1 // SPDX-License-Identifier: GPL-2.0
3 * linux/fs/ext4/inode.c
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
12 * linux/fs/minix/inode.c
14 * Copyright (C) 1991, 1992 Linus Torvalds
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
17 * (jj@sunsite.ms.mff.cuni.cz)
19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
44 #include "ext4_jbd2.h"
49 #include <trace/events/ext4.h>
51 #define MPAGE_DA_EXTENT_TAIL 0x01
53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54 struct ext4_inode_info *ei)
56 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
59 int offset = offsetof(struct ext4_inode, i_checksum_lo);
60 unsigned int csum_size = sizeof(dummy_csum);
62 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
65 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66 EXT4_GOOD_OLD_INODE_SIZE - offset);
68 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69 offset = offsetof(struct ext4_inode, i_checksum_hi);
70 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71 EXT4_GOOD_OLD_INODE_SIZE,
72 offset - EXT4_GOOD_OLD_INODE_SIZE);
73 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
78 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79 EXT4_INODE_SIZE(inode->i_sb) - offset);
85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86 struct ext4_inode_info *ei)
88 __u32 provided, calculated;
90 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91 cpu_to_le32(EXT4_OS_LINUX) ||
92 !ext4_has_metadata_csum(inode->i_sb))
95 provided = le16_to_cpu(raw->i_checksum_lo);
96 calculated = ext4_inode_csum(inode, raw, ei);
97 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
101 calculated &= 0xFFFF;
103 return provided == calculated;
106 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107 struct ext4_inode_info *ei)
111 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112 cpu_to_le32(EXT4_OS_LINUX) ||
113 !ext4_has_metadata_csum(inode->i_sb))
116 csum = ext4_inode_csum(inode, raw, ei);
117 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
123 static inline int ext4_begin_ordered_truncate(struct inode *inode,
126 trace_ext4_begin_ordered_truncate(inode, new_size);
128 * If jinode is zero, then we never opened the file for
129 * writing, so there's no need to call
130 * jbd2_journal_begin_ordered_truncate() since there's no
131 * outstanding writes we need to flush.
133 if (!EXT4_I(inode)->jinode)
135 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136 EXT4_I(inode)->jinode,
140 static void ext4_invalidatepage(struct page *page, unsigned int offset,
141 unsigned int length);
142 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
143 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
144 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
148 * Test whether an inode is a fast symlink.
149 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
151 int ext4_inode_is_fast_symlink(struct inode *inode)
153 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
154 int ea_blocks = EXT4_I(inode)->i_file_acl ?
155 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
157 if (ext4_has_inline_data(inode))
160 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
162 return S_ISLNK(inode->i_mode) && inode->i_size &&
163 (inode->i_size < EXT4_N_BLOCKS * 4);
167 * Restart the transaction associated with *handle. This does a commit,
168 * so before we call here everything must be consistently dirtied against
171 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
177 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
178 * moment, get_block can be called only for blocks inside i_size since
179 * page cache has been already dropped and writes are blocked by
180 * i_mutex. So we can safely drop the i_data_sem here.
182 BUG_ON(EXT4_JOURNAL(inode) == NULL);
183 jbd_debug(2, "restarting handle %p\n", handle);
184 up_write(&EXT4_I(inode)->i_data_sem);
185 ret = ext4_journal_restart(handle, nblocks);
186 down_write(&EXT4_I(inode)->i_data_sem);
187 ext4_discard_preallocations(inode);
193 * Called at the last iput() if i_nlink is zero.
195 void ext4_evict_inode(struct inode *inode)
199 int extra_credits = 3;
200 struct ext4_xattr_inode_array *ea_inode_array = NULL;
202 trace_ext4_evict_inode(inode);
204 if (inode->i_nlink) {
206 * When journalling data dirty buffers are tracked only in the
207 * journal. So although mm thinks everything is clean and
208 * ready for reaping the inode might still have some pages to
209 * write in the running transaction or waiting to be
210 * checkpointed. Thus calling jbd2_journal_invalidatepage()
211 * (via truncate_inode_pages()) to discard these buffers can
212 * cause data loss. Also even if we did not discard these
213 * buffers, we would have no way to find them after the inode
214 * is reaped and thus user could see stale data if he tries to
215 * read them before the transaction is checkpointed. So be
216 * careful and force everything to disk here... We use
217 * ei->i_datasync_tid to store the newest transaction
218 * containing inode's data.
220 * Note that directories do not have this problem because they
221 * don't use page cache.
223 if (inode->i_ino != EXT4_JOURNAL_INO &&
224 ext4_should_journal_data(inode) &&
225 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
226 inode->i_data.nrpages) {
227 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
228 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
230 jbd2_complete_transaction(journal, commit_tid);
231 filemap_write_and_wait(&inode->i_data);
233 truncate_inode_pages_final(&inode->i_data);
238 if (is_bad_inode(inode))
240 dquot_initialize(inode);
242 if (ext4_should_order_data(inode))
243 ext4_begin_ordered_truncate(inode, 0);
244 truncate_inode_pages_final(&inode->i_data);
247 * Protect us against freezing - iput() caller didn't have to have any
248 * protection against it
250 sb_start_intwrite(inode->i_sb);
252 if (!IS_NOQUOTA(inode))
253 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
255 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
256 ext4_blocks_for_truncate(inode)+extra_credits);
257 if (IS_ERR(handle)) {
258 ext4_std_error(inode->i_sb, PTR_ERR(handle));
260 * If we're going to skip the normal cleanup, we still need to
261 * make sure that the in-core orphan linked list is properly
264 ext4_orphan_del(NULL, inode);
265 sb_end_intwrite(inode->i_sb);
270 ext4_handle_sync(handle);
273 * Set inode->i_size to 0 before calling ext4_truncate(). We need
274 * special handling of symlinks here because i_size is used to
275 * determine whether ext4_inode_info->i_data contains symlink data or
276 * block mappings. Setting i_size to 0 will remove its fast symlink
277 * status. Erase i_data so that it becomes a valid empty block map.
279 if (ext4_inode_is_fast_symlink(inode))
280 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
282 err = ext4_mark_inode_dirty(handle, inode);
284 ext4_warning(inode->i_sb,
285 "couldn't mark inode dirty (err %d)", err);
288 if (inode->i_blocks) {
289 err = ext4_truncate(inode);
291 ext4_error(inode->i_sb,
292 "couldn't truncate inode %lu (err %d)",
298 /* Remove xattr references. */
299 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
302 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
304 ext4_journal_stop(handle);
305 ext4_orphan_del(NULL, inode);
306 sb_end_intwrite(inode->i_sb);
307 ext4_xattr_inode_array_free(ea_inode_array);
312 * Kill off the orphan record which ext4_truncate created.
313 * AKPM: I think this can be inside the above `if'.
314 * Note that ext4_orphan_del() has to be able to cope with the
315 * deletion of a non-existent orphan - this is because we don't
316 * know if ext4_truncate() actually created an orphan record.
317 * (Well, we could do this if we need to, but heck - it works)
319 ext4_orphan_del(handle, inode);
320 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds();
323 * One subtle ordering requirement: if anything has gone wrong
324 * (transaction abort, IO errors, whatever), then we can still
325 * do these next steps (the fs will already have been marked as
326 * having errors), but we can't free the inode if the mark_dirty
329 if (ext4_mark_inode_dirty(handle, inode))
330 /* If that failed, just do the required in-core inode clear. */
331 ext4_clear_inode(inode);
333 ext4_free_inode(handle, inode);
334 ext4_journal_stop(handle);
335 sb_end_intwrite(inode->i_sb);
336 ext4_xattr_inode_array_free(ea_inode_array);
339 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
343 qsize_t *ext4_get_reserved_space(struct inode *inode)
345 return &EXT4_I(inode)->i_reserved_quota;
350 * Called with i_data_sem down, which is important since we can call
351 * ext4_discard_preallocations() from here.
353 void ext4_da_update_reserve_space(struct inode *inode,
354 int used, int quota_claim)
356 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
357 struct ext4_inode_info *ei = EXT4_I(inode);
359 spin_lock(&ei->i_block_reservation_lock);
360 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
361 if (unlikely(used > ei->i_reserved_data_blocks)) {
362 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
363 "with only %d reserved data blocks",
364 __func__, inode->i_ino, used,
365 ei->i_reserved_data_blocks);
367 used = ei->i_reserved_data_blocks;
370 /* Update per-inode reservations */
371 ei->i_reserved_data_blocks -= used;
372 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
374 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
376 /* Update quota subsystem for data blocks */
378 dquot_claim_block(inode, EXT4_C2B(sbi, used));
381 * We did fallocate with an offset that is already delayed
382 * allocated. So on delayed allocated writeback we should
383 * not re-claim the quota for fallocated blocks.
385 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
389 * If we have done all the pending block allocations and if
390 * there aren't any writers on the inode, we can discard the
391 * inode's preallocations.
393 if ((ei->i_reserved_data_blocks == 0) &&
394 (atomic_read(&inode->i_writecount) == 0))
395 ext4_discard_preallocations(inode);
398 static int __check_block_validity(struct inode *inode, const char *func,
400 struct ext4_map_blocks *map)
402 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
404 ext4_error_inode(inode, func, line, map->m_pblk,
405 "lblock %lu mapped to illegal pblock %llu "
406 "(length %d)", (unsigned long) map->m_lblk,
407 map->m_pblk, map->m_len);
408 return -EFSCORRUPTED;
413 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
418 if (ext4_encrypted_inode(inode))
419 return fscrypt_zeroout_range(inode, lblk, pblk, len);
421 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
428 #define check_block_validity(inode, map) \
429 __check_block_validity((inode), __func__, __LINE__, (map))
431 #ifdef ES_AGGRESSIVE_TEST
432 static void ext4_map_blocks_es_recheck(handle_t *handle,
434 struct ext4_map_blocks *es_map,
435 struct ext4_map_blocks *map,
442 * There is a race window that the result is not the same.
443 * e.g. xfstests #223 when dioread_nolock enables. The reason
444 * is that we lookup a block mapping in extent status tree with
445 * out taking i_data_sem. So at the time the unwritten extent
446 * could be converted.
448 down_read(&EXT4_I(inode)->i_data_sem);
449 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
450 retval = ext4_ext_map_blocks(handle, inode, map, flags &
451 EXT4_GET_BLOCKS_KEEP_SIZE);
453 retval = ext4_ind_map_blocks(handle, inode, map, flags &
454 EXT4_GET_BLOCKS_KEEP_SIZE);
456 up_read((&EXT4_I(inode)->i_data_sem));
459 * We don't check m_len because extent will be collpased in status
460 * tree. So the m_len might not equal.
462 if (es_map->m_lblk != map->m_lblk ||
463 es_map->m_flags != map->m_flags ||
464 es_map->m_pblk != map->m_pblk) {
465 printk("ES cache assertion failed for inode: %lu "
466 "es_cached ex [%d/%d/%llu/%x] != "
467 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
468 inode->i_ino, es_map->m_lblk, es_map->m_len,
469 es_map->m_pblk, es_map->m_flags, map->m_lblk,
470 map->m_len, map->m_pblk, map->m_flags,
474 #endif /* ES_AGGRESSIVE_TEST */
477 * The ext4_map_blocks() function tries to look up the requested blocks,
478 * and returns if the blocks are already mapped.
480 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
481 * and store the allocated blocks in the result buffer head and mark it
484 * If file type is extents based, it will call ext4_ext_map_blocks(),
485 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
488 * On success, it returns the number of blocks being mapped or allocated. if
489 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
490 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
492 * It returns 0 if plain look up failed (blocks have not been allocated), in
493 * that case, @map is returned as unmapped but we still do fill map->m_len to
494 * indicate the length of a hole starting at map->m_lblk.
496 * It returns the error in case of allocation failure.
498 int ext4_map_blocks(handle_t *handle, struct inode *inode,
499 struct ext4_map_blocks *map, int flags)
501 struct extent_status es;
504 #ifdef ES_AGGRESSIVE_TEST
505 struct ext4_map_blocks orig_map;
507 memcpy(&orig_map, map, sizeof(*map));
511 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
512 "logical block %lu\n", inode->i_ino, flags, map->m_len,
513 (unsigned long) map->m_lblk);
516 * ext4_map_blocks returns an int, and m_len is an unsigned int
518 if (unlikely(map->m_len > INT_MAX))
519 map->m_len = INT_MAX;
521 /* We can handle the block number less than EXT_MAX_BLOCKS */
522 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
523 return -EFSCORRUPTED;
525 /* Lookup extent status tree firstly */
526 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
527 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
528 map->m_pblk = ext4_es_pblock(&es) +
529 map->m_lblk - es.es_lblk;
530 map->m_flags |= ext4_es_is_written(&es) ?
531 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
532 retval = es.es_len - (map->m_lblk - es.es_lblk);
533 if (retval > map->m_len)
536 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
538 retval = es.es_len - (map->m_lblk - es.es_lblk);
539 if (retval > map->m_len)
546 #ifdef ES_AGGRESSIVE_TEST
547 ext4_map_blocks_es_recheck(handle, inode, map,
554 * Try to see if we can get the block without requesting a new
557 down_read(&EXT4_I(inode)->i_data_sem);
558 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
559 retval = ext4_ext_map_blocks(handle, inode, map, flags &
560 EXT4_GET_BLOCKS_KEEP_SIZE);
562 retval = ext4_ind_map_blocks(handle, inode, map, flags &
563 EXT4_GET_BLOCKS_KEEP_SIZE);
568 if (unlikely(retval != map->m_len)) {
569 ext4_warning(inode->i_sb,
570 "ES len assertion failed for inode "
571 "%lu: retval %d != map->m_len %d",
572 inode->i_ino, retval, map->m_len);
576 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
577 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
578 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
579 !(status & EXTENT_STATUS_WRITTEN) &&
580 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
581 map->m_lblk + map->m_len - 1))
582 status |= EXTENT_STATUS_DELAYED;
583 ret = ext4_es_insert_extent(inode, map->m_lblk,
584 map->m_len, map->m_pblk, status);
588 up_read((&EXT4_I(inode)->i_data_sem));
591 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
592 ret = check_block_validity(inode, map);
597 /* If it is only a block(s) look up */
598 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
602 * Returns if the blocks have already allocated
604 * Note that if blocks have been preallocated
605 * ext4_ext_get_block() returns the create = 0
606 * with buffer head unmapped.
608 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
610 * If we need to convert extent to unwritten
611 * we continue and do the actual work in
612 * ext4_ext_map_blocks()
614 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
618 * Here we clear m_flags because after allocating an new extent,
619 * it will be set again.
621 map->m_flags &= ~EXT4_MAP_FLAGS;
624 * New blocks allocate and/or writing to unwritten extent
625 * will possibly result in updating i_data, so we take
626 * the write lock of i_data_sem, and call get_block()
627 * with create == 1 flag.
629 down_write(&EXT4_I(inode)->i_data_sem);
632 * We need to check for EXT4 here because migrate
633 * could have changed the inode type in between
635 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
636 retval = ext4_ext_map_blocks(handle, inode, map, flags);
638 retval = ext4_ind_map_blocks(handle, inode, map, flags);
640 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
642 * We allocated new blocks which will result in
643 * i_data's format changing. Force the migrate
644 * to fail by clearing migrate flags
646 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
650 * Update reserved blocks/metadata blocks after successful
651 * block allocation which had been deferred till now. We don't
652 * support fallocate for non extent files. So we can update
653 * reserve space here.
656 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
657 ext4_da_update_reserve_space(inode, retval, 1);
663 if (unlikely(retval != map->m_len)) {
664 ext4_warning(inode->i_sb,
665 "ES len assertion failed for inode "
666 "%lu: retval %d != map->m_len %d",
667 inode->i_ino, retval, map->m_len);
672 * We have to zeroout blocks before inserting them into extent
673 * status tree. Otherwise someone could look them up there and
674 * use them before they are really zeroed. We also have to
675 * unmap metadata before zeroing as otherwise writeback can
676 * overwrite zeros with stale data from block device.
678 if (flags & EXT4_GET_BLOCKS_ZERO &&
679 map->m_flags & EXT4_MAP_MAPPED &&
680 map->m_flags & EXT4_MAP_NEW) {
681 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
683 ret = ext4_issue_zeroout(inode, map->m_lblk,
684 map->m_pblk, map->m_len);
692 * If the extent has been zeroed out, we don't need to update
693 * extent status tree.
695 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
696 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
697 if (ext4_es_is_written(&es))
700 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
701 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
702 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
703 !(status & EXTENT_STATUS_WRITTEN) &&
704 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
705 map->m_lblk + map->m_len - 1))
706 status |= EXTENT_STATUS_DELAYED;
707 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
708 map->m_pblk, status);
716 up_write((&EXT4_I(inode)->i_data_sem));
717 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
718 ret = check_block_validity(inode, map);
723 * Inodes with freshly allocated blocks where contents will be
724 * visible after transaction commit must be on transaction's
727 if (map->m_flags & EXT4_MAP_NEW &&
728 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
729 !(flags & EXT4_GET_BLOCKS_ZERO) &&
730 !ext4_is_quota_file(inode) &&
731 ext4_should_order_data(inode)) {
732 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
733 ret = ext4_jbd2_inode_add_wait(handle, inode);
735 ret = ext4_jbd2_inode_add_write(handle, inode);
744 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
745 * we have to be careful as someone else may be manipulating b_state as well.
747 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
749 unsigned long old_state;
750 unsigned long new_state;
752 flags &= EXT4_MAP_FLAGS;
754 /* Dummy buffer_head? Set non-atomically. */
756 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
760 * Someone else may be modifying b_state. Be careful! This is ugly but
761 * once we get rid of using bh as a container for mapping information
762 * to pass to / from get_block functions, this can go away.
765 old_state = READ_ONCE(bh->b_state);
766 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
768 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
771 static int _ext4_get_block(struct inode *inode, sector_t iblock,
772 struct buffer_head *bh, int flags)
774 struct ext4_map_blocks map;
777 if (ext4_has_inline_data(inode))
781 map.m_len = bh->b_size >> inode->i_blkbits;
783 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
786 map_bh(bh, inode->i_sb, map.m_pblk);
787 ext4_update_bh_state(bh, map.m_flags);
788 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
790 } else if (ret == 0) {
791 /* hole case, need to fill in bh->b_size */
792 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
797 int ext4_get_block(struct inode *inode, sector_t iblock,
798 struct buffer_head *bh, int create)
800 return _ext4_get_block(inode, iblock, bh,
801 create ? EXT4_GET_BLOCKS_CREATE : 0);
805 * Get block function used when preparing for buffered write if we require
806 * creating an unwritten extent if blocks haven't been allocated. The extent
807 * will be converted to written after the IO is complete.
809 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
810 struct buffer_head *bh_result, int create)
812 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
813 inode->i_ino, create);
814 return _ext4_get_block(inode, iblock, bh_result,
815 EXT4_GET_BLOCKS_IO_CREATE_EXT);
818 /* Maximum number of blocks we map for direct IO at once. */
819 #define DIO_MAX_BLOCKS 4096
822 * Get blocks function for the cases that need to start a transaction -
823 * generally difference cases of direct IO and DAX IO. It also handles retries
826 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
827 struct buffer_head *bh_result, int flags)
834 /* Trim mapping request to maximum we can map at once for DIO */
835 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
836 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
837 dio_credits = ext4_chunk_trans_blocks(inode,
838 bh_result->b_size >> inode->i_blkbits);
840 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
842 return PTR_ERR(handle);
844 ret = _ext4_get_block(inode, iblock, bh_result, flags);
845 ext4_journal_stop(handle);
847 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
852 /* Get block function for DIO reads and writes to inodes without extents */
853 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
854 struct buffer_head *bh, int create)
856 /* We don't expect handle for direct IO */
857 WARN_ON_ONCE(ext4_journal_current_handle());
860 return _ext4_get_block(inode, iblock, bh, 0);
861 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
865 * Get block function for AIO DIO writes when we create unwritten extent if
866 * blocks are not allocated yet. The extent will be converted to written
867 * after IO is complete.
869 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
870 sector_t iblock, struct buffer_head *bh_result, int create)
874 /* We don't expect handle for direct IO */
875 WARN_ON_ONCE(ext4_journal_current_handle());
877 ret = ext4_get_block_trans(inode, iblock, bh_result,
878 EXT4_GET_BLOCKS_IO_CREATE_EXT);
881 * When doing DIO using unwritten extents, we need io_end to convert
882 * unwritten extents to written on IO completion. We allocate io_end
883 * once we spot unwritten extent and store it in b_private. Generic
884 * DIO code keeps b_private set and furthermore passes the value to
885 * our completion callback in 'private' argument.
887 if (!ret && buffer_unwritten(bh_result)) {
888 if (!bh_result->b_private) {
889 ext4_io_end_t *io_end;
891 io_end = ext4_init_io_end(inode, GFP_KERNEL);
894 bh_result->b_private = io_end;
895 ext4_set_io_unwritten_flag(inode, io_end);
897 set_buffer_defer_completion(bh_result);
904 * Get block function for non-AIO DIO writes when we create unwritten extent if
905 * blocks are not allocated yet. The extent will be converted to written
906 * after IO is complete by ext4_direct_IO_write().
908 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
909 sector_t iblock, struct buffer_head *bh_result, int create)
913 /* We don't expect handle for direct IO */
914 WARN_ON_ONCE(ext4_journal_current_handle());
916 ret = ext4_get_block_trans(inode, iblock, bh_result,
917 EXT4_GET_BLOCKS_IO_CREATE_EXT);
920 * Mark inode as having pending DIO writes to unwritten extents.
921 * ext4_direct_IO_write() checks this flag and converts extents to
924 if (!ret && buffer_unwritten(bh_result))
925 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
930 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
931 struct buffer_head *bh_result, int create)
935 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
936 inode->i_ino, create);
937 /* We don't expect handle for direct IO */
938 WARN_ON_ONCE(ext4_journal_current_handle());
940 ret = _ext4_get_block(inode, iblock, bh_result, 0);
942 * Blocks should have been preallocated! ext4_file_write_iter() checks
945 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
952 * `handle' can be NULL if create is zero
954 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
955 ext4_lblk_t block, int map_flags)
957 struct ext4_map_blocks map;
958 struct buffer_head *bh;
959 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
962 J_ASSERT(handle != NULL || create == 0);
966 err = ext4_map_blocks(handle, inode, &map, map_flags);
969 return create ? ERR_PTR(-ENOSPC) : NULL;
973 bh = sb_getblk(inode->i_sb, map.m_pblk);
975 return ERR_PTR(-ENOMEM);
976 if (map.m_flags & EXT4_MAP_NEW) {
977 J_ASSERT(create != 0);
978 J_ASSERT(handle != NULL);
981 * Now that we do not always journal data, we should
982 * keep in mind whether this should always journal the
983 * new buffer as metadata. For now, regular file
984 * writes use ext4_get_block instead, so it's not a
988 BUFFER_TRACE(bh, "call get_create_access");
989 err = ext4_journal_get_create_access(handle, bh);
994 if (!buffer_uptodate(bh)) {
995 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
996 set_buffer_uptodate(bh);
999 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1000 err = ext4_handle_dirty_metadata(handle, inode, bh);
1004 BUFFER_TRACE(bh, "not a new buffer");
1008 return ERR_PTR(err);
1011 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1012 ext4_lblk_t block, int map_flags)
1014 struct buffer_head *bh;
1016 bh = ext4_getblk(handle, inode, block, map_flags);
1019 if (!bh || buffer_uptodate(bh))
1021 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1023 if (buffer_uptodate(bh))
1026 return ERR_PTR(-EIO);
1029 /* Read a contiguous batch of blocks. */
1030 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1031 bool wait, struct buffer_head **bhs)
1035 for (i = 0; i < bh_count; i++) {
1036 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1037 if (IS_ERR(bhs[i])) {
1038 err = PTR_ERR(bhs[i]);
1044 for (i = 0; i < bh_count; i++)
1045 /* Note that NULL bhs[i] is valid because of holes. */
1046 if (bhs[i] && !buffer_uptodate(bhs[i]))
1047 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1053 for (i = 0; i < bh_count; i++)
1055 wait_on_buffer(bhs[i]);
1057 for (i = 0; i < bh_count; i++) {
1058 if (bhs[i] && !buffer_uptodate(bhs[i])) {
1066 for (i = 0; i < bh_count; i++) {
1073 int ext4_walk_page_buffers(handle_t *handle,
1074 struct buffer_head *head,
1078 int (*fn)(handle_t *handle,
1079 struct buffer_head *bh))
1081 struct buffer_head *bh;
1082 unsigned block_start, block_end;
1083 unsigned blocksize = head->b_size;
1085 struct buffer_head *next;
1087 for (bh = head, block_start = 0;
1088 ret == 0 && (bh != head || !block_start);
1089 block_start = block_end, bh = next) {
1090 next = bh->b_this_page;
1091 block_end = block_start + blocksize;
1092 if (block_end <= from || block_start >= to) {
1093 if (partial && !buffer_uptodate(bh))
1097 err = (*fn)(handle, bh);
1105 * To preserve ordering, it is essential that the hole instantiation and
1106 * the data write be encapsulated in a single transaction. We cannot
1107 * close off a transaction and start a new one between the ext4_get_block()
1108 * and the commit_write(). So doing the jbd2_journal_start at the start of
1109 * prepare_write() is the right place.
1111 * Also, this function can nest inside ext4_writepage(). In that case, we
1112 * *know* that ext4_writepage() has generated enough buffer credits to do the
1113 * whole page. So we won't block on the journal in that case, which is good,
1114 * because the caller may be PF_MEMALLOC.
1116 * By accident, ext4 can be reentered when a transaction is open via
1117 * quota file writes. If we were to commit the transaction while thus
1118 * reentered, there can be a deadlock - we would be holding a quota
1119 * lock, and the commit would never complete if another thread had a
1120 * transaction open and was blocking on the quota lock - a ranking
1123 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1124 * will _not_ run commit under these circumstances because handle->h_ref
1125 * is elevated. We'll still have enough credits for the tiny quotafile
1128 int do_journal_get_write_access(handle_t *handle,
1129 struct buffer_head *bh)
1131 int dirty = buffer_dirty(bh);
1134 if (!buffer_mapped(bh) || buffer_freed(bh))
1137 * __block_write_begin() could have dirtied some buffers. Clean
1138 * the dirty bit as jbd2_journal_get_write_access() could complain
1139 * otherwise about fs integrity issues. Setting of the dirty bit
1140 * by __block_write_begin() isn't a real problem here as we clear
1141 * the bit before releasing a page lock and thus writeback cannot
1142 * ever write the buffer.
1145 clear_buffer_dirty(bh);
1146 BUFFER_TRACE(bh, "get write access");
1147 ret = ext4_journal_get_write_access(handle, bh);
1149 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1153 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1154 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1155 get_block_t *get_block)
1157 unsigned from = pos & (PAGE_SIZE - 1);
1158 unsigned to = from + len;
1159 struct inode *inode = page->mapping->host;
1160 unsigned block_start, block_end;
1163 unsigned blocksize = inode->i_sb->s_blocksize;
1165 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1166 bool decrypt = false;
1168 BUG_ON(!PageLocked(page));
1169 BUG_ON(from > PAGE_SIZE);
1170 BUG_ON(to > PAGE_SIZE);
1173 if (!page_has_buffers(page))
1174 create_empty_buffers(page, blocksize, 0);
1175 head = page_buffers(page);
1176 bbits = ilog2(blocksize);
1177 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1179 for (bh = head, block_start = 0; bh != head || !block_start;
1180 block++, block_start = block_end, bh = bh->b_this_page) {
1181 block_end = block_start + blocksize;
1182 if (block_end <= from || block_start >= to) {
1183 if (PageUptodate(page)) {
1184 if (!buffer_uptodate(bh))
1185 set_buffer_uptodate(bh);
1190 clear_buffer_new(bh);
1191 if (!buffer_mapped(bh)) {
1192 WARN_ON(bh->b_size != blocksize);
1193 err = get_block(inode, block, bh, 1);
1196 if (buffer_new(bh)) {
1197 clean_bdev_bh_alias(bh);
1198 if (PageUptodate(page)) {
1199 clear_buffer_new(bh);
1200 set_buffer_uptodate(bh);
1201 mark_buffer_dirty(bh);
1204 if (block_end > to || block_start < from)
1205 zero_user_segments(page, to, block_end,
1210 if (PageUptodate(page)) {
1211 if (!buffer_uptodate(bh))
1212 set_buffer_uptodate(bh);
1215 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1216 !buffer_unwritten(bh) &&
1217 (block_start < from || block_end > to)) {
1218 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1220 decrypt = ext4_encrypted_inode(inode) &&
1221 S_ISREG(inode->i_mode);
1225 * If we issued read requests, let them complete.
1227 while (wait_bh > wait) {
1228 wait_on_buffer(*--wait_bh);
1229 if (!buffer_uptodate(*wait_bh))
1233 page_zero_new_buffers(page, from, to);
1235 err = fscrypt_decrypt_page(page->mapping->host, page,
1236 PAGE_SIZE, 0, page->index);
1241 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1242 loff_t pos, unsigned len, unsigned flags,
1243 struct page **pagep, void **fsdata)
1245 struct inode *inode = mapping->host;
1246 int ret, needed_blocks;
1253 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1256 trace_ext4_write_begin(inode, pos, len, flags);
1258 * Reserve one block more for addition to orphan list in case
1259 * we allocate blocks but write fails for some reason
1261 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1262 index = pos >> PAGE_SHIFT;
1263 from = pos & (PAGE_SIZE - 1);
1266 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1267 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1276 * grab_cache_page_write_begin() can take a long time if the
1277 * system is thrashing due to memory pressure, or if the page
1278 * is being written back. So grab it first before we start
1279 * the transaction handle. This also allows us to allocate
1280 * the page (if needed) without using GFP_NOFS.
1283 page = grab_cache_page_write_begin(mapping, index, flags);
1289 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1290 if (IS_ERR(handle)) {
1292 return PTR_ERR(handle);
1296 if (page->mapping != mapping) {
1297 /* The page got truncated from under us */
1300 ext4_journal_stop(handle);
1303 /* In case writeback began while the page was unlocked */
1304 wait_for_stable_page(page);
1306 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1307 if (ext4_should_dioread_nolock(inode))
1308 ret = ext4_block_write_begin(page, pos, len,
1309 ext4_get_block_unwritten);
1311 ret = ext4_block_write_begin(page, pos, len,
1314 if (ext4_should_dioread_nolock(inode))
1315 ret = __block_write_begin(page, pos, len,
1316 ext4_get_block_unwritten);
1318 ret = __block_write_begin(page, pos, len, ext4_get_block);
1320 if (!ret && ext4_should_journal_data(inode)) {
1321 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1323 do_journal_get_write_access);
1329 * __block_write_begin may have instantiated a few blocks
1330 * outside i_size. Trim these off again. Don't need
1331 * i_size_read because we hold i_mutex.
1333 * Add inode to orphan list in case we crash before
1336 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1337 ext4_orphan_add(handle, inode);
1339 ext4_journal_stop(handle);
1340 if (pos + len > inode->i_size) {
1341 ext4_truncate_failed_write(inode);
1343 * If truncate failed early the inode might
1344 * still be on the orphan list; we need to
1345 * make sure the inode is removed from the
1346 * orphan list in that case.
1349 ext4_orphan_del(NULL, inode);
1352 if (ret == -ENOSPC &&
1353 ext4_should_retry_alloc(inode->i_sb, &retries))
1362 /* For write_end() in data=journal mode */
1363 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1366 if (!buffer_mapped(bh) || buffer_freed(bh))
1368 set_buffer_uptodate(bh);
1369 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1370 clear_buffer_meta(bh);
1371 clear_buffer_prio(bh);
1376 * We need to pick up the new inode size which generic_commit_write gave us
1377 * `file' can be NULL - eg, when called from page_symlink().
1379 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1380 * buffers are managed internally.
1382 static int ext4_write_end(struct file *file,
1383 struct address_space *mapping,
1384 loff_t pos, unsigned len, unsigned copied,
1385 struct page *page, void *fsdata)
1387 handle_t *handle = ext4_journal_current_handle();
1388 struct inode *inode = mapping->host;
1389 loff_t old_size = inode->i_size;
1391 int i_size_changed = 0;
1392 int inline_data = ext4_has_inline_data(inode);
1394 trace_ext4_write_end(inode, pos, len, copied);
1396 ret = ext4_write_inline_data_end(inode, pos, len,
1405 copied = block_write_end(file, mapping, pos,
1406 len, copied, page, fsdata);
1408 * it's important to update i_size while still holding page lock:
1409 * page writeout could otherwise come in and zero beyond i_size.
1411 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1416 pagecache_isize_extended(inode, old_size, pos);
1418 * Don't mark the inode dirty under page lock. First, it unnecessarily
1419 * makes the holding time of page lock longer. Second, it forces lock
1420 * ordering of page lock and transaction start for journaling
1423 if (i_size_changed || inline_data)
1424 ext4_mark_inode_dirty(handle, inode);
1426 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1427 /* if we have allocated more blocks and copied
1428 * less. We will have blocks allocated outside
1429 * inode->i_size. So truncate them
1431 ext4_orphan_add(handle, inode);
1433 ret2 = ext4_journal_stop(handle);
1437 if (pos + len > inode->i_size) {
1438 ext4_truncate_failed_write(inode);
1440 * If truncate failed early the inode might still be
1441 * on the orphan list; we need to make sure the inode
1442 * is removed from the orphan list in that case.
1445 ext4_orphan_del(NULL, inode);
1448 return ret ? ret : copied;
1452 * This is a private version of page_zero_new_buffers() which doesn't
1453 * set the buffer to be dirty, since in data=journalled mode we need
1454 * to call ext4_handle_dirty_metadata() instead.
1456 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1458 unsigned from, unsigned to)
1460 unsigned int block_start = 0, block_end;
1461 struct buffer_head *head, *bh;
1463 bh = head = page_buffers(page);
1465 block_end = block_start + bh->b_size;
1466 if (buffer_new(bh)) {
1467 if (block_end > from && block_start < to) {
1468 if (!PageUptodate(page)) {
1469 unsigned start, size;
1471 start = max(from, block_start);
1472 size = min(to, block_end) - start;
1474 zero_user(page, start, size);
1475 write_end_fn(handle, bh);
1477 clear_buffer_new(bh);
1480 block_start = block_end;
1481 bh = bh->b_this_page;
1482 } while (bh != head);
1485 static int ext4_journalled_write_end(struct file *file,
1486 struct address_space *mapping,
1487 loff_t pos, unsigned len, unsigned copied,
1488 struct page *page, void *fsdata)
1490 handle_t *handle = ext4_journal_current_handle();
1491 struct inode *inode = mapping->host;
1492 loff_t old_size = inode->i_size;
1496 int size_changed = 0;
1497 int inline_data = ext4_has_inline_data(inode);
1499 trace_ext4_journalled_write_end(inode, pos, len, copied);
1500 from = pos & (PAGE_SIZE - 1);
1503 BUG_ON(!ext4_handle_valid(handle));
1506 ret = ext4_write_inline_data_end(inode, pos, len,
1514 } else if (unlikely(copied < len) && !PageUptodate(page)) {
1516 ext4_journalled_zero_new_buffers(handle, page, from, to);
1518 if (unlikely(copied < len))
1519 ext4_journalled_zero_new_buffers(handle, page,
1521 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1522 from + copied, &partial,
1525 SetPageUptodate(page);
1527 size_changed = ext4_update_inode_size(inode, pos + copied);
1528 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1529 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1534 pagecache_isize_extended(inode, old_size, pos);
1536 if (size_changed || inline_data) {
1537 ret2 = ext4_mark_inode_dirty(handle, inode);
1542 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1543 /* if we have allocated more blocks and copied
1544 * less. We will have blocks allocated outside
1545 * inode->i_size. So truncate them
1547 ext4_orphan_add(handle, inode);
1550 ret2 = ext4_journal_stop(handle);
1553 if (pos + len > inode->i_size) {
1554 ext4_truncate_failed_write(inode);
1556 * If truncate failed early the inode might still be
1557 * on the orphan list; we need to make sure the inode
1558 * is removed from the orphan list in that case.
1561 ext4_orphan_del(NULL, inode);
1564 return ret ? ret : copied;
1568 * Reserve space for a single cluster
1570 static int ext4_da_reserve_space(struct inode *inode)
1572 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1573 struct ext4_inode_info *ei = EXT4_I(inode);
1577 * We will charge metadata quota at writeout time; this saves
1578 * us from metadata over-estimation, though we may go over by
1579 * a small amount in the end. Here we just reserve for data.
1581 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1585 spin_lock(&ei->i_block_reservation_lock);
1586 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1587 spin_unlock(&ei->i_block_reservation_lock);
1588 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1591 ei->i_reserved_data_blocks++;
1592 trace_ext4_da_reserve_space(inode);
1593 spin_unlock(&ei->i_block_reservation_lock);
1595 return 0; /* success */
1598 void ext4_da_release_space(struct inode *inode, int to_free)
1600 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1601 struct ext4_inode_info *ei = EXT4_I(inode);
1604 return; /* Nothing to release, exit */
1606 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1608 trace_ext4_da_release_space(inode, to_free);
1609 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1611 * if there aren't enough reserved blocks, then the
1612 * counter is messed up somewhere. Since this
1613 * function is called from invalidate page, it's
1614 * harmless to return without any action.
1616 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1617 "ino %lu, to_free %d with only %d reserved "
1618 "data blocks", inode->i_ino, to_free,
1619 ei->i_reserved_data_blocks);
1621 to_free = ei->i_reserved_data_blocks;
1623 ei->i_reserved_data_blocks -= to_free;
1625 /* update fs dirty data blocks counter */
1626 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1628 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1630 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1633 static void ext4_da_page_release_reservation(struct page *page,
1634 unsigned int offset,
1635 unsigned int length)
1637 int contiguous_blks = 0;
1638 struct buffer_head *head, *bh;
1639 unsigned int curr_off = 0;
1640 struct inode *inode = page->mapping->host;
1641 unsigned int stop = offset + length;
1644 BUG_ON(stop > PAGE_SIZE || stop < length);
1646 head = page_buffers(page);
1649 unsigned int next_off = curr_off + bh->b_size;
1651 if (next_off > stop)
1654 if ((offset <= curr_off) && (buffer_delay(bh))) {
1656 clear_buffer_delay(bh);
1657 } else if (contiguous_blks) {
1658 lblk = page->index <<
1659 (PAGE_SHIFT - inode->i_blkbits);
1660 lblk += (curr_off >> inode->i_blkbits) -
1662 ext4_es_remove_blks(inode, lblk, contiguous_blks);
1663 contiguous_blks = 0;
1665 curr_off = next_off;
1666 } while ((bh = bh->b_this_page) != head);
1668 if (contiguous_blks) {
1669 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1670 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1671 ext4_es_remove_blks(inode, lblk, contiguous_blks);
1677 * Delayed allocation stuff
1680 struct mpage_da_data {
1681 struct inode *inode;
1682 struct writeback_control *wbc;
1684 pgoff_t first_page; /* The first page to write */
1685 pgoff_t next_page; /* Current page to examine */
1686 pgoff_t last_page; /* Last page to examine */
1688 * Extent to map - this can be after first_page because that can be
1689 * fully mapped. We somewhat abuse m_flags to store whether the extent
1690 * is delalloc or unwritten.
1692 struct ext4_map_blocks map;
1693 struct ext4_io_submit io_submit; /* IO submission data */
1694 unsigned int do_map:1;
1697 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1702 struct pagevec pvec;
1703 struct inode *inode = mpd->inode;
1704 struct address_space *mapping = inode->i_mapping;
1706 /* This is necessary when next_page == 0. */
1707 if (mpd->first_page >= mpd->next_page)
1710 index = mpd->first_page;
1711 end = mpd->next_page - 1;
1713 ext4_lblk_t start, last;
1714 start = index << (PAGE_SHIFT - inode->i_blkbits);
1715 last = end << (PAGE_SHIFT - inode->i_blkbits);
1716 ext4_es_remove_extent(inode, start, last - start + 1);
1719 pagevec_init(&pvec);
1720 while (index <= end) {
1721 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1724 for (i = 0; i < nr_pages; i++) {
1725 struct page *page = pvec.pages[i];
1727 BUG_ON(!PageLocked(page));
1728 BUG_ON(PageWriteback(page));
1730 if (page_mapped(page))
1731 clear_page_dirty_for_io(page);
1732 block_invalidatepage(page, 0, PAGE_SIZE);
1733 ClearPageUptodate(page);
1737 pagevec_release(&pvec);
1741 static void ext4_print_free_blocks(struct inode *inode)
1743 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1744 struct super_block *sb = inode->i_sb;
1745 struct ext4_inode_info *ei = EXT4_I(inode);
1747 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1748 EXT4_C2B(EXT4_SB(inode->i_sb),
1749 ext4_count_free_clusters(sb)));
1750 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1751 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1752 (long long) EXT4_C2B(EXT4_SB(sb),
1753 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1754 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1755 (long long) EXT4_C2B(EXT4_SB(sb),
1756 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1757 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1758 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1759 ei->i_reserved_data_blocks);
1763 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1765 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1769 * ext4_insert_delayed_block - adds a delayed block to the extents status
1770 * tree, incrementing the reserved cluster/block
1771 * count or making a pending reservation
1774 * @inode - file containing the newly added block
1775 * @lblk - logical block to be added
1777 * Returns 0 on success, negative error code on failure.
1779 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1781 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1783 bool allocated = false;
1786 * If the cluster containing lblk is shared with a delayed,
1787 * written, or unwritten extent in a bigalloc file system, it's
1788 * already been accounted for and does not need to be reserved.
1789 * A pending reservation must be made for the cluster if it's
1790 * shared with a written or unwritten extent and doesn't already
1791 * have one. Written and unwritten extents can be purged from the
1792 * extents status tree if the system is under memory pressure, so
1793 * it's necessary to examine the extent tree if a search of the
1794 * extents status tree doesn't get a match.
1796 if (sbi->s_cluster_ratio == 1) {
1797 ret = ext4_da_reserve_space(inode);
1798 if (ret != 0) /* ENOSPC */
1800 } else { /* bigalloc */
1801 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1802 if (!ext4_es_scan_clu(inode,
1803 &ext4_es_is_mapped, lblk)) {
1804 ret = ext4_clu_mapped(inode,
1805 EXT4_B2C(sbi, lblk));
1809 ret = ext4_da_reserve_space(inode);
1810 if (ret != 0) /* ENOSPC */
1821 ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1828 * This function is grabs code from the very beginning of
1829 * ext4_map_blocks, but assumes that the caller is from delayed write
1830 * time. This function looks up the requested blocks and sets the
1831 * buffer delay bit under the protection of i_data_sem.
1833 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1834 struct ext4_map_blocks *map,
1835 struct buffer_head *bh)
1837 struct extent_status es;
1839 sector_t invalid_block = ~((sector_t) 0xffff);
1840 #ifdef ES_AGGRESSIVE_TEST
1841 struct ext4_map_blocks orig_map;
1843 memcpy(&orig_map, map, sizeof(*map));
1846 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1850 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1851 "logical block %lu\n", inode->i_ino, map->m_len,
1852 (unsigned long) map->m_lblk);
1854 /* Lookup extent status tree firstly */
1855 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1856 if (ext4_es_is_hole(&es)) {
1858 down_read(&EXT4_I(inode)->i_data_sem);
1863 * Delayed extent could be allocated by fallocate.
1864 * So we need to check it.
1866 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1867 map_bh(bh, inode->i_sb, invalid_block);
1869 set_buffer_delay(bh);
1873 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1874 retval = es.es_len - (iblock - es.es_lblk);
1875 if (retval > map->m_len)
1876 retval = map->m_len;
1877 map->m_len = retval;
1878 if (ext4_es_is_written(&es))
1879 map->m_flags |= EXT4_MAP_MAPPED;
1880 else if (ext4_es_is_unwritten(&es))
1881 map->m_flags |= EXT4_MAP_UNWRITTEN;
1885 #ifdef ES_AGGRESSIVE_TEST
1886 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1892 * Try to see if we can get the block without requesting a new
1893 * file system block.
1895 down_read(&EXT4_I(inode)->i_data_sem);
1896 if (ext4_has_inline_data(inode))
1898 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1899 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1901 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1908 * XXX: __block_prepare_write() unmaps passed block,
1912 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1918 map_bh(bh, inode->i_sb, invalid_block);
1920 set_buffer_delay(bh);
1921 } else if (retval > 0) {
1923 unsigned int status;
1925 if (unlikely(retval != map->m_len)) {
1926 ext4_warning(inode->i_sb,
1927 "ES len assertion failed for inode "
1928 "%lu: retval %d != map->m_len %d",
1929 inode->i_ino, retval, map->m_len);
1933 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1934 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1935 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1936 map->m_pblk, status);
1942 up_read((&EXT4_I(inode)->i_data_sem));
1948 * This is a special get_block_t callback which is used by
1949 * ext4_da_write_begin(). It will either return mapped block or
1950 * reserve space for a single block.
1952 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1953 * We also have b_blocknr = -1 and b_bdev initialized properly
1955 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1956 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1957 * initialized properly.
1959 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1960 struct buffer_head *bh, int create)
1962 struct ext4_map_blocks map;
1965 BUG_ON(create == 0);
1966 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1968 map.m_lblk = iblock;
1972 * first, we need to know whether the block is allocated already
1973 * preallocated blocks are unmapped but should treated
1974 * the same as allocated blocks.
1976 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1980 map_bh(bh, inode->i_sb, map.m_pblk);
1981 ext4_update_bh_state(bh, map.m_flags);
1983 if (buffer_unwritten(bh)) {
1984 /* A delayed write to unwritten bh should be marked
1985 * new and mapped. Mapped ensures that we don't do
1986 * get_block multiple times when we write to the same
1987 * offset and new ensures that we do proper zero out
1988 * for partial write.
1991 set_buffer_mapped(bh);
1996 static int bget_one(handle_t *handle, struct buffer_head *bh)
2002 static int bput_one(handle_t *handle, struct buffer_head *bh)
2008 static int __ext4_journalled_writepage(struct page *page,
2011 struct address_space *mapping = page->mapping;
2012 struct inode *inode = mapping->host;
2013 struct buffer_head *page_bufs = NULL;
2014 handle_t *handle = NULL;
2015 int ret = 0, err = 0;
2016 int inline_data = ext4_has_inline_data(inode);
2017 struct buffer_head *inode_bh = NULL;
2019 ClearPageChecked(page);
2022 BUG_ON(page->index != 0);
2023 BUG_ON(len > ext4_get_max_inline_size(inode));
2024 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2025 if (inode_bh == NULL)
2028 page_bufs = page_buffers(page);
2033 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2037 * We need to release the page lock before we start the
2038 * journal, so grab a reference so the page won't disappear
2039 * out from under us.
2044 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2045 ext4_writepage_trans_blocks(inode));
2046 if (IS_ERR(handle)) {
2047 ret = PTR_ERR(handle);
2049 goto out_no_pagelock;
2051 BUG_ON(!ext4_handle_valid(handle));
2055 if (page->mapping != mapping) {
2056 /* The page got truncated from under us */
2057 ext4_journal_stop(handle);
2063 ret = ext4_mark_inode_dirty(handle, inode);
2065 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2066 do_journal_get_write_access);
2068 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2073 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2074 err = ext4_journal_stop(handle);
2078 if (!ext4_has_inline_data(inode))
2079 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2081 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2090 * Note that we don't need to start a transaction unless we're journaling data
2091 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2092 * need to file the inode to the transaction's list in ordered mode because if
2093 * we are writing back data added by write(), the inode is already there and if
2094 * we are writing back data modified via mmap(), no one guarantees in which
2095 * transaction the data will hit the disk. In case we are journaling data, we
2096 * cannot start transaction directly because transaction start ranks above page
2097 * lock so we have to do some magic.
2099 * This function can get called via...
2100 * - ext4_writepages after taking page lock (have journal handle)
2101 * - journal_submit_inode_data_buffers (no journal handle)
2102 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2103 * - grab_page_cache when doing write_begin (have journal handle)
2105 * We don't do any block allocation in this function. If we have page with
2106 * multiple blocks we need to write those buffer_heads that are mapped. This
2107 * is important for mmaped based write. So if we do with blocksize 1K
2108 * truncate(f, 1024);
2109 * a = mmap(f, 0, 4096);
2111 * truncate(f, 4096);
2112 * we have in the page first buffer_head mapped via page_mkwrite call back
2113 * but other buffer_heads would be unmapped but dirty (dirty done via the
2114 * do_wp_page). So writepage should write the first block. If we modify
2115 * the mmap area beyond 1024 we will again get a page_fault and the
2116 * page_mkwrite callback will do the block allocation and mark the
2117 * buffer_heads mapped.
2119 * We redirty the page if we have any buffer_heads that is either delay or
2120 * unwritten in the page.
2122 * We can get recursively called as show below.
2124 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2127 * But since we don't do any block allocation we should not deadlock.
2128 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2130 static int ext4_writepage(struct page *page,
2131 struct writeback_control *wbc)
2136 struct buffer_head *page_bufs = NULL;
2137 struct inode *inode = page->mapping->host;
2138 struct ext4_io_submit io_submit;
2139 bool keep_towrite = false;
2141 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2142 ext4_invalidatepage(page, 0, PAGE_SIZE);
2147 trace_ext4_writepage(page);
2148 size = i_size_read(inode);
2149 if (page->index == size >> PAGE_SHIFT)
2150 len = size & ~PAGE_MASK;
2154 page_bufs = page_buffers(page);
2156 * We cannot do block allocation or other extent handling in this
2157 * function. If there are buffers needing that, we have to redirty
2158 * the page. But we may reach here when we do a journal commit via
2159 * journal_submit_inode_data_buffers() and in that case we must write
2160 * allocated buffers to achieve data=ordered mode guarantees.
2162 * Also, if there is only one buffer per page (the fs block
2163 * size == the page size), if one buffer needs block
2164 * allocation or needs to modify the extent tree to clear the
2165 * unwritten flag, we know that the page can't be written at
2166 * all, so we might as well refuse the write immediately.
2167 * Unfortunately if the block size != page size, we can't as
2168 * easily detect this case using ext4_walk_page_buffers(), but
2169 * for the extremely common case, this is an optimization that
2170 * skips a useless round trip through ext4_bio_write_page().
2172 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2173 ext4_bh_delay_or_unwritten)) {
2174 redirty_page_for_writepage(wbc, page);
2175 if ((current->flags & PF_MEMALLOC) ||
2176 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2178 * For memory cleaning there's no point in writing only
2179 * some buffers. So just bail out. Warn if we came here
2180 * from direct reclaim.
2182 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2187 keep_towrite = true;
2190 if (PageChecked(page) && ext4_should_journal_data(inode))
2192 * It's mmapped pagecache. Add buffers and journal it. There
2193 * doesn't seem much point in redirtying the page here.
2195 return __ext4_journalled_writepage(page, len);
2197 ext4_io_submit_init(&io_submit, wbc);
2198 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2199 if (!io_submit.io_end) {
2200 redirty_page_for_writepage(wbc, page);
2204 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2205 ext4_io_submit(&io_submit);
2206 /* Drop io_end reference we got from init */
2207 ext4_put_io_end_defer(io_submit.io_end);
2211 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2217 BUG_ON(page->index != mpd->first_page);
2218 clear_page_dirty_for_io(page);
2220 * We have to be very careful here! Nothing protects writeback path
2221 * against i_size changes and the page can be writeably mapped into
2222 * page tables. So an application can be growing i_size and writing
2223 * data through mmap while writeback runs. clear_page_dirty_for_io()
2224 * write-protects our page in page tables and the page cannot get
2225 * written to again until we release page lock. So only after
2226 * clear_page_dirty_for_io() we are safe to sample i_size for
2227 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2228 * on the barrier provided by TestClearPageDirty in
2229 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2230 * after page tables are updated.
2232 size = i_size_read(mpd->inode);
2233 if (page->index == size >> PAGE_SHIFT)
2234 len = size & ~PAGE_MASK;
2237 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2239 mpd->wbc->nr_to_write--;
2245 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2248 * mballoc gives us at most this number of blocks...
2249 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2250 * The rest of mballoc seems to handle chunks up to full group size.
2252 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2255 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2257 * @mpd - extent of blocks
2258 * @lblk - logical number of the block in the file
2259 * @bh - buffer head we want to add to the extent
2261 * The function is used to collect contig. blocks in the same state. If the
2262 * buffer doesn't require mapping for writeback and we haven't started the
2263 * extent of buffers to map yet, the function returns 'true' immediately - the
2264 * caller can write the buffer right away. Otherwise the function returns true
2265 * if the block has been added to the extent, false if the block couldn't be
2268 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2269 struct buffer_head *bh)
2271 struct ext4_map_blocks *map = &mpd->map;
2273 /* Buffer that doesn't need mapping for writeback? */
2274 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2275 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2276 /* So far no extent to map => we write the buffer right away */
2277 if (map->m_len == 0)
2282 /* First block in the extent? */
2283 if (map->m_len == 0) {
2284 /* We cannot map unless handle is started... */
2289 map->m_flags = bh->b_state & BH_FLAGS;
2293 /* Don't go larger than mballoc is willing to allocate */
2294 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2297 /* Can we merge the block to our big extent? */
2298 if (lblk == map->m_lblk + map->m_len &&
2299 (bh->b_state & BH_FLAGS) == map->m_flags) {
2307 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2309 * @mpd - extent of blocks for mapping
2310 * @head - the first buffer in the page
2311 * @bh - buffer we should start processing from
2312 * @lblk - logical number of the block in the file corresponding to @bh
2314 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2315 * the page for IO if all buffers in this page were mapped and there's no
2316 * accumulated extent of buffers to map or add buffers in the page to the
2317 * extent of buffers to map. The function returns 1 if the caller can continue
2318 * by processing the next page, 0 if it should stop adding buffers to the
2319 * extent to map because we cannot extend it anymore. It can also return value
2320 * < 0 in case of error during IO submission.
2322 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2323 struct buffer_head *head,
2324 struct buffer_head *bh,
2327 struct inode *inode = mpd->inode;
2329 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2330 >> inode->i_blkbits;
2333 BUG_ON(buffer_locked(bh));
2335 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2336 /* Found extent to map? */
2339 /* Buffer needs mapping and handle is not started? */
2342 /* Everything mapped so far and we hit EOF */
2345 } while (lblk++, (bh = bh->b_this_page) != head);
2346 /* So far everything mapped? Submit the page for IO. */
2347 if (mpd->map.m_len == 0) {
2348 err = mpage_submit_page(mpd, head->b_page);
2352 return lblk < blocks;
2356 * mpage_map_buffers - update buffers corresponding to changed extent and
2357 * submit fully mapped pages for IO
2359 * @mpd - description of extent to map, on return next extent to map
2361 * Scan buffers corresponding to changed extent (we expect corresponding pages
2362 * to be already locked) and update buffer state according to new extent state.
2363 * We map delalloc buffers to their physical location, clear unwritten bits,
2364 * and mark buffers as uninit when we perform writes to unwritten extents
2365 * and do extent conversion after IO is finished. If the last page is not fully
2366 * mapped, we update @map to the next extent in the last page that needs
2367 * mapping. Otherwise we submit the page for IO.
2369 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2371 struct pagevec pvec;
2373 struct inode *inode = mpd->inode;
2374 struct buffer_head *head, *bh;
2375 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2381 start = mpd->map.m_lblk >> bpp_bits;
2382 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2383 lblk = start << bpp_bits;
2384 pblock = mpd->map.m_pblk;
2386 pagevec_init(&pvec);
2387 while (start <= end) {
2388 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2392 for (i = 0; i < nr_pages; i++) {
2393 struct page *page = pvec.pages[i];
2395 bh = head = page_buffers(page);
2397 if (lblk < mpd->map.m_lblk)
2399 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2401 * Buffer after end of mapped extent.
2402 * Find next buffer in the page to map.
2405 mpd->map.m_flags = 0;
2407 * FIXME: If dioread_nolock supports
2408 * blocksize < pagesize, we need to make
2409 * sure we add size mapped so far to
2410 * io_end->size as the following call
2411 * can submit the page for IO.
2413 err = mpage_process_page_bufs(mpd, head,
2415 pagevec_release(&pvec);
2420 if (buffer_delay(bh)) {
2421 clear_buffer_delay(bh);
2422 bh->b_blocknr = pblock++;
2424 clear_buffer_unwritten(bh);
2425 } while (lblk++, (bh = bh->b_this_page) != head);
2428 * FIXME: This is going to break if dioread_nolock
2429 * supports blocksize < pagesize as we will try to
2430 * convert potentially unmapped parts of inode.
2432 mpd->io_submit.io_end->size += PAGE_SIZE;
2433 /* Page fully mapped - let IO run! */
2434 err = mpage_submit_page(mpd, page);
2436 pagevec_release(&pvec);
2440 pagevec_release(&pvec);
2442 /* Extent fully mapped and matches with page boundary. We are done. */
2444 mpd->map.m_flags = 0;
2448 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2450 struct inode *inode = mpd->inode;
2451 struct ext4_map_blocks *map = &mpd->map;
2452 int get_blocks_flags;
2453 int err, dioread_nolock;
2455 trace_ext4_da_write_pages_extent(inode, map);
2457 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2458 * to convert an unwritten extent to be initialized (in the case
2459 * where we have written into one or more preallocated blocks). It is
2460 * possible that we're going to need more metadata blocks than
2461 * previously reserved. However we must not fail because we're in
2462 * writeback and there is nothing we can do about it so it might result
2463 * in data loss. So use reserved blocks to allocate metadata if
2466 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2467 * the blocks in question are delalloc blocks. This indicates
2468 * that the blocks and quotas has already been checked when
2469 * the data was copied into the page cache.
2471 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2472 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2473 EXT4_GET_BLOCKS_IO_SUBMIT;
2474 dioread_nolock = ext4_should_dioread_nolock(inode);
2476 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2477 if (map->m_flags & (1 << BH_Delay))
2478 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2480 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2483 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2484 if (!mpd->io_submit.io_end->handle &&
2485 ext4_handle_valid(handle)) {
2486 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2487 handle->h_rsv_handle = NULL;
2489 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2492 BUG_ON(map->m_len == 0);
2493 if (map->m_flags & EXT4_MAP_NEW) {
2494 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2501 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2502 * mpd->len and submit pages underlying it for IO
2504 * @handle - handle for journal operations
2505 * @mpd - extent to map
2506 * @give_up_on_write - we set this to true iff there is a fatal error and there
2507 * is no hope of writing the data. The caller should discard
2508 * dirty pages to avoid infinite loops.
2510 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2511 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2512 * them to initialized or split the described range from larger unwritten
2513 * extent. Note that we need not map all the described range since allocation
2514 * can return less blocks or the range is covered by more unwritten extents. We
2515 * cannot map more because we are limited by reserved transaction credits. On
2516 * the other hand we always make sure that the last touched page is fully
2517 * mapped so that it can be written out (and thus forward progress is
2518 * guaranteed). After mapping we submit all mapped pages for IO.
2520 static int mpage_map_and_submit_extent(handle_t *handle,
2521 struct mpage_da_data *mpd,
2522 bool *give_up_on_write)
2524 struct inode *inode = mpd->inode;
2525 struct ext4_map_blocks *map = &mpd->map;
2530 mpd->io_submit.io_end->offset =
2531 ((loff_t)map->m_lblk) << inode->i_blkbits;
2533 err = mpage_map_one_extent(handle, mpd);
2535 struct super_block *sb = inode->i_sb;
2537 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2538 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2539 goto invalidate_dirty_pages;
2541 * Let the uper layers retry transient errors.
2542 * In the case of ENOSPC, if ext4_count_free_blocks()
2543 * is non-zero, a commit should free up blocks.
2545 if ((err == -ENOMEM) ||
2546 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2548 goto update_disksize;
2551 ext4_msg(sb, KERN_CRIT,
2552 "Delayed block allocation failed for "
2553 "inode %lu at logical offset %llu with"
2554 " max blocks %u with error %d",
2556 (unsigned long long)map->m_lblk,
2557 (unsigned)map->m_len, -err);
2558 ext4_msg(sb, KERN_CRIT,
2559 "This should not happen!! Data will "
2562 ext4_print_free_blocks(inode);
2563 invalidate_dirty_pages:
2564 *give_up_on_write = true;
2569 * Update buffer state, submit mapped pages, and get us new
2572 err = mpage_map_and_submit_buffers(mpd);
2574 goto update_disksize;
2575 } while (map->m_len);
2579 * Update on-disk size after IO is submitted. Races with
2580 * truncate are avoided by checking i_size under i_data_sem.
2582 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2583 if (disksize > EXT4_I(inode)->i_disksize) {
2587 down_write(&EXT4_I(inode)->i_data_sem);
2588 i_size = i_size_read(inode);
2589 if (disksize > i_size)
2591 if (disksize > EXT4_I(inode)->i_disksize)
2592 EXT4_I(inode)->i_disksize = disksize;
2593 up_write(&EXT4_I(inode)->i_data_sem);
2594 err2 = ext4_mark_inode_dirty(handle, inode);
2596 ext4_error(inode->i_sb,
2597 "Failed to mark inode %lu dirty",
2606 * Calculate the total number of credits to reserve for one writepages
2607 * iteration. This is called from ext4_writepages(). We map an extent of
2608 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2609 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2610 * bpp - 1 blocks in bpp different extents.
2612 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2614 int bpp = ext4_journal_blocks_per_page(inode);
2616 return ext4_meta_trans_blocks(inode,
2617 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2621 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2622 * and underlying extent to map
2624 * @mpd - where to look for pages
2626 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2627 * IO immediately. When we find a page which isn't mapped we start accumulating
2628 * extent of buffers underlying these pages that needs mapping (formed by
2629 * either delayed or unwritten buffers). We also lock the pages containing
2630 * these buffers. The extent found is returned in @mpd structure (starting at
2631 * mpd->lblk with length mpd->len blocks).
2633 * Note that this function can attach bios to one io_end structure which are
2634 * neither logically nor physically contiguous. Although it may seem as an
2635 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2636 * case as we need to track IO to all buffers underlying a page in one io_end.
2638 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2640 struct address_space *mapping = mpd->inode->i_mapping;
2641 struct pagevec pvec;
2642 unsigned int nr_pages;
2643 long left = mpd->wbc->nr_to_write;
2644 pgoff_t index = mpd->first_page;
2645 pgoff_t end = mpd->last_page;
2648 int blkbits = mpd->inode->i_blkbits;
2650 struct buffer_head *head;
2652 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2653 tag = PAGECACHE_TAG_TOWRITE;
2655 tag = PAGECACHE_TAG_DIRTY;
2657 pagevec_init(&pvec);
2659 mpd->next_page = index;
2660 while (index <= end) {
2661 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2666 for (i = 0; i < nr_pages; i++) {
2667 struct page *page = pvec.pages[i];
2670 * Accumulated enough dirty pages? This doesn't apply
2671 * to WB_SYNC_ALL mode. For integrity sync we have to
2672 * keep going because someone may be concurrently
2673 * dirtying pages, and we might have synced a lot of
2674 * newly appeared dirty pages, but have not synced all
2675 * of the old dirty pages.
2677 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2680 /* If we can't merge this page, we are done. */
2681 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2686 * If the page is no longer dirty, or its mapping no
2687 * longer corresponds to inode we are writing (which
2688 * means it has been truncated or invalidated), or the
2689 * page is already under writeback and we are not doing
2690 * a data integrity writeback, skip the page
2692 if (!PageDirty(page) ||
2693 (PageWriteback(page) &&
2694 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2695 unlikely(page->mapping != mapping)) {
2700 wait_on_page_writeback(page);
2701 BUG_ON(PageWriteback(page));
2703 if (mpd->map.m_len == 0)
2704 mpd->first_page = page->index;
2705 mpd->next_page = page->index + 1;
2706 /* Add all dirty buffers to mpd */
2707 lblk = ((ext4_lblk_t)page->index) <<
2708 (PAGE_SHIFT - blkbits);
2709 head = page_buffers(page);
2710 err = mpage_process_page_bufs(mpd, head, head, lblk);
2716 pagevec_release(&pvec);
2721 pagevec_release(&pvec);
2725 static int ext4_writepages(struct address_space *mapping,
2726 struct writeback_control *wbc)
2728 pgoff_t writeback_index = 0;
2729 long nr_to_write = wbc->nr_to_write;
2730 int range_whole = 0;
2732 handle_t *handle = NULL;
2733 struct mpage_da_data mpd;
2734 struct inode *inode = mapping->host;
2735 int needed_blocks, rsv_blocks = 0, ret = 0;
2736 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2738 struct blk_plug plug;
2739 bool give_up_on_write = false;
2741 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2744 percpu_down_read(&sbi->s_journal_flag_rwsem);
2745 trace_ext4_writepages(inode, wbc);
2748 * No pages to write? This is mainly a kludge to avoid starting
2749 * a transaction for special inodes like journal inode on last iput()
2750 * because that could violate lock ordering on umount
2752 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2753 goto out_writepages;
2755 if (ext4_should_journal_data(inode)) {
2756 ret = generic_writepages(mapping, wbc);
2757 goto out_writepages;
2761 * If the filesystem has aborted, it is read-only, so return
2762 * right away instead of dumping stack traces later on that
2763 * will obscure the real source of the problem. We test
2764 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2765 * the latter could be true if the filesystem is mounted
2766 * read-only, and in that case, ext4_writepages should
2767 * *never* be called, so if that ever happens, we would want
2770 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2771 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2773 goto out_writepages;
2776 if (ext4_should_dioread_nolock(inode)) {
2778 * We may need to convert up to one extent per block in
2779 * the page and we may dirty the inode.
2781 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2785 * If we have inline data and arrive here, it means that
2786 * we will soon create the block for the 1st page, so
2787 * we'd better clear the inline data here.
2789 if (ext4_has_inline_data(inode)) {
2790 /* Just inode will be modified... */
2791 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2792 if (IS_ERR(handle)) {
2793 ret = PTR_ERR(handle);
2794 goto out_writepages;
2796 BUG_ON(ext4_test_inode_state(inode,
2797 EXT4_STATE_MAY_INLINE_DATA));
2798 ext4_destroy_inline_data(handle, inode);
2799 ext4_journal_stop(handle);
2802 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2805 if (wbc->range_cyclic) {
2806 writeback_index = mapping->writeback_index;
2807 if (writeback_index)
2809 mpd.first_page = writeback_index;
2812 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2813 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2818 ext4_io_submit_init(&mpd.io_submit, wbc);
2820 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2821 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2823 blk_start_plug(&plug);
2826 * First writeback pages that don't need mapping - we can avoid
2827 * starting a transaction unnecessarily and also avoid being blocked
2828 * in the block layer on device congestion while having transaction
2832 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2833 if (!mpd.io_submit.io_end) {
2837 ret = mpage_prepare_extent_to_map(&mpd);
2838 /* Submit prepared bio */
2839 ext4_io_submit(&mpd.io_submit);
2840 ext4_put_io_end_defer(mpd.io_submit.io_end);
2841 mpd.io_submit.io_end = NULL;
2842 /* Unlock pages we didn't use */
2843 mpage_release_unused_pages(&mpd, false);
2847 while (!done && mpd.first_page <= mpd.last_page) {
2848 /* For each extent of pages we use new io_end */
2849 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2850 if (!mpd.io_submit.io_end) {
2856 * We have two constraints: We find one extent to map and we
2857 * must always write out whole page (makes a difference when
2858 * blocksize < pagesize) so that we don't block on IO when we
2859 * try to write out the rest of the page. Journalled mode is
2860 * not supported by delalloc.
2862 BUG_ON(ext4_should_journal_data(inode));
2863 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2865 /* start a new transaction */
2866 handle = ext4_journal_start_with_reserve(inode,
2867 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2868 if (IS_ERR(handle)) {
2869 ret = PTR_ERR(handle);
2870 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2871 "%ld pages, ino %lu; err %d", __func__,
2872 wbc->nr_to_write, inode->i_ino, ret);
2873 /* Release allocated io_end */
2874 ext4_put_io_end(mpd.io_submit.io_end);
2875 mpd.io_submit.io_end = NULL;
2880 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2881 ret = mpage_prepare_extent_to_map(&mpd);
2884 ret = mpage_map_and_submit_extent(handle, &mpd,
2888 * We scanned the whole range (or exhausted
2889 * nr_to_write), submitted what was mapped and
2890 * didn't find anything needing mapping. We are
2897 * Caution: If the handle is synchronous,
2898 * ext4_journal_stop() can wait for transaction commit
2899 * to finish which may depend on writeback of pages to
2900 * complete or on page lock to be released. In that
2901 * case, we have to wait until after after we have
2902 * submitted all the IO, released page locks we hold,
2903 * and dropped io_end reference (for extent conversion
2904 * to be able to complete) before stopping the handle.
2906 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2907 ext4_journal_stop(handle);
2911 /* Submit prepared bio */
2912 ext4_io_submit(&mpd.io_submit);
2913 /* Unlock pages we didn't use */
2914 mpage_release_unused_pages(&mpd, give_up_on_write);
2916 * Drop our io_end reference we got from init. We have
2917 * to be careful and use deferred io_end finishing if
2918 * we are still holding the transaction as we can
2919 * release the last reference to io_end which may end
2920 * up doing unwritten extent conversion.
2923 ext4_put_io_end_defer(mpd.io_submit.io_end);
2924 ext4_journal_stop(handle);
2926 ext4_put_io_end(mpd.io_submit.io_end);
2927 mpd.io_submit.io_end = NULL;
2929 if (ret == -ENOSPC && sbi->s_journal) {
2931 * Commit the transaction which would
2932 * free blocks released in the transaction
2935 jbd2_journal_force_commit_nested(sbi->s_journal);
2939 /* Fatal error - ENOMEM, EIO... */
2944 blk_finish_plug(&plug);
2945 if (!ret && !cycled && wbc->nr_to_write > 0) {
2947 mpd.last_page = writeback_index - 1;
2953 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2955 * Set the writeback_index so that range_cyclic
2956 * mode will write it back later
2958 mapping->writeback_index = mpd.first_page;
2961 trace_ext4_writepages_result(inode, wbc, ret,
2962 nr_to_write - wbc->nr_to_write);
2963 percpu_up_read(&sbi->s_journal_flag_rwsem);
2967 static int ext4_dax_writepages(struct address_space *mapping,
2968 struct writeback_control *wbc)
2971 long nr_to_write = wbc->nr_to_write;
2972 struct inode *inode = mapping->host;
2973 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2975 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2978 percpu_down_read(&sbi->s_journal_flag_rwsem);
2979 trace_ext4_writepages(inode, wbc);
2981 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc);
2982 trace_ext4_writepages_result(inode, wbc, ret,
2983 nr_to_write - wbc->nr_to_write);
2984 percpu_up_read(&sbi->s_journal_flag_rwsem);
2988 static int ext4_nonda_switch(struct super_block *sb)
2990 s64 free_clusters, dirty_clusters;
2991 struct ext4_sb_info *sbi = EXT4_SB(sb);
2994 * switch to non delalloc mode if we are running low
2995 * on free block. The free block accounting via percpu
2996 * counters can get slightly wrong with percpu_counter_batch getting
2997 * accumulated on each CPU without updating global counters
2998 * Delalloc need an accurate free block accounting. So switch
2999 * to non delalloc when we are near to error range.
3002 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
3004 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
3006 * Start pushing delalloc when 1/2 of free blocks are dirty.
3008 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
3009 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
3011 if (2 * free_clusters < 3 * dirty_clusters ||
3012 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
3014 * free block count is less than 150% of dirty blocks
3015 * or free blocks is less than watermark
3022 /* We always reserve for an inode update; the superblock could be there too */
3023 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
3025 if (likely(ext4_has_feature_large_file(inode->i_sb)))
3028 if (pos + len <= 0x7fffffffULL)
3031 /* We might need to update the superblock to set LARGE_FILE */
3035 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3036 loff_t pos, unsigned len, unsigned flags,
3037 struct page **pagep, void **fsdata)
3039 int ret, retries = 0;
3042 struct inode *inode = mapping->host;
3045 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3048 index = pos >> PAGE_SHIFT;
3050 if (ext4_nonda_switch(inode->i_sb) ||
3051 S_ISLNK(inode->i_mode)) {
3052 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3053 return ext4_write_begin(file, mapping, pos,
3054 len, flags, pagep, fsdata);
3056 *fsdata = (void *)0;
3057 trace_ext4_da_write_begin(inode, pos, len, flags);
3059 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3060 ret = ext4_da_write_inline_data_begin(mapping, inode,
3070 * grab_cache_page_write_begin() can take a long time if the
3071 * system is thrashing due to memory pressure, or if the page
3072 * is being written back. So grab it first before we start
3073 * the transaction handle. This also allows us to allocate
3074 * the page (if needed) without using GFP_NOFS.
3077 page = grab_cache_page_write_begin(mapping, index, flags);
3083 * With delayed allocation, we don't log the i_disksize update
3084 * if there is delayed block allocation. But we still need
3085 * to journalling the i_disksize update if writes to the end
3086 * of file which has an already mapped buffer.
3089 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3090 ext4_da_write_credits(inode, pos, len));
3091 if (IS_ERR(handle)) {
3093 return PTR_ERR(handle);
3097 if (page->mapping != mapping) {
3098 /* The page got truncated from under us */
3101 ext4_journal_stop(handle);
3104 /* In case writeback began while the page was unlocked */
3105 wait_for_stable_page(page);
3107 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3108 ret = ext4_block_write_begin(page, pos, len,
3109 ext4_da_get_block_prep);
3111 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3115 ext4_journal_stop(handle);
3117 * block_write_begin may have instantiated a few blocks
3118 * outside i_size. Trim these off again. Don't need
3119 * i_size_read because we hold i_mutex.
3121 if (pos + len > inode->i_size)
3122 ext4_truncate_failed_write(inode);
3124 if (ret == -ENOSPC &&