assumes that the caller is from delayed write
1725  * time. This function looks up the requested blocks and sets the
1726  * buffer delay bit under the protection of i_data_sem.
1727  */
1728 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1729                               struct ext4_map_blocks *map,
1730                               struct buffer_head *bh)
1731 {
1732         struct extent_status es;
1733         int retval;
1734         sector_t invalid_block = ~((sector_t) 0xffff);
1735 #ifdef ES_AGGRESSIVE_TEST
1736         struct ext4_map_blocks orig_map;
1737
1738         memcpy(&orig_map, map, sizeof(*map));
1739 #endif
1740
1741         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1742                 invalid_block = ~0;
1743
1744         map->m_flags = 0;
1745         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1746                   "logical block %lu\n", inode->i_ino, map->m_len,
1747                   (unsigned long) map->m_lblk);
1748
1749         /* Lookup extent status tree firstly */
1750         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1751                 if (ext4_es_is_hole(&es)) {
1752                         retval = 0;
1753                         down_read(&EXT4_I(inode)->i_data_sem);
1754                         goto add_delayed;
1755                 }
1756
1757                 /*
1758                  * Delayed extent could be allocated by fallocate.
1759                  * So we need to check it.
1760                  */
1761                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1762                         map_bh(bh, inode->i_sb, invalid_block);
1763                         set_buffer_new(bh);
1764                         set_buffer_delay(bh);
1765                         return 0;
1766                 }
1767
1768                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1769                 retval = es.es_len - (iblock - es.es_lblk);
1770                 if (retval > map->m_len)
1771                         retval = map->m_len;
1772                 map->m_len = retval;
1773                 if (ext4_es_is_written(&es))
1774                         map->m_flags |= EXT4_MAP_MAPPED;
1775                 else if (ext4_es_is_unwritten(&es))
1776                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1777                 else
1778                         BUG_ON(1);
1779
1780 #ifdef ES_AGGRESSIVE_TEST
1781                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1782 #endif
1783                 return retval;
1784         }
1785
1786         /*
1787          * Try to see if we can get the block without requesting a new
1788          * file system block.
1789          */
1790         down_read(&EXT4_I(inode)->i_data_sem);
1791         if (ext4_has_inline_data(inode))
1792                 retval = 0;
1793         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1794                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1795         else
1796                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1797
1798 add_delayed:
1799         if (retval == 0) {
1800                 int ret;
1801                 /*
1802                  * XXX: __block_prepare_write() unmaps passed block,
1803                  * is it OK?
1804                  */
1805                 /*
1806                  * If the block was allocated from previously allocated cluster,
1807                  * then we don't need to reserve it again. However we still need
1808                  * to reserve metadata for every block we're going to write.
1809                  */
1810                 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1811                     !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1812                         ret = ext4_da_reserve_space(inode);
1813                         if (ret) {
1814                                 /* not enough space to reserve */
1815                                 retval = ret;
1816                                 goto out_unlock;
1817                         }
1818                 }
1819
1820                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1821                                             ~0, EXTENT_STATUS_DELAYED);
1822                 if (ret) {
1823                         retval = ret;
1824                         goto out_unlock;
1825                 }
1826
1827                 map_bh(bh, inode->i_sb, invalid_block);
1828                 set_buffer_new(bh);
1829                 set_buffer_delay(bh);
1830         } else if (retval > 0) {
1831                 int ret;
1832                 unsigned int status;
1833
1834                 if (unlikely(retval != map->m_len)) {
1835                         ext4_warning(inode->i_sb,
1836                                      "ES len assertion failed for inode "
1837                                      "%lu: retval %d != map->m_len %d",
1838                                      inode->i_ino, retval, map->m_len);
1839                         WARN_ON(1);
1840                 }
1841
1842                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1843                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1844                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1845                                             map->m_pblk, status);
1846                 if (ret != 0)
1847                         retval = ret;
1848         }
1849
1850 out_unlock:
1851         up_read((&EXT4_I(inode)->i_data_sem));
1852
1853         return retval;
1854 }
1855
1856 /*
1857  * This is a special get_block_t callback which is used by
1858  * ext4_da_write_begin().  It will either return mapped block or
1859  * reserve space for a single block.
1860  *
1861  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1862  * We also have b_blocknr = -1 and b_bdev initialized properly
1863  *
1864  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1865  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1866  * initialized properly.
1867  */
1868 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1869                            struct buffer_head *bh, int create)
1870 {
1871         struct ext4_map_blocks map;
1872         int ret = 0;
1873
1874         BUG_ON(create == 0);
1875         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1876
1877         map.m_lblk = iblock;
1878         map.m_len = 1;
1879
1880         /*
1881          * first, we need to know whether the block is allocated already
1882          * preallocated blocks are unmapped but should treated
1883          * the same as allocated blocks.
1884          */
1885         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1886         if (ret <= 0)
1887                 return ret;
1888
1889         map_bh(bh, inode->i_sb, map.m_pblk);
1890         ext4_update_bh_state(bh, map.m_flags);
1891
1892         if (buffer_unwritten(bh)) {
1893                 /* A delayed write to unwritten bh should be marked
1894                  * new and mapped.  Mapped ensures that we don't do
1895                  * get_block multiple times when we write to the same
1896                  * offset and new ensures that we do proper zero out
1897                  * for partial write.
1898                  */
1899                 set_buffer_new(bh);
1900                 set_buffer_mapped(bh);
1901         }
1902         return 0;
1903 }
1904
1905 static int bget_one(handle_t *handle, struct buffer_head *bh)
1906 {
1907         get_bh(bh);
1908         return 0;
1909 }
1910
1911 static int bput_one(handle_t *handle, struct buffer_head *bh)
1912 {
1913         put_bh(bh);
1914         return 0;
1915 }
1916
1917 static int __ext4_journalled_writepage(struct page *page,
1918                                        unsigned int len)
1919 {
1920         struct address_space *mapping = page->mapping;
1921         struct inode *inode = mapping->host;
1922         struct buffer_head *page_bufs = NULL;
1923         handle_t *handle = NULL;
1924         int ret = 0, err = 0;
1925         int inline_data = ext4_has_inline_data(inode);
1926         struct buffer_head *inode_bh = NULL;
1927
1928         ClearPageChecked(page);
1929
1930         if (inline_data) {
1931                 BUG_ON(page->index != 0);
1932                 BUG_ON(len > ext4_get_max_inline_size(inode));
1933                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1934                 if (inode_bh == NULL)
1935                         goto out;
1936         } else {
1937                 page_bufs = page_buffers(page);
1938                 if (!page_bufs) {
1939                         BUG();
1940                         goto out;
1941                 }
1942                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1943                                        NULL, bget_one);
1944         }
1945         /*
1946          * We need to release the page lock before we start the
1947          * journal, so grab a reference so the page won't disappear
1948          * out from under us.
1949          */
1950         get_page(page);
1951         unlock_page(page);
1952
1953         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1954                                     ext4_writepage_trans_blocks(inode));
1955         if (IS_ERR(handle)) {
1956                 ret = PTR_ERR(handle);
1957                 put_page(page);
1958                 goto out_no_pagelock;
1959         }
1960         BUG_ON(!ext4_handle_valid(handle));
1961
1962         lock_page(page);
1963         put_page(page);
1964         if (page->mapping != mapping) {
1965                 /* The page got truncated from under us */
1966                 ext4_journal_stop(handle);
1967                 ret = 0;
1968                 goto out;
1969         }
1970
1971         if (inline_data) {
1972                 BUFFER_TRACE(inode_bh, "get write access");
1973                 ret = ext4_journal_get_write_access(handle, inode_bh);
1974
1975                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1976
1977         } else {
1978                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1979                                              do_journal_get_write_access);
1980
1981                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1982                                              write_end_fn);
1983         }
1984         if (ret == 0)
1985                 ret = err;
1986         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1987         err = ext4_journal_stop(handle);
1988         if (!ret)
1989                 ret = err;
1990
1991         if (!ext4_has_inline_data(inode))
1992                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1993                                        NULL, bput_one);
1994         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1995 out:
1996         unlock_page(page);
1997 out_no_pagelock:
1998         brelse(inode_bh);
1999         return ret;
2000 }
2001
2002 /*
2003  * Note that we don't need to start a transaction unless we're journaling data
2004  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2005  * need to file the inode to the transaction's list in ordered mode because if
2006  * we are writing back data added by write(), the inode is already there and if
2007  * we are writing back data modified via mmap(), no one guarantees in which
2008  * transaction the data will hit the disk. In case we are journaling data, we
2009  * cannot start transaction directly because transaction start ranks above page
2010  * lock so we have to do some magic.
2011  *
2012  * This function can get called via...
2013  *   - ext4_writepages after taking page lock (have journal handle)
2014  *   - journal_submit_inode_data_buffers (no journal handle)
2015  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2016  *   - grab_page_cache when doing write_begin (have journal handle)
2017  *
2018  * We don't do any block allocation in this function. If we have page with
2019  * multiple blocks we need to write those buffer_heads that are mapped. This
2020  * is important for mmaped based write. So if we do with blocksize 1K
2021  * truncate(f, 1024);
2022  * a = mmap(f, 0, 4096);
2023  * a[0] = 'a';
2024  * truncate(f, 4096);
2025  * we have in the page first buffer_head mapped via page_mkwrite call back
2026  * but other buffer_heads would be unmapped but dirty (dirty done via the
2027  * do_wp_page). So writepage should write the first block. If we modify
2028  * the mmap area beyond 1024 we will again get a page_fault and the
2029  * page_mkwrite callback will do the block allocation and mark the
2030  * buffer_heads mapped.
2031  *
2032  * We redirty the page if we have any buffer_heads that is either delay or
2033  * unwritten in the page.
2034  *
2035  * We can get recursively called as show below.
2036  *
2037  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2038  *              ext4_writepage()
2039  *
2040  * But since we don't do any block allocation we should not deadlock.
2041  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2042  */
2043 static int ext4_writepage(struct page *page,
2044                           struct writeback_control *wbc)
2045 {
2046         int ret = 0;
2047         loff_t size;
2048         unsigned int len;
2049         struct buffer_head *page_bufs = NULL;
2050         struct inode *inode = page->mapping->host;
2051         struct ext4_io_submit io_submit;
2052         bool keep_towrite = false;
2053
2054         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2055                 ext4_invalidatepage(page, 0, PAGE_SIZE);
2056                 unlock_page(page);
2057                 return -EIO;
2058         }
2059
2060         trace_ext4_writepage(page);
2061         size = i_size_read(inode);
2062         if (page->index == size >> PAGE_SHIFT)
2063                 len = size & ~PAGE_MASK;
2064         else
2065                 len = PAGE_SIZE;
2066
2067         page_bufs = page_buffers(page);
2068         /*
2069          * We cannot do block allocation or other extent handling in this
2070          * function. If there are buffers needing that, we have to redirty
2071          * the page. But we may reach here when we do a journal commit via
2072          * journal_submit_inode_data_buffers() and in that case we must write
2073          * allocated buffers to achieve data=ordered mode guarantees.
2074          *
2075          * Also, if there is only one buffer per page (the fs block
2076          * size == the page size), if one buffer needs block
2077          * allocation or needs to modify the extent tree to clear the
2078          * unwritten flag, we know that the page can't be written at
2079          * all, so we might as well refuse the write immediately.
2080          * Unfortunately if the block size != page size, we can't as
2081          * easily detect this case using ext4_walk_page_buffers(), but
2082          * for the extremely common case, this is an optimization that
2083          * skips a useless round trip through ext4_bio_write_page().
2084          */
2085         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2086                                    ext4_bh_delay_or_unwritten)) {
2087                 redirty_page_for_writepage(wbc, page);
2088                 if ((current->flags & PF_MEMALLOC) ||
2089                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2090                         /*
2091                          * For memory cleaning there's no point in writing only
2092                          * some buffers. So just bail out. Warn if we came here
2093                          * from direct reclaim.
2094                          */
2095                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2096                                                         == PF_MEMALLOC);
2097                         unlock_page(page);
2098                         return 0;
2099                 }
2100                 keep_towrite = true;
2101         }
2102
2103         if (PageChecked(page) && ext4_should_journal_data(inode))
2104                 /*
2105                  * It's mmapped pagecache.  Add buffers and journal it.  There
2106                  * doesn't seem much point in redirtying the page here.
2107                  */
2108                 return __ext4_journalled_writepage(page, len);
2109
2110         ext4_io_submit_init(&io_submit, wbc);
2111         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2112         if (!io_submit.io_end) {
2113                 redirty_page_for_writepage(wbc, page);
2114                 unlock_page(page);
2115                 return -ENOMEM;
2116         }
2117         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2118         ext4_io_submit(&io_submit);
2119         /* Drop io_end reference we got from init */
2120         ext4_put_io_end_defer(io_submit.io_end);
2121         return ret;
2122 }
2123
2124 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2125 {
2126         int len;
2127         loff_t size;
2128         int err;
2129
2130         BUG_ON(page->index != mpd->first_page);
2131         clear_page_dirty_for_io(page);
2132         /*
2133          * We have to be very careful here!  Nothing protects writeback path
2134          * against i_size changes and the page can be writeably mapped into
2135          * page tables. So an application can be growing i_size and writing
2136          * data through mmap while writeback runs. clear_page_dirty_for_io()
2137          * write-protects our page in page tables and the page cannot get
2138          * written to again until we release page lock. So only after
2139          * clear_page_dirty_for_io() we are safe to sample i_size for
2140          * ext4_bio_write_page() to zero-out tail of the written page. We rely
2141          * on the barrier provided by TestClearPageDirty in
2142          * clear_page_dirty_for_io() to make sure i_size is really sampled only
2143          * after page tables are updated.
2144          */
2145         size = i_size_read(mpd->inode);
2146         if (page->index == size >> PAGE_SHIFT)
2147                 len = size & ~PAGE_MASK;
2148         else
2149                 len = PAGE_SIZE;
2150         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2151         if (!err)
2152                 mpd->wbc->nr_to_write--;
2153         mpd->first_page++;
2154
2155         return err;
2156 }
2157
2158 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2159
2160 /*
2161  * mballoc gives us at most this number of blocks...
2162  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2163  * The rest of mballoc seems to handle chunks up to full group size.
2164  */
2165 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2166
2167 /*
2168  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2169  *
2170  * @mpd - extent of blocks
2171  * @lblk - logical number of the block in the file
2172  * @bh - buffer head we want to add to the extent
2173  *
2174  * The function is used to collect contig. blocks in the same state. If the
2175  * buffer doesn't require mapping for writeback and we haven't started the
2176  * extent of buffers to map yet, the function returns 'true' immediately - the
2177  * caller can write the buffer right away. Otherwise the function returns true
2178  * if the block has been added to the extent, false if the block couldn't be
2179  * added.
2180  */
2181 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2182                                    struct buffer_head *bh)
2183 {
2184         struct ext4_map_blocks *map = &mpd->map;
2185
2186         /* Buffer that doesn't need mapping for writeback? */
2187         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2188             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2189                 /* So far no extent to map => we write the buffer right away */
2190                 if (map->m_len == 0)
2191                         return true;
2192                 return false;
2193         }
2194
2195         /* First block in the extent? */
2196         if (map->m_len == 0) {
2197                 /* We cannot map unless handle is started... */
2198                 if (!mpd->do_map)
2199                         return false;
2200                 map->m_lblk = lblk;
2201                 map->m_len = 1;
2202                 map->m_flags = bh->b_state & BH_FLAGS;
2203                 return true;
2204         }
2205
2206         /* Don't go larger than mballoc is willing to allocate */
2207         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2208                 return false;
2209
2210         /* Can we merge the block to our big extent? */
2211         if (lblk == map->m_lblk + map->m_len &&
2212             (bh->b_state & BH_FLAGS) == map->m_flags) {
2213                 map->m_len++;
2214                 return true;
2215         }
2216         return false;
2217 }
2218
2219 /*
2220  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2221  *
2222  * @mpd - extent of blocks for mapping
2223  * @head - the first buffer in the page
2224  * @bh - buffer we should start processing from
2225  * @lblk - logical number of the block in the file corresponding to @bh
2226  *
2227  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2228  * the page for IO if all buffers in this page were mapped and there's no
2229  * accumulated extent of buffers to map or add buffers in the page to the
2230  * extent of buffers to map. The function returns 1 if the caller can continue
2231  * by processing the next page, 0 if it should stop adding buffers to the
2232  * extent to map because we cannot extend it anymore. It can also return value
2233  * < 0 in case of error during IO submission.
2234  */
2235 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2236                                    struct buffer_head *head,
2237                                    struct buffer_head *bh,
2238                                    ext4_lblk_t lblk)
2239 {
2240         struct inode *inode = mpd->inode;
2241         int err;
2242         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2243                                                         >> inode->i_blkbits;
2244
2245         do {
2246                 BUG_ON(buffer_locked(bh));
2247
2248                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2249                         /* Found extent to map? */
2250                         if (mpd->map.m_len)
2251                                 return 0;
2252                         /* Buffer needs mapping and handle is not started? */
2253                         if (!mpd->do_map)
2254                                 return 0;
2255                         /* Everything mapped so far and we hit EOF */
2256                         break;
2257                 }
2258         } while (lblk++, (bh = bh->b_this_page) != head);
2259         /* So far everything mapped? Submit the page for IO. */
2260         if (mpd->map.m_len == 0) {
2261                 err = mpage_submit_page(mpd, head->b_page);
2262                 if (err < 0)
2263                         return err;
2264         }
2265         return lblk < blocks;
2266 }
2267
2268 /*
2269  * mpage_map_buffers - update buffers corresponding to changed extent and
2270  *                     submit fully mapped pages for IO
2271  *
2272  * @mpd - description of extent to map, on return next extent to map
2273  *
2274  * Scan buffers corresponding to changed extent (we expect corresponding pages
2275  * to be already locked) and update buffer state according to new extent state.
2276  * We map delalloc buffers to their physical location, clear unwritten bits,
2277  * and mark buffers as uninit when we perform writes to unwritten extents
2278  * and do extent conversion after IO is finished. If the last page is not fully
2279  * mapped, we update @map to the next extent in the last page that needs
2280  * mapping. Otherwise we submit the page for IO.
2281  */
2282 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2283 {
2284         struct pagevec pvec;
2285         int nr_pages, i;
2286         struct inode *inode = mpd->inode;
2287         struct buffer_head *head, *bh;
2288         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2289         pgoff_t start, end;
2290         ext4_lblk_t lblk;
2291         sector_t pblock;
2292         int err;
2293
2294         start = mpd->map.m_lblk >> bpp_bits;
2295         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2296         lblk = start << bpp_bits;
2297         pblock = mpd->map.m_pblk;
2298
2299         pagevec_init(&pvec, 0);
2300         while (start <= end) {
2301                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2302                                           PAGEVEC_SIZE);
2303                 if (nr_pages == 0)
2304                         break;
2305                 for (i = 0; i < nr_pages; i++) {
2306                         struct page *page = pvec.pages[i];
2307
2308                         if (page->index > end)
2309                                 break;
2310                         /* Up to 'end' pages must be contiguous */
2311                         BUG_ON(page->index != start);
2312                         bh = head = page_buffers(page);
2313                         do {
2314                                 if (lblk < mpd->map.m_lblk)
2315                                         continue;
2316                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2317                                         /*
2318                                          * Buffer after end of mapped extent.
2319                                          * Find next buffer in the page to map.
2320                                          */
2321                                         mpd->map.m_len = 0;
2322                                         mpd->map.m_flags = 0;
2323                                         /*
2324                                          * FIXME: If dioread_nolock supports
2325                                          * blocksize < pagesize, we need to make
2326                                          * sure we add size mapped so far to
2327                                          * io_end->size as the following call
2328                                          * can submit the page for IO.
2329                                          */
2330                                         err = mpage_process_page_bufs(mpd, head,
2331                                                                       bh, lblk);
2332                                         pagevec_release(&pvec);
2333                                         if (err > 0)
2334                                                 err = 0;
2335                                         return err;
2336                                 }
2337                                 if (buffer_delay(bh)) {
2338                                         clear_buffer_delay(bh);
2339                                         bh->b_blocknr = pblock++;
2340                                 }
2341                                 clear_buffer_unwritten(bh);
2342                         } while (lblk++, (bh = bh->b_this_page) != head);
2343
2344                         /*
2345                          * FIXME: This is going to break if dioread_nolock
2346                          * supports blocksize < pagesize as we will try to
2347                          * convert potentially unmapped parts of inode.
2348                          */
2349                         mpd->io_submit.io_end->size += PAGE_SIZE;
2350                         /* Page fully mapped - let IO run! */
2351                         err = mpage_submit_page(mpd, page);
2352                         if (err < 0) {
2353                                 pagevec_release(&pvec);
2354                                 return err;
2355                         }
2356                         start++;
2357                 }
2358                 pagevec_release(&pvec);
2359         }
2360         /* Extent fully mapped and matches with page boundary. We are done. */
2361         mpd->map.m_len = 0;
2362         mpd->map.m_flags = 0;
2363         return 0;
2364 }
2365
2366 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2367 {
2368         struct inode *inode = mpd->inode;
2369         struct ext4_map_blocks *map = &mpd->map;
2370         int get_blocks_flags;
2371         int err, dioread_nolock;
2372
2373         trace_ext4_da_write_pages_extent(inode, map);
2374         /*
2375          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2376          * to convert an unwritten extent to be initialized (in the case
2377          * where we have written into one or more preallocated blocks).  It is
2378          * possible that we're going to need more metadata blocks than
2379          * previously reserved. However we must not fail because we're in
2380          * writeback and there is nothing we can do about it so it might result
2381          * in data loss.  So use reserved blocks to allocate metadata if
2382          * possible.
2383          *
2384          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2385          * the blocks in question are delalloc blocks.  This indicates
2386          * that the blocks and quotas has already been checked when
2387          * the data was copied into the page cache.
2388          */
2389         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2390                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2391                            EXT4_GET_BLOCKS_IO_SUBMIT;
2392         dioread_nolock = ext4_should_dioread_nolock(inode);
2393         if (dioread_nolock)
2394                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2395         if (map->m_flags & (1 << BH_Delay))
2396                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2397
2398         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2399         if (err < 0)
2400                 return err;
2401         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2402                 if (!mpd->io_submit.io_end->handle &&
2403                     ext4_handle_valid(handle)) {
2404                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2405                         handle->h_rsv_handle = NULL;
2406                 }
2407                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2408         }
2409
2410         BUG_ON(map->m_len == 0);
2411         if (map->m_flags & EXT4_MAP_NEW) {
2412                 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2413                                    map->m_len);
2414         }
2415         return 0;
2416 }
2417
2418 /*
2419  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2420  *                               mpd->len and submit pages underlying it for IO
2421  *
2422  * @handle - handle for journal operations
2423  * @mpd - extent to map
2424  * @give_up_on_write - we set this to true iff there is a fatal error and there
2425  *                     is no hope of writing the data. The caller should discard
2426  *                     dirty pages to avoid infinite loops.
2427  *
2428  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2429  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2430  * them to initialized or split the described range from larger unwritten
2431  * extent. Note that we need not map all the described range since allocation
2432  * can return less blocks or the range is covered by more unwritten extents. We
2433  * cannot map more because we are limited by reserved transaction credits. On
2434  * the other hand we always make sure that the last touched page is fully
2435  * mapped so that it can be written out (and thus forward progress is
2436  * guaranteed). After mapping we submit all mapped pages for IO.
2437  */
2438 static int mpage_map_and_submit_extent(handle_t *handle,
2439                                        struct mpage_da_data *mpd,
2440                                        bool *give_up_on_write)
2441 {
2442         struct inode *inode = mpd->inode;
2443         struct ext4_map_blocks *map = &mpd->map;
2444         int err;
2445         loff_t disksize;
2446         int progress = 0;
2447
2448         mpd->io_submit.io_end->offset =
2449                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2450         do {
2451                 err = mpage_map_one_extent(handle, mpd);
2452                 if (err < 0) {
2453                         struct super_block *sb = inode->i_sb;
2454
2455                         if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2456                             EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2457                                 goto invalidate_dirty_pages;
2458                         /*
2459                          * Let the uper layers retry transient errors.
2460                          * In the case of ENOSPC, if ext4_count_free_blocks()
2461                          * is non-zero, a commit should free up blocks.
2462                          */
2463                         if ((err == -ENOMEM) ||
2464                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2465                                 if (progress)
2466                                         goto update_disksize;
2467                                 return err;
2468                         }
2469                         ext4_msg(sb, KERN_CRIT,
2470                                  "Delayed block allocation failed for "
2471                                  "inode %lu at logical offset %llu with"
2472                                  " max blocks %u with error %d",
2473                                  inode->i_ino,
2474                                  (unsigned long long)map->m_lblk,
2475                                  (unsigned)map->m_len, -err);
2476                         ext4_msg(sb, KERN_CRIT,
2477                                  "This should not happen!! Data will "
2478                                  "be lost\n");
2479                         if (err == -ENOSPC)
2480                                 ext4_print_free_blocks(inode);
2481                 invalidate_dirty_pages:
2482                         *give_up_on_write = true;
2483                         return err;
2484                 }
2485                 progress = 1;
2486                 /*
2487                  * Update buffer state, submit mapped pages, and get us new
2488                  * extent to map
2489                  */
2490                 err = mpage_map_and_submit_buffers(mpd);
2491                 if (err < 0)
2492                         goto update_disksize;
2493         } while (map->m_len);
2494
2495 update_disksize:
2496         /*
2497          * Update on-disk size after IO is submitted.  Races with
2498          * truncate are avoided by checking i_size under i_data_sem.
2499          */
2500         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2501         if (disksize > EXT4_I(inode)->i_disksize) {
2502                 int err2;
2503                 loff_t i_size;
2504
2505                 down_write(&EXT4_I(inode)->i_data_sem);
2506                 i_size = i_size_read(inode);
2507                 if (disksize > i_size)
2508                         disksize = i_size;
2509                 if (disksize > EXT4_I(inode)->i_disksize)
2510                         EXT4_I(inode)->i_disksize = disksize;
2511                 up_write(&EXT4_I(inode)->i_data_sem);
2512                 err2 = ext4_mark_inode_dirty(handle, inode);
2513                 if (err2)
2514                         ext4_error(inode->i_sb,
2515                                    "Failed to mark inode %lu dirty",
2516                                    inode->i_ino);
2517                 if (!err)
2518                         err = err2;
2519         }
2520         return err;
2521 }
2522
2523 /*
2524  * Calculate the total number of credits to reserve for one writepages
2525  * iteration. This is called from ext4_writepages(). We map an extent of
2526  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2527  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2528  * bpp - 1 blocks in bpp different extents.
2529  */
2530 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2531 {
2532         int bpp = ext4_journal_blocks_per_page(inode);
2533
2534         return ext4_meta_trans_blocks(inode,
2535                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2536 }
2537
2538 /*
2539  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2540  *                               and underlying extent to map
2541  *
2542  * @mpd - where to look for pages
2543  *
2544  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2545  * IO immediately. When we find a page which isn't mapped we start accumulating
2546  * extent of buffers underlying these pages that needs mapping (formed by
2547  * either delayed or unwritten buffers). We also lock the pages containing
2548  * these buffers. The extent found is returned in @mpd structure (starting at
2549  * mpd->lblk with length mpd->len blocks).
2550  *
2551  * Note that this function can attach bios to one io_end structure which are
2552  * neither logically nor physically contiguous. Although it may seem as an
2553  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2554  * case as we need to track IO to all buffers underlying a page in one io_end.
2555  */
2556 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2557 {
2558         struct address_space *mapping = mpd->inode->i_mapping;
2559         struct pagevec pvec;
2560         unsigned int nr_pages;
2561         long left = mpd->wbc->nr_to_write;
2562         pgoff_t index = mpd->first_page;
2563         pgoff_t end = mpd->last_page;
2564         int tag;
2565         int i, err = 0;
2566         int blkbits = mpd->inode->i_blkbits;
2567         ext4_lblk_t lblk;
2568         struct buffer_head *head;
2569
2570         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2571                 tag = PAGECACHE_TAG_TOWRITE;
2572         else
2573                 tag = PAGECACHE_TAG_DIRTY;
2574
2575         pagevec_init(&pvec, 0);
2576         mpd->map.m_len = 0;
2577         mpd->next_page = index;
2578         while (index <= end) {
2579                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2580                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2581                 if (nr_pages == 0)
2582                         goto out;
2583
2584                 for (i = 0; i < nr_pages; i++) {
2585                         struct page *page = pvec.pages[i];
2586
2587                         /*
2588                          * At this point, the page may be truncated or
2589                          * invalidated (changing page->mapping to NULL), or
2590                          * even swizzled back from swapper_space to tmpfs file
2591                          * mapping. However, page->index will not change
2592                          * because we have a reference on the page.
2593                          */
2594                         if (page->index > end)
2595                                 goto out;
2596
2597                         /*
2598                          * Accumulated enough dirty pages? This doesn't apply
2599                          * to WB_SYNC_ALL mode. For integrity sync we have to
2600                          * keep going because someone may be concurrently
2601                          * dirtying pages, and we might have synced a lot of
2602                          * newly appeared dirty pages, but have not synced all
2603                          * of the old dirty pages.
2604                          */
2605                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2606                                 goto out;
2607
2608                         /* If we can't merge this page, we are done. */
2609                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2610                                 goto out;
2611
2612                         lock_page(page);
2613                         /*
2614                          * If the page is no longer dirty, or its mapping no
2615                          * longer corresponds to inode we are writing (which
2616                          * means it has been truncated or invalidated), or the
2617                          * page is already under writeback and we are not doing
2618                          * a data integrity writeback, skip the page
2619                          */
2620                         if (!PageDirty(page) ||
2621                             (PageWriteback(page) &&
2622                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2623                             unlikely(page->mapping != mapping)) {
2624                                 unlock_page(page);
2625                                 continue;
2626                         }
2627
2628                         wait_on_page_writeback(page);
2629                         BUG_ON(PageWriteback(page));
2630
2631                         if (mpd->map.m_len == 0)
2632                                 mpd->first_page = page->index;
2633                         mpd->next_page = page->index + 1;
2634                         /* Add all dirty buffers to mpd */
2635                         lblk = ((ext4_lblk_t)page->index) <<
2636                                 (PAGE_SHIFT - blkbits);
2637                         head = page_buffers(page);
2638                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2639                         if (err <= 0)
2640                                 goto out;
2641                         err = 0;
2642                         left--;
2643                 }
2644                 pagevec_release(&pvec);
2645                 cond_resched();
2646         }
2647         return 0;
2648 out:
2649         pagevec_release(&pvec);
2650         return err;
2651 }
2652
2653 static int __writepage(struct page *page, struct writeback_control *wbc,
2654                        void *data)
2655 {
2656         struct address_space *mapping = data;
2657         int ret = ext4_writepage(page, wbc);
2658         mapping_set_error(mapping, ret);
2659         return ret;
2660 }
2661
2662 static int ext4_writepages(struct address_space *mapping,
2663                            struct writeback_control *wbc)
2664 {
2665         pgoff_t writeback_index = 0;
2666         long nr_to_write = wbc->nr_to_write;
2667         int range_whole = 0;
2668         int cycled = 1;
2669         handle_t *handle = NULL;
2670         struct mpage_da_data mpd;
2671         struct inode *inode = mapping->host;
2672         int needed_blocks, rsv_blocks = 0, ret = 0;
2673         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2674         bool done;
2675         struct blk_plug plug;
2676         bool give_up_on_write = false;
2677
2678         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2679                 return -EIO;
2680
2681         percpu_down_read(&sbi->s_journal_flag_rwsem);
2682         trace_ext4_writepages(inode, wbc);
2683
2684         if (dax_mapping(mapping)) {
2685                 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2686                                                   wbc);
2687                 goto out_writepages;
2688         }
2689
2690         /*
2691          * No pages to write? This is mainly a kludge to avoid starting
2692          * a transaction for special inodes like journal inode on last iput()
2693          * because that could violate lock ordering on umount
2694          */
2695         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2696                 goto out_writepages;
2697
2698         if (ext4_should_journal_data(inode)) {
2699                 struct blk_plug plug;
2700
2701                 blk_start_plug(&plug);
2702                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2703                 blk_finish_plug(&plug);
2704                 goto out_writepages;
2705         }
2706
2707         /*
2708          * If the filesystem has aborted, it is read-only, so return
2709          * right away instead of dumping stack traces later on that
2710          * will obscure the real source of the problem.  We test
2711          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2712          * the latter could be true if the filesystem is mounted
2713          * read-only, and in that case, ext4_writepages should
2714          * *never* be called, so if that ever happens, we would want
2715          * the stack trace.
2716          */
2717         if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2718                      sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2719                 ret = -EROFS;
2720                 goto out_writepages;
2721         }
2722
2723         if (ext4_should_dioread_nolock(inode)) {
2724                 /*
2725                  * We may need to convert up to one extent per block in
2726                  * the page and we may dirty the inode.
2727                  */
2728                 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2729         }
2730
2731         /*
2732          * If we have inline data and arrive here, it means that
2733          * we will soon create the block for the 1st page, so
2734          * we'd better clear the inline data here.
2735          */
2736         if (ext4_has_inline_data(inode)) {
2737                 /* Just inode will be modified... */
2738                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2739                 if (IS_ERR(handle)) {
2740                         ret = PTR_ERR(handle);
2741                         goto out_writepages;
2742                 }
2743                 BUG_ON(ext4_test_inode_state(inode,
2744                                 EXT4_STATE_MAY_INLINE_DATA));
2745                 ext4_destroy_inline_data(handle, inode);
2746                 ext4_journal_stop(handle);
2747         }
2748
2749         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2750                 range_whole = 1;
2751
2752         if (wbc->range_cyclic) {
2753                 writeback_index = mapping->writeback_index;
2754                 if (writeback_index)
2755                         cycled = 0;
2756                 mpd.first_page = writeback_index;
2757                 mpd.last_page = -1;
2758         } else {
2759                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2760                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2761         }
2762
2763         mpd.inode = inode;
2764         mpd.wbc = wbc;
2765         ext4_io_submit_init(&mpd.io_submit, wbc);
2766 retry:
2767         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2768                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2769         done = false;
2770         blk_start_plug(&plug);
2771
2772         /*
2773          * First writeback pages that don't need mapping - we can avoid
2774          * starting a transaction unnecessarily and also avoid being blocked
2775          * in the block layer on device congestion while having transaction
2776          * started.
2777          */
2778         mpd.do_map = 0;
2779         mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2780         if (!mpd.io_submit.io_end) {
2781                 ret = -ENOMEM;
2782                 goto unplug;
2783         }
2784         ret = mpage_prepare_extent_to_map(&mpd);
2785         /* Submit prepared bio */
2786         ext4_io_submit(&mpd.io_submit);
2787         ext4_put_io_end_defer(mpd.io_submit.io_end);
2788         mpd.io_submit.io_end = NULL;
2789         /* Unlock pages we didn't use */
2790         mpage_release_unused_pages(&mpd, false);
2791         if (ret < 0)
2792                 goto unplug;
2793
2794         while (!done && mpd.first_page <= mpd.last_page) {
2795                 /* For each extent of pages we use new io_end */
2796                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2797                 if (!mpd.io_submit.io_end) {
2798                         ret = -ENOMEM;
2799                         break;
2800                 }
2801
2802                 /*
2803                  * We have two constraints: We find one extent to map and we
2804                  * must always write out whole page (makes a difference when
2805                  * blocksize < pagesize) so that we don't block on IO when we
2806                  * try to write out the rest of the page. Journalled mode is
2807                  * not supported by delalloc.
2808                  */
2809                 BUG_ON(ext4_should_journal_data(inode));
2810                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2811
2812                 /* start a new transaction */
2813                 handle = ext4_journal_start_with_reserve(inode,
2814                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2815                 if (IS_ERR(handle)) {
2816                         ret = PTR_ERR(handle);
2817                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2818                                "%ld pages, ino %lu; err %d", __func__,
2819                                 wbc->nr_to_write, inode->i_ino, ret);
2820                         /* Release allocated io_end */
2821                         ext4_put_io_end(mpd.io_submit.io_end);
2822                         mpd.io_submit.io_end = NULL;
2823                         break;
2824                 }
2825                 mpd.do_map = 1;
2826
2827                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2828                 ret = mpage_prepare_extent_to_map(&mpd);
2829                 if (!ret) {
2830                         if (mpd.map.m_len)
2831                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2832                                         &give_up_on_write);
2833                         else {
2834                                 /*
2835                                  * We scanned the whole range (or exhausted
2836                                  * nr_to_write), submitted what was mapped and
2837                                  * didn't find anything needing mapping. We are
2838                                  * done.
2839                                  */
2840                                 done = true;
2841                         }
2842                 }
2843                 /*
2844                  * Caution: If the handle is synchronous,
2845                  * ext4_journal_stop() can wait for transaction commit
2846                  * to finish which may depend on writeback of pages to
2847                  * complete or on page lock to be released.  In that
2848                  * case, we have to wait until after after we have
2849                  * submitted all the IO, released page locks we hold,
2850                  * and dropped io_end reference (for extent conversion
2851                  * to be able to complete) before stopping the handle.
2852                  */
2853                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2854                         ext4_journal_stop(handle);
2855                         handle = NULL;
2856                         mpd.do_map = 0;
2857                 }
2858                 /* Submit prepared bio */
2859                 ext4_io_submit(&mpd.io_submit);
2860                 /* Unlock pages we didn't use */
2861                 mpage_release_unused_pages(&mpd, give_up_on_write);
2862                 /*
2863                  * Drop our io_end reference we got from init. We have
2864                  * to be careful and use deferred io_end finishing if
2865                  * we are still holding the transaction as we can
2866                  * release the last reference to io_end which may end
2867                  * up doing unwritten extent conversion.
2868                  */
2869                 if (handle) {
2870                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2871                         ext4_journal_stop(handle);
2872                 } else
2873                         ext4_put_io_end(mpd.io_submit.io_end);
2874                 mpd.io_submit.io_end = NULL;
2875
2876                 if (ret == -ENOSPC && sbi->s_journal) {
2877                         /*
2878                          * Commit the transaction which would
2879                          * free blocks released in the transaction
2880                          * and try again
2881                          */
2882                         jbd2_journal_force_commit_nested(sbi->s_journal);
2883                         ret = 0;
2884                         continue;
2885                 }
2886                 /* Fatal error - ENOMEM, EIO... */
2887                 if (ret)
2888                         break;
2889         }
2890 unplug:
2891         blk_finish_plug(&plug);
2892         if (!ret && !cycled && wbc->nr_to_write > 0) {
2893                 cycled = 1;
2894                 mpd.last_page = writeback_index - 1;
2895                 mpd.first_page = 0;
2896                 goto retry;
2897         }
2898
2899         /* Update index */
2900         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2901                 /*
2902                  * Set the writeback_index so that range_cyclic
2903                  * mode will write it back later
2904                  */
2905                 mapping->writeback_index = mpd.first_page;
2906
2907 out_writepages:
2908         trace_ext4_writepages_result(inode, wbc, ret,
2909                                      nr_to_write - wbc->nr_to_write);
2910         percpu_up_read(&sbi->s_journal_flag_rwsem);
2911         return ret;
2912 }
2913
2914 static int ext4_nonda_switch(struct super_block *sb)
2915 {
2916         s64 free_clusters, dirty_clusters;
2917         struct ext4_sb_info *sbi = EXT4_SB(sb);
2918
2919         /*
2920          * switch to non delalloc mode if we are running low
2921          * on free block. The free block accounting via percpu
2922          * counters can get slightly wrong with percpu_counter_batch getting
2923          * accumulated on each CPU without updating global counters
2924          * Delalloc need an accurate free block accounting. So switch
2925          * to non delalloc when we are near to error range.
2926          */
2927         free_clusters =
2928                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2929         dirty_clusters =
2930                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2931         /*
2932          * Start pushing delalloc when 1/2 of free blocks are dirty.
2933          */
2934         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2935                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2936
2937         if (2 * free_clusters < 3 * dirty_clusters ||
2938             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2939                 /*
2940                  * free block count is less than 150% of dirty blocks
2941                  * or free blocks is less than watermark
2942                  */
2943                 return 1;
2944         }
2945         return 0;
2946 }
2947
2948 /* We always reserve for an inode update; the superblock could be there too */
2949 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2950 {
2951         if (likely(ext4_has_feature_large_file(inode->i_sb)))
2952                 return 1;
2953
2954         if (pos + len <= 0x7fffffffULL)
2955                 return 1;
2956
2957         /* We might need to update the superblock to set LARGE_FILE */
2958         return 2;
2959 }
2960
2961 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2962                                loff_t pos, unsigned len, unsigned flags,
2963                                struct page **pagep, void **fsdata)
2964 {
2965         int ret, retries = 0;
2966         struct page *page;
2967         pgoff_t index;
2968         struct inode *inode = mapping->host;
2969         handle_t *handle;
2970
2971         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2972                 return -EIO;
2973
2974         index = pos >> PAGE_SHIFT;
2975
2976         if (ext4_nonda_switch(inode->i_sb) ||
2977             S_ISLNK(inode->i_mode)) {
2978                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2979                 return ext4_write_begin(file, mapping, pos,
2980                                         len, flags, pagep, fsdata);
2981         }
2982         *fsdata = (void *)0;
2983         trace_ext4_da_write_begin(inode, pos, len, flags);
2984
2985         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2986                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2987                                                       pos, len, flags,
2988                                                       pagep, fsdata);
2989                 if (ret < 0)
2990                         return ret;
2991                 if (ret == 1)
2992                         return 0;
2993         }
2994
2995         /*
2996          * grab_cache_page_write_begin() can take a long time if the
2997          * system is thrashing due to memory pressure, or if the page
2998          * is being written back.  So grab it first before we start
2999          * the transaction handle.  This also allows us to allocate
3000          * the page (if needed) without using GFP_NOFS.
3001          */
3002 retry_grab:
3003         page = grab_cache_page_write_begin(mapping, index, flags);
3004         if (!page)
3005                 return -ENOMEM;
3006         unlock_page(page);
3007
3008         /*
3009          * With delayed allocation, we don't log the i_disksize update
3010          * if there is delayed block allocation. But we still need
3011          * to journalling the i_disksize update if writes to the end
3012          * of file which has an already mapped buffer.
3013          */
3014 retry_journal:
3015         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3016                                 ext4_da_write_credits(inode, pos, len));
3017         if (IS_ERR(handle)) {
3018                 put_page(page);
3019                 return PTR_ERR(handle);
3020         }
3021
3022         lock_page(page);
3023         if (page->mapping != mapping) {
3024                 /* The page got truncated from under us */
3025                 unlock_page(page);
3026                 put_page(page);
3027                 ext4_journal_stop(handle);
3028                 goto retry_grab;
3029         }
3030         /* In case writeback began while the page was unlocked */
3031         wait_for_stable_page(page);
3032
3033 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3034         ret = ext4_block_write_begin(page, pos, len,
3035                                      ext4_da_get_block_prep);
3036 #else
3037         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3038 #endif
3039         if (ret < 0) {
3040                 unlock_page(page);
3041                 ext4_journal_stop(handle);
3042                 /*
3043                  * block_write_begin may have instantiated a few blocks
3044                  * outside i_size.  Trim these off again. Don't need
3045                  * i_size_read because we hold i_mutex.
3046                  */
3047                 if (pos + len > inode->i_size)
3048                         ext4_truncate_failed_write(inode);
3049
3050                 if (ret == -ENOSPC &&
3051                     ext4_should_retry_alloc(inode->i_sb, &retries))
3052                         goto retry_journal;
3053
3054                 put_page(page);
3055                 return ret;
3056         }
3057
3058         *pagep = page;
3059         return ret;
3060 }
3061
3062 /*
3063  * Check if we should update i_disksize
3064  * when write to the end of file but not require block allocation
3065  */
3066 static int ext4_da_should_update_i_disksize(struct page *page,
3067                                             unsigned long offset)
3068 {
3069         struct buffer_head *bh;
3070         struct inode *inode = page->mapping->host;
3071         unsigned int idx;
3072         int i;
3073
3074         bh = page_buffers(page);
3075         idx = offset >> inode->i_blkbits;
3076
3077         for (i = 0; i < idx; i++)
3078                 bh = bh->b_this_page;
3079
3080         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3081                 return 0;
3082         return 1;
3083 }
3084
3085 static int ext4_da_write_end(struct file *file,
3086                              struct address_space *mapping,
3087                              loff_t pos, unsigned len, unsigned copied,
3088                              struct page *page, void *fsdata)
3089 {
3090         struct inode *inode = mapping->host;
3091         int ret = 0, ret2;
3092         handle_t *handle = ext4_journal_current_handle();
3093         loff_t new_i_size;
3094         unsigned long start, end;
3095         int write_mode = (int)(unsigned long)fsdata;
3096
3097         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3098                 return ext4_write_end(file, mapping, pos,
3099                                       len, copied, page, fsdata);
3100
3101         trace_ext4_da_write_end(inode, pos, len, copied);
3102         start = pos & (PAGE_SIZE - 1);
3103         end = start + copied - 1;
3104
3105         /*
3106          * generic_write_end() will run mark_inode_dirty() if i_size
3107          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3108          * into that.
3109          */
3110         new_i_size = pos + copied;
3111         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3112                 if (ext4_has_inline_data(inode) ||
3113                     ext4_da_should_update_i_disksize(page, end)) {
3114                         ext4_update_i_disksize(inode, new_i_size);
3115                         /* We need to mark inode dirty even if
3116                          * new_i_size is less that inode->i_size
3117                          * bu greater than i_disksize.(hint delalloc)
3118                          */
3119                         ext4_mark_inode_dirty(handle, inode);
3120                 }
3121         }
3122
3123         if (write_mode != CONVERT_INLINE_DATA &&